


 

Abstract 

This thesis is a part of a research project performed by two MS students, Zhouchi Li and 

the author. The overall objective of the project is the design, implementation and 

performance evaluation of algorithms for newborns localization and tracking in hospitals 

using Apple iBeacon technology.  Although we were working on the project together, I 

lead performance evaluation of the in-room localization system using Cramer Rao Lower 

Bound (CRLB).  My partner, Zhouchi Li, leads modeling the path-loss of iBeacons and 

presence detection algorithms. This thesis describes the project with a focus on my 

individual contributions in CRLB analysis under different iBeacon deployment patterns as 

well as performance evaluation using practical characteristics of shadow fading.  

Today, Wi-Fi localization is the most popular indoor localization technique, which 

provides an accuracy of a few meters to distinguish the presences in different rooms of a 

building. With the recent introduction of iBeacon by Apple, possibility of more accurate 

in-room localization has emerged for specific applications such as locating newborns 

inside a hospital. The iBeacon uses Bluetooth Low Energy (BLE) technology that 

broadcasts beacons with unique information to the nearby receivable devices such as 

iPhone and android smart phones. The RSS of these beacons can be used to estimate the 

location and to construct an in-room localization system.    

In this thesis, we investigate in-room localization system using iBeacon for the newborns 

in hospitals with an accuracy of about 1 meter. We firstly present an in-room localization 

system using RSS from iBeacon. Then, based on the traditional Cramer-Rao Lower Bound 

(CRLB) we analyze the optimal deployment strategy for different iBeacon deployment 

patterns in the nursery room. Finally, we introduce a novel approach for calculation of the 

CRLB which includes practical conditions to analyze the influence of variable variance of 

shadow fading and coverage probability. 
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Chapter 1                       

Introduction 

IBeacon is a class of Bluetooth Low Energy (BLE) devices introduced by Apple in 2013 

that broadcast unique information to the nearby receivable devices. There are 3 parts in this 

unique information packet: Universally Unique Identifier (UUID), major, and minor which 

can all be defined by the users. Once these iBeacons are detected, the receivers are able to 

estimate the proximity according to the Received Signal Strength (RSS) of the iBeacon. In 

brief, iBeacon functions like the ancient beacon in the ocean except sending Bluetooth Low 

Energy signal rather than light to the receivers. Compared with traditional Bluetooth 

technology, BLE is intended to have similar coverage area while less power consumption. 

This makes it possible that iBeacon can be used for several years without changing battery. 

Furthermore, it is not necessary for such devices using BLE signal to pair with each other 

before they communicate. Nowadays almost all the smart phones, like iPhone, Android and 

Blackberry, are compatible with BLE technology which indicates that they can all 

collaborate with iBeacons. More importantly, there is no need for us to install special BLE 

receivers for iBeacon since almost everyone owes a smart phone. IBeacon has many 

location-based applications. One of the most outstanding aspects that attracts more and 

more industries’ attention is to develop indoor positioning systems. Not only Apple but 

enterprises such as Qualcomm, PayPal, and SKT are looking forward to face another 

evolution by partnering with newest devices such as iBeacon. 

1.1 Project background and motivation 

There exist some differences between iBeacon and other traditional indoor localization 

technologies. First of all, the signal that iBeacon transmits is a one-way broadcast, which 
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means only the receiving devices can get information from iBeacon, but they cannot send 

back any information to iBeacon. Second, users are required to install an application on 

their receiving devices (smartphones) to receive BLE signal, which will help them to 

protect their privacy because only the applications rather than iBeacons my obtain their 

position information. 

Even though outdoor localization is quite mature and has been implemented in our daily 

life such as the vehicle navigation with the advancement of localization technology, there 

are a huge amount of indoor smartphone applications which demonstrate an intense need to 

the position information of the users, so that plenty of position-based applications are 

achievable. However, traditional outdoor localization technologies cannot solve this 

problem successfully like GPS performs awful in indoor environment that is why we focus 

on in-room localization using iBeacon.  

1.2 Contributions of this thesis 

This thesis is a part of a research project performed by two MS students, Zhouchi Li and 

the author. The overall objective of the project is the design, implementation and 

performance evaluation of algorithms for newborns localization and tracking in hospitals 

using Apple iBeacon technology. During this project, we have already submitted two 

conference papers: 

1. Yang Yang, Zhouchi Li and Kaveh Pahlavan, "Using iBeacon for intelligent in-

room presence detection”, 2016 IEEE CogSIMA, San Diego, CA, Mar. 2016. 

2. Zhouchi Li, Yang Yang and Kaveh Pahlavan, “Using iBeacon for Newborns 

Localization in Hospitals”, 2016 IEEE 10th ISMICT, Worcester, MA, Mar. 2016. 

Although we were working on the project together, I lead performance evaluation of the in-
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room localization system using Cramer Rao Lower Bound (CRLB). My partner, Zhouchi 

Li, leads modeling the path-loss of iBeacons and presence detection algorithms. This thesis 

describes the project with a focus on my individual contributions in two major aspects: 

Analyze the optimal deployment strategy for different iBeacon deployment patterns in the 

nursery room and introduce a novel approach for calculation of the CRLB which includes 

practical conditions to analyze the influence of variable variance of shadow fading and 

coverage probability.   

1.3 Thesis outlines 

In this thesis, we investigate in-room localization system using iBeacon with an accuracy 

of about 1 meter. In chapter 1, we give a brief introduction to the motivation, contributions 

and outlines of this thesis. In chapter 2, backgrounds about iBeacon and BLE 

communications, fading margin and shadow fading, in-room presence detection and 

localization as well as Cramer Rao bound are presented. In chapter 3, a self-developed 

application is demonstrated and 2 algorithms are constructed by my partner Zhouchi Li and 

me to build a presence detection system that can inform us the number of people in a room. 

Then we focus on in-room localization which is described in chapter 4 and 5 to find out the 

positions of each people, considered as the next stage of our project. In chapter 4, 

methodology and discussion for in-room localization using iBeacon are presented. After 

path-loss modeling we compare the cumulative distribution functions (CDF) of the error in 

different deployment patterns as well as different number of iBeacons to find out the best 

deployment method of iBeacons. In chapter 5, we analyze the Cramer-Rao Lower Bound 

(CRLB) of localization considering coverage probability and variable shadow fading to 

evaluate the performance of in-room localization using iBeacon. Not only detailed analyses 

but also simulation results are illustrated in order to support our claims. In chapter 6, we 

make conclusions of the whole thesis and demonstrate our future works.                                 
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Chapter 2                                 

Backgrounds in in-room localizations 

Accurate in-room positioning information makes it possible to revolutionize the way 

people search, locate and navigate to points of interest inside rooms that is similar to how 

GPS revolutionized the way people navigate outdoors [1][2]. For instance, a mobile 

holder (MH) in a mall could leverage his mobile device to instantly search, locate and 

navigate with real-time directions to any store in the mall based on amateur indoor 

localization technology. In in-room scenario, the MH could automatically receive 

directions to the exact section where the desired product locates. Meanwhile, businesses 

and advertisers could push coupons and offers to the MH based on his position 

simultaneously insider a store to maximize customer shopping effectiveness [2]. Enabling 

such scenario has been challenging mainly due to the unreliability of GPS localization in 

indoor or in-room environments [3][4]. Due to the absence of GPS, we basically utilize 

iBeacons to complete in-room localization by using RSS-based localization technology 

which is similar to Wi-Fi localization. In this chapter, we introduce some backgrounds 

about iBeacon and its BLE communication, fading margin, in-room presence detection, 

in-room localization and Cramer–Rao bound that are useful in better understanding this 

thesis. 

2.1 IBeacon and BLE communication  

Presence detection is a common application for smart phones, which may contribute to 

energy-efficient intelligent lighting control, smart heating and air-conditioning, home 
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security system and etc. In public area, the in-room presence detection technologies can 

be also used to count the registration and check-in of an event. Existing literature 

introduces two major technical trends to implement in-room presence detection systems. 

At the beginning stage, the research community mounts various sensors to the room 

ceiling and tries to cover the room as much as possible. Sujin et. al [5], proposed a digital 

camera and image processing based presence detection system using intensity average 

variation to detect moving objects; Neubiberg et. al [6], presents a 360o rotational camera 

based approach to enhance the camera coverage.  

The above mentioned first technical trend suffers from certain disadvantages. First and 

foremost, the pre-deployment of the infrastructure is not unified. Take the PremaTM as an 

example, only single sensor is required to cover a squared room but multiple sensors are 

necessary for an irregularly shaped room. As a consequence, the infrastructure cost is 

site-specific and it can goes exponentially high. To address that issue, the second trend 

locates sensors only to the entrance of the room. Motion sensors and infrared sensors 

[7][8] are attached to the room entrance to count either entering or leaving of the 

individuals. Such techniques successfully cut down the cost but it still suffer the lack of 

ability to identify the presented individuals.  

IBeacon based system in this work is a potentially good choice without all above 

imperfections. With highly limited cost and long enough battery life, iBeacon is able to 

perform proximity estimation and at the same time identify the adjacent individuals. It 

also carries various other additional functionalities such as smart advertising [9]. 

Considering the advantages of iBeacon, we propose to use iBeacon for presence detection 

in this work. 
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Figure 2.1 Menu of Estimote iBeacon application 1 
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Figure 2.2 Menu of Estimote iBeacon application 2 
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Figure 2.3 Menu of Estimote iBeacon application 3 

The manufacturer of iBeacon, Estimote Company, provides their own iBeacon APP, 

which serves as a proximity estimator. The APP presents a graphic user interface (GUI) to 

display the geometric relationship between the iPhone and surrounding iBeacons. It also 

provides iBeacon ID, iBeacon status, distance between iBeacon and iPhone, iBeacon 

sensor reading and other information.  
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Typical screenshots of this Estimote APP has been depicted in Figure 2.1- Figure 2.3. It is 

very obvious that the Estimote APP has two major disadvantages considering the purpose 

of this paper. (1) Originally the APP is not designed to perform presence detection; (2) 

The APP fails to explicitly provide the RSSI reading. Given those disadvantages, it is 

necessary to design our own APP to achieve intelligent in-room presence detection. 

BLE communication consists primarily of “Advertisements”, or small packets of data, 

broadcast at a regular interval by Beacons or other BLE enabled devices via radio waves 

[10]. BLE Advertising is a one-way communication method. Beacons that want to be 

“discovered” can broadcast, or “Advertise” self-contained packets of data in set intervals. 

These packets are meant to be collected by devices like smartphones, where they can be 

used for a variety of smartphone applications to trigger things like push messages, app 

actions, and prompts. This overall frame can be viewed in Figure 2. 4 and Figure 2. 5. 

