

Unseeable

A Major Qualifying Project

submitted to the faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science in

Computer Science

and in

Interactive Media and Game Development

Authors:

Isaiah Cochran (IMGD)

Alexander Horton (CS)

Drew Tisdelle (IMGD/CS)

Tommy Trieu (CS)

Advisors:

Dr. David Brown (CS)

Brian Moriarty (IMGD)

Ralph Sutter (IMGD)

26 April 2018

1

Abstract

We designed, developed and tested Unseeable, a Web-based game with the goal of

reproducing the subjective experience of a colorblind person for non-colorblind players to

increase their understanding of the daily challenges caused by this form of visual impairment.

The game was developed using HTML5, JavaScript, CSS3 and Three.js to build the front end,

node.js and express.js for the server, and MongoDB for the database used to store test data. A

majority of players reported increased empathy for people dealing with colorblindness.

2

Acknowledgements

This project would not have been possible without our advisors, Prof. David Brown, Prof.

Brian Moriarty, and Prof. Ralph Sutter. We would also like to thank Tim Jones, Cassandra

Salafia, and Bailey Sostek for lending their voices.

3

Authorship

Abstract Horton

Acknowledgements Horton

Authorship All

Table of Contents All

List of Figures All

List of Tables All

1. Introduction Trieu

2. Background Tisdelle, Trieu

3. Concept Tisdelle

4. Gameplay Horton

5. Design Cochran, Tisdelle, Trieu

6. Technical Implementation Horton, Tisdelle, Trieu

7. Art Cochran

8. Audio Tisdelle

9. Research Methodology Trieu

10. Results and Analysis Trieu

11. Project Promotion Tisdelle

12. Conclusion Trieu

References All

Appendices Trieu, Horton

4

Table of Contents

Abstract 1

Acknowledgements 2

Authorship 3

Table of Contents 4

List of Figures 7

1. Introduction 9

2. Background 10

2.1. Color Blindness 10

2.1.1. What Is Color Blindness? 10

2.1.2. Why Color Blindness? 10

2.1.3. Additional Information 11

2.2. Empathy 11

3. Gameplay 13

3.1. Level 1 13

3.1.1. Player Goals 13

3.1.1.1. Selecting the Table 13

3.1.1.2. Coloring the Paper 14

3.1.1.3. Posting the Paper 15

3.1.1.4. End of Level 16

3.2. Level 2 16

3.2.1. Player Goals 16

3.2.1.1. Building the Blocko House 17

3.2.1.2. End of Level 18

4. Design 19

4.1. User Analysis 19

4.2. Task Analysis 19

4.3. User Interface 20

4.3.1. Main Menu 20

4.3.2. Loading Screen 22

4.3.3. Level 1 Interface 23

4.3.4. Level 2 Interface 26

4.3.5. End Level Screen 28

4.4. Art Style 29

4.4.1. Characters 30

5

4.5. Level Design 30

4.5.1. Level 1 30

4.5.2. Level 2 35

5. Technical Implementation 40

5.1. Application Flow 40

5.2. Tools 41

5.2.1. Three.js 41

5.2.2. JavaScript 41

5.2.3. Node.js 42

5.2.4. Express.js 43

5.2.5. MongoDB 43

5.2.6. Heroku 45

5.3. Colorblind Filter 45

5.4. Game Engine Design 47

5.4.1. Main Game Program 47

5.4.2. Rendering Engine 47

5.4.3. Audio Engine 48

5.4.4. User Interfaces 48

5.4.5. Asset Pipeline 48

5.4.6. Task Implementation 49

5.4.6.1. Table Selection 49

5.4.6.2. Color by Number 52

5.4.6.3. Posting the Paper 56

5.2.6.4. Stacking the Blockos 56

5.5. Logger 57

6. Art Production Pipeline 60

6.1. Level Objects 60

6.2. Characters 62

7. Audio 64

7.1. Vocals 64

7.1.1. Level 1 Vocals 64

7.1.2. Level 2 Vocals 65

7.1.3. Vocals Subtitles 66

7.2. Additional Audio 66

8. Research Methodology 67

8.1. Data Collection Methods 67

8.1.1. Informed Consent 67

8.1.2. Pre-Survey 67

8.1.3. Post-Survey 67

6

8.1.4. PANAS 68

8.1.5. IRI 68

8.1.6. Game metrics 68

8.2. Method Sequence 68

8.3. Data Analysis 69

9. Results and Analysis 70

10. Discussion 81

10.1. Explanation of results 81

10.2. Potential limitations 83

11. Project Promotion 84

12. Conclusion 85

References 86

Appendices 89

Appendix A: Informed Consent 89

Appendix B: Pre-Survey 91

Appendix C: Post-Survey 93

Appendix D: PANAS 94

Appendix E: IRI 95

Appendix F: Technical Definitions Glossary 97

Appendix G: Game Flow Diagrams 99

7

List of Figures

Figure 2.1: Normal Color Vision (a) and Red/Green Color Blindness (b) 10
Figure 3.1: Finding the Red Table .. 14
Figure 3.2: Coloring the Paper ... 15
Figure 3.3: Posting the Paper ... 16
Figure 3.4: Building the Blocko House ... 18
Figure 4.1: Original Design ... 21
Figure 4.2: Final Design .. 22
Figure 4.3: Loading Screen .. 23
Figure 4.4: Letterbox and Subtitles .. 24
Figure 4.5: Side Bars and Current Objective ... 24
Figure 4.6: Crayon Cursor and Placing Back Crayon .. 25
Figure 4.7: Color Selection ... 25
Figure 4.8: Paper Placement .. 26
Figure 4.9: Blocko Building Area .. 26
Figure 4.10: Building Instructions ... 27
Figure 4.11: Transparent Blocko During Placement .. 27
Figure 4.12(a): End Level Screen (Level 1 Version) .. 28
Figure 4.12(b): End Level Screen (Level 2 Version) .. 29
Figure 4.13: That Dragon Cancer (Left) and Unseeable (Right) ... 29
Figure 4.14: Character Models ... 30
Figure 4.15: Classroom Table .. 31
Figure 4.16: Initial Camera Position ... 32
Figure 4.17: Original Table Layout ... 32
Figure 4.18: Paper and KRANs .. 33
Figure 4.19: Paper and KRANs with Filter ... 34
Figure 4.20: Rug ... 35
Figure 4.21: Blockos ... 36
Figure 4.22: Instructions ... 37
Figure 4.23: Colorblind Filter Blocks .. 38
Figure 4.24: Normal Vision Blocks ... 38
Figure 4.25: Bedroom ... 39
Figure 5.1: Web Application Diagram ... 40
Figure 5.2: PANAS JSON Example ... 43
Figure 5.3: No Color-blind Filter ... 46
Figure 5.4: Color-blind Filter Applied .. 46
Figure 5.5: Game Engine Design ... 47
Figure 5.6: Table highlighting shown with the second table from the left 50
Figure 5.7: Example of a crayon moving slightly out of its box when hovered over 52
Figure 5.8: Mouse cursors styles default (a) and pointer (b) ... 53
Figure 5.9: Ghost crayon appearing when hovering over box with a crayon selected 54
Figure 5.10: Paper highlighting (a) vs. paper coloring (b) .. 55
Figure 5.11: Log JSON with definitions .. 58

8

Figure 5.12: Task JSON with definitions .. 59
Figure 6.1: Initial Object Creation ... 60
Figure 6.2: Level 1 Wireframe .. 61
Figure 6.3: Original photo texture (left) and texture with filters applied (right) 61
Figure 6.4: Character Clothing ... 62
Figure 8.1: Data collection method sequence .. 68
Figure 9.1: Positive affect before playing game vs. after playing game (a) and negative affect

before playing game vs. after playing game (b) .. 70
Figure 9.2: Total IRI score vs. change in positive affect (a) and total IRI score vs. change in

negative affect (b) .. 71
Figure 9.3: IRI empathic concern score vs. change in positive affect (a) and IRI empathic

concern score vs. change in negative affect (b) ... 72
Figure 9.4: IRI personal distress score vs. change in positive affect (a) and IRI personal distress

score vs. change in negative affect (b) ... 73
Figure 9.5: IRI perspective-taking score vs. change in positive affect (a) and IRI perspective-

taking score vs. change in negative affect (b) .. 74
Figure 9.6: IRI fantasy scale score vs. change in positive affect (a) and IRI fantasy scale score

vs. change in negative affect (b) ... 75
Figure 9.7: Table selection score vs. change in positive affect (a) and table selection score vs.

change in negative affect (b) ... 76
Figure 9.8: Color by number score vs. change in positive affect (a) and color by number score

vs. change in negative affect (b) ... 77
Figure 9.9: Table selection difficulty rating vs. change in positive affect (a) and table selection

difficulty rating vs. change in negative affect (b) ... 78
Figure 9.10: Color by number difficulty rating vs. change in positive affect (a) and color by

number difficulty rating vs. change in negative affect (b) ... 79
Figure 9.11: Learning experience rating vs. change in positive affect (a) and Learning

experience rating vs. change in negative affect (b) .. 80

9

1. Introduction

 Unseeable is a first-person game that requires players to solve a series of color-based

puzzles from the perspective of a colorblind individual. The game takes place in a three-

dimensional environment, but the controls reflect that of a two-dimensional game. The player is

asked to solve puzzles without any hints indicating the identification of colors. When the player

makes a choice or completes a puzzle, their success is reflected by the feedback they receive

from the environment.

 This Major Qualifying Project (MQP) was completed by four Worcester Polytechnic

Institute (WPI) students. The project’s artist was Isaiah Cochran, majoring in Interactive Media

and Game Development (IMGD). The project’s three programmers were Alex Horton, majoring

in Computer Science (CS), Drew Tisdelle, majoring in IMGD and CS, and Tommy Trieu,

majoring in CS.

 The goal of Unseeable was to allow non-colorblind individuals to empathize with

colorblind persons by seeing through their perspective and understanding some of the struggles

they endure in their everyday lives. The hope of the Unseeable team was that this experience

would spread awareness about color blindness and allow those without visual impairments to

understand the stress of those that suffer from them. As an IMGD and CS MQP, the developers

had a secondary goal of creating a game engine from the bottom up. This goal was necessary

in order to fulfill the technical aspect required for a CS MQP.

10

2. Background

2.1. Color Blindness

2.1.1. What Is Color Blindness?

Color blindness is an often-overlooked visual impairment that poses significant

challenges for those afflicted with it. The disability affects approximately 8% of men and 0.5% of

women throughout the world. It is believed to be caused by malfunctioning cones within the

eyes of those who have it, resulting in them seeing colors in ways that can be very different from

those with fully functional cones. Differences in vision include, but are not limited to: two

different colors appearing to be the same and entire colors being absent from a person’s vision.

The condition is usually inherited genetically, but can be acquired through various diseases and

old age.

 (a) (b)

Figure 2.1: Normal Color Vision (a) and Red/Green Color Blindness (b)

2.1.2. Why Color Blindness?

The focus on color blindness for Unseeable came about because this impairment affects

a significant percentage of the population, but not many people understand the struggles it

entails. From both research and from personal experience provided by a colorblind team

member, when someone who is unfamiliar with color blindness first finds out that a person is

colorblind, they will often start pointing at random objects and ask the colorblind person what

colors the objects are. When the colorblind person proceeds to incorrectly identify the colors,

the person who asked them to do so will often see it as “cool”, “interesting”, or “funny.” This has

become known as “the color game” to those who are colorblind, and is something that most

colorblind people hate.

There are also many situations in which, even after knowing a person is colorblind,

people will fail to take the person’s disability into account. This includes getting frustrated when

colorblind persons try to describe something to them using colors, or joking about how a

colorblind person cannot tell certain things apart, such as when the person tries to do something

11

as simple as pick out their favorite candy flavor, since most flavors are color-coded. These

situations can and do elicit a lot of stress, and cause those with color blindness to feel excluded.

It can also make them feel as if they have done something wrong by not being able to complete

simple tasks due to their inability to see in full color.

It is because of this lack of understanding of what color blindness actually is and how it

affects those afflicted that we decided it would be an appropriate topic to try to shed more light

on through a game.

2.1.3. Additional Information

 While there are many different forms of color blindness, the one that is most common is

red/green color blindness, in which different hues are very hard to distinguish between.

Normally a person can see seven different hues of colors, but a person with this form of color

blindness is limited to seeing only two or three, depending on the severity. It is because this

form of color blindness is one of the most common forms, and the form that the group is most

familiar with, that it was chosen to be the form of color blindness simulated within the game.

2.2. Empathy

Empathy can be defined as the ability to understand and share the feelings of another

individual. This definition, however, only touches the surface of what empathy is. Empathy can

be split into multiple different subcategories of itself, each with its own unique definition. The

primary types of empathy that are usually examined are situational, dispositional, cognitive, and

emotional. (Stueber, 2013; Lawrence et al., 2004)

Situational empathy encompasses the empathic reactions of someone in a specific

situation. This type of empathy is displayed in reaction to specific events. Dispositional empathy

is the opposite: dispositional empathy is empathy as a person’s characteristic trait, meaning

how empathic someone is at any time.

Besides types that cover when a person feels empathy, there are other sub-categories

that define how an individual can be empathetic towards another. Cognitive empathy is an

example of this: the understanding of someone else’s feelings/mental state. Someone

experiencing cognitive empathy will try to comprehend how another person is feeling and try to

take on their perspective. Emotional empathy, however, is an emotional response to someone

else’s feelings. This includes either feeling the same emotion as someone else experiences it

(i.e. getting angry when someone else gets angry), or going beyond that with the same emotion

at a much higher intensity. While all of these definitions are unique, they also all fall within the

overall definition of empathy.

Attempting to measure empathy has proven to be a unique challenge. While

understanding what empathy and its sub-definitions are can be fairly straightforward, attempting

to quantify empathetic feelings can be difficult. This is due to the fact that there are no clear,

quantifiable items corresponding to empathy that are easy to measure.

Existing attempts at measuring dispositional empathy include subjective questionnaires.

(Lawrence et al., 2004) A large suite of these questionnaires or scales exist and have been

12

used in empathy-related studies. The most well-known of these scales include: the Hogan

Empathy scale, Davis’ Interpersonal Reactivity Index, the Toronto Empathy Questionnaire, the

Empathy Quotient, the Questionnaire Measure of Emotional Empathy, and the Balanced

Emotional Empathy Scale.

While all of these scales are self-reports that ask how someone would react in specific

situations, they differ in the way the data is scored and analyzed. For example, the Toronto

Empathy Questionnaire produces a singular score rating a person’s overall self-reported

dispositional empathy. (Spreng et al., 2009) Davis’ Interpersonal Reactivity Index, however,

produces four different scores that representing fantasy, perspective-taking, empathic concern,

and personal distress. (Davis, 1980, 1983) Despite these differences, all of these scales share

the same limiting factor of only measuring dispositional empathy.

Measuring situational empathy is much more appropriate to seeing how an audience

would respond to a specific situation. Scales like the Positive Affect and Negative Affect Scale

are good for measuring differences in mood after exposure to a potential stressor, but is still

limiting due to the fact that it measures mood, not empathy, and is also a self-report measure.

(Watson et al., 1989)

The most accurate readings on situational empathy involve measuring real-time,

physiological responses that correlate with empathy after being exposed to a specific situation.

This can be accomplished through measures such as: facial response, vocal responses,

gestural responses, heart rate (e.g. beats per minute), or skin conductance. (Stueber, 2013)

The fallback of this approach is the difficulty in interacting with a participant and gathering these

metrics. Not only do the expenses for gathering some of these metrics become rather high, but

the convenience of taking these metrics can be rather low, since a participant would have to be

connected to multiple devices in order to measure items such as skin conductance or heart rate.

Facial, vocal, and gestural responses require a single camera and microphone with recording

functionality, but analyzing this data requires specialized expertise.

