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Abstract

Caching is a widely used technique to improve the scalability of distributed systems. A

central issue with caching is maintaining object replicas consistent with their master copies.

Large distributed systems, such as the Web, typically deploy heuristic-based consistency

mechanisms, which increase delay and place extra load on the servers, while not providing

guarantees that cached copies served to clients are up-to-date. Server-driven invalidation

has been proposed as an approach to strong cache consistency, but it requires servers to

keep track of which objects are cached by which clients.

We propose an alternative approach to strong cache consistency, called MONARCH,

which does not require servers to maintain per-client state. Our approach builds on a few

key observations. Large and popular sites, which attract the majority of the traffic, con-

struct their pages from distinct components with various characteristics. Components may

have different content types, change characteristics, and semantics. These components are

merged together to produce a monolithic page, and the information about their uniqueness

is lost. In our view, pages should serve as containers holding distinct objects with hete-

rogeneous type and change characteristics while preserving the boundaries between these

objects. Servers compile object characteristics and information about relationships between

containers and embedded objects into explicit object management commands. Servers pig-

gyback these commands onto existing request/response traffic so that client caches can use

these commands to make object management decisions.

The use of explicit content control commands is a deterministic, rather than heuristic,
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object management mechanism that gives content providers more control over their content.

The deterministic object management with strong cache consistency offered by MONARCH

allows content providers to make more of their content cacheable. Furthermore, MONARCH

enables content providers to expose internal structure of their pages to clients.

We evaluated MONARCH using simulations with content collected from real Web sites.

The results show that MONARCH provides strong cache consistency for all objects, even for

unpredictably changing ones, and incurs smaller byte and message overhead than heuristic

policies. The results also show that as the request arrival rate or the number of clients

increases, the amount of server state maintained by MONARCH remains the same while

the amount of server state incurred by server invalidation mechanisms grows.
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Chapter 1

Introduction

The field of computer science is incredibly diverse, even though it is young compared to

such fundamental sciences as mathematics and physics, and there is a myriad of exciting

directions to explore. In this chapter, we discuss why the direction chosen for this disserta-

tion is interesting and important and provide an introduction to the rest of the dissertation.

We begin by discussing some of the early distributed systems and then discuss the Web,

one of the largest known distributed systems. We use the Web in this dissertation as a

motivation and a testbed.

1.1 Why Large Distributed Systems?

Ever since the first computer was invented, attempts were made to make it possible for

stand-alone machines to exchange information and cooperate. Networked computers provide

a more powerful environment than individual workstations. Over the years, various Local

Area Network (LAN) and Wide Area Network (WAN) technologies have been developed and

deployed to provide an infrastructure for higher level services. A number of such services

or distributed systems were developed at research organizations and corporations to allow

information exchange and collaboration within and outside organizations. Some of these

systems are well-known and used today, others served as testbeds for early ideas and made
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invaluable contributions to the field of distributed systems and computer science in general.

Distributed systems erase physical boundaries, shrink distances, and compress time.

Distributed systems vary in their purpose, design, and scale, among other characteristics.

For example, the Network File System (NFS) [79], developed by Sun Microsystems, was

designed to allow transparent access to files residing on numerous servers on the same LAN.

Multiple users can access and modify files as if they had dedicated access to each file. The

Andrew File System (AFS or Andrew) [39], developed at Carnegie Mellon University, was

an attempt to build a distributed file system that is much more scalable than NFS. Systems

like Alex [14], Archie [30], Gopher [74] and Wide Area Information Servers (WAIS) [43, 58]

were developed to provide indexing of, and easy read-only access to, information located on

remote sites.

All distributed systems have certain issues in common, such as performance, scalability,

and fault-tolerance. Larger size is commonly known to exacerbate these issues. A system

consisting of two cooperating nodes and supporting five users has different scalability and

performance concerns than a system with thousands of nodes and tens of thousands of users.

Algorithms and data structures applicable in the former case might not work in the latter

case. Quoting developers of AFS [39]: “large scale affects a distributed system in two ways:

it degrades performance, and it complicates administration and day-to-day operation.”

AFS itself was built with scalability in mind. Authors of [39], trying to emphasize the

large expected scale of the system, gave a size of 5,000 to 10,000 nodes. This certainly is

not small for a local area network, especially in 1988, when the paper was written. The

situation has changed since the Internet and the World Wide Web (WWW or the Web),

became so widespread.

Who could have imagined that a research project to facilitate data exchange between

scientists would become one of the most talked about phenomena of our time? The Internet,

and especially its Web component, has rapidly grown from just a few experimental nodes

to one of the largest distributed systems in the world. It took only four years for the
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Web to attract 50 million users. In comparison, radio, personal computer and television

required 38, 16, and 13 years respectively [86]. The Web has made a huge impact on the

way people live, work, collaborate, and learn. We have almost doubled our vocabulary by

prepending words with “i” or “e-” or appending them with “.com”. As a Microsoft ad puts

it “e-business, e-people, e-economy, e-planet, e-etc...” [69]. Often it is more convenient to

find and buy goods on-line than in stores; close to nine million households in the US alone

were expected to do holiday shopping on the Web [85]. Even routine daily chores, such as

grocery shopping and paying bills, can be performed on-line [82, 88, 8].

This is only the tip of the iceberg. The Web is clearly a fertile soil for developing new

applications. Numerous Internet startups, fueled by venture capital, as well as older and

well-established companies, are poised to wire everything and make the Internet and the

Web truly ubiquitous. From bathrooms and refrigerators to door locks and lawn sprinklers,

every conceivable device will be “talking” to other devices on the Web [53]. This type of

scale is orders of magnitude larger than that of any existing distributed system. The 32-bit

address space of the Internet Protocol (IP) version 4 is rapidly becoming scarce and efforts

are underway to introduce IP version 6 with 128-bit addressing. There is a joke that 128

bits would be enough to assign a unique IP address to every insect on Earth. Yes, the

anticipated scale is that large.

Being such an enormous distributed system, the Web not only creates new opportu-

nities, but also poses an abundance of interesting and unique research challenges. Even

researchers from fields other than distributed systems and networks apply their ideas to

this new problem space. We also consider this a great opportunity to contribute to the

community.
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1.2 How is the Web Different from Other Distributed

Systems?

Sheer size, exponential growth, and client access patterns [36] make the Web fundamentally

more complex than other distributed systems. However, there are other aspects distingui-

shing the Web from other distributed systems.

Early works on distributed systems talk about files that change rarely and are stored

on disks. For example, systems such as Alex [14] and Archie [30] provide access to mostly

static data, such as software distributions and source code archives, stored on FTP sites.

As Cate, the designer of Alex [14], pointed out: “. . . data stored on FTP sites . . . change(s)

much less often than do normal files.” Cate also noted that users of such systems can often

tolerate out of date, or stale, data. On the early Web most pages were also relatively static

and stored in files.

The Web has evolved significantly since its inception. It offers access to objects or re-

sources distributed throughout the network and either stored in files or computed upon

request. Unlike early Internet discovery systems [74], the Web supports not only hypertext

but also multiple media formats, including raster and vector graphics, audio, and video.

As the Web became more popular, Web pages became more sophisticated, rich in content

and presentation, and updated frequently. Today, many Web pages are no longer files that

servers simply store to and read from disks. Servers invoke programs or scripts, typically

via Common Gateway Interface (CGI) or one of the many templating mechanisms, such as

PHP [75] and Mason [59], and construct pages from multiple components, often with per-

sonalization features. Servers may store constituent page components in files or databases,

or compute them upon client requests. The Web stopped being simply a medium for ex-

change of scientific information. It turned into a new and powerful medium to do business,

attract customers, advertise, and sell goods and services. Individuals and businesses rely

on the Web for everyday tasks and expect timely delivery of up-to-date information.
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Since the inception of the Web, researchers have concerned themselves with its scalability

and performance problems. How would a system scale to thousands or millions of nodes?

How would Web and non-Web traffic affect each other on the Internet? How would the end-

user response time be affected? Naturally, lessons and various techniques from previous

distributed systems research were brought over and adapted to the new domain of the

WWW.

1.3 Scaling Distributed Systems

One widely used technique to improve scalability and performance of computing systems is

caching . Caching is a technique of keeping copies of data closer to the consumer(s) of that

data. Caching is usually done on behalf of the requester, and the source of the data has

little control over how the data is stored in the cache or managed by the cache, though it

tries to influence it.

Many components of stand-alone systems use caching to improve performance: pro-

cessors have built-in caches, hard drive controllers have internal buffers to cache data,

and operating systems have the ability to cache data and information describing the data.

Information describing data is called metadata or meta information. In distributed sys-

tems, caching plays an even more important role because, by their nature, distributed

systems require data transfers over longer physical distances than in stand-alone systems.

Caching saves network bandwidth, decreases end-user latency, and provides a degree of

fault-tolerance and better scalability. However, in distributed systems caching must deal

with additional complexities of communication, such as network and host failures.

Many well-known distributed systems use caching. NFS caches file data, results of

directory lookups, and entire directories and file system information. AFS caches entire files,

contents of directories, and symbolic links on every workstation, and maintains two separate

caches: one for data, in main memory, the other for status information, on disks [39].

According to Howard et al. [39], caching is the key to Andrew’s ability to scale well. Alex [14]
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caches different types of information locally: copies of remote files and remote directory

information, open FTP connections to avoid the cost of setting up new connections, failures

of certain type, such as Domain Name System (DNS) lookup failures, etc. DNS is a core

component of the Internet, caching name-to-address resolutions at multiple levels within its

hierarchy [61, 62].

An alternative to caching, deployed primarily in large distributed systems, is replication,

where origin servers copy data to multiple locations, or mirror it, and clients can either

explicitly pick one of the mirror sites or be directed there transparently by the underlying

network infrastructure [47]. The owner of the data has complete control over the repli-

cation process: when replication occurs, to which locations, when, and how updates are

propagated, etc. Replication is typically used to bring rarely changing information closer

to users located far away geographically from the source. For example, distributions of

popular software packages, such as the Mozilla Web browser [68], are mirrored on multiple

FTP or Web servers around the world.

Both caching and replication have been deployed on the Web to deal with its exponential

growth. In his talk titled “How to kill the Internet” Van Jacobson said: “With 25 years

of Internet experience, we have learned exactly one way to deal with exponential growth:

Caching” [42]. On the Web, caching can take place at multiple locations. Web client soft-

ware, such as Web browsers, cache pages and objects embedded in them in main memory

and on disks on the end-user workstations. Internet Service Providers (ISPs) and orga-

nizations can install proxy servers [57, 34], also called forward proxy servers—programs

that access remote sites on behalf of a set of users, convert user requests and server re-

sponses between various protocols, and optionally cache retrieved objects. Proxy servers

that cache objects are called caching proxy servers. Caching proxy servers can serve cached

objects without contacting remote sites, thus offloading work from remote servers, saving

bandwidth on outgoing links, and improving end-user response time. Early installations of

proxy servers ran on machines, called firewalls, separating an organization’s secure internal
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network from the rest of the Internet, as shown in Figure 1.1. Users on the internal network

access various external services via the Hypertext Transfer Protocol (HTTP) [6, 31], and

the proxy server converts between HTTP and other protocols and caches data. The shading

on the picture represents small amounts of Web objects cached on the user’s workstations,

and larger amounts cached on the proxy.

clients

caching proxy server

machine
on a firewall

remote services

HTTP,FTP,Gopher

WAIS,NNTP

secure internal network

Figure 1.1: Simple Caching Scheme on the World Wide Web

Proxy servers serving multiple ISPs and organizations can access the rest of the Internet

via a higher-level proxy server, to further improve scalability. Such a hierarchy can grow

larger, and up to four levels have been proposed [78], not counting the browser cache:

bottom, institutional, regional, and national levels. When a request cannot be satisfied

by lower-level caches, it is forwarded to a higher-level cache. While forward proxy servers

cache data on behalf of a set of clients, Web sites can deploy reverse proxy servers—

programs (often hardware appliances, combining hardware and software) that reduce load

on Web servers by serving part of the site’s content. Reverse proxy servers typically cache

and serve rarely changing objects, such as images. In addition to deploying reverse proxy

servers, many large Web sites, in an attempt to further reduce end-user latency and the

load on their Web servers, voluntarily replicate static objects to servers located at ISPs, at

points where users connect to the Internet. A collection of such servers is called a Content

Distribution Network (CDN). One of the largest CDNs is operated by Akamai [2].

Forward proxy servers, reverse proxy servers, and CDN servers are examples of Web

intermediaries—programs and devices that handle end-user requests and server responses.

These intermediaries, as well as Web browsers and servers, deploy many open and pro-
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prietary protocols, including DNS [11], Cache Digests [55, 37], CARP [84], HTTP [31],

ICP [92, 91, 90], PAC [71], WPAD [33], and WCCP [19]. The diversity of various Web

caching products, redirection devices, content distribution technologies, and the protocols

they use, introduces new variables and complicates the Web infrastructure and the way

objects are managed on the Web. It is evident that the current WWW caching and repli-

cation landscape is no longer the way it looked in 1994. Object management on the Web

remains an important research topic. New technologies and protocols, such as WCIP [54]

and WCDP [83], are being developed. Existing problems with caching and replication often

get worse, and new ones surface.

We presented a brief overview of the Web caching and replication infrastructure and

the complexities involved. Precise and complete definitions for the terms used in this

section, as well as the description of various components and protocols related to Web

caching and replication, are given in the Internet Web Replication and Caching Taxonomy

(WREC) [23]—Internet Draft of the WREC working group of the IETF. Krishnamurthy

and Rexford [47] provide an in-depth description of the history and evolution of the Web

and various Web components, protocols, and technologies. Rabinovich and Spatscheck [77]

provide a good treatment of Web caching and replication, as well as Web protocols.

1.4 The Thesis

We have discussed the effect that size has on the scalability of distributed systems and

provided and overview of approaches addressing the scalability of distributed systems and

the Web. To set the stage for the upcoming chapters, we now provide a brief description of

the problem this dissertation addresses and outline our approach to that problem.

Managing distributed objects would be easy if they never changed. However, objects do

change, often frequently and unpredictably, and require a mechanism to ensure that multiple

copies of each object distributed throughout the network are synchronized with the master

copy of that object. Mechanisms under which neither servers nor caches rely on heuristics
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and it is a priori known how each object will be managed are called deterministic. Currently

adopted time-based cache consistency mechanisms are heuristic in nature and thus result in

non-deterministic management of objects. Server-driven invalidation mechanisms for strong

cache consistency have been proposed, but they require servers to maintain per-client state

and thus do not scale well. Server-driven invalidation has other issues as well, such as

propagating invalidations to unreachable clients and delaying object updates.

While much research has already been done on managing distributed objects, we hy-

pothesize that it is possible to devise a mechanism for deterministic object management

that provides strong cache consistency and is more efficient than currently deployed and

proposed mechanisms. In this dissertation, we investigate existing and proposed object

management mechanisms and characteristics of distributed objects in order to better un-

derstand the issues involved and to devise a mechanism addressing these issues.

We propose a combination of techniques to manage objects deterministically in a large

distributed system and use the Web as a motivation and a testbed for our work. First of

all, we recognize that many popular pages are composed from a number of heterogeneous

objects where the boundaries between these objects are not made visible to the outside

world, resulting in monolithic pages. We propose to exploit the possibilities resulting from

preserving object identities within pages. Second, we classify objects based on their change

characteristics and deploy different management mechanisms based on the category to which

an object belongs. Third, we recognize that objects are not stand-alone entities: they

are tied together by relationships, such as a containment relationship or dependence on

the same underlying database. Knowledge about these relationships can be effectively

used to support deterministic management of objects. And last, we bring in the known

technique of piggybacking as an effective means of communicating information between

clients and servers. These techniques lead to deterministic object management and improved

performance for clients and servers.

The deterministic object management with strong cache consistency offered by our ap-
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proach allows content providers to make more of their content cacheable. Furthermore, our

approach enables content providers to expose internal structure of their pages to clients.

To evaluate our approach and compare it to the existing approaches we use a novel

methodology that allows us to study a wide range of cache consistency policies over a

range of access patterns. The essence of our methodology is to actively gather snapshots

of selected content from sites of interest and then use that content as input to a simulator.

Traditional methodologies rely on server and proxy logs which do not contain the complete

request stream to a particular site and provide no indication of when resources change. Logs

from popular server sites are not generally available to the research community. Neither

server nor proxy logs contain HTTP cache directives, making it impossible to evaluate the

effectiveness of the cache consistency policy reflecting current practice. Our methodology

is a step towards filling these gaps and obtaining data for any site of interest that is not

otherwise available for study.

The results of our evaluation show that our approach provides strong cache consistency

for all objects, even for unpredictably changing ones, and incurs smaller byte and message

overhead than heuristic policies. The results also show that as the request arrival rate or the

number of clients increases, the amount of server state maintained by our approach remains

the same while the amount of server state incurred by server invalidation mechanisms grows.

The deterministic object management mechanism we designed and the novel methodo-

logy for evaluating cache consistency policies we developed are two important contributions

made by this dissertation. Our evaluation methodology will remain useful as sites are un-

likely to start providing server logs and records of object modification events to researchers.

The issue of maintaining cache consistency in distributed systems is important today and

will remain important, especially for systems that span large distances and attract large

number of clients. While not all applications require strong consistency, some, such as

Web-based business-to-business and business-to-consumer applications, on-line games, and

distributed simulations depend on it. Our approach to cache consistency is applicable to
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any set of related objects in a distributed system, not just to the Web, and can be used to

improve many distributed applications.

1.5 Roadmap

The rest of the dissertation consists of six chapters, as follows:

• Related Work: Chapter 2 presents prior work that is most relevant to the focus of

the dissertation: cache consistency issues and efficiency of object management. We

summarize techniques for grouping objects into “volumes”, as some of the cache consis-

tency approaches that we discuss use volumes. We discuss validation-based approaches

to cache consistency and the tradeoff between consistency guarantees and amount of

validation traffic. We discuss invalidation-based cache consistency approaches and the

tradeoff between server state and validation requests. We also discuss combinations of

validation- and invalidation-based approaches and techniques that use existing traffic

between servers and caches to exchange invalidation information.

• Background Studies: Chapter 3 describes a series of background studies that we

performed over the course of four years while working on this dissertation. We carried

out these studies to investigate aspects of the Web that this dissertation builds on and

to evaluate the potential of the techniques that we outlined above. We repeated some

of the earlier work on more recent data, to see whether the earlier findings are still

true, and also investigated aspects of the Web not studied in previous work. As part of

these studies, we developed and used a novel methodology for studying Web resources

and understanding how they change. We studied the following issues: frequency with

which Web resources change and how images and other embedded resources change

relative to their container HTML resources; whether relationships between embedded

and container objects are stable over time; the nature (predictability, locality, and

extent) of changes to HTML pages; potential for elimination of validation requests if
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relationships between objects are exploited and potential for content reuse if pages

are constructed from components.

• Problem Statement and Approach to Deterministic Object Management:

Based on the tradeoffs of the existing approaches to cache consistency and improved

understanding of Web resources described in the previous two chapters, in Chap-

ter 4 we define the problem this dissertation addresses and present our approach to

that problem. We discuss how objects change and present our classification of ob-

ject change characteristics. We then discuss various types of relationships between

objects and how these relationships can assist in object management. We present our

approach, called MONARCH (Management of Objects in a Network using Assembly,

Relationships and Change cHaracteristics), which combines object relationships with

object change characteristics to ensure strong cache consistency.

• Prototype Design and Implementation: Chapter 5 presents implementation de-

tails of the MONARCH prototype system. We describe content organization at a

Web site and design and implementation of the MONARCH Content Management

System. We also describe MONARCH Web and Proxy Servers, followed by the de-

scription of content assembly mechanism present in both servers. We then present

a detailed example of a real Web page and show how that page is handled by the

prototype system.

• Evaluation of MONARCH: Chapter 6 presents the evaluation of MONARCH. We

first describe a novel methodology that we developed for evaluating a wide range of

cache consistency policies over a range of access patterns. We then use that methodo-

logy to evaluate the performance of MONARCH and compare it to the performance of

existing and proposed cache consistency policies, including a policy modeling the be-

havior of modern caching proxy servers. We also use results from a prior study done by

others to estimate the impact of various cache consistency policies on user-perceived
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response time.

• Conclusions and Future Work: Chapter 7 summarizes the major contributions

of this dissertation and presents ideas for future work. Our contributions include:

methodologies devised as part of background studies and MONARCH evaluation;

findings of the background studies; our taxonomy of object change characteristics;

the important combinations of object relationships with object change characteristics

that we identified; the MONARCH approach to strong cache consistency, which is

more efficient than existing approaches; and the prototype system implementing MO-

NARCH. We intend to investigate various extensions to the basic content assembly

mechanism, such as selective assembly and assembly of customized content. We also

plan to look into various deployment issues, ways of combining MONARCH with the

existing templating mechanisms for building dynamic Web sites, and also ways to

enable Web clients to support MONARCH. Another big area of future research is

applying ideas of this dissertation to non-HTML objects, such as objects present in

distributed computer games.

The following seven chapters comprehensively summarize existing research in cache con-

sistency, caching of frequently changing objects, and our contributions to these fields.
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Chapter 2

Related Work

There has been a significant amount of research, both in academia and industry, related to

various aspects of the Web and Web caching in particular. A number of scientific conferences

annually publish papers on Web caching and a number of companies develop and market

Web caching and content distribution products and services. Instead of covering the entire

body of work on various aspects of caching, we concentrate on research that is most relevant

to this dissertation, namely cache consistency and caching of frequently changing objects.

A good, but not exhaustive, and by now dated, survey of these and other aspects of Web

caching was produced by Wang [87]. A much more extensive, in-depth treatment of various

Web aspects, including history of the Web and Web protocols can be found in a book

by Krishnamurthy and Rexford [47]. A good treatment of cache consistency issues and

approaches to caching frequently changing pages can also be found in a book by Rabinovich

and Spatscheck [77].

2.1 Cache Consistency

As objects are requested by clients or distributed by servers, copies of objects are stored at

locations other than where they originated. Cached copies are called fresh as long as they

remain identical to their respective master copies at the origin servers. When objects are
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updated at their origin location, their copies distributed throughout the network become

stale and need to be updated. The problem of synchronizing object copies distributed in the

network with the master copy at the origin server is called the cache consistency problem.

Failure to perform such synchronization, resulting in clients receiving stale object copies, is

called consistency failure.

It should be noted that two different terms have been used in the research literature to

refer to this problem. A number of papers use the term consistency [56, 98, 100, 101, 99,

28, 72, 83, 76, 25], and a number of other papers use the term coherency [48, 49, 9, 10, 7].

In this dissertation we use the term consistency , except in the context of describing other

work.

The reason two terms are used in the research literature is to differentiate between

two separate problems: 1) the problem of synchronizing cached copies of an object with

the master copy and 2) the problem of ensuring mutual consistency within a set of cached

objects. Bradley and Bestavros referred to the former problem as the problem of maintaining

coherency , and called the latter problem the problem of maintaining consistency [9, 10]. At

least one paper uses the term consistency to refer to both problems [83].

Approaches to cache consistency differ in the consistency guarantees they provide and

in the amount of overhead they incur. Approaches that guarantee clients would obtain the

same object from the origin server as they received from the cache are said to provide strong

cache consistency. Approaches that allow caches to serve out-of-date objects to clients are

said to provide weak consistency. The overhead is measured in the number of requests and

bytes exchanged by caches and servers and by the amount of state that caches and servers

maintain.

All approaches to cache consistency can be classified based on how caches learn about ob-

ject updates. One set of approaches is known as validation-based because these approaches

require caches to periodically validate cached copies of objects against master copies at

origin servers. These approaches are also known as client polling and pull approaches.
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Another set of approaches are called invalidation-based approaches because they require

servers to notify caches when objects change at the servers. These notifications are called

invalidations. The terms callback and push are also used to describe server invalidation.

Approaches that combine client polling and server invalidation have also been proposed.

Caches and servers can use existing traffic between them to exchange additional informa-

tion that is not otherwise part of the request and response messages. Adding additional

information to existing messages is called piggybacking . Caches can piggyback validation

requests for multiple objects onto messages they send to servers, and servers can piggyback

invalidations for multiple objects onto their responses to caches. Servers can also group a

set of (related) objects together and refer to the entire set as a volume. For example, a

server can invalidate all objects in a volume with a single message.

2.1.1 Volumes

A number of cache consistency approaches discussed in this chapter group objects at a site

into volumes. There are different ways to construct volumes. Krishnamurthy and Wills,

in their work on piggyback server invalidation (PSI) [49], proposed grouping all resources

at a site into a single volume and proposed grouping resources into volumes based on the

first level prefix of the path name. The first possibility might result in a large number of

piggybacked invalidations in cases where many resources at a site change often. The second

option provides smaller volumes, but it also groups many unrelated resources together.

Cohen et al. [21] further explored volume construction at a server and introduced four

metrics used for evaluation of volume construction techniques:

1. Recall—fraction of client requests to the proxy that benefit from server volume re-

ceived by the proxy within the last T seconds.

2. Precision—fraction of hints in a server volume that accurately predict a client request

arriving within the next T seconds.
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3. Update Fraction—fraction of client requests to the proxy accessing a resource that was

already requested from that proxy before, subsequently predicted by a server volume

and updated by the proxy.

4. Hint Size—size of the hints that the server sends to the proxy. The smaller the hint

size—the better.

These metrics represent competing trade-offs. Cohen et al. showed that the problem of

optimizing them is NP-complete [22] and proposed and evaluated a number of heuristics

and algorithms for volume construction [21, 22]. Krishnamurthy and Rexford summarize

these studies and findings in their recent book [47]. In their studies, Cohen et al. conside-

red grouping resources with the same directory prefix in the URLs, up to some number of

levels (0, 1, 2), into a single volume. They used a heuristic that resources in the directory

are likely to have related content or occur as embedded hyperlinks in related Web pages.

The second technique investigated in [21] is probabilistic grouping of related resources into

volumes. The idea is for the server to observe a stream of requests and estimate the pair-

wise dependences between resources thus predicting which ones are likely to be accessed

together. These related resources are grouped into a single volume. Directory-based vo-

lumes can get excessively large and carry irrelevant information. Probabilistic volumes can

be quite accurate but require additional computational overhead at the server. As an aid

in reducing computational complexity the probabilistic volume construction technique can

perform pairwise comparisons for resources with the same directory prefix. Cohen et al. [21]

investigated further reduction in volume sizes, called thinning , by applying proxy filters,

supplied by proxy servers. Proxy filters instruct origin servers to not piggyback certain,

perhaps recently seen, volume elements, effectively thinning volumes. Focusing on most

popular resources at a site and eliminating dependencies between pairs of resources that

rarely occur together was investigated in [22]. The same work also studied greedy algo-

rithms and suggested sampling logs prior to volume construction to reduce computational

complexity. Performance evaluation of the proposed algorithms showed that all of them
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can achieve high recall and high update fraction. Directory-based volumes, however, of-

fer low precision and result in large hint sizes. On the other hand, a two-pass algorithm

that removes ineffective hints was able to offer 60-80% recall and 80-88% precision for time

intervals from one to five minutes, while keeping hint size to 2-10 hints per message.

