

Design and Testing of an Amphibious AUV

A Major Qualifying Project Report

Submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in Partial Fulfillment of the Requirements for the

Degree of Bachelor of Science

in Aerospace Engineering and Robotics Engineering

by

Michael Beskid

Ryan Brunelle

Calista Carrignan

Robert Devlin

Toshak Patel

Kofi Sarfo

MARCH 3, 2023

Approved by:

Michael A. Demetriou, Advisor

Professor, Aerospace Engineering Department

WPI

This report represents the work of one or more WPI undergraduate students submitted to the

faculty as evidence of completion of a degree requirement. WPI routinely publishes these reports

on the web without editorial or peer review.

ii

Abstract
The objective of this project is to design, construct, and test an autonomous quadrotor vehicle

capable of combined at-will aerial flight and underwater locomotion. The system consists of a

quadrotor structure with a waterproof enclosure containing the necessary electronics and

microcontrollers for autonomous flight. A ballast system is utilized for air to water transitions and

was designed to ensure the craft will sink and rotate to the correct position for underwater

propulsion when filled and back to an upright position when emptied to allow for takeoff. All of

this is designed to be completed autonomously with the designed flight controller which utilizes a

Teensy 4.0 microcontroller and Raspberry Pi within a complete sensor array. To demonstrate these

capabilities, the designed quadrotor is to complete a mission within an indoor swimming pool area.

The craft will start in a hover above the surface at one end of the pool, land on the surface and dive

underwater to traverse the length of the pool, then resurface at the opposite side to take off and

return to base. Within this paper, the design process and iterations are presented along with the

corresponding research used to improve each iteration.

“Certain materials are included under the fair use exemption of the U.S. Copyright Law and have

been prepared according to the fair use guidelines and are restricted from further use."

Acknowledgements
All authors would like to thank Professor Michael Demetriou, Professor David Olinger, and

Professor John Sullivan for their support and guidance during the duration of this project. We

would also like to thank Nicholas Rehm for publishing his dRehmFlight flight computer publicly,

which was invaluable to development of the flight software for this project.

Table of Authorship

Introduction

Overview Ryan Brunelle

Project Objectives Kofi Sarfo

Requirements, Constrains, and Considerations Design Robert Devlin

Project Management and Team Organization Toshak Patel

Societal Impacts Kofi Sarfo

Background

Brief History Calista Carrignan

Past MQP Work at WPI Michael Beskid

Related Research on Amphibious AUVs Ryan Brunelle

Quadrotor Flight Mechanics Michael Beskid

Aerial Dynamics Michael Beskid

Underwater Dynamics Michael Beskid

Autonomy and Localization Calista Carrignan

iii

Technical Sections

Quadrotor Flight Controllers

Commercially Available Flight Controllers Calista Carrignan

Custom Flight Controllers Calista Carrignan

dRehmFlight VTOL Calista Carrignan

Electronics

Power Subsystem Michael Beskid

Propulsion Subsystem Michael Beskid

Sensing and Localization Subsystem Michael Beskid

Ballast System Electronics Michael Beskid

State Estimation

Onboard Sensors Calista Carrignan

Madgwick Filter Calista Carrignan

Control Architecture

Control System Overview Michael Beskid

Electronic Speed Controllers Michael Beskid

PID Control Michael Beskid

Stabilization and Attitude Control Michael Beskid

Altitude and Position Controllers Michael Beskid

Flight Control Software

Overview and Development Environment Michael Beskid

Flight Computer Architecture Michael Beskid

State Machine Michael Beskid

Test Vehicle Construction Michael Beskid

Test Quadrotor Vehicle

Preliminary Calibration Michael Beskid

Flight Testing Michael Beskid

Quadrotor Body Design

Quadrotor Body Design Robert Devlin

Material Selection Kofi Sarfo / Robert Devlin

Enclosure Ryan Brunelle / Robert Devlin

Enclosure Version 1 Robert Devlin

Hydrostatic Analysis

Force of Buoyancy and Gravity Toshak Patel

State Space Modeling Toshak Patel

Ballast System

Ballast System Kofi Sarfo / Robert Devlin

Ballast Test 1 Robert Devlin

Ballast Test 2 Robert Devlin

Ballast Version 3 Robert Devlin

iv

Results

Summary Michael Beskid

Conclusions Calista Carrignan

Recommendations for Future Work Calista Carrignan

Broader Impact Ryan Brunelle

Contents
Abstract ... ii

Acknowledgements ... ii

Table of Authorship .. ii

Table of Figures .. vii

1 Introduction ..1

1.1 Overview ..1

1.2 Project Objectives ..1

1.3 Design Requirements, Constraints, and Considerations ..2

1.4 Project Management and Team Organization..3

1.5 Societal Impacts ...3

2 Background ..5

2.1 Brief History ..5

2.2 Literature Review...5

2.2.1 Past MQP work at WPI ..5

2.2.2 Related Research on Amphibious AUVs ...7

2.3 Quadrotor Flight Mechanics ..9

2.4 Equations of Motion ..13

2.4.1 Aerial Dynamics ..13

2.4.2 Underwater Dynamics ...20

2.5 Autonomy and Localization ...26

3 Technical Sections ...28

3.1 Quadrotor Flight Controllers..28

3.1.1 Commercially Available Flight Controllers...28

3.1.2 Custom Flight Controllers..29

3.1.3 dRehmFlight VTOL ...29

v

3.2 Electronics..30

3.2.1 Power Subsystem ...31

3.2.2 Propulsion Subsystem ..32

3.2.3 Sensing and Localization Subsystem ...33

3.2.4 Ballast System Electronics ...34

3.3 State Estimation ...36

3.3.1 Onboard Sensors ..36

3.3.2 Madgwick Filter ...39

3.4 Control Architecture ..40

3.4.1 Control System Overview ..40

3.4.2 Electronic Speed Controllers ...41

3.4.3 PID Control ..42

3.4.4 Stabilization and Attitude Control ...44

3.4.5 Altitude and Position Controllers...44

3.5 Flight Control Software ...45

3.5.1 Overview and Development Environment...45

3.5.2 Flight Computer Architecture ..46

3.5.3 State Machine...48

3.6 Test Quadrotor Vehicle ..49

3.6.1 Test Vehicle Construction..49

3.6.2 Preliminary Calibration and Ground Testing ...52

3.6.3 Flight Testing ...55

3.7 Quadrotor Body Design ...57

3.7.1 Material Selection ..58

3.7.2 Enclosure..58

3.8 Ballast System ..63

3.8.1 Hydrostatic Analysis ..64

3.8.2 Ballast Version 1 ..66

3.8.3 Ballast Version 2 ..68

3.8.4 Ballast Version 3 ..69

4 Results ..73

4.1 Summary ..73

vi

4.2 Conclusions ..73

4.3 Recommendations for Future Work...74

4.4 Broader Impact...74

5 References ..76

Appendices ...78

vii

Table of Figures
Fig. 1.1. Amphibious Quadrotor Mission Diagram. ... 1

Fig. 2.1. LoonCopter from Oakland University. [13] ... 8

Fig. 2.2. The Naviator from Rutgers University. [14] .. 9

Fig. 2.3. Common Quadrotor Frame Configurations. ... 10

Fig. 2.4. Quadrotor Coordinate Frame Definitions. .. 10

Fig. 2.5. Motor Speeds for Vertical Movements. ... 11

Fig. 2.6. Motor Speeds for Turning Movements. ... 12

Fig 2.7. Motor Speeds for Longitudinal Movements. ... 12

Fig. 2.8. Motor Speeds for Lateral Movements. ... 13

Fig. 2.9. Coordinate Frames for Aerial Dynamics. ... 14

Fig. 2.10. Free Body Diagram of Quadrotor Operating in Air. .. 16

Fig. 2.11. Propeller Locations in Aerial Body Frame. .. 17

Fig. 2.12. Coordinate Frames for Underwater Dynamics. .. 20

Fig. 2.13. Free Body Diagram of Quadrotor Operating Underwater. ... 23

Fig. 2.14. Propeller Locations in Underwater Body Frame. ... 24

Fig. 3.1. Mission Planner User Interface. ... 28

Fig. 3.2. dRehmFlight Controller Architecture. .. 29

Fig. 3.3. Teensy 4.0 Microcontroller. ... 30

Fig. 3.4. Main Electronics Board with Components Labeled. .. 30

Fig. 3.5. Functional Block Diagram of the Electrical System. ... 31

Fig. 3.6. Power Budget for Quadrotor Design. ... 32

Fig. 3.7. Emax Mt2213 935kV Brushless Motor with 1045 Propeller. .. 33

Fig. 3.8. 4 in 1 Electronic Speed Controller. .. 33

Fig. 3.9. Raspberry Pi 3 Microprocessor. ... 34

Fig. 3.10. SG-90 Continuous Rotation Servo Motor. ... 35

Fig. 3.11. 5-Wire Optical Shaft Encoder. ... 35

Fig. 3.12. IMU Orientation on Quadrotor. .. 36

Fig. 3.13. A02YYUW Waterproof Ultrasonic sensor... 37

Fig. 3.14. Bar30 High-Resolution 300m Depth/Pressure Sensor. .. 37

Fig. 3.15. Intel RealSense T265 Tracking Camera. .. 38

Fig. 3.16. RealSense Viewer 3D View. .. 38

Fig. 3.17. Block Diagram Depicting the Working of the Madgwick Filter. 40

Fig. 3.18. Control Architecture Diagram. ... 41

Fig. 3.19. Control Mixing Block Diagram. ... 41

Fig. 3.20. PID Control Block Diagram. .. 43

Fig. 3.21. Effect of Increasing PID Gains on Overall System Performance. 44

Fig. 3.22. Main Flight Control Loop Flow Chart. .. 48

Fig. 3.23. Fully Assembled Test Quadrotor Vehicle. ... 50

Fig. 3.24. Top View of Test Quadrotor. ... 50

Fig. 3.25. Bottom View of Test Quadrotor. .. 51

Fig. 3.26. Test Quadrotor Sensor Mount. ... 51

Fig. 3.27. Plot of Filtered Accelerometer Readings.. 52

viii

Fig. 3.28. Plot of Filtered Gyroscope Readings. ... 53

Fig. 3.29. Printout of Real-Time Altitude Measurements. ... 53

Fig. 3.30. Printout of Values from Radio Transmitter. ... 54

Fig. 3.31. Plot of Pitch, Roll, and Yaw Angles. .. 55

Fig. 3.32. First Successful Flight of Test Quadrotor... 56

Fig. 3.33. Autonomous Hover of Test Quadrotor. .. 57

Fig. 3.34. Enclosure CAD Drawings. ... 61

Fig. 3.35. Enclosure Assembly. .. 61

Fig. 3.36. Image of Proposed Model... 65

Fig. 3.37. Ballast System Version 1 CAD. ... 67

Fig. 3.38. Ballast System Version 1 Assembly. .. 67

Fig. 3.39. Ballast System Version 2 CAD. ... 69

Fig. 3.40. Ballast System Version 3 CAD External View. ... 70

Fig. 3.41. Ballast System Version 3 CAD Internal View. .. 71

Fig. 3.42. Ballast System Version 3 Assembly. .. 71

1

1 Introduction

1.1 Overview

Advancements in underwater and aerial travel show merit in both civilian and military

applications. The ability to seamlessly transition between underwater and aerial movement opens

the door for possibilities including reconnaissance, data collection, et cetera. Water surface

vehicles such as sea planes are one of the most common vehicles that approach the idea of an

amphibious aerial vehicle but, as their name implies, they are limited to the water's surface. An

AUV (Autonomous Underwater Vehicle) Quadrotor is an excellent candidate for an adequate

bridge between the two mediums as many restrictions placed on traditional fixed wing aircraft are

lifted in the case of a quadrotor. As such, the need for further research regarding AUV Quadrotors

is clear.

1.2 Project Objectives

The given mission for the amphibious quadrotor will be to initially take off from one side of

a swimming pool (side A), translate over to hover above the water’s surface in stage 1, then slowly

lower to the surface of the pool at stage 2. The quadrotor will then perform its submerging sequence

and rotate forward by 90 degrees, such that its vertical flying position will be horizontal. The

vehicle is to then travel to stage 4 of the pool and rotate 90 degrees in the opposite direction,

resurface and fly out of the pool (stage 5). The rotor is to loiter in stage 6 and lower back down to

the surface of the water at stage 7, which will be a different part of the pool. The rotor should

repeat the steps at stage 1 and 2, then maneuver its way back to its initial position (stage 3). Fig.

1.1 below illustrates the mission.

Fig. 1.1. Amphibious Quadrotor Mission Diagram.

2

To achieve the mission statement above, the quadrotor will have to meet certain criteria.

Therefore, there are a few goals the team must reach to make this project a success. The main goals

of this Amphibious AUV MQP begin with literature search. The search shows the team what has

already been done and how it was accomplished. After this, the team will design and test an AUV,

that is autonomous and is capable of transitioning from air to water. To ensure that the vehicle is

capable of both aerial flight and maneuvering underwater, the team will perform aerodynamic and

hydrodynamic analysis. Included in the aerodynamic analysis, the team will select and analyze an

appropriate propulsion system for the aircraft to meet aerodynamic specs. After this, the team will

perform stability analysis to ensure the aircraft is statically and dynamically stable. We will then

design and optimize control algorithms to achieve stability in both mediums.

Stability is very important for autonomous operation of the aircraft. To avoid structural

failure, the team will conduct structural analysis to ensure the quadrotor does not disassemble in

flight or in water. Structural analysis will include waterproofing to prevent water from leaking into

the quadrotor and destroying onboard electronics. A ballast system will be incorporated to achieve

active buoyancy control and to aid in rotating the vehicle when submerged in water. When analysis

is complete, the team will begin the construction of the amphibious AUV for flight and underwater

testing. After testing, the team will construct a final working Amphibious AUV for the project

showcase and demonstrate a successful mission at the end of the project.

1.3 Design Requirements, Constraints, and Considerations

For this MQP the group is to develop and manufacture an AUV Quadrotor that meets the

following requirements:

• The vehicle shall be able to perform stable aerial flight.

• The vehicle shall autonomously navigate a pre-determined route in the air.

• The vehicle shall successfully transition between air and water as well as from water to air.

• The vehicle shall travel under the surface of the water while remaining stable.

• The vehicle shall autonomously navigate a pre-determined route underwater.

The primary constraints of this MQP are time and budget. The project should be completed

within the three allocated terms from August 2022 to March 2023. The available budget is $250

dollars per person, totaling $1500 dollars. These budget and time constraints determine the scale

and scope of the project, including size, potential sensors, and what components can be

commercially sourced. Other constraints and considerations include:

• Adherence to FAA drone regulations.

• Adherence to WPI’s rules and policies.

• Understanding of potential safety risks. As the most critical components are commercial

products, the risks of this project are like a standard quadrotor: highspeed propellers,

Lithium-Ion batteries, low voltage electronics.

3

• Understanding environmental risks. Since the quadrotor will be operating within a standard

chlorinated pool, caution must be given to ensure no external materials react poorly with

the water. Other environmental risks are negligible and shared with standard quadrotors.

1.4 Project Management and Team Organization

The project was established to have six students and two faculty advisors from the Aerospace

Engineering and Robotics Engineering departments. The group was given autonomy in its internal

organization, allowing the students the opportunity to practice a degree of self-governance and

interpersonal skills. The project team, comprised of Michael Beskid, Ryan Brunelle, Calista

Carrignan, Robert Devlin, Toshak Patel, and Kofi Sarfo, was divided into two teams in order to

best align each member’s strengths with the needs of the project. Both teams operate under a

central Chief Engineer, Calista, who oversees issue tracking, scheduling, and ensures both teams

remain on schedule for all deadlines and successful completion of the project.

The Structures team – comprised of Ryan, Robert, Toshak, and Kofi – was tasked with the

physical design and fabrication of the Autonomous AUV. This group was allocated four members

to support designing the vehicle quickly such that it could be fabricated in time for the second team

to advance their work.

The Navigation and Controls team – comprised of Michael and Calista – was tasked with the

development of the equations of motion for the vehicle, selecting and implementing onboard

electronics and sensing solutions, developing control algorithms, and writing the flight control

software. The group decided that this team would have less resources at the beginning of the

project in order to prioritize the physical fabrication effort. The entire project group would

reevaluate resources in B term to ensure that all tasks were being performed at equal pacing.

The entire team has dedicated time to meet with the Aerospace Department advisor to present

weekly progress on the project, and the written report, as well as to troubleshoot any issues that

may have arisen during the development of the project. During these meetings, a presentation is

given by 3-4 of the group members, in rotation with the other remaining members to ensure that

everyone is given the opportunity to present the work being accomplished. After these

presentations, the advisor would provide feedback, and further guide the group towards the

objective. Outside of these times, each of the two teams have scheduled time to meet with their

groups individually in order to continue to develop their respective portions of the project. The

entire group would then convene weekly as a whole to provide updates and discuss larger design

decisions for the project to ensure a seamless completion of project goals.

1.5 Societal Impacts

UAVs are a special type of vehicle that can run on electricity alone, this means that they

produce no pollution through fuel consumption and emit no harmful particles or compounds into

the atmosphere. Although these vehicles can be powered by liquid fuel and other forms of energy,

this team will use a battery to power our amphibious UAV to limit pollution. Therefore, when this

project is a success, they can be utilized in the real world and have minimal effect on global

pollution. Due to our design constraints, this UAV will be able to observe and record data from

dangerous places, especially underwater. A significant way this UAV can impact society is by

going underwater to depths that may potentially be harmful to humans to search for things such

4

as: sunken ships to observe marine life land, oil spills and many more. This vehicle can potentially

save many lives by reducing the risk of sending people into unknown waters. Since the vehicle is

autonomous it can easily operate in GPS-denied environments; for military purposes it could be

used for intrusion detection in hazardous and threat spatial fields or to contain and eliminate

adversaries. These are just a few of the ways in which the amphibious UAV could be utilized. Due

to its capabilities, the amphibious UAV could be used in applications far beyond what is currently

envisioned by the team.