Clearly, while situational empathy can be very accurate in measuring empathetic

concern in a specific situation, it is much harder to implement than the questionnaires used to

measure dispositional empathy.

13

3. Gameplay

The game that was developed in this project, Unseeable, is played through the

perspective of a child named Sam, who is afflicted with red-green colorblindness. The game

uses an algorithmic display filter to render full-color scenes in a limited spectrum similar to that

experienced by a colorblind person. The game is split into 2 levels, one in a kindergarten

classroom and another in a child’s bedroom. All interactions in the game are controlled with the

mouse only.

3.1. Level 1

3.1.1. Player Goals

The first level takes place in a kindergarten classroom. The level includes three tasks

that the player must complete in order to proceed to the next level. The first task is to find the

red table, the second task is to complete a color-by-numbers activity, and the last task is to

place their artwork on the board.

3.1.1.1. Selecting the Table

The first task that the player has to complete is to select the red table. Using the mouse,

they have the options to either pick a table by clicking on one, or to look around the classroom

by moving the mouse to the edge of the screen. There are four tables in the classroom that the

player is able to choose from, and they have three chances to pick the correct one. Figure 3.1

shows the view during this task. In this figure, the player has the ability to select a table by

clicking on it or look around the classroom by moving the mouse to either the left or right edge

of the screen. When they click on a table, the camera will walk over to it. If the table that they

selected is not the red table, they are told by the teacher that they are not at the correct table

and will have another chance to pick the red table. After three wrong attempts, the teacher will

guide the player over to the correct table and they will be seated.

14

Figure 3.1: Finding the Red Table

3.1.1.2. Coloring the Paper

Once the player is seated at the correct table, the teacher will instruct the class to color

their papers, which are color-by-numbers. The camera will pan down to look at the table in front

of the player. The camera angle here is fixed, so the player will not be able to look around the

classroom at all during this activity. The view is shown in Figure 3.2. On the left of the screen is

the coloring paper and on the right of the screen is the box of crayons. There are 7 different

colors of crayons that the player can choose from and they have to use these crayons to color

14 sections of paper to complete this task. The player has the ability to select and pick up

crayons by clicking on them. Once a crayon is selected, it will follow the mouse cursor. With a

crayon selected, the player has the ability to color a section of the paper or return the crayon to

the crayon box. If the player hovers the crayon over the paper, the section of paper is

highlighted by changing to a light version of the selected crayon color, and clicking will color the

paper the same color as the selected crayon. If the player clicks on the crayon box while they

have a selected crayon, it will be returned to the box. During this activity, the player will not

receive feedback about whether or not they have used the correct color crayon. Once they have

colored all 14 sections of the paper, the next cutscene will start. The camera will pan to the

teacher as she instructs the class to put their papers on the board. The screen will fade to black

and then unfade in front of the board.

15

Figure 3.2: Coloring the Paper

3.1.1.3. Posting the Paper

Once the screen fades, the player will be located in front of the board. The paper that

they just colored in the previous activity will be located at the mouse position on the board.

Moving the mouse will move the paper on the board. When the player clicks the mouse, the

paper will be placed on the board and the camera will zoom out, showing the papers of the rest

of the class on the board.

Depending on how well the player did in the coloring activity, they will receive one of

three endings. If they colored less than 10 sections of the paper correctly, they get the worst

ending, where the children in the classroom make fun of the player where one child exclaims

“Sam doesn’t know how to color!” and the rest of the children laugh. If they colored between 10

and 13 sections correctly, they get the ending where a child in the classroom says that some of

the colors look a little bit weird. If they correctly color all 14 sections, they are not mocked at all

and the level ends.

16

Figure 3.3: Posting the Paper

3.1.1.4. End of Level

When the player completes the level, the colorblind filter fades out showing the true

colors and the end of level menu screen fades in. The end of level menu displays the amount of

sections that the player colored correctly and buttons for the different choices that the player

can make once they have completed the level. The options that they have here are to continue

to the second level, replay the level in colorblind mode, replay the level with normal vision, and

to return to the main menu.

3.2. Level 2

3.2.1. Player Goals

The second level takes place in a child’s bedroom. The player’s goal in this level is to

build a block house without their friend getting annoyed at them for messing up too many times

and ending the level before the house is finished. Playing on the floor of the bedroom is a child

playing with blocks who invites the player over to play with them. The player will then walk over

to a pile of blocks already on the floor and sit down to play with them. The cutscene ends here

and the player will then have the ability to start interacting with the blocks and the instructions

that have been laid out on the bedroom carpet.

17

3.2.1.1. Building the Blocko House

Once the cutscene is over, the player is seated right by the puzzle. Here, the player has

the ability to pick up the first page of instructions or to pick up a block. If the player clicks on the

instructions, the instructions will be moved in front of the camera showing the current building

step in better detail. The instructions show what step the player is on, the block and color that

they should pick and where they should be placed. Clicking anywhere on the screen with the

instructions in front of the camera will return the instructions to their original position.

Similar to the crayons in the first level, hovering over a blocko will change the mouse

cursor and raise the blocko slightly. Clicking on it selects it and it will follow the mouse around.

The ghosts of the block in both the original position and where the block has to be placed to

build the house will become visible to show the player that the block could be placed in either of

these locations. When the block is moved close to one of it’s ghosts that ghost will become

more opaque to signify that clicking will place the block at that location. Clicking with the block

near its ghost at its original position will deselect it and return it to its original position. Clicking

with the block near its ghost at the final building position will attempt to place it there. If the block

is not the correct shape or color to be placed, the friend will scold the player.

The player can make 3 incorrect block attempts or 5 incorrect color attempts before the

friend gets angry and ends the level. After the first incorrect color attempt, the friend will point

out which is the correct block, but will provide no more help after this. If the block is both the

correct shape and color, it is placed in the final position and the top page of the instructions is

pulled offscreen showing the next step for building the house. There are 10 blocks that have to

be placed and 3 possible endings for this level. The first ending is where the friend gets

frustrated with the player and ends the level before the house is finished being built. The other

two endings are reached once the house is finished. If the player made 0-2 mistakes, then the

friend will remark that the house looks good and if they made 3-4 mistakes, then they will

remark that it took some effort to finish the house.

18

Figure 3.4: Building the Blocko House

3.2.1.2. End of Level

When the player reaches an ending, the end of level menu will be displayed as for the

first level. This menu will display how many of the blocks they placed and the options that they

can select at the end of the level. The player will have the same options as the first level in that

they are able to replay the level with or without colorblind mode on and are able to return to the

main menu. There is no next level option here because this is the final level.

19

4. Design

4.1. User Analysis

 As mentioned before, the goal of Unseeable was to allow non-colorblind individuals to

empathize with colorblind persons by seeing through their perspective and understanding some

of the struggles they endure in their everyday lives. While anyone could play the game, this put

some limitations on the types of users being considered during data collection and analysis.

 In order to discern whether or not the game caused empathy towards the colorblind

population, a differentiation had to be made between those with the vision impairment and those

without. Non-colorblind individuals were considered as necessary participants in order to

examine their stress and empathy towards the colorblind during and after gameplay.

Additionally, it was decided that users would be college students of any gender in the United

States. College students were the preferred population because it guaranteed that the

participant had, at a minimum, a high school level education. This minimum level of education

within the United States assumes that the participant had basic reading and English speaking

skills, which was important when listening to the audio instructions paired with subtitles in the

game. It was also assumed that at that education level the participant would have experience

using a computer with a mouse and keyboard, which were the instruments required to play the

game.

Narrowing the users to college students made it easier for the team to promote the game

by allowing them to send the link to the study to their peers. There was no restriction on gender

because the goal of the study did not focus on whether different sexes would display different

amounts of empathy towards colorblind persons.

4.2. Task Analysis

 The tasks that players must complete throughout the game were designed around tasks

that appear to be normal, simple tasks to those with normal color vision but become difficult

challenges to those with color blindness. There are many situations that this applies to, but it

was decided that the tasks that should be chosen are those in which the player is able to get

feedback from non-playable characters. The reason for this is that the feedback from the non-

playable characters on the tasks the player completes would have a much larger emotional

impact on the player than if they were placed in a situation where they were alone.

The first task that was decided on was one that would involve coloring. Due to coloring

mostly taking place at a young age, it was decided that the player would be a small child. In

addition, during this time in a color blind person’s life the person and those around them are

often unaware that they are colorblind. This helped to make the scenario have a larger

emotional impact as the children at this age would be more likely to tease the color blind person

who they believe simply does not know their colors, rather than trying to understand why the

20

color blind person did not get the colors correct. The teasing the children would do in this case

would help to show how embarrassed and singled out a colorblind person can feel, which is why

the task was chosen for the game.

The second task that was decided on was one that would show how those who do not

understand color blindness can get easily frustrated with a colorblind person and can make a

colorblind person feel terrible for something that they cannot control. In order to do this, it was

decided that a scenario was needed in which the player character would need to complete a

task that a non-colorblind person would find simple with at least one other non-playable

character who could become frustrated with the player. It was decided that building with Legos,

called Blockos in our game, would be an ideal scenario. This is because building with these

blocks is a simple task, but a colorblind person would not be able to tell the different colored

pieces apart. When building with a person who does not understand color blindness, the person

can easily think that the colorblind person is placing the wrong pieces on purpose and get very

frustrated that such a simple task is being done incorrectly multiple times. It is because this

scenario is one that is quite common for those who are color blind and because it would be able

to display the emotions we wanted players to experience that we chose this task for the player

to complete.

4.3. User Interface

Throughout the development process, the user interface for Unseeable has undergone

many changes in order to make it easier for players to easily play and understand the game with

minimal information provided before starting the game. In order to successfully do this the user

interface was divided into five separate parts: the Main Menu, the Level 1 interface, the Level 2

interface, the End Level Menu, and the Credits Screen.

4.3.1. Main Menu

The original design for the main menu, pictured below in Figure 4.1, displayed the first

level of the game with half of the screen in full color vision and the second half displayed

through a colorblind filter. The thought behind this design was that it would show players the

stark contrast between how those with colorblindness see the world when compared to how

those without the vision impairment see it. At the bottom of the screen the player was given the

choices to view the Credits, Replays, and Options of the game. Players were also given the

options to start the game by pressing Play and to close the game by pressing Exit.

 However, this design was not the one that was chosen for the final version of the game.

The final design, pictured below in Figure 4.2, was created due to the original design conflicting

with the goal of the game and due to features being cut throughout the development process.

The first key difference of the new main menu design is that the screen is now fully displayed

through the colorblindness filter. This was done because players would be able to see the actual

colors of some of the tables in the first level, which would have given players the answer to the

first puzzle in the first level. In addition, the change was made so that players would not know

21

how different the colors would be until the end of the first level, creating a larger emotional

impact when the true colors are revealed after struggling through the level.

The other changes that can be seen in the final version of the title screen below include

the removal of the Replays, Options, Credits, and Exit buttons. The Replay button would have

taken players to the menu where they could view replays of their playthroughs of levels of the

game. However, it was determined that adding in this feature would not add much to the game

and would take a substantial amount of time to implement and therefore the idea was dropped

and button removed. The Options button would have brought up a menu where players could

change in-game options, namely the size of the screen. However, due to the game being

browser based, players only would need to resize the browser window to change the screen

size, removing the need for an options menu altogether and thus resulting the removal of the

Options button. The Credits button originally took players to a screen that showed the names of

the project group and advisors on it. This option was given only because the game did not have

an ending to display the credits after during this stage in development. Once an ending was

added to the game, the credits could be placed at the end of the game removing the need for

the Credits button. The final button, the Exit button, would have taken players back to the

website the game was going to be hosted on. However, due to the website not being

implemented due to time constraints, the Exit button was no longer needed as players could

simply close the tab the game was running in to exit the game.

Figure 4.1: Original Design

22

Figure 4.2: Final Design

4.3.2. Loading Screen

Throughout most of the development process, loading screens were not part of the

project and were not even planned to be in the game. However, as more assets were added

into the game over time, it began to take longer to load each level. The result was the first few

seconds of the level containing a black screen with individual assets suddenly appearing until all

had been fully loaded in. While this was fine during development, it was seen as very off putting

to eventual players of the game. This resulted in the idea that we should have a loading screen

put in the game so that players would not be able to see the assets as they load into the level.

The loading screen, shown below in Figure 4.3, displays a simple, crayon background to

reflect the challenge that will be faced in the first level of the game. On top of the background, a

grey loading bar is displayed which indicates the percentage of assets that have been loaded

into the game. As more assets are loaded, the percentage increases and the bar fills up until it

is completely yellow instead of grey. After the bar is fully loaded, a continue button is displayed

that the player can click in order to start the level. In addition, the loading screen contains a

short summary of the level in order to provide the player with context about the situation that

they will be put in before the level starts.

23

Figure 4.3: Loading Screen

4.3.3. Level 1 Interface

The design of the interface for Level 1 changed greatly over time in order to make the

game easier to play. Originally, the title interface consisted purely of the scene in front of the

player as well as the default mouse being displayed in order to interact with the screen. This

simple interface did not explain to players how to interact with the game. Once the basic

mechanics of the game were implemented, it was decided that the interface needed to be

changed in order to provide the player with additional information about the level.

The first change that was made to the interface was the addition of a letterbox format

(black bars at the top and bottom of the screen) to the interface in order to indicate to the player

that a cutscene is currently taking place. This change made it apparent that the player could not

currently interact with the game due to the cutscene that was taking place.

The second change that was made to the interface was the addition of vertical,

transparent black bars with arrows on the left and right side of the screen that would appear

after the first cutscene was complete. These were put in place in order to indicate to the player

that, if they move their mouse to the edges of the left and right sides of the screen, they could

rotate the camera view in order to look around the room. Once the player tried rotating the

screen for the first time, the bars would fade away so that the player could focus on the game.

Moving the mouse to the edge of the screen would make the bar visible again as they rotated

the camera.

The third change that was made to the interface was to display subtitles at the bottom of

the screen. The reason for this is that audio instructions are given to the player through the

teacher, but these instructions could potentially be misheard or the player may not be able to

hear it for a number of reasons. In order to prevent the player being unable to receive

instructions due to these reasons, it was decided the best option would be to have subtitles

24

displayed so that the player could also read the instructions in addition to hearing them. The

subtitles were placed at the bottom, center of the screen due to this being the standard for

subtitles in film and games.

Figure 4.4: Letterbox and Subtitles

The fourth change that was made to the interface was to briefly display the current

objective at the top, center of the screen. This was done in order to make sure that the player

understood what task they were supposed to be doing in the game. It was placed at the top,

center of the screen due to this being a standard among games. After a few seconds, the

objective would fade away so that the player could focus on the game.

Figure 4.5: Side Bars and Current Objective

25

The fifth change that was made to the interface was how the player interacted with the

crayons in the coloring section of the level. Originally, the player received no indication that they

could pick up a crayon, could place a crayon back, or that they had picked up a crayon. In order

to remedy this, when the mouse is over a crayon it will stick up out of the box slightly and the

mouse will change to a selection cursor to indicate that it can be selected. Once the crayon is

selected, the cursor disappear and the crayon will move to the cursor’s position in order to

indicate to the player that selected a crayon and that they are currently able to color using it.

Finally, when the crayon is moved over the crayon box, a transparent version of the crayon will

display in the spot where it once was to indicate that it can be returned to the box. This helped

to indicate to the player how they could interact with the crayons during this part of the level.

Figure 4.6: Crayon Cursor and Placing Back Crayon

The final change that was made to this interface was that, when the player hovers their

crayon over an uncolored section of the paper, the paper will turn a lighter shade of the crayon

color to indicate that the player can color that section of the paper. This allowed the player to

more easily see which section they were currently over so that they could accurately color the

section of the paper that they wanted.