  

Figure 2.4 Frame of iBeacon communication 1 

Apple’s iBeacon standard calls for an optimal broadcast interval of 100 ms.  Broadcasting 

more frequently uses more battery life but allows for quicker discovery by smartphones 
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and other listening devices. Standard BLE has a broadcast range of up to 100 meters, 

which make Beacons ideal for indoor location tracking and awareness. 

 

Figure 2.5 Frame of iBeacon communication 2 

With iBeacon, Apple has standardized the format for BLE Advertising. Under this format, 

an advertising packet consists of four main pieces of information [10]: 

UUID: This is a 16 byte string used to differentiate a large group of related beacons. For 

example, if Coca-Cola maintained a network of beacons in a chain of grocery stores, all 

ibeacons would share the same UUID. This allows Coca-Cola’s dedicated smartphone 

app to know which beacon advertisements come from Coca-Cola-owned beacons. 

Major: This is a 2 byte string used to distinguish a smaller subset of beacons within the 

larger group. For example, if Coca-Cola had four beacons in a particular grocery store, all 

four would have the same Major. This allows Coca-Cola to know exactly which store its 

customer is in. 

Minor: This is a 2 byte string meant to identify individual beacons. Keeping with the 

Coca-Cola example, a beacon at the front of the store would have its own unique Minor. 

This allows Coca-Cola’s dedicated app to know exactly where the customer is in the store. 
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Tx Power: This is used to determine proximity (distance) from the beacon. TX power is 

defined as the strength of the signal exactly 1 meter from the device. This has to be 

calibrated and hardcoded in advance. Devices can then use this as a baseline to give a 

rough distance estimate. 

2.2 Fading margin and shadow fading 

In reality at a distance d we have a 50% probability of having adequate signal strength 

(RSS that is larger than the receiver sensitivity). This is because the normally distributed 

(in dB) shadow fading random variable can have a positive value with 50% probability 

and that positive value increases the path loss beyond what was used for calculation of 

the distance d. For a terminal located in distance d from the base station, we have a 50% 

probability to operate with the required minimum signal strength. To increase this 

probability one may add power to increase the probability of coverage at distance d. This 

additional power is referred to as fading margin, and it is represented by Fσ [11]. 

We know that deviations of the average RSS from the best-fit line is caused by the 

changes in the pattern of obstructions shadowing the direct transmission and for that 

reason it is referred to as shadow fading. Shadow fading not only causes variations in the 

average RSS at the same distance, as we move away from the transmitter along a straight 

line, the power deviates randomly from the power predicted by the best fit line [12]. 

Therefore, shadow fading causes fluctuations in the average RSS when the distance is 

kept fixed and deviations from the best linear fit to the RSS as we move away from the 

transmitter. 

In the former chapters of this thesis, all the shadow fading values, or the standard 
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variances of shadow fading, are considered as constants, typically we use 5 dB or 8 dB. 

However, [13] shows the fact that the shadow fading values are related with the distance. 

In his thesis, he introduced a statistical RF signal shadow fading model based on the 

measurements in a typical office building. This model related the shadow fading to the 

distance and uses two different distribution functions to approximate the shadow fading 

between the breaking point. Since the ranging based RSS localization algorithm and the 

fingerprint localization algorithm are widely used these days, we use this distance related 

shadow fading model to the further analysis of its effect on these localization algorithms. 

Based on their research, we can see the relationship in Figure 2.6: 

 

Figure 2.6 Relationship between variable shadow fading and distance 
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This relationship can be fitted by this equation [13]: 

σ = −4.28 × 𝑒−0.9372×𝑑+4.31 

In reality, the shadow fading, which is used to reflect the complexity of the environment, 

should be sensitive to the slight changes of the physical environment during the 

experiment. Therefore, the shadow fading should be fluctuated when the distance 

between the transmitter and receiver is changed. It is also what we use in the calculation 

of revised CRLB in the section 5.2. 

In wireless communications, fading is deviation of the attenuation affecting a signal over 

certain propagation media. The fading may vary with time, geographical position or radio 

frequency, and is often modeled as a random process. A fading channel is a 

communication channel that experiences fading [11]. In wireless systems, fading may 

either be due to multipath propagation, referred to as multipath induced fading, or due to 

shadowing from obstacles affecting the wave propagation, sometimes referred to as 

shadow fading. 

Shadowing is the effect that the received signal power fluctuates due to objects 

obstructing the propagation path between transmitter and receiver. These fluctuations are 

experienced on local-mean powers, that is, short-term averages to remove fluctuations 

due to multipath fading. 

Experiments reported by Egli in 1957 showed that, for paths longer than a few hundred 

meters, the received (local-mean) power fluctuates with a 'log-normal' distribution about 

the area-mean power. By 'log-normal' is meant that the local-mean power expressed in 

logarithmic values, such as dB or neper, has a normal (i.e., Gaussian) distribution. 
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Egli studied the error in a propagation model predicting the path loss, using only distance, 

antenna heights and frequency. For average terrain, he reported a logarithmic standard 

deviation of about s = 8.3 dB and 12 dB for VHF and UHF frequencies, respectively. 

Such large fluctuations are caused not only by local shadow attenuation by obstacles in 

the vicinity of the antenna, but also by large-scale effects (hills, foliage, etc.) along the 

path profile, which cause attenuation. Hence, any estimate of the area-mean power which 

ignores these effects may be coarse. 

This log-normal fluctuation was called 'large-area shadowing' by Marsan, Hess and 

Gilbert. They measured semi-circular routes in Chicago, thus fixing distance to the base 

station, antenna heights and frequency, but measuring different path profiles. The 

standard deviation of the path loss ranged from 6.5 dB to 10.5 dB, with a median of 9.3 

dB. This 'large-area' shadowing thus reflects shadow fluctuations if the vehicle moves 

over many kilometers. 

In contrast to this, in most papers on mobile propagation, only 'small-area shadowing' is 

considered: log-normal fluctuations of the local-mean power are measured when the 

antenna moves over a distance of tens or hundreds of meters. Marsan et al. reported a 

median of 3.7 dB for small area shadowing. Preller and Koch measured local-mean 

powers at 10 m intervals and studied shadowing over 500 m intervals. The maximum 

standard deviation experienced was about 7 dB, but 50% of all experiments showed 

shadowing of less than 4 dB. 

In a radio system, an allowance made so that a signal can fade up to a given amount, 

while still maintaining overall performance at an acceptable level. For example, an RF 

signal may be attenuated by a given number of decibels, yet sustain a signal-to-noise ratio 
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above a specified minimum. Also it is called fading margin which is a designed 

allowance that provides for sufficient system gain or sensitivity to accommodate expected 

fading, for the purpose of ensuring that the required quality of service is maintained. The 

amount by which a received signal level may be reduced without causing system 

performance to fall below a specified threshold value. It is mainly used to describe a 

communication system such as satellite, for example a system like global star operates at 

25-35 dB Fade margin. This fading margin in RSS based localization gives us a 

suggestion about what is the reliability of locate result in such distance, based on which 

we can calculate the detection possibility by access points or iBeacons. 

2.3 In-room presence detection 

IBeacon has many location-based applications. It can be used to develop indoor 

positioning systems [14][15]. It can be used to build an indoor proximity estimation 

system to detect the number of moving objects in a room, and even gather the patterns of 

their movement [16]. Moreover, iBeacons can be also used as launching APPs on remote 

devices [17]. The interest of industry for iBeacon is increasing as well. Not only Apple 

but enterprises such as Qualcomm, PayPal, and SKT carry forward related businesses by 

partnering with a variety of companies [18].  

The hardware basis of this work is the iBeacon transmitters from Estimote [19], 

cooperating with the most recent iPhone 5s, 6/6Plus and 6s/6sPlus. We develop our 

intelligent in-room presence detection system using existing APIs which provide received 

signal strength indicator (RSSI) and the motion information. Most importantly, we 

managed to manipulate empirical data and decide whether a person is in-room or not.  

In this thesis, we assume that the entrance door automatically shuts after an individual 
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goes into or out of the room. When the individual opens and gets through the door with 

our APP properly launched, our APP receives the beacon signal and sends the beacon 

RSSI to the server. The server archives the RSSI and decides the presence status of that 

individual according to computational result of our algorithm. We first and foremost 

focus on the system implementation with two iBeacons, one of them attached to the 

outside of door while another mirroring at the inside. Such implementation provides 

adequate understanding on the physical phenomenon. After that, we move on to single 

iBeacon implementation, for which our system still performs well enough, but works 

with less expenses and more convenience.  

2.4 In-room localization in hospitals 

In hospitals one of the most important tasks is the safety of patients and indoor 

positioning service can help improve patient safety. Among numerous in-room 

positioning technologies, Wi-Fi localization is widely used in the hospital today [20]. 

This is for indoor geolocation in an entire building assuming that the user uses a smart 

phone. With the help of these kinds of position-based applications, doctors and nurses 

will master the health conditions of patients easily and timely. Another application is 

finding newborn babies in the nursery rooms. In the application they put a tag at the 

babies’ legs or wrists and use RFID to identify and track babies [21].  
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Fig.1 Radio Frequency Identifier tag used in nursery room 

In this thesis we use iBeacon, a Bluetooth Low Energy (BLE) based technology, to 

replace RFID for in-room localization in this paper. Compared with expensive special-

purpose RFID reader infrastructure (such as commercial UHF RFID readers or USRPs), 

the cost of the iBeacon deployment is much lower because BLE capable devices are 

already nearly ubiquitous as essentially all smart phones, tablets, and PCs from major 

manufacturers such as Apple and Samsung have adopted the Bluetooth 4.0 standard, 

which includes BLE as a key mode of operation [22]. The working coverage of iBeacon 

is also larger than that of RFID, but smaller than WiFi. If the working range is a whole 

building, not a single room, WiFi localization may be a better choice. The hardware basis 
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of this work is the iBeacon transmitters from Estimote [10], cooperating with the most 

recent iPhone 5s, 6/6Plus and 6s/6sPlus.  

By putting an iBeacon on every baby’s leg and use the iBeacon to broadcast the unique 

ID information, we can identify babies on users’ smart phone [23]. Furthermore, if we 

predefine a distribution map of all the iBeacons in the nursery room, we can locate the 

users and navigate them to a certain baby according to RSSI analysis. Different 

deployment patterns will result in different localization performance, which can be 

quantified by our path-loss modeling and 3D CRLB analysis of iBeacons [24]. 

With the development of WLANs (Wireless Local Area Networks), there is an increasing 

level of interest in developing the technology to "geolocate" users in an indoor 

environment. Positioning and tracking of an indoor user based on radio signals will 

encounter a considerable degree of technical difficulty because various objects such as 

floors, walls and human bodies within a confined space will contribute to a rather 

complex form of attenuation and fading of the radio signals to be used for geolocation. 