5

2 Background

2.1 Brief History

The quadrotor was invented in 1907 in France by Acques and Louis Breguet, along with

Professor Charles Richet [1]. While this model was virtually non-maneuverable and required

multiple pilots, it was the start of the evolution of the quadrotor we know today. Over the next 70

years following this achievement, there would be virtually no progress with this technology until

the growth of micro electromechanical systems in the 1990’s, with which came the design of the

microcontroller. This progress in microelectronics would allow for the technology to become more

accessible, allowing for a larger application with a broader range of uses for the technology from

research to hobbyists to military applications [2].

Alongside the fast-growing popularity of the quadrotor, the idea of modern UAVs and

unmanned flight system was introduced in 1980, with most progress with this technology

occurring over the last 20 years [3]. Each is defined as an unmanned vehicle with a UAV for aerial

operation and AUV for underwater locomotion. UAVs and AUVs were designed to promote

human safety, both pilot and pedestrian, as well as to allow for the creation of complex vehicles

that are too small to carry a human pilot [4]. For the purpose of this project, the quadrotor was the

best option of the various rotorcraft options to choose from, due to its high level of

maneuverability, both above and below water, as well as its capacity for autonomous operation, as

stated by Ghazbi [4], within their paper “Quadrotors Unmanned Aerial Vehicles: A Review”.

2.2 Literature Review

2.2.1 Past MQP work at WPI

WPI has a significant history with regards to research into autonomous aerial vehicles,

specifically quadrotors. Student MQP teams have carried out research in the design, control, and

novel use of these vehicles for over a decade and have been reviewed in depth. The new research

performed by our team in the development of an amphibious quadrotor vehicle builds upon the

work of past students and the expertise of the faculty associated with the affiliated departments of

Aerospace Engineering and Robotics Engineering.

The earliest quad-rotor project at WPI, titled Design Optimization of a Quad-Rotor Capable

of Autonomous Flight, was completed in 2008 with the goal of achieving stable point to point

autonomous flight [5]. The vehicle was constructed from an existing quadcopter design and

incorporated some design modifications and custom electronics. The system used an MSP430

microcontroller, 5-DOF inertial sensor, and sonar sensor and made use of custom control

algorithms developed by the team. Despite making progress on improving the vehicle’s thrust

capabilities and validating control methods in simulation, the team was unsuccessful in achieving

the goal of an autonomously hovering craft. A new student team took over the project in 2009 and

aimed to continue this work [6]. The team opted for a similar approach and performed several

iterations of flight tests in attempts to achieve a stable hover. This team was able to achieve a

6

significant weight reduction with a redesigned frame and overhauled the control scheme. These

efforts, however, failed to result in a successful documented autonomous flight.

A 2011 project entitled Design of an Autonomous Quadrotor for Urban Search and Rescue

had the objective of designing and testing a quadrotor capable of stable autonomous flight with

additional computer vision capabilities [7]. This team, comprised of Electrical and Robotics

Engineering students, aimed to produce a quadrotor which could autonomously navigate indoor

environments and transmit data back to an operator for search and rescue purposes. The system

utilized a low-level flight controller called the HoverflyPro, which was augmented with an Overo

processor. The vehicle was outfitted with a suite of sensors including ultrasonic and IR

rangefinders for altitude control, as well as an IMU for stabilization and LiDAR for eventual

higher-level mapping and path planning. This team was successful in achieving stable, piloted

flight and produced impressive flight time and payload capacity numbers compared to

commercially available quadcopters of the time. While largely successful, the project fell short of

the goal of achieving autonomous takeoff/landing and traversal through indoor spaces.

Vision-Based Obstacle Avoidance for Small UAVs was a 2015 project from the Aerospace

Engineering department which leveraged computer vision on a quadrotor platform [8]. This team

chose the commercially available IRIS quadcopter produced by 3DRobotics as a starting point for

the system. The IRIS platform comes equipped with a Pixhawk flight controller which includes an

integrated autopilot firmware. The project benefited from advances in quadcopter technology over

the last few years, allowing the team to use the commercial flight controller and autopilot to

achieve stable flight. This enabled more focused work to be done on the computer vision system.

The team designed a custom mount to accommodate two Microsoft Lifecam HD 3000 cameras

and a Raspberry Pi 2, which would act as a companion computer to run a Python implementation

of OpenCV and communicate with the primary flight controller. Bench testing of this system was

conducted of a stereo depth mapping algorithm which was found to have high precision but limited

accuracy. The team performed a manually piloted test flight in an outdoor environment to validate

the effectiveness of the obstacle avoidance system. The team was unable to collect good camera

data due to overexposure and difficulty tuning camera parameters in addition to slow processing

from the computationally intense algorithm. The conclusions indicated that achieving autonomy

could be possible in future work by implementing a control loop.

The 2016 project Autonomous Quadrotor Navigation and Guidance carried on this work

with the use of similar hardware and computer vision techniques [9]. This team utilized the same

IRIS quadcopter platform with integrated Pixhawk flight controller, and further made use of

OpenCV with a Raspberry Pi 2 companion computer to perform computer vision. The goal of this

project was to develop an autonomous guidance system for a UAV with the use of a downward

facing camera to track identifiable landmarks. This team was the first to demonstrate autonomous

flight capability by making use of the Pixhawk’s autopilot firmware and the associated ground

station software called Mission Planner. A Raspberry Pi Cam was used for this project. The camera

was used to implement a shape detection algorithm to determine the location of ground-based

markers for path planning purposes. The team noted that the image processing and target detection

algorithms were successful in bench testing but could benefit from further tuning. While

communication between the Raspberry Pi 2 and Pixhawk flight controller was achieved, the team

was unsuccessful in getting the quadcopter to fly with the computer vision system.

7

In 2020, WPI’s Aerospace Engineering Department hosted a UAV Competition in which

multiple MQP teams competed. Two MQP reports produced from this competition include Quad-

plane Design for Autonomous Cargo Delivery and A High-Performance Aircraft for the 2020 WPI

UAV Competition [10], [11]. These projects were required to use electric propulsion systems and

integrate vertical takeoff and landing capabilities. The competition involved the development of a

VTOL micro-aerial vehicle that could carry a payload and release it to hit a specified target. Both

teams once again made use of the Pixhawk flight controller, ArduPilot firmware, and Mission

Planner ground station software to control their vehicles. The first team upgraded to the NVIDIA

Jetson Nano for a more powerful companion computer than a Raspberry Pi and included a

Raspberry Pi Cam and Garmin LiDAR Vision L3 Lite for target identification and path planning.

These projects are especially relevant to our work due to their multiple flight modes including

vertical takeoff/landing and standard airplane flight. The designs both showed some promise in

initial flight testing but suffered some challenges and did not fully demonstrate the goals of the

competition. The sudden outbreak of the Covid-19 pandemic prevented the continuation of hands-

on testing, and the competition was never held.

The most recent quadrotor MQP project at WPI was 2022’s Low-Cost Quadrotor Micro-

Aerial Vehicle project [12]. The goal of the project was to develop a micro-aerial vehicle (MAV)

which would carry a multi-sensor payload and navigate through an indoor environment with a

Vicon Motion Capture localization system in place of GPS positioning. The team developed a

traditional X-frame quadcopter with a Pixhawk 4 mini flight controller for stabilization and attitude

control. A HardKernel ODROID XU4 companion computer was added for high-level control and

processing. This project uncovered several interesting findings and recommendations for

quadrotor construction and stability given its unique size and power constraints. While testing of

the final MAV was unsuccessful in demonstrating stable flight, extensive research into motion

capture technology and its interface with commercial flight computers provided valuable data that

will be of use to future UAV research at WPI.

2.2.2 Related Research on Amphibious AUVs

Research into other amphibious AUVs was conducted by the team to gain a greater

understanding of the current research into AUV Quadrotors. The primary source of research was

the LoonCopter, an amphibious quadrotor developed by Hamzeh Alzubi, Iyad Mansour, and

Osamah Rawashdeh from Oakland University in 2014. The LoonCopter is a remote-controlled

quadrotor that operates as a typical quadrotor when airborne [13]. Their RC (radio controlled)

method is the primary difference between the scope of this project and the work covered in their

research, as this project's intent is to create a fully autonomous quadrotor that relies solely on

sensor information instead of user input. In terms of mechanism, the LoonCopter is outfitted with

a ballast system which is used to control the buoyancy of the vehicle.

 The most interesting design choice the LoonCopter team made lies in how they control their

center of buoyancy with the ballast system. While operating, the center of buoyancy and mass is

displaced in such a way that the vehicle is stable underwater when rotated 90 degrees from its

original orientation. This allows for the control of the vehicle to be simplified as the righting force

of buoyancy now keeps the craft in an optimal position to travel while underwater. The research

paper associated with the LoonCopter included diagrams describing the forces experienced by the

8

vehicle whilst underwater as well as the shifting of the center of mass and buoyance. These

concepts inspired this project to utilize similar methods of buoyancy control found in the

LoonCopter. The LoonCopter is shown in Fig. 2.1.

Fig. 2.1. LoonCopter from Oakland University. [13]

Other sources of research regarding Amphibious AUVs extend to a craft developed by Marco

Moreno Maia, Parth Soni, and F. Javier Diez-Garias from Rutgers University. Their paper, titled

Demonstration of an Aerial and Submersible Vehicle Capable of Flight and Underwater

Navigation with Seamless Air-Water Transition provides great insight into the challenges faced

when trying to design a craft that can transition between air and water and approaches the problem

with a little more inspiration from natural sources ￼￼￼[14]￼￼animals of nature conquer their

respective mediums of travel. Flight, for a bird, is a combination of lift and thrust counteracting

weight while, for a fish, swimming buoyancy. They make a comparison for aquatic birds as well

as flying fish and exemplify how the forces at place for an amphibious creature need to be balanced

for the combination of the two modes of travel to be properly integrated.

To tackle the problem of air to water transition, Rutger’s team utilized a dual propeller system

at the end of each of the vehicle’s arms separated by a significant distance, which allows for the

lower propellers to become submerged while the upper propellers maintain the primary upwards

thrust of the vehicle. Their vehicle, dubbed “The Naviator,” is depicted in Fig. 2.2.

9

Fig. 2.2. The Naviator from Rutgers University. [14]

This allows for an extremely smooth transition between air and water. They also address the

issues of using standard propellers meant for air whilst in water. The quadrotor is positively

buoyant and forces itself underwater with the downward facing propellers in the same way that

the upward facing propellers lift the craft above the ground. While allowing for each set of

propellers to be better optimized for the two unique environments, this method is much more power

consuming than the LoonCopter’s active ballast system. They concluded that the effects

encountered within water do not require any special propeller modifications, which reflects the

findings of the LoonCopter team on the same issue. The LoonCopter team goes into more depth

about vapor pockets forming underwater at high propeller speeds but found that the propeller

speeds needed for underwater travel did not reach the threshold of encountering that issue. Overall,

Rutger’s team’s research provided some inspiration and information regarding the necessary

balance between the two modes of transportation.

2.3 Quadrotor Flight Mechanics

By the simplest definition, a quadrotor is a helicopter that has four rotors. Quadrotors are a

subset of multicopters, which can be defined more generally as any aerial vehicle which uses more

than one rotor to achieve lift. Multicopters are most often small, unmanned vehicles and typically

feature three, four, six, or eight rotors. The quadrotor is the most common and may be constructed

in several different configurations. Fundamentally, the frame of a quadcopter consists of a central

hub, which houses onboard computers and electronics, and four arms which extend outward from

the center. The propellers are installed onto motors mounted at the ends of the arms. Three common

frame configurations include the X frame, plus-frame, and H frame, each named to describe the

structure’s geometry. A depiction of these different frame types is shown in Fig. 2.3. Some other

frame types exist, including those with stretched or asymmetric configurations, however these are

less common due to reduced stability and difficulty of control. The amphibious quadrotor

developed by our team features an X frame, which will be the basis for the dynamics and controls

discussed in this report.

10

Fig. 2.3. Common Quadrotor Frame Configurations.

The coordinate frame used to describe a quadrotor’s motion is shown in Fig. 2.4. Note that

this is a body-fixed frame which translates and rotates with the vehicle with its origin at the center

of gravity. Translation motion in the X direction is defined as longitudinal movement. Translation

motion in the Y direction is defined as lateral movement. Finally, translational motion in the Z

direction is defined as vertical movement. Rotations about the X, Y, and Z axes are defined as roll,

pitch, and yaw respectively. These definitions are illustrated below.

Fig. 2.4. Quadrotor Coordinate Frame Definitions.

A quadrotor achieves different motions by varying the speed of its four propellers. The

vehicle features two propellers which spin in the clockwise direction and two which spin in the

counterclockwise direction. Pairs of propellers which spin in the same direction are located

opposite one another on the frame. This arrangement allows for the torques produced about the

vehicle’s center of gravity by one pair of motors to be cancelled out by the torques produced by

the other pair of motors. The quadrotor is non-holonomic given that it has six degrees of freedom

11

and only four actuators. Due to this constraint, the vehicle is capable of changing its position and

attitude but can only maintain its position when level with the ground.

Vertical movement is achieved by increasing or decreasing the speed of all four motors to

affect the total thrust produced. The vehicle achieves a hover when its thrust exactly equals its

weight. Lateral movements are achieved by varying the angular speeds of the four propellers

independently to induce angular rotations. This changes the attitude of the vehicle, misaligning the

thrust vector with the downward gravitational force, causing a lateral motion. The following

figures explain this principle in more detail by illustrating how different motions are achieved. The

blue arrows represent clockwise spinning propellers, while the green arrows represent

counterclockwise spinning propellers. The arrows are also weighted to show relative angular

speeds. Thicker arrows represent higher propeller speeds while thinner arrows represent lower

propeller speeds.

As discussed above, vertical motion is achieved by increasing the speed of all propellers to

move upwards, or conversely decreasing the speed of all motors to move downwards. This is

shown in Fig. 2.5.

Fig. 2.5. Motor Speeds for Vertical Movements.

Turning the quadrotor to change its heading is achieved by increasing the speed of the

propellers spinning in one direction while decreasing the speed of the propellers spinning in the

other direction. This acts to unbalance the torques produced by each pair of propellers, causing the

vehicle to yaw. This is demonstrated in Fig. 2.6.

12

Fig. 2.6. Motor Speeds for Turning Movements.

Longitudinal translations are achieved by varying the relative speeds of the pairs of adjacent

propellers at the front and the rear of the quadrotor. This induces a pitch angle which causes

forward or backwards motions as shown in Fig 2.7.

Fig 2.7. Motor Speeds for Longitudinal Movements.

Similarly, lateral translations are achieved by varying the relative speeds of the pairs of

adjacent propellers on either side of the quadrotor. This induces a roll angle which causes

movements to the left or right as shown in Fig. 2.8.

13

Fig. 2.8. Motor Speeds for Lateral Movements.

2.4 Equations of Motion

Comprehending the dynamic ability of an amphibious AUV to operate in both aerial and

underwater environments requires an understanding of two unique sets of operating principles.

The equations of motion for a quadrotor operating in-air are well understood and documented due

to extensive research in the area. The equations of motion for traditional underwater autonomous

vehicles have also been developed and documented in relevant literature. The novel nature of our

vehicle presents a unique case which was not found to be documented in the few related

publications our team encountered. For this reason, the team performed a derivation of the

equations of motion for this type of vehicle operating in an underwater environment. This

derivation follows the same procedure as the derivation of the aerial dynamics, while making

several key assumptions and defining a different coordinate system. The derivations for the vehicle

dynamics follow for both the air and water environments, respectively.

2.4.1 Aerial Dynamics

Coordinate System

Two coordinate systems are used to describe the quadrotor’s motion. The Navigation Frame

is an inertial frame that is fixed in space at water level. For convenience, the 𝑋 and 𝑌 axes are

defined in the longitudinal and lateral directions with respect to the swimming pool. The 𝐻 axis is

directed upward and indicates height above the water’s surface. The body frame is fixed to the

quadrotor’s center of mass such that it translates and rotates with the vehicle. These coordinate

frames are defined below in Fig. 2.9.

14

Fig. 2.9. Coordinate Frames for Aerial Dynamics.

Definitions

Linear Velocities in vehicle body frame:

𝒗𝒃 = [
𝑢
𝑣
𝑤

] = [

longitudinal velocity
lateral velocity

vertical velocity
] (1)

Angular Velocities in vehicle body frame:

𝝎 = [
𝑝
𝑞
𝑟

] = [
roll rate

pitch rate
yaw rate

] (2)

Forces acting on quadrotor:

𝑭 = [

𝐹𝑥

𝐹𝑦

𝐹𝑧

] = [
force in X direction
force in Y direction
force in Z direction

] (3)

Moments acting on quad rotor:

𝑴 = [

𝐿
𝑀
𝑁

] = [
moment about X axis
moment about Y axis
moment about Z axis

] (4)

Euler Angles:

𝚽 = [

𝜙
𝜃
𝜓

] = [

bank angle
pitch angle

heading
] (5)

15

Absolute Position in inertial navigation frame:

𝑺 = [
𝑋
𝑌
𝐻

] = [
𝑋
𝑌

−𝑍
] = [

longitudinal position
lateral position

height
] (6)

Assumption: The vehicle is symmetric about 𝑥𝑏 and 𝑦𝑏 axes.

Assuming symmetry about the 𝑦 and 𝑧 axes is useful to diagonalize the moment of inertia

matrix and simplify the resulting calculations.