Figure 4.7: Color Selection

26

 Other than the changes that were made to the interface overtime, the final section of the

interface was kept relatively the same throughout development. This last section displays a

white board along with the player’s colored sheet, which becomes their cursor. Once the player

places the drawing, the camera will zoom out to show the entire board containing all the

drawings. The interface here was designed to have a large impact on the player as it is the point

in the game where they will realize just how different their colored sheet looks from all the

others.

Figure 4.8: Paper Placement

4.3.4. Level 2 Interface

 The interface of Level 2 is very similar to the interface from Level 1. When a cutscene is

taking place, the interface will also display black bars in a letterbox format in order to indicate

that the current part of the game is a cutscene. Subtitles and level objectives will also display on

the screen in the same locations as they did in the previous level.

Figure 4.9: Blocko Building Area

27

 The first new interface element of Level 2 is that the player is able to click on the

instructions that are lying on the ground. When this is done, the top sheet will come forward and

be displayed in the center of the screen showing the player the instructions they need to follow

in order to advance in the level. When clicked again, the instruction sheet will return to its

previous location.

Figure 4.10: Building Instructions

The second new interface element is similar to the selection of crayons in Level 1. When

the player hovers their cursor over a blocko, the blocko will shift upwards and the cursor will

change into a selection cursor to indicate that the blocko can be picked up.

 The third new interface element is that, when the blocko is moved close to the building

area or to the place where it was picked up from, a transparent version of that blocko will appear

in that space to indicate to the player that they can place it down in that location. This allows the

player to easily see how they can interact with the blockos in the game.

Figure 4.11: Transparent Blocko During Placement

28

 The final new interface element is that, when the player makes their first mistake, the

correct blocko will be highlighted to indicate which one was supposed to be chosen. This was

done simply to give the player one free chance at getting the correct answer when placing

pieces.

4.3.5. End Level Screen

 The end level screen is a simple interface that is displayed at the end of each level.

When the final cutscene for each level finishes, the screen will become blurred and a text menu

will appear on the screen. The reason that the image is blurred for this interface is to make the

text easier to read for the player.

 When the menu is displayed, the player will have the option to retry the the level, retry

the level with normal color vision, continue to the next level, or to return to the main menu. In

addition to these options, there are two main differences between the Level 1 and Level 2

versions of the End Level Screen. The first difference is that the Level 1 version will display the

number of correct colors on the coloring sheet that the player managed to get while the Level 2

version will instead display the number of steps in building the blocko house that the player

managed to get through before the level ended. The second difference is that the Level 2

version contains a Continue option rather than a Next Level option. The reason for this is that

Level 2 is the final level and the Continue option will instead take them to a black screen that

says “Thank you for playing our game!”

Figure 4.12(a): End Level Screen (Level 1 Version)

29

Figure 4.12(b): End Level Screen (Level 2 Version)

4.4. Art Style

 Due to the fact that Unseeable was created in a custom game engine and was intended

to run in a web browser, the art style we chose was one of simplicity with a cartoon-like style.

This was chosen because we wanted the game to run quickly on lots of computers. For that

reason, it could not contain excessive amounts of geometry and textures. As a consequence,

the art was highly influenced by the game That Dragon Cancer, in which the players do not

have faces and the objects which populate the scenes are very simplistic. In figure 4.13, the left

image comes from That Dragon Cancer and the right is from Unseeable.

Figure 4.13: That Dragon Cancer (Left) and Unseeable (Right)

We also chose this style so it did not detract from the story being told. That Dragon Cancer is a

very serious game, and its narrative conveys the message very effectively without the art style

being the main focus, which is why we chose the minimal look for Unseeable.

30

4.4.1. Characters

Each character in Unseeable was created with the aim of simplicity and diversity. Since

we had planned for there to be several characters, the characters were made in a way that

would allow for them to be produced in various different versions rather quickly. We created two

different body types and several different skin tones, as well as clothing colors and hairstyles.

Each character has no distinguishable facial features, which allowed us to mix and match the

pre-created character assets to create completely different characters quickly. A few character

examples can be seen in figure 4.14. The clothing choices were meant to be colorful, as

children tend to wear brightly colored clothing and we wanted there to be various different colors

in a game about color blindness. The only character that is slightly different from the others is

the teacher, seen in the first level. This character, seen in figure 4.14, does not share the same

body model as the child models, but is in the same style as the other characters.

Figure 4.14: Character Models

 4.5. Level Design

 The design of the levels, very similar to the rest of development, was an iterative

process. Various layouts, color schemes, and functionalities were considered and implemented

over the four term production period; each iteration consciously tweaked in order to ensure our

experience goal, producing a measurable amount of empathy, was achieved. We aimed to

produce a realistic narrative in order to achieve this, therefore each level was designed to be

grounded in reality, with stylistic choices that do not detract from the believability of each

scenario.

4.5.1. Level 1

31

 The first level underwent various iterations, mostly based on level layout and color

choice in order to maximize the believability of each scenario. Each iteration was aimed at

achieving our experience goal of creating situations designed for the player to feel empathy

towards those with color blindness. This level is intended to make the player experience the

confusion and potential humiliation a child with color blindness would experience in an early

childhood classroom setting.

The first interaction with the level the player has is to seat themselves at a table of a

particular color, as many American preschools and kindergarten classrooms have colored

furniture items. The correct table for the player to choose is the red table. Red was chosen due

to the fact that, in colorblind mode, it appears very yellow in hue. Yellow remains yellow in

colorblind mode, making it a 50/50 chance of the player selecting the correct table if they have

deduced that the correct one must be amongst the similarly colored tables. Blue and green were

chosen as the other colors; green appears gray, and blue stays the same. This was done under

the assumption that the player, before playing the game, had limited knowledge of the colorblind

experience and would not have any rational basis to believe that either could not be red.

Feedback from initial playtesting showed that about forty-seven percent of players could

not tell which of the four tables was the correct one on their first try. Originally, it was planned to

have the first table the player selected to always be considered incorrect in order to ensure the

experience goal of empathy. However, once playtesting data showed most players could not

select the red table first, we allowed for the chance of selecting the correct table on the first try.

If the player chooses correctly on the first try, they still experience the confusion when faced

with having to choose the red table when apparently there isn’t one on the screen, which is part

of our experience goal.

Each table top surface has a polka dot pattern in a color that corresponds to the solid

color which is seen on the sides of each table, as seen in figure 4.15.

Figure 4.15: Classroom Table

32

At the height of the character, each tabletop cannot be seen, so the player must rely upon the

solid color on the table’s side when faced with selecting the correctly colored table. It is for this

reason that each chair surrounding the tables share the table’s color. The tables have been laid

out in a semi circle, in the center of which the player stands when tasked with making a

selection. This was done in order allow for the most unobstructed view of each table that could

be allowed without requiring to turn the camera to a different view, as seen in figure 4.16.

Figure 4.16: Initial Camera Position

In the early iterations of the game, seen in figure 4.17, the tables were laid out in a completely

different manner, which didn’t allow the player to see all of the tables clearly and would make

gameplay unnecessarily difficult.

Figure 4.17: Original Table Layout

 When the player clicks on a table, the camera moves toward that table. If the table is the

correct one, they will sit down in the seat, allowing for the next cutscene to start. If they choose

33

the incorrect table, they are told verbally that the table they chose is incorrect, and will have to

choose another. The camera then turns to allow all the tables to be seen which allows the

player to choose another table. If the player selects the wrong table three times, they are then

led to the correct table, as there are only four table options.

After the player is seated at the correct table, the camera pans to the teacher who

explains the second task: to fill in a color by numbers sheet. Color by numbers is an activity that

is often utilized in early childhood education, which is why it was chosen to represent the

experience of those with colorblindness at a young age. Once the player receives verbal

instructions from the teacher, the camera view shifts to view the workspace area, which

contains various crayons in a crayon box, and a sheet of paper which contains a scene of two

flowers. This can be seen in regular color mode in figure 4.18 and in colorblind mode in figure

4.19.

Figure 4.18: Paper and KRANs

34

Figure 4.19: Paper and KRANs with Filter

In figure 4.18, it can be seen that the colors of the crayons are not laid out in typical ROYGBIV

order, which was done in order to prevent the player from relying on a preconceived layout to

figure out which color is which, as well as provide a level of realism to the level. The flower

scene requires the player to use every color in the crayon box, maximizing the amount of

possible error. There is a slight possibility of the player getting every color correct, but it is a

very unlikely case. 1 out of 42 people were able to complete the level with 100% accuracy.

Though the level can be completed correctly, our experience goal of empathy is still achievable

due to the fact that completing the level correctly is not an easy feat; as well as the fact that

seeing the correct colors is not possible.

The layout of the room was designed to mimic a kindergarten classroom and includes

objects such as cubbies, backpacks, bookshelves, a colorful rug, books, and a whiteboard.

Many of the objects in the scene do not serve any functional purpose in relation to gameplay,

but instead are used to populate the scene to add to the believability of the classroom setting.

The colors of each of the objects in the scene were selected with purpose, as to not give the

player any hints when faced with making color-related decisions. For example, the carpet, seen

in figure 4.20, does not have a ROYGBIV color layout, so players cannot reference it when

completing the color by numbers

35

Figure 4.20: Rug

If they do make the assumption that the carpet is in the standard order, they will not complete

the level correctly. Additionally, feedback allowed us to see that people were using the poster on

the wall to give them a hint as to which table was the correct one. The poster, the “Food

Dodecahedron,” which was designed to mimic the food pyramid seen in lots of American

classrooms, contains various items, some not food related for humor. Amongst the items on the

poster is a glass of red wine. Lots of players deduced that since wine is typically red, the color it

appears in colorblind mode must correlate to the color of the correct table. We had been given

feedback that it was easy to choose the correct table if they relied on the poster, so we changed

the wine from red to green in order to not give any hints to players.

In the last scene of the level, the player must place their completed paper on a board

amongst the drawings of other students in order to compare their success in coloring the paper

to their fictional peers. If colored very incorrectly it can instantly be seen that the player’s paper

is different than the others. All of the other papers are colored correctly so there is no confusion

as to which colors the player got wrong. They can then see a screen which tells them exactly

how many sections were colored correctly, but the initial shock of seeing their paper amongst

the others provides an experience that contributes to the goal of empathy we wished to achieve.

4.5.2. Level 2

The second level is chronologically further along than the first, where the main character,

Sam, is about 10 years old. The main goal of the level is to construct a model house using

Blockos: a take on the brand Lego. This level was designed in order to further our experience

goal by producing another scenario in which someone living with color blindness would be

presented with a challenge.

The scene begins with Sam (the camera view) entering the bedroom of a friend, who is

playing with the Blockos on an area rug. The friend then beckons Sam to join him and the

camera moves toward the rug, then ends at a set position which gives the player a view of the

whole workspace: all of the blockos laid out from the middle to the top of the screen, directions

36

at the bottom left, and an empty space at the bottom right, where the Blockos are to be placed.

The Blockos are not laid out in a particular order, and are at slightly different angles to provide a

level of realism to the game, as it is likely a child would not take the time to organize and

straighten out game pieces before playing with them. They are laid out in such a way that they

do not overlap each other and are far apart enough that they player can see each individual

piece. Several of the blockos are exactly the same, yet have different colors, as seen in figure

4.21. It is the player’s job to guess which of the Blocko pieces are the correct colors

corresponding to the directions.

Figure 4.21: Blockos

The directions, which contain step by step instructions regarding the correct order and

color of the pieces, may be clicked upon to bring them to the center of the screen, where they

can be seen more easily. Each page of the directions contains three sections, which can be

seen in figure 4.22, the first being the top of the page which tells the player the step number,

piece type, and color.

37

Figure 4.22: Instructions

Below this, is an orthographic view of that piece, taken at a forty-five degree angle. This was

done in order to give the player the most surface area of each piece to view, to make it easier

for them to distinguish each Blocko shape when selecting a piece off of the rug. This

orthographic view was taken as a line render, which serves two functions: the first being that it,

as well as the angle, allow for the player to distinguish the pieces more easily. Secondly, a line

render has no color to it, so the player cannot compare the color of the piece in the directions to

the color they will select from the rug. The last section of the directions is the bottom which

shows, in black and white, where the piece is to be placed. The black and white also gives the

illusion of a brand which cuts corners and is relatively inexpensive, as a “ripoff” Lego brand

would assumedly be. If the player chooses the correct piece and places it in the working area,

the current page will slide off of the screen, revealing the next set of directions.

The Blocko house that is to be constructed contains various colored pieces and can be

built in ten steps. The first piece to be placed down is the foundation, which is blue. As

previously discussed in Section 3.2 the first piece of the puzzle is highlighted for the player to

select, move, and place down in the work space. It was for this reason that there is only one

blue piece that belongs on the house; the player is explicitly told which piece is blue, and will

have that information going forward when placing other pieces. The other step that is a

38

giveaway to the player is adding the walls, which are white. There is only one set of walls for

this reason. The other pieces, however, are in different colors.

Having experienced the first level, we assumed the player will have drawn some

parallels in regards to color perception. For example, in the first level, the red table appears

yellow in colorblind mode, so player may try to use this information to solve the Blocko puzzle. It

was with this in mind, that instead of providing options that were greatly different in colorblind

mode, they were very similar in hue. For steps that required the player to choose a red piece,

for example, the three options provided for choices are red, yellow, and orange. These were

chosen due to the fact that they look very similar in colorblind mode, which is shown in figures

4.23 and 4.24.

Figure 4.23: Colorblind Filter Blocks

Figure 4.24: Normal Vision Blocks

The level was designed keeping the age group of the main character in mind. The scene

is populated with things such as camouflage gaming chairs, a television, superhero poster, toy

chest, bunk bed, and desk, all designed to highlight the youth of the character, as the player is

not told how old the main character is in the level. The overall layout is shown in figure 4.25,

which also shows that nothing in this scene can give the player a hint with the puzzle.

39

Figure 4.25: Bedroom

Off to the side of the carpet is the Blocko box, which is in grayscale so the player cannot

reference it when trying to select the pieces. The rest of the level contains muted colors, such

as browns and blacks to not overwhelm the eye.

40

5. Technical Implementation

This section will describe the technical aspects of the project. Figure 5.1 shows an

overview of the implementation of the implementation of Unseeable. Since the game is

implemented in the browser, Three.js was used to display the levels. The 3d assets and audio

assets were loaded into a Three.js scene (defined in Appendix F) and an HTML color filter was

layered over it to achieve red-green colorblind vision. HTML event listeners were used to listen

to mouse events and react to user interaction. In order to deploy the game on the web, a server

was implemented using Node.js and Express.js. The server was also necessary to connect to a

MongoDB database, which was used to record game information and survey results from

playtesting. Unseeable is hosted on Heroku at unseeable.herokuapp.com.

Figure 5.1: Web Application Diagram

5.1. Application Flow

 Before discussing the specific tools or implementation techniques used to create the

game, an overview of the application’s system should be understood. The system consists of

two main parts: front-end and back-end. These parts communicate with each other in order to

display the game to the user and send feedback to the database for developers to analyze later.

 The front-end of an application is the client-side code, responsible for visual elements

that can be seen and interacted with by the user. The front-end is where all of our assets are

loaded and rendered for the user to interact with. Both the models (FBX files) and audio files are

loaded into a level through independent loaders. Interaction logic is also defined during load

time. All of these assets are integrated into a Three.js scene, which, when rendered, will be

displayed in the web browser for the user to see. The color filter is applied to the entire HTML

page. All of these aspects and processes are contained within the front-end.

 The back-end of an application is the server-side code, responsible for site functionality

and database communication are the main responsibilities for the server in Unseeable. Without

the server, the application would not be hosted on the cloud. The back-end of our application

defines how the user is able to navigate between different pages in the application. Additionally,

the server creates a secure connection to our database, where relevant game and survey data

is recorded for later analyses. The server is the line of communication between the database

and browser that keep the site functionally stable.

http://unseeable.herokuapp.com/

41

 All of these components of our application have particular tools integrated into them.