2.1.2 Validation-Based Approaches

The HTTP protocol [31] provides two validators that caches can use to validate cached

objects with the server. One validator is the timestamp indicating when the object was last

modified. Servers use the Last-Modified response header to provide caches with such a

validator. The other validator is opaque and is called an entity tag. Servers use the ETag

response header to associate an entity tag with an object. To validate a cached object

whose Last-Modified value is known, a cache sends an HTTP GET request to the server

and supplies the Last-Modified value via the If-Modified-Since request header. Such

requests are known as conditional . The server replies with the HTTP response code 200 OK

and the new version of the object if the object was updated. If the object is up to date, the

server replies with the HTTP response code 304 Not Modified.

Validation-based approaches differ in how they determine the length of time, called

Time-To-Live (TTL), during which they treat cached objects as fresh, before validating

them with the server. These approaches use different TTL values to balance the tradeoff

between consistency guarantees and the number of validation requests, as shown in Fi-

gure 2.1. Shorter TTLs reduce consistency failures but result in more validation requests,

some of which are unnecessary, placing additional load on the network and origin servers.

Studies by Krishnamurthy and Wills [49], Nahum [70], and Arlitt and Jin [4] showed that

15-18%, 30%, and 37% respectively of all requests received by servers resulted in responses

with the HTTP response code 304 Not Modified, indicating to caches that cached object

copies are up-to-date.

Validating objects reactively, while clients are waiting for them, results in higher client-
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Figure 2.1: Performance Characterization of Validation-Based Object Management Policies

perceived latency than if validations are performed proactively, ahead of client requests,

negating the latency reduction offered by caching in the first place. Dilley showed that

revalidations increase the average latency by 1.0–5.7 times and the median latency by 5.5–

9.2 times for an individual object [24]. Krishnamurthy and Wills found that client-perceived

per-page latency increases due to cache validations by 2.6–5.1 times depending on the

network distance between the cache and the server and on the HTTP protocol option

used [50]. Krishnamurthy et al. [51] also reported that reducing the quality of embedded

objects does not significantly improve client-perceived latency, suggesting that revalidation

of embedded objects, particularly smaller ones, is not significantly better latency-wise than

fetching these objects anew.

We now discuss specific validation-based approaches, starting with the approaches that

validate cached objects only upon client requests.

Always Validate, Never Validate, and Fixed Time-To-Live

Validating cached objects upon each client request is called the polling every time or Always

Validate approach. This approach provides strong cache consistency and offers byte savings,
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especially for large objects that rarely change, but makes clients wait for objects to be

validated and places the same load on servers request-wise as without caching. If caches

cannot validate cached objects due to network or server failure, they can either respond

with an error message or a warning that the returned data is potentially stale. Caches can

also cache objects once and never validate them, minimizing the network traffic and load on

the origin servers, but providing weak consistency. This approach is called Never Validate.

Modern Web browsers, such as Netscape, can be configured to validate locally cached

Web objects using either of the two extreme approaches. One could view Always Validate

and Never Validate as approaches that assign cached objects Time-To-Live (TTL) values

of zero and infinity respectively and validate objects after TTLs expire. Caches can also

pick a value for the TTL from the range between the two extremes, reducing the number of

validations as compared to Always Validate and providing stronger consistency than Never

Validate. Such a middle ground approach is called fixed TTL.

Server-Assigned Expiration

Web servers can explicitly assign TTL values to objects whose update patterns are well-

known. The HTTP protocol supports TTLs via Expires and Cache-Control: max-age

directives [31]. In practice, many objects change unpredictably making the assignment of

accurate TTLs difficult. An object might remain unchanged for a long period of time,

and then undergo multiple changes within a short period of time. Mogul found that the

majority of objects do not carry server-assigned expiration times [63]. Our own observations

support these findings [95]. We also found that even when servers do provide expiration

times, the values they set may be short or negative (in the past) for objects that do not

change [95]. Content providers often misuse this header, either deliberately or due to a lack

of understanding. Instead of instructing caches for how long objects remain fresh, they tell

caches not to cache their objects.



2.1. CACHE CONSISTENCY 21

Adaptive TTL

Servers may not know when the next update to an object will take place, but they do

know when the previous update occurred and can supply that information to caches via

Last-Modified response header. Cate [14] observed that file lifetime distribution is bi-

modal, i.e. younger files are likely to be modified sooner than older files, and should be

considered fresh for a shorter period of time. This heuristic is the basis for the heuristic or

adaptive TTL approach which takes a configurable percentage of object’s age as the TTL

value for that object. The approach is also referred to as the Alex protocol because it was

first used in the Alex file system [14].

Caches compute the age of the object by subtracting the value of the server-supplied

Last-Modified header from the time of the object’s placement in the cache. Cache admi-

nistrators can configure caches to apply different percentage values, such as 5% or 10%, to

the age of cached objects, balancing object staleness and amount of traffic to servers. Most,

if not all, modern caches, such as Squid [89], support the adaptive TTL mechanism.

Due to its heuristic nature, the adaptive TTL mechanism provides weak cache consis-

tency and generates many unnecessary validation requests to servers—up to a third of all

requests received by servers as was shown earlier—for objects that have not been updated.

Its performance is characterized by the intermediate points in Figure 2.1, between the two

extreme policies. In an attempt to retain control over their content, servers often mark

objects, even infrequently changing ones, as uncacheable to preclude caches from using the

heuristic TTL mechanism on these objects.

Many Web sites today build their pages upon client requests, using Common Gateway

Interface or numerous templating mechanisms, such as PHP [75] and Mason [59]. Unless

application programmers specifically instrument their code to compute last modification

time for such pages and add it to server responses, the server cannot determine when the

page was last modified and omits the Last-Modified header from its responses. Research

studies confirm that many server responses do not carry Last-Modified information and
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also show that when present such information may be incorrect. For example, studies by

Douglis et al. [26], Krishnamurthy and Wills [49], and Kroeger et al. [52] found that only

50-80% of server responses contain Last-Modified headers. Our own study [95] found

that Last-Modified information is generally available (in 82% to 86% of cases, considering

HTML pages and images embedded in them) and generally corresponds to whether the

resource changed or not. However, we found instances where the resource does not change,

but the value of the Last-Modified header does: 1.53% and 9.36% for different data sets.

Even more problematic are a relatively few instances (0.32% and 0.03%) where the resource

has changed but the value of the Last-Modified header did not. We obtained similar

results in another study [94], although in a test set containing just HTML objects only 35%

of the resources had Last-Modified information. The latter suggests that images are more

likely to have Last-Modified information than HTML resources because servers store most

images in files on disk instead of creating them upon client requests. While pages without

Last-Modified information can still be cached, caches have no way to validate them with

the server and usually treat such pages as uncacheable.

Proactive Validation

Caches can proactively validate selected cached objects that have already expired or are

about to expire, extend the lifetime of those objects that are still fresh, and evict or prefetch

stale ones. This technique improves cache consistency and client latency. At least one vendor

of Web caching appliances used this Active Asynchronous Refresh technology [12].

Cohen and Kaplan [20] studied various proactive cache refreshment policies and applied

traditional cache replacement algorithms, such as Least Recently Used and Least Frequently

Used, to decide which objects to refresh. They showed that about half of all freshness

misses, i.e. validation requests induced by clients and resulting in the HTTP response code

304 Not Modified, could be eliminated at the expense of two added proactive validation

requests per eliminated freshness miss.
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2.1.3 Invalidation-Based Approaches

The fact that many cache validation requests turn out to be unnecessary suggests that many

objects remain unchanged for long periods of time. Servers can accept a more active role in

object management and explicitly notify caches of object updates. Caches treat all cached

objects as fresh until they receive server invalidation, thereby eliminating all validation

requests.

Server invalidation (callbacks) was used by Howard et al. in AFS [39] as a replacement

for client polling. Liu and Cao [56] compared server invalidation to adaptive TTL and

polling every time approaches using simulations driven by Web server logs. They showed

that server invalidation is a better technique for maintaining strong cache consistency than

polling every time based on the bandwidth used, except in cases when file lifetimes are short

(on the order of minutes). Their results also indicated that invalidation is comparable to the

adaptive TTL approach in terms of the amount of generated network traffic, average user

response time and server workload, but provides strong rather than weak cache consistency.

In order to provide clients with invalidations, servers must keep track of a potentially

large number of clients. The more clients servers keep track of the larger memory re-

quirements are and the more invalidation messages servers need to send out upon object

updates. Servers need to decide whether they notify clients of updates to all objects or

only to those objects that clients requested previously and may still have in their caches.

The former wastes network and client resources while the latter requires servers to maintain

more state. If clients have already evicted objects for which they receive server invalida-

tions, the resources are also wasted. Servers also need to decide whether they wait for

all clients to acknowledge each invalidation message before proceeding with object updates

or not. Waiting for client acknowledgements delays object updates at the server, poten-

tially indefinitely if some clients crash or become unreachable due to a network partition.

Proceeding with object updates before all clients responded relaxes consistency guarantees.

While server invalidation is meant to provide strong cache consistency, caches may serve
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stale objects to clients if they unknowingly become disconnected from the server and cannot

receive updates.

Instead of keeping information about all previously seen clients for indefinitely long

period of time, servers can expire such information after a short period of time, effectively

keeping track of a smaller number of active clients. However, servers and caches must agree

on such a TTL value since servers have an obligation to notify clients of object updates and

cannot just stop sending invalidations at will.

Leases

Servers use the notion of leases to control how often they expire information about clients.

A lease is an agreement between a cache and a server that gives the cache certain rights

on the cached objects for an agreed upon period of time, called the lease length. Servers

stop notifying clients whose leases expired and wait for acknowledgements from unreachable

clients only as along as leases are valid. Caches periodically renew expired leases, introducing

requests similar to validation requests for cached objects, some of which may be unnecessary,

as shown in Figure 2.2. Longer leases require servers to maintain more per-client state, but

induce fewer unnecessary lease renewals. In contrast, shorter leases reduce the amount of

server state, but incur more lease renewals. An invalidation-based policy with a zero-length

lease is equivalent to the Always Validate policy.

Leases were proposed by Gray and Cheriton who studied lease performance and the

selection of the appropriate lease length using an analytical model and data from the V

distributed system [35]. Liu and Cao suggested the use of leases on the Web as a means

to address the scalability problem [56]. Subsequently, Yin et al. introduced volume leases

to further reduce the cost of server invalidation [98]. They showed that the introduction of

volumes reduces traffic at the server by 40% and can reduce peak server load when popular

objects are modified. Yin et al. further explored scalability aspects of volume leases and

proposed to extend volume leases to cache consistency hierarchies [100]. They also explored
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engineering techniques for improving scalability of server-driven invalidation [101, 99].

Adaptive Leases

A critical parameter controlling the amount of server overhead, the number of server inva-

lidation and client lease renewal messages, is the duration of a lease. The work on adaptive

leases by Duvvuri et al. [28] focused on developing analytical models and policies for deter-

mining the optimal lease duration under various conditions: when the server state or when

the number of control messages is the constraining factor. The server can periodically (at

large time scales, on the order of tens of minutes or hours) re-compute lease duration and

make adjustments based on the current load. Duvvuri et al. also presented a set of policies

that enable the server to re-compute lease duration at smaller time scales, such as on every

lease renewal request. These policies are: 1) age-based leases, where the lease duration is a

configurable percentage of object’s age, which is similar to computing the object’s adaptive

TTL; 2) leases based on the activity of caches, where the server grants longer leases to

more active caches; 3) leases based on the amount of server state, where the server makes

lease duration inversely proportional to the amount of its state, thereby decreasing lease
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duration under heavy load. Duvvuri et al. [28] performed simulations driven by proxy logs

with synthetically generated object updates and observed that object lease of one hour

provides 425% improvement in server state overhead over the server invalidation approach

and 138% improvement in client validation requests over the client polling approach. The

results also showed that for a one hour object lease the server state for the most popular

server in one proxy log is 1030 leases and the number of client validation requests is about

one message every 33 minutes. These results are for the Digital Equipment Corporation

proxy trace containing a little over 1.2 million client accesses. The duration of the trace is

about 41 hours.

Cooperative Leases

Ninan et al. [72] argued that consistency mechanisms, in particular leases, designed for single

proxy servers do not scale to large collections of proxy servers under the same administrative

control, such as in a CDN, and proposed a generalization of leases called cooperative leases.

Under current consistency mechanisms, each of the thousands of proxy servers in a CDN

network needs to maintain consistency independently of other proxies, burdening origin

servers with a high volume of control messages and state overhead. Ninan et al. also argued

that standard leases require the server to notify its clients of all updates to objects, thereby

providing the same consistency guarantee for all objects, which might be too restrictive for

a CDN.

The cooperative leases approach allows servers to grant leases to a group of proxy servers,

represented by a leader , rather than to each proxy server individually. Thus, origin servers

maintain state for and send object update notification to each leader of the group rather

than to each individual proxy server. Leaders then propagate object update notifications

to all group members. In essence, this approach offloads the work of managing objects from

the origin server to one of the proxies in a group. Proxies in a CDN are partitioned into

non-overlapping regions, and each proxy within a region maintains mapping between cached
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objects and the leader responsible for maintaining consistency for that object. Ninan et al.

also introduced a rate parameter indicating the rate at which the server agrees to notify

clients of object updates, thereby providing a mechanism for varying levels of consistency

guarantees.

Ninan et al. used trace-drive simulation with synthetically generated object update

events to study how the following policies affect performance: 1) leader selection policies;

2) eager and lazy lease renewal policies; 3) sending object invalidation versus object update

to the leader. The work assumed that the lease duration was determined as discussed in the

prior work by Duvvuri et al. [28] on adaptive leases. Comparison of cooperative leases with

standard leases found that the server overhead decreases, but not as much as expected due

to large number of objects being requested by only one proxy, in which case cooperative

leases provide no benefit over standard leases. The number of object invalidations sent out

by the server does go down, at the expense of consistency maintenance state and traffic

between proxies in a group.

Web Cache Invalidation and Web Content Distribution Protocols

In an attempt to create an open standard for invalidating objects cached at CDNs and

other participating intermediaries, researchers from academia and industry jointly developed

proposals for two server invalidation protocols. Li et al. [54] developed the Web Cache

Invalidation (WCIP) protocol, the older of the two protocols. Tewari et al. [83] have recently

presented their proposal for Web Content Distribution (WCDP) protocol, which is still

work in progress at the time of this writing. The two proposals are similar, except WCDP

supports multiple levels of consistency: strong, delta, explicit, and mutual, supports updates

in addition to invalidations, and is a request/response protocol, unlike WCIP. Both WCIP

and WCDP are instantiations of protocol specifications, thereby including specific details

of request and response message formats, message encodings, etc. For example, WCDP

encodes messages using eXtensible Markup Language (XML) and sends them via HTTP
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POST method.

In WCDP, content providers group objects related by user interests into content groups

and clients subscribe with servers to receive update notifications for objects in these groups.

Servers notify all subscribed clients of object updates and wait for acknowledgments from

all clients before making the updated version of the object publicly available. Servers

can invalidate individual objects or objects groups (which appear to be similar in spirit to

volumes). Objects can belong to multiple object groups.

2.1.4 Approaches Combining Validations and Invalidations

Instead of using either client polling or server invalidation, one could use both. Two main

proposals for such a combination have been proposed.

Adaptive Push-Pull

Bhide et al. [7] argued that client pull and server push approaches to maintaining coherence

have complementary properties and limitations. The pull approach is simple to implement

and does not require servers to maintain per-client state, but it generates many validation

requests to the server and can miss updates to the cached objects. The push approach

provides strong coherency, but requires servers to maintain per-client state. They also

observed that the frequency of changes to time-varying data (such as stock quotes, the

example they used in the paper) itself changes over time, making it difficult to choose

between pull and push approaches beforehand. Bhide et al. [7] proposed to combine pull

and push approaches to produce the adaptive Push-Pull approach.

They assumed that the user specifies the temporal coherency requirement (tcr) for each

cached object. They also noted that the tcr can be expressed in units of time or object

value. The former means that an object returned from the cache must be at most tcr time

units older than the version of that object at the origin server. The latter means that the

difference between the value of the object returned from the cache and the value of the
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same object at the origin server must be at most tcr . In the adaptive Push-Pull work, the

authors considered only the latter form of tcr . They combine pull and push approaches as

follows.

One combination is called Push and Pull (PaP). Clients register with the server, provide

the desired tcr value, and pull updates from the server based on that value. The server

monitors object changes, detects those that clients are likely to miss, and pushes these

updates to clients. The server must maintain per-client state, but the authors argue that

this state is soft , meaning that if the server loses that state the mechanism degrades to and

performs no worse than pure pull. Also, if a client becomes unreachable, and the server

cannot inform that client of an object update, the resulting coherence guarantees are the

same as those of the pure pull approach.

Another combination is called Push or Pull (PoP). The server pushes updates to all

clients by default, if it has sufficient resources to do so, and switches to the pull approach for

certain clients, when resources become constrained. The server can dynamically determine

whether to use push or pull on a per-client basis.

Bhide et al. also discussed two additional variations. One variation replaces push clients

in PoP with PaP clients, resulting in PaPoP approach. The other variation amends PaPoP

approach with leases, whereby the server pushes updates only to clients that hold valid

leases. Clients must revert to pure pull or renew expired leases.

Piggyback (In)Validation

Instead of switching between polling and invalidation one could make use of existing traffic

between clients and servers to relate invalidation information to caches. Krishnamurthy and

Wills proposed the piggyback cache validation (PCV) [48] and PSI [49] approaches based on

this idea. Both mechanisms attempt to eliminate stale entries from a cache, extend lifetime

of unmodified objects, and minimize the number of cache validation requests. The PCV

mechanism can easily be implemented within HTTP.
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In the PCV approach [48], when a proxy cache has a reason to communicate with a server

it piggybacks a list of cached objects from that server, for which the explicit expiration

time is unknown and a heuristically assigned TTL has expired. The server replies with

the requested object and indicates which objects on the list are now stale. The proxy uses

that information to invalidate stale resources and may extend the lifetime of resources not

explicitly invalidated by the server.

While the PCV approach takes advantage of the information available only to a proxy

cache, the PSI approach [49] is server initiated and takes advantage of the information

available to the server, but not to the proxy caches. Servers partition available resources

at a site into volumes, and maintain unique identifiers and version information for each

volume. When a resource or a set of resources change within a volume, the server updates

volume version number and notes which resources changed. Requests from proxy caches

normally contain the volume identifier and volume version for the requested resource. If a

proxy cache does not have that information, it requests that the server provide it as part

of the response. The server response contains the volume identifier, current volume version

and a list of resources which have changed since the volume version was provided by the

proxy.

Krishnamurthy and Wills studied combinations of PCV with TTL and adaptive TTL

mechanisms using simulations driven by proxy logs and showed that PCV can reduce cache

validation traffic by up to 16-17% and the staleness ratio by up to 57-65% [48]. They also

showed that the average cost, which takes into account the response latency, number, and

size of request and validation messages, is reduced by 6-8% [48].

Krishnamurthy and Wills used the same cost metrics (response latency, bandwidth,

and number of requests), the same proxy logs as in their PCV study [48], and a num-

ber of additional server logs and showed that the PSI technique provides close to strong

cache consistency and reduces the amount of proxy-server traffic as compared to TTL-based

approaches [49]. They also showed that PSI sometimes performs better and sometimes per-
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forms worse than PCV, and that the two techniques should be combined to obtain the

best overall performance. Such a hybrid approach reduces the overall cost by 7-9% and the

staleness ratio by 82-86%, as compared to TTL policies [49].

Dynamic Selection of Consistency Mechanisms

Recent work by Pierre et al. [76] on dynamic selection of optimal distribution strategies for

Web documents suggests using different consistency mechanisms for different documents

instead of applying the same consistency mechanism to all documents. The authors propose

finding such an arrangement of (document, strategy) pairs for all documents and available

strategies (such as those discussed above) that achieves globally optimal system performance

along specified metrics. They show, using a trace-driven simulation, that when the same

consistency strategy is applied to all documents, different metrics are optimized under

different policies, and no policy provides the best performance along all metrics. Under their

proposed scheme, all the servers maintaining document replicas periodically send recent

portions of their logs to the main server. The main server then combines these logs with its

own log and runs simulations on this newly acquired data to reevaluate whether consistency

strategies currently assigned to the documents are still appropriate or need to be changed.

2.1.5 Basis Token Consistency

The cache consistency approaches discussed so far are designed to ensure that cached copies

of objects are synchronized with their master copies at the origin server. Bradley and

Bestavros in their recent work on Basis Token Consistency (BTC) [9, 10] use the term

coherence to refer to that type of consistency and focus their work on another type of

consistency. In the BTC work, the term consistency describes recency of one cached object

relative to a related cached object. The relationship in this context means that the two

objects have a common dependency on one or more data sources. Two related objects

residing in a cache may differ from their master copies at the origin server, but they are
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fresh relative to each other since they both were produced from the same, albeit by now

stale, data. A strongly consistent cache always provides a non-decreasing view of the origin

server state. The BTC work relies on other techniques, such as those discussed earlier, to

maintain coherence.

The idea of BTC is to add the Cache-Consistent header to server responses, listing

each data source (origin datum or token) used in production of the response along with its

version number. BTC-compliant caches index tokens found in server responses and keep

track of token version numbers. Upon receiving a response from the server that contains a

newer version number for a datum, the cache invalidates all cached entries that depend on

that datum. BTC can provide consistency only for objects that have common dependencies

on the underlying data. BTC requires servers to maintain dependencies between underlying

data and the resulting pages, but does not require servers to maintain any per-client state.

BTC also requires client caches to maintain an index of tokens, with the possibility that

the index could grow arbitrarily large. BTC servers do not expose page structure to clients,

forcing caches to operate at page granularity.

2.2 Caching of Frequently Changing Objects

Traditional caching mechanisms work well for objects that change rarely. Many Web sites

today construct their Web pages from multiple data sources, add personalization features, or

simply change the location of various items on pages to create an illusion of frequent updates

to retain users. Such frequently changing pages, and pages generated upon client access,

present problems to current caching mechanisms. While it may be impossible to benefit

from caching entire pages that change frequently, various approaches have been proposed to

assist in caching pieces of dynamic pages and to generate required pieces without contacting

the origin server.
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2.2.1 Delta Encoding

To optimize Web transfers, an origin server (or a proxy) can compute a difference between

an old and a new copy of an object and communicate that difference to the client, provided

that the client has that old copy of the object. The client can construct the new object

by applying the difference to the old object. Sending differences instead of entire objects

reduces bandwidth requirements and lowers the response time, and is called delta encoding .

The delta encoding technique can be applied uniformly to all resources, irrespective of how

frequently they change and whether they are textual or binary. Williams et al. [93] were first

to suggest delta encoding when they studied various cache removal policies and envisioned

changing the HTTP protocol to let caches obtain the difference between the cached and the

updated version of an object.

Housel and Lindquist used delta encoding in their WebExpress system to make browsing

in wireless environments possible [38]. WebExpress makes use of client- and server-side

proxies in the form of the Client Side Intercept (CSI) module running within the user’s

mobile device and the Server Side Intercept (SSI) module running on the wired network.

Both CSI and SSI modules cache a common base object . SSI obtains a new object from

the origin server, and relates the difference (difference stream in the paper), consisting

of a sequence of copy and insert commands, to the CSI. CSI merges the difference with

the base object. Delta encoding in WebExpress is performed transparently to the browser

and the origin server (and proxy servers) and does not require any changes to the HTTP

protocol. The use of differencing technology in WebExpress was motivated by the fact that

“. . . different replies from the same program (application server) are usually very similar”

and focused on applying deltas to responses to CGI queries. Housel and Lindquist also noted

that differencing may prove useful if applied to HTML files undergoing minor changes. They

did not apply differencing to images. Evaluation of the system showed that delta encoding

significantly reduced the amount of bytes transferred and latency, but was performed on a

small number of test cases.
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Banga et al. also used delta encoding between a client-side proxy and a server-side proxy

to reduce latency in a low-bandwidth environment [5]. They proposed two variations of the

delta encoding technique: simple delta, which is the same as in WebExpress, and optimistic

delta, neither requiring any changes to the HTTP protocol. The optimistic delta approach

builds on the fact that pages change incrementally and works as follows. If the client-side

proxy does not have a cached older copy of an object, the server-side proxy optimistically

sends the older copy of the object in an attempt to improve latency by anticipating that

the object has not changed on the origin server. If the object has changed, the server-side

proxy later sends the delta to the client. Optimistic deltas actually increase the number of

bytes transferred while reducing end-to-end latency. Banga et al. evaluated the performance

of their system on a small set of selected URLs and showed a reduction in latency by 12-

30% across pages studied. The results also indicated that delta encoding, computed with

vdelta [46], produces smaller update messages than simply compressed documents.

Mogul et al. [64] were the first to quantify the benefits of end-to-end delta encoding

and compression using large traces of actual user requests: a packet-level trace, collected in

November 1996, and a proxy trace, collected in December 1996. They also suggested in [64]

and subsequently described in RFC 3229 [65], which is now a proposed standard, extensions

to the HTTP protocol to support end-to-end delta encoding and compression. Mogul et al.

observed that even when a Web object changes, the new instance is substantially similar

to the old one, and sending the difference between the two can save bandwidth and reduce

latency. Results of their study support these observations and show that delta encoding

can provide significant improvements in response size and time, but mostly for text-based

Web objects, such as HTML. Mogul et al. noted that while it is possible to extract deltas

from image files and images generated by Web cameras, the resulting deltas do not reduce

number of bytes by much because images are already compressed.

Mogul et al. also evaluated and compared a number of different programs to compute

deltas and perform compression, and found vdelta [46] to be the best overall. In addition,
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they measured computational overhead of creating and applying deltas and of compressing

and decompressing server responses and found that throughputs for almost all computations

with the library implementations of vdelta are significantly faster than the throughput of

a T1 line (193 KBytes/sec) [64]. Mogul et al. also found that the cost of applying a delta

or decompressing a response is lower than the cost of creating the delta or compressing

a response. They concluded that delta encoding and compression would be useful for

users of dialup and T1 lines and might even be useful for multiple hosts sharing a T3 line.

Mogul et al. also suggested that cost of computing deltas can be further reduced if deltas are

precomputed ahead of time and cached at the server, at the expense of additional storage.

2.2.2 HTML Pre-Processing

Douglis et al. in their HTML Pre-Processing (HPP) work [27] observed that for a common

class of dynamically generated resources, such as search engine queries, most of the content

on a page is static, with only small portions changing, and the locations of these dynamic

portions within a page are the same. They suggested separating the static and dynamic

portions of a page.

The static portion, called the template, contains HTML code extended with a few new

tags, and can be cached. Tags added to the HTML encode macro-instructions for inserting

dynamic information, and have the ability to represent powerful concepts, such as condi-

tional branching and loops. The dynamic portion, called bindings, is retrieved on each

access, and contains access-specific values for the variables specified within the template.

The cached template is expanded with the new bindings before the page is rendered in the

user’s browser. The expansion can be done by a modified browser, by a proxy server, by a

Java applet supplied by the content provider, or by a browser plug-in. If the template is

not available in the cache, it can be retrieved from the origin server. Bindings always have

a pointer to their respective template.