Representing Inertial Motion in the Vehicle’s Body Frame

𝒗𝒃 = [
𝑢
𝑣
𝑤

]

𝑏

= 𝑢𝑥̂𝑏 + 𝑣𝑦̂𝑏 + 𝑤𝑧̂𝑏 (7)

(

𝑑𝒗𝒃

𝑑𝑡
)

inertial

= (
𝑑𝑢

𝑑𝑡
𝑥̂𝑏 +

𝑑𝑣

𝑑𝑡
𝑦̂𝑏 +

𝑑𝑤

𝑑𝑡
𝑧̂𝑏) + (𝑢

𝑑𝑥̂𝑏

𝑑𝑡
+ 𝑣

𝑑𝑦̂𝑏

𝑑𝑡
+ 𝑤

𝑑𝑧̂𝑏

𝑑𝑡
) (8)

 𝒗̇inertial = 𝒗̇𝑏 + 𝝎𝑛
𝑏 × 𝒗𝑏 (9)

Newton’s Second Law

𝑭 =

𝑑𝒑

𝑑𝑡
= 𝑚

𝑑𝒗

𝑑𝑡
= 𝑚𝒂 (10)

Taking the cross product of 𝒓 by each side yields the rotational analog:

 𝒓 × 𝑭 = 𝒓 × 𝑚
𝑑𝒗

𝑑𝑡
 (11)

 𝑴 =
𝑑𝑯

𝑑𝑡
= 𝐼

𝑑𝝎

𝑑𝑡
= 𝐼𝛀 (12)

Linear accelerations:

Derived from the chain rule:

𝑭 = 𝑚

𝑑𝒗

𝑑𝑡
 → 𝑭 = 𝑚(𝒗̇𝑏 + 𝝎𝑛

𝑏 × 𝒗𝑏)
(13)

16

Angular accelerations:

Derived from the chain rule:

𝑴 = 𝐼

𝑑𝜔

𝑑𝑡
 → 𝑴 = 𝐼𝝎̇𝑛

𝑏 + 𝝎𝑛
𝑏 × 𝐼𝝎𝑛

𝑏 (14)

External Forces and Moments

 Each propeller produces a thrust force perpendicular to the propeller (in the 𝑥𝑏 direction) and

a torque about the quadrotor’s center of gravity. The thrust produced is a function of the propeller

geometry, fluid density, and motor speed. The other major forces acting on the vehicle are the

buoyant force and gravitational force, which can be assumed to act in opposite directions with

equal magnitude. Fig. 2.10 illustrates the forces acting on the quadrotor while operating

underwater.

Fig. 2.10. Free Body Diagram of Quadrotor Operating in Air.

Force exerted by propeller thrust:

𝑭prop = [

𝐹𝑥

𝐹𝑦

𝐹𝑧

] = [
0
0

−𝐹1 − 𝐹2 − 𝐹3 − 𝐹4

]

(15)

Gravitational force in body frame:

𝑭grav
𝑛 = [

0
0

𝑚𝑔
] → 𝑭grav

𝑏 = [

−𝑚𝑔sin(𝜃)

𝑚𝑔sin(𝜙) cos(𝜃)

𝑚𝑔cos(𝜙) cos(𝜃)
]

(16)

17

 The torque 𝑇 which each propeller generates about the quadrotor’s center of gravity is a

function of the thrust and 𝑦, 𝑧 distances of the motor shaft from the center of gravity. These

distances are clearly labeled in Fig. 2.11.

Fig. 2.11. Propeller Locations in Aerial Body Frame.

 𝐿 = 𝐹1𝑑1𝑦 − 𝐹2𝑑2𝑦−𝐹3𝑑3𝑦 + 𝐹4𝑑4𝑦 (17)

 𝑀 = −𝐹1𝑑1𝑥 + 𝐹2𝑑2𝑥−𝐹3𝑑3𝑥 + 𝐹4𝑑4𝑥 (18)

 𝑁 = 𝑇(𝐹1, 𝑑1𝑦,𝑑1𝑧) + 𝑇(𝐹2, 𝑑2𝑦,𝑑2𝑧) − 𝑇(𝐹3, 𝑑3𝑦,𝑑3𝑧) − 𝑇(𝐹4, 𝑑4𝑦,𝑑4𝑧) (19)

Moment of Inertia Matrix

𝐼 = [

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧

−𝐼𝑥𝑦 𝐼𝑦𝑦 −𝐼𝑦𝑧

−𝐼𝑥𝑧 −𝐼𝑦𝑧 𝐼𝑧𝑧

]

(20)

Assuming symmetry about the 𝑦 and 𝑧 axes yields the diagonal matrix:

𝐼 = [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

]

(21)

18

Acceleration Equations

Translational Motion:

 𝒗̇inertial = 𝒗̇𝑏 + 𝝎𝑛
𝑏 × 𝒗𝑏 (22)

𝒗̇inertial = [
𝑢̇
𝑣̇
𝑤̇

] + [
0 −𝑟 𝑞
𝑟 0 −𝑝

−𝑞 𝑝 0
] [

𝑢
𝑣
𝑤

] = [
𝑢̇ + 𝑞𝑤 − 𝑟𝑣
𝑣̇ + 𝑟𝑢 − 𝑝𝑤
𝑤̇ + 𝑝𝑣 − 𝑞𝑢

]

(23)

 𝑭 = 𝑚𝒗̇𝑏 (24)

 𝑭prop + 𝑭grav = 𝑚𝒗̇𝑛
𝑏 (25)

[

−𝑚𝑔sin(𝜃)

𝑚𝑔sin(𝜙)cos(𝜃)

−𝐹1 − 𝐹2 − 𝐹3 − 𝐹4 + 𝑚𝑔cos(𝜙) cos(𝜃)
] = 𝑚 [

𝑢̇ + 𝑞𝑤 − 𝑟𝑣
𝑣̇ + 𝑟𝑢 − 𝑝𝑤
𝑤̇ + 𝑝𝑣 − 𝑞𝑢

]

(26)

Rotational Motion:

 𝑴 = 𝐼𝝎̇𝑛
𝑏 + 𝝎𝑛

𝑏 × 𝐼𝝎𝑛
𝑏 (27)

[
𝐿
𝑀
𝑁

] = [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

] [
𝑝̇
𝑞̇
𝑟̇

] + [

0 −𝑟 𝑞
𝑟 0 −𝑝

−𝑞 𝑝 0
] [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

] [
𝑝
𝑞
𝑟

]

(28)

[
𝐿
𝑀
𝑁

] = [

𝐼𝑥𝑥𝑝̇
𝐼𝑦𝑦𝑞̇

𝐼𝑧𝑧𝑟̇
] + [

−𝐼𝑦𝑦𝑞𝑟 + 𝐼𝑧𝑧𝑞𝑟

𝐼𝑥𝑥𝑝𝑟 − 𝐼𝑧𝑧𝑝𝑟
−𝐼𝑥𝑥𝑝𝑞 + 𝐼𝑦𝑦𝑝𝑞

] = [

𝐼𝑥𝑥𝑝̇ − 𝐼𝑦𝑦𝑞𝑟 + 𝐼𝑧𝑧𝑞𝑟

𝐼𝑦𝑦𝑞̇ + 𝐼𝑥𝑥𝑝𝑟 − 𝐼𝑧𝑧𝑝𝑟

𝐼𝑧𝑧 𝑟̇ − 𝐼𝑥𝑥𝑝𝑞 + 𝐼𝑦𝑦𝑝𝑞
]

(29)

Equations of Motion in Vehicle’s Body Frame

Linear accelerations:

 𝑢̇ = −𝑔sin(𝜃) + 𝑟𝑟 − 𝑞𝑤 (30)

 𝑣̇ = 𝑔sin(𝜙) cos(𝜃) − 𝑟𝑢 + 𝑝𝑤 (31)

𝑤̇ =

1

𝑚
(−𝐹1 − 𝐹2 − 𝐹3 − 𝐹4) + 𝑔cos(𝜙) cos(𝜃) + 𝑞𝑢 − 𝑝𝑟

(32)

19

Angular accelerations:

𝑝̇ =

1

𝐼𝑥𝑥
(𝐿 + (𝐼𝑦𝑦 − 𝐼𝑧𝑧)𝑞𝑟)

(33)

𝑞̇ =

1

𝐼𝑦𝑦
(𝑀 + (𝐼𝑧𝑧 − 𝐼𝑥𝑥)𝑝𝑟)

(34)

𝑟̇ =

1

𝐼𝑧𝑧
(𝑁 + (𝐼𝑥𝑥 − 𝐼𝑦𝑦)𝑝𝑞)

(35)

Where:

 𝐿 = 𝐹1𝑑1𝑦 − 𝐹2𝑑2𝑦−𝐹3𝑑3𝑦 + 𝐹4𝑑4𝑦 (36)

 𝑀 = −𝐹1𝑑1𝑥 + 𝐹2𝑑2𝑥−𝐹3𝑑3𝑥 + 𝐹4𝑑4𝑥 (37)

 𝑁 = 𝑇(𝐹1, 𝑑1𝑦,𝑑1𝑧) + 𝑇(𝐹2, 𝑑2𝑦,𝑑2𝑧) − 𝑇(𝐹3, 𝑑3𝑦,𝑑3𝑧) − 𝑇(𝐹4, 𝑑4𝑦,𝑑4𝑧) (38)

Equations of Motion in Inertial Navigation Frame

Linear accelerations:

 𝑋̇ = (cos𝜃cos𝜙)𝑢 + (−cos𝜙sin𝜓 + sin𝜙sin𝜃cos𝜓)𝑣 + (sin𝜙sin𝜓
+ cos𝜙sin𝜃cos𝜓)𝑤

(39)

 𝑌̇ = (cos𝜃sin𝜓)𝑢 + (cos𝜙cos𝜓 + sin𝜙sin𝜃sin𝜓)𝑣
+ (−sin𝜙cos𝜓 + cos𝜙sin𝜃sin𝜓)𝑤

(40)

 𝐻̇ = (sin𝜃)𝑢 − (sin𝜙cos𝜃)𝑣 + (cos𝜙cos𝜃)𝑤 (41)

Euler angle rates of change:

[

𝜙̇

𝜃̇
𝜓̇

] = [

1 sin(𝜙) tan (𝜃) cos(𝜙) tan (𝜃)
0 cos (𝜙) −sin (𝜙)

0 sin(𝜙) sec (𝜃) − cos(𝜙) sec (𝜃)
] [

𝑝
𝑞
𝑟

]

(42)

20

2.4.2 Underwater Dynamics

Coordinate System

Two coordinate systems are used to describe the quadrotor’s motion. The Navigation Frame

is an inertial frame that is fixed in space at water level. For convenience, the X 𝑋 and 𝑌Y axes are

defined in the longitudinal and lateral directions with respect to the swimming pool. The 𝐷 H axis

is directed downward and indicates depth below the water’s surface. The body frame is fixed to

the quadrotor’s center of mass such that it translates and rotates with the vehicle. These coordinate

frames are defined below in Fig. 2.12.

Fig. 2.12. Coordinate Frames for Underwater Dynamics.

Definitions

Linear velocities in vehicle body frame:

𝒗𝒃 = [
𝑢
𝑣
𝑤

] = [

surge velocity
sway velocity
heave velocity

]

(43)

Angular velocities in vehicle body frame:

𝝎 = [
𝑝
𝑞
𝑟

] = [
roll rate

pitch rate
yaw rate

]

(44)

21

Forces acting on quadrotor:

𝑭 = [

𝐹𝑥

𝐹𝑦

𝐹𝑧

] = [
force in X direction
force in Y direction
force in Z direction

]

(45)

Moments acting on quadrotor:

𝑴 = [

𝐿
𝑀
𝑁

] = [
moment about X axis
moment about Y axis
moment about Z axis

]
(46)

Euler angles:

𝚽 = [
𝜙
𝜃
𝜓

] = [

bank angle
pitch angle

heading
]

(47)

Absolute position in inertial navigation frame:

𝑺 = [
𝑋
𝑌
𝐷

] = [

longitudinal position
lateral position

depth
]

(48)

Assumption: The vehicle is neutrally buoyant.

Assumption: The center of buoyancy lies directly above the center of gravity.

Assumption: The vehicle is symmetric about the 𝑦𝑏 and 𝑧𝑏 axes.

These assumptions are important as they allow the vehicle passive stability underwater. A

tilt angle in any direction results in a restoring couple due to the misalignment of the buoyant force

and gravitational force, giving the vehicle the tendency to remain upright by passively stabilizing

pitch and roll. The neutral buoyancy assumption further allows the vehicle to passively maintain

its depth beneath the water’s surface without floating or sinking. Assuming symmetry about the 𝑦

and 𝑧 axes is useful to diagonalize the moment of inertia matrix to simplify the calculations.

Having established the above assumptions, the buoyant force and gravitational force can be

neglected in our static force analysis because they will always act in opposite directions with equal

magnitude and effectively cancel out. This is a reasonable assumption for small pitch and roll

angles which are expected during nominal operation of the vehicle underwater.

Representing Inertial Motion in the Vehicle’s Body Frame

𝒗𝒃 = [
𝑢
𝑣
𝑤

]

𝑏

= 𝑢𝑥̂𝑏 + 𝑣𝑦̂𝑏 + 𝑤𝑧̂𝑏

(49)

22

 (
𝑑𝒗𝒃

𝑑𝑡
)

inertial
= (

𝑑𝑢

𝑑𝑡
𝑥̂𝑏 +

𝑑𝑣

𝑑𝑡
𝑦̂𝑏 +

𝑑𝑤

𝑑𝑡
𝑧̂𝑏) + (𝑢

𝑑𝑥̂𝑏

𝑑𝑡
+ 𝑣

𝑑𝑦̂𝑏

𝑑𝑡
+ 𝑤

𝑑𝑧̂𝑏

𝑑𝑡
) (50)

 𝒗̇inertial = 𝒗̇𝑏 + 𝝎𝑛
𝑏 × 𝒗𝑏 (51)

Newton’s Second Law

𝑭 =

𝑑𝒑

𝑑𝑡
= 𝑚

𝑑𝒗

𝑑𝑡
= 𝑚𝒂

(52)

Taking the cross product of 𝒓 by each side yields the rotational analog:

𝒓 × 𝑭 = 𝒓 × 𝑚

𝑑𝒗

𝑑𝑡

(53)

𝑴 =

𝑑𝑯

𝑑𝑡
= 𝐼

𝑑𝝎

𝑑𝑡
= 𝐼𝛀

(54)

Linear accelerations:

Derived from the chain rule:

𝑭 = 𝑚

𝑑𝒗

𝑑𝑡
 → 𝑭 = 𝑚(𝒗̇𝑏 + 𝝎𝑛

𝑏 × 𝒗𝑏)
(55)

Angular accelerations:

Derived from the chain rule:

𝑴 = 𝐼

𝑑𝜔

𝑑𝑡
 → 𝑴 = 𝐼𝝎̇𝑛

𝑏 + 𝝎𝑛
𝑏 × 𝐼𝝎𝑛

𝑏
(56)

External Forces and Moments

 Each propeller produces a thrust force perpendicular to the propeller (in the 𝑥𝑏 direction) and

a torque about the quadrotor’s center of gravity. The thrust produced is a function of the propeller

geometry, fluid density, and motor speed. The other major forces acting on the vehicle are the

buoyant force and gravitational force, which can be assumed to act in opposite directions with

equal magnitude. Fig. 2.13 illustrates the forces acting on the quadrotor while operating

underwater.

23

Fig. 2.13. Free Body Diagram of Quadrotor Operating Underwater.

Force exerted by propeller thrust:

𝑭prop = [

𝐹𝑥

𝐹𝑦

𝐹𝑧

] = [
𝐹1 + 𝐹2 + 𝐹3 + 𝐹4

0
0

]

(57)

 The torque 𝑇 which each propeller generates about the quadrotor’s center of gravity is a

function of the thrust and 𝑦, 𝑧 distances of the motor shaft from the center of gravity. These

distances are clearly labeled in Fig. 2.14.

24

Fig. 2.14. Propeller Locations in Underwater Body Frame.