This was done in order to facilitate the implementation process. A description of the tools as well

as specific implementation techniques are discussed later in this section.

5.2. Tools

5.2.1. Three.js

This project utilized Three.js, which is a JavaScript library for displaying 3D computer

graphics in web browsers. The original project proposed to create the game in Unity, but this

idea was discarded because it would detract from the programming aspect of the project.

Making the game in Unity would have required much less programming because of how much it

is capable of doing. The reason for this is that Unity completely takes care of importing assets

as well as rendering graphics on the screen. It also has many built in functions that would have

allowed us to implement many of the features that were in our game with minimal to no

programming at all. It is because of this that we decided on Three.js because we would be able

to use it to implement our own game engine.

Three.js uses WebGL, which is a JavaScript API for rendering interactive 2D and 3D

graphics in any browser. It is integrated into all major browsers. Since WebGL allows execution

on a GPU, Three.js also runs on one. The source code for Three.js is hosted and available in a

public repository on GitHub. The Three.js website includes extensive documentation for most of

its classes as well as many examples. We used these both extensively to develop many of the

features of the game: such as scenes, lights, cameras, and animation. Three.js has the ability to

load in external models, which allowed all models to be exported as FBX files which could be

easily loaded in. All that is needed to have Three.js run in a browser is to include the

“three.min.js” script in the desired web page. Other scripts that provided extra functionality, such

as “FBXLoader.js” had to be loaded in addition to this.

Three.js has performance utilities that can be used to measure how fast it is running.

Using these, we determined that it ran fastest on Google Chrome, so we decided that our game

would be developed to be played using the Google Chrome browser.

5.2.2. JavaScript

 The JavaScript programming language was chosen for this project due to it being the

basis for the Three.js API. JavaScript is the primary language used to program functionality in

web browsers, and is employed by nearly every site on the Web. Due to JavaScript being widely

supported, creating a browser-based game would become a much easier task by basing the

entire project around it. In addition, JavaScript comes with built in memory management,

making the creation of the game easier due to not needing to make our own memory manager

in the game engine.

42

5.2.3. Node.js

 Node.js (or Node) was utilized in order to create the server for Unseeable. Node.js is “an

application runtime environment that allows you to write server-side applications in JavaScript”

(Rachowicz, 2017). What makes Node.js different from other server-side scripting languages

was that Node.js is its non-blocking, event-driven I/O (Capan, n.d.; Simoneau, 2010). More

specifically, Node.js operates on a single thread. Whenever an event occurs (e.g. an

xmlhttprequest), a request is sent to that thread. The request is then sent to the appropriate

processes. A callback is set up to return the data output from those aforementioned processes.

Since Node.js is non-blocking, the server will not wait for the request to finish before accepting

other requests, but will instead take the next request retrieved, send it to the appropriate

processes, and set up a callback even before the previous request has been completed. This

way the user is not waiting on multiple requests to be completed before being able to perform

other actions. Instead, the user will make requests that will be completed independently from

each other. Examples of the actions that can be performed by Node.js include: generating

dynamic page content, creating files on server, reading files on server, collecting data, adding

database files, reading database files, modifying database files, etc. (W3Schools, n.d.). These

features make Node.js an extremely efficient environment to implement application servers.

 It was determined during the design phase of the project that having a server

implemented was necessary for a multitude of reasons. First, the implementation of a server

was necessary in order to host the game over the web. All websites require some kind of server

side code be implemented in order to be hosted. Additionally, having a server implemented

creates a level of security. Unlike client-side code, server-side code can not be seen by the user

through the developer console. This feature can be taken advantage of in order to send more

confidential data to the server to be uploaded and retrieved later, rather than passing that data

around in the client where a user could access it through the developer console.

Lastly, but most importantly, was the database connection that a server provided. As

stated before, a server is able to read, write, and modify database files. This feature was very

important to the team because the user data was collected had to be stored somewhere to be

accessed later. Node.js allowed for a connection to a database. Through this connection, the

team was able to send user data to the database to be stored and retrieved later for analysis.

Accessing a database via the front-end is possible, but highly discouraged. Passing data that

way is extremely unsafe and could give malicious users the opportunity to expose these security

flaws and tamper with the data. Having a server not only grants access to a database, but also

passes the data into and out of it in a secure fashion.

 When considering how the server-side code would be implemented, it became clear to

the team that using Node.js was the correct choice. The developers of the team have completed

project work utilizing Node.js, so there was a substantial amount of familiarity with the

environment. The team also had prior experience with Javascript, which made coding and

debugging much easier when server-side issues appeared. Being able to use Javascript for

both the front-end and back-end of the application made the code much easier to comprehend

due to its consistency, adding another level of familiarity with the environment. If any issues

43

arose due to unfamiliar aspects of Node.js, the documentation could be read in order to gain a

better understanding of the problem. Due to its popularity, the documentation for Node.js is vast.

This made it relatively easy to find solutions to problems that the developers encountered.

Besides being easy to understand and use, Node.js was actually good for the team’s use case.

When playing the game, the user should not have to wait on server-side requests to finish in

order to proceed with the task they were repeating. Node’s non-blocking, event driven I/O

removes this latency so that the user can play the game while data is being collected and

uploaded to the database in real-time.

5.2.4. Express.js

We used Express.js in order to more efficiently create the architecture for the server-side

code. Express.js is defined as “a minimal and flexible Node.js web application framework that

provides a robust set of features for web and mobile application” (Holowaychuk et al., n.d.).

Using Express.js with Node.js allowed for easier management for routing and handling requests

in the server.

5.2.5. MongoDB

 MongoDB is a document-oriented, NoSQL database program (Medlock, 2017). The

documents stored in the database follow binary JSON, or BSON, format. BSON documents are

a “binary-encoded serialization of JSON-like documents” (BSON Specification, n.d.). What

makes BSON different from JSON is that BSON also contains extensions that allows for data

types that are not part of the JSON specification (e.g. the Date object type). Figure 5.2. is an

example of one of the BSON documents in the team’s own database.

{

 "_id": {

 "$oid": "5ab9685f0e19c80014de46a3"

 },

 "userId": "c9026bb1-05e9-42a3-b8f4-15b898f246c7",

 "answers": [3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3],

 "positiveAffect": 30,

 "negativeAffect": 30,

 "__v": 0

}

Figure 5.2: PANAS JSON Example

 The database is split into different collections in which the documents can be stored.

These collections are defined by the Unseeable team’s developers and their purpose is to add

compartmentalization to the database when necessary. For example, a retail store using a

MongoDB database could have a collection containing inventory items and and a collection

listing employees. The Unseeable project’s database was split into several collections for the

44

following categories: informed consent, first PANAS, IRI, pre-survey, game logs, task logs,

second PANAS, and post-survey. Descriptions of these collections are discussed in Section 8.1.

 The main feature of MongoDB databases is that they use a non-relational, or NoSQL,

data-structure (Xplenty, 2017). This means that the documents stored in a MongoDB database

do not have to have a predefined structure, and that the structure of the documents can change

without having an impact on the collection or entire data collection (MongoDB, n.d.). This was

one of the main reasons our team chose to use MongoDB as our database program; being able

to dynamically change data schemas was an important characteristic as the game and data

collected rapidly evolved. Members of Unseeable’s development team were also very familiar

with MongoDB having used it in previous projects. Additionally, Mongo’s BSON documents

were consistent with the JSON documents that Three.js produced to represent different objects,

making it much easier when integrating the two technologies.

 The team used mLab as the service to host their MongoDB database. MLab is a cloud

database service that hosts MongoDB databases (mLab documentation, n.d.). This service was

chosen over others because members of the team have had experience hosting databases for

other projects using mLab. Additionally, the service was straightforward, easy to use, and the

data was viewable through the mLab website. This ability to view data through mLab’s API

facilitated the process of testing and debugging by eliminating the need to query the database to

perform trivial tasks such as checking if the data was actually persisted to the database.

 In order to facilitate the use of MongoDB the team utilized Mongoose, an Object

Document Modeling library (Munro, 2017). Mongoose is able to translate MongoDB’s

documents into objects that can be instantiated within the code. Unlike native MongoDB,

Mongoose uses well-defined schemas to model data, which facilitated data validation and made

it much easier to read and maintain data due to its consistent structure. Admittedly, using

Mongoose in conjunction with MongoDB can come at the cost of performance (Shan, 2015). For

the developer’s use cases, however, this decrease in performance is negligible as it is only

noticeable when there are hundreds of users concurrently accessing the database. This makes

the utilization of Mongoose even more beneficial considering the increase in development

speed when using Mongoose. The abstraction layer that Mongoose provides removes the

overhead of creating a connection to the database, closing it, optimizing it, etc. This makes it

much easier for developers to write the code responsible for reading and writing to the database

because it is so much more intuitive. The abstraction layer also facilitates making changes to

data handling code without halting other processes.

 Besides benefits to the development process, Mongoose’s data modeling features also

made its utilization appealing to the Unseeable team. One of these features is the data

validation that Mongoose provides. Mongoose’s schemas make data validation much simpler to

implement than in native MongoDB (MongooseJS Documentation, n.d.). This feature was

important to the Unseeable developers because many of the documents in the database have

fields that require a value in order to be persisted to the database (e.g. a user ID must be

present in every document that is persistent). Mongoose also makes it simpler to declare that

45

fields should be unique within a collection (i.e. there can not be duplicate values in a collection

for fields marked as unique). This feature was extremely useful when applied to the user ID field

of document because it ensured that the same user could not persist multiple instances of the

same type of document to the database. With these benefits, it was clear to the team that

utilizing Mongoose was the correct choice during development.

5.2.6. Heroku

 Heroku is a cloud platform supporting multiple languages for web application

deployment. It features “Git-based, GitHub, and API deployment strategies, a large number

of services offered as add-ons, and a full API” (About Heroku, 2011). Acquired by Salesforce

in 2013, Heroku is backed by a funding amount of 13 million USD and multiple investors such

as Ignition Partners and Redpoint (Crunchbase, n.d.). Heroku’s flexible language support and

wide array of pricing options makes it a top choice for multiple developers looking to have their

applications hosted on the web.

 The Unseeable project team decided to utilize Heroku as their hosting platform because

its features fit their use cases and needs. Heroku supports Node.js applications, meaning it

integrated well with the game since its server-side code was also developed in Node.js. When

the team encountered issues with Heroku, it was relatively easy to troubleshoot and find

solutions due to the fact that the platform is so widely supported and used. Not only that, but

with Heroku’s sandbox plan, there were no expenses involved in deploying the Unseeable

application to the web. Additionally, the Unseeable developers all had prior experience

deploying Node.js applications to the web through Heroku, making the process of deploying this

application easy due to their familiarity with the platform.

5.3. Colorblind Filter

 One of the most important aspects of our game is the Colorblind Filter. This technical

feature, written as JavaScript functions that edit the HTML markup of the page, is the part of the

game that simulates color blindness on the screen. It does this by adding an SVG element

containing a filter within it that is overlaid on the screen. The filter takes the colors that are on

the screen and shifts their RGB values so that they are changed to the same hues that a person

with red/green color blindness would see. The values for shifting were determined by looking at

various programs that had their own filter to simulate color blindness for images and browser

tabs. In addition, the colorblind member of our group was able to identify the values that

correctly simulated his color blindness. This was possible due to the recently created EnChroma

glasses that are able to mostly correct the vision of a colorblind person. By looking at the filtered

screen through both the EnChroma glasses and as someone with color blindness, he was able

to change the values until the filtered screen looked identical with the glasses on or off.

 The reason that this part of the game is so important is that, without it, we would not

have been able to easily simulate the experience of being colorblind. If the filter were not

implemented, each art asset would have to have been carefully colored so that they did not

46

contain any hues that a red/green colorblind person could not see. This would have added on a

substantial amount of time to the development of art assets. However, thanks to the filter, we

were able to design our levels without needing to account for this since the filter handled this

aspect of the development process once it was complete.

Figure 5.3: No Color-blind Filter

Figure 5.4: Color-blind Filter Applied

47

5.4. Game Engine Design

Most game engines consist of the main game program, rendering engine, and audio

engine in order to run games. Below we will discuss how these were all implemented.

Figure 5.5: Game Engine Design

5.4.1. Main Game Program

The main game program is what controls the game logic. The logic for the game engine

can be split into two distinct parts: level loading and event listeners.

The level loading happens soon as the script for the level script is loaded. The first step

that happens during this is the setting of all global variables. After this comes the creation of a

Three.js scene. Inside of the scene, a camera and lights are placed in their predetermined

positions for the level. A renderer is created to render the camera’ view of the scene. All

external 3D FBX files and audio files are then loaded into the scene. The implementation of

loading assets is defined in section 5.2.5. Event listeners are initialized here.

Javascript event listeners were utilized to detect cursor actions. The two event listeners

that were used to control interaction were the mousedown and mousemove events. These

used raycasting extensively to determine where in 3D space the cursor was located.

Raycasting was done by using the cursor position on the screen to cast a ray outward from the

camera. This ray is used to detect if the cursor is hovering over 3D object in the scene. If the ray

intersects an object, it means that the cursor is hovering over it. The event listeners would then

call the appropriate functions.

5.4.2. Rendering Engine

The rendering engine in a game generated and renders the 3D graphics that are seen in

the game. Three.js handled all of the rendering for the engine, so it was not necessary to

implement a new rendering engine which would have been a tremendous amount of work. Only

two components had to be set differently in order to provide the best experience. One of these

was to disable shadows, since they drastically reduced performance speed on less powerful

computers and did not look believable. The other component that was changed was the use of

48

anti aliasing, which is a technique in computer graphics to smooth out lines in order to achieve a

smoother look.

5.4.3. Audio Engine

The audio engine is responsible for playback of audio and any other audio control within

the game. Audio files were imported into the Three.js during level loading. A global

AudioLoader was initialized that would be responsible for providing the ability to load audio

files. Using the audio file name, the AudioLoader would create an AudioBuffer that would be

passed into an instance of Three.js’ Audio object. Different parameters of the Audio object (e.g.

volume, looping, callback functions, etc.) would be set based on developer input. Once loaded,

the sounds could be later played by calling a custom function that would play a sound based on

its audio file name.

5.4.4. User Interfaces

These were created by using html and layering it over the play canvas. Three.js does not

natively support menus, so we used the html layered over it to control interactions whenever the

player was at any of the menus. Using html/css/javascript was relatively painless, where we had

the most difficulty having css behave how we wanted.

5.4.5. Asset Pipeline

The asset pipeline is how the 3D assets were imported into the Three.js scene. A file

format that could be exported from Maya and imported into Three.js was necessary. Some file

formats contain only the 3D geometry and need to load the textures externally. Other file

formats need to be static models, while others can include animations.

The format that was decided to use was the FBX (Filmbox) file format. This was chosen

because it can include textures, animations, and multiple objects in a single file. The 3D assets

in each level were split up into multiple of FBX files: one file containing all of the static objects

which were not animated, files for each of the people, and separate files for each of their

animations.

Even after deciding on using the FBX file format, there were various issues importing it

correctly in the engine. The files had to be exported from Maya with the correct export settings

so that the FBX file was created in a way that the Three.js FBX loader would be able to

understand. Trying to load assets with the incorrect settings would lead the program crashing or

the imported assets missing geometry or textures. An early issue was that if an object had

multiple textures, the loader would only apply the first texture, and ignore any others. This would

lead to objects having holes where the secondary textures should be. This was temporarily

worked around this by splitting objects apart wherever there were secondary textures, leading to

a very large increase in the number of object in levels. An update to the FBX loader that

happened later during development resolved this issue.