HPP saves network bandwidth by separating and caching static portions of dynamic
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pages. Assuming that templates are cached, the size of the compressed dynamic bindings is

comparable to delta-encoding with vdelta. Douglis et al. found that the size of the bindings

is 4-8 times smaller than the size of the original resource, and 2-4 times smaller when both

the bindings and the original resource are compressed. HPP requires no modification to the

HTTP protocol, allows compact representation of repetitions within resources, and lessens

the load on Web servers by letting them generate smaller amounts of dynamic data.

HPP is well suited for a class of resources which are generated upon request by soft-

ware programs, such as search engines, but is not general enough to tackle other types of

frequently changing resources, such as those frequently edited manually. Content designers

need to learn yet another, albeit simple, language—HPP—and figure out how to encode

dynamic portions for their particular situation. HPP macro-instructions have to be in-

tertwined with HTML, making page construction more difficult. Since the template and

bindings are now treated as separate resources, modifications to a page might involve up-

dating both resources. In that case, care should be taken to properly synchronize changes.

Template expansion also requires a separate pre-processor, which must be available on the

client side for HPP to work.

2.2.3 Proxy Enhancement

A number of research projects proposed various enhancements enabling proxy servers to

handle a subset of requests for dynamic pages locally, without contacting the origin server.

In the Active Cache approach proposed by Cao et al. [13], origin servers attach cache

applets (cachelets) to Web objects, and require proxies to invoke these applets upon cache

hits. Once invoked, applets perform necessary processing on the proxy and generate the

required response. The approach is general and flexible. Cache applets can perform various

functions, such as rotating advertising banners, constructing customized pages, logging user

accesses, performing delta encoding, and supporting access control. Cao et al. implemented

a prototype of Active Cache in Java and showed that it increases response time by a factor of
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1.5-4.0 (by 47%-75% for a “null” applet), mostly due to the increased CPU utilization [13].

The Active Cache approach raises security concerns, since proxies have to trust applets

supplied by servers, and requires content providers to learn how to write applets. To address

the issue of performance degradation when many applets are running simultaneously, Active

Cache allows proxies to simply forward the request to the origin server, but if this happens

often enough the benefit of the approach will not be realized.

Smith et al. proposed the Dynamic Content Caching Protocol (DCCP) to allow Web

applications to explicitly specify equivalence between dynamic pages they generate [81].

The authors contrasted their approach with previous proposals, such as delta encoding, in

that in their scheme neither proxies nor servers are responsible for identifying equivalence

(or computing deltas): control is given to the application. For some Web applications, such

as server-side image maps, on-line weather reporting services, and on-line maps, a number

of syntactically different requests result in identical responses. For example, the weather

conditions might be the same for a dozen different ZIP codes, or the same URL might be

fetched for 50 different screen coordinates on a server-side image map. Smith et al. classi-

fied locality in dynamic Web content into three categories: identical requests (requests and

responses are identical), equivalent requests (requests are different but responses are iden-

tical) and partially equivalent requests (requests and responses are different but responses

overlap to some degree) [81]. Identical and equivalent requests can be satisfied from the

DCCP-aware cache, and partially equivalent requests can be optimistically satisfied from

the cache followed by the correct response from the origin server. Equivalence directives are

related to DCCP-aware proxies using the extension mechanism of HTTP 1.1 cache control

directives [31]. The DCCP approach is less general than Active Cache and applies only to

a small subset of dynamic content on the Web.
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2.2.4 Data Update Propagation

Challenger and Iyengar, researchers at International Business Machines (IBM) working on a

Web site to host the Olympic games, observed that Web servers utilize orders of magnitude

more CPU cycles to construct dynamic pages on the fly than to serve static pages. Caching

dynamically generated pages at the Web server after fulfilling the first request and serving

the subsequent requests from the cache significantly improves the performance. The key

challenge in caching dynamically generated pages is keeping the cached copies consistent

with the underlying data. Challenger and Iyengar developed Data Update Propagation

(DUP) [41] mechanism and Distributed Cache Manager [16]. In the early stages the main

focus of their work was to improve the performance of large Web sites withstanding high

request rates and serving large number of dynamically generated pages [40].

Dependencies between underlying data and complete pages (also called objects) are

represented by an object dependence graph (ODG). In a generalized graph, each vertex can

represent underlying data, a fragment of an object, or a complete object. Each directed

and weighted edge represents the inclusion relationship between entities. An application

program is responsible for communicating data dependencies between underlying data and

objects to the cache manager. When underlying data changes, the application program

notifies the cache manager, which invalidates appropriate objects in the cache. Weights

allow the cache manager to evaluate the importance of changes and avoid invalidations in

favor of performance improvement for insignificant changes.

DUP and Cache Manager were implemented in the DynamicWeb cache [40] which is

part of IBM’s net.Data software. DynamicWeb cache is general enough to function as

a proxy server but is better than existing proxy servers because it provides an API for

application programs to explicitly cache, invalidate, and update cached objects. However,

originally DUP was designed for reverse proxies and its main application is within a Web

site’s infrastructure. DynamicWeb was successfully deployed at a number of large and highly

dynamic Web sites and proved to significantly improve the performance in the presence of
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frequent changes to underlying data [40, 15].

Challenger et al. subsequently combined DUP with prefetching to improve cache hit

rates. When underlying data changes, the Cache Manager immediately re-calculates all

affected cached objects instead of simply invalidating them [15, 17]. Challenger et al. also

proposed to use fragments to simplify construction of pages with the same look and feel

and improve performance by caching individual fragments instead of complete dynamically

produced pages [18]. They noted that selection of which part of an HTML page becomes a

separate fragment is based on change dynamics and used two types of underlying data (and

hence fragments) in their work: data from databases (automated feeds), which translates

into immediate fragments, and data produced manually by humans, which translates into

quality controlled fragments [17, 18]. Users specify how pages are composed from fragments

by creating templates in an extended HTML markup language.

2.3 Summary

Cache consistency and caching of frequently changing objects are both well-known problems.

In this chapter we discussed the most significant previously proposed approaches addressing

these problems. Validation-based approaches to cache consistency balance the tradeoff

between consistency guarantees and the number of validation requests. Invalidation-based

approaches provide strong cache consistency, but require servers to maintain per-client

state. Servers can control the amount of state they maintain, the number of invalidation

messages they send out, and the amount of time they wait for unreachable clients before

proceeding with object updates via leases. Shorter leases reduce server state and place

tighter bound on object staleness, but require clients to renew leases more often. Longer

leases reduce lease renewal traffic, but increase server state and require servers to wait longer

for unreachable clients. We also discussed various ways to combine client polling with server

invalidation and techniques for grouping objects into volumes. The idea of piggybacking

additional information about object or volume updates onto existing traffic between caches
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and servers is particularly promising.

Approaches proposed to assist in caching frequently changing objects are delta encoding,

HPP, Active Cache, DCCP, and DUP. Delta encoding can be applied uniformly to all

resources and was shown to be fast enough to be useful for users of dialup and T1 lines,

when computed upon client requests. Precomputing and caching deltas ahead of time

can reduce the cost of computing deltas, at the expense of additional storage. The HPP

approach identifies frequently changing portions within dynamically generated HTML pages

and replaces them with special markup, thus creating a static template. Clients cache

templates and replace the special markup with the bindings that they fetch on every access.

The Active Cache approach is more general, but raises security concerns and performs

poorly. DCCP is a narrow solution that applies to a small subset of dynamic content on

the Web. The work on DUP has laid a foundation for caching and reusing fragments of

changing pages, but is more concerned with improving origin server performance than with

devising an end-to-end solution.
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Chapter 3

Background Studies

In Chapter 2 we discussed previous work on cache consistency and caching of frequently

changing objects. However, certain aspects of the Web that are important for this disserta-

tion were not addressed by previous work. Also, while some characteristics of the Web have

already been studied, we wanted to carry out our own characterization studies, on more

recent data sets than in previous work, to see whether the previous findings are still true.

In this chapter we present three background studies investigating the following aspects of

the Web:

1. One aspect that interests us is the frequency with which Web resources change. Re-

sources that do not change at all or change on every access can easily be managed

deterministically. The question is whether there are resources that change with fre-

quencies between these two extremes, at irregular intervals. Improving the manage-

ment of such resources is our goal because currently these resources are not cached

at all or cached with heuristically determined expiration times, as discussed in Chap-

ter 2. Douglis et al. studied a packet trace and found that Web objects change at

widely different intervals [26]. We investigate whether these findings are still true in

our first background study.

2. Another important aspect is how images and other embedded resources change relative
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to their container HTML resources. If related resources change at different rates,

then caches can obtain invalidations for non-deterministically changing resources while

retrieving frequently changing ones. Prior work by Douglis et al. [26] indicated that

images change much less frequently than HTML resources. We investigate whether

that result is still valid in the first background study.

3. We need to determine whether relationships between objects are stable enough over

time to rely upon them, as suggested above. No prior work that we are aware of

studied whether the set of embedded images changes or remains relatively constant

as the container resource undergoes modifications. We investigate this aspect in the

first background study.

4. We need to better understand the predictability, locality, and extent of changes to

a resource. This is particularly important for resources that change often, such as

dynamically computed content. Techniques such as delta-encoding [64], HTML pre-

processing [27], and active caches [13] have been proposed to allow resources that

change frequently but predictably, to be cached. Also, if changes to a resource occur

in the same locations, the affected portions can be separated from the resource and

treated as distinct resources. We investigate this aspect in the second background

study.

5. Caches issue many unnecessary validation requests (GET requests accompanied by the

If-Modified-Since request header) to servers. If servers provide invalidations to

caches for non-deterministically changing objects, caches can avoid issuing valida-

tion requests for these objects. Eliminating unnecessary validation requests would

be a substantial improvement over current practice. In the third background study

we quantify the reduction in the number of such validation requests to understand

whether the improvements are significant.



3.1. RETRIEVAL SOFTWARE AND METHODOLOGY 43

We now describe the retrieval software and methodology used in the first two background

studies and then present the three studies.

3.1 Retrieval Software and Methodology

We wrote software, called the Content Collector, to retrieve a set of URLs. The Content

Collector supports the following configurations that determine what exactly is retrieved:

• GetGivenURLs. Fetch only resources identified by the provided URLs. In case of

HTTP redirects (responses with the status codes 301 and 302) the Content Collector

fetches the URL provided by the server.

• GetFullPages. Fetch resources identified by the provided URLs as described above

and all objects embedded in the retrieved HTML pages. The Content Collector does

not interpret or parse JavaScript code embedded within HTML, missing those objects

that need to be retrieved because of the JavaScript code execution. The Content

Collector detects the FRAME, IFRAME, and LAYER HTML tags, then fetches them along

with their embedded objects.

• GetFullPagesToGivenDepth. Fetch all objects described under GetFullPages. Then

identify all HTML pages accessible from the fetched HTML pages and fetch them

recursively, up to a configurable level (or depth).

The Content Collector can be instructed to use specific HTTP headers in its requests

to Web servers, such as Cache-Control: no-cache. For each retrieval of each object, the

Content Collector stores the current time, a complete set of the HTTP response headers, the

length of the response body, and the MD5 checksum that it computes on the object’s body.

The Content Collector discards images and keeps HTML and text objects if they changed

from the previous retrieval. The Content Collector also parses HTML resources and records

all embedded and traversal links. The reason for calculating an MD5 checksum on the
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contents of each resource is to determine whether the resource changed between successive

retrievals. Our calculation of the MD5 checksum is independent of the Content-MD5 header

field defined in HTTP/1.1 [31] for an end-to-end message integrity check. We could not

rely on the presence of the Content-MD5 header in server responses because servers rarely

supply it.

Previous work used proxy logs, server logs, and network traces of real user requests and

server responses, which constrained the resulting studies to the available data. In contrast,

our approach was to retrieve each resource in a test set at intervals and for a duration

appropriate for characterizing the nature of each resource in the test set. In addition, logs

and traces are affected by browser and “lower-level” proxy caches, which hide some of the

requested resources. We disabled caching for more complete data gathering.

Our retrieval methodology was to perform an unconditional HTTP GET request for each

of the URLs in a test set on a daily basis using the HTTP request headers shown below

for the sample URL http://owl.wpi.edu/index.html (the host and path vary for each

request).

GET /index.html HTTP/1.0
Pragma: no-cache
Accept: */*
Host: owl.wpi.edu
User-Agent: Mozilla/4.03 [en] (WinNT; I)

The time between successive retrievals for a URL may be lengthened or shortened as

needed, but we used a retrieval interval of one day.

3.2 Study 1: Rate of Change and Characteristics of

Embedded Images

In this background study, we investigated the first three aspects of the Web listed above.

We studied a set of URLs at a variety of sites and gathered statistics about the rate and
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nature of changes correlated with the resource content type. We configured the Content

Collector with the GetFullPagesToGivenDepth option with depth one. Hence all traversal

links in the home page of each site are retrieved along with the embedded images of each of

these links. This approach allows us to not only follow the dynamics of individual URLs,

but to follow the dynamics of the set of resources used at a site.

In this background study, we used two approaches for determining which resources to

study. One approach was to identify frequently visited sites and study their home pages and

pages accessible from home pages. Such resources are likely to have the most impact on long-

term Web usage. We explored different sources for gathering resource usage information

such as Media Metrix [60], Keynote Systems [44] and 100hot.com [1]. We used home pages

from a set of Web sites identified by 100hot.com as a basis for our study.

Our other approach was to gather a set of URLs from current NLANR proxy logs [73].

These logs are from an upper-level cache typically servicing requests not satisfied by caches

closer to clients making the requests. This approach has the advantage of focusing on URLs

actually being retrieved by users across a number of different servers and content types.

3.2.1 Test Sets Based on Popular Sites

We constructed four test data sets using the September, 1998 ratings from 100hot.com.

Data from the first test set, com1, were gathered on a nightly basis for a two-week period

during October, 1998. The com1 test set consists of home pages for 19 Web sites identified

as the top 10 on-line properties by 100hot.com (some properties included multiple sites).

The three remaining test sets were studied during a two-week period in November, 1998.

The com2 test set consists of 13 URLs from the next most popular sites from 100hot.com.

The netorg test set was derived from the set of all sites in the 100hot.com top 100 whose

top level domain was other than .com. These sites are primarily from the .net and .org

domains. The final test set, edu, was constructed based on rankings of the .edu domain site

usage given by 100hot.com along with the home page of Worcester Polytechnic Institute

http://www.100hot.com
http://www.100hot.com
http://www.100hot.com
http://www.100hot.com
http://www.100hot.com
http://www.100hot.com
http://www.100hot.com
http://www.wpi.edu
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(WPI). Because relatively few queries were included in the four test sets, we added a fifth

test set query to our study. This test set was studied for six days in November, 1998 and

included queries to ten search engines, searching for “search engines.” For this test set,

the query result was retrieved along with embedded images, but traversal links were not

retrieved.

3.2.2 Test Sets Based on User-Requested Resources

We obtained seven daily proxy traces from NLANR [73] for the late December, 1998 to

early January, 1999 time period. We extracted all HTTP GET requests that resulted in

HTTP responses with the response code 200 OK or 304 Not Modified. These accesses

encompassed 214,000 distinct URLs from over 33,000 distinct servers.

We chose to focus our study on non-image URLs in the traces because images are

primarily retrieved as embedded images in HTML container pages and can be retrieved as

needed by our study. We eliminated all image URLs, accounting for 74% of accesses, from

the study set. We also eliminated all queries—URLs containing a “?”. Such queries could

not be used because all parameters after the question mark were sanitized in the trace data

making replication of such requests impossible. We further reduced the resulting set of 3237

URLs by removing all non-existent URLs and URLs referenced fewer than 20 times. The

final set contained 1129 URLs.

We divided these URLs into five test sets based on their content type and reference

count.

1. cnt100: resources with 100 and more references and content type text/* (in our data

set we only had text/html, text/css, and text/plain). All embedded images for

this set are retrieved in addition to the resource itself.

2. cnt20: resources with 20-99 references and the same content type as above. Embedded

images for this set are not retrieved to save on system resources.
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3. audio: resources with content type audio/*.

4. appldata: resources with content types application/octet-stream and

application/zip.

5. appltext: other resources with application content type, primarily

application/x-javascript.

3.2.3 Test Sets Summary Statistics

Summary statistics for all test sets are given in Tables 3.1 and 3.2. While all headers from

all responses were saved and cataloged, the table focuses on statistics related to caching

and content type.

Table 3.1: Summary Information on October/November, 1998 Test Sets

Test Set
Item com1 com2 netorg edu query
Number of Base URLs 19 13 11 10 10
Number of Resources 1938 2048 127 110 149
Content-Type: HTML/text 15.8% 10.7% 13.4% 11.8% 6.7%
Content-Type: image 83.5% 89.2% 86.6% 88.2% 93.3%
Number of Repeated Resources 1121 910 113 110 74
Content-Type: HTML/text 21.9% 15.5% 15.0% 11.8% 13.5%
Content-Type: image 77.9% 84.3% 85.0% 88.2% 86.5%

The bottom sections of Tables 3.1 and 3.2 focus on the resources that were retrieved

more than once in our tests. Because only the base set of URLs is fixed in our measurements,

the actual set of images and links can and obviously did change over the course of the study

(except for the four data sets in Table 3.2 where the set of URLs is fixed). Only about

50% of the resources were retrieved more than once for the commercial and query test sets

while this ratio was much higher for the other two test sets in Table 3.1 and for the cnt100

test set in Table 3.2. For multiply retrieved resources, the ratio of HTML resources is a bit

higher than for all resources. As part of the background study, we further classified HTML
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Table 3.2: Summary Information on January, 1999 Test Sets

Test Set
Item cnt100 cnt20 audio appldata appltext
Number of Base URLs 122 927 7 10 63
Number of Resources 1131 927 7 10 63
Content-Type: HTML/text 10.8% 100.0% 0.0% 0.0% 0.0%
Content-Type: image 89.2% 0.0% 0.0% 0.0% 0.0%
Number of Repeated Resources 754 927 7 8 63
Content-Type: HTML/text 15.8% 100.0% 0.0% 0.0% 0.0%
Content-Type: image 84.2% 0.0% 0.0% 0.0% 0.0%

resources as “static” or “dynamic” by applying heuristics to the resource name, but found

little difference in the characteristics of resources in the sub-categories.

3.2.4 Rate of Change

Our first step in analyzing the data was to repeat the rate of change calculations as done by

Douglis, et al. [26] a year earlier on a packet trace. Our study is performed on more recent

data and is not constrained to the data available in a packet trace. Our calculations are

based upon the MD5 checksum computed for a returned resource and not on the information

reported by the server in the Last-Modified or ETag response headers. The ETag header

carries an entity tag—an opaque validator that caches can use to compare object versions.

Figure 3.1 shows the results for HTML and images for each of the test sets based on

resources at popular sites. Figure 3.2 shows the results for all test sets based on user-

requested resources. Results for the cnt100 test set in Figure 3.2 are broken down into

results for HTML resources and images.

The images for all test sets show virtually no change as found in [26]. Resources in

the audio and appldata test sets in Figure 3.2 show little or no change, and resources in

the appltext test set, also in Figure 3.2, show substantially more changes. The HTML

resources show much variation in change characteristics. The netorg and edu results in

Figure 3.1 show 60-70% of the HTML resources did not change (comparable to the HTML
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results in [26]). The cnt100 and cnt20 results in Figure 3.2 show 40-50% of HTML resources

never changed. The HTML resources for the commercial sets com1 and com2 in Figure 3.1

show much more volatility. Only 10-20% of these resources did not change during the

study while 70-80% of these resources changed on each retrieval. 100% of the query HTML

resources in Figure 3.1 changed on each retrieval. The results show that Web objects, across

and within Web pages, change at widely different rates, and many objects change at irregular

intervals. These findings are important and we capitalize on them in this dissertation.
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Figure 3.1: Cumulative Distribution of October/November, 1998 Test Set Change Ratio
Grouped by Content Type

3.2.5 Characteristics of Embedded Images

The rate of change results in Section 3.2.4 indicate that HTML resources change frequently.

However, what these results do not indicate is the nature and degree of changes. One

question that arises is whether changes to HTML resources affect the set of embedded ima-

ges, since HTML resources are often “containers” for embedded images. In this section we

examine the frequency with which embedded images remain in an HTML resource between

successive retrievals. Tables 3.3 and 3.4 provide results on the number of images that remain
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Figure 3.2: Cumulative Distribution of January, 1999 Test Set Change Ratio Grouped by
Content Type

between successive retrievals of an HTML page from each test set.

Table 3.3: Number of Embedded Images and Traversal Links Remaining in an HTML Page
Between Successive Retrievals in October/November, 1998

Test Set
Item com1 com2 netorg edu query
Number of HTML Pages 245 141 17 13 10
Avg. Number of Embedded Images Per Page 9.24 31.72 8.45 16.34 25.03
Avg. Number of Remaining Embedded Images 4.67 17.57 7.32 11.39 5.64
Avg. Number of Links Per Page 73.74 63.77 14.31 28.10 75.50
Avg. Number of Remaining Links 64.10 41.39 13.52 26.16 53.69

The results show that the percentage of images remaining is a little over half for the

commercial test sets com1 and com2. A similar percentage was found for frequently requested

URLs in the cnt100 and cnt20 test sets. The results for the netorg and edu test sets show

that for 70-80% of resources the set of images remains the same between retrievals. The

query test set yields the least amount of reuse on average, although the median is close to

50%. These results have two significant implications for caching:
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Table 3.4: Number of Embedded Images and Traversal Links Remaining in an HTML Page
Between Successive Retrievals in January, 1999

Test Set
Item cnt100 cnt20
Number of HTML Pages 119 920
Avg. Number of Embedded Images Per Page 10.31 17.06
Avg. Number of Remaining Embedded Images 6.61 8.03
Avg. Number of Links Per Page 43.97 42.39
Avg. Number of Remaining Links 37.92 34.49

1. Despite the fact that HTML resources change frequently there is a significant amount

of reuse of images, and

2. Cache replacement policies need to associate an image with its container resource so

that if an image is no longer used by any container resource then it should be garbage

collected and removed from the cache.

Tables 3.3 and 3.4 also show the frequency at which traversal links remain the same

between successive retrievals. While not having direct implications for caching, the results

show that a significant ratio of links remain between retrievals.

3.2.6 Follow-Up Study

Since the original study was conducted four years ago, we repeated the study over a period

of ten days in May/June 2002 to determine if the results presented here are still true. We

used the same methodology as before, but this time we examined the 50 most popular URLs

requested by users. We obtained these URLs from seven NLANR proxy logs collected in

May 2002. Summary statistics on our new data set are shown in Table 3.5. We can see

that the statistics are similar to those shown in Table 3.1. The rate of change results for

the html objects, images, and other objects are shown in Figure 3.3. Embedded objects

other than images in our data set are Cascading Style Sheet (CSS) documents, external

JavaScript code and Shockwave Flash files. We can see that the results mimic those in
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Figure 3.1, in that images exhibit virtually no changes, and HTML resources show much

variation in their change characteristics. Embedded objects other than images exhibit more

changes than images, but substantially fewer changes than HTML resources.

Table 3.5: Summary Information on May 2002 Test Sets

Test Set
Item nlanr-popular
Number of Base URLs 50
Number of Resources 5136
Content-Type: html/text 14.4%
Content-Type: image 75.3%
Content-Type: other 10.2%
Number of Repeated Resources 1972
Content-Type: html/text 6.3%
Content-Type: image 85.8%
Content-Type: other 7.9%
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Figure 3.3: Cumulative Distribution of 2002 Test Set Change Ratio Grouped by Content
Type

We also computed the average number of embedded objects and traversal links in Web

pages, and the average number of embedded objects and traversal links that remain on

pages across retrievals. The results for the May 2002 data set are shown in Table 3.6.
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The results indicate that despite frequent changes exhibited by HTML resources, the reuse

of embedded objects and traversal links is substantial. The results are similar to those

obtained in the Fall of 1998.

Table 3.6: Number of Embedded Objects and Traversal Links Remaining in an HTML Page
Between Successive Retrievals in May 2002

Test Set
Item nlanr-popular
Number of HTML Pages 123
Avg. Number of Embedded Objects Per Page 11.01
Avg. Number of Remaining Embedded Objects 9.61
Avg. Number of Links Per Page 37.01
Avg. Number of Remaining Links 29.47

3.3 Study 2: Changes to HTML Resources and Content

Reuse

To better understand the nature of changes to HTML resources, potential for dynamic

content reuse, and byte savings resulting from constructing pages from components, we

studied HTML resources at popular Web sites and frequently requested HTML resources,

as described below.

3.3.1 Methodology

We used the Content Collector with the GetFullPages configuration and retrieval methodo-

logy discussed earlier in Section 3.1 and retrieved content for 11 days in October/November,

1999. In a negligibly small number of cases, images could not be retrieved due to use of

https as the protocol portion of the URL. We kept track of images retained on pages be-

tween retrievals and assumed that images do not change, as was shown by Douglis et al. [26]

and confirmed in Section 3.2.4.
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To automatically analyze changes to HTML objects, we developed software, called the

Chunking Tool, that decomposes HTML objects into smaller chunks. Decomposition is

based on the inherent structure of HTML objects and approximates how a content designer

might decompose an HTML page into smaller components. For example, the <TABLE> tag

is commonly used to define structure. Our Chunking Tool separates all content enclosed

between the <TABLE> and </TABLE> tags into a separate chunk. We calculated an MD5

checksum for each chunk and used it to determine the number of chunks and number of

bytes common between two retrievals of a page.

3.3.2 Test Sets

We used four data sets for this portion of the background study. One of them, Cnt300, was

derived from seven NLANR proxy logs [73], collected at the end of October, 1999. Aggregate

number of entries in all seven logs was over 8.5 million. We selected only accesses to HTML

resources with the HTTP response codes 200 OK and 304 Not Modified and then filtered

out all entries that did not have a valid content type, leaving us with 866,000 distinct

URLs. We also eliminated query URLs because they are sanitized and cannot be retrieved,

as explained in Section 3.2.2. Since in this study the Content Collector retrieves images

embedded in Web pages, we further pruned the test set so it contains about 100 URLs. We

eliminated URLs with fewer than 300 accesses bringing the resulting test set to 128 URLs.

We constructed three other data sets based on the data obtained from 100hot.com [1]

on November 2, 1999. The Top50 data set contains the 50 most popular Web sites. Some

sites are represented by more than one host name, so this data set has 71 URLs. The Ecom

data set contains the home pages of the 50 largest shopping sites (business-to-consumer).

The Srcheng data set lists home pages of eleven well-known search engines: altavista,

askjeeves, excite, google, goto, hotbot, infoseek, lycos, mckinley, northernlight,

and webcrawler.

http://www.100hot.com
http://www.altavista.com
http://www.askjeeves.com
http://www.excite.com
http://www.google.com
http://www.goto.com
http://www.hotbot.com
http://www.infoseek.com
http://www.lycos.com
http://www.mckinley.com
http://www.northernlight.com
http://www.webcrawler.com
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3.3.3 Content Reuse

Results for the potential of content reuse due to HTML page decomposition with our Chun-

king Tool are shown in Table 3.7. The second column shows the average number of bytes for

the base HTML object in each test set. The first value in parentheses is the percentage of

bytes that could have been reused from the previous retrieval if objects were composed from

our chunks. The second value in parentheses is the percentage of bytes that can be reused

if we only considered cases when objects do not change between retrievals. The high rate

of change for the HTML objects is consistent with the findings discussed in Section 3.2.4.