 𝐿 = 𝑇(𝐹1, 𝑑1𝑦,𝑑1𝑧) + 𝑇(𝐹2, 𝑑2𝑦,𝑑2𝑧) − 𝑇(𝐹3, 𝑑3𝑦,𝑑3𝑧) − 𝑇(𝐹4, 𝑑4𝑦,𝑑4𝑧) (58)

 𝑀 = −𝐹1𝑑1𝑧 + 𝐹2𝑑2𝑧+𝐹3𝑑3𝑧 − 𝐹4𝑑4𝑧 (59)

 𝑁 = 𝐹1𝑑1𝑦 − 𝐹2𝑑2𝑦+𝐹3𝑑3𝑦 − 𝐹4𝑑4𝑦 (60)

Moment of Inertia Matrix

𝐼 = [

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧

−𝐼𝑥𝑦 𝐼𝑦𝑦 −𝐼𝑦𝑧

−𝐼𝑥𝑧 −𝐼𝑦𝑧 𝐼𝑧𝑧

]

(61)

Assuming symmetry about the 𝑦 and 𝑧 axes yields the diagonal matrix:

𝐼 = [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

]

(62)

Acceleration Equations

Translational Motion:

 𝒗̇inertial = 𝒗̇𝑏 + 𝝎𝑛
𝑏 × 𝒗𝑏 (63)

25

𝒗̇inertial = [
𝑢̇
𝑣̇
𝑤̇

] + [
0 −𝑟 𝑞
𝑟 0 −𝑝

−𝑞 𝑝 0
] [

𝑢
𝑣
𝑤

] = [
𝑢̇ + 𝑞𝑤 − 𝑟𝑣
𝑣̇ + 𝑟𝑢 − 𝑝𝑤
𝑤̇ + 𝑝𝑣 − 𝑞𝑢

]

(64)

 𝑭 = 𝑚𝒗̇𝑏 (65)

 𝑭prop = 𝑚𝒗̇𝑏 (66)

[
𝐹1 + 𝐹2 + 𝐹3 + 𝐹4

0
0

] = 𝑚 [
𝑢̇ + 𝑞𝑤 − 𝑟𝑣
𝑣̇ + 𝑟𝑢 − 𝑝𝑤
𝑤̇ + 𝑝𝑣 − 𝑞𝑢

]

(67)

Rotational Motion:

 𝑴 = 𝐼𝝎̇𝑛
𝑏 + 𝝎𝑛

𝑏 × 𝐼𝝎𝑛
𝑏 (68)

[
𝐿
𝑀
𝑁

] = [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

] [
𝑝̇
𝑞̇
𝑟̇

] + [
0 −𝑟 𝑞
𝑟 0 −𝑝

−𝑞 𝑝 0
] [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

] [
𝑝
𝑞
𝑟

]

(69)

[
𝐿
𝑀
𝑁

] = [

𝐼𝑥𝑥𝑝̇
𝐼𝑦𝑦𝑞̇

𝐼𝑧𝑧𝑟̇
] + [

−𝐼𝑦𝑦𝑞𝑟 + 𝐼𝑧𝑧𝑞𝑟

𝐼𝑥𝑥𝑝𝑟 − 𝐼𝑧𝑧𝑝𝑟
−𝐼𝑥𝑥𝑝𝑞 + 𝐼𝑦𝑦𝑝𝑞

] = [

𝐼𝑥𝑥𝑝̇ − 𝐼𝑦𝑦𝑞𝑟 + 𝐼𝑧𝑧𝑞𝑟

𝐼𝑦𝑦𝑞̇ + 𝐼𝑥𝑥𝑝𝑟 − 𝐼𝑧𝑧𝑝𝑟

𝐼𝑧𝑧 𝑟̇ − 𝐼𝑥𝑥𝑝𝑞 + 𝐼𝑦𝑦𝑝𝑞
]

(70)

Equations of Motion in Vehicle’s Body Frame

Linear accelerations:

𝑢̇ =

1

𝑚
(𝐹1 + 𝐹2 + 𝐹3 + 𝐹4) + 𝑞𝑤 − 𝑟𝑣

(71)

 𝑣̇ = −𝑟𝑢 + 𝑝𝑤 (72)

 𝑤̇ = −𝑝𝑣 + 𝑞𝑢 (73)

Angular accelerations:

𝑝̇ =

1

𝐼𝑥𝑥
(𝐿 + (𝐼𝑦𝑦 − 𝐼𝑧𝑧)𝑞𝑟)

(74)

𝑞̇ =

1

𝐼𝑦𝑦
(𝑀 + (𝐼𝑧𝑧 − 𝐼𝑥𝑥)𝑝𝑟)

(75)

26

𝑟̇ =

1

𝐼𝑧𝑧
(𝑁 + (𝐼𝑥𝑥 − 𝐼𝑦𝑦)𝑝𝑞)

(76)

Where:

 𝐿 = 𝑇(𝐹1, 𝑑1𝑦,𝑑1𝑧) + 𝑇(𝐹2, 𝑑2𝑦,𝑑2𝑧) − 𝑇(𝐹3, 𝑑3𝑦,𝑑3𝑧) − 𝑇(𝐹4, 𝑑4𝑦,𝑑4𝑧) (77)

 𝑀 = −𝐹1𝑑1𝑧 + 𝐹2𝑑2𝑧+𝐹3𝑑3𝑧 − 𝐹4𝑑4𝑧 (78)

 𝑁 = 𝐹1𝑑1𝑦 − 𝐹2𝑑2𝑦+𝐹3𝑑3𝑦 − 𝐹4𝑑4𝑦 (79)

Equations of Motion in Inertial Navigation Frame

Linear accelerations:

 𝑋̇ = (cos𝜃cos𝜓)𝑢 + (−cos𝜃sin𝜓 + sin𝜙sin𝜃cos𝜓)𝑣
+ (sin𝜙sin𝜓 + cos𝜙sin𝜃cos𝜓)𝑤

(80)

 𝑌̇ = (cos𝜃sin𝜓)𝑢 + (cos𝜙cos𝜓 + sin𝜙sin𝜃sin𝜓)𝑣
+ (−sin𝜙cos𝜓 + cos𝜙sin𝜃sin𝜓)𝑤

(81)

 𝐷̇ = (−sin𝜃)𝑢 + (sin𝜙cos𝜃)𝑣 + (cos𝜙cos𝜃)𝑤 (82)

Euler angle rates of change:

[

𝜙̇

𝜃̇
𝜓̇

] = [

1 sin(𝜙) tan (𝜃) cos(𝜙) tan (𝜃)
0 cos (𝜙) −sin (𝜙)

0 sin(𝜙) sec (𝜃) − cos(𝜙) sec (𝜃)
] [

𝑝
𝑞
𝑟

]

(83)

2.5 Autonomy and Localization

The concept of autonomy within the field of aircraft has been an ongoing research topic for

the past few decades. The conversation centers around the two main questions of navigation:

Where am I now? And where am I going? The answers to these questions are essential for the

construction of a guidance system that would allow for autonomous flight to be achieved. The

exact methods for creating an autonomous vehicle vary, but the main system design consists of

two major components: inertial sensing and localization. Autonomous vehicles must be outfitted

with a sensor array for data collection to provide the system with answers to the two central

questions governing navigation and guidance [4].

27

 A sensor array may include a multitude of sensors, but overall, the data collected must

include the linear accelerations, the pitch, roll and yaw rates, and position of the aircraft. The

vehicle’s accelerations and angular rotation rates are typically measured with inertial sensors [4].

UAV’s typically feature tri-axis accelerometers to measure the linear accelerations of the aircraft

as well as rate gyroscopes for the measurement of the pitch, roll, and yaw rates of rotation. This

data allows for the determination of both the attitude of the aircraft and speed and direction it is

moving. Traditionally, a GPS (global positioning system) module is included to determine the

vehicle’s position regarding its longitude and latitude, along with an altimeter to determine the

system's distance from the planet’s surface below. Combining all this data together, the aircraft is

successfully able to determine its position while in flight and where it is heading next [15].

Localization can be defined as the determination of a vehicle’s absolute position with respect

to its environment. This task is a much greater challenge for underwater vehicles because GPS

systems lose satellite connections and become unreliable. Several alternative localization methods

include the use of LiDAR, optical or radio beacons, or onboard cameras which utilize various

computer vision algorithms [16]. One such algorithm is optical flow, which is a technique that

tracks the motion of identifiable features from frame to frame. Alternatively, computer vision can

be used to identify the location of the vehicle relative to fiducial marker placed in its environment.

Doppler velocity log (DVL) is another localization technique specifically used by underwater

vehicles. This sensor determines the rate and direction at which the craft is moving via doppler

shift, bouncing sound waves off the base of the body of water. AUV’s must use these or similar

methods to determine their position due to inability to achieve GPS lock. Traditional altimeters

which operate on barometric pressure readings are also unusable for underwater vehicles and an

alternative depth sensing solution is required. This is commonly done with a waterproof pressure

transducer. Directly measuring the depth below the water’s surface provides a useful datapoint to

augment the chosen localization method for accurate determination of a vehicle’s position in 3-

dimensional space [15].

With the data collected from inertial sensors and localization systems, the next step of the

system is to process these measurements for use in vehicle guidance. First, some signal processing

is performed with a low-pass filter to remove high-frequency noise from accelerometer and

gyroscope data. The improved data is then passed to a Kalman filter to ensure the data being used

is as accurate as possible. The Kalman filter implements sensor fusion while taking into account

the intrinsic accuracies and biases of each sensor to produce the best possible estimate of state

variables. With this now filtered data, the vehicle is able to determine its current state and the

necessary movements to get to the wanted second state [17]. The aircraft will continue to use the

incoming data to determine its next steps until the mission it was sent on is complete, allowing the

vehicle to operate with little to no input from the operator, creating a simplified and safer user

experience. Importantly, autonomy enables vehicles to operate in locations and environments

where remote piloting is not possible.

28

3 Technical Sections

3.1 Quadrotor Flight Controllers

3.1.1 Commercially Available Flight Controllers

When deciding on a flight controller to use to control the quadrotor, the controls team

compared the options of commercially available flight controllers and the creation of a custom

flight controller. The abilities of each controller were weighed with the importance of functionality

and customizability in mind. First, commercially available controllers were researched and

compared in an attempt to find a controller that was already built and functional that could be

customized for the specific needs of the project.

Two popular controllers that are available are the PixHawk and Navio 2. Both operate with

ArduPilot and PX4 flight control software. PX4 is an open-source autopilot for drone development

and is suitable for both aircraft and underwater vehicle control. ArduPilot is a similar controller

designed for multiple types of aircraft with a created “Mission Planner” software that makes it user

friendly and simple to learn. The team decided to move forward with ArduPilot due to its intuitive

design and the multitude of resources available for reference when it comes to development of a

controller for a new aircraft. For the hardware portion of the initial controller design, the team

compared the capabilities of the Navio2 and Pixhawk, finding the PixHawk to be better suited to

the needs of the aircraft in development.

Fig. 3.1. Mission Planner User Interface.

With these selections made, the team moved on to test flight control using a test drone and

a PixHawk with ArduPilot Mission Planner. Initial testing with the system provided insight into

the capabilities of commercially available flight controllers, and their customizability. Our

aircraft’s unique configuration and mission makes the need for customization in a flight controller

a top priority. ArduPilot and other software like it does not allow for the configuration of the

aircraft to change while in flight, so it was not well suited to our needs.

29

3.1.2 Custom Flight Controllers

After the team ruled out the possibility of using an existing commercial flight controller,

the focus shifted to custom flight controllers. There are a multitude of microcontrollers suitable

for the construction of a flight controller including the MSP430, Teensy, and Arduino. All of these

microcontrollers operate using C/C++ code that can be customized for our project’s needs. While

searching for a hardware solution, we also were searching for a possible software architecture to

be able to start the construction of the controller. That’s when we landed on dRehmFlight VTOL,

a customizable flight control software package that is designed for quadrotors and people who

want the ability to fully customize the controller to their needs. The controller package

recommended that it be run on a Teensy microcontroller and uses C/C++ language in the Arduino

IDE, making it the best choice for our aircraft.

3.1.3 dRehmFlight VTOL

After the testing and comparison of the flight controller options available, the controls team

settled on the dRehmFlight controller that operates on a Teensy 4.0 microcontroller with Arduino

software. The controller code was created by Nicholas Rehm and is meant for multirotor aircraft

stability using the Arduino environment to allow for ease of use and customization. The controller

was created with the intention of providing coders and aviators with the toolbox they need to create

their own custom rotorcraft projects. The coding package comes with a predefined controller

structure with all necessary functions included for flight control. [18]

Fig. 3.2. dRehmFlight Controller Architecture. [18]

This control structure contains all radio inputs, actuator outputs, sensor filtering, and PID

controllers built that are necessary to successfully control a custom aircraft. The user is able to

follow a guide to make specific customizations to the setup, structure, and mixer for their specific

aircraft. These aspects of the dRehmFlight controller package make it ideal for the design of the

quadrotor. [18]

30

3.2 Electronics

The electronics on the quadrotor are organized into four major subsystems. These

subsystems include power, propulsion, sensing and localization, and the ballast system. The details

of each subsystem are provided in the remainder of this section. At the center of the electrical

system is a Teensy 4.0 microcontroller that serves as the primary flight computer (pictured in Fig.

3.3Fig. . This microcontroller was chosen because of its ease of programming, compatibility with

dRehmFlight VTOL, and superior processing power compared to alternatives like the Arduino

Nano. The Teensy 4.0 is responsible for executing the main flight control loop, performing the

bulk of the processing, commanding the motors, and interfacing with the various peripheral

devices. The microcontroller is mounted on a prototyping PCB with terminals for the various input

and output devices. An image of this board is shown in Fig. 3.4 with the components labeled.

Additionally, the functional block diagram shown in Fig. 3.5 illustrates the relationships between

the major components of the electrical system.

Fig. 3.3. Teensy 4.0 Microcontroller.

Fig. 3.4. Main Electronics Board with Components Labeled.

31

Fig. 3.5. Functional Block Diagram of the Electrical System.

3.2.1 Power Subsystem

The first electrical subsystem to discuss is the power system. The power system is

responsible for applying electrical power to the remaining components. The system is powered by

a 3S lithium polymer (LiPo) battery. The selected battery capacity was 5000mAh as determined

from an analysis of the power budget show in Fig. 3.6. The 500mAh capacity was chosen to give

a flight time of about 10 minutes with the motors assumed to be running continuously at 50%

throttle. This battery sizing was driven by the power budget analysis for aerial flight due to the

greater power requirements compared to aquatic operation. The battery is connected to a battery

eliminator circuit (BEC) which then connects to a power distribution board (PDB). The BEC is

essentially a voltage regulator that passes the full 11.1V from the battery to the PDB while

providing a second output that has been dropped down to 5V. The PDB is used to deliver the

battery voltage to the propulsion system. A large capacitor is connected to the battery terminal on

the PDB to serve as a brownout capacitor, storing charge in order to smooth out the power supply

in response to transients caused by the motors. The 5V output from the BEC is wired to the power

and ground rails on the main circuit board. These rails are used to power the microcontroller and

the components of the sensing and localization system and ballast system.

32

Fig. 3.6. Power Budget for Quadrotor Design.

3.2.2 Propulsion Subsystem

The propulsion system is responsible for moving the quadrotor through the air and through

the water. The major components of the propulsion system are the motors and electronic speed

controllers (ESCs). The quadrotor features four three-phase brushless DC motors for propulsion.

The motor chosen for the vehicle was the Mt2213 935kV Brushless Motor manufactured by Emax.

These motors are 27.9mm in diameter and have a mass of 53g. This model was selected because

it offers sufficient thrust for the expected mass of the quadrotor and has an excellent thrust to mass

ratio. Brushless motors are also easily waterproofed which makes them an ideal candidate for our

application in designing and amphibious AUV. Fig. 3.7 depicts the selected motors. The motors

were equipped with 1045 propellers, corresponding to a length of 10 inches and a blade pitch angle

of 4.5 degrees. The three wires from each motor are connected to the output terminals of an

electronics speed controller. Bullet connectors were used in the wiring between the motors and

ESCs to allow for them to be easily connected and disconnected as needed. The chosen ESCs are

rated up to 35A, which comfortably exceeds the expected load from our motors. The input

terminals to the ESCs are wired to the power distribution board in order to supply 11.1V to the

motors. The signal wires from the ESC are wired to the main circuit board to receive commands

from the microcontroller. The 4 in 1 ESC used for the final vehicle is shown in Fig. 3.8.

33

Fig. 3.7. Emax Mt2213 935kV Brushless Motor with 1045 Propeller.

Fig. 3.8. 4 in 1 Electronic Speed Controller.

3.2.3 Sensing and Localization Subsystem

The sensing and localization system is responsible for helping the quadrotor to make sense

of the world around it. To complete the autonomous mission successfully, the vehicle must know

its altitude during aerial operation, depth underwater during aquatic operation, and its position and

orientation in space at all times. This is accomplished with the use of four sensors: an inertial

measurement unit (IMU), ultrasonic rangefinder, pressure-based depth sensor, and tracking

camera. More detailed information on the specifics of the chosen sensors is given in Section 3.3.1.

The IMU, rangefinder, and pressure sensor are all wired to the main circuit board and read directly

by the microcontroller. The tracking camera is more complex and requires the use of a companion

computer to perform complex computation. A Raspberry Pi 3 microprocessor (shown in Fig. 3.9)

is used to interface with the tracking camera. The Raspberry Pi then communicates pose data from

the camera to the primary flight computer over Serial.

34

Fig. 3.9. Raspberry Pi 3 Microprocessor.

3.2.4 Ballast System Electronics

The ballast system electronics include the sensors and actuators needed to control the

volume of water within the ballast tanks. The system is actuated by a pair of servo motors, with

one for each syringe. The servos are SG-90 continuous rotation hobby servos which are powered

from the 5V rail on the main circuit board. Continuous rotation servo motors were required due to

the stroke length of the rack and pinion linear actuators which extend and retract the piston within

the cylinders. More information is provided in Section 3.8. A pair of 5-wire optical shaft encoders

are used to measure the linear displacement of the piston within each cylinder. These devices are

also wired to the main circuit board. The Teensy 4.0 microcontroller reads the signals from the

shaft encoders to determine the present state of the ballast system, and commands actuation of the

servos when directed by the flight control loop. The SG-90 continuous rotation servo is shown in

Fig. 3.10 and the optical shaft encoder is shown in Fig. 3.11.

35

Fig. 3.10. SG-90 Continuous Rotation Servo Motor.

Fig. 3.11. 5-Wire Optical Shaft Encoder.

36

3.3 State Estimation

3.3.1 Onboard Sensors

Attached to the Teensy 4.0 microcontroller is a complete sensor array to allow for the

controller to collect all of the information it needs to achieve stable flight. The Teensy is the wanted

flight controller as it is able to run the controller code at high speeds, making it the ideal choice

for our aircraft. The controller code takes in data from the IMU, altitude sensor, depth sensor, and

tracking camera to allow it to know its position as well as send commands to the motors in order

to remain stable while in flight.

3.3.1.1 IMU

For the IMU, the controls team decided on the MPU6050 as it was the model recommended

by the dRehmFlight controller. The MPU6050 provides the controller with six axes of data with

its internal Gyroscope and Accelerometer. The Gyroscope provides three axes of rotational

velocity, and the Accelerometer provides three axes of measured gravitational acceleration. This

data provides the controller with knowledge of the motion of the quadrotor along the three axes of

motion as well as the orientation of the quadrotor while in flight.