The largest problem that was overcome was importing animations into the Three.js

scene. There was a lot of trial and error involved in finding the correct export settings when

exporting the animations as FBX files. There were unsuccessful attempts to use different file

49

formats to export animations in attempts to load them into the scene. Eventually, compatible

FBX files were successfully exported by using Mixamo. This became the final solution for

getting animations into the Three.js scene.

Later on, models were able to be loaded in T-Pose and their animations were in

separate files. This allowed models that each had multiple animations. This greatly decreased

workload, because otherwise multiple models with a single animation each would have to be

loaded and take a lot of resources, and changing animations would involve swapping out

models entirely. The Three.js animation system is very good for handling objects with multiple

animations. An example of this is that it allows us to fade between animations, making it look

very natural when transitioning from one animation to another.

Besides importing models and animations with FBX files, there were some problems that

had to be addressed when importing FBX files. One of these problems was that FBX files that

contained lights in them could not be imported. This meant that any lights that were placed in

Maya had to be manually placed within the Three.js scene for each level. The splines that the

camera moves along did not import as import as splines, even though they were created as

splines in Maya. They had to be converted into splines at load time.

5.4.6. Task Implementation

Within the game’s levels are multiple tasks and puzzles that the player is required to

complete in order to reach the end of a level. The implementation of these aspects of the game

are listed and described in this section under their respective names.

5.4.6.1. Table Selection

 The first puzzle of the first level was to select the red table out of four possible table

options. In developing this puzzle, two important features were implemented: table highlighting

and table selection. In order implement these features, the developers took advantage of the

Three.js technology stack in order to manipulate the camera and objects themselves.

 Table highlighting occured when the user moused over one of the tables in the scene.

The purpose of highlighting the table was to inform the user that the table they were mousing

over was a selectable option in the puzzle. In initial iterations of this feature, the color of the

tabletop was changed to white in order to provide this feedback. In the most recent iteration of

this feature a white outline appeared around the table, which allowed the user to continually

view the color of the table they were mousing over it as well as know that they can select that

table as an answer to the table selection puzzle. An example of a table being highlighted is

shown in Figure 5.6.

50

Figure 5.6: Table highlighting shown with the second table from the left

 Creating a white outline around the tabletops was not a simple task. Since all of the

objects were in 3D, the outline also had to be implemented using the 3D tools provided by

Three.js. These outlines were created while loading in the classroom model into the Three.js

scene. In order to create outlines specifically for the tabletops, the corresponding objects were

given specific names so that they could be identified when loading in all of the classroom

objects. Every object in the classroom has a name field containing a string that can be set

before loading it into the game. The object was then passed into the method createOutline, a

helper function containing the logic that created the white outline around the tabletops. The

createOutline method first creates a MeshBasicMaterial instance named outlineMaterial. The

color of outlineMaterial was set to white. The “side” field was set to THREE.Backside, which

caused only the back face of the object to render. The “transparent” property was set to “true”

so when the opacity was changed the outline would actually appear transparent. The opacity

was set to 0.9 to look more aesthetically pleasing. Then a new Mesh instance was created

using the geometry of the original object, which was passed in a parameter to the createOutline

method, and outlineMaterial. The result is a clone of the original tabletop that appeared white.

Since only the back face of tabletop clone rendered, the original table’s front face appeared on

top the the clone. By scaling the size up slightly and recentering the white table, it appeared as

if an a white outline was drawn around the original table when, in reality, the original table was

actually just rendered on top of the back face of the white clone. Once the necessary

parameters were changed to make the clone appear as if it were a two-dimensional outline, its

visibility field was set to “false”, making it invisible. This was done because the highlight should

only appear when the user moused over a table, meaning that at other other time the highlight

should not be present. This clone was then added to the scene as well as to the original table as

a reference named highlight.

51

 The highlights were made visible wherever the user moused over a table during the

table selection task. Three.js’ raycaster class was used in order to determine which table was

being moused over. If the object intersected by the ray was a table, which was indicated through

the inclusion of the word “table” in an object’s name, then the intersected object would be saved

as a global reference to be referred to later. The previously created reference to the table’s

larger white clone would then be used to set that clone’s visibility to “true” making it visible in the

scene again and the mouse cursor’s style would be set to “pointer”. If the cursor was not

hovering over a table, the cursor would be set to its default look and any highlights that were

made visible would have their visibility field set to “false” using the previously defined global

reference. The global reference would then be set to false, an indication that there is no table

being hovered over by the mouse.

 Selecting the table through mouse clicks was another important feature implemented in

the game. Whenever the user chose a table, their character walked from their current spot to a

spot near the table they chose. In order to implement this walk, ten paths were created in the

classroom model for every route the user could take between each table and the initial position

at the beginning of the task. These paths were loaded into the engine and converted into

splines. To convert the paths into splines, an array of vectors had to be created for each path.

Each index in that array represented a point on the spline. That array was then passed as a

parameter to the constructor of Three.js’ CatmullRomCurve3 class (defined in Appendix F),

which creates a smooth three-dimensional spline given a series of points.

To actually move the camera along the path to simulate walking, the spline, the direction

the camera should move in along of the spline, and the duration it should take are all passed

into a helper function, moveAlongSpline. This function sets the selected spline as active in a

separate module responsible for spline movement. When that spline was set to active, a

function in the renderer, which only executes code if there was an active spline, became

responsible for moving the camera along it. Using Three.js’ Clock class, a record of how long it

had been since the spline was set to active was kept. If the elapsed time was less than the

intended duration of spline movement, a new variable was created that was set to the

appropriate position on the path. This point was calculated by dividing the elapsed time by the

intended duration of spline movement, which equals the percentage of the spline the camera

should have moved along. The point was retrieved based on that percentage using the

CatmullRomCurve3 class’ “getPointAt” function, which retrieves a point on a curve based on a

parameter between 0 and 1. The camera’s x position was set to this point and this process

repeated until the elapsed time equaled the intended duration of spline movement, where the

camera would be located at the end of the spline. During this movement the camera’s y position

was also constantly changing to go up or down based on a calculated small sine wave. This

vertical motion made it seem more like the character was walking rather than gliding along the

floor.

This walking implementation would only be executed when the player clicked on a table,

where the appropriate path was selected based on the point they were currently at and the table

they chose. Raycasting was utilized to determine which table was selected. If the objects being

52

intersected by the ray cast from the mouse were tables, the walking logic would be executed if a

click was detected. Otherwise, nothing would happen. The developers added a fourth parameter

to the moveAlongSpline function that contained a callback function to be executed after walking

along the entire spline. This was used to play the appropriate audio based on the player’s table

choice and move forward in the level if the aforementioned choice was actually correct.

5.4.6.2. Color by Number

The implementation of the color by number task in level 1 was very involved. There were

multiple aspects, while simple to the user, that required ample amounts of work from the

developers. These aspects include: the crayon selection logic, the crayon movement logic, the

paper highlighting implementation, and the paper coloring implementation.

 The first part of the crayon selection implementation was providing feedback to the user

about which crayon they were selecting. When the player hovered over a crayon with their

mouse, that crayon would move slightly out of the box it was in, shown in Figure 5.7. This

feedback would only occur if there was no crayon currently selected by the user (e.g. there was

not a crayon in the player’s hand). In order to implement this feature, raycasting was used to

detect when the mouse hovered over an object. To filter this to specifically crayons, the team’s

artist gave crayons specific names that would differentiate them from the other objects (e.g.

Main_CrayonGreen). When the mouse intersected a crayon, that crayon’s x and z position were

offset in order to move it slightly out of the box. The mouse cursor was also changed to a

“pointer” style from its default look, which is normal feedback for indicating that an item is

selectable in a user interface. This cursor style is shown in Figure 5.8. Mousing off a crayon

would return it to its original position and return the cursor to the “default” style.

Figure 5.7: Example of a crayon moving slightly out of its box when hovered over

53

 (a) (b)

Figure 5.8: Mouse cursors styles default (a) and pointer (b)

Triggering a mouseodown (defined in Appendix F) event while hovered over a crayon

made it the currently selected crayon. The crayon object itself was set to a global variable

“currentObject” that is used in the paper coloring and highlighting implementation, to be

discussed later. The rotation of the crayon was changed in order to orient it as if it was being

held in someone’s hand. The position of the crayon was also offset in order to align the crayon’s

tip with the mouse cursor, allowing the user to align the crayon tip with paper section to color it

similar to a real-life scenario. Additionally, the mouse cursor’s style was set to “none” (i.e. the

mouse cursor is not visible) when a crayon was selected. In initial implementations of this

feature, the crayon would actually phase through the paper because it was place at the exact

point of intersection between the raycaster ray and paper. To remedy this, the crayon was

placed 90% along that ray, where it would float slightly above the paper, but appear as it was

touching it due to perspective.

The implementation for moving the crayon was similar to selecting it. The only difference

was that instead of moving the crayon on a mousedown event, the crayon’s position was

changed on a mousemove event (defined in Appendix F) as long as there was a crayon

currently selected. The position of the mouse was set to 90%, where 100% was the point of

intersection and 0% was where the camera was, along the ray intersecting with the scene so

that it would not phase through any objects. The offsets to keep the crayon’s tip at the point of

the cursor were kept the same.

The user was not able to select another crayon if they there was already a crayon

selected. To select a new crayon, the user had to place the crayon back in the crayon box first.

The user was able to place the crayon back by clicking on the box when they had a crayon

selected. In order to better inform the user that clicking on the box would return the crayon to its

original location, a ghost of that crayon would appear there when the player hovered over the

box. To implement the appearance of these ghost crayons, a clone of each of the crayons were

created when loading in the classroom. Any materials of the original crayon were also cloned

and those clones were set as the materials of the crayon clones. Clones of the material had to

54

be created because when a material is changed in Three.js, any object with the same material

experiences the same change. By cloning the original crayon material and setting it as the

clone’s material, any change to the clone’s material are independent of other objects. The

opacity of clones’s materials were set to 0.3 and their transparent properties were set to true.

This made the them appear transparent. Their positions and rotation were set to that of their

corresponding original crayon. The last property that was changed was their visible fields, which

were set to false so that they ghosts did not appear while there were already crayons in those

same positions. These ghosts were added to the scene and a reference to a crayon’s

corresponding ghost was added as a field to the original crayon object. When the ray emanating

from the mouse intersects with the crayon box and there is a crayon currently selected, the

visible property of the ghost crayon will be set to “true” using the reference stored in the

currently selected crayon. If the user mouses off the of the crayon box, that property will be set

to “false” again. Clicking on the box will also set the visible property of the ghost to “false”, return

the currently selected crayon to its original position, and set the global variable for the currently

selected crayon to “null”. An example of this feature is shown in Figure 5.9.

Figure 5.9: Ghost crayon appearing when hovering over box with a crayon selected

In order to provide additional feedback on which section the user was mousing over with

the crayon paper highlighting was implemented. Paper highlighting occured when the user

moused over a colorable section of paper. That section of paper would change to a lighter

version of the color of the currently selected crayon. If no crayon was selected, the paper would

not change color. In order to implement this feature, all of the colorable sections of the paper

were stored in an array. Whenever the mouse hovers over the paper, the name of the sections

of paper being hovered over will be searched for in the array. If that name is found in the array,

the paper highlighting code will execute.

55

To change the color a section of the paper, the material of the paper was cloned first.

The color of the currently selected crayon was then set as the new color of the paper’s material

clone. The rgb values of the color were then increased, which made the color of the material

clone lighter than the color of the currently selected crayon. Finally, the material of the paper

was set to the newly colored material. The original material of the paper was also saved to a

global variable which was used to set the paper section back to its original color when the user

moused off of it. This feature can be seen in Figure 5.10.

 (a) (b)

Figure 5.10: Paper highlighting (a) vs. paper coloring (b)

If the user clicked on the section of paper, however, it did not change back to its original

color when moused off it. Clicking it removed that section of paper from the array of colorable

sections,which removed the ability to color or highlight that specific piece again. The user was

made aware of this through visual feedback. When the user clicked on a colorable section of

paper, the color of that section’s material was set to the color of the crayon. Since the highlight

color was a lighter version of the actual crayon color, the user was able to view a change

between the two as an indicator that they had successfully colored in a section of paper, which

is shown in Figure 5.6. After every colorable section of paper was filled in the array became

empty, which then triggered the game to start the next cutscene and move on to the paper

posting task.

Coloring a section of paper also calls a paper scoring function, which calculated the

user’s current score and recorded what color they used to color that specific section. The

function compared the user’s choice to the actual answer, which was stored in a JSON (defined

56

in Appendix F) file that was converted into an array when loading the level. This array was

accessible anywhere within the first level’s code. If the user’s answer matched the actual

answer a global integer, colorPaperScore, was incremented by 1. At the end of the color by

number task, the score and recorded answers were packed as a JSON file and sent to the

database.

5.4.6.3. Posting the Paper

 After finishing the paper coloring activity, the player is asked to place the paper on the

whiteboard amongst the other students’ papers. Since all the colorable sections of paper were

different objects, they had to be grouped in order to be moved together. To do this, the colorable

sections of paper were placed in an array when the level was loaded. When the game detected

that the player had colored all the sections of the paper, all of the objects in that array were

added to an instance of Three.js’ Group class, making the paper a single object. The paper was

rotated to be parallel to the whiteboard in the classroom. This logic executes during a fade out in

the cutscene before the user is asked to place the paper on the whiteboard so they do not see

the paper rotating.

The camera’s position was moved to directly in front of the whiteboard, zoomed in

enough to not be able to view the edges but still see some of the other papers. An example of

this view can be seen in Figure 3.3. The paper was placed where the player’s cursor was before

the fade in occured. After the fade in, the player is given the ability to move and place the paper

on the whiteboard using the mouse. To move the paper, the point where the cursor intersected

the whiteboard was found using raycasting. The paper was moved to this position with some

offsets that made it so the paper’s center was where the mouse cursor was. When the player

clicks on the whiteboard, the functionality to move the paper stops. The camera then zooms out

of the view of the whiteboard to view it in its entirety and an audio track plays based on how well

the user colored the paper. To implement the zoom out, the camera was moved from its

previous position to a position whose z value was slightly farther away from the whiteboard. The

transition between the positions was created using Three.js Tween class (defined in Appendix

F). The conditions that triggered the different audio tracks were if the user colored the entire

paper correctly, nine to thirteen sections correctly, or less than nine sections correctly. The

audio that played reflected how well the user performed that paper coloring task.

5.2.6.4. Stacking the Blockos

All of the setup happens when the level is loaded. Once the bedroom FBX file is loaded,

there is a function that loops through all of the objects in the bedroom, which then processes

them based on their names. The names for all of the objects were set by Isaiah when he

created them in Maya. Like in the previous level, the lines were converted into splines. The

objects that contained 'Blockos’ in their name were the blocks that the player would be picking

up and interacting with. Their origins are set to the centers of their geometries in order to make

their placement and rotation easier. They are assigned a variable which is used to check

whether or not it had been placed, so that the player will not be able to pick it up once placed.

Each of these objects and their materials are cloned in order to create the ghosts for the blocks

to be placed their original positions. The final house that the player has to build is already built

57

and placed in the level. References to these block are added to their corresponding pieces on

the carpet and they are made invisible.

This task is controlled entirely with the mouse, and as a result raycasting is used heavily

in this level to determine what the mouse hovers over. If the mouse hovers over an unplaced

block, it raises slightly, similar to the crayons in the first level. Clicking on the block picks it up,

and the offset of the point of the click and the center of the block is used so that the block is

moved around by the point that it was picked up from. With this offset, the block is placed along

the ray cast so that the point where the block was picked up from is always under the mouse.