The results indicate that separating static portions of frequently changing HTML objects

from dynamic portions results in substantially higher amount of content reuse across all

test sets.

Table 3.7: Content Reuse for Popular Web Pages in October/November, 1999

Test Set HTML Bytes Images Image Bytes Total Bytes diff -e
(% Reuse, No Chg) (% Reuse) (% Reuse) (% Reuse)

Cnt300 11495.1 (77%, 23%) 5.6 (85%) 14023.8 (70%) 25519.0 (73%) 84%
Top50 17276.7 (75%, 16%) 12.1 (86%) 23921.0 (75%) 41197.6 (75%) 82%
Srcheng 14977.8 (75%, 6%) 8.4 (89%) 10686.5 (79%) 25664.3 (77%) 81%
Ecom 16826.4 (70%, 16%) 16.2 (92%) 33061.0 (83%) 49887.4 (79%) 76%

The third and fourth columns in Table 3.7 show the average number of embedded objects

and embedded object bytes respectively for each test set. The percentages in parentheses

show the amount of reuse from the previous retrieval of the page. The number of objects

shows a high rate of reuse with a bit less for the object bytes.

The total number of bytes (HTML and embedded objects) along with the percentage

of their reuse is indicated in column five. Approximately 75% of the bytes needed for

these popular Web pages could be reused from the previous retrieval of the page. While

computing these figures we measured only changes to the object content and ignored any

cache control directives returned by the server.
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The last column of Table 3.7 shows the percentage of object bytes saved if only the

difference between successively retrieved copies of the base HTML object is transmitted to

caches, instead of the entire object. We performed differencing using UNIX diff command

with option -e—the form required for the ed text editor. This was not the best differencing

tool tested in [64], but it is widely available. As shown in Table 3.7, the diff -e output

is slightly more efficient in representing the content reuse than our Chunking Tool. These

better results can occur because even chunks that change may have large portions that do

not. If HTML pages are constructed from distinct components, then differences can be

computed for each component.

3.4 Study 3: Using Object Relationships to Eliminate

Unnecessary Validations

In this study, we quantify the reduction in the number of unnecessary cache validation

requests. We use the same NLANR proxy logs as in the previous study.

3.4.1 Methodology

We assumed that each 304 Not Modified response in the logs could be eliminated if a

200 OK or another 304 Not Modified response came from the same server within a 10

second window (virtually no variation was found for larger window sizes) on either side of

the 304 Not Modified response (approximating the same page). This technique is most

beneficial for elimination of validation requests for embedded objects, such as images, CSS,

and Shockwave files. We determined whether a response carries an embedded object by

examining content type stored in the logs and by applying heuristics to the URLs present

in the logs (content type was often missing from the logs). Our heuristics examined URLs

for known file extensions, such as gif, jpg, css, js, swf, etc.
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3.4.2 Results

Results for each of the seven NLANR proxy logs are shown in Table 3.8. The per-

centage of 304 Not Modified responses is high, even though NLANR caches generally

serve as second-level caches. The third column shows that 15-32% of all requests re-

sult in a 304 Not Modified response, which is consistent with previously published re-

sults [49, 70, 4].

Table 3.8: Occurrence and Potential Elimination of Validation Checks in October/No-
vember, 1999 NLANR Proxy Logs.

Number of Responses (% Total)
in 10 sec window

Proxy 200/304 all 304 emb. objs. 304 all 304 emb. objs. 304
bo1 541056 155762 (29%) 143195 (26%) 87749 (16%) 86845 (16%)
bo2 659583 185935 (28%) 170625 (26%) 113349 (17%) 111726 (17%)
lj 413290 78283 (19%) 69780 (17%) 54210 (13%) 53393 (13%)
pa 418096 62377 (15%) 56379 (13%) 38994 (9%) 38324 (9%)
pb 505395 161539 (32%) 143407 (28%) 97727 (19%) 93944 (19%)
sd 288723 72909 (25%) 66199 (23%) 44301 (15%) 43643 (15%)
sv 872231 172385 (20%) 156794 (18%) 110770 (13%) 109069 (13%)

More important for our study is the large percentage of 304 Not Modified responses

that contain a related 200 OK or another 304 Not Modified response in their window and

the large percentage of these 304 Not Modified responses that are for embedded objects.

Column 6 shows that 9-19% of all object requests could be eliminated by removing valida-

tions that fall within a window of a 200 OK or another 304 Not Modified response from

the same server. These results are significant. They show the majority of validation re-

quests currently handled by servers due to inefficient cache consistency mechanisms can be

eliminated.

We repeated this investigation two and half years later, in May 2002, using seven new

NLANR proxy logs. Our updated results, shown in Table 3.9, are consistent with the

previous findings.
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Table 3.9: Occurrence and Potential Elimination of Validation Checks in May 2002 NLANR
Proxy Logs.

Number of Responses (% Total)
in 10 sec window

Proxy 200/304 all 304 emb. objs. 304 all 304 emb. objs. 304
bo1 174692 33474 (19%) 29928 (17%) 20826 (12%) 20315 (12%)
bo2 216955 43288 (20%) 38098 (18%) 28573 (13%) 27807 (13%)
pa 73285 11589 (16%) 10499 (14%) 7747 (11%) 7598 (10%)
pb 770677 198938 (26%) 178694 (23%) 157195 (20%) 154306 (20%)
rtp 1196419 399832 (33%) 362304 (30%) 339702 (28%) 334229 (28%)
sd 472673 93508 (20%) 84596 (18%) 70693 (15%) 69507 (15%)
sj 96210 13655 (14%) 12762 (13%) 8591 (9%) 8428 (9%)

3.5 Summary

This chapter presented a series of studies that investigated various aspects of the Web that

this dissertation builds on. We examined how resources change at a collection of servers

and found that changes in objects composing Web pages span an entire spectrum—from no

changes to changes on every access. We also found that while HTML resources change fre-

quently, their overall structure remains the same and some of the objects embedded in these

HTML pages are retained across page retrievals. The improved understanding of the nature

of changes to Web resources and relationships between objects composing pages highlights

inefficiencies in current approaches to caching and points at the potential for improvements

in Web cache performance. One potential improvement is to explicitly associate embedded

objects with their containers, so that caches can garbage collect objects that are no longer

embedded in any pages. Another potential improvement is to use retrievals of frequently

changing container objects to validate or invalidate embedded objects retained within these

containers. In fact, we showed that the latter improvement can also eliminate most of the

unnecessary validation requests that are present in the current Web. We also evaluated

component-based approach to page construction and found that it increases the reuse of

cached page bytes by 50%. Based on the improved understanding of the nature of Web
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objects and inefficiencies in how they are currently managed, in the next chapter we define

the problem that this dissertation addresses.
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Chapter 4

Problem Statement and Approach

to Deterministic Object

Management

In Chapter 2, we discussed various issues involved in the management of distributed objects

and the extensive body of previous work that examined and addressed these issues. Chap-

ter 3 presented a series of background studies that helped us better understand the nature

of Web objects. Coupled with the results from previous work, this better understanding

points at the potential for improvements in the performance of caching in distributed sys-

tems. In this chapter, we define the problem this dissertation addresses and then present

our approach to that problem.

4.1 Motivation

Many items that surround us in everyday life are built from heterogeneous components, or

objects, combined to produce a whole, finished product. A computer monitor or an office

chair is constructed from components that have different shapes, color, and are made from



4.1. MOTIVATION 61

different materials. Similar to items in the physical world, content available in distributed

systems is also often produced via composition of heterogeneous objects. Web pages may

contain a combination of text, graphics, audio, animation and executable code. Modern

computer games involve sophisticated virtual worlds with complex interaction between nu-

merous simulated objects—buildings, people, wizards, monsters, and weapons. SMIL [80]

presentations, CAD projects, MPEG-4 clips—all combine individual heterogeneous compo-

nents to produce a whole.

As a motivation for our problem, we consider one example of a composite object, a Web

page, shown in Figure 4.1, which mimics the home page of a popular news portal. Our

choice of this example is based on the fact that the Web is ubiquitous, and more readers are

likely to be familiar with the home page of a news portal than with a SMIL presentation,

specifics of a CAD project, or a distributed computer game.

The container object CO in Figure 4.1 is changing frequently—every few minutes—

because content designers update the top story, and add and remove links leading to the

major news articles. Irrespective of the manual updates, every request for CO results in a

different response because the origin server dynamically generates CO , changing which ad

banner image to display and where on the page to place it. Servers either explicitly mark

CO as uncacheable or supply no cache control information at all. Caches usually do not

cache such objects. Content designers manually update embedded objects EO1—EO3 at

irregular and unpredictable intervals. The time of the next update is unknown, but servers

can provide Last-Modified information for these objects. Instead of making changes to

objects EO4 and EO5 content designers replace them within CO with new objects EO4’

EO5’ respectively. Servers should be, and sometimes are, configured to explicitly assign

these objects large expiration times. Servers can also provide Last-Modified information

for these objects.

In Chapter 2, we discussed how existing and proposed approaches to cache consistency

manage objects EO1—EO5 and how these approaches balance the tradeoffs between va-
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Figure 4.1: Home Page of a Popular News Site

lidation requests, consistency failures, and the amount of per-client server state. In the

context of the example in Figure 4.1 and the performance tradeoffs of validation-based and

invalidation-based consistency approaches, we now define the problem of managing a set

of heterogeneous objects in a large distributed environment in the presence of distributed

caches.

4.2 Problem Statement

Given a set of related objects, with cached copies of some or all of these objects placed

throughout the network, ensure that objects are managed deterministically so no client

receives an outdated replica of an object, while minimizing the utilization of client, cache,

network, and server resources to ensure the scalability of the overall system to a large

number of clients and objects.

4.3 Hypothesis

The hypothesis of this dissertation is that we can design an object management approach

that improves upon existing heuristic- and invalidation-based object management tech-

niques so that a group of related objects in a distributed system can be managed with both

consistency and efficiency. We postulate that we can exploit object change characteristics
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and relationships to design such an approach. Given the tradeoff between consistency and

efficiency, our main objectives are: 1) eliminate consistency failures and 2) maintain no

per-client state at the server. Within the constraints of the main objectives, our third ob-

jective is to minimize the amount of consistency maintenance traffic generated by servers

and caches.

4.4 Foundation for Our Approach to Deterministic Object

Management

The fact that objects are combined together to produce a larger object suggests that ob-

jects are tied with relationships. Existing cache consistency approaches view each object

in Figure 4.1 in isolation from other objects and synchronize each object with its replicas

independently of other objects, thus ignoring information about object relationships. We

believe we can exploit relationships between heterogeneous objects to address the problem

defined above. For example, servers can first examine objects constituting the page in Fi-

gure 4.1 and identify the container CO as the most frequently changing object. Servers then

inform caches that objects EO1—EO5 should be cached until servers explicitly invalidate

them. Servers also instruct caches to fetch object CO on every access. When caches sub-

sequently return to obtain a new version of CO , servers piggyback invalidations for objects

EO1—EO5 . We could also separate parts of the container CO that change frequently from

parts that change rarely and treat the resulting components as distinct objects.

In our background studies we examined the Web for the presence of key elements—

heterogeneity of object changes and object relationships—and found that these elements are

present. We also found that exploiting object relationships can reduce validation requests

and constructing pages from components can save bytes. In the rest of this chapter, we

describe how we exploit the information about object relationships and object heterogeneity

for deterministic object management in distributed systems.
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4.5 Object Change Characteristics

Objects differ along a number of dimensions: size, content type, and frequency of change.

All of these object characteristics may have implications for object management. In this

dissertation we focus on the consistency issues, and, therefore, are more interested in object

characteristics that directly influence consistency of object replicas. The characteristic that

interests us most is the frequency of object changes. In this section we first discuss how

objects change and then provide definitions of object change characteristics. We also suggest

how information about object changes can assist in object management.

4.5.1 Object Changes

In Section 3.2.4, we studied the rate of change of real Web objects and found objects that

never change, that change on every access, and that change at intervals between these

two extremes. In Section 4.1, we discussed an example of a realistic Web page where

characteristics of objects mimic the findings of our experimental studies. The natural way

to classify objects, therefore, is based on how frequently they change. Such a classification

should span the entire spectrum of possible update intervals. The example in Section 4.1

also mentions another dimension along which we can classify object changes—predictability

of changes. An object could be updated at well-known or at unpredictable intervals. There

could be other dimensions along which one could classify object changes. For example,

one could categorize all changes based on their extent—whether an object was changed

just a little, substantially, or whether the object’s content is completely different from the

previous version. In fact, the HTTP/1.1 protocol [31] provides a mechanism to mark an

entity tag as “weak” indicating that servers prefer to change entity tag validators only on

semantically significant changes. While taking into account the extent of changes could

improve performance via techniques such as delta encoding, as discussed in Section 2.2.1,

the extent of changes is irrelevant for issues of consistency. In this dissertation, we consider

only the frequency and predictability of object changes.
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4.5.2 Definitions of Object Change Characteristics

Classifying objects based on how frequently they change and whether their changes are pre-

dictable is a problem of partitioning a two-dimensional space into zones, or categories. We

have identified four categories of object changes, shown in Figure 4.2. The two-dimensional

space can be divided into two subspaces based on the predictability of changes, since a

change is either predictable or not. The three categories on the left side of the figure

represent predictably changing objects. Objects in these categories can be managed deter-

ministically because the server has a priori knowledge at what time or upon which event

the changes occur. The category on the right side of the figure represents objects that

change unpredictably and cannot be managed deterministically on their own. Objects in

the unpredictable category are the ones for which we must find a way to manage them

deterministically. Our division of the two-dimensional space based on the frequency of ob-

ject changes results in three subspaces: one where objects never change, another where

objects change on each access, and the subspace that includes all changes in between the

two extremes.

on
 e

ac
h

ac
ce

ss

Static

Changes predictably?
(Can be managed deterministically?)

Cacheable

Uncacheable

Legend:

D
e

te
rm

in
is

tic
 (

N
D

)
N

o
n

Relatively
Static
(RSt)

Relatively
Dynamic
(RDyn)fr

eq
ue

nt
ly

ra
re

ly
ne

ve
r

yes no

Born−on−Access
(BoA)

C
ha

ng
es

 h
ow

 o
fte

n?

P
e

ri
o

d
ic

Figure 4.2: Classification of Object Change Characteristics

We have shown the logic behind our classification of objects based on their change

characteristics. We now define each category of object change characteristics and give

realistic examples of objects in each category. We use the following notation: t0 is the
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creation time of an object; ti is the time of the ith modification of an object; and r is

the time at which a cache receives a request for an object. In formally defining change

characteristics, we are asking the following question: “Given ti and r, can one determine

ti+1, and if so, how?” If the server can compute ti+1 for an object, then it can provide

caches with explicit instructions for how to manage the object.

An object is classified as Static (St) if the time of its first modification is given as:

ti+1 = ∞, i = 0. Caches can store St objects for an arbitrarily long time and do not need

to validate them because St objects never change. Examples of St objects are articles in

on-line digital libraries and mailing list archives.

An object is classified as Periodic (Per) if its modification times can be computed

as follows: ti+1 = f(ti). In the simplest case, f(ti) = ti + const. In general, f(ti) can be

arbitrarily complex. In practical terms, Per objects change at predictable intervals, such as

every few minutes, every hour, day, or week. Servers can attach explicit expiration times to

Per objects. Caches can deterministically store such objects and mark them as stale when

they expire. Examples of Per objects are samples automatically collected by a device at

specified intervals, such as snapshots captured by a camera.

A Born-On-Access (BoA) object is one whose next modification time coincides with

the next request for it: ti+1 = r. The content of a BoA object is unknown until the object

is accessed due to its dependency on client-specific information contained in the request,

statistics accumulated by the server, or other data available only at the time of the request.

Servers should inform caches that BoA objects must be retrieved on every access.

An object is classified as Non-Deterministic (ND) if it is not possible to determine

the time of the next update, even if an update is imminent: � ∃f(ti), such that ti+1 = f(ti).

The sub-classification of the ND objects into Relatively Dynamic (RDyn) and Rela-

tively Static (RSt) is based on the relative frequency of their updates. RSt objects are

not expected to change in the near future, while RDyn objects are expected to undergo

modifications in the near future. We address the non-deterministic nature of freshness
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intervals for these objects in Section 4.8 and discuss how the distinction is used.

4.6 Types of Object Relationships

In distributed systems, objects are often related to each other. In this section we examine a

wide range of object relationships, discuss the attributes that objects share, and show how

to exploit the relationships for object management.

4.6.1 Composition

One type of object relationship is a composition relationship, where each object is a building

block of a whole, finished entity, such as a document or a presentation. In the context

of object composition, there is the notion of a container (or parent) and embedded (or

child) objects. A container is an object that contains place holders for, or descriptions of,

embedded objects. Embedded objects may in turn be containers. For example, an HTML

page may embed a FRAME or a LAYER containing an image. Figure 4.3a presents a graphical

depiction and Figure 4.3b shows a tree representation of the composition relationship.

EO1 EO2 EOn

CO...

...

siblings siblings

container

embedded
object

a. Graphical Depiction

CO

EO2EO1 EOn...

parent

child

b. Tree Representation

Figure 4.3: Container Object and a Set of Embedded Objects

The set of objects composing a document could be treated as a volume. A client’s

retrieval of the container or an embedded object from a server allows the server to piggyback
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invalidations for other objects from the same volume that the client has cached.

4.6.2 Temporal

Objects composing a document or a presentation may have a temporal ordering, such that

one set of objects overlaps with or follows another set of objects in time. Consider a

SMIL [80] multimedia presentation that simultaneously displays text and images, and plays

out an audio clip and a video fragment, followed by a longer movie accompanied by a sound

track, concluding with additional text and images. Retrievals of the objects required at

the start of the presentation yield opportunities for validation (or invalidation) of cached

objects required later in the presentation.

4.6.3 Common Dependency

Servers group objects generated from the same underlying data, such as a database, into

volumes. Caches cache and reuse copies of these objects until the underlying database

changes and the server invalidates the entire volume. Caches mark all invalidated objects

as stale and validate them with the server before reuse.

4.6.4 Common Change Characteristic

Objects that have the same change characteristic may be considered related. Such objects

may be updated by a script that runs at a given time or may depend on the same underlying

data source. This type of relationship could be exploited if objects also have another type of

relationship. For example, all BoA objects that also have a composition relationship could

be bundled together for more efficient content delivery [96].

4.6.5 Shared Objects

Objects that belong to more than one composite object are shared. For example, Web pages

at a site may all include a corporate logo or a navigation menu. Shared objects should be
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grouped into a global volume and managed separately from the page-specific objects. Ideally,

objects within the global volume would also share the same change characteristic so that

few invalidations would be needed for infrequently changing objects.

4.6.6 Access Patterns

Establishing relationships between objects based on user requests was proposed in [21].

Grouping objects into volumes based on the probability of a subsequent request is an op-

portunity for servers to provide hints to client caches, make prefetching predictions, or

improve heuristic cache consistency. However, since the relationship is probabilistic, and

subsequent accesses are not guaranteed, unlike with the composition relationship, this type

of relationship cannot be used alone for ensuring strong cache consistency.

4.6.7 Structural Organization

Grouping objects based on structural organization, such as directory structure, was pro-

posed in [21]. Objects (files) residing in the same directory may, in fact, share a common

characteristic. They could belong to the same composite object or have the same change

characteristic. A separate directory may be used for globally shared objects. Thus, struc-

tural organization may indicate that objects are related, but does not guarantee that this

relationship can be exploited for managing objects.

4.7 Combining Object Relationships with Object Change

Characteristics

We have provided a classification of object change characteristics and discussed various

relationships that objects may have. We now show how object relationships can be combined

with object change characteristics and identify combinations that are the most useful for

object management. We focus on the composition relationship as it is a useful one to
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exploit.

In Figure 4.3b we showed a tree representation of a composition relationship for a general

case of a parent object and n child objects. Here we first consider a simple case of two

objects—a parent and a child—tied by a composition relationship, as shown in Figure 4.4.

There are four possible change characteristics that can be assigned to each of the two

objects. The total number of possible combinations of object change characteristics is thus

16, as shown in Figure 4.5. Not all of these combinations are useful, however. St objects

never change and thus their replicas never need to be synchronized with the originals. If

a cache has a copy of a St object, it has no need to contact the server again. Therefore,

the relationships that St objects have with other objects, shown in Figure 4.5 with the

fill style S1, cannot help us with object management and we eliminate them from further

consideration. That leaves us with nine possible combinations.

Child

Parent

Figure 4.4: Tree Representation of a Composition Relationship Between Two Objects

Objects with the Per change characteristic change predictably, as we discussed in Sec-

tion 4.5 and, therefore, can be managed deterministically on their own. Can Per objects

help manage other objects? They do change, unlike St objects, and must be periodically

fetched from the server. The points in time when they need to be fetched, however, may

not coincide with the client request for the related object. If requests for the two related

objects arrive less frequently than the update interval of the Per object, then the relation-

ship is useful. If, however, requests are more frequent than Per object updates, then the

relationship is not useful. In general, requests can arrive at any point in time. We thus
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Figure 4.5: Possible Combinations of Change Characteristics for Two Related Objects

cannot predict whether in any given situation the relationships that Per objects have with

other objects, shown in Figure 4.5 with the fill style S2, is going to be useful or not. We

eliminate Per objects from further consideration in the context of object relationships. That

leaves us with four possible combinations of object change characteristics.

Of the four remaining combinations, we eliminate one where both objects have the

BoA change characteristic, shown in Figure 4.5 with the fill style S3, since both objects

can be managed deterministically on their own. We could, however, exploit the fact that

the two objects have a common change characteristic and bundle them together into one

(larger) BoA object to reduce the number of required requests to the server and achieve

more efficient delivery [96].

We are left with the following combinations:

• BoA-ND and ND-BoA. Each of these two combinations involves a BoA and an ND

object. The BoA-ND combination has a BoA parent object and an ND child object

and is shown in Figure 4.5 with the fill style S4. The ND-BoA combination has an ND

parent object and a BoA child object and is shown in Figure 4.5 with the fill style S5.

The relationship that a BoA object has with an ND object is useful for our purpose.

Since the ND object changes unpredictably, it cannot be managed deterministically
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on its own. The retrieval of the related BoA object, however, can be used to manage

the ND object. Caches can be instructed that they may store the ND object until

the server explicitly notifies them that the ND object has been updated. The server

provides such notification when the cache retrieves the related BoA object.

• ND-ND. In this combination, shown in Figure 4.5 with the fill style S6, both parent

and child objects have the ND change characteristic. The relationship between two

ND objects does not appear to be useful, since both objects change unpredictably and

both cannot be managed deterministically. One approach is to manage both objects

heuristically, and use the retrieval of one object to invalidate the other. Our goal,

however, is deterministic object management. Therefore, we force the validation of

one of the two ND objects on each access. The server will provide invalidation for

the other ND object, if it has changed, upon receiving such a validation request from

the cache. When deciding on which object of the two to validate on each access, the

distinction between RSt and RDyn subcategories becomes important. Validating a

RSt object results in fewer unnecessary requests to the server.

We have examined 16 possible combinations of object change characteristics that two

objects in a composition relationship produce, and selected three combinations that are use-

ful for deterministic object management. These three combinations are shown in Figure 4.6.

Our discussion so far involved only two objects—the simplest case. We now extend the dis-

cussion to an arbitrarily large number of related objects. Since we have already determined

that relationships that St and Per objects have with other objects are not useful for our

purpose, we do not consider these two types of objects here.

Suppose we add one more ND object to each of the three combinations in Figure 4.6 such

that the container object embeds two objects instead of one or the child object becomes

the parent to the new ND object. In each of the three cases, the newly added ND object

should be grouped with the other ND object to produce a volume. The retrieval of the

BoA object in the first two combinations, and the retrieval of one of the three ND objects



4.7. COMBINING OBJECT RELATIONSHIPS WITH OBJECT CHANGE
CHARACTERISTICS 73

ND

BoA

ND

NDND

BoA

Figure 4.6: Useful Combinations of Object Change Characteristics

in the last combination, invalidates all objects in the volume that have changed since the

previous retrieval. It does not matter whether we have only one ND object that is being

managed or two—the approach to their management remains the same. We can add more

ND objects, as many as desired, and group them all into a volume and manage them in the

same fashion as a single ND object.

Suppose instead of an ND object we add one BoA object to each of the three combi-

nations in Figure 4.6, again as a child of the existing container or the child of the existing

child object. While the newly added BoA object can be managed deterministically on its

own, the question is whether the addition of the BoA object affects the management of the

existing ND object. To answer the question we consider the three combinations separately:

• BoA-ND. The BoA-ND combination now has two BoA objects, each of which could

potentially be used to obtain invalidations for the ND object. We choose to retain

the original, top-level BoA object for that purpose as it is retrieved before any other

object in the tree. So the addition of a new BoA object does not change how the ND

object is managed. We can add as many BoA objects to the BoA-ND combination as

desired and still manage the ND object using the top-level BoA object.

• ND-BoA. Adding one or more BoA objects to the ND-BoA combination does not

change how the ND object is managed. We can use the existing BoA object or one of

the newly added ones to manage the ND object.

• ND-ND. Before the BoA object is added to the ND-ND combination, one of the two

ND objects is used to validate the other one. With the addition of the BoA object
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we no longer have to force the retrieval of one ND object. We can now group the

two ND objects into a volume and use the new BoA object to manage all objects

in the volume. This management strategy is the same as the one we applied to the

ND-BoA combination. Adding subsequent BoA objects to the ND-ND combination

has no further effect on the management strategy.

In all three cases just discussed, it might be possible to bundle two or more BoA objects

into one, as discussed earlier. Bundling multiple BoA objects into one does not affect the

management strategy.

We conclude that the three combinations shown in Figure 4.6 depict important combi-

nations of a composition relationship and object change characteristics that are useful for

deterministic object management. Adding more objects to each of the three combinations

leads to more complex trees than those shown in Figure 4.6. However, we showed that

objects in more complex trees, irrespective of the change characteristics of the newly added

objects, can be managed in the same way as objects in one of the three simple trees in

Figure 4.6. We call each of the three combinations a pattern. In the context of a Web page

we call each combination a page pattern.

The set of objects composing a Web page in Figure 4.1 can be represented by a tree,

as shown in Figure 4.7. If we replace the names of objects in the tree with their change

characteristics we obtain a tree shown in Figure 4.8. The two St objects can be managed

deterministically on their own, as can the BoA object. The three RSt objects need to be

grouped into a volume. The retrieval of the BoA object is used to obtain invalidations for

the volume. So, the management strategy for this Web page is the same as for the BoA-ND

combination. We thus say that this Web page can be represented by the BoA-ND page

pattern.
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Figure 4.7: A Tree Representing the Home Page of a Popular News Portal
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Figure 4.8: A Tree Representing Change Characteristics of Objects Composing the Home
Page of a Popular News Portal

4.8 Using Object Relationships to Ensure Strong Cache

Consistency

In the previous section, we have discussed all possible combinations of object change charac-

teristics with the composition relationship between objects and identified three important

patterns. In this section, we describe our approach to deterministic management of dis-

tributed objects that uses these patterns.