 Fig. 3.12. IMU Orientation on Quadrotor. [18]

3.3.1.2 Altitude Sensor

For the altitude sensor the controls team decided to use the A02YYUW Waterproof

Ultrasonic sensor. With the design of the quadrotor needing to account for the craft being able to

be operated both above ground and above and underwater, the sensor used for determining altitude

needed to alot for those aspects of the design. A sensor utilizing lasers was ruled out as an option

due to the reflective nature of the surface of the pool that could mess with the accuracy of the

readings. For the purpose of our design, an ultrasonic sensor that operates using ultrasonic pulses

37

to determine the distances of objects from the sensor was the best option. The ultrasonic sensor is

also waterproof and able to be placed underwater without having to be inside the enclosure,

allowing it to be able to provide the necessary position data needed by the flight controller to

determine its current location and state. [19]

Fig. 3.13. A02YYUW Waterproof Ultrasonic sensor. [19]

3.3.1.3 Depth Sensor

Once underwater, to continue to track the vertical position of the quadrotor, a depth sensor

was added to the array. Upon selection, the controls team selected the Bar30 High-Resolution

300m Depth/Pressure Sensor, as it best suited our needs concerning the design of the craft. The

sensor that was selected operates up to 300 meters deep within a body of water and is accurate

within 2mm when in freshwater. This sensor will provide the controller with the location of the

craft while underwater, allowing it to successfully maintain a specified depth while moving across

the pool as well as assistance with the air to water transition. [20]

Fig. 3.14. Bar30 High-Resolution 300m Depth/Pressure Sensor. [20]

38

3.3.1.4 Tracking Camera

When it comes to state estimation, one of the simplest routes for an aircraft is using GPS

to determine the aircraft’s position in air. When it comes to a craft that operates underwater, GPS

is no longer an option. So, for the purposes of this project, state and location estimation of the

quadrotor needed to fall on the abilities of a complete sensor array with the ability of localization.

To obtain this needed position data, the controls team decided a tracking camera would be the best

course of action when it came to sensor selection for this task.

3.3.1.4.1 Camera Selection

Fig. 3.15. Intel RealSense T265 Tracking Camera. [21]

To best suit our needs, we needed a camera that tracked itself, not just objects in its field

of view. The T-265 tracking camera made by Intel fulfills these requirements. Intel has a variety

of tracking and depth cameras that are able to determine the location of the robot attached to it, but

the T265 is the one that best suits the needs of this project. The camera comes with the RealSense

viewer, as shown in Fig. 3.16. [21]

Fig. 3.16. RealSense Viewer 3D View.

39

As shown above, the camera is able to track its own movements using the provided

program. This data is collected by the viewer and presented visually on a digital plane. The color

of the path denotes the stability of the movement of the camera with the green being completely

stable, and the yellow being slightly unstable. The application also provides the user with a view

of what each camera sees as well as the readings of the data being collected by the internal IMU

on a set of two-dimensional planes. All this data will be collected and processed using the

companion computer on the quadrotor, providing the controller with the position data needed for

stable flight. [21]

3.3.1.4.2 Companion Computer Selection

To allow the camera to provide position data to the Teensy Microcontroller, a companion

computer needs to be included in the control architecture. There are two main companion

computers that work with the Intel Realsense camera and interface, the Jetson Nano and Raspberry

Pi. These companion computers are similar in memory, and processing power. They are both Linux

based and can run the programs necessary to achieve the functionality needed for successful

autonomous flight and data collection through the camera interface. The team settled on using a

RaspberryPi3 due to the amount of information that is available on it being used with the camera,

as well as it provided us with all the necessary capabilities to run the camera and communicate the

collected position data from the camera to the Arduino over the serial monitor.

3.3.1.4.3 Integration within the System

To operate the camera with the companion computer, the software interface must be

installed. For the Raspberry Pi, the Intel Realsense SDK is needed to allow for the camera sensor

to communicate with the computer. The SDK is open source and supports program development

with python and other languages. The download for the SDK also comes with other tools needed

to collect data from the camera. Once the interface is set up, the camera is connected via a USB

cord, and you are able to collect the position, velocity, acceleration and rotational data for each

frame collected by the camera. This data is then sent to the Teensy microcontroller over the serial

monitor and then used within the control algorithm to achieve stable flight.

3.3.2 Madgwick Filter

With all the data collected by the sensor array, it must be combined in order to determine

the state of the quadrotor. To combine this IMU data, the dRehmFlight controller utilizes a

Madgwick filter, also known as a Madgwick Orientation Filter. The filter was created by Sebastian

Madgwick in 2009, to combine and filter the data collected by the gyroscope and accelerometer of

an IMU. First the filter takes in the three axes of collected data and does an initial filter of the

sensor noise. Each of these sets of data are then used to approximate the orientation of the aircraft

from the accelerometer and gyroscope separately. These orientation calculations are then put

through a fusion algorithm, which provides an estimation of the rate of change of orientation of

the aircraft. The filter then calculates the aircraft’s orientation by numerically integrating this

function. The structure of this filter has a lower computational load which allows it to be used at

lower sampling frequencies and thus it is suited for smaller platforms. This low computational load

also makes this filter an ideal choice for use within real time applications. [22]

40

Fig. 3.17. Block Diagram Depicting the Working of the Madgwick Filter. [22]

3.4 Control Architecture

3.4.1 Control System Overview

The control system for the quadrotor is responsible for maintaining stable flight of the

vehicle and executing movements commanded by a pilot or autonomous routine. The overall

control architecture is divided into four hierarchical layers. The highest-level part of the system is

the motion planner. This is only a feature of the autonomous flight mode and is implemented with

the state machine as detailed in Section 3.5.3. The motion planner produces a desired altitude and

position for the quadrotor at any given time. One level below this are the altitude and position

controllers. The altitude controller is responsible for determining the baseline throttle value for all

four motors that is needed to achieve the desired altitude. Similarly, the position controller is

responsible for determining the desired pitch and roll angles needed to translate the vehicle to the

specified position or to hold it at the current position. In the manual flight mode, the throttle value

and angle setpoints are instead commanded by the pilot’s instructions from the radio transmitter.

The next level down is the attitude controller. The attitude controller takes the angle

setpoints as inputs and generates corrective commands that must be added or subtracted from

specific pairs of motors to stabilize the vehicle about the angle setpoints. The outputs from the

attitude control are fed into a control mixing block along with the baseline throttle value. This

command mixing block determines the desired speed for each of the four motors based upon the

input values and the geometry of the quadrotor. Finally, the lowest level of control is implemented

by the ESCs which command the motors to spin at the desired speed. This framework explains

how a high-level flight path is translated into four motor speeds for control of the vehicle at any

given time. Each layer of this control architecture is explained in more detail in the following

section. The control architecture diagram shown in Fig. 3.18 illustrates this hierarchical structure

more clearly. Fig. 3.19 details the function of the control mixing block and shows the relationship

between the controller outputs, electronics speed controllers, and actuators.

41

Fig. 3.18. Control Architecture Diagram.

Fig. 3.19. Control Mixing Block Diagram.

3.4.2 Electronic Speed Controllers

Electronics speed controllers (ESCs) are commercially available motor controllers that are

commonly used by hobbyists. ESCs are generally used for speed control of three coil brushless

DC motors. These devices take an input signal from a microcontroller and use embedded

electronics to produce a three-phase signal to be sent to the motor from three output terminals.

ESCs require a PWM or oneShot125 signal from the microcontroller to specify the desired angular

speed of the motor. The oneShot125 protocol refers to a signal that is set to HIGH for a pulse width

ranging from 125ms to 250ms which corresponds to the full range of operating speeds. ESCs may

be found in standalone packages, where one device is needed for each motor, or integrated into

power distribution boards that feature multiple ESCs in one device. When power is applied to an

42

ESC, the device performs a distinct beep code upon startup to indicate that it has been armed

successfully.

The electronic speed controllers on our vehicle constitute the lowest level of the control

architecture. After determining the desired speed for each of the four motors, the calculated motor

speeds are scaled to pulse width values to be sent to each ESC over the oneShot125 protocol. The

ESC is responsible for maintaining the speed of the motor at the desired set speed. This is done

with embedded software that is abstracted away from the end user, who may simply wire the ESC

between the microcontroller and motor. However, it is useful to perform a calibration procedure

to ensure the best performance from ESCs. The calibration procedure begins by powering on the

ESCs while sending the command for maximum throttle. The ESC responds with a characteristic

beep code to indicate that it has entered calibration mode. The pilot then throttles the motor

command down to zero, which is followed by another beep code from the ESC. This completes

the calibration process and ensures that the commands given by the microcontroller are correctly

scaled to the full-scale range of motor speeds that can be produced by the ESC.

3.4.3 PID Control

The control architecture of our amphibious quadrotor vehicle makes extensive use of PID

controllers. PID control, or proportional-integral-derivative control, is a powerful technique that is

widely used in control applications across a variety of industries. PID is a form of closed-loop

feedback control that is useful for driving a system to maintain a specified setpoint. The output of

the controller is a summation of three terms: the proportional term, integral term, and derivative

term. When combined, the proportional, integral, and derivative terms produce a single control

output that is given to the plant. The resulting action is taken, the state of the system is measured

again, and the calculated error is fed back into the controller in a closed loop.

As its name implies, the proportional term produces a value that is proportional to the error

in the system. The error in the system is defined simply as the difference between the measured

state and the desired state. This error is then multiplied by the proportional control gain, Kp, to

yield the proportional term. The function of the proportional term is to drive the output to the

desired value and to bring the error to zero. The proportional term may be expressed as:

𝑃 = 𝐾𝑝 ∗ 𝑒(𝑡)

Then next term is the integral term. The integral term adds time dependence to the

controller by summing the error in the system over time. A running total of the error in the system

is multiplied by the integral gain, Ki, to yield the integral term. The integral term is useful in

eliminating steady state error from a system. A persistent deviation from the setpoint value will

result in an accumulating error sum over time, causing an increase in the integral term to correct

for the error. The integral term may be expressed as:

𝐼 = 𝐾𝑖 ∗ ∫ 𝑒(𝜏)𝑑𝜏

43

The final term is the derivative term. The derivative term also has time dependence and

reflects how the error in the system is changing. The rate of change of the error in the system is

multiplied by the derivative gain, Kd, to yield the derivative term. The derivative term is useful in

reducing overshoot, dampening oscillations, and improving settling time of a system. The ability

to respond appropriately to increasing or decreasing error values improves the overall performance

of the controller. The derivative term may be expressed as:

𝐷 = 𝐾𝑑 ∗
𝑑

𝑑𝑡
𝑒(𝑡)

PID control is a commonly adopted technique because it is relatively easy to implement

and effective across a range of applications. A diagram illustrating the structure of a complete PID

controller is shown in Fig. 3.20. While the structure of a PID controller is straightforward, the

tuning of the control gains is not. Many techniques have been proposed to aid in the tuning of PID

gains. Some methods rely on the observation of a system performance in the real world coupled

with mathematical formulations. Others rely on the development of an accurate model of the

system to calculate optimal gain tuning through simulation. Regardless of the chosen method,

considerable time spent is often required to experimenting with the tuning of a PID controller to

achieve the desired performance. The desired response of a system may also vary depending on

the specific application. It is useful to develop an intuitive understanding of the effect that each

term has on the performance of the system. The table in Fig. 3.21 presents a summary of the effect

that increasing each control gain has on the performance of the overall system.

Fig. 3.20. PID Control Block Diagram.

44

Parameter Rise Time Overshoot Settling Time Steady-State

Error

Stability

𝐾𝑃 Decrease Increase Small change Decrease Degrade

𝐾𝐼 Decrease Increase Increase Eliminate Degrade

𝐾𝐷 Minor change Decrease Decrease No effect Improve

Fig. 3.21. Effect of Increasing PID Gains on Overall System Performance.

3.4.4 Stabilization and Attitude Control

The second level of the control architecture is the attitude controller. The quadrotor is an

intrinsically unstable vehicle and thus requires active stabilization. The purpose of the attitude

controller is to stabilize the vehicle about a given pitch angle, roll angle, and yaw rate. Active

stabilization of the vehicle’s attitude is an essential function of the flight computer even during

piloted flight in the MANUAL flight mode. This control is implemented through three independent

PID controllers, where one is dedicated to each rotational axis. These PID controllers use the error

between the vehicle measured state and desired state as inputs. The measured state refers to the

estimated pitch, roll, and yaw angles that are calculated in the flight control loop from IMU data.

This is explained in more detail in Section 3.5.2. The desired angles are taken from the pilot’s

commands in MANUAL mode, and from higher level controllers in AUTO mode. The error in

each axis is calculated as the difference between these measured and desired values. The output of

these PID controllers is sent to the motor mixing block to command the appropriate response on

the system. As a safeguard, a limit is placed on the integral term, such that once it becomes fully

saturated, the error will not continue to accumulate with a potentially harmful result.

When the vehicle is not receiving any pitch, roll, or yaw commands, the desired setpoint

values default to zero. This means that the vehicle will attempt to keep itself level by maintaining

its pitch and roll angles at zero. A vehicle’s ability to accomplish this task successfully is

imperative for stable flight. The quadrotor’s yaw rate is also stabilized to zero to maintain the

heading of the vehicle. The gains for these three PID controllers were tuned experimentally to

achieve good performance for stabilization. Fortunately, this was not a difficult process because

the starting values given in the dRehmFlight VTOL firmware proved to be an excellent starting

point. When a pitch or roll command is received, the vehicle stabilizes itself about the commanded

angle. The maximum angle that can be commanded is limited to 20 degrees to limit instability.

Note that stabilization about a nonzero angle result in a lateral drift due to the misalignment of the

thrust vector and gravity vectors. This is a desirable result when commanding the vehicle to move

through space, as described in Section 2.3.

3.4.5 Altitude and Position Controllers

The highest-level controllers in the quadrotor’s control architecture are responsible for

maintaining the vehicle’s altitude and position. This functionality is essential for autonomous

operation of the vehicle and relies on sensory input from the onboard sensor array. The altitude

controller is implemented as another PID controller. The input to the altitude controller is the

altitude error, which is defined as the difference between the desired altitude setpoint and the

45

measured altitude. The measured altitude is determined by the most recent reading from the

ultrasonic rangefinder. Just as with the PID controllers for attitude control, the altitude controller

implements an integral limit to prevent unsafe error buildup which could be damaging to the

system. This PID controller differs from the attitude controllers with the inclusion of an additional

feedforward term that is input to this controller. This term corresponds to a baseline hover throttle

that was determined experimentally. The controller then has the effect of increasing or decreasing

this value appropriately in response to the altitude error. The control gains were tuned

experimentally as detailed in Section 3.6.3. The output from the altitude controller is sent to the

motor mixing block to set the baseline throttle level for all four motors.

While the altitude controller maintains the position of the quadrotors along the vertical axis,

the position controller is responsible for holding the craft’s position in the longitudinal and lateral

axes. Rather than a PID controller, position control is simply implemented with two proportional

controllers. The position error in the X and Y axes is calculated as the difference between the

desired position and measured position of the quadrotor. The desired position is specified in the

flight control code as a chosen point on a grid, where the origin is located at the vehicle’s initial

position upon startup. The measured position of the quadrotor is determined by the pose estimate

given by the RealSense tracking camera. A more detailed description of how this works is given

in Section 3.3.1.4. The position error is multiplied by a constant proportional gain to produce a

control output. The proportional gain was tuned experimentally to yield a reasonable balance

between response time and settling time. The output values for the X and Y axes are used to specify

the desired pitch and roll angles of the vehicle respectively. These are the values that are then

passed to the attitude control to achieve stabilization about the commanded angles. This causes the

quadrotor to travel to and then maintain the specified position. The combination of the altitude

controller and position controller allows for the vehicle to be autonomously commanded to any

position in three-dimensional space. This is the most fundamental building block for full

autonomy, allowing for the flight computer to command reliable point to point travel without any

input from a pilot. This capability can be extended with motion planning techniques to direct the

vehicle along complex flight paths in a fully autonomous manner.

3.5 Flight Control Software

3.5.1 Overview and Development Environment

The custom flight control software developed by our team is an extension of the

dRehmFlight VTOL flight controller published by Nicholas Rehm. Using dRehmFlight as a

starting point, the code was modified to meet the unique requirements of this project. Many

features provided for the support of different hardware setups were removed to streamline the code

for performance and readability. Additionally, many new features were added to support

amphibious AUV project, including interfaces with navigation sensors, logic to switch between

flight modes, autonomous altitude and position controllers, and a state machine for execution of

an autonomous mission.

Software development was conducted in C++ using Visual Studio Code with the

PlatformIO extension for embedded microcontroller programming. Collaboration and version

control was instituted with a GitHub repository which contains the flight code and other important

46

documents. The Teensyduino driver was utilized to upload code to the Teensy 4.0 microcontroller.

The main flight code is contained within the file “Amphibious_AUV.ino.” Additionally, several

supporting libraries are referenced by the main file which contain sensor drivers, radio

configuration functions, and support for communication protocols. All the files needed to compile

and run the flight software are included in the GitHub repository.

3.5.2 Flight Computer Architecture

The flight control software is divided into several sections. The definitions section at the

beginning of the file contains important references to other files, declarations of objects and global

variables, and enumerations used by the state machine. This section also includes configurable

parameters for setting sensor biases, tuning control gains, and setting mission parameters. The next

section of the code is the setup function. This function is always called upon startup of the flight

controller. The setup function contains calls to functions which calibrate and initialize sensors,

perform radio receiver setup, arm the electronic speed controllers, and set the initial conditions of

the state machine. The onboard LED on the Teensy microcontroller is turned on while the setup

function is running as an indicator to the pilot.

Following the initialization function is the main flight control loop. This loop runs

continuously after the setup function is executed once. The main control loop runs several critical

functions which will be explained in more detail below. A flowchart depicting the sequence of

actions taken each iteration through the loop is given in Fig. 3.22. The control loop is designed to

be run at a frequency of 2000 Hz. It is critical to maintain consistent timing due to the time sensitive

nature of the control loops which influence the tuning of gain values. This is challenging because

the computation time is not constant due to variations between different iterations of the loop. To

account for this, a special function is called at the end of the loop to maintain the desired loop

frequency. This function records the current system time at the end of the loop with the system

time saved at the beginning of the loop to determine how much time has elapsed. The function

then institutes a software delay with the use of internal timers to delay the start of the next loop

until the correct amount of time has passed. Additionally, the microcontroller’s onboard LED is

blinked every 1.5 seconds while the main loop is running to indicate to the pilot that the program

is executing the flight control loop.