The material of the block is copied to the material of the block in the final position so that the

color of the ghost matches the color of the picked up block. There is a second ray that is cast

from the camera to the center of the picked up block which is used to determine how close it is

to one of its ghosts. If close enough to one of the ghosts the, the ghost becomes more opaque

and clicking the mouse will attempt to place it down in that position. If attempting to place the

block in its final position, first the shape is checked, then its color, and if both of these are fine,

then the block is placed smoothly using a tween. If either of those tests fail, then the appropriate

voiceline is played for the friend’s irritation. If attempting to place the block in its original position,

there is no checking and a tween is used to return the block to its original position.

The instructions that are laid out on the carpet have some similar initial setup as the

blocks. They also need to their origins set to the centers of their geometries for proper

placement and rotation. When they are clicked on, the top page is the only one that is moved.

The final page position in front of the camera is calculated by taking the camera’s position,

applying the camera’s quaternion for the rotation, and adding a small offset to distance it from

the camera. A tween is used to move the page from its initial position to this newly calculated

position. If the instructions are open, any click will start a tween to move them back to their

original position. Whenever a block is placed correctly, a tween is started to pull the top

instruction page off screen and any future interactions with the instructions will open the new top

page.

There are three global variables that keep track of the player’s progress through the

level. There is one for the building step that they are currently no, which will trigger the good

ending once they complete the tenth step. The other two variables keep track of the player’s

incorrect block and incorrect color attempts. These dictate which audio line to play when the

player attempts to place incorrect blocks and will end the level if either of their limits is reached.

5.5. Logger

 The Logger was created in to record game metrics in the background of user gameplay.

It was implemented as a class that could be instantiated for different levels of the game,

containing a variety of methods that either recorded data or persisted it to the database. To

create an instance of the Logger, the constructor had to be passed in a player ID and a level ID.

The constructor takes these two parameters and stored them in the instance’s log attribute, a

JSON containing level-related data: the player ID, the level ID, the date the player started the

58

level, the time the player started, and the total time it took the player to complete the level. An

example of the format of this JSON and the definitions of its fields can be seen in Figure 5.11.

{
 userId: UUID representing the player,
 levelId: the level number (e.g. 1, 2, 3, etc.),
 date: the date the player started the level,
 startTime: the time the player started the level,
 levelDuration: the total time it took to complete the level
}

Figure 5.11: Log JSON with definitions

 The player ID field was generated using an npm package (defined in Appendix F) that

created UUIDs (defined in Appendix F). This ID was generated when the user pressed the

“Play” button on the title screen and was passed between pages using the window’s

“sessionStorage” variable (defined in Appendix F). The date and time fields were generated

using javascript Date class, excluding the need to pass input into the constructor for these

items. The levelDuration field was generated when the user completed the level by taking the

time (in milliseconds) they finished the level and subtracting that by the time they started the

level. To send this log, the endLog function of the Logger class was called at the end of a level,

which took the log attribute and sent it to the server through a POST request (defined in

Appendix F) to the “logger/createLog” address. It was then converted into a Mongoose object

and sent to the MongoDB database.

 The Logger had an additional attribute, taskStartTime, that was constantly updated to

record when a user started a task or puzzle within a level. To record task data, the name of

task, the grade the player earned, and any additional information (if any) had to be passed into

the logTask function of the Logger class. This function stored relevant task data in a JSON,

which is shown with field definitions in Figure 5.12. The userId field was set by accessing the

stored value in the window’s session storage. The levelId and name fields were manually set by

the developer (e.g. they type “1” for the level and “Color by Number” for the task name). The

duration was calculated by taking the current time (in milliseconds) and subtracting that by the

Logger class’ recordStartTime variable, which was updated to reflect the time when the task

began. The grade calculations were performed independently from the Logger class and passed

in as a parameter to the task logging function. Additional information that the developers wanted

to record were passed into the function as an array. This data was sent to the server via a

POST request to the “logger/createTask” address. The server then took the JSON data and

uploaded it to the MongoDB database.

59

{
 userId: UUID representing the player,
 levelId: the level number (e.g. 1, 2, 3, etc.),
 name: the name of the task being logged,
 duration: the total time it took to complete the level,
 grade: the score the user earned for the task as a fraction (e.g. 0.44),
 additional: any additional information to be recorded, stored in an array
}

Figure 5.12: Task JSON with definitions

60

6. Art Production Pipeline

All of the art assets were created with many constraints and factors influencing the

design, including the fact that the game was created in a custom engine, runs in a browser, and

must fit aesthetically with the chosen art style. The objects and characters followed different

production pipelines, and included various softwares in order to be completed.

6.1. Level Objects

The two levels of Unseeable were created in Maya, and initially only contained a few

placeholder objects. The scenes, one of which can be seen in figure 6.1, were then exported in

the .fbx file format.

Figure 6.1: Initial Object Creation

The .fbx format was chosen due to the fact that it allows objects to retain the information

associated with them in their initial 3D package; which was, in this case, Maya. This means

each object will retain its scaling information, smoothing information, textures, etc. once

exported. The simple scenes were then sent to the technical team which allowed them to test

the .fbx loader and make sure all of the objects loaded into the scene in the correct places.

Once confirmation was received that the objects could load correctly, the scenes were then

populated with more objects.

All of the level assets, such as tables and shelves, were created using as little extra

geometry as possible while still allowing them to fit into the cartoon-like theme discussed in

61

Section 4.4. Having less geometry per-object allows for faster rendering during runtime, which is

a concern when it comes to a game running on a web browser on various computers with

different processing capabilities. Figure 6.2 shows the polygons making up each of the objects

in the first level, and it can be seen that each object does not have much density.

Figure 6.2: Level 1 Wireframe

 In addition to simplistic geometry were simplistic materials, which were created in

Photoshop. Many textures were hand painted, such as the table tops and the rug texture; the

others are photo textures. Photo textures started with photorealistic detail, then had various

filters applied in Photoshop to achieve the desired cartoon look, as seen in figure 6.3.

Figure 6.3: Original photo texture (left) and texture with filters applied (right)

62

Most of the materials in Unseeable only contain diffuse textures, making them appear

flat. This was due to the fact that any materials with specular parameters appeared very shiny

within our game engine. Any specular parameters that were changed within a material’s settings

in Maya did not translate to 3.js, and appeared distractingly shiny in-game. It was for this reason

that very few materials have specularity values. Plastic objects, such as the chairs and the sides

of the tables in the first level, and the blockos in the second level, all have specular values

because the items they represent are normally shiny.

6.2. Characters

The characters, seen above in section 4.4.1 were created in ZBrush using various

sphere chains then sculpted musculature. The clothing and hairstyles were also created in

ZBrush. The hair and clothing were created using a modular approach, meaning different

hairstyles could be paired up with different clothing, effectively creating entirely new characters.

The characters below in figure 6.3 are wearing the same outfit, which are just textured

differently.

Figure 6.4: Character Clothing

After all character assets, i.e. hair, clothes, and body, were modeled, they were

retopologized in order to minimize the amount of geometry used by each. Reducing the amount

of polygons in each character was very important, as they were much denser than the other

objects in each scene. Leaving the characters at their original polygon count would make the

game run very slowly, especially when each character is animated. Once the characters were

63

retopologized, they were individually poly-painted in ZBrush, which creates the diffuse textures

for each.

The characters were then individually exported to 3ds max, where the character assets

were condensed into one object, and scaled to the correct dimensions in order to accurately fit

into the level. They were then uploaded to Mixamo, which is a service that auto-rigs biped

characters and provides various animations which can be applied to them. Due to the fact that

many characters had to be created, each with different animations, Mixamo was utilized. From

Mixamo, each character was downloaded in a T-pose and sent to the technical team who

applied the downloaded animations to each T-posed character.

64

7. Audio

 The audio elements of the game were created through a combination of free, online

sources and through recording the voices of various people for the vocal audio in the game. All

of the sounds that were used were edited in the free audio editor software Audacity. It is in this

program that the quality of the audio recorded and found was able to be improved by removing

noise and by changing various aspects for different parts of it to suite the needs of the game.

7.1. Vocals

 The choice to have characters speak within the game was done in order for the player to

receive instructions more naturally, rather than simply displaying the instructions on the screen.

This helped to add more realism to the game so that the player could further immerse themself

within the game. In addition, this decision was made in order to deliver larger emotional

feedback to the player, something that would be much harder to do by just displaying text within

the game.

7.1.1. Level 1 Vocals

 For the first level of the game it was decided that the teacher would be, other than a

couple student voice lines, the only character that would speak in the level. This was done as a

teacher would, in the situation of a classroom, be the most appropriate person to be giving

instructions to the player’s character, a student. A script was written for the teacher that would

allow the teacher to give the player instructions while still sounding natural in order to keep the

feeling of realism within the game. When the script was complete, a person was found who

could voice the teacher. The lines were recorded and edited to remove any background noise

before placing them in the game. The voice was recorded to make the teacher sound kind and

caring, but also to imply that she did not understand that the player’s character has

colorblindness.

 In addition to the teacher giving instructions, there are three different voice lines that can

play at the end of the level. These were played at the end of the level to give the player

feedback about how they did on the coloring task, as well as to deliver a larger emotional impact

on the player. The first voiceline that can occur is the most common as it plays when the player

gets between one and nine colors correct. In this case, a child in the class, who is offscreen, will

declare that the player does not know how to color and the entire class will laugh at the player.

This was the main voiceline that was created to evoke more emotion out of the player by

making them feel embarrassed and humiliated, in order to have them understand that people

can be cruel to those who are colorblind. The second voiceline that can play occurs when the

player gets between 10 and 13 colors correct. In this case, a child in the class will point out that

the player’s coloring sheet seemed a bit off which was done to tell the player that, despite being

close to correct, it was still noticeable that they did not get all the colors correct during the task.

The final voiceline that can play occurs when the player gets all the colors correct. In this case,

the teacher states that the kids did a good job and tells them it’s time for a story as the level

ends. This was done to show the player that, even though they struggled greatly to complete the

65

task, it was something that all other students were able to easily do and they would get no

special reward or extra praise for completing the task.

7.1.2. Level 2 Vocals

 For the second level, it was decided that the player character’s friend would be the most

appropriate character to be voiced in this section of the game. This was done to, as with the first

level, provide instructions to the player while keeping a sense of realism within the game.

However, unlike the first level the vocals also served to provide the player with immediate

feedback on their choices as they were happening as well as gradually evoking more emotion

out of the player through the feedback. This was done by writing a script in which, if the player

tried to place the wrong colored pieces when building with the blockos, the player character’s

friend would respond differently depending on the number of times the player had tried to place

an incorrect piece. At the first, the friend will gently say that the player is wrong and points out

which block should be used, serving as the only hint the player will get in the level. After the

player makes another mistake, the friend will start to become noticeably annoyed with the

player. The annoyance will begin turning to frustration and anger at the player until enough

mistakes are made where the friend yells at the player and says they no longer want to play with

them. This was done to make the player feel bad for getting the pieces wrong. In addition, it

serves to show the player that those who do not understand colorblindness can become easily

annoyed and angry at those who are colorblind despite the fact that the colorblind person

cannot do anything about it.

When the player continually gets pieces correct, the friend will respond with some

encouraging voice lines to indicate that the player is doing well. If the player is able to complete

the task without angering the friend to the point where he doesn’t want to play anymore, the

player will be able to hear one of two different voice lines. The first occurs if the player got

between zero and two errors when building. In this voiceline, the friend will say that the player

did well and the game will come to an end. This was done in contrast to Level 1, reward the

player with a small amount of praise due to the increased difficulty of the task. The second voice

line occurs when the player gets three or four mistakes before completing the task. In this case,

the friend will be happy that the player finally finished but will remark that they didn’t think the

task should’ve taken so long as it wasn’t that difficult. This was done to show that, even if a

colorblind person is able to complete a task that is difficult for them and not others, they will still

be judged based on the standards of those who are not colorblind. The task also shows that a

colorblind person can also be expected to complete the task in the same time it takes a person

with normal color vision to complete it.

 As with the first level, a suitable person was found to voice the friend. The person was

chosen due to their ability to weave emotions into their voice, allowing for the lines to more

easily evoke emotion within the player. Once the lines were recorded, they were then edited in

Audacity to remove any background noise as well as to change the pitch and speed of the lines

to make the voice sound like that of a child’s as well as to make the pacing more natural.

66

7.1.3. Vocals Subtitles

 With the introduction of vocals to the game, it was decided that it would be best to add

subtitles to go with the voice lines within the game. The reason for this was to make sure that

players would not mishear the voice lines and so that those who cannot hear the voices for any

reason can still get instructions as well as feedback on their progress in the game. While the

subtitles do not deliver the same emotional impact as the voice lines themselves, they help to

ensure that the game is accessible to those who are unable to hear the audio within the game.

7.2. Additional Audio

 While the majority of the audio in the game is comprised of the voice lines delivered to

the player, there are some audio pieces that were inserted into the game to make it feel more

realistic and to fill in the void where no voice lines are taking place. This was done by first

adding ambient noise to each level, with the first level having the sound of kids talking and

playing in the background. This seemed to be the most logical choice as the level takes place in

a kindergarten classroom: a place that would be filled with the sounds of small children talking

and playing. The second level had the ambient sounds of a forest outside as well as the low

hum of a computer. This was done because the level takes place within a child’s room, with the

outdoor sounds being the most logical choice as well as the hum of the child’s computer being

something that is present in many rooms in current times.

 Other than the ambient sounds, various sounds to indicate that actions have occurred

were placed in the game to add a small sense of realism to it. This includes the sounds of

picking up a crayon, placing the crayon back in the box, coloring with the crayon, placing the

coloring sheet on the board, picking up a blocko, placing a blocko down, and the sound of paper

moving when selecting the instruction sheets in the second level. These simple sounds were

included to not only add to the realism, but to provide audio feedback to the player that an

action had been performed in order to reinforce that something had occurred.

67

8. Research Methodology
 As stated previously, the main goal of the game was to allow non-colorblind individuals

to see from the perspective of a colorblind person and understand some of the struggles they

endure in their everyday lives. This means that the participant should undergo some amount of

stress while playing the game, indicating that they themselves are experiencing struggle while

experiencing vision impairment. In order to determine whether or not the game elicited any

stress from the user, subjective surveys were given to the user to complete. These surveys

indicated their disposition towards empathic concern and changes in mood.

8.1. Data Collection Methods

 Several different methods were used order to collect use data. The type of methods

consisted of mostly surveys as well as a Logger that collected game data as the user played

through different levels.

8.1.1. Informed Consent

The informed consent document is required by the Institutional Review Board (IRB) in

order to collect data from users. The document must be sent to and approved by the IRB before

collecting any data using it. The document describes general information, procedures, risks,

benefits, compensation, and contact information related to the study. Additionally, the informed

consent explicitly states that any and all of the participant’s information will be kept confidential

and that no publicly identifiable information will be disclosed in the study. The participant is

asked to sign the consent form indicating that they have read and understand the information

provided in the document and that they are ready to participate in the experiment (i.e. take

further surveys and play the game). For ease of use, the informed consent was digitally adapted

so that the user could provide an electronic signature and continue the study through the same

browser window. The full informed consent document can be located in Appendix A.

8.1.2. Pre-Survey

The pre-survey was meant to gain some general information from the user about factors

that could influence their perception of the game (e.g. if they are already colorblind or have

close ones that are colorblind). By collecting this information it is possible to separate, or at least

identify, outliers that may exist within our data. The full-pre-survey in its digital form is located in

Appendix B.

8.1.3. Post-Survey

The post-survey was meant to collect feedback after playing the game. More specifically,

the post-survey asks questions pertaining to the general difficulty of the puzzles in the game,

whether the user feels as if they have learned more about the colorblind experience, and if they

have any feedback related to the game or experiment they would like to share. This information

was used to see whether or not the perceived difficulty of the game had any effect on the

68

participant’s mood, whether or not the participant felt they learned about colorblindness, and

provide a method to receive direct feedback from the participant. The full post-survey in its

digital form can be located in Appendix C.