Our approach, called MONARCH (Management of Objects in a Network using Assem-

bly, Relationships, and Change cHaracteristics), takes advantage of the unique opportunities

presented by a large distributed system, such as the Web, where individual objects with a

mix of change characteristics are often grouped together into a composite object (a Web

page). In MONARCH, servers first classify objects based on object change characteristics

and group related objects into volumes. In general, any set of related objects could be called
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a volume. MONARCH groups objects constituting a composite object into a volume. After

objects are classified, servers analyze objects in each volume and determine which of the

tree patterns the volume can be described by. The servers also designate one of the objects

in each volume, the manager object, to manage all ND objects in the volume. The servers

then assign all objects in each volume Content Control Commands (CCCs). Servers and

caches use these commands to manage all objects deterministically. When a cache needs to

serve objects from a particular volume, it must first contact the server to retrieve or vali-

date the manager object for that volume. The cache indicates to the server which volume

it is interested in and which version of that volume it currently has. The server satisfies

the request for the manager object and piggybacks [49] invalidations for those ND objects

from the same volume that have changed since the previous request from the cache. For

the server to be able to invalidate these ND objects on subsequent visits from clients, the

server must know the versions of these ND objects that each client has. MONARCH does

not maintain per-client state at the server, however, and servers do not keep track of which

versions of which objects they served to clients. Instead, servers supply clients with version

information for each object and volume identifier and volume version. Servers rely on their

clients to provide that information on subsequent visits.

4.8.1 Retrieval Order

A composition relationship leads to certain ordering of object retrievals: a parent object is

retrieved before its child objects. In fact, a client may not even know which child objects are

available until it retrieves and examines a parent object. MONARCH exploits the retrieval

order of the composition relationship to enable servers to report volume information to their

clients. Servers attach volume information to the top-most container object.
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4.8.2 Selecting a Manager Object

The manager object is determined by a given pattern of the set of objects. If a pattern is

BoA-ND, then the top-most BoA object is the manager. If a pattern is ND-BoA, then one

of the BoA children of the top-most ND object is the manager. Unless all BoA objects are

combined into one (larger) BoA object, based on the fact that they have the same change

characteristics, the pattern alone does not completely determine which of the BoA objects

should be chosen as the manager. One approach would be to randomly select one BoA

object. Since all BoA objects must be retrieved from the server, it makes no difference

which one is used as the manager. On the other hand, if one BoA object contains another

BoA object, and if the contained one is selected as the manager, it may not be part of the

set of objects on the second retrieval due to change in the container BoA object. Thus the

retrieval of the manager in such a scenario would be unnecessary. In situations where more

than one object in a set is a candidate to be a manager object, MONARCH favors those

objects that are closer to the root of the tree.

Finally, if a pattern is ND-ND the distinction between RSt and RDyn objects, mentioned

in Section 4.7, becomes important. If the ND-ND pattern can be represented as the RDyn-

RSt pattern, then the top-most RDyn object is the manager. If the ND-ND pattern can be

represented as the RSt-RDyn pattern, then one of the child RDyn objects is the manager.

The rules for selecting one of many RDyn objects as the manager are the same as for the

ND-BoA case. If, however, the ND-ND pattern is represented by either the RSt-RSt or the

RDyn-RDyn pattern, then the top-most object is selected as the manager.

The top-most object is also designated as the manager when ND objects are not sub-

classified into RSt and RDyn. The consistency guarantees provided by MONARCH are not

undermined by the lack of subclassification of ND objects into RSt and RDyn or erroneous

subclassification where rarely changing objects are marked as RDyn and frequently chang-

ing objects are marked as RSt. The lack of proper classification of ND objects, however,

may cause inefficiency as some validations of the manager object become unnecessary.
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A perfect manager is a BoA object because caches must retrieve it on each access and

can use that retrieval to validate or receive invalidations for ND objects related to the BoA

object. When a BoA object is not available, however, we use an ND object as the manager,

even though its validation may be unnecessary. As we mentioned in Section 4.7, we are

willing to sacrifice on efficiency in order to provide strong consistency.

4.8.3 Content Control Commands and Object Management

The idea behind CCCs is for servers to distill all the information that they have access

to into concise and explicit instructions for caches on how to manage each object. Caches

examine a CCC command associated with each object and behave accordingly. In this

section we discuss the CCC commands used by MONARCH.

St, Per, and BoA Objects

The CCC commands that MONARCH assigns to St and Per objects and to BoA objects

that have no related ND objects are shown in Table 4.1. MONARCH uses CCC commands

for objects with these change characteristics for uniformity reasons. These objects could

be managed using mechanisms currently available in the HTTP protocol [31]: Per objects

can be assigned explicit expiration time via the Expires or the Cache-Control: max-age

header, and St objects can also be assigned an expiration time that is far into the fu-

ture; BoA objects with no related ND objects could be marked as uncacheable using the

Cache-Control: no-cache header.

Table 4.1: CCC Commands Used by MONARCH for St and Per Objects and BoA Objects
with no Related ND Objects

Object Change
Characteristic CCC Command

St Cache
Per Cache, Validate after TTL or Expires
BoA Not Cache
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BoA-ND Pattern

As we have already discussed, when a set of objects can be represented by a BoA-ND

pattern, the server selects the top-most BoA container as the manager and groups all ND

objects in the set into a volume. The server assigns each ND object a CCC informing its

clients that these objects may be cached and will be explicitly invalidated by the server, as

shown in Table 4.2. The CCC that the server attaches to the BoA object instructs caches to

discard the contents of the object, but keep the volume identifier and volume version that

it carries, as discussed in Section 4.8.1. On subsequent retrievals of the BoA object, caches

present the cached meta information to the server. Based on that information the server

determines if any members of the volume associated with the BoA object have changed.

The server piggybacks [49] invalidations for ND objects onto its response for the BoA object.

Lack of invalidations in the server response indicates to caches that all cached ND objects

in that volume are still fresh.

Table 4.2: CCC Commands Used by MONARCH for the Manager and Managed Objects

Page CCC for the
Pattern Manager Object Managed ND Objects
BoA-ND Cache Meta info Cache until invalidated
ND-BoA Not Cache Cache with precondition
ND-ND Cache, Validate Cache until invalidated

ND-BoA Pattern

When a set of objects is described by a ND-BoA pattern, the server selects one of the

BoA objects as the manager and groups all of its ND siblings along with the ND container

into a volume. The CCC that the server assigns to the ND container instructs caches

that they may cache the object but must satisfy the provided precondition—retrieval of the

manager BoA object—before re-using the cached copy, as shown in Table 4.2. The CCC

that the server assigns to the BoA manager instructs caches to discard the object. The
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server provides invalidation for the volume members when the cache returns to satisfy the

precondition.

ND-ND Pattern

When a set of objects is described by an ND-ND pattern, the server assigns different CCCs,

depending on which of the two ND objects is chosen as the manager. In situations when the

set of objects is described by one of the following three patterns—RSt-RSt, RDyn-RDyn,

and RDyn-RSt—the server assigns the top container a CCC that allows caches to cache

the object, but requires them to validate that object on every access. In the fourth case—

RSt-RDyn—the server instructs caches to cache the top-most container object, but satisfy

a precondition—validation of the RDyn manager object—on every access. In all cases, the

server groups all ND objects in the set, except for the manager, and invalidates them when

caches return to validate the manager object. CCCs for the objects on the page with the

ND-ND pattern are shown in the last row of Table 4.2.

The CCC command assigned to the manager object in the ND-ND pattern is the same

as the one assigned to Per objects in Table 4.1, except it does not explicitly specify a Time-

To-Live or expiration time. Lack of such explicit value indicates validation on every access

by default. The CCC command assigned to the managed ND objects is actually the same

as the one assigned to St objects in Table 4.1, except invalidation can never occur for St

objects. When a page contains no ND objects, including cases when the page is described

by the BoA-BoA pattern, all objects on the page are assigned CCC commands shown in

Table 4.1.

4.8.4 Shared Objects

At the core of the MONARCH approach is the composition relationship between a BoA or

an ND object and a set of ND objects. Exploiting such a relationship fails to guarantee

strong consistency, however, if objects are shared between composite objects. Consider the
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following case of consistency failure. Two distinct objects CO1 and CO2 contain the same

ND object EO . A cache retrieves and caches object CO1 and its volume. Subsequently,

object EO changes at the server. After that the cache retrieves object CO2 and all members

of its volume except for EO , which the cache already has. The cache uses its stale copy of

EO . The reason the server never invalidated EO is because the cache never indicated to the

server that it had a cached copy of that object since the cache was retrieving a page that it

has never seen before.

To solve this problem, we introduce a shared , or global , volume containing all ND objects

at a server that are shared by more than one composite object. The server might identify

such objects by using a common directory for their storage. Volumes that incorporate

objects contained in only one composite object are called local . When the server sends

the manager object to the cache, it includes meta information for both local and global

volumes. This approach provides efficient management of shared objects while ensuring

strong consistency when they are cached.

We expect that all objects at a site either belong to one of the local volumes or to

the shared volume. However, it is possible that an object may be transferred from a local

volume to the shared volume or from the shared volume to one of the local volumes. For

example, suppose EO is originally contained only in CO1 . The cache retrieves and caches

objects CO1 and EO . Later on, CO2 is updated such that it now embeds EO , thereby

transferring EO from the local volume associated with CO1 to the shared volume. If EO

changes, and if the cache revisits the server to obtain CO2 , the cache will serve stale EO to

its client. If objects at a site do migrate between local volumes and the global volume then

the server can always provide global volume version to caches. When the cache retrieves

CO2 from the server, it presents the server with the version of the global volume that

it obtained from the server earlier. The server determines that EO has been added to

the global volume since the cache’s previous visit and notifies the cache. The notification

includes the current version of EO . The cache determines that its copy of EO is stale and
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obtains the new version. To simplify matters, all objects, especially those that are expected

to change, should be separated into local and global. If an object keeps moving between

local and global volumes, it should always be treated as global.

4.9 Summary

In this chapter, we motivated the problem of deterministic object management in a dis-

tributed system using a realistic example taken from the Web. We then defined the problem

addressed in this dissertation. Our foremost objective is to eliminate consistency failures,

while maintaining no per-client state at the server. In addition to that, our goal is to reduce

the amount of consistency maintenance traffic generated by servers and caches.

This chapter also described the approach that we take in this dissertation to address

the problem of providing strong consistency for objects in a distributed system. We de-

fined object change characteristics, discussed different types of relationships that objects

in a distributed system may have and suggested ways to exploit these relationships for

object management. We also showed how we use object relationships in conjunction with

object change characteristics to ensure strong cache consistency in a distributed system. In

the next two chapters, we validate our approach via implementation and evaluation using

simulations.
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Chapter 5

Prototype Design and

Implementation

We have designed and built a prototype system to investigate whether is it feasible to im-

plement the MONARCH approach to object management. The system consists of three

components: the MONARCH Content Management System (MCMS), MONARCH Web

Server (MWS), and MONARCH Proxy Server (MPS), as shown in Figure 5.1. We de-

scribe the design of each component below. All components are implemented as a set of

Object-Oriented (OO) Perl modules with the MWS and MPS components running in the

Apache address space under mod perl. Apache was chosen over Squid because it has better

documentation, making it easier to install, configure, and grasp. Another advantage of

the Apache Web server is the availability of the mod perl module, which embeds the Perl

interpreter into the address space of the Web server. The combination of Perl and Apache

creates a flexible environment for rapid prototyping.
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Figure 5.1: Architecture of the Prototype System

5.1 Content and Its Organization

In this section we describe how Web pages are constructed, where they are stored, how ob-

jects are marked with their change characteristics, and how and where change characteristics

and CCC commands are stored in the prototype system.

To make our discussion more concrete, consider a Web page, index.html, with a few

embedded objects, such as logo.jpeg, navmenu.cmp, and top story.cmp. All objects are

stored in files residing in the directory test accessible to the Web server. Embedded objects

include images and components. Images are embedded using the standard img tag defined in

HTML, and components are embedded (included) using the GI (“Generic Include”) tag that

we introduced. To simplify our page parser, we represented other possible embedded objects,

such as CSS and JavaScript code, using images. Components embedded using GI tags are

stored in separate files with the cmp extensions. The specific extension for components is

a matter of convenience, rather than a requirement. Components may contain arbitrary

HTML content, and may embed other objects, such as images and components.

Once objects are created, it is necessary to tag them with appropriate change characte-

ristics. With industrial-strength content management and publishing systems, it should be

possible to use a graphical interface to perform that task. In our prototype system the task
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is carried out using a text editor. For each object, there is an identically named file in a spe-

cial subdirectory .chngchar, containing the change characteristic of the respective object.

For example, for the object top story.cmp, residing in the directory test, there is a file

named top story.cmp, residing in directory test/.chngchar that contains the following

text: CHCHAR = RDyn, indicating that top story.cmp has the RDyn change characteristic.

If a given object does not have a matching file in subdirectory .chngchar, it is assumed

that that object has the RSt change characteristic. Having a default change characteristic

allows one to minimize the number of explicitly tagged objects at a site. Only those ob-

jects that are known not to be RSt must be tagged. One might also decide to use the file

system structure to aide in assigning change characteristics. For example, all objects in the

images directory are RSt, and all objects in the papers-in-pdf directory are St, etc. In

our implementation, in addition to the change characteristic itself, the file in the .chngchar

subdirectory may also contain extra information, such as the TTL or absolute expiration

time for periodic objects.

In addition to the file describing the change characteristic, each object also has another

file associated with it describing the CCC assigned to the object. The CCC file is named

after the object file, and is stored in the directory .meta. For example, the CCC assigned

to object top story.cmp is stored in the .meta/top story.cmp file. Similar to having a

default change characteristic, it is possible to have a default CCC command. However,

given that all CCC commands, and files they are stored in, are created automatically by

software, we did not implement a default CCC command.

5.1.1 Database

Information about all objects at a site is added to a relational database. The database

consists of the following tables:

• The change char table stores all possible change characteristics: St, RSt, RDyn, Per,

and BoA. Each change characteristic is associated with a unique identifier, which is



5.1. CONTENT AND ITS ORGANIZATION 86

used by other tables to refer to change characteristics.

• The objects table stores names and change characteristics of all objects at a site.

Change characteristics are stored as identifiers taken from the change char table.

Each object is also associated with its own unique identifier.

• The object revisions table stores object revisions. Each entry in this table asso-

ciates an object’s identifier with that object’s version. Currently, an object’s version

is implemented as the object’s last modification time.

• The volume membership revisions table stores volume membership revisions. Each

entry in this table contains the volume identifier, volume version, lists of objects

added to and deleted from the previous version of the volume, and a list of current

volume members. Initially, the first two fields for each volume start out simply as

the identifier and version of the top-most container object. We provide more details

on volume versioning in Section 5.3.1. Storing a list of added and deleted members,

in addition to the complete list of volume members, for each volume revision, is

redundant. Initially, we stored only differences, or deltas, between successive volume

revisions, which required us to determine the complete list of volume members upon

object updates and upon client requests. We also realized that computing a difference

between two volume revisions required us to examine all container objects in the

volume and not just the modified objects because different containers may embed the

same objects. To simplify our implementation, we switched to storing the complete list

of volume members for each volume revision. The lists of added and deleted members

are not currently used by the prototype system and the respective columns could be

safely deleted from the table. We mention them here to emphasize the evolution of

the system design process and the fact that deltas were considered.

The database itself is implemented using the popular and open-source MySQL software.

Similar to Apache, MySQL is widely used, robust, and has great on-line documentation
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and published books available. In addition, there exist freely available Perl modules that

provide an easy to use interface to the MySQL database. MySQL proved to be easy to learn,

install, and use. All database operations, such as adding an object or volume revision to

the database, retrieving information about a particular volume from the database, etc. are

carried out via a set of custom object-oriented accessor methods that we wrote. Once

developed and debugged, all their functionality is hidden in a Perl object that is used by

the caller scripts.

5.2 MONARCH Content Management System

Once the desired objects are created or updated and are copied into a directory readable by

the Web server, they must be processed. Processing could be triggered by the script that

copies objects from a staging server to the production server. It could also be initiated from

a shell script from which the text editor used to create/update objects is called. In this

section we describe the details of how such processing is done by the MONARCH Content

Management System (MCMS).

We implemented MCMS as a collection of OO Perl modules. The top-level Perl script

is fairly short since it simply calls a few methods implemented by the Site object (Site.pm

Perl module). A number of site-wide configuration options can be specified in a file that is

passed to the Site’s constructor. The top-level script takes a list of objects to be updated

as its arguments, or constructs such a list itself by reading all files with extensions jpeg,

cmp, and html from the default directory, and passes that list to the update objs method

of the Site object.

The core of the MCMS system is the Web Object Cache Compiler (WOCC) that analyzes

the relationships between objects in conjunction with the object change characteristics and

compiles them into Cache Control Commands (CCCs).
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5.2.1 Object Processing

In this section we provide a high-level overview of how object processing in the update objs

method is done. In later sections we provide more details of the algorithm.

Given a list of objects to be created or updated, the update objs method performs the

following steps:

1. It first constructs two lists: one containing only root (top-most parent) objects and

the other one containing all other (non-root) objects. Currently, all objects with the

html extension fall in the former category.

2. For each root object, the method calls the preprocess volume method, which creates

a new Object object and adds it to an internal hash table. The preprocess volume

method also parses the root object, constructs a list of objects embedded in the root

object, and then calls itself recursively on each embedded object. Thus, after the

preprocess volume method is done with one root object, the internal hash table

contains all objects that are required to render the top-level object (Web page) in a

Web browser.

3. The next step is to process each non-root object that was passed to the update objs

method using the same recursive preprocess volume method. Those non-root ob-

jects that were already processed during the previous step are skipped.

4. For each non-root object it is necessary to determine which root objects embed them.

This information is obtained from the volume membership revisions table of the

database. Each of the root objects (there could be more than one for each non-root

object) is also processed using preprocess volume and is added to the internal hash

table.

5. At this point we have a hash table that contains all the objects that must be updated

in the database. The next step involves finding a manager for each of the volumes.
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Method find manager is invoked on each of the root objects to carry out that task,

followed by another method, either assig cccs or assign standalone cccs, that

assigns CCCs to all members of the volume. For those objects that are not part of

any volume, we also assign CCCs, using the assign standalone cccs method.

6. Once the manager is found and the appropriate CCCs are determined, the objects are

tagged with their respective CCCs. Version information for each object is added to

the database. For each root object, we also construct a full list of embedded objects

and add volume membership information to the database.

5.2.2 Volumes

In the current implementation, MONARCH groups all objects composing a Web page into

a volume. We faced a number of design decisions regarding volume representation and

describe them in this section. It is helpful to envision a Web page represented as a tree, with

the container object represented as the root of the tree, as shown in Figure 4.7. Children

of the root node may be leaf nodes or parent nodes containing their own children.

Volume Revisions

We can identify two types of content changes: changes that do not affect volume membership

and changes that do affect volume membership. The question is which changes should affect

the volume version. One possibility is to update the volume version when any of the objects

in the volume changes, even if no objects are removed from or added to the volume. Another

possibility is to create a new volume version only when volume membership changes. We

chose the latter option because we wanted to decouple the two types of changes and be able

to differentiate between them. One could envision a situation where volume membership

remains unchanged while individual volume members undergo numerous updates. In our

implementation, there is no need to create new volume revisions, and, therefore, the amount

of state maintained does not increase.
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Subvolumes

Another question is what information should be stored for each volume. We certainly need

to assign a name or an identifier and version information to each volume. We also need to

keep track of which objects are the members of each volume. We could compile and store

a list of all members of a volume, or we could compile and store a list of only the children

nodes. The latter approach uses the notion of subvolumes, where we store a list of children

for each node in the tree, and recursively assemble the list of all members when required.

Intuitively, it may seem that the subvolume approach is better than storing a full list of

volume members (it did seem that way to us at first; we even made an attempt to implement

subvolumes). The subvolume approach, however, has a number of drawbacks. It does not

offer any space savings over its alternative, and may even require a bit more space. A more

serious problem with the subvolume approach is how to maintain volume versions. When

one object in a volume changes, we can easily identify the affected subvolume and update its

version. Do we then recursively find all encapsulating subvolumes and update their versions

as well? Another issue is how to handle invalidations. When a client presents the server with

the name and version of the previously retrieved volume, the server needs to determine which

objects need to be invalidated. Finding all such objects requires the server to construct the

list of volume members by combining lists obtained for each subvolume. Two or more

subvolumes within the same volume may contain some of the same objects, in which case

the server needs to eliminate duplicates. The server needs to do all this processing as part

of servicing the client’s request, increasing the response time. To summarize, while at first

subvolumes seemed a good design decision, further thinking and prototyping convinced us

to compile and store a list of all volume members once, when objects are added to the

database, simplifying implementation and eliminating extra work that the server has to do

while serving requests.
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Volume Deltas

When a page is updated in a way that some objects are removed from or added to the

page, volume membership changes, and MCMS must create a new volume revision. A

question arises whether MCMS should store a list of volume members for the new revision

or a difference (delta) between the previous and the current lists of volume members, to

reduce the amount of space required. Note that this question applies even if MCMS uses

subvolumes.

Early on in the design of the MCMS system, we decided to store volume membership

deltas. Each new revision of a volume contains a list of objects deleted from the previous

version of the volume and a list of objects added to the volume. Implementation complexity,

and the fact that the server needs to re-construct older volume versions while processing

client requests, resulted in our decision to switch to storing a complete list of volume mem-

bers for each volume revision. The table columns for storing added and deleted volume

members are still present in the database, but they are not currently used by the prototype

system and could be safely deleted from the database.

Volume Version

One issue we still have not discussed is the assignment of versions to volumes. Object

versions are currently implemented as a last modification time, as discussed in Section 5.1.1.

What should be used as a volume version?

Since the volume name is the name of the root node, we could think of using the version

of the root node as the volume version. However, since object changes that do not result

in objects being added or deleted do not affect volume membership, the version of the root

node may change independently of the volume version. Furthermore, volume membership

changes that are due to changes in objects other than the root object, need to be taken into

account.

Another option is to use the version of the object that is responsible for the volume
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membership change as the volume version. Initially, the volume version is the version of

the root node in the tree, and subsequently it takes on versions from other objects in the

volume. However, since the server does not use the notion of subvolumes, as discussed above,

determining which object in the volume is responsible for volume membership changes

requires the server to do extra work. In our implementation, volume version starts out as

the version of the root node and is incremented by one for each volume revision.

5.2.3 Web Object Cache Compiler

The Web Object Cache Compiler is responsible for compiling the relationships between

objects in conjunction with object change characteristics into CCCs. A CCC that WOCC

assigns to an object depends on the change characteristic of the object itself and on the

change characteristics of the related objects. We first describe how WOCC determines the

overall management strategy for a volume and then discuss the rules that WOCC uses to

assign CCCs to objects in the volume.

Finding a Manager

WOCC exploits the relationships between objects composing a page using the notion of a

manager object. Currently, only objects that have either BoA or RDyn change characteristics

can be managers (our approach also allows RSt objects to be managers, when neither BoA nor

RDyn objects are available, but our current implementation needs to be extended to support

that). BoA objects must be retrieved on every access and are thus perfect candidates for

helping to manage other objects. RDyn objects are assumed to change frequently and thus

represent the second best choice.

Each volume is represented as a tree, with the root object being the top-most node.

The find manager method uses a generic tree traversal method traverse volume, which

traverses any given volume in depth-first fashion and applies all functions passed to it as

arguments to each node of the tree. Upon encountering the next node, the find manager
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method attempts to determine if that node qualifies as a good candidate for being chosen

as the manager object using the following algorithm:

• No object has been picked as the manager so far.

• The current object has a more dominant change characteristic than the current ma-

nager. BoA is a more dominant change characteristic than RDyn, which, in turn, is

more dominant than RSt. St and Per objects cannot be manager objects.

• The current object has the same change characteristic as the current manager, but it

is located higher up in the tree than the current manager.

In addition to determining which object in a volume should be chosen as the manager,

it is also important to analyze the mix of change characteristics in the volume in order to

determine whether using a manager is actually helpful. Consider a volume with one BoA

and multiple St objects. In this case, we can find a manager using the algorithm above, but

we have no objects that need to be managed. The following set of rules is used to decide if

there is a need for a manager:

• A volume contains a single ND (RSt or RDyn) object and at least one BoA object

• A volume contains more than one ND object

Assigning CCCs

If WOCC determines a manager is required, and which object is the manager for a given

volume, it has all the information to tag each object in the volume with the appropriate

CCC. WOCC uses a pre-defined set of rules to assign CCCs to objects. We describe these

rules below.

St and Per objects have deterministic change characteristics and can be managed without

any assistance from other objects. One approach to managing them in MONARCH is to

simply use mechanisms already present in the HTTP protocol. MONARCH can use Expires
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or Cache-Control: max-age headers to assign such objects the proper expiration time. We

chose to assign CCCs even to St and Per objects, for uniformity sake. The rules for assigning

CCCs to St and Per objects are shown in Table 5.1.

Table 5.1: Mapping of Change Characteristics to CCCs for St and Per Objects

Change Characteristic CCC
St C (Cache)
Per CV, Expires (Cache, Validate when expires)

The rules for mapping change characteristics of non-manager and manager objects to

CCCs are shown in Table 5.2 and Table 5.3 respectively.

Table 5.2: Mapping of Change Characteristics to CCCs for Non-Manager Objects

Change Characteristic CCC
BoA NC (Not Cache)
ND (RDyn and RSt) C (Cache)

Table 5.3: Mapping of Change Characteristics to CCCs for Manager Objects

Change Characteristic CCC
BoA (top-most container) CM (Cache Meta information only)
BoA NC (Not Cache)
ND (RDyn or RSt) CV, TTL=0 (Cache, Validate each time)

As Table 5.3 shows, there are two distinct rules for scenarios when the manager is a

BoA object. In general, since BoA objects change on every access, they should not be

cached by client caches. The second row in Table 5.3 shows a CCC command for such a

general case. The first row in Table 5.3 shows a special case, when the manager is the

top-most container object with a BoA change characteristic. The server uses a CCC that

instructs client caches to store only meta information, such as volume name and version,

associated with that object. On subsequent accesses from their client, caches relate that
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meta information to the server.

In cases where the top-most object is not a manager, but the volume does have a ma-

nager, the CCC for the top-most object is enhanced with a precondition. The precondition

indicates to the cache that before assessing the freshness of the container object, it must

perform some action. In our prototype system that action is the retrieval of the manager

object from the server. The name of the manager object is provided in the precondition.

CCC Syntax

The syntax of the CCC commands is described by the grammar shown in Figure 5.2. We use

the augmented Backus-Naur Form described in RFC 2616 [31] for describing our grammar.