[25] A majority of wireless geolocation techniques are based on such information as TOA 

(the time of arrival), TDOA (the time difference of arrival), and DOA (the direction of 

arrival). But geolocation based on these techniques is reliable only when line-of-sight 

signals are dominant, hence it will not be applicable to an indoor environment. 

Furthermore, a TOA or TDOA based approach requires accurate synchronization between 

transmitters and receivers. 

We therefore explore an alternative geolocation method, that is, a signal strength based 

approach. Instead of measuring the time or angle of signal arrival, the signal strength 

method makes use of the level of signal power (or energy) sensed by an MS (mobile 

station) regarding the signals transmitted by reference base stations or APs (access points 
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in the IEEE802.11 terminology). This signal strength based approach may be also 

possible in a reversed situation, where the signal from an MS is sensed by multiple APs. 

This second approach would relieve an individual MS from the task of computing its 

position or processing and transferring relevant information to some BS (base station) or 

AP, as would be required in the first approach. However, a set of signals from different 

MSs must be designed in such a manner that APs can distinguish the signals from 

different MSs.  

As early as in the 1960's, the signal attenuation model has been proposed as an approach 

to locate vehicles in motion on the street. [25] Nevertheless, the signal strength based 

geolocation is still an unexplored technique for locating WLAN users in an indoor 

environment. In our research we use, as our starting point, a recent work reported by Bahl 

and Padmanabhan. [25] Before reviewing their analysis, we first introduce a simple 

signal propagation model which is based on a signal predictor variable, where the 

observed variable is the signal strength (in dBm), and the predictor (or controlled) 

variable is the distance from a reference position (also in logarithm), and the main 

parameter to be estimated (i.e., regression coefficient) is the exponent value a that 

determines path loss of the signal when the distance from the signal source is given. Then 

we use Bahl's empirical signal propagation model which is also based on a linear 

regression analysis and in which the observed variable of signal strength has been 

compensated for the attenuation caused by the walls intervening between the MS and AP 

before applied to the regression analysis. We then extend this linear regression model to a 

multiple regression model by adding another predictor variable, i.e., the wall attenuation 

factor, denoted WAF [dB]. There may exist walls intervening between a possible MS 

location (to be estimated in geolocation) and a given reference position. We then evaluate 
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the improvement of this multiple regression model over the linear regression model by 

comparing their coefficients of determination and standard deviations. In order to carry 

out this statistical analysis, we resort to a simulation technique. 

2.5 Cramer–Rao bound 

In estimation theory and statistics, the Cramer–Rao bound (CRB) or Cramer–Rao lower 

bound (CRLB), named in honor of Harald Cramer and Calyampudi Radhakrishna Rao 

who were among the first to derive it, they express a lower bound on the variance of 

estimators of a deterministic parameter. The bound is also known as the Cramer–Rao 

inequality or the information inequality. 

In its simplest form, the bound states that the variance of any unbiased estimator is at 

least as high as the inverse of the Fisher information. An unbiased estimator which 

achieves this lower bound is said to be (fully) efficient. Such a solution achieves the 

lowest possible mean squared error among all unbiased methods, and is therefore the 

minimum variance unbiased (MVU) estimator. However, in some cases, no unbiased 

technique exists which achieves the bound. This may occur even when an MVU 

estimator exists. 

The Cramer–Rao bound can also be used to bound the variance of biased estimators of 

given bias. In some cases, a biased approach can result in both a variance and a mean 

squared error that are below the unbiased Cramer–Rao lower bound [26]. 

There is a wide range of wireless sensor network (WSN) applications requiring 

knowledge of sensor locations, from indoor user tracking to environmental and structural 

monitoring. Location estimation schemes used in long-range communications, such as 
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wireless cellular networks (WCN), include time of arrival (TOA), time difference of 

arrival (TDOA), and received signal strength (RSS). Although RSS measurements are 

easily available, since mobile terminals (MT) constantly monitor the strength of the 

neighboring base stations’ pilot signals for handoff purposes [27], the RSS technique has 

been circumvented in WCNs, because of its dependency on the distance of the located 

device to the reference devices (i.e. base stations). In WSNs, on the other hand, the 

distances between mobile sensor nodes (SN) and the neighboring reference devices are 

by an order of magnitude smaller than in WCNs. For example, in the emerging ZigBee 

standards, the transmission range of reduced function devices (RFD) and full function 

devices (FFD) are set to be 30 meters. At this range, RSS-based location estimation 

performs better.  
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Chapter 3                                     

Algorithms for intelligent in-room 

presence detection using iBeacon 

This chapter focuses on how to establish an intelligent in-room presence detection system 

using iBeacon. With the help of this system, the attendance registration of large rallies 

like courses and seminars can be completed automatically and the system can be used for 

any meeting places without frequent charging. Moreover, the system can also be 

integrated into indoor localization systems, which will lead us to more applications. In 

order to construct this presence detection system step by step, we firstly analyze the 

differences between existing marketable iBeacon APPs and our own APP. With the 

explanation of the experimental setup for both two iBeacons and one iBeacon scenarios, 

we present the details of our presence detection algorithms and systems, and then we 

focus on system performance and validation. Finally, we draw our conclusions and make 

discussions. 

3.1 IBeacon application development 

The iBeacons produced by Estimote Company can provide us much information we need 

such as RSS, broadcasting interval, minor and major values and even motion sensor [19]. 

However, the existing app from Estimote Company do not allow us to collect data 

directly from iPhone which means large samples are impossible and we can only collect 

data by hand. Even though the application provided by Estimote Company can satisfy 

many requirements in iBeacon, there is an unavoidable problem existing in this 

application: we cannot extract any data from this application which means the RSS data 
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we need can only be recorded by hand that is absolutely inconvenient and impossible for 

large data. To solve this problem, we decide to develop our own app. Since intuitively we 

know that the geometric relationship between the iBeacon and iPhone can be reflected by 

the RSSI fluctuation of beacon signal, we employ necessary APIs to get the RSSI reading 

directly from iPhone sensors. The APP encapsulates three essential information into each 

record, including the iBeacon ID, RSSI reading and Time stamp. Considering the 

scalability of the system, iBeacon ID has been partitioned into Universally Unique 

Identifier (UUID), Major field, and Minor field [28]. In that sense, for large scale 

deployment, we may configure building number as iBeacon UUID, floor number as 

iBeacon Major and the iBeacon indicator as iBeacon Minor. The structure of each record 

can be given as 

{UUID, Major, Minor, RSSI, Time stamp} 

Typical screenshot of our own APP has been depicted in Figure 3.2, in which we 

explicitly display Major, Minor and RSSI fields but implicitly record the UUID and Time 

stamp for privacy concerns. 

 

Figure 3.1 Frame of iBeacon application development 
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Figure 3.2 Menu of self-developed iBeacon application 

3.1.1 Development using objective C 

Estimote Indoor Location SDK allows real-time beacon-based mapping and indoor 

location. We know that building the next generation of context-aware mobile apps 

requires more than just iBeacon™ hardware. That's why we've built smarter software that 

abstracts away the difficulty of understanding proximity and position within a given 

space. Estimote Indoor Location is a sophisticated software solution that makes it 

incredibly easy and quick to map any location. Once done, you can use our SDK to 

visualize your approximate position within that space in real-time, in your own app. 

Indoor Location creates a rich canvas upon which to build powerful new mobile 

experiences, from in-venue analytics and proximity marketing to frictionless payments 



25 
 

and personalized shopping. Estimote Indoor Location works exclusively with Estimote 

Beacons. 

When it comes to our project, we use Objective-C to develop our app to get the RSS of 

the beacons. The iPhone 5s acts as the receiver in our research and it is connected to a 

Mac book computer by a cable [28][29]. When it gets the packets from iBeacons which 

are in the detection range, it will display the current values of RSS both on the iPhone 

screen and Mac book computer. The data we collected in different situation can be used 

to do the channel modeling. Figure 3.3 is an example coding in Objective-C: 

 

Figure 3.3 Menu of coding in Objective-C 
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3.1.2 Self-developed application 

Figure 3.2 shows the app we have developed based on the API provided by Estimote 

Company. It can show the list of the beacons detected by our device and take down the 

RSS signal, major, minor, sequence number of the data and whatever information of 

beacons we want. Our need of extracting the RSS data can be satisfied by the app. Figure 

3.4 shows the menu of receiving data in server. 

    

Figure 3.4 Menu of receiving data in server 

Figure 3.5 shows the server we built on my computer by using Python. When the app 

finishes receiving data of iBeacons, it will send the data to the server through the Internet. 

And the server will get the data and store them in a file automatically. 
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Figure 3.5 Menu of server by using Python 

These are the RSS data we need extracted from iPhone, based on which we can complete 

numerical analysis in Matlab and establish algorithms. 

3.2 Two approaches of presence detection  

My partner Zhouchi Li and I developed 2 algorithms to construct the presence detection 

system using 1 or 2 iBeacons respectively [23]. Figure 3.6 and Figure 3.7 present the 

diagrams of these 2 algorithms. For the 2 iBeacons algorithm, the main theory is due to 

the path-loss of the door or wall, the RSS in two iBeacons should be different enough 

despite their position is almost the same. As for the 1 iBeacon algorithm, the main theory 

is because of the iBeacon position where is very close to the knob, someone who wants to 

enter the room should give us a maximum RSS when he opens the door. More details 
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about the algorithms are described in my partner Zhouchi Li’s master thesis (“Sensor 

Behavior Modeling and Algorithm Design for Intelligent Presence Detection in Nursery 

Rooms using iBeacon”). 

 

Figure 3.6 Algorithm for presence detection using 2 iBeacons 
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Figure 3.7 Algorithm for presence detection using 1 iBeacon 

In this section we validate the proposed systems. Each previously mentioned movement 

has been repeated for over 500 times and the RSSI of iBeacons has been measured. By 

investigating the RSSI samples, we show the validity of our approach using physical 

observation. Apart from that, the system performance has been also recorded to help the 

performance comparison between double and single iBeacon approaches.  

3.2.1 Double iBeacons approach  

The RSSI samples for typical entering movement have been plotted in Figure 3.8. As 

shown in the figure, when the MH opens the door, iBeacon 1 (on outside door) provides -

54dB RSSI while iBeacon 2 (on inside door) has only -61dB. With the time going, when 

MH goes through the door at t = 2.5s, both iBeacons show approximately 63.5dB RSSI. 