8.1.4. PANAS

The Positive Affect and Negative Affect Scale (PANAS) was meant to measure the

participant’s current positive mood and negative mood. The scale was given before and after

the user played through the first level. The scores of each instance of the scale were compared

in order to see how the participant’s mood changed based on this activity. The change in

positive mood is quantified by calculating the difference between the positive affect of the two

scale instances. The same process is used to quantify the change in mood using negative

affect. This change in positive and negative mood was how the team was able to examine

whether or not users felt stressed out about the game at all without having to take direct

physiological measurements. The full PANAS is located under Appendix D.

8.1.5. IRI

The Interpersonal Reactivity Index (IRI) is meant to measure empathy as a trait of an

individual based on answers to a subjective survey. Beyond that, the IRI is also capable of

measuring a subject’s disposition to perspective-taking, placing themselves in fictitious

scenarios (i.e. fantasy), and personal distress. Collecting this information allowed the team to

see if people who were generally more disposed to empathic concern had a more pronounced

difference in mood after playing the first level based on the PANAS. The full IRI is located under

Appendix E.

8.1.6. Game metrics

The description of the game statistics and how they were recorded is located in Section
6.3. Dates and times that the user played the game were kept in order to more confidently
match logs with user IDs. The time spent playing levels and completing puzzles were recorded
in order to examine any patterns in the amount of time a participant took and whether time
affected their change and mood significantly. The user’s score for each task was also recorded
in order to examine whether it had an effect on the participants mood. Additional data was
recorded only if the team thought if there were other metrics that could derive interesting
patterns (e.g. seeing if there was a pattern in colors used during the ‘Color by Number’ activity).

8.2. Method Sequence

Informed Consent → PANAS 1 → IRI → Pre-Survey → Game → PANAS 2 → Post-Survey

 Figure 8.1: Data collection method sequence

Due to the nature of some of the forms and surveys there was a specific sequence in

which users had to view them. The informed consent was the first form in this sequence. As

required by the IRB, the user had to sign the informed consent before any data was collected

69

from the user. After signing the document the user was then asked to complete the first PANAS.

The PANAS had to be taken before any other survey or playing the game so that it reflected the

user’s state of mind before any part of the study could affect their mood. The IRI immediately

followed the completion of the PANAS, which was then followed by the pre-survey. The order of

the IRI and pre-survey had no real significance besides having to be completed before the user

played the game. After the pre-survey, the user entered actual gameplay. The gameplay for

different levels is described in Section 3. Game metrics were recorded in the background as the

user played through the levels. What metrics were being recorded and how this recording was

implemented is discussed in Section 5.3. After completing the game, the user was asked to fill

out another PANAS in order to measure their mood immediately after experiencing the

colorblind perspective. Finally, the user was asked to complete the post-survey. The post-

survey was introduced last so that the user did not have time to think or relax after a potential

stressor was introduced (i.e. the game) before measuring their mood with a second PANAS.

Additionally, the post-survey was the section of the study in which users could express any

feedback they had, making it the most sensible to introduce the survey after the user completed

all the other surveys and played the game.

8.3. Data Analysis

 There was some necessary filtering that had to be done with the data before it could be

used to create any visualizations. Depending on the information being plotted, data points had

to be removed from the dataset if there was not a consistent user ID present among the

necessary sections. A user ID not being present indicates that the user began the study, but did

not complete it within a single session, where a session is defined as the period of time that the

window the game was being played on was open. For example, some PANAS data could not be

used because because users would complete the first PANAS, play the game, but then close

the window before continuing on to the second PANAS. In graphs where is was necessary to

plot the change in positive or negative affect using PANAS scores as a measure, having the

user fill out both instances of the scale was absolutely necessary. Any datasets where a similar

issue occured was filtered in a similar fashion.

 Once the data was filtered, a series of visualizations were created in order to more easily

understand the the results of the study. Scatter plots were the only type of visualization used to

represent the data. The choice was deemed the most appropriate considering that the results of

data relied on viewing the correlation between two variables (e.g. change positive affect, change

in negative affect, empathy score vs. change in positive or negative affect). Using a scatter plot

allowed for all the data points to be viewed to discern if there was a specific pattern that was

being followed based on the shape the graph. A linear regression line was generated for each

scatter plot in order to discover the overall trend of the datasets being examined, if any.

70

9. Results and Analysis

The goal of the game was to have non-colorblind individuals empathize with the daily

struggles of the colorblind population and the stress they endure. In order to determine if our

game accomplished this, the stress of the players had to be measured in some fashion. The

PANAS was utilized in order to discern if the player experienced stress. By having them take the

PANAS before and after playing the game, the team was able to analyze the data and

determine if the game caused stress, which would have been indicative through a decrease in

positive affect and an increase in negative affect.

This section not only discusses the changes in player mood after playing the game, but

also reveals correlations between those changes in mood and other measured values. All of the

visualizations in this section are scatter plots with linear regression lines. The scatter plots

allowed us to examine individual data points to look for patterns or outliers. The linear

regression line on each graph informs us of the overall trend of the data without taking away

from the examinable pattern formed by the distinct scatter plot points. The slope-intercept

equation of each line can be seen below each graph for more detailed analyses.

 (a) (b)

Figure 9.1: Positive affect before playing game vs. after playing game (a) and negative affect before playing
game vs. after playing game (b)

To determine whether or not the game caused stress, the PANAS scores before and

after the game were compared. More specifically, the change in positive affect and change in

negative affect were examined. This data can be seen through the scatterplots in Figure 9.1.

The scores from the first PANAS are plotted on the x-axis, while the scores from the second

PANAS are plotted on the y-axis.

71

Figure 9.1.a displays the comparison of positive affect scores. The slope of the trend line

is approximately 0.952. This indicates that on average, there was a slight decrease in positive

affect after playing the game. The distinct points on the scatter plot closely follow the shape of

the trend line, confirming that this correlation is reliable.

The negative affect of users also decreased. Figure 9.1.b displays the comparison

between negative affect scores before and after playing the game, the slope of the trend line is

approximately 0.697. This indicates that there was in even lower decrease in negative affect

than there was for positive affect. The data, however, is very scattered and does not show a

particular pattern, making the trend of the linear regression line less accurate.

 (a) (b)

Figure 9.2: Total IRI score vs. change in positive affect (a) and total IRI score vs. change in negative affect (b)

The players’ dispositional empathy was measured via the IRI. This data was recorded in

order to compare it to changes in mood. The purpose of this comparison was to examine if

those more disposed to empathy or its sub-categories would be more likely to experience a

greater change in mood after playing the game (e.g. a greater increase in negative affect).

Comparisons between the total IRI score and change and mood can be seen in figure 9.2.

When viewing the graphs in figure 9.2 and any similar visualizations involving changes in

PANAS scores, it is important to note that a positive value indicates an increase in affect while a

negative number indicates a decrease in affect.

 The relationship between the players’ total IRI score and change in positive affect can be

seen in Figure 9.1.a. The slope of the trend line is approximately -0.009, indicating that users

with higher IRI score showed a miniscule decrease in positive affect. The slope is so minute,

72

however, that any correlations that derive from is are negligible. The data itself is also very

scattered, which reduces the accuracy of the trend line and any derived from it.

The trend line in Figure 9.2.b suggests that players with higher IRI scores saw a

decrease in negative affect with an approximate slope of -0.024. Similar to the Figure 9.1.a,

however, the data set is very scattered, which reduces any generalizations made by the linear

regression.

 (a) (b)

Figure 9.3: IRI empathic concern score vs. change in positive affect (a) and IRI empathic concern score vs.

change in negative affect (b)

After examining the overall IRI data, the changes in mood were compared to IRI scores

in its different categories: empathic concern, personal distress, perspective-taking, and fantasy.

This data was compared in order to discern whether or not more specific types of empathy

affected the stress induced by the game.

Figure 9.3.a displays the relationship between player IRI empathic concern scores and

changes in positive affect. The positive slope of the trend line (m = 0.103) indicates that users

who scored higher in this subcategory of the IRI were more likely to experience an increase in

positive mood after playing the game.

 The data visualized in Figure 9.3.b indicates that after playing the game users

experience a slight increase in negative affect if their empathic concern score is higher. The

slope of the linear regression line is so miniscule, however, that this correlation is negligible.

Additionally, the data’s scattered nature makes any deductions from it less valid due to its

inaccuracy.

73

 (a) (b)

Figure 9.4: IRI personal distress score vs. change in positive affect (a) and IRI personal distress score vs.

change in negative affect (b)

The relationship between users’ IRI personal distress scores and their change in positive

affect is visualized in Figure 9.4.a. The trend line (m=-0.010) indicates that there is a small

decrease in positive affect, but the data set is too scatter to make this derivation reliable.

Figure 9.4.b displays how users’ personal distress scores affect their change in positive

mood. The positive slope (m=0.194) of the linear regression line implies that users with higher

personal distress scores are more likely to experience an increase in negative affect. While the

data seems to contain multiple outliers, the pattern of the data points somewhat follow this

trend.

74

 (a) (b)

Figure 9.5: IRI perspective-taking score vs. change in positive affect (a) and IRI perspective-taking score vs.
change in negative affect (b)

Figure 9.5.a displays the relationship between users’ IRI perspective-taking score and

their change in positive affect after playing the game. Figure 9.5.b compares the perspective-

taking score against their change in negative affect. The linear regression lines of both graphs

suggest that users who have a higher perspective taking score are more likely to see a

decrease in both negative affect and positive affect. The data in both graphs, however, is

neither accurate nor precise, making any assumptions that derive from it unreliable.

75

 (a) (b)

Figure 9.6: IRI fantasy scale score vs. change in positive affect (a) and IRI fantasy scale score vs. change in
negative affect (b)

The relationship between users’ IRI fantasy scale scores and their change in positive

affect is shown in Figure 9.6.a. The negative slope (m=-0.004) of the trend line suggests that

players who score higher in their fantasy scale score are more likely to experience a decrease

in negative affect. This slope is so small, however, that this result is negligible. Additionally, the

data set itself is widely scattered, making the data less valid.

Figure 9.6.b displays the comparison of the users’ fantasy score against their change in

negative affect. The linear regression line’s slope of -0.342 suggests that users with higher

fantasy scale scores are more likely to experience a decrease in negative affect.

76

 (a) (b)

Figure 9.7: Table selection score vs. change in positive affect (a) and table selection score vs. change in
negative affect (b)

The specific scores that users’ received in the different puzzles in the game were plotted

against their change in positive affect and negative affect. These values were compared in order

to discern whether or not the users’ performance directly affected their mood. The Figures in 9.7

correspond to the table selection activity in level 1 of the game. Since the recorded grade of the

user for this activity was the number of tries it took to select the correct table, a higher score

corresponds to lower performance.

Figure 9.7.a shows the relationship between the users’ table selection score and their

change in positive affect. The linear regression line (m=-1.464) indicates that users who

performed poorly in the table selection task were more likely to see a decrease in positive affect.

The relationship between the users’ table selection score and their change in negative

affect is shown in Figure 9.7.b. The slope of this scatter plot’s corresponding trend line is -0.429,

which suggests that users who performed more poorly in the table selection task had a greater

chance of experiencing a decrease in negative affect. The data points are not entirely consistent

with the trend line, however, making this result less valid.

77

 (a) (b)

Figure 9.8: Color by number score vs. change in positive affect (a) and color by number score vs. change in

negative affect (b)

The scatter plots in Figure 9.8 display the relationship between the users’ score in the

color by number task and their change in mood. The scores for this task were recorded as

percentages, therefore, higher numbers in the color by number score equate to better

performance.

The scatter plot shown in Figure 9.8.a displays the relationship between the users’ color

by number task score and their change in positive affect. The trend line’s positive slope

(m=0.056) indicates that users who performed better in this task were likely to experience a

greater increase positive affect.

Figure 9.8.b plots the relationship between the users’ color by number task scores and

their change in negative affect. Users who performed poorly in this task were more likely to

experience a greater increase in negative affect, as suggested by the corresponding trend line’s

negative slope (m=-0.104).

78

 (a) (b)

Figure 9.9: Table selection difficulty rating vs. change in positive affect (a) and table selection difficulty rating
vs. change in negative affect (b)

The users’ subjective rating of the difficulty of each task was compared against their

change in mood. After playing the game, users were asked to rate how hard they thought a

specific task was on a scale from one to five. A value of one corresponded with “easy”, while a

value of 5 corresponded with “hard”. The graphs in Figure 9.9 show the comparison of the

users’ difficulty rating of the table selection task and their change in mood.

Figure 9.9.a displays the relationship between the users’ difficulty rating for the table

selection task and their change in positive affect. The negative slope of the line of linear

regression (m=-0.356) suggests that users who thought the task was harder were more likely to

experience a decrease positive affect. This same result can be discerned from Figure 9.9.b,

which shows the relationship between the users’ difficulty rating for the table selection activity

and their change in negative affect. The data for both graphs, however, do not consistently fit

their respective trend lines. Therefore, the data displayed in these scatter plots are less valid

due to lesser accuracy and precision.

79

 (a) (b)

Figure 9.10: Color by number difficulty rating vs. change in positive affect (a) and color by number difficulty

rating vs. change in negative affect (b)

The scatter plot shown in Figure 9.10.a plots the relationship between the user’s

difficulty rating for the color by number task and their change in positive affect. The linear

regression line’s slope value of -1.577 implies that users who found the task to be more difficult

experienced a greater decrease in positive affect.

Figure 9.10.b shows the relationship between the user’s difficulty rating for the color by

number task and their change in negative affect. The slope of the trend line (m=2.144) indicates

that players who found the task to be harder saw a greater increase in negative affect.

80

 (a) (b)

Figure 9.11: Learning experience rating vs. change in positive affect (a) and Learning experience rating vs.

change in negative affect (b)

After completing the first level of the game, users were asked if they felt they learned

more about the colorblind experience. They answered this question by rating how much they

learned on a scale from one to five. One corresponded with not learning anything, while five

corresponded with learning a lot. These subjective ratings were plotted against the users’

change in mood in order to derive any possible correlations between the two variables.

Figure 9.11.a displays the relationship between the users’ rating of their learning

experience and their change in positive affect. The linear regression line corresponding to this

graph has a slope of 1.225. This indicates that users who felt they learned more about the

colorblind experience after playing the game felt a higher increase in positive affect.

Figure 9.11.b show the relationship between the users’ rating of their learning

experience and their change in negative affect. The slope of the corresponding trend line

(m=0.15) suggests that users who felt they learned more about the colorblind experience felt a

greater increase in negative affect.

81

10. Discussion

Our original hypothesis was that positive affect would decrease and negative affect

would increase after playing the game due to the stress. This stress would have been the result

of experiencing simulated color blindness while making color-based decisions and receiving

negative feedback for incorrect actions. The initial data we examined contradicted our

hypothesis, but further analysis showed results that supported our original claim. There were

also multiple relationships examined that led to no legitimate conclusion. Many of these

contradictions and dead-ends could be explained by a multitude of potential limitations

pertaining to the project study.

10.1. Explanation of results

 When comparing the PANAS scores of users before and after they played the game the

results contradicted our original hypothesis. We stated that positive affect would decrease and

negative affect would increase due to stress. The data showed, however, that while positive

affect did slightly decrease among players, negative affect decreased significantly more after

playing the game. While positive and negative affect are independent of each other, a potential

distressor was still able to lessen negative mood, an atypical result. Our team discerned that

this result was a due to players being interested in the game or its concept. This interest

coupled with the stress induced by the game would explain our unique results. The decrease in

positive affect was lessened due to stress being reduced by interest, while interest

overwhelmingly influenced the decrease in negative affect. Further analyses were performed

after this first comparison in order to attempt to understand these contradictions and discover

correlations that matched our original hypothesis.

 The original purpose of recording IRI scores was to discern if a person’s dispositional

empathy had any effect on their change in positive or negative affect after playing the game.