CCC = ‘‘cmd=’’ cmd-C | cmd-NC | cmd-CM | cmd-CV | cmd-INV
cmd-C = ‘‘C’’ [‘‘; pre=’’ token]
cmd-NC = ‘‘NC’’
cmd-CM = ‘‘CM’’
cmd-CV = ‘‘CV’’ [‘‘;’’ ‘‘ttl | expires’’ ‘‘=’’ 1*DIGIT]
cmd-INV = ‘‘INV; objs=’’ <‘‘> invalidation-list <’’>
invalidation-list = invalidated-object [‘‘;’’ *invalidated-object]
invalidated-object = token ‘‘^’’ 1*DIGIT

Figure 5.2: Grammar for the CCC Commands

5.3 MONARCH Web Server

We implemented the MONARCH Web Server (MWS) as a plug-in for the Apache Web

server. Apache can be configured to hand off all or certain requests to the MONARCH

plug-in. The main responsibility of the MWS is to communicate with the MCMS and

obtain object and volume version and volume invalidation information that is included

in the server response. MWS maintains no per-client state, relies on its clients to provide

volume information on subsequent visits, and provides its clients with targeted invalidations

that are likely to be immediately useful.
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We introduce a number of new HTTP headers that the MONARCH server uses to

povide information to its clients. The server uses the Version header to inform clients

of the object version. The server uses the VName and VVersion headers to report volume

name and volume version information respectively. The server sends CCC commands to its

clients using the CCC header. Clients also use the first three headers to reports previously

obtained information to servers.

For every request the server first connects to the database, obtains the current version

of the requested object, and attaches that version to the outgoing HTTP response headers

using the Version header. If a client is requesting the top-most container object that it

had cached from the previous retrieval or is requesting a precondition object, the client’s

request contains meta information for the volume that the client is currently interested in.

In that case, the server attempts to obtain the current version number for that volume from

the database. The server combines the volume version with the current time and adds the

resulting value to the outgoing HTTP response headers using the VVersion header. The

server also adds a volume name (which is currently the same as the name of the top-most

container) to the outgoing HTTP response headers using the VName header. We explain the

reason for combining volume version with the current time in Section 5.3.1.

The server then examines the incoming HTTP request headers to see whether the client

provided volume name and volume version, using the VName and VVersion headers respec-

tively. If so, the server consults the database and attempts to invalidate objects in the given

volume. The server uses the volume version provided by the client to determine which ob-

jects were part of the volume at the time of the client’s previous request. The server uses

the time of the client’s previous request (also available in the VVersion header) to deter-

mine if any of the identified objects have changed. The server constructs an invalidation

list consisting of changed objects along with their current version numbers. The server then

builds an invalidation CCC command and adds it to the outgoing HTTP response headers

using the CCC header.
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For each requested object, the server also reads the CCC command from a corresponding

file and adds it to the outgoing HTTP response using the CCC header. The server response

may contain more than one CCC response header.

As an example, consider a request for a sample object index.html which results in the

following HTTP response headers (some standard response headers, such as Server and

Connection, were removed for readability):

HTTP/1.1 200 OK
Date: Thu, 14 Mar 2002 03:06:01 GMT
Version: 1008104231
VVersion: 1008104231-1016075161
VName: index.html
CCC: cmd=C; pre=username.cmp
Content-Length: 1110
Content-Type: text/html

The sample response headers indicate that the current version of object index.html

is 1008104231. In the current implementation, this is simply last modification time of

the file, in the UNIX format. Volume version is constructed from the version of the top-

most container and the current time. Since our sample object has the html extension, the

server treats it as the top-most container and associates a volume with it. The name of

the volume is the same as the name of the object: index.html. The server also found the

CCC command that WOCC assigned to this object. The CCC command indicates to client

caches that the index.html object itself can be cached, but before the cache is allowed to

reuse the cached copy, it must first satisfy the attached precondition: validate the freshness

of object username.cmp.

5.3.1 Volume Invalidation

In the current implementation, MONARCH groups all objects composing a Web page into

a volume. The primary reason for grouping objects into volumes is to limit the amount of

invalidation information that the server reports to its clients. In this section we examine
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volume invalidation.

Suppose a client request for object O indicates that the client has previously obtained

version i of volume V . As part of serving this request, the server invalidates those objects

in volume V that have been updated since the client’s previous retrieval of volume V (the

client may have these objects cached or may have already evicted some or all of them from

its cache). The server may choose to invalidate all objects that composed volume V at the

time of the client’s previous visit, or only those that are still part of volume V . Volume

invalidation is thus a process that involves the following steps:

1. The server creates a set of objects that composed volume V at the time when the

client obtained version i of that volume (call it Set1).

2. The server creates a set of objects that are currently composing volume V (call it

Set2) and computes the intersection of the two sets Set1 and Set2, resulting in Set3.

3. The server determines the current version for each object in Set3.

4. The server invalidates those objects in Set3 whose current version is newer than the

time of the client’s previous retrieval of volume V .

In our implementation, obtaining information for Step 1 is straightforward. Volume

revisions are stored in the database, as described in Section 5.1.1. When membership of a

volume changes, MCMS updates the version of that volume and adds a new revision into

the database. The server simply takes the volume name and version, V and i, supplied by

the client and looks up members of that volume for that version in the database. Similarly,

the server can complete Step 2 by retrieving members of the latest version of volume V

from the database and computing the intersection of the two sets. The server can also

easily complete Step 3 by consulting the database table that stores object revisions.

The most difficult part of the volume invalidation process is determining versions of

volume V members at the time when the client obtained that volume (Step 4). Volume
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versions are not time based in our implementation, as discussed in Section 5.2.2. Suppose

we make volume versions time based upon the time when volume membership changes.

One could argue that given time-based volume versions, and since MCMS updates versions

when objects change, it is possible to determine which volume members have changed by

simply comparing the volume version, supplied by the client, with the current versions of

volume members. Those objects that are still members of the volume in question and have

higher version numbers than the volume version supplied by the client, must have changed

since the client retrieved them. Such an argument has a drawback, however.

To understand the issue with the argument above, consider the following scenario. Ver-

sion i of volume V is created at time ti. Two objects from volume V , O1 and O2, are

updated at times tj and tl respectively. Updates to both objects involve only content of the

objects themselves and do not affect volume membership (no embedded objects are added or

removed). A client first retrieves volume V at time tk and then returns and fetches the same

volume again at time tm. On the second visit, the client validates or retrieves the manager

object, presenting the server with the version i of volume V , and expects the server to pro-

vide invalidations. All the times are related to each other as follows ti < tj < tk < tl < tm.

The server determines that since versions of both objects O1 and O2 are higher than the

value of i, these objects must have been modified after the client’s previous visit and must

be invalidated. In reality, however, object O1 was modified before the client retrieved it and

therefore should not be invalidated.

In order to invalidate only those objects that actually changed since the client’s previous

visit, the server must be able to determine version numbers of objects that composed the

volume retrieved by a client at the time of the previous retrieval. In our implementation,

MWS combines the volume version obtained from the database with the time of the client’s

request and uses that combined value as the volume version given to the client. On the

client’s subsequent visit, the server knows when the previous request took place and can

use the time of the previous request to determine which objects must be invalidated.
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5.4 MONARCH Proxy Server

Similarly to the MONARCH Web Server, the MONARCH Proxy Server (MPS) is also

implemented as a plug-in for the Apache Web server using Object-Oriented Perl modules

running in the Apache address space under mod perl. Upon receiving a client request, the

proxy attempts to find the requested object, either retrieving it from its cache or fetching

it from the origin server. MPS always manages objects using the MONARCH object ma-

nagement policy, but falls back to a heuristic policy if the server does not provide CCC

commands.

Whenever MPS contacts the origin server to validate a cached object, it includes the

cached object version identifier and the cached volume version identifier in its request. Upon

receiving the server response, MPS examines the attached CCC commands and removes

those objects that the server invalidates. If MPS receives a request for a cached object that

the server associated a precondition with, MPS always satisfies the precondition first, by

fetching the precondition object from the server. In this section we provide details of the

proxy’s functionality.

5.4.1 Request Handling

When the proxy receives a request from its client for an object, it attempts to find a fresh

copy of that object. MPS first checks its local cache to see if the object is available locally.

If not, MPS sends a request to the origin server. If the object is available in the local cache,

the following are the possible outcomes:

• The object is available and is fresh,

• The object is available but is stale,

• The object is available but its freshness is unknown because the object has a precon-

dition associated with it, or
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• Only meta information for this object is available, the object itself is not (this case

occurs only for BoA containers, as discussed in Section 5.2.3).

In the last case, the proxy appends the object’s meta information to the request that

it sends to the server. That meta information indicates the version of the object and the

name and version of the volume to the server.

5.4.2 Determining the Freshness of Cached Objects

The cache first checks whether the object has an X-Cache-Expires header. That header

is assigned to certain objects when they are cached. If the header is present, its value

is compared with the current time. If the current time is greater than or equal to the

expiration time, the cache prepares a list of headers that the proxy can use to validate the

object with the server. Otherwise, the object is considered fresh.

If the X-Cache-Expires header is absent, the cache checks whether the object has any

CCC headers. If a precondition is present, the cache instructs the proxy to satisfy the

precondition first. If the object has the “C” CCC command, which indicates that the object

can be cached until the server explicitly invalidates it, the cache considers the object fresh.

5.4.3 Satisfying a Precondition

In the current implementation, there is only one type of precondition available. A precon-

dition instructs the cache to retrieve or validate an object that is specified in the precon-

dition. While instructing the proxy server to satisfy a precondition, the cache passes the

proxy server the name and version of the volume for which this precondition is required.

The proxy server includes that information in the request that it sends to the origin server.

The origin server then uses that information to invalidate other members of that volume

that may have changed since the last time the proxy retrieved them.

Retrieved precondition objects are usually uncacheable. In the current implementation,

however, MPS caches the retrieved precondition objects (even if they have the “NC” CCC
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command) and assigns them a usage count of one. MPS adds the X-Cache-Usage-Count

header to each cached precondition object to store the usage count. We expect that pre-

condition objects will be used almost immediately by the proxy. When MPS actually uses

a cached precondition object, it decrements the usage count and removes the object from

the cache.

5.4.4 Object Caching

The caching proxy server first examines all CCC headers and caches the object using the

MONARCH approach. With each cached object (even if only meta information is cached

instead of the entire object) the proxy stores the URL that it used to fetch that object using

the X-Cache-Base header.

Caching Using the MONARCH Approach

The cache handles cache-related CCC commands as follows:

• NC—Neither the object itself nor its meta information is cached. (As described in

Section 5.4.3, objects with this CCC command may actually be cached for a short

period of time if they are precondition objects).

• CM—Only the HTTP response headers are cached, not the response body. The header

includes the volume name and object and volume versions.

• C—The entire server response is cached.

• CV—The cache first determines the object expiration time and then stores it using the

X-Cache-Expires header along with the object. The expiration time is determined as

follows. If the CCC command provides an explicit expiration time, then that is what

the cache uses. Otherwise, if the CCC command provides a TTL value, the cache

computes expiration time by adding that TTL value to the current time.
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Caching Using the Standard Approach

When either no cache-control CCC commands are present or more than one is present,

making it difficult to decide which one should be used, the cache resorts to using the standard

caching mechanism. The cache first checks whether object has any Cache-Control headers.

If either Cache-Control: no-store or Cache-Control: private is present, the object is

not cached. The current implementation ignores the Pragma: no-cache response header

since HTTP/1.1 specification [31] does not specify that header as valid in the response.

Otherwise, the cache checks whether the object has the Expires and/or Last-Modified

headers. If neither is present, the object is not cached. The object is also not cached if

the value of its Expires header indicates that the object has already expired. In all other

cases, the cache adds the X-Cache-Expires header to the object and caches the object.

When only the Last-Modified header is present, the expiration time is determined as

follows. The object’s last modification time is subtracted from the current time to produce

the object’s age. A percentage is then taken from the computed age and added to the

current time. The percentage is configurable (it can be specified as a parameter to the

cache constructor); the default value is 10%.

5.4.5 Statistics Gathered by the MONARCH Proxy Server

We instrumented MPS to keep track of its activity. The following is a list of statistics

gathered by MPS. We provide names and descriptions of all counters:

• client requests—number of client requests that MPS has received.

• misses—number of times MPS could not find a required object in its cache. This

counter takes into account objects explicitly requested by a client and objects that

MPS needed to perform page assembly.

• meta info hits—number of times MPS has found only meta information for the

required object in its local cache (not the body of the object).
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• fresh hits—number of times MPS has found an entire object in its cache and the

object was fresh.

• stale hits— number of times MPS has found an entire object in its cache and the

object turned out to be stale.

• precondition hits— number of times MPS has found an object in its cache and

that object had a precondition associated with it.

• hits—number of times MPS has found the required object in its cache. This counter

takes into account all four types of hits given above.

• requests for precondition objects— number of requests for precondition objects

that MPS has sent to the origin server.

• requests for objects— total number of requests that MPS has sent to the origin

server (superset of the previous counter).

• invalidation cccs—number on invalidation CCCs that MPS has received.

• objects invalidated—number of invalidated objects.

• validation cccs and objects validated— number of validation CCCs that MPS

has received and the number of validated objects respectively. These two counters

were introduced during the initial development of the prototype system. Currently the

system does not implement the object validation mechanism and these two counters

are always zero.

In order to conveniently initialize the counters and to view the statistics collected by

the proxy server, we implemented two special URLs that the proxy server understands:

• /myproxy-stats-init—accessing this URL zeros out all the counters.

• /myproxy-stats—accessing this URL results in all of the counters being returned.
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By default, both URLs above return counter data formatted in XML. XML formatting

is convenient in cases where counter data must be subsequently processed by an automated

client and perhaps re-formatted for the final presentation. By default, MPS also associates

an XML-encoded style sheet with the returned XML document. The style sheet specifies a

transformation of the XML document, called an XSLT transformation, allowing an XSLT-

compliant client to convert XML counter data into an HTML page on the fly. Figure 5.3

shows how one such XSLT-compliant Web browser, Microsoft Internet Explorer, renders

XML counter data by applying a style sheet to it.

Figure 5.3: Internet Explorer’s Rendering of the Counter Data in XML via XSLT Trans-
formation

We have also instrumented MPS to return HTML-formatted counter data on demand for

browsers that do not support XSLT transformations, such as Mozilla [67] and Galeon [32].

Appending ?format=html to both URLs above results in MPS returning HTML-formatted

counter data.

5.5 Content Assembly

Both the MONARCH Proxy Server and the MONARCH Web Server can perform Content

Assembly. Content assembly is the process of replacing each occurrence of the GI tag within
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object content with the content of the object specified in the src attribute of the tag.

Both MPS and MWS examine the Accept HTTP request header in the client’s request

before serving the requested object. If the client cannot accept the text/x-dca content

type, then content assembly is performed. Our Content Assembler software parses the

main container object and replaces each GI tag with the contents of the appropriate object.

Each of the objects included in the main container in such a fashion is also parsed and all

GI tags found in the included objects are also replaced with the appropriate content. The

process of replacing GI tags is recursive.

Once the page is assembled, it is necessary to adjust the HTTP response headers that

are sent to the client. One header that requires adjustment is the Content-Length header.

The length of the resulting page is larger than the length of the original container. Headers

related to cache control also must be adjusted. In the current implementation, all assembled

objects are marked as uncacheable. Also, the content type of the assembled object is changed

from text/x-dca to text/htm.

5.6 Example

This section provides an example of a real Web page and shows how it is handled within

the prototype system. We show the CCC commands that the WOCC compiler assigns to

page objects during the compilation process. We show what happens when the user fetches

the page using a standard Web browser, accessing the Web via MONARCH Proxy Server.

We provide details of the communication between MPS and MWS.

5.6.1 The Page

We first describe the Web page itself and show a tree representing all page objects. The

following is a fragment of the top-most container object. We removed content that is not

essential for this example.
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<html>
<body>

<img src="main.css.jpeg" width=160 height=100 alt="EO1 main.css.jpeg">
<img src="main.js.jpeg" width=300 height=40 alt="EO2 main.js.jpeg">

<table border=2>
<tr>

<td> <img src="logo1.jpeg" width=160 height=160 alt="EO3 logo1.gif">
<td> <GI src="username.cmp">
<td> <GI src="ad.cmp">

</tr>

<tr>
<td> <GI src="navmenu.cmp">
<td> <GI src="top_story.cmp">

<GI src="vote.cmp">
<td> <GI src="top_articles.cmp">

</tr>
</table>

<GI src=policy.cmp>

</body>
</html>

The page is using standard HTML markup and GI tags to include components. Com-

ponents may include other components or embed images. For example, the top story.cmp

component embeds an image, as shown below:

<table bgcolor=#00FF00 border=0>
<tr align=center>

<td> Top Story Component <strong>CMP4 top_story.cmp</strong>
<img src="top.photo.jpeg" width=400 height=300

alt="EO4 top.photo.jpeg">
</table>

A tree representing our sample page is shown in Figure 5.4. The top container and

embedded objects are represented by rectangles, and components are represented by boxes

with rounded corners. We use different geometrical shapes purely to enhance visual presen-

tation, not to differentiate objects semantically.
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main.css.jpeg

main.js.jpeg

logo1.jpeg

username.cmp

ad.cmp navmenu.cmp

adbanner.jpeg

vote.cmp

index.html

top_articles.cmp

top.photo.jpeg

top_story.cmp

policy.cmp

Figure 5.4: Tree Representing the Sample Web Page

5.6.2 Object Change Characteristics

All objects composing our sample page are assigned change characteristics. As was discussed

earlier, only objects whose change characteristic is other than RSt need to be explicitly

marked with their proper change characteristic. All other objects are assumed to be RSt

by default.

Change characteristics for all objects on the page are shown in Figure 5.5. All nodes

in the tree are shown in the same left-to-right order as in Figure 5.4. The tree with object

change characteristics is how the WOCC compiler views the page.

RSt

BoABoA

RSt

RStRStRSt RSt RDyn

RSt

Per Per RSt

Figure 5.5: Tree Representing Change Characteristics of Objects Composing the Sample
Web Page
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5.6.3 Compilation

The WOCC compiler examines the page and selects one of the three patterns in Figure 4.6

that represents the page. The tree in Figure 5.5 can be described by the ND-BoA pattern

because the root of the tree has the RSt change characteristic and one of the objects on

the page is BoA. The WOCC compiler then decides on which object on the page will be

the manager, and assigns all objects a CCC command. In Figure 5.6 we show the result

of the compilation process, with each node in the tree showing the CCC command that

WOCC assigned to the respective node. Again, the left-to-right order of the nodes in the

tree corresponds to the order of the nodes in the trees above. The manager object is shown

with a thicker circle.

ttl=10min
CV

ttl=30min
CV

C

pre=username.cmp
C

C C C NC NC

C

C C

C

Figure 5.6: Tree Representing the CCC Commands Assigned by WOCC to Objects on the
Sample Web Page

As Figure 5.6 shows, most of the objects can be cached until explicitly invalidated by

the server. Those objects that have the BoA change characteristic are not cached. Objects

with the Per change characteristic can be cached with an explicit expiration time. The

container object can be cached, but the cache must satisfy the provided precondition before

re-using the cached copy of the container.

5.6.4 Page Retrieval

Before retrieving our sample page with a Web browser, we first initialize the proxy server’s

cache and zero out the proxy’s statistics. We then configure a Web browser, such as Mozilla,
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Galeon, or Internet Explorer, to access the Web via our proxy server. In our setup, MWS,

MPS, and the Galeon Web browser are running on a machine with the Linux operating

system. MWS is running on port 80, and MPS is running on port 82.

The screen shot of our sample Web page rendered by Galeon is shown in Figure 5.7.

Even though Galeon currently does not implement GI tags, the figure shows that all page

components are present because MPS performed page assembly once it recognized that

its client is not compliant with our page components. We use different shades of grey to

highlight the location of components on the page.

Figure 5.7: Sample Page Rendered by Galeon

After fetching the page, we retrieve the statistics gathered by MPS. Figure 5.8 displays

values for all MPS counters. Statistics shows that MPS received six requests, which is

exactly the number of objects on the page that the browser is aware of, i.e. all objects
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shown with rectangular boxes in Figure 5.4. The total number of objects composing the

page is 13 and MPS correctly reports 13 misses and 13 requests that it sent to the origin

server.

Figure 5.8: Proxy Statistics after the First Retrieval

We have also instrumented MPS to log all requests that it sends to MWS and all

responses that it receives from MWS. Here we show a sample request/response exchange

between the proxy and the origin server. The following is a request for the main container.

MPS informs MWS via Accept header that it is capable of performing content assembly.

GET http://hedgehog/~mikhail/dca/cnn/index.html HTTP/1.0
Accept: text/x-dca

MWS responds as follows:

HTTP/1.1 200 OK
Date: Sat, 02 Nov 2002 21:19:56 GMT
Server: Apache/1.3.19 (Unix) (Red-Hat/Linux) mod_perl/1.24_01
Content-Length: 1110
Content-Type: text/x-dca
CCC: cmd=C; pre=username.cmp
Version: 1008104231
VName: index.html
VVersion: 1008104231-1036271997
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The VName and VVersion headers provide the name and the version of the volume

associated with this container object. The right-hand part of the volume version is the

time of the request at the origin server, as discussed in Section 5.3.1. The CCC command

indicates that the object can be cached, and specifies a precondition that the cache must

satisfy before re-using the cached copy of the object. Requests and responses for the other

12 objects are similar, except responses for other objects have different CCC commands

and do not carry volume information.

5.6.5 Second Retrieval of the Page

We now use Galeon once again to fetch the same page via MPS. Some of the objects

composing the page are now available from the proxy’s cache and should not be fetched

from the server. The second retrieval takes place a little over 10 minutes from the first

retrieval, and one of the two Per objects should have expired in the cache. The statistics

that MPS reports after the second retrieval of the page are shown in Figure 5.9.

Figure 5.9: Proxy Statistics after the Second Retrieval

As before, the client fetched six objects from the proxy, doubling the total number of

requests that the proxy served. MPS sent three requests to the origin server on this retrieval:

two requests to fetch BoA objects, and one request to fetch the expired Per object. The
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stale hits counter indicates that one object was found in the cache as stale. One of the

two BoA objects, namely username.cmp, serves as the manager object for the page, and

MPS fetched it as a precondition for the container object. The precondition hits counter

indicates how many objects MPS found in its cache that had a precondition associated with

them. The fresh hits counter shows that 11 objects were found fresh in the cache. That

value includes the precondition BoA object that was found in the cache (after it was fetched

from the server) with the usage count equal to one. The hits counter reports that 13 cache

hits occurred. That value was produced as follows: two hits were due to the container page

(all cached objects with preconditions currently result in two hits), one hit was due to the

stale Per object, and 10 hits were due to other cached objects. MPS reports only one new

cache miss, due to the BoA object that was not used as a precondition.

In addition to the new values for all counters, we also show the request for the precon-

dition object that MPS sent to the origin server, and the response that it received. The

request is as follows:

GET http://hedgehog/~mikhail/dca/cnn/username.cmp HTTP/1.0
Accept: text/x-dca
VName: index.html
VVersion: 1008104231-1036279902

MPS sends the request above to the server upon receiving a request from its client for

the container object. MPS includes information about the cached volume in its request, as

shown above. MWS replies as follows (we show only the HTTP response headers, not the

body of the response):

HTTP/1.1 200 OK
Date: Sat, 02 Nov 2002 23:46:41 GMT
Server: Apache/1.3.19 (Unix) (Red-Hat/Linux) mod_perl/1.24_01
Content-Length: 110
Content-Type: text/x-dca
CCC: cmd=NC
Version: 996109452
VName: index.html
VVersion: 1008104231-1036280801
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5.6.6 Object Invalidation

We now update one of the objects composing our sample page, namely the RDyn object

top story.cmp, and then request the page again using Galeon. Note that the third retrieval

takes place a few hours after the second one, and the two Per objects should have already

expired in the cache.

Figure 5.10 shows the state of the counters at the proxy server after the third retrieval

of the page. MPS received six more requests from the browser, starting with the request

for the container object. MPS found the main container in the cache and proceeded to

satisfy the precondition. MPS incremented both precondition-related counters by one.

The response from the server for the precondition object carried an invalidation for the

updated top story.cmp object, and MPS immediately removed that object from its cache.

Invalidation-related counters indicate that there was only one invalidation CCC command

and one object was invalidated. The number of cache misses increased by two since the

previous request, due to one BoA object not being in the cache and the invalidated object

not being in the cache as well. The number of cache hits increased by one less than after

the second retrieval of the page. The decrease in the increment is due to the invalidated

object being removed from the cache. The number of stale hits increased by two, since two

Per objects have expired by the time of the third retrieval of the page. MPS issues a total

of five requests to the server on this page retrieval: one request to fetch the precondition

object, one request to fetch the missing BoA object, two requests to get the expired Per

objects, and one more request to get the invalidated RDyn object.

We once again show the request/response exchange between MPS and MWS. The re-

quest for the precondition object is as follows:

GET http://hedgehog/~mikhail/dca/cnn/username.cmp HTTP/1.0
Accept: text/x-dca
VName: index.html
VVersion: 1008104231-1036280801

The response from MWS is as follows:
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Figure 5.10: Proxy Statistics after the Third Retrieval

HTTP/1.1 200 OK
Date: Sun, 03 Nov 2002 17:27:04 GMT
Server: Apache/1.3.19 (Unix) (Red-Hat/Linux) mod_perl/1.24_01
Content-Length: 110
Content-Type: text/x-dca
CCC: cmd=INV; objs="top_story.cmp^1036343784"
CCC: cmd=NC
Version: 996109452
VName: index.html
VVersion: 1008104231-1036344424

The response from the server contains two CCC commands, one of which carries object

invalidation. In this case, the invalidation is only for one object, top story.cmp. In addition

to the name of the invalidated object, the CCC also provides the latest version identifier

for that object.

5.7 Summary

In this chapter we discussed the design and implementation of all components of the proto-

type system implementing the MONARCH approach to object management. We pointed

out the design issues that we faced while building the system, discussed design alterna-
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tives, and described the rationale behind the choices that we made. We provided a detailed

example of a real Web page, composed of a few objects, and showed how these objects are

managed by the origin and proxy servers. We provided partial traces of the interactions

between the proxy and the origin server and presented statistics gathered by the proxy

server.

Having a working prototype system provides a validation of the approach, indicating that

implementation of the proposed approach is feasible. In addition, the process of building a

system allows one to discover and iron out various design issues that may not be obvious

otherwise. In this chapter we showed that it is feasible to implement MONARCH and to

manage a set of Web objects using object change characteristics and relationships between

objects in the set.
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Chapter 6

Evaluation of MONARCH

In the previous chapter, we showed that it is possible to implement MONARCH and pre-

sented design and implementation details of our prototype system. In this chapter, we

evaluate the performance of MONARCH and compare it to the performance of existing

and proposed cache consistency policies using simulations with the snapshots of content

collected from popular Web sites. We also use results from a previous study by Krish-

namurthy et al. [51] to estimate the relative differences in user-perceived response time

between various policies.