After that, when the MH gets into the room, the two RSSI curves flip over and iBeacon 2 

dwells on top of iBeacon 1. As for typical leaving movement, the opposite trend can be 

found, which still shows that the double iBeacons approach can provide successful 

detection. One thing worth mentioning is that we also investigated the situation that a MH 

came, open the door and then closed it without entering or leaving the room. The RSSI 

curve for that movement has been plotted in Figure 3.9. 
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Figure 3.8 RSSI plot for double iBeacon approach, for the MH entering movement 

 

Figure 3.9 RSSI plot for double iBeacon approach, for the MH opening the door 

without entering/leaving 
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3.2.2 Single iBeacon approach  

Given that the double iBeacons approach performs well, we move on to the validation of 

single iBeacon approach. Among our 1536 sets of empirical data, the typical cases for 

entering and leaving the room have been plotted in Figure 3.10. It is clear that entering 

the room results in higher RSSI peak due to the fact that the single iBeacon is attached to 

the outside of the door. When the MH is in the room, even though he/she could be close 

to the iBeacon, but the door lies between iBeacon and iPhone can create extra path-loss. 

The choice of -60dB RSSI threshold comes from the regression fitting of our empirical 

data, that is, we find the best fit curves for both entering and leaving movements and 

notice that -60dB threshold provides satisfactory detection rate of different movements. 

To guarantee the robustness of the single iBeacon approach, we also conduct experiments 

with the iPhone located at various positions. In hand, pant pocket and shirt pocket have 

been selected as candidate locations of the iPhone and the best fit RSSI curves have been 

plotted in Figure 3.10, respectively. Clearly we know that -60dB threshold works for all 

those iPhone positions.  

It is worth mentioning that the single iBeacon approach is not able to detect the situation 

that the MH opens the door but neither entering nor leaving the room. Such reality shows 

that the single iBeacon is cost effective compared with double iBeacons approach, but is 

less robust against outliers. 
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Figure 3.10 RSSI plot for single iBeacon approach, for the MH entering movement 

3.2.3 Comparison  

 

Table 3.1 Performance of proposed in-room presence detection approaches 



33 
 

 

Figure 3.11 RSSI plot for various iPhone positions 

At the end of this chapter, we would like to discuss the detection rates of the proposed 

systems. For the double iBeacons approach, we performed 521 measurements with the 

MH holding iPhone in hand, 500 measurements with the MH putting iPhone in pant 

pocket and another 500 measurements with iPhone in shirt pocket. For all these 

measurements, the double iBeacons approach is able to correctly detect the in- room 

presence. As for single iBeacon approach, we have 536 measurements with the MH 

holding iPhone in hand, 500 measurements with the MH putting iPhone in pant pocket 

and another 500 measurements with iPhone in shirt pocket. For the pant pocket iPhone 

position we have 2 mis-detections, while for in hand and shirt pocket cases the detection 

rates are all 100% (shown in table 3.1). With such experimental results, we would like to 

claim that both approaches work well. 
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Chapter 4                                

Methodology and discussion for in-

room Localization using iBeacon 

At the beginning of this chapter, we firstly derive the empirical path-loss model and 

construct Estimote iBeacon path-loss model [23]. The comparison demonstrates a fact 

that the empirical model shows a lower distance measure error (DME) and better 

performance. Secondly, we simulate the in-room environment to compute Cramer-Rao 

low bound of location error both in 2D and 3D scenarios to observe the influence of 

estimation of location error under different deployment patterns of iBeacons and try to 

find an optimal method to deploy iBeacons [24]. Specifically, we compare the cumulative 

distribution functions (CDF) of the CRLB in three different deployment patterns as well 

as different number of iBeacons to make our conclusions. 

4.1 Path-loss modeling 

In this section, we introduce our data collecting system based on which we collect RSS 

data and derive the empirical path-loss model. Then we compare the performance of that 

model and existing iBeacon model by the CDF of DME to reach the conclusion that our 

empirical path-loss model is more reliable. This model will be used in the simulations in 

the rest parts. 

4.1.1 RSSI data collection system 

The iBeacons produced by Estimote Company can provide us much information we need 
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such as RSS, broadcasting interval, minor and major values and even motion sensor. 

However, the existing app from Estimote Company do not allow us to collect data 

directly from iPhone which means large samples are impossible and we can only collect 

data by hand. To solve this problem, we decide to develop our own app. 

We use Objective-C to develop our app to get the RSS of the beacons. The iPhone 5s acts 

as the receiver in our research and it is connected to a Mac book computer by a cable. 

When it gets the packets from iBeacons which are in the detection range, it will display 

the current values of RSS both on the iPhone screen and Mac book computer. The data 

we collected in different situation can be used to do the channel modeling.    

The achievements of our developing own app: 

1. Connect with certain iBeacon. 

2. Set the UUID, major and minor fields of iBeacon. 

3. Collect and store the RSS information. 

4. Extract the RSS data from iphone. This makes the data more reliable compared 

with those collected by hand, and also make the samples much larger. 

4.1.2 Modeling and validation 

Before we start to collect data, we need to validate the measurement environment can use 

the IEEE 802.11 model or not. Since RSS is the most important factor in this project, the 

path-loss model must be established [30]. We do linear match fitting with different 

iBeacon data collected by out app to try to find out the best path-loss model of iBeacon. 

Distance measure error (DME) is the criterion we use to compare the performance of 

each model. The CDF of DME of different can tell us which model is better. 

With the data we collected, here is the path-loss model in LOS situation from Matlab. 
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After linear match fitting with the RSS, we have figure 4.1 which shows us the power 

gradient and the pass-loss in first meter. 

In order to find out how Estimote Company measure the distance by iBeacon, we 

recorded the RSS data shown in Estimote app when the app indicated we were on the 

boundaries of first and second circles(distances are 1m and 5m). With the RSS data of 

these two points, we can figure out the path-loss model using by iBeacon. We have two 

path-loss models for each iBeacon coming from Estimote Company and our own app, we 

can see that there some differences between these two models. 

 

Figure 4.1 Two path-loss models comparison 

With the data we collected by mint iBeacon, we can find out the estimate distance by 

using the RSS data and path-loss model. Since the two models are both like 

RSS = 𝑃0 + 10 ∝ log �̂� 

We can have 
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�̂� = 10
𝑅𝑆𝑆−𝑃0

10∝  

Then the DME can be shown as 

DME = |𝑑 − �̂�| 

where d is the real distance we have in measurement. We calculate the DME for each 

point data we have and then compute the CDF of the DME to compare the performance 

of these two models, the CDF of mint iBeacon is shown in figure 4.2. 

 

Figure 4.2 Comparison of cumulative distribution functions of distance measurement 

error in two models 

From figure 4.2 we can see that the red one is on the left side of green one which means 

our path-loss model coming from linear match fitting has less error in the same DME 

range. In a word, the linear match fitting path-loss model shows a better performance. 
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4.1.3 Discussion of path-loss modeling 

In this section, different iBeacons have different path-loss model which may be caused by 

shadow fading or measurement error. However, after comparing the CDF of DME, our 

model coming from linear matching shows a better performance, using our model may 

have a better distance judgement. The overall two path-loss models are shown in table 

4.1, where σSF(m) means the mean of shadow fading using each model. 

Item iBeacon model Empirical path-loss model 

Characteristic L0(dB) α σSF(dB) L0 α σSF(dB) 

iBeacon1 -54.8995 2.5214 3.2013 -55.3555 2.4674 3.5773 

iBeacon2 -55.5000 2.2540 4.2992 -56.8918 2.3689 3.0501 

iBeacon3 -52.5628 2.7693 4.1208 -56.1283 2.5387 3.1099 

Table 4.1 Parameters of two different path-loss models 

Based on the models, we also calculate the DME of each model to decide which one 

owes a better performance, the comparison results are shown in table 4.2, where me(m) 

means the mean of DME using each model and σe(m) means the standard variance of 

DME using each model. 

Item iBeacon model Empirical path-loss model 

Characteristic me(m) σe(m) me(m) σe(m) 

iBeacon1 0.8716 1.1819 0.8771 1.2179 

iBeacon2 1.6717 4.9553 1.0788 1.4071 

iBeacon3 0.1739 2.0837 0.9872 1.9240 

Table 4.2 Distance measurement error comparison of two models 
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4.2 Scenarios and algorithms of in-room Localization 

Ranging-based localization is the task of identifying the positions of a network of nodes 

based on estimates of the distances between them, called range estimates. In many ways, 

radio signal strength (RSS) is an ideal modality for range estimation in wireless networks 

because RSS information can be obtained at no additional cost with each radio message 

sent and received [31][32]. The simplicity of RSS is especially appealing for the 

localization in wireless sensor networks because of their cost, size, and power constraints, 

despite the fact that RSS may yield very noisy range estimates. In this section, we 

empirically introduce the main methodology of RSS-based localization such we can have 

an overview of in-room localization using iBeacon. 

 

Figure 4.3 Scenario for in-room localization 

Figure 4.3 shows the main scenario for in-room localization that there are 4 iBeacons in 

each corner of a room.  This is a typical scenario that we usually consider it as our first 

choice. It is very similar to Wi-Fi localization if we regard the iBeacons as access points. 
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To the localization in this room, we record the RSS data from all these 4 iBeacons, from 

each iBeacon RSS data we can calculate a distance range based on the path-loss model 

we construct in section 4.1[33][34][35]. Then we use that distance range as radius range 

and take the location of each iBeacon as a center to draw circles. The overlap area shown 

in red shows the possible location we locate by iBeacon, shown in figure 4.4. 

 

Figure 4.4 Scenario of RSS ranging localization 

4.3 Methodology for performance evaluation 

In this section, we firstly introduce the scenarios we define to evaluate the performance of 

using iBeacon in localization. Then based on Matlab, we simulate the in-room 

localization environment and calculate the estimation of location error (CRLB) to show 

the effects of different deployment patterns and different iBeacon numbers [25][36][37]. 

Furthermore, we promote our model from 2D to 3D scenario and figure out the 

estimation of location error to present the feasibility in this case. 
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4.3.1 Scenarios for performance evaluation  

In order to compare the performance of different localization methods, in this paper we 

use Cramer-Rao low bound of the location error standard deviation as the assessment 

criterion. According to the conclusion given in [25], we know how to calculate the 

location error standard deviation. We use Matlab simulation to obtain the theoretic 

results. 