 Several critical functions are performed in sequence during each iteration of the main flight

control loop. First, the program reads raw accelerometer and gyroscope values from the inertial

measurement unit. These values are subject to a low-pass filter to remove high frequency noise

from the measurements. Next, the sensor values are given to the Madgwick filter to update the

vehicle’s state estimate. This step involves a C++ implementation of the algorithm described in

Section 3.3.2. to fuse the sensor values and combine them with the current state estimate to produce

a new state estimate. This outputs the current best estimate of the quadrotor’s roll, pitch, and yaw

angles. With the measured state of the vehicle known, the value of radio channel 6 is checked to

determine which flight mode is currently selected. The flight computer then determines the desired

state of the vehicle depending on the flight mode. In MANUAL mode, the desired state is

determined from the pilot’s commands which are received from the radio transmitter. In AUTO

mode, the desired state is determined from the high-level control and path planning algorithms

47

which guide the craft through its mission. More information about the different flight modes is

provided in Section 3.5.3.

 Now that the flight computer knows the current state and the desired state of the vehicle,

the system must respond to achieve the desired state. At this point, the attitude stabilization

controller is called to generate values for stabilization about the desired pitch and roll angles and

desired yaw rate. These values are then sent to a control mixer, where they are added or subtracted

to the baseline throttle level for each motor in order to achieve the desired response. A detailed

explanation of the dynamics from which this mixing is derived is presented in Section 2.3. The

control mixer outputs commands for each of the four motors between 0 and 1. The controller

checks then checks the value of radio channel 5 to monitor the state of the throttle cut switch. The

motor values are all set to 0 in the event that the throttle cut switch is activated. The resulting

values from 0 to 1 are then scaled to pulse width values between 125ms and 250ms to be sent to

the ESCs over OneShot125 protocol to appropriately command the motors to the desired speeds.

Finally, the system pulls the currently available radio commands on channels 1 through 6 to be

used in the next iteration of the loop.

Additionally, there are a few other actions that are not executed every loop. These include

reading the distance value from the ultrasonic sensor and reading the pressure value from the depth

sensor. These actions are not performed during every iteration of the loop because they cannot be

completed quickly enough. The time required for a pulse emitted from the rangefinder to reflect

off an object and return to the detector is longer than an iteration of the loop. Therefore, in order

to collect reliable altitude data, the sensor must be polled at a reduced frequency. A similar

technique is employed with the depth sensor, because a single conversion to read from the sensor

can take up to 40ms which exceeds the duration of one loop iteration. Decreasing the loop

frequency to accommodate for these sensors is undesirable because it would hurt the performance

of the controller and decrease the stability of the vehicle. For this reason, a counter was

implemented to poll the sensors once every 200 iterations of the loop. This allows for the flight

control loop to continue running at a fast speed of 2000 Hz while only polling the sensors at 10

Hz. This has no substantial impact on performance as this rate is perfectly adequate to obtain good

altitude and depth data.

After the main control loop, the final section of the code contains all the supporting functions

that are called by the setup function and main loop. These functions contain concise blocks of code

that are specific to the particular tasks referenced above. Beyond the critical functionality outlined

in this section, some additional functions are maintained for debugging purposes. Most notably,

there are a wide array of functions which print various values to the Serial monitor for use in

troubleshooting when the vehicle does not perform as expected. These include functions to print

sensor values, controller outputs, motor commands, and other values as needed. During nominal

operation, these functions are all commented out in the code to improve performance as printing

values takes considerable computation time. Functions for calculating sensor biases and calibrating

the ESCs are also included for occasional use in setup and troubleshooting.

48

Fig. 3.22. Main Flight Control Loop Flow Chart.

3.5.3 State Machine

A state machine was implemented to control the quadrotor as it switches between different

modes of operation. A hierarchical structure was chosen to best accomplish this task, with an inner

layer and an outer layer. The outer layer is used to switch between different flight modes. The

available flight modes are MANUAL, HOVER, and AUTO. Manual mode allows for direct

control of the quadcopter with the radio transmitter for piloted flight. Hover mode is used for

instructing the vehicle to hover at a fixed point in space without controller input. Finally, auto

mode is used to execute a pre-programmed autonomous mission with the quadrotor. Switching

between flight modes is accomplished with an auxiliary switch on the radio transmitter. The

quadrotor always begins in MANUAL mode upon startup. A pilot may then toggle the multi-

position auxiliary switch to change the operating mode to HOVER or AUTO as desired.

The inner layer refers to a secondary state machine within each of the defined flight modes.

These states are used to transition between various functions within each operating mode. All flight

modes have a STARTUP state that is used to reset controller values and perform any necessary

initialization. In manual mode, a second state called NORMAL allows for piloted control of the

vehicle. In hover motor, the HOVER state keeps the vehicle stable at a fixed set point in space,

until a radio signal transitions the vehicle into the LANDING state, at which point the vehicle

slowly descends to the ground for a landing. The AUTO mode features many states to execute the

49

vehicle’s autonomous mission. A unique state exists for each movement or action taken by the

quadrotor, such that these steps can be completely sequentially to carry out the mission.

The state machine is implemented in C++ with the use of nested switch case statements. One

enumeration was written to list the various selectable flight modes for the vehicle. When the main

flight control loop reaches the first switch statement, the program executes the code for a particular

flight mode based upon the value of the flight mode variable which is set by the position of the

auxiliary switch on the transmitter. Within each case, a second switch case statement is used to

transition between states within the specified flight mode. An enumeration for each flight mode

lists the possible states within that mode. The current state within each flight mode is determined

by logic that is specific to the current state. The STARTUP state is the initial state whenever a

flight mode switch is executed. After this, the state transition logic is specific to the different flight

modes as described in the preceding paragraph.

3.6 Test Quadrotor Vehicle

3.6.1 Test Vehicle Construction

The Navigation and Controls sub-team designed and built an early prototype quadrotor to

begin software and control system development in advance of the completion of the final vehicle.

The test vehicle was constructed from PLA with a fully 3D printed frame which was acquired from

the online 3D modeling community Thingiverse. The frame consists of a top plate, bottom plate,

and four arms which serve as mounting fixtures for the motors and landing legs for the craft. The

vehicle was assembled with standard M5 bolts and hex nuts. The team chose to use an existing

frame design to save on design effort and to have confidence that a previously tested design would

have good stability for flight. The fully assembled test vehicle is shown in Fig. 3.23 with the

RealSense camera facing front. A top view is shown in Fig. 3.24 and a bottom view is shown in

Fig. 3.25.

The test quadrotor was then outfitted with the custom electronics assembly described in

Section 3.2. The IMU was placed on the center of the top plate, close to the vehicle’s center of

mass to optimize the sensor’s performance. The sensor was mounting atop a square of soft foam

to provide dampening from the vibration of the frame induced by the motors. This isolation from

vibration is important to minimize noise in the sensor readings. Excessive vibration results in poor

IMU data that is unusable for achieving stable flight. The prototyping PCB with the Teensy 4.0

microcontroller was mounted behind the IMU on the top plate. The power distribution board and

BEC were mounted to the bottom plate. The four motors were mounted on the dedicated fixtures

on the ends of each of the arms, with the ESCs mounted underneath the arms. The 3S LiPo battery

used to power the system was mounted underneath the craft and secured with Velcro straps. The

ultrasonic rangefinder and depth sensor were mounted on a 3D printed bracket bolted to the bottom

plate at the front of the craft. The sensor mount is shown in Fig. 3.26.

50

Fig. 3.23. Fully Assembled Test Quadrotor Vehicle.

Fig. 3.24. Top View of Test Quadrotor.

51

Fig. 3.25. Bottom View of Test Quadrotor.

Fig. 3.26. Test Quadrotor Sensor Mount.

52

3.6.2 Preliminary Calibration and Ground Testing

Once the test quadrotor was fully assembled, a series of ground tests and calibration steps

were performed before attempting the first flight. Electrical testing of the system was performed

with the use of digital multi-meter. First, continuity checks were performed to ensure that the

correct connections were made successfully and that there was no risk of causing a short circuit

when power was applied. The battery was then connected, and the system was probed to ensure

that power distribution to each of the components was as expected. Next, a simple test program

was uploaded to the Teensy microcontroller to verify that it was working as expected. After

completing these electrical checks, the next step was to test the various sensors and peripheral

devices.

 Each of the sensors were first tested independently with the use of dedicated driver

libraries. The acceleration and angular rate values from the IMU were visualized in the Arduino

Serial Plotter to verify the expected performance. Plots of filtered values from the accelerometer

and rate gyroscope are shown in Fig. 3.27 and Fig. 3.28 respectively. Similarly, distance values

from the ultrasonic sensor and depth readings from the depth sensor were compared against known

values to verify their performance. A printout of altitude measurements from the ultrasonic

rangefinder is shown in Fig. 3.29. Having demonstrated that all the sensors work as expected, the

sensor drivers were integrated into the main flight code. At this point, a calibration procedure was

performed with the IMU to obtain better performance. The quadrotor was placed at rest on a flat

surface while sensor readings were recorded for a period of several seconds. The recorded values

were averaged and subtracted from expected values to estimate the static bias for every axis of the

sensor. These bias values were then stored in the code to be subtracted from future measurements

for more accurate readings.

Fig. 3.27. Plot of Filtered Accelerometer Readings.

53

Fig. 3.28. Plot of Filtered Gyroscope Readings.

Fig. 3.29. Printout of Real-Time Altitude Measurements.

 With the sensors working, the next step was to configure radio communication between

the quadrotor and the transmitter. A new configuration was created on the transmitter to map the

joysticks and switches to the desired radio channels. Channels 1 through 4 were mapped to the

joysticks to control throttle, pitch, roll, and yaw. The throttle cut switch was mapped to Channel 5

and the flight mode switch was mapped to Channel 6. Once the transmitter had been configured

properly, the flight code was uploaded to the quadrotor. The values received from the radio

channels were printed to the Serial Monitor in a loop for debugging purposes. The expected range

for each radio channel is 1000 to 2000. Every joystick and switch were moved through its full

range of motion to verify that the mapping had been performed correctly. Further calibration was

then performed on the transmitter to set the full-scale range of every axis from 1000 to 2000,

centered about the value 1500 in the neutral position. This is important to guarantee that the pilot’s

inputs to the transmitter are interpreted correctly by the flight computer. A printout of the values

received from the radio transmitter is shown in Fig. 3.30.

54

Fig. 3.30. Printout of Values from Radio Transmitter.

After configuring the radio communications, the electronic speed controllers and motors

were also tested. The propellers were removed from the motors for safety and to prevent unwanted

movement of the vehicle before an actual flight was attempted. The battery was connected to the

power distribution board, powering on the ESCs as indicated by the characteristic beep codes.

First, a calibration routine was performed by setting the motors to full throttle, waiting for the beep

signal from the ESCs, then throttling down. This is done to properly map the throttle input to the

full-scale range of motor speeds that the ESC can output. Next, the throttle was slowly raised to

check that all motors were spinning properly. The direction of spin was observed for each motor,

and two leads were switched in the case that the direction needed to be reversed. The motors were

slowly brought up to full throttle while evaluating their performance, and then throttled down to

zero. With all the hardware functioning as expected, the final ground tests could be conducted to

test the performance of the controller before attempting the first flight.

The Madgwick filter and state estimation code was tested with the motors off. While

running the main control loop on the quadrotor, the calculated pitch, roll and yaw angles were

printed to the Serial Monitor. A plot of these values is shown in Fig. 3.31. The quadrotor was

physically moved and rotated about its axes while monitoring the plot to verify that the vehicle’s

attitude was measured correctly. After achieving satisfactory results, the quadrotor was placed on

a level surface and the motors were powered on. Next, the motor mixing commands were tested

to ensure that the vehicle would respond correctly to commands from the pilot. The transmitter

was used to instruct the vehicle to rotate about each of its axes, while observing the behavior of

the motors. For example, a command to pitch the craft downward should result in the rear motors

throttling up to achieve the correct response. The vehicle’s behavior was evaluated systematically

for every command to validate the performance. Following this demonstration, the vehicle was

lifted and held in the air to check the performance of the stabilization controllers. The vehicle was

tilted in each direction to verify that the correct motors would throttle up to restore equilibrium.

55

Once this test was performed to satisfactory completion, ground testing for the vehicle was

complete.

Fig. 3.31. Plot of Pitch, Roll, and Yaw Angles.

3.6.3 Flight Testing

The main goals for the quadrotor were to achieve stable aerial flight under manual control,

to achieve autonomous altitude hold capability, to achieve autonomous position hold capability

with minimal drift, and finally to achieve point to point autonomous navigation. The first objective

was simply to get the vehicle to fly while piloting manually. After performing qualification of the

vehicle through calibration and ground testing as described in the preceding section, the quadrotor

was powered up for the first aerial flight attempt. Initial efforts were unsuccessful due to a variety

of factors including improperly tightened hardware, unbalanced propeller blades, and poor IMU

calibration. These issues were troubleshooting in a systematic manner however and resolved,

leading to the first successful test flight of the quadrotor. It was found that applying trim

corrections on the radio transmitted improved the ease of flying under manual control. Several

team members took control of the quadrotor during the first successful test flights and video was

recorded to document the milestone. This test was important in verifying the flightworthiness of

the vehicle as well as for validating the flight computer’s ability to perform state estimation and

active stabilization. A still image from the first successful flight is shown in Fig. 3.32.

56

Fig. 3.32. First Successful Flight of Test Quadrotor.

The next major milestone to achieve was an autonomous hover of the vehicle by

implementing an altitude controller. While the initial code for the autonomous hover maneuver

was written quickly, this proved to be a very difficult task. One major obstacle was the frailty of

the test vehicle. The 3D printed arms constructed from PLA were easily broken in crashes resulting

from early attempts of autonomous control, which resulted in large delays and setbacks. Another

major issue was the discovery of misaligned motor shafts causing imbalances and excessive

vibration which contributed too much noise to the inertial sensor readings. This made it impossible

for the vehicle to stabilize itself properly and to get off the ground. After troubleshooting these

issues to get the vehicle flying, the tuning of the PID control gains was a long process requiring

many iterations.

The team documented the control gains used during each test and made calculated changes

to the values in order to perform experimental tuning in a systematic matter. The performance of

the controller gradually improved over time as the design was improved and more test flights could

be performed. Several weeks of extensive testing and experimenting were undertaken to produce

satisfactory results. However, the team was ultimately successful in tuning the control to achieve

autonomous hovering of the quadrotor at a predefined altitude with our custom flight controller.

Note that at this point, the camera was not yet integrated so the vehicle has no knowledge of its

position. This means that the vehicle was still susceptible to drift, and while the throttle command

was controlled entirely by the flight computer, the pilot was still responsible for controlling the

vehicle’s longitudinal and lateral translation. A video was taken to document this important

milestone in the development of the custom autopilot software. A still image from this test is shown

in Fig. 3.33.

57

Fig. 3.33. Autonomous Hover of Test Quadrotor.

3.7 Quadrotor Body Design

In this project the drone body serves two primary purposes: structural and waterproofing.

While existing commercial options do exist for waterproof drones, our team decided early within

the design process to create a custom body. This decision was made due to concerns over

waterproofing and size. Any commercial waterproof drones were likely to require significant

modification anyhow to accommodate the larger electronics unique to this project – specifically

those utilized in control and localization. Instead, a standard quadcopter frame was selected to be

utilized alongside additional custom structure and waterproofing. This option was chosen because

of concerns about the structural integrity of a custom frame and issues past MQPs faced in

balancing a quadcopter frame. The chosen frame is the S500 Quadcopter Frame Kit, a common

frame for our size drone. Made of plastic and carbon fiber, the frame had the advantages of being

waterproof, light, strong and cheap. In order to fit with the rest of the drone body some components

had to be minorly modified while others were removed from the frame entirely. We specifically

utilize the 4 arms, bottom plate, and hardware. The top plate, landing legs, and camera mounts

were all removed.

To waterproof the drone research illustrated two potential solutions. The first option is to

individually waterproof the electronics, typically through a waterproof coating. This method has

the advantage of being extremely lightweight, small in size, as well as reliable given a good

application. In exchange, assembly is more difficult and once sealed the electronics may be

significant work to modify. Due to our uncertainty of electronics choices and likelihood of iteration

this method was ruled out. Instead, the option we ended up selecting was to construct a waterproof

enclosure. This design decision meant a generally heavier and larger drone but allows for more

freedom in electronics choices and changes, as well as the drone body to be developed in parallel

alongside the electronic systems. The waterproof enclosure also allowed for more design freedom

regarding our other primary structural goal, buoyancy control.

58

3.7.1 Material Selection

Having decided to create a custom waterproof enclosure the next step was to determine the

materials and how it would likely be manufactured. These were factors that could greatly influence

further design decisions, particularly due to our limited resources. Some possibilities for materials

that we looked at were using a pre-existing waterproof container, a waterproof styrofoam, or even

using fiberglass as is common in many boats. Instead, we decided to design for 3D printing. 3D

printed parts have a significant advantage over other manufacturing methods since they can be

produced extremely quickly, with relatively little work, and cheaply. The lower tolerances and

strength of 3D printed parts were determined to be relatively negligible downsides.

The primary issue with typical 3D printed parts was that they are not waterproof. For

common filaments – like PLA and ABS – tiny holes are left between the layers during the printing

process. Water can seep through these holes and through the infill mesh found on the inside of 3D

printed parts, letting parts become waterlogged. This issue is typically addressed by using a

waterproof type of plastic with stronger layer adhesion, or by re-melting the outside of parts using

a solvent. Our group decided to utilize a common waterproof filament type: PET-G, a strong

material most commonly found in plastic bottles. As an extra measure of precaution, it was decided

that all external 3D printed parts should be printed with 100% infill, or completely solid. This

meant that much of the design had to be thin-walled shells as any solid shape would be extremely

heavy.

Other materials utilized in the quadrotor construction include epoxy, hot glue, and acrylic.

A small acrylic window was designed in the enclosure for the tracking camera. Acrylic was used

as it was the easiest to acquire clear plastic. For our epoxy we specifically used the Loctite brand

five-minute instant mix. This was chosen as it was cheap, easily obtainable, and easy to apply. The

epoxy was used in permanently attaching various 3D printed components together. Hot glue was

again utilized due to its ease of application and acquisition, specifically hot glue was used for

attaching parts together non-permanently, in the case that something needs to be switched out, as

well as in waterproofing.