6.1 Collection Methodology

In an ideal world, we would be able to obtain current information about the content dy-

namics and access patterns at busy Web sites. We could then use this information in a

trace-driven simulation to evaluate our policy against others. However, most of the available

server logs are from small or research-oriented sites, they tend to be dated and incomplete,

and may contain only records of client accesses and not of object updates. Obtaining the

required information from a single popular site is difficult, and obtaining it from a variety

of sites is not realistic.

This section describes an alternate to this ideal, a methodology that we developed
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and used for collecting content from Web sites. This content is converted into a format

appropriate for a simulator we use to evaluate MONARCH against current and proposed

consistency policies. The methodology must address a number of important issues: 1) what

is the set of Web sites from which to collect content; 2) what content is collected from each

site; and 3) how frequently is it collected. This section addresses all three issues. In the

following section, we discuss how accesses to this content are generated.

6.1.1 Source Web Sites

The number of existing Web sites is large and is growing continuously. Evaluation of a newly

proposed approach that improves some aspect of the Web cannot possibly be carried out

on the content of the entire Web. However, a relatively small number of recognizable Web

sites are responsible for much of the Web traffic. Thus, to evaluate the usefulness of a new

proposal it is only necessary to investigate whether it offers improvements for a sampling of

such sites. We also argue that sites with semantically different types of content—news site

vs. educational site vs. corporate site—may use different page construction mechanisms

and have different content update patterns. It is thus important to ensure that the sites

selected for a study cover a range of content characteristics. Given these site selection

guidelines, our approach was to pick recognizable Web sites that offer semantically different

types of content. Table 6.1 lists the eleven Web sites that we selected for this study. The

Web sites in our set vary widely in the number of embedded objects that their pages have,

in the frequency of updates, and in the use of the HTTP directives related to caching. More

information about the dynamics of these sites is provided in subsequent sections.

6.1.2 Content to Collect

Having identified a set of sites to study, we needed to decide on the set of objects to study

at each site. While we could perform an exhaustive study of a site, we did not want to turn

the study into a denial of service attack. Therefore, we focused on collecting the dynamics
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Table 6.1: Web Sites Used in Study

Web Site Type of Site
amazon.com large e-commerce site
boston.com international/national/local news
cisco.com corporate site
cnn.com international/national news site
espn.com sports scores/news
ora.com corporate/publishing site
photo.net graphics heavy discussion site
slashdot.org discussion site
usenix.org technical/scientific association
wpi.edu educational site
yahoo.com all inclusive portal

for a subset of content at a site.

We used the home page for a site as the starting point for our collection. While it is

possible to access a specific page within a site directly, by finding the link using a search en-

gine or receiving a pointer via e-mail, many users “enter” a site and search engines navigate

from the home page. Home pages of popular sites are also likely to change frequently as

sites add more information, add pointers to new resources, or simply rotate existing content

to create the feeling of frequent updates so users return often.

We also wanted to collect a sample of content that could be accessed via the home page.

Rather than follow all links on the page or a random subset of links, we took a two-pronged

approach. We first identified links on the home page that are always present. We label

these links static. These links represent aspects of the site that are constant features such

as the world news for a news site or admissions information for an academic site. Some

users may frequently visit the site because they monitor this aspect of the site.

We also identified links on the page that change over time. We label these links transient .

These links are of interest to repeat visitors to a site because they do change. They include

breaking news stories or new corporate press releases.

While examining Web sites for this study, we realized that home pages of sites known

http://www.amazon.com
http://www.boston.com
http://www.cisco.com
http://www.cnn.com
http://www.espn.com
http://www.ora.com
http://www.photo.net
http://www.slashdot.org
http://www.usenix.org
http://www.wpi.edu
http://www.yahoo.com
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to be portals, such as www.yahoo.com, often provide little content and serve as aggregators

for links to sites devoted to different categories of content, such as finance.yahoo.com and

photos.yahoo.com. To make sure that static and transient links contain content related to

that of the site home page, we required these URLs to have the same hostname as the site

itself.

In our methodology, we explicitly divided the links on each home page retrieval for a

Web site into static and transient. We then needed to decide how many of each type of

link to follow for content collection. We believed that following only a single link was too

little and that following all links was too much, in addition to potentially causing denial of

service issues if collection was too frequent. For the study we decided to use up to three

links of each type (not all sites had three transient links). The reason we chose this number

is because we believe it allows us to track the dynamics of a subset of popular pages at a

site while not overwhelming the site with requests nor our Content Collector with data. An

obvious direction for future work is to examine the effect of alternate criteria for picking

the number and type of pages to study at a site.

6.1.3 Content Collection Methodology

To collect content for this study we used our Content Collector with the GetFullPages

configuration, discussed in Section 3.1. We started the Content Collector on June 20, 2002

and it collected content every 15 minutes from 9 am EST until 9 pm EST daily for 14

days, until July 3, 2002. We focused on the daytime hours as the primary time for user

and server activity. The 15-minute interval was deliberately chosen to be small enough

to capture site dynamics and large enough to avoid any appearance of a denial of service

attack. We extended the Content Collector to save the 9 am versions of all home pages at

the beginning of each daily retrieval cycle so that the next day it could decide on transient

links. We also pre-fetched and stored all home pages on June 19—one day before we started

data gathering.

http://www.yahoo.com
http://finance.yahoo.com
file:photos.yahoo.com
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We further extended the Content Collector to also retrieve objects that it has seen within

the last hour, even if these objects were no longer embedded on any of the pages in our

sets. Having information about an object’s updates for one hour after that object was first

accessed allows us to model server invalidation with the length of a volume lease of up to

one hour.

6.1.4 Content Conversion

We wrote the Content Converter software to convert collected content into the format

required by our simulator. The Content Converter first detects object updates by comparing

MD5 checksums of the successive retrievals, and uses the value of the Last-Modified HTTP

response header, if it was present, or the retrieval timestamp as the time of the update. We

are aware that the latter approach provides only an estimate of the exact update time and

underestimates the number of updates to an object, but it matches the granularity of our

study. The Content Converter creates a list of updates for each object, keeping track of

update time, new size, and the set of added and deleted embedded objects.

The Content Converter assigns appropriate change characteristics to collected objects

using the following rules: 1) an object is BoA if it changes on every retrieval; 2) an object is

St if it does not change over the course of the retrievals and has an Expires HTTP response

header with a value of one year or more; 3) an object is RSt if the median time between

object updates is 24 hours or more; 4) an object is RDyn if the median time between object

updates is less than 24 hours.

We did not observe any periodic objects in our data sets. The Cumulative Distribution

Function (CDF) of the median times between object updates for all ND objects across all

sites is shown in Figure 6.1. The graph shows that in our data about 15% of all nonde-

terministic objects are classified as RDyn, with the remaining 85% classified as RSt. The

smallest time between object updates that we were able to detect for objects that did not

have last modification timestamps was 15 minutes. The graph thus shows virtually no
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objects with update intervals smaller than 15 minutes. Also, we did not have enough infor-

mation to determine the median time between updates for those ND objects that did not

change during the course of our retrievals. For these ND objects, we set the time between

updates to one year for the purposes of including these objects in the CDF; that value has

no effect on the simulations. As Figure 6.1 shows, about 85% of all ND objects in our data

set did not change over the two-week period of our study.
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Figure 6.1: CDF of the Median Time between Non-Deterministic Object Updates

Table 6.2 shows the total number of objects collected from each site along with the

number of objects in each category of change characteristic. Numbers in parenthesis indicate

how many of these objects appeared on more than one page at the site. The Content

Converter marks shared objects as global . If an object is shared between multiple pages via

the FRAME, IFRAME, or LAYER HTML tag, the Content Converter marks all objects embedded

in such a container as global.

The Content Collector encountered redirects pointing to the same location on every

retrieval and encountered redirects pointing to different locations. We modeled the former

by creating a permanent mapping between the original URL and the new URL. We modeled

the latter by introducing a zero-size object containing an HTML LAYER tag (FRAME or IFRAME

tag would also work) pointing to a different embedded object on every access.

Objects composing Web pages may reside on servers other than the origin server. For
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Table 6.2: Dynamics of the Collected Objects

local and global objects (global objects)
Site Total BoA RDyn RSt St
amazon 2642 1071 23 (2) 1548 (942) 0
boston 3987 1788 (5) 687 (10) 1342 (443) 172 (163)
cisco 76 2 5 69 (5) 0
cnn 1448 58 (20) 87 (3) 1303 (378) 0
espn 2095 742 (14) 71 (9) 1222 (529) 60 (30)
ora 180 17 13 (2) 150 (35) 0
photonet 5256 321 141 4794 (319) 0
slashdot 8830 358 (8) 151 (5) 8321 (907) 0
usenix 56 0 0 56 (18) 0
wpi 86 0 3 83 (26) 0
yahoo 1890 231 30 (7) 423 (88) 1206 (444)

this work, we treat all objects composing a page as if they came from the same server. We

believe this approach is justified because content served by other servers, such as image or

CDN servers, is often under the same control as that from the origin server.

6.2 Performance Evaluation

Our goal in this work is to evaluate and compare the performance of the cache consistency

policies that are currently deployed and that were proposed in research literature. This

section first describes our simulation methodology, the cache consistency policies that we

studied, and the performance metrics used.

6.2.1 Web Object Management Simulator

In order to evaluate the performance of MONARCH and compare it to that of other ob-

ject management policies, we developed the Web Object Management Simulator (WOMS).

WOMS is a discrete event-based simulator that handles request arrival and object update

events. WOMS assumes an infinite capacity cache and no cache replacement policy. Object
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management policies are implemented as plug-ins—as long as policies use the simulator’s

programming interface, new policies can be written and added to the simulator. The simu-

lator simply feeds each occurring event to all available plug-ins.

Once the collected content is converted, it is presented to WOMS in the form of a (large)

configuration file that contains all the necessary information about objects at a site, their

relationships, sizes, HTTP response headers, and updates. WOMS is also presented with

information about what URLs the Content Collector fetched and when. Additional input

parameters specify which of the collected pages to simulate requests for (container and

embedded objects) and at what times to make the requests.

6.2.2 Simulation Methodology

Values for most of the parameters affecting the outcome of the simulations, such as object

sizes and times of object updates, are determined by the collected content. To decide on

which access patterns to simulate, one could examine specific access patterns at a Web site.

However, in the absence of server logs, an alternate approach is needed.

The approach we used was to investigate a range of possibilities for what content was

retrieved on each access and the frequency of these accesses. We simulated the following

sets of pages for a site:

• home page only to represent the minimal set,

• home page and the static links to represent a user interested in regular features of the

site, and

• home page, the static links and the transient links for that retrieval time to represent

the maximal set of the collected content.

In addition, we simulated the following retrieval times based on our collection period of

every 15 minutes from 9am to 9pm each day:
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• every 15 minutes, the maximum rate possible with the granularity of our collection

data, which could simulate requests from a proxy server for a pooled set of users,

• once a day at 9am representing a regular, but relatively infrequent, visitor to the site

and

• multiple times a day at 9am, noon, 4pm, and 8pm representing a frequent visitor to

the site.

These content and frequency patterns yield a total of nine combinations that we simu-

lated for the collected content of each site.

6.2.3 Cache Consistency Policies

As the simulator processes the requests, it simulates all implemented cache consistency

policies. All object management policies studied in this dissertation faithfully obey object

expiration times and do not cache objects marked as uncacheable. In addition to MO-

NARCH (M), we simulated eight other policies. One policy is the No Cache (NC)

policy that mimics a non-caching proxy positioned between a client and a server counting

messages and bytes transferred. Another policy is the Optimal (Opt) policy that has the

perfect knowledge of object updates, maintains strong consistency, and contacts the server

only when necessary. The next policy is the Never Validate (NV) policy that never vali-

dates cached objects. Another policy is the Always Validate (AV) policy that validates

cached non-deterministically changing objects on every access.

We studied the de facto standard Heuristic policy, with 5% (H5) and 10% (H10)

of the object’s age used as an adaptive expiration time for non-deterministic objects. In

addition, we examined the Current Practice (CP) policy, which is identical to the H5

policy, except the CP policy also faithfully obeys the HTTP directives related to caching,

such as Cache-Control, Expires, and Last-Modified. The CP policy exemplifies the

behavior of a caching device deployed on the Internet today. The CP policy is the only
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policy in our study that is aware of the HTTP response headers. All other policies use only

change characteristics identified by the Content Converter.

We also studied a form of server invalidation—the Object and Volume Leases (OVL)

policy [98], where servers maintain per-client volume and object leases. Clients must hold

valid volume and object leases to reuse a cached copy of an object and to receive object

updates from the server. We used one hour as the volume lease length and set the object

lease length to be longer than the duration of the simulation. The server sends out updates

only for non-deterministic objects. Our simulation assumes reliable and timely delivery of

invalidation messages to client caches. We do not account for the details of how to handle

updates in the face of slow or unavailable clients [101, 99].

6.2.4 Performance Metrics

In order to evaluate the performance of each cache consistency policy and to compare the

policies, we used the following performance metrics. For each policy we computed the

number of stale objects served from the cache, the number of requests that the cache sent

to the server, and the number of bytes served by the server. For MONARCH and server

invalidation policies, we computed the number of separate invalidation messages, number

of invalidation messages piggybacked onto server responses, and average number of objects

invalidated in a piggybacked invalidation message. For MONARCH and server invalidation

policies, we also computed the amount of server state that must be maintained. We discuss

these state-related metrics in more detail in Section 6.3.3.

6.3 Results

For each of the eleven sites (shown in Table 6.1) we performed simulations with all scenarios

discussed in Section 6.2.2. For the purpose of the discussion, unless indicated otherwise, all

results in this section are from the scenario where the home page, static links, and transient

links are retrieved from a site four times each day. This scenario was chosen from the
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nine described in Section 6.2.2 because it represents the maximal amount of content at an

intermediate access frequency. The relative performance of different policies for the other

scenarios is generally consistent in tone with those shown. More frequent accesses result in

more reusable cache content, while less frequent accesses result in more content that must

be retrieved from the server. In general, the content on site home pages is more dynamic

than the content of linked pages.

We first discuss the effectiveness of the policy that models the behavior of modern

caches. Then, we compare the performance of different policies in terms of the amount of

generated traffic and staleness. After that, we discuss the amount of overhead that the two

stateful policies (MONARCH and OVL) incur at the server. Finally, we examine the extent

to which cache consistency policies affect end user response time.

6.3.1 Effectiveness of the Current Practice Policy

One of the performance goals in this work is to evaluate the effectiveness of the cache

consistency policy that reflects the current practice. Performance of the CP policy across

all eleven sites in terms of the average number of requests that the server received and the

average number of KBytes that the server served per page retrieval is shown in Table 6.3.

For comparison, the table also shows the best (Opt) and the worst (NC) case policies. The

results indicate that the CP policy avoids transferring 50–60% of bytes (up to 96% for the

usenix site) as compared to the NC policy. For seven sites in our set, the CP policy also

transfers only marginally larger number of bytes than the Opt policy. For the other four

sites, however, the CP policy transfers 1.2–7 times more bytes than the Opt policy. We

investigated the reason for such a discrepancy and discovered that sites often mark objects

that change infrequently as uncacheable or generate such objects upon request and provide

no information that caches can use to subsequently validate these objects. The results

further indicate that the CP policy issues 1.8–5.4 times more requests to the server than

the Opt policy. In terms of staleness, the CP policy serves stale objects for eight sites in
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at least one simulation scenario. For two sites (usenix and ora) the CP policy serves stale

objects under all simulation scenarios.

Table 6.3: Performance of the Current Practice Policy (* indicates stale content served in
at least one simulation scenario)

Requests and KB served by Server
Site Opt CP NC
amazon* 3.2 45.1 5.9 45.7 35.2 107.5
boston* 3.6 50.6 19.3 54.4 25.5 113.5
cisco 1.9 2.9 3.5 19.6 19.2 55.4
cnn* 6.3 56.1 16.4 77.6 31.4 190.8
espn* 4.3 75.3 19.4 85.4 38.7 159.5
ora* 0.9 13.8 2.7 14.2 19.9 97.1
photonet 3.1 33.4 3.7 34.5 8.5 55.5
slashdot* 3.1 38.4 7.8 39.5 15.0 70.5
usenix* 0.3 0.8 0.9 0.9 21.1 28.4
wpi* 0.5 2.9 2.3 15.3 25.8 61.2
yahoo 3.7 34.1 6.5 39.2 15.6 71.0

6.3.2 Comparison of Cache Consistency Policies

We examined performance of policies other than CP on all sites and present results for three

sites—cnn, espn, and cisco—in Figures 6.2– 6.4. These sites represent a range of policy

results. The horizontal and vertical axes are expressed in percentages relative to the NC

policy. On the horizontal axis, we plot the percentage of requests that each policy sent to

the server per page retrieval, and on the vertical axis we plot the percentage of bytes that

the server served under each policy. Policies that served a non-zero number of stale objects

to clients in these simulation are marked with asterisks. The number of requests and bytes

under the NC policy is shown in the figure captions.

The graphs indicate that caching of content using any of the policies shown, including

the AV policy, offers substantial (at least 50–60%) byte savings. The two heuristic policies

H5 and H10 outperform the CP policy both in terms of requests and bytes. The results
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indicate that in terms of the traffic between the cache and the server, both MONARCH

and the OVL policies provide indistinguishable performance from the Opt policy.

Staleness results across all sites indicate that under at least one simulation scenario,

both H5 and H10 policies on average served a small number of stale objects per page

retrieval. The amount of stale content served is substantially smaller than the upper bound

on staleness provided by the NV policy. Across all sites and all simulation scenarios the

NV policy served on average 0.4–3.0 stale objects per page retrieval, and for the simulation

scenario used in this discussion it served 0.4–1.5 stale objects.
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Figure 6.2: CNN, 31.4 Requests, 190.8 KB.
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Figure 6.3: ESPN, 38.7 Requests, 159.5 KB.
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Figure 6.4: Cisco, 19.2 Requests, 55.4 KB.
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6.3.3 Server Overhead

The MONARCH and OVL policies provide strong cache consistency and also exhibit similar

performance in terms of the generated traffic. However, compared to other policies studied,

the MONARCH and OVL policies incur overhead at the servers because they require servers

to maintain state and perform additional processing to achieve strong cache consistency.

In this section we describe the metrics that we use to evaluate server overhead imposed by

each of the two policies and present values for these metrics obtained from the simulations.

Both the MONARCH and OVL policies must keep track of updates to non-deterministi-

cally changing objects in order to maintain volume information and notify clients of such

updates. As a measure of the overhead associated with these updates, we compute the

average number of daily updates to non-deterministic objects (NDU). The NDU results

for each site are shown in Table 6.4.

Table 6.4: Server Overhead

Site NDU MONARCH OVL (AOL)
VOL VR avg max

amazon 4 1271 159 464 706
boston 300 138 218 409 657
cisco 125 4 121 67 70
cnn 109 84 198 580 941
espn 67 63 167 525 806
ora 29 22 13 122 151
photonet 220 434 211 432 770
slashdot 167 33 330 404 731
usenix 0.3 5 0 55 56
wpi 2 6 0 83 86
yahoo 110 51 187 145 248

MONARCH maintains per-page local volumes and one global volume that incorporates

objects shared between pages. MONARCH increments a volume version when volume

membership changes. We capture the overhead associated with volume maintenance using

the average number of unique volume revisions (VR) created daily. In computing the
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VR numbers, we take into account original volume versions created at the start of the

simulation. The average daily number of volume revisions and the total number of local

volumes created (VOL) are shown in Table 6.4.

The OVL policy maintains a list of per-client volume leases and per-client object leases.

We focus only on object leases, as the overhead associated with volume leases is likely to be

significantly smaller than that of object leases. We measure the overhead of object leases

by recording the number of active object leases (AOL) held for one client after it makes

requests. Table 6.4 shows the average and maximum number of active volume leases held

for one client at each site.

As we examine the metrics shown in Table 6.4, we see that the rate of updates to non-

deterministic objects varies from 0.3 to 300 per day. We further investigated the NDU

results and discovered that for two sites, including boston, only a handful of objects (10 or

fewer) are responsible for over 50% of all NDU updates. These frequently changing objects

could be marked as BoA instead of RDyn to reduce the overhead associated with changing

objects, albeit with diminished cached content reuse.

The highest daily number of volume revisions in our simulations is 330 and was observed

for only one site. For seven other sites, the daily VR increase is under or slightly over 200.

The number of volume revisions for less frequently changing sites, such as ora, wpi and

usenix, is either small or zero. Our results show that for six sites the OVL policy must

maintain over 400 active object leases per-client, and must also maintain leases even for

sites that do not have many object changes. We also investigated the effect that frequency

of request arrivals has on the overhead of the two policies. For four sites—wpi, usenix, ora,

and cisco—the overhead of the OVL policy remains unchanged as the request arrival rate

increases from 4 times a day to every 15 minutes. For the other seven sites, the number of

active object leases maintained by the OVL policy increases as follows. For five of the seven

sites, the average AOL grows by 27–58% and the maximum AOL grows by 29–48%. For the

other two sites—photonet and slashdot—the increase is especially large. For the former
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site, the average and the maximum AOL increase by 5.6 and by 5.7 times respectively.

For the latter site, the average and the maximum AOL increase by 9.6 and by 10.2 times

respectively. The overhead of MONARCH is not affected by fluctuations in the request

arrivals or the number of clients.

We also examined the overhead associated with the invalidation activity of MONARCH

and the OVL policies. The invalidation behavior of the two policies is different and cannot

be compared directly. MONARCH always piggybacks invalidations onto its responses to

clients, while the OVL policy sends out invalidations both piggybacked onto other messages

and as separate messages. Our results indicate, however, that these differences are not

that important. Invalidation traffic in terms of separate messages, piggybacked messages,

and objects invalidated in one message is negligible for both policies across all sites and all

simulation scenarios.

6.3.4 Response Time Implications for Different Policies

This study allows us to determine the performance of different policies in terms of the

requests and byte traffic between caches and servers. It is less clear how this performance

impacts the end user. As a means to study this issue, we use performance data that was

recently gathered by Krishnamurthy et al. [51].

Krishnamurthy et al. [51] characterized pages based on the amount of content on a page,

which they defined as the number of bytes in the container object, the number of embedded

objects and the total number of bytes for the embedded objects. Using proxy logs of a

large manufacturing company, popular URLs containing one or more embedded objects

were successfully retrieved and the 33% and 67% percentile values were used to create a

small, medium, and large value range for each characteristic. Using these three ranges for

each of the three characteristics defines a total of 27 “buckets” for the classification of an

individual page. The cutoffs for container bytes in small, medium, and large were less than

12K, less than 30K bytes, and more than 30K bytes respectively. Similarly, for embedded
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objects it was less than 7, 22, and more than 22 and for embedded bytes 20K, 55K, and

more than 55K bytes. The authors identified test pages that spanned the space of these

characteristics and created a test site of content. They installed the test site on unloaded

servers on both coasts of the U.S. and used httperf [66] from six other client sites to make

automated retrievals to each test server for each test page.

In this work, we use the results from [51] as benchmark response time performance

measures for different types of clients and amounts of content. We focus on results from

retrievals using up to four parallel TCP connections and HTTP/1.0 requests. Persistent

TCP connections with pipelining are expected to produce better results, but pipelining

is not commonly used by real clients and proxies. Persistent connections with serialized

HTTP requests have been shown to perform no better than four parallel connections [51].

Our methodology is to map the requests and amount of content served under each policy

in this work to a corresponding bucket from [51]. We then use the benchmark performance

of different clients tested in [51] as an estimate of the relative performance of the various

policies.

The buckets in [51] are only coarse classifications and, not surprisingly, in many cases

policy traffic performance maps to the same bucket. For example, the Opt, MONARCH,

and OVL policies invariably map to the same bucket across different Web sites and retrieval

patterns. This convergence is realistic as only significant differences between policies for the

number of objects or number of bytes is going to translate into significant response time

differences between the policies. The heuristic policies sometimes map to the same bucket

as the Opt, MONARCH, and OVL policies and in other cases map to the same bucket as

CP. The AV and NC policies generally map to distinct buckets. Given these observations,

we show results for the MONARCH, CP, AV, and NC policies for a commercial and modem

client.

Figure 6.5a shows results for two sets of sites in our study. The response time results,

obtained in [51], are from a commercial client on the East Coast of the U.S. to the West
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Coast server. Results for the boston, cnn, and espn sites are mapped to the same buckets

and are shown together. Response time for the MONARCH policy is improved relative

to current practice and is much better than no cache, although the absolute differences

are smaller because the client is well connected. Figure 6.5a also shows that for pages

on Web sites with less content, there is less difference between the performance of different

policies. The AV policy generally yields worse response time than current practice, although

pipelining of responses can reduce the difference.

We also used results in [51] from a modem client on the East Coast to the East Coast

server. These results for the various policies and Web site pages are shown in Figure 6.5b.

Due to the reduced bandwidth of the client, the absolute differences between the policies is

greater, particularly for Web site pages with more content.
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Figure 6.5: Estimated Response Time Performance for Different Policies for Web Site Pages
Using Para-1.0 Results in [51]

The results above are averages for all pages at each Web site. We also examined the

relative response time differences when retrieving just the home page at multiple times

each day. For this analysis, four of the sites showed some response time difference between

the MONARCH and CP policies. Overall, the results show that better cache consistency

policies can improve expected response time relative to current practice for larger, more

dynamic, pages.
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6.4 Content Reuse

The fact that MONARCH manages objects deterministically rather than heuristically, and

gives content providers more control over their content, leads us to believe that content

providers may finally be willing to expose internal structure of their pages to clients. In light

of this possibility, we need to better understand the impact that exposing page structure

to clients could have on performance. In Section 3.3 we presented our study that evaluated

potential byte savings if HTML objects are decomposed into chunks and found that about

75% of cached HTML bytes can be reused. We also found that delta encoding can yield

substantial reuse. Both page decomposition and delta encoding approaches show significant

savings due to better reuse of HTML content that changes between accesses. We need to

understand whether HTML content accessed more than once in our simulation amounts to a

substantial fraction of all retrieved content. To study this issue, we examined the number of

requests and bytes contributed by objects that the cache has not seen before (new objects)

and objects that changed since the last time the cache saw them (changed objects) under

the Opt policy. We further broke down the two categories of content based on content type.

We show the average number of requests and bytes served by the server per page retrieval

under the Opt policy in Table 6.5. The two columns showing the total number of requests

and bytes have the same values as the column for the Opt policy in Table 6.3. Our results

indicate that for many sites half or more bytes that the cache retrieved from the server are

for cached HTML objects that changed at the server. If we focus on the sites for which

the cache obtained the most content from the server, such as espn, cnn, and boston, we

see that changed HTML objects amount to 70%, 47%, and 55% respectively of the overall

bytes retrieved. These numbers are significant as they indicate that reusing content within

cached HTML objects would be a substantial improvement.