 

Figure 4.5 Scenarios of different deployment methods 

Since we want find the most efficient way of localization, different deployment methods 

are introduced, based on which we can compare and make conclusion. It is easy to know 

that more iBeacons stands for more localization accuracy, but what we pursue is how to 

reach the highest accuracy with special given iBeacons, so there are 3 scenarios we 

simulated shown in figure 4.5 in 3 different colors. In the first scenario, there are four 

iBeacons in the four corners of the room and another one in the middle of the room. As 
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for the second scenario, there are four iBeacons in the four corners of the middle area of 

the room and also another one in the middle of the room. To the last scenario, it is almost 

as the same as the second one, except for the rotation of 45 degrees of the four iBeacons 

deployed in the middle area, which means we rotate the square formed by the second 

deployment method with 45 degrees into a new deployment pattern. 

4.3.2 Localization error estimation of deployment patterns 

As we discussed before, there are 3 scenarios we analyze and compare in order to 

evaluate the feasibility and effectiveness. From the Matlab we have such conclusions. 

The simulation conditions for location error analysis are as follows: 

Pr(0) = 160W = 52dBm, and  α = 2.4583 which is the mean of the  α  values of empirical 

path-loss model derived in section 4.1.3 (shown in Table 4.1). 

In the first scenario, we assume that there are five APs installed in a building with their 

coordinates being AP 1 (15m, 15m), AP 2 (15m, -15m), AP 3 (-15m, -15m), AP 4 (-15m, 

15m), and AP 5 (0.1m, 0.1m) [25]. If an MS at a given location receives signals from 

these APs, its position can be determined by triangulation or least square estimation. The 

simulation result is shown figure 4.6 to figure 4.8. 
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Figure 4.6 Contour of estimate location error in 2D in scenario 1 

 

Figure 4.7 Contour of estimate location error in 2D in scenario 2 
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Figure 4.8 Contour of estimate location error in 2D in scenario 3 

Then we move the four iBeacons from four corners to the middle area of the room to 

reach the second scenario and also make such type figure. When we come to the last 

scenario, we just do a rotation of 90 degrees with the four iBeacons in the middle and 

reach the result.  

4.3.3 CRLB for performance evaluation in 3D. 

Since the nursery room is a cube in reality, we extend the formula and simulation 

conditions from 2D to 3D.  Z axis is introduced into the original x × y plane and we also 

move the fifth iBeacon from the middle of ground up to the middle of the roof. 

Based on the well-known path-loss model [25], we have: 

0

0

P( r ) [ dBm] P( r ) [ dBm] 10 l og( )
r

r
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Transfer it into 3D coordinate form: 

2 2 2

10
( x, y, z) ( dx dy dz)

l n 10
i i i

i

i i i

x x y y z z
dP

r r r

   
     

We can also write it into a vector form, like: 

𝑑�⃗� = �⃗⃗� ∙ 𝑑𝑟  

Where, 

 

Then, deriving in the same method [25], the estimation of location error can be 

calculated as: 

 

2 2 2

r x y z
       

Where 𝜎𝑃 is considered as 2.5 [25] in the simulations. 

Due to plotting of a 4D figure is impossible, we give figure 4.9 in a particular height. 
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Figure 4.9 Contour of estimate location error in 3D 

4.4 Effect analysis of different deployment methods 

In this section, we compare the CDF of the error in three different deployment patterns to 

present the results of our in-room deployments. Later on, we also observe the influence of 

number of iBeacon by simulations in the same conditions to show the most efficient 

deployment method. 

4.4.1 Effect of different deployment patterns. 

In order to observe the performance of 3 different scenarios directly, we calculate the 

CDF of estimation of location error and compare them. In fig. we can see that the 

deployment with four iBeacons in the middle area has the best performance, this is 

probably because in this scenario it owes the highest overlap rate of coverage area, which 

means that most part of the room can be located by 2 or more iBeacons and results in the 
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highest accuracy. 

 

 

Figure 4.10 Comparison of cumulative distribution functions of CRLB in 3 different 

deployment patterns 

Apart from that, based on the figure 4.6 to figure 4.8 we present before, we also calculate 

the means and variances of CDF of the location estimation error in the different 

scenarios. From the figure we can claim that 5 iBeacons in the middle area performs best 

(green line in figure 4.10). The comparison is in table 4.3. 

Parameters 5 iBeacons in 

corners 

5 iBeacons in the 

middle area 

5 iBeacons in the middle 

area with rotation 

mean 1.6755m 1.2935m 1.4023m 

Standard variance 0.2584m 0.6471m 0.7001m 

90%error bound 2.1223m 2.3312m 2.3547m 

Table 4.3 Comparison of CRLB in 3 different deployment patterns 
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4.4.2 Effect of different number of iBeacons 

In addition to the different deployment patterns, it is more reasonable to take into account 

the number of iBeacon. With the same simulation conditions in Matlab, we conclude the 

performance with 3, 4 and 5 iBeacons in the same environment. The simulations can be 

viewed in figure 4.11 to figure 4.13. 

 

Figure 4.11 Contour of estimate location error of 3 iBeacons 
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Figure 4.12 Contour of estimate location error of 4 iBeacons 

 

Figure 4.13 Contour of estimate location error of 5 iBeacons 
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Above are the error estimation results with 3,4 and 5 iBeacons in the middle area since 

we have already certified that the deployment in the middle owes the best performance. 

In addition, we can still calculate the CDF of the location estimation error to compare 

them and reach a conclusion, shown in figure 4.14.  

 

Figure 4.14 Comparison of cumulative distribution functions of CRLB in different 

number of iBeacons 

Obviously, 5 iBeacons owes the best performance, however, we can find that the 

improvement from 3 iBeacons to 4 iBeacons is significant while the improvement from 4 

iBeacons to 5 iBeacons is negligible. So we can assert that the deployment with 4 

iBeacons in the middle area contains the highest efficiency. The overall performance is 

concluded in table 4.4. 

Parameters 5 iBeacons 4 iBeacons 3 iBeacons 

mean 1.2935m 1.5060m 2.3332m 

Standard variance 0.6471m 0.5536m 1.3401m 

90%error bound 2.3312m 2.3392m 4.4107m 

Table 4.4 Comparison of CRLB in different number of iBeacon 
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Chapter 5                                          

Performance evaluation for in-room 

localization technology using iBeacon  

In this chapter, we analyze the Cramer-Rao Lower Bound (CRLB) of localization using 

Received Signal Strength (RSS) considering detection probabilities and variable shadow 

fading. This analysis has a dual purpose [38]. Firstly, the properties of the bound on 

localization error may help to design efficient localization algorithm. For example, 

utilizing one of the properties, we propose a way to define the most efficient deployment 

scheme based on different access points range and room size which is shown to perform 

better than random deployment. Secondly, it provides suggestions for deploying access 

points or iBeacons by revealing error trends associated with the system deployment 

methods. In both cases, simulation results in Matlab are presented in order to support our 

claims. 

Among all the chapters we discussed before, we assume the probability that someone is 

covered by access points or iBeacons is always 1 and shadow fading is a constant. 

However, in reality we need to take into account the fade margin and variable shadow 

fading (decided by distance). So we organize this chapter as follow: In section 5.1, we 

explain the definition of shadow margin and analyze it in numerical form, then derive the 

coverage possibility. In section 5.2, we introduce the main algorithms of CRLB and 

combine this CRLB with the coverage probability. Meanwhile, we also use variable 

shadow fading rather than constant shadow fading into the CRLB and give figures to 

show the simulation results in Matlab. As for section 5.3, we illustrate the analysis results 
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in figures and give conclusions.  

5.1 Coverage possibility 

For γ% coverage, the base station should have an additional fade margin of Fσ that [11]: 

 

The fade margin is the additional signal power that can provide a certain additional 

fraction of the locations at the edge of a cell (or near the fringe areas) with the required 

signal strength. Thus, for computing the coverage with certain assurance for coverage, we 

first determine the fade margin using the variance of the shadow fading. Then we employ 

the following equation to calculate the coverage [11]: 

 

where Fσ is the fade margin associated with the path loss to overcome the shadow fading 

component. This fading margin can be applied by increasing the transmit power and 

keeping the cell size the same, or reducing the cell size by setting a higher RSS threshold 

for making a handoff. For commonly employed probabilities of coverage such as 95 or 

90%, we can use the following formulas to compute the fade margins.  

We note that the location variability component X (in dB) in this case is a zero mean 

Gaussian random variable [39][38]. Here we useσ to denote the standard variance of the 

shadow fading and chose 1-γ% = 10%, that is, 90% of the locations will have a fading 

component smaller than the tolerable value. Using the complementary error function and 
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Matlab, we can determine the value of Fσ as the solution to the equation 0.1 = 0.5 

erfc(Fσ/σ ) [11]. Due to the fact that with the distance increased, Fσ will become smaller, 

we can then calculate the distance which is able to satisfy the Fσ for a certain possibility, 

like [41][42]: 

𝑑 = 10
𝐿𝑝−𝐿0−𝐹𝜎

10𝛼  

To show the result directly in figure, we suppose there is an access point (iBeacon) in a 

corner of a room, then compute the coverage possibility based on the distance. Figure 5.1 

shows the result: 
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Figure 5.1 Relationships between coverage possibility and distance 

The white line shows the distance which can satisfy the condition of offering a 90% 

shadow fading margin. 

Apart from that, now the scenario is we put 4 access points (APs) or iBeacons in each 

corner of a room, it is reasonable to think about the detection probabilities by different 

number of APs. For different number of Aps, we introduce these formulas to calculate 

[43][44][45]: 

If there is no access point covered: 

P0 = (1-Pc1).×(1-Pc2).×(1-Pc3).×(1-Pc4) 

If there is 1 access Point covered: 

P11 = Pc1.×(1-Pc2).×(1-Pc3).×(1-Pc4) 

P12 = Pc2.×(1-Pc1).×(1-Pc3).×(1-Pc4) 

P13 = Pc3.×(1-Pc1).×(1-Pc2).×(1-Pc4) 

P14 = Pc4.×(1-Pc1).×(1-Pc2).×(1-Pc3) 

P1 = P11+P12+P13+P14 

If there are 2 access Points covered: 

P21 = Pc1.×Pc2.×(1-Pc3).×(1-Pc4) 

P22 = Pc1.×Pc3.×(1-Pc2).×(1-Pc4) 

P23 = Pc1.×Pc4.×(1-Pc2).×(1-Pc3) 
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P24 = Pc2.×Pc3.×(1-Pc1).×(1-Pc4) 

P25 = Pc2.×Pc4.×(1-Pc1).×(1-Pc3) 

P26 = Pc3.×Pc4.×(1-Pc1).×(1-Pc2) 

P2 = P21+P22+P23+P24+P25+P26 

If there are 3 access Points covered: 

P31 = Pc1.×Pc2.×Pc3.×(1-Pc4) 

P32 = Pc1.×Pc2.×Pc4.×(1-Pc3) 

P33 = Pc1.×Pc3.×Pc4.×(1-Pc2) 

P34 = Pc2.×Pc3.×Pc4.×(1-Pc1) 

P3 = P31+P32+P33+P34 

If all 4 access Points covered: 

P4 = Pc1.×Pc2.×Pc3.×Pc4 

Where Pc1, Pc2, Pc3, Pc4 denote for the detection probabilities by each AP in the corner. 