3.7.2 Enclosure

The enclosure is the main body of the quadrotor and houses all the primary electronics such

as the electronic speed controllers, the battery and the camera. It was designed based on three

primary constraints: accessibility, water tightness, and ballast compatibility.

Accessibility means specifically the ability to remove all internal components from the

enclosure without any permanent disassembly. Furthermore, accessibility also refers to being able

to relatively easily swap batteries. These constraints were chosen so that the electronics could be

easily swapable if issues arise, and so that the battery could be switched out during extended testing

sessions. To allow for this accessibility a separate box was designed as a mounting surface for all

electronics, excluding the battery and camera. Normally held in by detents, this box can slide in

and out the top of the enclosure. The battery can be removed in a similar way, sliding out the top.

As such the general shape of the enclosure is like an open cup, with flat sides and an open top. The

general dimensions of the enclosure were determined based on the electronics sizes as well as the

frame hole patterns. The exception to this description is the camera area. Set in front of the battery,

59

this area has an acrylic window and large reliefs to allow removal of the tracking camera. These

were required as the camera needed to be mounted horizontally but was far longer than the width

of the enclosure, and by extension opening.

The second primary design consideration was water tightness. As discussed in section

3.7.1, 3D printing allowed for a lot of flexibility, but required a generally thin-walled design. This

factor, combined with the large clearance holes required for accessibility, meant that a significantly

sized hatch had to be implemented into the enclosure. In order to seal this hatch, we decided to

create a large flange. The flange has a top plate, large gasket, and bottom plate which are all

sandwiched together with numerous bolts around the perimeter. This design was chosen due to the

relatively easier access to attachment hardware – since no threads or enclosed nuts would be

required in the 3D prints; and relaxed tolerance requirements. Other designs such as a more typical

o ring or overlaps required more precise tolerances to be waterproof than a flange which could

simply be sanded flat. The primary concern with the flange design was weakness and deformation.

Overtightening of the bolts and the elastic nature of the gasket can mean that in between the bolt

pattern the flange may buckle apart allowing gaps for water to seep through. This potential issue

was addressed by having numerous bolts in a relatively tight pattern and reinforcing the flange

plates. The top plate flange plate was designed to glue together on to the rigid carbon fiber bottom

plate of the drone frame. Similarly, bolt pattern fits together into some of the pre-existing holes in

the frame plate. This was done as both a reinforcement mechanism and to rigidly attach the frame

and enclosure together. Similarly, bottom flange plate features a large orthogonal rib and is

epoxied to the rest of the enclosure for reinforcement. The other aspect to consider within enclosure

waterproofing is cabling. Various wires are required to go from inside to outside the enclosure.

These include the motor wires, ballast servo and encoder wires, and wires for the external sensors.

While pass through blocks or a commercial waterproofing component could have been used, we

instead opted to use a simple hole and seal it with hot glue. This was because of the relatively low

depths and pressures the quadcopter was designed to operate in, maxing out at only a couple of

meters in depth.

The last major design constraint is ballast compatibility. As discussed in section 3.8, our

group opted to utilize a ballast system to control the buoyancy of the quadcopter. Furthermore, the

ballast system is designed to facilitate the transition between vertical flight and the horizontal

position for underwater travel. These factors placed strict constraints on the overall density of the

enclosure, its center of mass, and geometric center. Since the ballast system had to be smaller than

the main enclosure, this meant that the enclosure -and more specifically the quadcopter a as a

whole - had to have a density near water. This is because the range of effective densities produced

by the ballast system had to allow for the quadcopter to both sink and float. In practice this

constraint meant that the enclosure needed to be as small as possible. Any increase in enclosure

volume meant an increase in overall drone weight, requiring higher motor throttle values to hover,

and reducing the operating time. Both the center of mass and geometric center positions are factors

crucial to the operation of the ballast system and are discussed further in that section. These factors

did however influence the enclosure design primarily in its positioning. In order to keep the center

of mass central and aligned with the frame and motors the heavy battery was placed near middle

of the quadrotor. Similarly, most of the enclosure space and electronics were placed towards the

60

back of the quadrotor, opposite the ballast system. This positioning allowed for a relatively central

center of buoyancy.

Besides these primary design constraints there were a few other minor considerations made

during the enclosure design process. One of the first was simplifying 3D printing, and specifically

a focus was put on minimizing the amount of support structure required. Another was keeping the

enclosure left-right symmetrical. Due to the ballast system and our planned tilt the quadrotor could

not be front-back symmetrical, but an effort was made to keep it entirely symmetrical the other

way. This somewhat simplified the design and assembly process as well as there would be fewer

torquing issues. Hydrostatic Drag was also a minor consideration. Except for those used in racing,

most quadcopters ignore air drag as it is negligible for the sizes and speeds they are moving at.

This is not the case for most underwater travel and can often be a significant design constraint.

While we did consider it, and specifically tried to minimize our cross-sectional area, it was not a

major consideration due to the planned slow speeds and short time of underwater quadrotor

operation.

3.7.2.1 Enclosure Version 1

Our first version of the enclosure was split into two separate parts, the battery box and

electronics box. Each box had an internal rib that was designed to be epoxied together along with

the lower flange plate. This split into two components was done to try and minimize the required

printing supports, although a last-minute change in the camera positioning meant that both still

required significant amounts of support material. Furthermore, the printing process left

imperfections on the parts. Two significant imperfections proved to complicate the assembly

process. The first was curling off the printing bed. This caused the two surfaces that needed to be

glued to be cambered away from one another. This imperfection was addressed by using a large

bead of epoxy to fill the gaps. The more pressing imperfection was small holes in various places

around the enclosure boxes. Caused by improper layer adhesion, these holes allow water to seep

through the otherwise sealed enclosure. Our group temporarily solved this issue by filling any

visible holes with hot glue.

61

Fig. 3.34. Enclosure CAD Drawings.

Fig. 3.35. Enclosure Assembly.

62

Besides the manufacturing defects the first enclosure version had two major design flaws

that drove the implementation of a second version. The first design defect was an incorrect relief

sizing for the camera. Due to the previously described internal rib for gluing the two components

together, the clearance for taking the camera out was not large enough. This prevents the camera

from being removed or put in place once the acrylic window has been glued on. This was not an

acceptable option considering how much other testing had to be done with the camera. The other

flaw, although less critical, is once again found with the camera enclosure area. Its positioning is

too close to the top of the enclosure and restricts access to the flange bolts on that side.

3.7.2.2 Enclosure Version 2

Due to the issues with the first enclosure design, a second major revision was designed and

manufactured. The primary change was the relocation of the camera bay. For easier access to the

planned bolt pattern the camera bay was shifted downwards to the bottom of the enclosure.

Furthermore, the large relief cuts were rotated from a horizontal orientation to nearly vertically.

These changes minimized the required support structures and allowed for the primary enclosure to

be printed in one piece instead of two. The lowered camera bay was also able to be utilized as a

large front foot for the drone, eliminating some of the required leg supports. As with version 1, a

separate flange piece was also printed and epoxied on. While moving the camera bay lower was

somewhat detrimental to the desired center of mass and volume locations, the location difference

in modeling proved to be negligible. Furthermore, the new version and orientation proved to be

smaller in volume than version 1, allowing for a lighter overall drone.

Fig. 3.36. Enclosure Version 2 CAD

63

While eliminating joints within the enclosure helped significantly with assembly time;

other issues were caused by the increased size of the print. In particular, the greatly increased

height of the enclosure print led to far more layer shifts and imperfections in the printing process.

This meant that the overall enclosure had small holes almost everywhere. These issues likely

appeared in version 1 but went unrecognized due to the larger leaks. In order to waterproof the

enclosure, we utilized a commercial rubberized waterproof spray for much of the testing. While it

required many coats, waterproofing with an external sealant ended up working. For later revisions

a rubberized paint sealant was used over the spray for a thicker coat and faster drying times. This

methodology worked even better in waterproofing but had the downside that adhesives, especially

hot glue, struggled to adhere properly. For both the spray and paint we utilized flex seal brand

sealant.

Despite significant improvements to the bolt pattern accessibility, the flange and gasket

design proved to not be waterproof. The soft 3d printed material was unable to provide adequate

clamping pressure on the rubber gasket. As an attempt to increase clamping pressure a beveled top

plate, as opposed to flat, was tested. In theory this design was supposed to localize the clamping

pressure to the inner corner of the enclosure, ensuring that the rubber gasket complied enough to

fill in the gaps. While better, this flange-gasket again did not work. The hatch design that did end

up working well was surprisingly to just glue the flange halves together, specifically with hot glue.

The hot glue would adequately fill in any gaps and cracks while its low adhesive strength allowed

for the flange to simply be pried apart after testing. Furthermore, the adhesive temperature of the

hot glue is lower than the glass transition temperature of the PET-G, allowing us to reheat the

glued flanges with a heat gun and reuse the hot glue. This methodology proved to be easier, faster,

and more waterproof than the gasket and bolt pattern and would be how the hatch was sealed for

much of our testing.

3.8 Ballast System

In order to traverse the water body, the structures sub-team discussed the different ways in

which the quadrotor could move underwater. One potential way was to have a buoyant vehicle and

treat the buoyancy force as an inversed gravity, requiring the quadrotor to constantly push itself

underwater. This methodology was quickly ruled out for being too inefficient. and unstable.

Another method would be to have the vehicle normally sink, and to simply hover in the water with

the motors. This method however has significant concerns with exiting the water since motors

would be required to push the quadrotor across the entire water-air transition. The third option,

and the one we chose, was to actively control the buoyancy of the quadrotor. This allows the

quadrotor to float on the water surface, passively sink to the desired depth, travel underwater, then

float back up to the surface. By having a buoyant state, the quadrotor propellers would naturally

be pushed up out of the water, eliminating the need for a powered water-air transition.

Furthermore, an active buoyancy system has other advantages for underwater movement.

If the buoyancy at depth is near neutral, the quadrotor cannot translate a tilted hover into horizontal

movement like it does in air – since it would just push itself upwards. This is typically addressed

by tilting the quadrotor so that rather than vertical thrust the motors produce horizontal thrust. This

64

also has the advantage of greatly improving underwater efficiency by reducing drag and greatly

improving angle thrust losses. This tilting motion can be done propulsively, with the two front

motors rotating at a slower speed and the back two rotating at a faster speed. However, this tilting

motion adds significant control complexity since the quadrotor can only be dynamically stable in

one position, vertically or horizontally. An active ballast system can solve this issue. Demonstrated

by the looncopter, a ballast system can not only change the density of a vehicle, but also the

position of its center of mass, allowing a shift in where the quadrotor is dynamically stable.

Inspired by the looncopter, our ballast system was designed to provide stability in two

primary cases. When the ballast system is empty, and the quadrotor floats, the center of mass and

buoyancy are aligned so that the system floats vertically, in the same orientation as aerial flight.

When the ballast system is ~75% full, and the quadrotor sinks, the center of mass and buoyancy is

instead aligned so that the quadrotor is dynamically stable in a horizontal position to travel

underwater.

3.8.1 Hydrostatic Analysis

For this project, the theoretical motions had to be verified to determine if the system would

perform as intended. Modeling is a simple analytical method for verifying unique motions that our

drone will have to take, such as the air-to-water transition. The team decided to pursue a hydrostatic

study of our drone system to accomplish this goal. The system in question is being modeled as an

inverted pendulum underwater. To determine the forces acting on the system, two unique

principles were used to help identify how the forces interacted within the system: Archimedes

Principle and Centroids.

Archimedes Principle states that the upward buoyant force that is exerted on a body

immersed in a fluid is equal to the amount of displaced fluid by the volume of the body itself. This

would mean that our drone, when either partially or fully submerged in water will exert a force

upward on the body, dependent on how much of the body is underwater. Due to the specific point

at which this analysis is being conducted – at the air-to-water transition – we can assume that the

drone is nearly fully submerged, and thus the dynamics when at the water surface can be neglected.

The center of mass of the drone – the location where the Force of Gravity acts – can be

determined by assuming uniform density among components. Treating the drone as a composite

shape, one can use the equations for a centroid below to generate three dimensional coordinates

for the center of mass by compiling the X, Y and Z coordinates of each component, and treating

them as a different composite in the overall shape.

𝐶𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑀𝑎𝑠𝑠 = (𝑋̅, 𝑌̅, 𝑍̅) =

∑ (𝑥, 𝑦, 𝑧)𝑖𝑀𝑖
𝑁
1

∑ 𝑀𝑖
𝑁
1

(84)

A similar technique can be applied to solve for the Center of Buoyancy, where the mass of

each component is replaced with the density of water multiplied by the volume of the component.

This acts as a stand in for displaced water by the individual component.

65

𝐶𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝐵𝑢𝑜𝑦𝑒𝑛𝑐𝑦 = (𝑋̅, 𝑌̅, 𝑍̅) =

∑ (𝑥, 𝑦, 𝑧)𝑖𝜌𝐻20𝑉𝑖
𝑁
1

∑ 𝜌𝐻20𝑉𝑖
𝑁
1

(85)

These two principles are implemented in the diagram below, modeling the Centers of Mass

and Buoyancy, as well as the acting Forces of Buoyancy and Gravity. Other parameters are defined

in the diagram as geometric parameters to help define the system.

Fig. 3.37. Image of Proposed Model.

66

For the following model, the following variables are defined:

Table of Variables

𝑚 Mass of the Drone

𝐼 Moment of Inertia of the Drone

𝑔 Gravitational Constant

𝑙 Distance from the Axis of Rotation to the

Center of Buoyancy

𝐿 Distance from the Axis of Rotation to the

Center of Mass

𝑎 Arm Length

𝜌 Density of Water

𝑉 Volume of the Drone

𝐹𝑔 Force of Gravity acting at the C.o.M.

𝐹𝐵 Force of Buoyancy acting at the C.o.B.

𝑇𝑎,𝑏,𝑐,𝑑 Thrust generated from the 4 propellers

With a stable force of buoyancy and no other external forces acting on the body, the only way to

adjust our vehicle to fly horizonal to the pool surface would be to shift the center of mass. The

ballast system was designed to intake water to add mass to the system and adjust the center of mass

of the vehicle. Adding mass to the system without additional volume can shift the center of mass

with respect to the center of buoyancy, creating a moment that can rotate the vehicle. From this,

our group began pursuing designs to implement an active ballast that would be able to shift the

center of mass of our vehicle enough to turn our vehicle underwater.

3.8.2 Ballast Version 1

From the start our group decided to utilize syringes for our ballast system. While large

ballast systems typically use internal tanks and pumps, at the scale of our quadrotor these pumps

would add significant weight and complexity. This is particularly true since unlike a ballast system

for a boat which has access to air at any time, any air displaced by our ballast needs to be accounted

for and reused when trying to empty the ballast system underwater. Excluding pumps leaves only

the option of changing the quadrotor volume. Syringes were the clearest option to do so, offering

an extremely proven dynamic seal design cheaply and with low weight. Syringes also had the

advantage of offering a large variety of sizes, an important aspect since our ballast system was

sized based on the total displacement of the quadrotor.

To move the ballast system a small servo was selected based on the approximate torque

required and available electronics voltage. Initially a custom servo horn lever and a slotted plate

were designed, and 3D printed. The slotted plate would be glued to the syringe plunger while the

lever would be pinned in the slot. A 180-degree rotation of the servo motor would be a full

extension or retraction of the plunger. This system was mirrored into a set of two to increase the

ballast size and create symmetry, although the second mechanism was never assembled for this

test. All components were held together by a 3D printed external shell.

67

Fig. 3.38. Ballast System Version 1 CAD.

Fig. 3.39. Ballast System Version 1 Assembly.

68

The first ballast test had many issues. The first issue the team encountered was that our 3D

printer did not have the required resolution to match the servo horn spline. For the initial assembly

the part was melted and pressed on to the servo, but this would not be a reliable option for future

systems. The other, more important, issue was a flaw in the overall mechanism. Due to the

unexpectedly high friction force of the syringe the servo motor barely had enough torque with that

moment arm. This combined with the significant torque losses due to the leaver angle meant that

the servo was unable to move at all. The tolerances within the 3D printed enclosure for the servo

mounts were also off.

3.8.3 Ballast Version 2

For the second ballast test we decided to change the linear motion mechanism. Another

option could have been to increase the servo motor strength, but this would require a larger ballast

system and even then, the larger servo options were limited by our electronics voltage. The smaller

5-volt servos shared a power distribution system with the raspberry pi, but larger ones would

require a separate power distribution system.

Instead, we opted for a rack and pinion design since a small pinion gear greatly reduced

the effective lever length and since the mechanism has a relatively constant torque curve along the

entire ballast system, as opposed to the sinusoidal torque curve of the lever design. The rack and

pinion mechanism also allowed for the ballast system to be as long as required, rather than limited

by the lever arm length. In exchange, however, the mechanism required a larger range of motion

than a typical servo can provide. We opted to continue using the same servo, but as a continuous

rotation variant. Continuous rotation servos are basically just throttleable electric motors, so they

lose the position tracking of a standard servo. This state tracking was re-implemented in the third

ballast version using a rotary encoder but was not used for this test.

Both the rack and pinion gears were semi-circular toothed gears that were 3D printed. To

get around the minimum resolution issue experienced with the servo arm in test 1 the pinion gear

was designed to interface with a pre-existing servo horn that was purchased with the servos. The

enclosure was once again 3D printed, although only 1 mechanism was designed to be assembled

from the start.

Ballast test 2 proved to be a success. The rack and pinion gears meshed surprisingly well,

and the servo was able to easily move the syringe. Tolerances were also far more precise than the

first version.

69

Fig. 3.40. Ballast System Version 2 CAD.

3.8.4 Ballast Version 3

Version 3 of the ballast system was designed to not be a test, but instead designed to

integrate directly with the quadrotor and enclosure. Like previous designs the system uses a rack

and pinion mechanism with small FS90 continuous rotation servo motors arranged in symmetry

with two syringes.