Different approaches have been proposed for better reuse of cached content, such as delta

encoding, templates with dynamic bindings, and breaking pages into components. To better

understand how these approaches compare, we need to examine factors other than just byte
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Table 6.5: Requests and Bytes Served by the Server under the Optimal Policy due to
Retrieval of New and Changed Objects

Requests KBytes
Changed Changed Changed Changed

Site Total Objs HTML Total Objs HTML
amazon 3.2 0.8 0.8 45.1 30.5 30.5
boston 3.6 1.0 0.9 50.6 28.2 28.0
cisco 1.9 1.6 1.0 2.9 1.7 1.4
cnn 6.3 3.5 3.4 56.1 26.5 26.2
espn 4.3 1.5 1.1 75.3 53.5 52.9
ora 0.9 0.3 0.4 13.8 9.7 9.7
photonet 3.1 0.7 0.8 33.4 9.8 9.7
slashdot 3.1 0.9 0.9 38.4 22.1 22.1
usenix 0.3 0.0 0.0 0.8 0.3 0.3
wpi 0.5 0.1 0.1 2.9 1.6 1.6
yahoo 3.7 0.9 0.8 34.1 20.4 20.2

savings. One factor to consider is the number of requests generated by caches. The left

side of Table 6.5 shows that for nine sites the majority of requests served by the server are

due to the cache retrieving objects it has not seen before. If HTML pages are constructed

from components, caches would need to issue even more requests to obtain all objects. The

number of requests for changed objects would also increase if multiple components change

between retrievals. These findings suggest that if content providers expose constituent page

components to clients, we need to devise a mechanism that reduces the number of requests

that are due to the use of components. Comparing the response time results in Figure 6.5

with the traffic results in Figures 6.2— 6.4 we see that requests influence the response

time of policies more than bytes do. Thus, reducing the number of requests is important.

One approach to reducing the number of requests issued by caches would be to bundle

a set of components, such as components with the same change characteristic, together.

Another approach might be to treat a set of components as a delta between the current and

the updated versions of the page. Investigating these approaches from the feasibility and

performance points of view is a clear direction for future work.
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6.5 Summary

In this chapter, we first described a novel methodology for evaluating a wide range of

cache consistency policies over a range of access patterns and then used it to examine the

performance of MONARCH and compared it to the performance of current practice and

other cache consistency mechanisms. In addition, we used prior results obtained by others to

study whether and how traffic variations between various policies affect the user-perceived

response time.

The essence of our methodology is to actively gather selected content from sites of

interest and then use the collected content as input to a simulator. Traditional use of proxy

and server logs for evaluation of cache consistency policies has its limitations. While proxy

logs contain real client request patterns, they do not contain the complete request stream

to a particular site and provide no indication of when resources change. Logs from popular

server sites are not generally available to the research community and do not contain a record

of object modification events. Neither server nor proxy logs contain HTTP cache directives,

making it impossible to evaluate the effectiveness of policy reflecting current practice. Our

content collection methodology is a step towards filling these gaps and obtaining data for

any site of interest that is not otherwise available for study.

The results show that for all sites the Current Practice policy yields significantly better

response time than if no caching is used. For some sites, the Current Practice policy also

yields close to optimal cache performance, but for larger, more dynamic, sites it generates

more request and more byte traffic than is necessary. We discovered that sites often either

do not provide any cache control information or unnecessarily mark objects as uncacheable.

Our results also indicate that the Current Practice policy serves stale objects to clients for

a variety of simulation scenarios. Overall, caching objects using the Current Practice policy

is beneficial, but there is certainly room for improvement.

Our results show that the MONARCH approach to cache consistency provides substan-

tial improvement over heuristic policies, including the Current Practice policy. MONARCH
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provides strong cache consistency across all simulation scenarios and outperforms all heuris-

tic policies in terms of the request and byte traffic between caches and servers. Our results

also show that for the sites studied, MONARCH generates the same amount of byte traffic

and little more request traffic than an Optimal cache consistency policy. Simulations with

synthetic content yield similar results. Our results further indicate that the performance

of MONARCH is indistinguishable from the performance of the Optimal policy in terms

of response time. As compared to the Current Practice policy, for some sites MONARCH

showed no improvement in the estimated response time, but for Web site pages for which

many validation requests are needed MONARCH did show moderate improvement.

Our results indicate that the performance of MONARCH in terms of staleness, request

and byte traffic, and response time is closely matched by the OVL policy. These two policies

are the only ones in our study that maintain state at the server. The OVL policy maintains

per-client leases and the MONARCH policy keeps track of volume membership changes.

Results for the OVL policy show that for many of the sites studied the number of per-

client object leases is in the hundreds even though few of the objects actually change. The

amount of state for the MONARCH policy is up to a couple hundred volume membership

revisions per day. While the overhead of these two policies is different and cannot be

compared directly, the overhead of the OVL policy increases with the number of clients

and we showed that it also increases as requests arrive more frequently. MONARCH is not

affected by fluctuations in the request arrivals or the number of clients.

We believe that content providers may be willing to expose internal structure of their

pages to clients if servers and caches use MONARCH because MONARCH manages objects

deterministically rather than heuristically and gives content providers more control over

their content. We evaluated potential byte savings if parts of repeatedly accessed HTML

objects are reused by the cache across retrievals and found that substantial savings are

possible. Our findings also indicate that if pages are constructed from components servers

are likely to receive more requests than if pages are monolithic. Investigating approaches
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for better reuse of cached content is a direction for future work.

We conclude that the MONARCH approach to cache consistency is a substantial im-

provement over heuristic object management policies in terms of object staleness and re-

quest and byte traffic. MONARCH is also an improvement over the OVL policy because

the server state maintained by MONARCH is not affected by fluctuations in the request

arrivals or the number of clients. The evaluation presented in this chapter complements

the design and implementation of the prototype system presented in the previous chapter

in validating the hypothesis of this dissertation.
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Chapter 7

Conclusions and Future Work

We hypothesized in this dissertation that we can improve upon existing heuristic- and

invalidation-based object management techniques so that a group of related objects in a

distributed system can be managed with both consistency and efficiency. Our goal in

this dissertation was to eliminate consistency failures and per-client server overhead while

minimizing unnecessary requests. In the previous chapters, we have presented our approach,

evaluated it, and compared it to other existing and proposed approaches. This chapter

summarizes the contributions of this dissertation and presents ideas for future work.

7.1 Contributions

In pursuing the objectives of this dissertation, our research has made the following contri-

butions:

• We have proposed and successfully used a novel methodology for studying Web re-

sources and understanding how they change, which we discussed in Chapter 3. Instead

of examining proxy and server logs or packet traces of real user request/responses,

as was done by previous studies, we identify a set of Web resources to study and

then actively retrieve them over a period of time. Our methodology allows one to
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study any desired set of resources, instead of being constrained to the data available

in logs or traces. In addition, our methodology allows one to obtain server-supplied

cache-control information, which usually is not available in logs. Having cache-control

information associated with the resources studied permits one to evaluate cache con-

sistency mechanisms and study the potential improvement of caching schemes.

• We have used the methodology discussed above to perform a study characterizing

Web resources. The study and its results provide an important contribution as they

better explain how Web resources change and how they are related to each other. We

have performed that study twice, with four years between the two studies. The results

obtained both times agree with each other. That is also a contribution as it shows

that types of changes in Web resources and the relationships between Web objects

have remained stable over time. We use these findings in the dissertation.

• We have classified object changes based on their frequency and predictability and pro-

vided a taxonomy of object change characteristics. We discussed the implications that

object change characteristics have on object management at origin servers and inter-

mediaries. Understanding how objects change is important because the presence of ob-

jects with different update schedules inherently calls for different invalidation/update

strategies. Armed with this information we can improve upon existing object mana-

gement mechanisms. We use these change characteristics in this dissertation.

• We have examined possible combinations of the composition relationship between two

objects and object change characteristics and identified three important patterns for

deterministic object management. We have also extended our finding from two objects

to any number of objects. These patterns are important because identifying a pattern

that describes a given set of related objects leads to the management strategy for that

set of objects.

• We have devised a novel object management mechanism, called MONARCH, that
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chooses the most appropriate management strategies for a given set of objects. MO-

NARCH exploits relationships between objects in a set in conjunction with object

change characteristics—information that all other object management mechanisms

ignore. MONARCH achieves strong cache consistency for all objects and reduces

traffic overhead, as compared to heuristic-based mechanisms. MONARCH maintains

no per-client state at the server, unlike mechanisms based on server-initiated invali-

dation. Even though we evaluated the MONARCH approach to object management

using Web content designed for traditional Web browsers, the approach is not specific

to HTML or even to the Web. The MONARCH approach can be applied to mana-

ging any set of related objects in a distributed system, such as objects in an on-line

computer game, distributed simulation, or CAD project.

• As part of MONARCH, we have proposed providing caches with concise and unam-

biguous instructions on how to manage each object. Current object management

mechanisms are heuristic. With our Content Control Commands, caches no longer

need to use heuristics to estimate object freshness lifetimes. We believe the use of

CCCs leaves control over content in the hands of content providers while allowing

caches to cache content and serve it from the edge of the network.

• We have designed and built a prototype system implementing MONARCH. The pro-

totype system is a substantial contribution because it validates the proposed approach

and shows that such a system can be built. While working on the system, we encoun-

tered a number of issues, such as keeping track of volume revisions or deciding on the

set of objects to invalidate. Documentation and discussion of these issues, as well as

our solutions to them, is also a contribution. Other researchers wishing to implement

similar functionality can build on our experience.

• We estimated the potential reduction in the number of unnecessary validation re-

quests offered by our approach.also studied a number of real Web pages to estimate
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the amount of byte savings if pages were constructed from components and caches

were allowed to cache these components. These evaluations show the potential for

substantial improvement offered by MONARCH. The methodologies that we used in

these studies are also contributions as we are the first to use such evaluation method-

ologies to study the potential of a new object management mechanism.

• We are also the first to propose using snapshots of content actively collected from real

Web sites to evaluate cache consistency policies. Previous studies used proxy, server,

and object update [101, 99] logs for such evaluation. It is well-known that such logs

are hard to find and they tend to be from smaller or research-oriented sites. They

also tend to be dated. It is difficult to obtain (recent) traces from large and popular

commercial Web sites. Yet, evaluation of new proposals on precisely these types of

sites is of most interest. We applied this methodology for collecting snapshots of

content and for using it in simulations.

• While evaluating MONARCH and comparing its performance to that of existing ob-

ject management policies, we also evaluated the policy that reflects the behavior of

currently deployed caching proxies. We were able to do that due to our collected

content methodology discussed above. We are not aware of other studies that evalu-

ated the performance of the Current Practice policy taking into account the HTTP

cache-control directives used by real Web sites. Such evaluation sheds more light on

the effectiveness of caching mechanisms in HTTP as used by real sites.

7.2 Lifetime of Contributions

Any research project, especially as large and lengthy one as a Ph.D. Dissertation, causes

concerns regarding the relevancy of work when the project is completed. A problem that is

acute at the start of the project may become irrelevant by the end of the project.

The problem addressed in this dissertation is about an efficient mechanism for providing
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strong cache consistency for a set of related objects in a distributed system. We discussed

the importance of caching for distributed systems, especially large ones, in Chapter 1. The

Internet and the Web continue to grow and thus caching continues to be important for

these systems. As these systems become more entrenched in our society, we more rely on

them for not only casual but also mission-critical tasks. We place new requirements on the

systems and require new guarantees, such as ensuring strong cache consistency. The issue

of improving efficiency of distributed systems is always important, especially as systems

grow in size and popularity. The problem addressed in this dissertation is as important or

perhaps even more important today than it was when we started this work. We believe

the ideas described in this dissertation are applicable not only to HTML pages and objects

embedded in them, but also to non-HTML content and to domains other than the Web and

have the potential to fuel the next wave of research activity. We discuss our ideas for future

research directions next.

7.3 Future Work

Any work must be limited in scope to maintain focus and ensure timely completion. While

devising and evaluating the MONARCH approach, we encountered a number of directions

for future exploration. We have compiled a list of these directions for future work and

present them in this section.

One set of directions for future work is on content assembly. We discussed content

assembly and described how it is carried out in the MONARCH prototype system in Sec-

tion 5.5. Akamai has also proposed caching of page components and their assembly at the

edge of the network using their ESI technology [29]. We have already started extending our

basic content assembly approach with partial content assembly and with the integration of

content assembly and personalization. We are interested in evaluating how these additions

may affect our approach to Web object management. We elaborate on these two extensions

below.
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7.3.1 Selective Content Assembly

Servers and caches could choose to perform partial (or selective), instead of full, content

assembly. A decision to assemble all components of a composite object or only selected ones

could depend on a number of conditions. An overloaded server could skip the assembly or

assemble only those components that are present in the cache and are fresh. In a caching

hierarchy where caches have assembly capability, only servers at the client-side edge of

the network may be allowed to assemble content. Servers can further exploit relationships

between components and take into account object change characteristics in deciding whether

to perform full or partial assembly. For example, a server may assemble all related objects

that have the same change characteristic, cache the result of the assembly, and reuse it on

the subsequent requests, thus amortizing the cost of the assembly over multiple requests.

We plan to explore these issues in future work.

7.3.2 Assembling Customized Content

In this dissertation, we treated all objects that must be generated upon request as BoA, as

discussed in Section 4.5. Some objects are treated as BoA because origin servers generate

them based on the information in the client request, such as a cookie identifying a particular

user, parameters that follow a ? in the requested URL, or an HTTP request header. Objects

that depend on the information in the client request could be separated into their own special

category of personalized, or Input Dependent (InpDep), objects, which is separate from the

BoA category. Currently, we treat personalized objects as BoA. Objects in the InpDep

category also belong to one of the categories depicted in Figure 4.2. For example, an object

can be both RSt and InpDep. That object should be treated as an RSt object as long as

requests supply the same input parameter. This property of InpDep objects allows us to

remove the dependency on input parameters at the origin server, cache the resulting non-

InpDep object, and later on have the cache re-introduce the dependency on input during

the content assembly process. The three examples that follow illustrate this approach. The
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details of assembling customized content, however, still need to be researched.

Personalization

Consider the personalized greeting component CMP1 , shown in Figure 5.7, that is part

of the test page used to demonstrate the operation on the MONARCH prototype system.

Instead of having the server generate this component on every request, based on the input

provided by the user, content designers could remove the dependency on input and make

the new CMP1’ component of the category RSt and cacheable by changing username.cmp

to:

Welcome, <GI SRC=userprofile/<GI ISRC=userid DEFAULT=new-user-id>#Name>!

As a cache assembles a page with the CMP1’ component, it replaces the inner GI construct

with the value of the userid object that the current request supplies in the cookie. For

example, if a request contains the Cookie: userid=ID1 HTTP request header, the assem-

bler replaces the inner GI tag with ID1. Trusted caches and origin servers manage the

resulting userprofile/ID1 as any other object. If the client request contains no userid

object, then the origin server provides the cache with an id for a new user.

User profiles may contain a number of distinct fields, not all of which may be required

for a particular component. To access only the required field, we could use a mechanism

similar to that used by Web browsers to navigate to a specific named part of a page. We

append # and the name of the required field to the name of the object. After obtaining

userprofile/ID1 from the origin server, the assembler replaces the outer GI tag with

the content of the userprofile/ID1 that is located between the Name and the next field,

finishing the assembly. To prevent input parameters from masking those objects that should

be retrieved from the origin server, we use the ISRC attribute of the GI tag, instead of SRC,

to explicitly inform assemblers that the included object may be available in the request.

The real strength of treating an entire user profile as any other object is that caches can

avoid contacting the origin server when the same client requests pages that depend on other
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fields in the profile, such as address, e-mail or company name. Unless the profile changes

at the origin server, caches continue using it to personalize pages that depend on it.

URL Re-Writing

Many Web sites wish to identify unique visitors and track paths that they follow through

the site. Cookies do not work when users turn them off in their browsers, and Web crawlers

do not always support cookies. A more robust technique of differentiating between clients

is URL re-writing, where for each client the server generates a unique identifier and dy-

namically appends it to each traversal link on each page that it serves to that client. Pages

with re-written URLs are uncacheable even though their content does not change on every

request.

Caches enhanced with our content assembly mechanism can re-write traversal links in

cached pages by performing simple substitutions and can propagate unique IDs between

cached pages without contacting the origin server. Content designers change traversal links

in their pages from

<a href="link.html">

to

<a href="link.html?sessionid=<GI ISRC=sessionid>"> ,

effectively decoupling the InpDep part from the rest of the page. The modified page

now belongs to one of the categories in Figure 4.2, and can be cached if the category

is not BoA. Upon receiving a request for such a page, a cache replaces the entire GI

tag with the value of the sessionid found in the client’s request. For example, a re-

quest for page.html?sessionid=ID1 results in the re-written page.html containing the

link <a href="link.html?sessionid=ID1">. If the client follows re-written links within

that page, the cache re-writes those pages as well, assuming it has them cached, using the

same sessionid. If another client requests the same pages, the cache re-writes them with

the sessionid taken from that client’s request. If a request does not contain a sessionid
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object, the cache obtains a new ID from the origin server. The cache can also prefetch a

block of new IDs from the origin server in advance.

The reason sites deploy URL-re-writing is to log all requests and differentiate between

unique visitors. Caches with the content assembly capability annul the usefulness of the

URL-re-writing to servers by shielding them from client requests. We propose to decouple

serving cached content from propagating requests to the origin servers. Servers inform

caches via a CCC command whether they wants to see each request for a given object right

away, at some later point in time or never. If real-time feedback is not required, caches can

aggregate requests for a given object and notify the server later, perhaps during off peak

hours.

Input-Based Object Selection

When a Web site is offering content in more than one language encoding, the server decides

on the correct encoding at the time of the access by examining the Accept-Language

HTTP request header. The default installation of the Apache Web server [3], for example,

comes with the default home page in a few languages index.html.de, index.html.en,

index.html.fr, etc. Currently, such language-specific server responses can be cached with

the addition of the Vary field that a subsequent client request must satisfy to receive the

cached page.

Using our content assembly mechanism, caches can cache all objects that may result from

a server making a selection from a finite set of choices, while the Vary field supports caching

of only one object. Content providers add another object, index.html, that contains a

single line:

<GI SRC=index.html.<GI ISRC=Accept-Language DEFAULT=en>>

Upon receiving a request for index.html, caches either use the language preference of the

browser or the default value of en and construct the name of the object with the language-

specific content.
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7.3.3 Content Reuse

We found that better reusing content within HTML objects can offer substantial byte

savings. We plan to study different approaches for better reuse of HTML objects, such as

delta encoding, breaking pages into components, and HPP, and compare these approaches

along dimensions other than just byte savings. We believe there is a number of categories

of dynamically generated content and each content reuse approach may be more suited for

one category of dynamic content than for another. For example, URL re-writing might be

more easily accomplished with HPP than with components. We plan to study dynamic

content categories and investigate combining different approaches to content reuse.

As suggested in Section 6.4, the use of components is likely to increase the number of

requests that servers receive. We plan to examine and compare techniques for reducing

the number of requests contributed by components. One possibility would be to identify

components with the same change characteristic and fetch them using a single request.

Another possibility would be to have servers provide deltas for all updated components.

Combining different approaches is also a direction for investigation.

7.3.4 Dynamic Change Characteristics

One interesting question that arises with respect to object change characteristics is whether

an object’s change characteristic is a function of time. Some objects may never change their

change characteristic, while others may switch between change characteristics at different

time scales. In this dissertation we assumed that each object has only one change charac-

teristic. Since in reality that may not be the case, we plan to explore this issue further and

evaluate how the dynamics of object change characteristics influence object management in

general and the MONARCH approach in particular.
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7.3.5 Deploying MONARCH at an Experimental Site

An ideal way to evaluate MONARCH and other object management policies would be to

obtain client access traces and object update records from a variety of sites and replay

them using a simulator. While instrumenting sites that are not under our control may

not be possible, we could build our own site, with real content, and instrument it to keep

track of client accesses and object updates. For example, a set of Web pages with course

material could be treated as a small site. Students accessing course information, syllabus,

and project description pages generate real client accesses. We could also add MONARCH

functionality to the Web server and co-locate a MONARCH cache with the Web server.

The MONARCH cache keeps a detailed record of client accesses, cache hits and misses, and

communications with the MONARCH Web server, similarly to how our prototype MPS

kept a record of its activity, as described in Section 5.4.5.

Traces of client accesses and object updates taken at a small site with few users and little

offered content may not be representative of larger sites with large amounts of content and

millions of users. Still, we believe it would be valuable to evaluate MONARCH and other

object management policies on such a realistic workload. However small, new knowledge

and better understanding do reduce the amount of the unknown. Testing MONARCH on

a live system would also be interesting and valuable since live deployment may uncover

unexpected behavior, which may lead to better understanding of the issues involved and

new research directions.

7.3.6 Coupling MONARCH with Existing Templating

Mechanisms

In addition to deploying MONARCH at an experimental site, as discussed in Section 7.3.5,

we are interested in examining the issues of coupling MONARCH with existing templating

mechanisms, such as PHP [75] and Mason [59]. Templating mechanisms are widely used to

construct Web sites, and have mechanisms for building pages from components. We could
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convert our experimental Web site, discussed in Section 7.3.5, into a PHP- or Mason-based

site, and study the interaction between MONARCH and PHP or Mason. Understanding the

issues involved and finding ways to address them is important to the gradual deployment

of MONARCH on the Web.

7.3.7 Deployment Issues

Considering a newly proposed approach or a protocol for deployment in an existing dis-

tributed system, especially as diverse and open as the Internet, raises a host of additional

questions that may not even be applicable to a controlled laboratory environment. Consider

one such issue—authentication. In the MONARCH prototype system, discussed in Chap-

ter 5, client authentication is quite simplistic—both MPS and MWS examine the Accept

HTTP request header in the client request to decide whether the client is allowed to re-

ceive constituent page components or not. Deployment scenarios where MPS and MWS

communicate over an open channel require more sophisticated authentication schemes. A

possible future direction is studying such issues as authentication and security and subse-

quently formally describing the MONARCH approach and these issues in an Internet Draft

document.

7.3.8 Enabling End Client Nodes with the MONARCH

Capability

We plan to explore the possibility of enhancing Web clients with the MONARCH capabi-

lities. Extending the request and byte savings offered by MONARCH all the way to the

client would provide an even greater scalability and efficiency than offering MONARCH

functionality up to the edge of the network. The benefits should be especially significant

where client connectivity to the network is inferior, latency or bandwidth-wise, compared

to the cache-server connectivity.

There could be different approaches to extending the MONARCH mechanism to the
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client nodes. One approach would be to produce a version of the MPS that could run on a

client machine and work in conjunction with a standard Web browser. A Web browser can

be explicitly configured to access the Web through a proxy server. The proxy server carries

out all the communication with the origin server, caches constituent page components, and

embedded objects and assembles pages before handing them to the Web browser.

Having a separate proxy server, however, requires users to download, install, and con-

figure another piece of software. In addition, it requires users to configure their browsers to

use the newly installed proxy server. One could argue that our GI tags can be replaced with

an existing IFRAME tag, which is supported by recent versions of popular Web browsers,

such as Mozilla, Galeon, and Internet Explorer. Components included in the page with

the IFRAME tags are fetched and cached by these browsers separately from the other page

components. Unfortunately, rendering of IFRAME tags by these browsers is not quite seam-

less. Not only can one tell where the IFRAME components are on the page, scrolling and

navigation sometimes breaks when IFRAME tags are used. In addition, IFRAME tags can be

used to include only deterministically changing objects, those that can be explicitly marked

as uncacheable or assigned an explicit expiration time, because browsers currently do not

understand CCC commands.

One could also suggest attaching JavaScript code that performs page assembly at the

browser to each MONARCH-enabled page. Once a JavaScript-enabled browser loads a Web

page with the GI tags, the attached JavaScript code runs, traverses the Document Object

Model (DOM) of the page, and finds all occurrences of the GI tags. The security model of

JavaScript prohibits such code from opening connections to remote servers. A way around

this limitation would be for the JavaScript code to create a hidden IFRAME for each GI tag

and assign the source of the GI tag to the src attribute of the IFRAME, effectively forcing the

browser to load the respective components into the proper hidden IFRAME. The JavaScript

code can then manipulate the nodes in the DOM tree and remove all IFRAME nodes, making

their children part of the main document. The described scheme sounds fairly complicated
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and requires each page to include JavaScript code capable of such assembly. Even worse,

JavaScript cannot handle caching of these components. However, given that the source code

for the Mozilla Web browser is available to the general public, we plan on investigating the

possibility of building the MONARCH functionality directly into that browser.

7.3.9 Applying Ideas in MONARCH to non-HTML Content

The ideas used by the MONARCH approach are not specific to the Web. However, our

discussions focused on the application of these ideas to the Web domain and to HTML

pages in particular. We plan on broadening our experimentation by applying our ideas to

other types of content. For example, one possible direction of research is applying the ideas

in MONARCH to the wireless Web. Since wireless devices are often hand-held and thus

are small in size, and the nature of wireless access to the network is quite different from

wired access, the language used to mark up wireless content, WML, offers capabilities that

differ from those offered by HTML. We plan to study these differences and examine how

they can be exploited in conjunction with the ideas in MONARCH for improved object

management in wireless environments. One such difference between WML and HTML is

the notion of card elements, introduced by WML [97]. Card elements specify fragments of

the document body, allowing a larger page to be broken up into smaller parts. These cards

could be treated as components, support for which is readily available in wireless browsers.

We also plan to examine a new multimedia standard for Television and Web environments,

MPEG-4 [45], which is designed to integrate several types of objects to create multimedia.

It allows a composition of natural content, such as recordings of people or still objects, and

synthetic content, such as synthesized voice and animated 3D models.

The ideas in MONARCH can also be applied to large scale distributed simulations.

One example of such simulations is on-line computer games. Modern computer games in-

volve sophisticated virtual worlds with complex interaction between numerous simulated

objects—buildings, people, wizards, monsters, weapons. These objects have different cha-
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racteristics, including change characteristics. Maintaining strong consistency in distributed

computer games is important, as successes and failures of game players, and even realism

of the game itself, depend on consistency. A player locates and shoots a virtual opponent

just to discover that her view of the virtual world was inconsistent with the master repre-

sentation at the time, and the opponent actually killed her. We plan on investigating how

ideas in MONARCH can be applied to maintaining consistency for objects in distributed

computer games.

7.3.10 Methodology for Active Content Collection

In this dissertation, we collected snapshots of content from real Web sites for evaluation of

various cache consistency policies. We collected the home page, up to three static links,

and up to three transient links from each Web site in our set of sites. We plan to further

explore, refine, and validate our methodology for active content collection. One direction

is to investigate the effect of alternate criteria for picking the number and type of pages at

a site for study. We are also interested in determining which pages at a site are actually

requested by users. Studying such pages would be most useful. We could examine available

proxy logs and select those URLs that are pointing to the sites that we intend to study. We

also plan to apply our methodology to sites for which server logs are available and study

the effect of content collection intervals and the accuracy of the collected data.

7.4 Summary

In this chapter, we summarized many contributions produced by this dissertation, pointed

out why we believe our contributions are important, and discussed their lifetime. We also

listed and discussed a few ideas for future work. Some of the ideas, such as the selective

content assembly and assembling customized content, extend MONARCH’s functionality.

Other ideas, such as adding MONARCH to end clients, extend MONARCH’s reach. We

also proposed investigating how the ideas used by MONARCH can be applied to non-HTML
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content and other domains, such as multimedia. We believe exploring these directions may

result in new extensions to MONARCH and may lead to new applications of the ideas in

MONARCH.
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