Based on this combined coverage probabilities, we can make the localization evaluation 

with CRLB more reasonable and practical. One fact we need to notice is that the 

coverage probabilities are only related with the fading margin Fσ and variance of shadow 

fading σ, which means if we change the value of σ, the result will be absolutely different. 
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5.2 CRLB with coverage probability and variable shadow 

fading 

The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance of any 

unbiased estimator. This can be extremely useful in several ways [46][47][48]: 

1. If we find an estimator that achieves the CRLB, then we know that we have found an 

MVUE estimator. 

2. The CRLB can provide a benchmark against which we can compare the performance 

of any unbiased estimator (We know we’re doing very well if our estimator is “close” to 

the CRLB). 

3. The CRLB enables us to rule-out impossible estimators. That is, we know that it is 

physically impossible to find an unbiased estimator that beats the CRLB. This is useful in 

feasibility studies. 

4. The theory behind the CRLB can tell us if an estimator exists which achieves the 

bound. 

In a word, Cramer Rao inequality provides lower bound for the estimation error variance. 

Minimum attainable variance is often larger than CRLB. We need to know the pdf to 

evaluate CRLB. Often we don’t know this information and cannot evaluate this bound. If 

the data is multivariate Gaussian or i.i.d. with known distribution, we can evaluate it [49]. 

If the estimator reaches the CRLB, it is called efficient. Minimum-variance unbiased 

estimator (MVUE) may or may not be efficient. If it is not, we have to use other tools 

than CRLB to find it. It’s not guaranteed that MVUE exists or is realizable [50][51]. 
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In numerical, if we have an observation like 𝑂 = 𝑥 + 𝜂, which is a single observation in 

zero mean GN with variance σ2, we can see the probability density function as 

 

Then we are able to compute the ML estimate:  

 

The variance of this estimate is the CRLB. In another word, the CRLB is the variance of 

the ML estimate and the inverse of the Fisher Matrix: 

 

Now we come to the RSS based localization problem, for RSS based localization we have: 

 

Gaussian noise is shadow fading. Based on this equation we can derive the common 

sense range estimate as: 

 

So if we measure a feature of the signal, for example power, at a distance d, and we have 

an estimate distance �̂�. Then, the distance measurement error (DME) for ranging is 𝜀 =

𝑑 − �̂�. 
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Here we want to observe �̂� so that we can find out the performance of localization. So we 

want to estimate distance based on the observation of power observation: 

 

In this equation, 𝑔(𝑥) = 𝑃0 − 10𝛼𝑙𝑜𝑔𝑥 and Gaussian noise is shadow fading.  

Based on the probability density function we also have the ML estimate: 

 

Define a fisher matrix and calculate the variance of the ML estimate, we have: 

 

 

Since the inverse of the variance of the ML estimate is the CRLB, the distance 

measurement error (CRLB) will be: 

 

This shows an interesting fact that the distance measurement error, the CRLB, is only 

related with the variance of the shadow fading σ and the distance x, which means as the 

shadow fading changes, CRLB will also be undoubtedly different. 

Combined with the conclusion in section 5.1, we can reach a truth that not only the 

coverage probability but also CRLB are correlated with variance of shadow fading σ. 
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Upon this fact, we firstly use variable shadow fading instead of constant shadow fading 

(see in section 2.2) to calculate coverage probability and derive out the reliable distance, 

then among this distance we still use variable shadow fading to compute CRLB. In this 

way we can obtain the CRLB with coverage probability and variable shadow fading 

[52][53][54]. 

The revised CRLB with different number of APs are shown in figure 5.2: 

 

Figure 5.2 CRLB under practical conditions with different number of access points 

We can also compute the overall CRLB under practical conditions which is shown in 
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figure 5.3: 

 

Figure 5.3 CRLB under practical conditions with all 4 access points 

This is considered as the revised CRLB which takes into account both coverage 

probability and variable shadow fading. We can directly find that the performance shows 

best in the proximity near the APs (iBeacons), and the second best performance appears 

in the center area of the room, this is basically because this area is the most overlapped 

region which means the coverage probability is relatively higher than other regions that 

are not near the APs (iBeacons). 
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5.3 Discussions in CRLB with coverage probability and 

variable shadow fading 

5.3.1 Comparison with traditional CRLB 

In this section, we firstly define the localization scenario as 4 iBeacon deployed in the 

middle are of a room, which is considered as the most efficient deployment pattern 

according to the conclusion in section 4.3, shown in figure 5.4. 

 

Figure 5.4 Scenario of localization using 4 iBeacons 

In this scenario, if we calculate the CRLB under practical conditions, we will have such 

result shown in figure 5.5. And in order to compare with the traditional CRLB, we also 

provide the traditional result here in figure 5.6: 
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Figure 5.5 CRLB under practical conditions with 4 iBeacons 

 

Figure 5.6 Traditional CRLB with 4 iBeacons 
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To show the comparison directly, both of the CDFs of CRLB in these two figures are 

calculated and we present the result in the figure 5.7 [55][56]: 

 

Figure 5.7 Comparison of cumulative distribution functions of traditional CRLB and 

CRLB under practical conditions 

Obviously, the traditional CRLB seems better while the performance beyond 90% bound 

the CRLB under practical conditions performs better [57]. This is firstly because when 

we consider the fading margin, more power is needed to ensure the place can be 

discovered by iBeacon with a higher probability which we assume it is 100% in the 

traditional CRLB. Secondly, the introduction of variable variance of shadow fading 

makes the average variance of shadow fading much larger than the value we defined in 

the traditional CRLB that the variance of shadow fading is almost 4.28dB after 4m in the 

variable shadow fading while it is 2.5dB as we assumed in the tradition CRLB [13][58]. 
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Besides, we compute and present the mean and standard variance of CDFs of two 

different CRLB in table 5.1: 

 Mean of CDF Standard variance of CDF 

Traditional CRLB 1.5076m 0.5536m 

Practical CRLB 1.8211m 0.3355m 

Table 5.1 Mean and standard variance of cumulative distribution functions of traditional 

CRLB and CRLB under practical conditions 

We can also obtain some similar conclusions in table 5.1 from figure 5.7 that the CDF of 

practical CRLB is almost on the right side of traditional CRLB which results in a larger 

mean. But the CDF of practical CRLB is closer (about 1m difference) than the traditional 

one (about 2.5m difference) which leads to a lower standard variance of CDF. 

In conclusion, we can assert that the introduction of fading margin and variable shadow 

fading makes the CRLB higher but more stable. It is because larger average variance of 

shadow fading makes contributions to the higher CRLB, but the fading margin which 

leads to coverage probability makes the deviation of CRLB counteract with each other 

that equals to more stable CRLB. 

5.3.2 Relationship between iBeacon coverage and room size 

In order to describe the relationship between the CRLB and room size, we introduce a 

variable γ =
𝑅

𝐷
, where R is the reliable coverage defined by fading margin, D is the room 

size.  

By now we have the overall CRLB considering coverage probability and variable shadow 
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fading, we calculate the mean and variance of that overall CRLB to see the tendency 

when γ increases. The results are shown in figure 5.8 and figure 5.9: 

 

Figure 5.8 Mean of CRLB under practical conditions versus reliable coverage rate 

(reliable iBeacon coverage divided by room size) 
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Figure 5.9 Standard variance of CRLB under practical conditions versus reliable 

coverage rate (reliable iBeacon coverage divided by room size) 

Firstly we observe the variance of overall CRLB, the result seems reasonable [59][60]. 

As γ increases, which means the reliable coverage area becomes larger, the variance of 

overall CRLB is monotonically decreases. This conclusion is obvious because the 

variable shadow fading decreases with the room size becomes smaller (maximum 

distance becomes smaller), which in turn results in a lower CRLB, meanwhile, the 

reliable cover rate becomes larger that will decrease the variance of CRLB. When it 

comes to the mean of overall CRLB, we can also see the mean of overall CRLB 

monotonically decreases. 

Apart from the mean and variance, we also calculate the cumulative distribution function 
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(CDF) of CRLB to show the whole performance versus γ . The result is shown in figure 

5.10: 

 

Figure 5.10 Comparison of cumulative distribution functions of CRLB under practical 

conditions in different reliable coverage rates  

It is also a reasonable result that as γ increases, cdf of CRLB shifts left which denotes 

better performance. A typical conclusion we can make is that with smaller room size, 

CRLB becomes smaller and the localization accuracy becomes better. In a word, 

considering fading margin and variable shadow fading makes the calculation of CRLB 

more depend on the effective coverage rate γ, for γ=𝑅/𝐷 = 0.9, we have a 90% bound in 

CDF of CRLB which is 3.17 meters with an improvement of 24.70% respect to γ = 0.5. 
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Chapter 6                                  

Conclusions and future works 

In chapter 1 and 2, we present the outlines and backgrounds of our project to obtain an 

overview of this thesis. Our motivation, contributions as well as some necessary 

information are introduced in these 2 chapters. 

In chapter 3, we investigated and developed an iBeacon based intelligent in-room 

presence detection system to record the users in a room. We collected the RSSI data of 

iBeacon for LOS situation in a typical indoor office environment and we implement both 

single beacon and double beacons based approach. We also analyzed the probability 

density function, error detection rate and other metrics using the empirical measurement 

results. The optimal performance of our approach can be as high as 100%. 

In chapter 4, we validated the probability to build a newborns localization and tracking 

system in hospitals by using iBeacon. In path-loss model part, we compare the CDF of 

DME of Estimote iBeacon model and our empirical path-loss model to demonstrate that 

using our model will have a better performance. More importantly, by simulations we 

directly observe the influence of different iBeacon deployment patterns and number of 

iBeacons in in-room localization, based on which we reasonably conclude that 5 

iBeacons in the middle area performs best while 4 iBeacons in the middle is considered 

as the most efficient deployment pattern.  