The syringes are 150 ml syringes with a 40mm internal diameter. These were cut to be ~9

cm long. The syringes were chosen based on diameter so that two would fit reasonably well within

the arms of the quadrotor frame. The length was chosen based on our target ballast volume of

~10% of the quadrotor volume. While a larger ballast system would likely be better for stability

and buoyancy, size was limited by the available space and mass. The 10% target, or ~200 mL of

volume, was evaluated to provide an adequate shift to the center of mass without being too large.

Unlike previous iterations of the ballast system which had been planned to be mounted

vertically, this version finalized on a horizontal system to avoid potential collisions with the

propellers. Overall, this decision did not change the mechanism very much but did significantly

change the mounting possibilities and ballast enclosure area. Specifically, this new positioning

puts the ballast system practically inside the frame. As a result, the ballast system was designed as

a replacement top frame plate and clearance had to be added to avoid the arms.

As a result of these changes the ballast enclosure and frame were split into three parts: the

front half holding the syringes, the back half holding the servos and encoders, and a frame to hold

everything together. As discussed in section 3.9.2, this more finalized version of the ballast system

includes encoders. These encoders are the common ky-40 rotary encoder. They interface with the

70

pinion gear and are held in place by the frame. In fact, the servos serve as a stabilization bearing

for the pinion gear that is opposite to the servo motor. This was previously a simple pin and hole

in the 3D printed parts. Other changes include a more robust servo mounting system with clips,

and new rack gears. Previous rack gears were designed to be glued to a trimmed syringe plunger,

but the new design replaces the plunger with an entirely 3D printed part, where the rubber endcap

was slotted on. This choice was made so that the pinion gears could abut right against the syringe

to stabilize the entire plunger and prevent the rack gear from slipping out or skipping. Other

stabilizing features were also designed into the back half where the gears mesh.

All these components were glued together into one watertight, but separate, enclosure that

bolts directly to the frame. Any external component was printed in a similar fashion to the

enclosure as discussed in section 3.7.1. This separation was done out of precaution so that even if

the ballast system leaks none of the expensive electronics would get damaged.

Fig. 3.41. Ballast System Version 3 CAD External View.

71

Fig. 3.42. Ballast System Version 3 CAD Internal View.

Fig. 3.43. Ballast System Version 3 Assembly.

This iteration of the ballast system experienced some difficulties between fabrication errors and

mechanical advantage. Despite the success of version 2, this version struggled to actuate the

syringes properly. The first issues came in early development and fabrication of the system, where

the adhesive material used to join the modified syringes to the PETG prints – a combination of

waterproofing and commercially available hot glue – caused the syringe bodies to warp, creating

difficulties in the plunger’s ability to move forward and back. Furthermore, the syringes were

significantly more difficult to move even outside the warped areas. This was attributed to the aging

of the rubber seal over the winter break. To address these factors a more careful fabrication

methodology was employed, as well as lubricating the sliding parts with a silicone-based lubricant,

to dually act as a further sealant between the water and the electronics inside, and a lubricant for

72

the rubber plunger. This proved to improve the mobility of the plunger but was not enough to assist

with the torque required by the servos to actuate the system. Another issue identified and fixed

with version 3 is the off-center plunger racks. Because of their position on the plunger edge, a

weak design, and fatigue from testing; the rubber seal and plunger head were being canted against

the syringe exterior, significantly increasing friction. A replacement plunger rack was

implemented with a large brace, and did help, but not enough to allow for smooth articulation of

the syringes. Other solutions tested include new servo motors – in case the existing ones had

overheated too much from testing and partially demagnetized the DC motors within them; a

smaller pinion gear; and even a worm gear drive. None of these variations were able to smoothly

articulate the syringe, although the worm gear setup had adequate torque but poor tolerances due

to a 3D printed design. Variations on the worm gears with a screw drive mechanism is being

considered to decrease imperfections and greatly increase torque.

73

4 Results

4.1 Summary

 Through the research completed, the following results were determined. The project was

successful in partial fulfillment of the initial goals. Significant progress was achieved towards the

structural design of an amphibious quadrotor. The team’s development of a novel ballast system

demonstrated the ability to intake and expel water in such a manner to alter the vehicle’s buoyancy

characteristics. Furthermore, several different waterproofing techniques were tested, and their

performance analyzed. This task proved to be difficult, and the waterproofing challenges led to

several cases of water intrusion during underwater testing events. The team determined that

applying a silicone coating was the most effective method of waterproofing 3D printed

components, due to its ability to cover the small holes in the material. A hydrostatic analysis

conducted by the team also provided valuable insight into the behavior and control of a quadrotor

vehicle when underwater, and importantly during air to water transitions. This work helped to

inform the team’s careful design of the structure with respect to the vehicle’s mass distribution and

ballast system placement to achieve the desired performance. While this research presents many

critical insights towards the design of an amphibious quadrotor vehicle, the final vehicle

constructed by the team was not proven to perform adequately in the real world due largely to

manufacturing and waterproofing challenges. We expect this work to lay a strong foundation for

further development in this unique research space.

The team also made considerable progress in the development of a flight computer and sensor

array for autonomous navigation and localization. The cost of electronics was driven down through

the use of inexpensive hobbyist electronics and accessible programming environments. The

electrical system for the vehicle was proven to be capable of power regulation to drive 12V

brushless motors as well as 5V servos, sensors and control electronics. Additionally, the onboard

sensors were shown to produce accurate state estimation which allowed for demonstrated stable

flight of the test vehicle. Extensive testing of the RealSense T265 tracking camera also

demonstrated the acquisition of reliable localization data, which shows considerable promise is

unpiloted navigation between aerial and underwater environments. The completed software

includes a unique integration of both aerial and underwater dynamics along with the control logic

to switch between the two, which is a feature that is not available with commercial flight

controllers. This system was tested in part with isolated subsystems and was shown to successfully

achieve autonomous altitude control on the test vehicle. However, the full functionality of the

custom flight computer is yet to be tested, as the team was unable to fully integrate the sensor array

into the final vehicle and to undertake autonomous flight testing within the timeframe of the

project. As with the research into the quadrotor’s structure, we believe that the most recent

iterations of the electrical system and flight control software will provide considerable value in

future work to fully test and extend their capabilities.

4.2 Conclusions

The overall objective of this project was to design, construct and test an autonomous

quadrotor capable of flight and underwater locomotion. The overall design created over the

74

duration of the project has been proven to be an effective method of bridging the gap between

travel in-air and below the surface of water. Through the creation of a ballast and GPS denied

position tracker, the quadrotor prototyped is fully capable of subnautic travel. Through hydrostatic

calculations, it was determined and proved that with the center of mass and buoyancy generated

by the design would allow for the correct orientation of the craft underwater, thus proving the

soundness of the enclosure design and weight distribution. The control system created has been

proven to be able to achieve autonomous movements and has been tested through the use of our

test vehicle. With all this presented research, and further prototypes and testing, the design created

is proven to be a viable solution to the problem presented at the beginning of this paper.

4.3 Recommendations for Future Work

In accordance with the accumulation of research presented within this paper, the team has a few

recommendations for the continuation of this project. It is believed the overall mission and goal of

the project is able to be achieved with further prototyping and flight code testing on a final vehicle.

The first recommendation is to use more commercially available products, rather than custom

designs. In particular, the two enclosures would have made more sense as standard containers. A

significant amount of time was spent trying to waterproof the 3d printed parts and hatch seal where

a commercial product would have fit the use case extremely well. While the design could not have

been as custom, a wide variety of waterproof resealable containers are available in the required

size range. Commercial products would also be generally stronger and less prone to cracking than

3d printed parts, an issue faced when flight testing inevitably ends.

A second recommendation is to test more frequently. Rather than large full-scale testing,

subsystems and components should be tested individually. While this methodology was adopted

later within the project, earlier subsystem testing would have helped significantly. Flaws within

the ballast system and waterproofing would have been discovered earlier, electronics would not

have been lost to water damage, and more overall revisions and changes could have been made.

A final recommendation is to explore other possibilities for optimized underwater travel. While in

theory the ballast system and shifting center of mass should work, it added significant mechanical

complexity and design constraints. A simpler more symmetric structure that abandons the

underwater tilt may be more optimal, especially for tuning air flight characteristics. Active depth

control through propeller throttle may also be easier than manipulating buoyancy with a ballast

system.

4.4 Broader Impact

The applications of a fully autonomous, amphibious AUV are extensive. From undersea wreckage

exploration to military intelligence gathering in foreign waters, a vehicle of this type would have

no shortage of uses. Being sponsored by the US Navy, this project holds within it a possible

direction the future of joint naval and aerial mission can take. Reconnaissance, data collection, and

other designated missions that must navigate both the air and the water become possible with an

amphibious AUV.

The work conducted within this project regarding underwater dynamics, conceptual design,

and buoyancy manipulation can be applied to other projects, and even the lessons learned in

waterproofing and other novel takeaways this team had are valuable to anyone attempting a project

with a similar scope. As the world of autonomy evolves, and the boundaries between mediums of

75

travel dissolve, the merging of transportation modes will see more prevalence in everyday life.

Being able to seamlessly travel between air and water means overcoming the difficulties that lie

within each medium in one vehicle. In this case a drone seems to be the best candidate for this

role, but who knows what the future holds.

76

5 References

[1] G. Warwick, "A Brief History of Rotorcraft Development," Aviation Week Network, 22

August 2018. [Online]. Available: https://aviationweek.com/business-aviation/brief-history-

rotorcraft-development.. [Accessed 16 October 2022].

[2] L. Mejias, J.-P. Diguet, C. Dezan, D. Campbell, J. Kok and G. Coppin, "Embedded

Computation Architectures for Autonomy in Unmanned Aircraft Systems (UAS)," PubMed

Central, vol. 21, no. 4, 2021.

[3] "Unmanned Aerial Vehicals: (Uavs)," Encyclopedia Britannica , [Online]. Available:

https://www.britannica.com/technology/military-aircraft/Unmanned-aerial-vehicles-UAVs.

[Accessed 2 October 2022].

[4] S. Ghazbi Norouzi, Y. Aghli, M. Alimohammadi and A. Akbari, "Quadrotors Unmanned

Aerial Vehicals: A Review," IEEE, 2016.

[5] M. J. Monfreda, J. D. Gibbons, A. P. Lepilov, M. Hobson-Dupont, A. S. Knight, M. R.

Dupuis and G. M. Mungai, "Design Optimization of a Quad-Rotor Capable of Autonomous

Flight," Worcester Polytechnic Institute, Worcester, MA, 2008.

[6] K. E. Gustafson, A. DiCesare and P. V. Lindenfelzer, "Design Optimization of a Quad-Rotor

Capable of Autonomous Flight," Worcester Polytechnic Institute, Worcester, MA, 2009.

[7] R. J. D'Angelo and R. C. Levin, "Design of an Autonomous Quadrotor UAV for Urban

Search and Rescue," Worcester Polytechnic Institute, Worcester, MA, 2011.

[8] S. L. Friedman, K. P. Hancock and C. M. Ketchum, "Vision-Based Obstacle Avoidance for

Small UAVs," Worcester Polytechnic Institute, Worcester, MA, 2015.

[9] J. D. Blythe, K. A. Borowicz and A. N. Hollander, "Autonomous Quadrotor Navigation and

Guidance," Worcester Polytechnic Institute, Worcester, MA, 2016.

[10] B. M. Ferrarotti, R. D. Patil, D. H. Driscoll and J. I. Karlin, "Quad-plane Design for

Autonomous Cargo Delivery," Worcester Polytechnic Institute, Worcester, MA, 2020.

[11] M. P. Umbricht, C. W. Blomquist, R. J. Bellitto and K. T. Blackstock, "A High Performance

Aircraft for the 2020 WPI UAV Competition," Worcester Polytechnic Institute, Worcester,

MA, 2020.

[12] N. Hesel, A. Agarwal, M. Runquist and A. Calcagni, "Low-Cost Quadrotor Micro-Aerial

Vehicle," Worcester Polytechnic Institute, Worcester, MA, 2022.

[13] H. Alzu’bi, I. Mansour and O. Rawashdeh, "Loon Copter: Implementation of a Hybrid

Unmanned Aquatic-Aerial," Electrical and Computer Engineering Department, Oakland

University, Rochester, 2018.

[14] D. B. Larter, "Video: Drone flies and swims, grabs the Navy's attention," Navy Times, 10

January 2016. [Online]. Available: https://www.navytimes.com/news/your-

navy/2016/01/10/video-drone-flies-and-swims-grabs-the-navy-s-attention/. [Accessed 16

October 2022].

77

[15] Nortek, "Nortek Wiki," Nortek, [Online]. Available:

https://www.nortekgroup.com/knowledge-center/wiki/new-to-subsea-navigation. [Accessed

1 October 2022].

[16] A. Bachrach, A. de Winter, R. He, G. Hemann, S. Prentice and N. Roy, "RANGE - robust

autonomous navigation in GPS-denied environments," MIT: Insitute of Electrical and

Electronics Engineers, Camberage, Massichusets, 2010.

[17] R. Olfati-Saber, "Distributed Kalman Filterting for Sensor Networks," 46th IEEE

Conference on Decision and Control, no. 0191-2216, 2007.

[18] N. Rehm, "dRehmFlight VTOL Flight Controller," Jan 2020. [Online]. Available:

https://github/nickrehm/dRehmFlight. [Accessed 2022].

[19] "A02YYUW Waterproof Ultrasonic Sensor," DFROBOT, 2020. [Online]. Available:

https://www.dfrobot.com/product-1935.html. [Accessed 2022].

[20] "Bar30 High-Resolution 300m Depth/Preasure Sensor," BlueRobotics, 2022. [Online].

Available: https://bluerobotics.com/store/sensors-sonars-cameras/sensors/bar30-sensor-r1/.

[Accessed 2022].

[21] "Intel RealSense Tracking Camera T265," Intel, 2016. [Online]. Available:

https://www.intelrealsense.com/tracking-camera-t265/. [Accessed 2022].

[22] S. O. H. Madgwick, "An efficicent orientation filter for inertial and inertial/magnetic sensor

arrays," Univercity of Washington, Seattle, 2010.

[23] M. M. Maia, P. Soni and F. J. Diez-Garias, "Demonstration of an Aerial and Submersible

Vehicle Capable of Flight and Underwater Navigation with Seamless Air-Water Transition,"

Rutgers Univercity, New Brunswick.

[24] J. Jiang, J. Qi, D. Song and J. Han, "Control platform and design and expirament of a

quadrotor," Proceedings of the 32nd Chinese Control Conference, 2013.

[25] J. Busquets, J. V. Busquets, D. Tudela, F. Perez, J. Busquets-Carbonell, A. Barbera, C.

Rodriguez, A. J. Garcia and J. Gilabert, "Low-cost AUV based on Arduino open sources

mircocontroller board for oceanographic research applications in a collaborative long term

deployment missions and suitable for combining with an USV as autonomous automatic

recharging platform," IEEE, Valencia, 2012.

78

Appendices

Appendix A: Flight Code

The flight code developed for this project is available online at https://github.com/Michael-

Beskid/Amphibious-AUV. The published release titled “Amphibious-AUV_v1.0” includes the

final version used in the demonstration of the vehicle. For future work, it is recommended to fork

this repository to continue development and add additional classes and features to support different

missions while taking advantage of this existing framework created by our team.

https://github.com/Michael-Beskid/Amphibious-AUV
https://github.com/Michael-Beskid/Amphibious-AUV

	Abstract
	Acknowledgements
	Table of Authorship
	Table of Figures
	1 Introduction
	1.1 Overview
	1.2 Project Objectives
	1.3 Design Requirements, Constraints, and Considerations
	1.4 Project Management and Team Organization
	1.5 Societal Impacts

	2 Background
	2.1 Brief History
	2.2 Literature Review
	2.2.1 Past MQP work at WPI
	2.2.2 Related Research on Amphibious AUVs

	2.3 Quadrotor Flight Mechanics
	2.4 Equations of Motion
	2.4.1 Aerial Dynamics
	2.4.2 Underwater Dynamics

	2.5 Autonomy and Localization

	3 Technical Sections
	3.1 Quadrotor Flight Controllers
	3.1.1 Commercially Available Flight Controllers
	3.1.2 Custom Flight Controllers
	3.1.3 dRehmFlight VTOL

	3.2 Electronics
	3.2.1 Power Subsystem
	3.2.2 Propulsion Subsystem
	3.2.3 Sensing and Localization Subsystem
	3.2.4 Ballast System Electronics

	3.3 State Estimation
	3.3.1 Onboard Sensors
	3.3.1.1 IMU
	3.3.1.2 Altitude Sensor
	3.3.1.3 Depth Sensor
	3.3.1.4 Tracking Camera
	3.3.1.4.1 Camera Selection
	3.3.1.4.2 Companion Computer Selection
	3.3.1.4.3 Integration within the System

	3.3.2 Madgwick Filter

	3.4 Control Architecture
	3.4.1 Control System Overview
	3.4.2 Electronic Speed Controllers
	3.4.3 PID Control
	3.4.4 Stabilization and Attitude Control
	3.4.5 Altitude and Position Controllers

	3.5 Flight Control Software
	3.5.1 Overview and Development Environment
	3.5.2 Flight Computer Architecture
	3.5.3 State Machine

	3.6 Test Quadrotor Vehicle
	3.6.1 Test Vehicle Construction
	3.6.2 Preliminary Calibration and Ground Testing
	3.6.3 Flight Testing

	3.7 Quadrotor Body Design
	3.7.1 Material Selection
	3.7.2 Enclosure
	3.7.2.1 Enclosure Version 1
	3.7.2.2 Enclosure Version 2

	3.8 Ballast System
	3.8.1 Hydrostatic Analysis
	3.8.2 Ballast Version 1
	3.8.3 Ballast Version 2
	3.8.4 Ballast Version 3

	4 Results
	4.1 Summary
	4.2 Conclusions
	4.3 Recommendations for Future Work
	4.4 Broader Impact

	5 References
	Appendices
	Appendix A: Flight Code