In chapter 5, we investigate the realistic relationship between localization accuracy and 

ratio of the iBeacon courage and dimensions of the room using CRLB including influence 

on coverage probability and find out the dependence of variance of shadow fading on 

distance and effect on CRLB. 
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In summary, we firstly explain the main structures of the thesis, then we focus on the 

algorithms for intelligent in-room presence detection after the introduction about 

backgrounds. In addition to the presence detection system, we emphasize on the 

methodology for performance evaluation in in-room localization using iBeacon. We 

conclude the most efficient deployment pattern based on the analysis of CRLB. At last, 

practical conditions such as fading margin and variable shadow fading are taken into 

account in the calculation of CRLB and we also find out the relationship between the 

reliable iBeacon coverage and room size. In the future, we may testify the feasibility of 

using iBeacon for newborns localization in practice, and hopefully combine the 

accelerometer information [61][62] with localization to realize the tracking function for 

newborns in hospitals to make this whole project more practical and functional. 
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Appendix 

A. Matlab code for path-loss modeling and Cramer-Rao 

lower bound calculation: 

clc; 

close all; 

clear all; 

  

Pr0 = 52; 

alpha = 2; 

step = 0.5; 

Xwall = 8:7:29; 

x = 1:step:35.5; 

num = length(x); 

X = 10*log10(x); 

WAF = unifrnd (0.3,0.7); 

WAFdB = -10*log10(WAF); 

noise = normrnd(0,2.5,1,num); 

n = 1; 

for r = 1:step:35.5; 

    l(n) = floor((r-1)/7); 

    Prr(n) = Pr0-10*alpha*log10(r)-l(n)*WAF; 

    PrrCOM(n) = Pr0-10*alpha*log10(r); 

    Pr(n) = Prr(n)+noise(n); 

    PrCOM(n) = PrrCOM(n)+noise(n); 

    p(n) = -10*log10(r); 

    n = n+1; 

end 

pave = sum(p)/length(p); 

Prave = sum(Pr)/length(Pr); 

PrCOMave = sum(PrCOM)/length(PrCOM); 

tempX1 = 0; 

tempX2 = 0; 
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tempY = 0; 

for i = 1:num; 

    tempA1 = (p(i)-pave)*Pr(i); 

    tempA2 = (p(i)-pave)*PrCOM(i); 

    tempB = (p(i)-pave)^2; 

    tempX1 = tempX1+tempA1; 

    tempX2 = tempX2+tempA2; 

    tempY = tempY+tempB;   

end 

alphaX1 = tempX1/tempY; 

alphaX2 = tempX2/tempY; 

Pr0X1 = Prave - alphaX1*pave; 

Pr0X2 = PrCOMave - alphaX2*pave; 

for j = 1:num 

    PrX1(j) = Pr0X1-alphaX1*X(j); 

    PrX2(j) = Pr0X2-alphaX2*X(j); 

end 

tempZ1 = 0; 

tempZ2 = 0; 

tempM1 = 0; 

tempM2 = 0; 

tempN1 = 0; 

tempN2 = 0; 

for ii = 1:num 

    tempC1 = (PrX1(ii)-Prave)^2; 

    tempC2 = (PrX2(ii)-PrCOMave)^2; 

    tempD1 = (Pr(ii)-Prave)^2; 

    tempD2 = (PrCOM(ii)-PrCOMave)^2; 

    tempE1 = (Pr(ii)-PrX1(ii))^2; 

    tempE2 = (PrCOM(ii)-PrX2(ii))^2; 

    tempZ1 = tempZ1+tempC1; 

    tempZ2 = tempZ2+tempC2; 

    tempM1 = tempM1+tempD1; 

    tempM2 = tempM2+tempD2; 

    tempN1 = tempN1+tempE1; 

    tempN2 = tempN2+tempE2; 

end 

R1 = tempZ1/tempM1; 

R2 = tempZ2/tempM2; 

SD1 = sqrt(tempN1/num); 

SD2 = sqrt(tempN2/num); 
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P = Pr'; 

One = ones(num,1); 

G = [One -X' -l']; 

Beta = [Pr0 alpha WAF]'; 

BetaX = (G'*G)^(-1)*G'*P; 

Pr0X3 = BetaX(1); 

alphaX3 = BetaX(2); 

PrX3 = G*BetaX; 

Pave = sum(Pr)/num; 

R3 = (BetaX'*G'*P-num*Pave^2)/(P'*P-num*Pave^2); 

SD3 = sqrt(((P'-BetaX'*G')*P)/num); 

plot(X,Pr,'r.',X,PrX1); 

xlabel('10*log10 value of distance'); 

ylabel('RSS(dBm)'); 

title('Linear Regression'); 

grid on; 

figure; 

plot(X,Pr,'r.',X,PrX2); 

xlabel('10*log10 value of distance'); 

ylabel('RSS(dBm)'); 

title('Compensated Linear Regression'); 

grid on; 

figure; 

plot(X,Pr,'r.',X,PrX3); 

xlabel('10*log10 value of distance'); 

ylabel('RSS(dBm)'); 

title('Multiple Regression'); 

grid on; 

figure; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

NUM = 5; 

APx(1) = 15; 

APy(1) = 15; 

APx(2) = 15; 

APy(2) = -15; 

APx(3) = -15; 

APy(3) = -15; 

APx(4) = -15; 
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APy(4) = 15; 

APx(5) = 0; 

APy(5) = 0; 

mx = -15:0.5:15; 

my = -15:0.5:15; 

nxy = length(mx); 

SD0 = 2.5; 

for yi = 1:nxy 

        for xi = 1:nxy 

            %if xi ~=  

            for i1 = 1:NUM 

                alpha2(i1) = 2.385; 

                r(i1,xi,yi) = sqrt((mx(xi)-APx(i1))^2+(my(yi)-

APy(i1))^2); 

                H1(i1,xi,yi) = -10*alpha2(i1)/(log(10))*(mx(xi)-

APx(i1))/r(i1,xi,yi)^2; 

                H2(i1,xi,yi) = -10*alpha2(i1)/(log(10))*(my(yi)-

APy(i1))/r(i1,xi,yi)^2; 

            end 

            H(:,:,xi,yi) = [H1(:,xi,yi) H2(:,xi,yi)]; 

            Covv(:,:,xi,yi) = SD0^2*((H(:,:,xi,yi)'*H(:,:,xi,yi))^(-1)); 

            SDr(xi,yi) = sqrt(Covv(1,1,xi,yi)+Covv(2,2,xi,yi)); 

        end 

end 

SDr = SDr'; 

contourf(mx,my,SDr,20); 

xlabel('X-axis(meter)'); 

ylabel('Y-axis(meter)'); 

title('Contour of Location Error Standard Deviation(meter)'); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

SDrx = SDr; 

SDrx(1,1) = 0; 

SDrx(61,1) = 0; 

SDrx(1,61) = 0; 

SDrx(61,61) = 0; 

SDrx(31,31) = 0; 

step2 = 0.01; 

range = 0:step2:10;   

h = hist(SDrx,range);   

cdf0 = cumsum(h)/(sum(h));   

figure; 
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plot(range,cdf0,'r','linewidth',2);   

grid on; 

xlabel('Location Error Standard 

Deviation(meter)'),ylabel('CDF'),title('The CDF of Location Error 

Standard Deviation(meter)') 

 

s = sum(SDrx); 

meanx = sum(s)/(length(SDrx))^2; 

variance = std(SDrx(:)); 

 

B. Matlab code for Cramer-Rao lower bound considering 

coverage probability and variable shadow fading: 

clear all;close all; 

%% basic path loss model 

alpha1=2; % power gridiant 

lpmax=75; % max path loss in dB 

%sigma1=8; % standard deviation of shadow fading 

f=2.4e9; % transmitting frequency 

c=3e8; % speed of light 

lamda=c/f; % wave length 

L0=40; % 1st meter path loss 

pace=0.5; 

reliablity = 0.9; 

%Distance=40; 

  

t = 1; 

o = 1; 

  

for Distance = 30:1:65; 

% x1=0;y1=0; 

% x2=0;y2=Distance; 

% x3=Distance;y3=Distance; 

% x4=Distance;y4=0; 

x1=Distance/4;y1=Distance/4; 

x2=Distance/4;y2=3*Distance/4; 

x3=3*Distance/4;y3=3*Distance/4; 

x4=3*Distance/4;y4=Distance/4; 
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x=0:pace:Distance;y=0:pace:Distance; 

L1=length(x); 

r1=zeros(L1,L1); 

r2=zeros(L1,L1); 

r3=zeros(L1,L1); 

r4=zeros(L1,L1); 

     

for i=1:1:L1 

    for j=1:1:L1 

        r1(i,j)=sqrt((x(i)-x1)^2+(y(j)-y1)^2); 

        r2(i,j)=sqrt((x(i)-x2)^2+(y(j)-y2)^2); 

        r3(i,j)=sqrt((x(i)-x3)^2+(y(j)-y3)^2); 

        r4(i,j)=sqrt((x(i)-x4)^2+(y(j)-y4)^2); 

    end 

end 

lp1=L0+max(10*alpha1*log10(r1),-L0); 

lp2=L0+max(10*alpha1*log10(r2),-L0); 

lp3=L0+max(10*alpha1*log10(r3),-L0); 

lp4=L0+max(10*alpha1*log10(r4),-L0); 

  

alpha2=-4.28; 

beta=0.9372; 

gamma0=4.31; 

sigma1=alpha2*exp(-beta*r1)+gamma0; 

sigma2=alpha2*exp(-beta*r2)+gamma0; 

sigma3=alpha2*exp(-beta*r3)+gamma0; 

sigma4=alpha2*exp(-beta*r4)+gamma0; 

  

for p=1:1:L1 

    for q=1:1:L1 

        pc1(p,q)=1-0.5*erfc((lpmax-lp1(p,q))/sqrt(2)/sigma1(p,q)); 

        pc2(p,q)=1-0.5*erfc((lpmax-lp2(p,q))/sqrt(2)/sigma2(p,q)); 

        pc3(p,q)=1-0.5*erfc((lpmax-lp3(p,q))/sqrt(2)/sigma3(p,q)); 

        pc4(p,q)=1-0.5*erfc((lpmax-lp4(p,q))/sqrt(2)/sigma4(p,q)); 

    end 

end 

  

 [c1,h1] = contour(x,y,pc1','w','LevelList',[reliablity],'linewidth',3); 

 R1 = sqrt((c1(1,2)-x1)^2+(c1(2,2)-y1)^2); 

  

if Distance == 60;  



84 
 

subplot(2,2,1); 

[X1,Y1]=contourf(x,y,pc1',20); 

xlabel('distance(m)'),ylabel('distance(m)'),title('The probabilities 

found by AP1'); 

hold on; 

 [c1,h1] = contour(x,y,pc1','w','LevelList',[reliablity],'linewidth',3); 

 R1 = sqrt((c1(1,2)-x1)^2+(c1(2,2)-y1)^2); 

clabel(c1,h1); 

  

subplot(2,2,2); 

[X2,Y2]=contourf(x,y,pc2',20); 

xlabel('distance(m)'),ylabel('distance(m)'),title('The probabilities 

found by AP2'); 

hold on; 

[c2,h2] = contour(x,y,pc2','w','LevelList',[reliablity],'linewidth',3); 

R2 = sqrt((c2(1,2)-x2)^2+(c2(2,2)-y2)^2); 

clabel(c2,h2); 

  

subplot(2,2,3); 

[X3,Y3]=contourf(x,y,pc3',20); 

xlabel('distance(m)'),ylabel('distance(m)'),title('The probabilities 

found by AP3'); 

hold on; 

[c3,h3] = contour(x,y,pc3','w','LevelList',[reliablity],'linewidth',3); 

R3 = sqrt((c3(1,2)-x3)^2+(c3(2,2)-y3)^2); 

clabel(c3,h3); 

  

subplot(2,2,4); 

[X4,Y4]=contourf(x,y,pc4',20); 

xlabel('distance(m)'),ylabel('distance(m)'),title('The probabilities 

found by AP4'); 

hold on; 

[c4,h4] = contour(x,y,pc4','w','LevelList',[reliablity],'linewidth',3); 

R4 = sqrt((c4(1,2)-x4)^2+(c4(2,2)-y4)^2); 

clabel(c4,h4); 

figure; 

end 

  

%% Coverage Probability 

% 0 access is covered 

p0=(1-pc1).*(1-pc2).*(1-pc3).*(1-pc4); 
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% 1 access point is covered 

p11=pc1.*(1-pc2).*(1-pc3).*(1-pc4); 

p12=pc2.*(1-pc1).*(1-pc3).*(1-pc4); 

p13=pc3.*(1-pc1).*(1-pc2).*(1-pc4); 

p14=pc4.*(1-pc1).*(1-pc2).*(1-pc3); 

p1=p11+p12+p13+p14; 

% 2 access points are covered 

p21=pc1.*pc2.*(1-pc3).*(1-pc4); 

p22=pc1.*pc3.*(1-pc2).*(1-pc4); 

p23=pc1.*pc4.*(1-pc2).*(1-pc3); 

p24=pc2.*pc3.*(1-pc1).*(1-pc4); 

p25=pc2.*pc4.*(1-pc1).*(1-pc3); 

p26=pc3.*pc4.*(1-pc1).*(1-pc2); 

p2=p21+p22+p23+p24+p25+p26; 

% 3 access points are covered 

p31=pc1.*pc2.*pc3.*(1-pc4); 

p32=pc1.*pc2.*pc4.*(1-pc3); 

p33=pc1.*pc3.*pc4.*(1-pc2); 

p34=pc2.*pc3.*pc4.*(1-pc1); 

p3=p31+p32+p33+p34; 

% 4 access points are covered 

p4=pc1.*pc2.*pc3.*pc4; 

pcheck=p1+p2+p3+p4; 

  

%% Cramer Lower Bound 

  

for m=1:1:L1 

    for n=1:1:L1 

        crlb1(m,n)=log(10)*r1(m,n)*sigma1(m,n)/(10*alpha1); 

        crlb2(m,n)=log(10)*r2(m,n)*sigma2(m,n)/(10*alpha1); 

        crlb3(m,n)=log(10)*r3(m,n)*sigma3(m,n)/(10*alpha1); 

        crlb4(m,n)=log(10)*r4(m,n)*sigma4(m,n)/(10*alpha1); 

    end 

end 

  

% 1 access point is covered 

crlb11=crlb1; 

crlb12=crlb2; 

crlb13=crlb3; 

crlb14=crlb4; 

% 2 access points are covered 
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crlb21=(crlb1+crlb2)/2; 

crlb22=(crlb1+crlb3)/2; 

crlb23=(crlb1+crlb4)/2; 

crlb24=(crlb2+crlb3)/2; 

crlb25=(crlb2+crlb4)/2; 

crlb26=(crlb3+crlb4)/2; 

% 3 access points are covered 

crlb31=(crlb1+crlb2+crlb3)/3; 

crlb32=(crlb1+crlb2+crlb4)/3; 

crlb33=(crlb1+crlb3+crlb4)/3; 

crlb34=(crlb2+crlb3+crlb4)/3; 

% 4 access points are covered 

crlb41=(crlb1+crlb2+crlb3+crlb4)/4; 

  

crlbt1=p11.*crlb11+p12.*crlb12+p13.*crlb13+p14.*crlb14; 

crlbt2=p21.*crlb21+p22.*crlb22+p23.*crlb23+p24.*crlb24+p25.*crlb25+p26.*

crlb26; 

crlbt3=p31.*crlb31+p32.*crlb32+p33.*crlb33+p34.*crlb34; 

crlbt4=p4.*crlb41; 

crlbt=(crlbt1+crlbt2+crlbt3+crlbt4)/4; 

  

if Distance == 60; 

subplot(2,2,1); 

[C1,h1]=contour3(x,y,crlbt1,80); 

xlabel('distance(m)'),ylabel('distance(m)'),title('The CRLB found by 1 

AP'); 

subplot(2,2,2); 

[C2,h2]=contour3(x,y,crlbt2,80); 

xlabel('distance(m)'),ylabel('distance(m)'),title('The CRLB found by 2 

APs'); 

subplot(2,2,3); 

[C3,h3]=contour3(x,y,crlbt3,80); 

xlabel('distance(m)'),ylabel('distance(m)'),title('The CRLB found by 3 

APs'); 

subplot(2,2,4); 

[C4,h4]=contour3(x,y,crlbt4,80); 

xlabel('distance(m)'),ylabel('distance(m)'),title('The CRLB found by 4 

APs'); 

figure; 

CRLB60 = crlbt; 

x60=0:pace:Distance;y60=0:pace:Distance; 
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end 

%clabel(C,h); 

crlb1mean(t) = mean(crlbt1(:),1); 

crlb1std(t) = std(crlb1(:),0,1); 

crlb2mean(t) = mean(crlbt2(:),1); 

crlb2std(t) = std(crlb2(:),0,1); 

crlb3mean(t) = mean(crlbt3(:),1); 

crlb3std(t) = std(crlb3(:),0,1); 

crlb4mean(t) = mean(crlbt4(:),1); 

crlb4std(t) = std(crlb4(:),0,1); 

crlbAllmean(t) = mean(crlbt(:),1); 

crlbAllstd(t) = std(crlbt(:),0,1); 

  

gamma2(t) = R1/Distance; 

if gamma2(t) < 0.4 

   CRLB1 = crlbt; 

   elseif gamma2(t) < 0.5 

   CRLB2 = crlbt; 

   elseif gamma2(t) < 0.6 

   CRLB3 = crlbt; 

   elseif gamma2(t) < 0.7 

   CRLB4 = crlbt; 

   elseif gamma2(t) < 0.8 

   CRLB5 = crlbt; 

   elseif gamma2(t) < 0.9 

   CRLB6 = crlbt; 

end 

if t == 1 

   gammamax = R1/Distance; 

   CRLBend = crlbt; 

   xmax=0:pace:Distance;ymax=0:pace:Distance; 

end 

t = t+1; 

end 

  

CRLBendmean(t) = mean(CRLBend(:)); 

CRLBendstd(t) = std(CRLBend(:)); 

[Cx,hx]=contourf(xmax,ymax,CRLBend,20); 

xlabel('distance(m)'),ylabel('distance(m)'),title('The overall CRLB 

under practical conditions'); 

figure; 
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[Cx,hx]=contour3(x60,y60,CRLB60,80); 

xlabel('distance(m)'),ylabel('distance(m)'),title('The overall CRLB 

under practical conditions'); 

step2 = 0.01; 

range = 0:step2:10;   

h = hist(CRLBend,range);   

cdf3 = cumsum(h)/(sum(h)); 

load cdf4.mat 

figure; 

plot(range,cdf4,'r',range,cdf3,'linewidth',2);  

legend('traditional CRLB','CRLB under practical conditions'); 

xlabel('distance(m)'),ylabel('probability'),title('The CDF of CRLB'); 

grid on; 

  

figure; 

plot(gamma2,crlbAllmean,'r','linewidth',2); 

xlabel('Gamma(Reliable Coverage/Room size)'); 

ylabel('mean of CRLB'); 

title('Gamma(Reliable Coverage/Room size) vs mean of CRLB'); 

legend('mean of overall CRLB'); 

grid on; 

figure; 

plot(gamma2,crlbAllstd,'r','linewidth',2); 

xlabel('Gamma(Reliable Coverage/Room size)'); 

ylabel('standard variance of CRLB'); 

title('Gamma(Reliable Coverage/Room size) vs standard variance of 

CRLB'); 

legend('standard variance of overall CRLB'); 

grid on; 

  

%% cdf 

figure; 

step = 0.01; 

for k = 1:5 

    if k == 1 

       CRLB = CRLB2; 

       Min = min(CRLB(:)); 

       Max = max(CRLB(:)); 

       range1 = Min:step:Max;   

       h1 = hist(CRLB,range1);   

       cdf1 = cumsum(h1)/(sum(h1));   
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    elseif k == 2 

       CRLB = CRLB3; 

       Min = min(CRLB(:)); 

       Max = max(CRLB(:)); 

       range2 = Min:step:Max;   

       h2 = hist(CRLB,range2);   

       cdf2 = cumsum(h2)/(sum(h2)); 

    elseif k == 3 

       CRLB = CRLB4; 

       Min = min(CRLB(:)); 

       Max = max(CRLB(:)); 

       range3 = Min:step:Max;   

       h3 = hist(CRLB,range3);   

       cdf3 = cumsum(h3)/(sum(h3)); 

    elseif k == 4 

       CRLB = CRLB5; 

       Min = min(CRLB(:)); 

       Max = max(CRLB(:)); 

       range4 = Min:step:Max;   

       h4 = hist(CRLB,range4);   

       cdf4 = cumsum(h4)/(sum(h4)); 

    elseif k == 5 

       CRLB = CRLB5; 

       Min = min(CRLB(:)); 

       Max = max(CRLB(:)); 

       range5 = Min:step:Max;   

       h5 = hist(CRLB,range5);   

       cdf5 = cumsum(h5)/(sum(h5)); 

    end 

end 

  

plot(range1,cdf1,'r',range2,cdf2,'g',range3,cdf3,'bl',range4,cdf4,'y',ra

nge5,cdf5,'m','linewidth',2.5);  

grid on; 

xlabel('CRLB(m)'),ylabel('Probability'),title('The CDFs of CRLB in 

different rooms'); 

legend('cdf in a room with gamma = 0.5','cdf in a room with gamma = 

0.6','cdf in a room with gamma = 0.7','cdf in a room with gamma = 

0.8','cdf in a room with gamma = 0.9'); 

 

 