Since all four subcategories of the IRI scoring system represented greater empathy of a specific

type (e.g. personal distress) for users who scored higher in those areas, we took the summation

of those scores and compared it to the change in PANAS scores first. Then, the scores for the

four separate subcategories of empathy were compared to the PANAS scores. While some

correlations made sense (e.g. players who had a higher IRI personal distress score had a

greater increase in negative affect), a majority of them were unreliable due to invalid data. As a

result, no significant conclusions could be drawn from comparing change in affect to

dispositional empathy.

 The next step in the analysis process was to determine whether or not the user’s results

directly affected their change in mood. When plotting the table selection scores against changes

in positive affect, the result matched our hypothesis: people who performed poorly saw a

decrease in positive affect, most likely due to stress. Negative affect, however, decreased,

contradicting our hypothesis. This could be explained by the type of feedback that user received

when picking the incorrect table. While they were clearly informed that their choice was

incorrect, the audio feedback received was the teacher gently informing them that their choice

82

was wrong, not a reprimand. This type of gentle statement could actually make the user feel

marginally better and decrease their negative mood, while the stress of having to choose the

correct table could still decrease their positive affect.

 Comparing the users’ color by number scores to their change in mood showed promising

results. The data showed that users who scored higher in the color by number task experienced

a decrease in positive mood and increase negative mood. This result matches our hypothesis

and is most likely due to two factors. First, this task is the hardest task in level one, so it should

have definitely caused a greater amount of stress than the table selection task. The second

factor is the type of feedback that the user received. The color by number task was designed to

give three types of feedback depending on the score the user received: positive feedback,

slightly embarrassing feedback, and extremely embarrassing feedback. Players with lower

scores received the extremely embarrassing feedback, while players with higher scores receive

the positive feedback. This feedback is the last scene the player encounters before the level

ends and they are asked to complete the next PANAS. With this information, it would make

sense that users experienced a decrease in positive affect and an increase in negative affect for

performing poorly. The reaction they experienced for being incorrect is purposely negative and

meant to cause stress. This reaction occurring at the end of the level also leaves the stress

induced from it freshly imprinted in their mind as they complete the second PANAS.

 We also made an effort to determine if perceived difficulty of a task affected the users’

change in mood. Similar to the table selection score analysis, a decrease in both positive affect

and negative affect was viewed when comparing subjectively rated difficulty for the table

selection task and changes in affect. We believe that this result is also due to the feedback

received by teacher. While the user is stressed about making incorrect choices, the teacher’s

gentle feedback is not severe enough to cause an increase in negative feedback. In fact, the

perceived kindness of the feedback could leave users to believe that the task is not as hard as it

actually is, further decreasing the stress induced from the activity.

 The relationship between perceived difficulty of the color by number task and the users’

change in mood was the same as comparing the tasks’ scores to changes in affect. Players who

thought that the puzzle was more difficult were more likely to experience a decrease in positive

affect and an increase in negative affect. This is most likely due to the same factor that caused

this pattern when comparing scores and mood: the more severe feedback. Not only that, but the

score the user receives for this activity is displayed at the end of the first level, reminding users

of how well, or poorly, they performed the task. All of this feedback can make the task seem

much harder, which is extreme considering the color by number task is the hardest task of the

first level.

 Players were also asked how much they felt they learned about the colorblind

experience in the Post-Survey. We decided to compare this metric to the changes in positive

and negative affect in order to see if the induced stress from the game would be incorporated

into how much the user felt they learned. Users who said they learned more showed an

increase in both positive and negative affect. This is probably due to the fact that they enjoyed

83

the concept of experiencing the colorblind perspective, increasing positive affect, but also

became stressed through the experience, increasing negative affect.

10.2. Potential limitations

 There were a multitude of potential limitations that were considered before collecting

data, and others that were considered after viewing the initial data sets. These limitations were

taken into account when constructing the study in order to minimize their effects on the data. It

was important, however, that these limitations were recognized and considered when viewing

the data and any outliers within it.

 It was entirely possible that the game, which should have decreased the users’ positive

mood as a potential stressor, actually caused the positive affect to increase. This was seen in

the data as well, where the positive affect of some users actually increased after playing the

game. This could have been due to the users’ interest in the game itself and the concept behind

it. With descriptors such as “interested” and “excited”, a user who thought that the game or its

message was enjoyable could experience higher scores with these words and other positive

emotions while completing the PANAS. Additionally, if a player achieved greater success in the

puzzles in the game, it could result in an increase in their positive emotions and also cause their

positive affect to increase through that medium.

 Besides the game, the surveys were also considered as part of the potential limitations

of the study. If a user became bored or thought the surveys were lengthy or unnecessary, their

positive mood could have decreased and negative mood may have increased. The same effect

could be achieved when considering the user was unaware of how many surveys would be

asked to take before playing the game. While this change in mood was the hypothesized result,

the surveys were not the predicted causation. When users became so opposed to taking the

surveys that they quit the study before completing it, it made a number of data points useless

that required comparison between two survey results (e.g. 8 users quit the study before

completing the second PANAS).

 The environment that the user experienced the study in could have also had a large

effect on the data. Since the application was created as a web-based game, the link to a

working version of it was made available via Heroku. This web-based feature, while convenient,

also meant that a user could play in any environment they desired so long as they had a

computer with a connection to the internet. This variation in environmental factors could have

resulted in less precise or accurate data.

The computer itself is another part of the environmental factors that could negative affect

the data from the study. At times, the game required a sizable amount of resources from the

CPU. This would cause the machine the game is running on to slow down if the there were too

many CPU-heavy operations that had to completed. This could have decreased the positive

affect as compared to the first PANAS because the user became impatient with the study.

84

11. Project Promotion

Once the game was far enough along that the first level was playable, it was decided

that it was time to start promoting the game so that others could play it and provide feedback on

what had been made so far. The first place that the project was promoted was at WPI’s Alpha

Fest in which the alpha versions of games were set up in a small area where people could come

and freely try the games there while the developers observed or played games themselves.

Here, a version of the game that contained a mostly complete first level was set up on a laptop

for people to try with it being advertised as a game that “simulated what it’s like to be colorblind.”

The second way that the project was promoted was through sending out a link to the

friends and families of all group members that would let them play the game on their own

computer in the Chrome web browser. This version of the game contained a more complete

version of the first level as well as surveys that those who played would be asked to take before

and after playing. This way was done in order for a large number of people to play the game as

well as provide feedback on it without any of the group members needing to be present for it.

The third way that the project was promoted was by having it tested by an IMGD class

that one of the project advisors was teaching at the time. This was done in order to get feedback

from those who understood how games work and would be able to provide accurate information

on any bugs that were found. The version of the game that was presented to them was the

same version that was sent out in the link mentioned above.

The final way that the project was promoted was through having it displayed at WPI’s

booth at PAX East, a large gaming convention where consumers come from around the world to

play the games on display there. This was done to get the concept and name of the game out to

the general public as thousands of people would be present at the convention. This allowed for

the game to be seen by a large number of people in a very short period of time, serving as a

great way to promote it. The version of the game that was provided for this promotion was a

fully complete version of the first level without any surveys before or after it.

85

12. Conclusion

 The goal of Unseeable was to allow non-colorblind individuals to empathize with

colorblind persons by seeing through their perspective and understanding some of the struggles

they endure in their everyday lives. We determined that the game should induce an ample

amount of stress in order to achieve this goal because color-blind persons experience distress

when coping with their impairment. In order to discern whether or not the game induced stress,

we recorded the users’ mood as a state before and after the game in order to examine their

change in mood through positive affect and negative affect. A number of other metrics were

recorded in order to view the relationship between them and any changes in mood that could

relate to our experience goal.

 When comparing the changes in positive affect and negative affect after playing the

game, the results contradicted our hypothesis. Positive affect did decrease slightly for players,

but negative affect decreased by a larger amount. Upon further analyses, however, we found

that plotting the change in affect against the users’ color by number task score and their

perceived difficulty of the task yielded the results we desired. Players with lower scores that

thought the game was more difficult experienced a decrease in positive affect and an increase

in negative affect, matching our original hypothesis.

These two correlations were the most important in supporting our hypothesis because

this task was the main puzzle of the first level. The color by number task was meant to be the

hardest color-based puzzle in level one. The feedback the user received from the game was

meant to be of major importance as well, being the only puzzle in the level where the score was

reported back to the user. The audio feedback the player receives is also the harshest in

content, making it the task that had the highest potential to induce the most stress in a player. It

is for these reasons that the correlations between the color by number task’s score and its

perceived difficulty with the change in positive affect and negative affect held the most value to

our team. Other correlations were drawn from analyses of the data, but the data for a large

majority of these correlations were invalid, making results stemming from them unreliable.

Based on the correlations in the data found in comparing the users’ color by number

score and their difficulty rating of the task with change in positive affect and negative affect, we

determined that the game had accomplished its experience goal. Through the main section of

the game experience (i.e. the color by number task), players experienced induced stress that

indicated to our team that they were struggling with color identification, similar to the colorblind

population. By feeling those same emotions, the non-colorblind participants were able to

empathize with colorblind people, which was our original intent. As a result, we consider the

game and study to be a success.

86

References

Capan, T. (). Why the hell would I use node.js? A case-by-case tutorial. Retrieved

from https://www.toptal.com/nodejs/why-the-hell-would-i-use-node-js

Crunchbase.Heroku. Retrieved from https://www.crunchbase.com/organization/heroku

Davis, M. H. (1983). Measuring individual differences in empathy: Evidence for a

multidimensional approach. Journal of Personality and Social Psychology, 44(1), 113-126.

10.1037/0022-3514.44.1.113 Retrieved

from https://search.proquest.com/docview/1295920010

Holowaychuk, T. J.Express.js. Retrieved from https://expressjs.com/

Jenny, B. (2017). Color oracle. Retrieved from http://colororacle.org/

LAWRENCE, E. J., SHAW, P., BAKER, D., BARON-COHEN, S., & DAVID, A. S. (2004).

Measuring empathy: Reliability and validity of the empathy quotient. Psychological

Medicine, 34(5), 911-920. 10.1017/S0033291703001624 Retrieved

from http://journals.cambridge.org/abstract_S0033291703001624

Mark H. A. Davis. (1995). A multidimensional approach to individual differences in

empathy Retrieved

from http://data.theeuropeanlibrary.org/BibliographicResource/2000051616803

Medlock, J. (2017, March 30,). An overview of MongoDB & mongoose. Retrieved

from https://medium.com/chingu/an-overview-of-mongodb-mongoose-b980858a8994

Miller, A. (2014, August 20,). 5 things people who are colorblind (and their doctors) want you to

know. Retrieved from https://health.usnews.com/health-news/health-

wellness/articles/2014/08/20/5-things-people-who-are-colorblind-and-their-doctors-want-

you-to-know

https://www.toptal.com/nodejs/why-the-hell-would-i-use-node-js
https://www.crunchbase.com/organization/heroku
https://search.proquest.com/docview/1295920010
https://expressjs.com/
http://colororacle.org/
http://journals.cambridge.org/abstract_S0033291703001624
http://data.theeuropeanlibrary.org/BibliographicResource/2000051616803
https://medium.com/chingu/an-overview-of-mongodb-mongoose-b980858a8994
https://health.usnews.com/health-news/health-wellness/articles/2014/08/20/5-things-people-who-are-colorblind-and-their-doctors-want-you-to-know
https://health.usnews.com/health-news/health-wellness/articles/2014/08/20/5-things-people-who-are-colorblind-and-their-doctors-want-you-to-know
https://health.usnews.com/health-news/health-wellness/articles/2014/08/20/5-things-people-who-are-colorblind-and-their-doctors-want-you-to-know

87

MongoDB. MongoDB and MySQL compared. Retrieved

from https://www.mongodb.com/compare/mongodb-mysql

Munro, J. (2017). An introduction to mongoose for MongoDB and node.js. Retrieved

from https://code.tutsplus.com/articles/an-introduction-to-mongoose-for-mongodb-and-

nodejs--cms-29527

N.a. (a). About heroku. Retrieved from https://stackoverflow.com/tags/heroku/info

N.a. (b). BSON specification. Retrieved from http://bsonspec.org/

N.a. (c). mLab documentation. Retrieved from https://docs.mlab.com/

N.a. (d). MongooseJS documentation. Retrieved from http://mongoosejs.com/docs/guide.html

N.a. (e). Node.js introduction. Retrieved

from https://www.w3schools.com/nodejs/nodejs_intro.asp

N.a. (2015). Facts about color blindness. Retrieved

from https://nei.nih.gov/health/color_blindness/facts_about

N.a. (2016). Colour blind awareness. Retrieved from http://www.colourblindawareness.org/

Rachowicz, J. (2017, February 23,). When, how and why use node.js as your backend.

Retrieved from https://www.netguru.co/blog/use-node-js-backend

Shan, P. (2015, June 7,). Mongoose vs mongodb native driver – what to prefer? Retrieved

from http://voidcanvas.com/mongoose-vs-mongodb-native/

Simoneau, L. (2010, July 10,). Node.js is the new black. Retrieved

from https://www.sitepoint.com/node-js-is-the-new-black/

Spreng, R. N., McKinnon, M. C., Mar, R. A., & Levine, B. (2009). The toronto empathy

questionnaire: Scale development and initial validation of a factor-analytic solution to

https://www.mongodb.com/compare/mongodb-mysql
https://code.tutsplus.com/articles/an-introduction-to-mongoose-for-mongodb-and-nodejs--cms-29527
https://code.tutsplus.com/articles/an-introduction-to-mongoose-for-mongodb-and-nodejs--cms-29527
https://stackoverflow.com/tags/heroku/info
http://bsonspec.org/
https://docs.mlab.com/
http://mongoosejs.com/docs/guide.html
https://www.w3schools.com/nodejs/nodejs_intro.asp
https://nei.nih.gov/health/color_blindness/facts_about
http://www.colourblindawareness.org/
https://www.netguru.co/blog/use-node-js-backend
http://voidcanvas.com/mongoose-vs-mongodb-native/
https://www.sitepoint.com/node-js-is-the-new-black/

88

multiple empathy measures. Journal of Personality Assessment, 91(1), 62-71.

10.1080/00223890802484381 Retrieved

from http://www.tandfonline.com/doi/abs/10.1080/00223890802484381

Stueber, K. (2013). Measuring empathy. Retrieved

from https://plato.stanford.edu/entries/empathy/measuring.html

Sukin, I. (2013). Game development with three.js. Livery Place, 35 Livery Street, Birmingham,

UK: Packt Publishing Ltd.

Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of

positive and negative affect. Journal of Personality and Social Psychology, 54(6), 1063-

1070. 10.1037/0022-3514.54.6.1063 Retrieved

from http://www.ncbi.nlm.nih.gov/pubmed/3397865

Xplenty. (2017, September 28,). The SQL vs NoSQL difference: MySQL vs MongoDB.

Retrieved from https://medium.com/xplenty-blog/the-sql-vs-nosql-difference-mysql-vs-

mongodb-32c9980e67b2

http://www.tandfonline.com/doi/abs/10.1080/00223890802484381
https://plato.stanford.edu/entries/empathy/measuring.html
http://www.ncbi.nlm.nih.gov/pubmed/3397865
https://medium.com/xplenty-blog/the-sql-vs-nosql-difference-mysql-vs-mongodb-32c9980e67b2
https://medium.com/xplenty-blog/the-sql-vs-nosql-difference-mysql-vs-mongodb-32c9980e67b2

89

Appendices

Appendix A: Informed Consent

Informed Consent Agreement for Participation in a WPI Research Study

Investigator: Brian Moriarty, IMGD Professor of Practice

Contact Information:

Brian Moriarty, bmoriarty@wpi.edu, 508 831-5638
Isaiah Cochran, ilcochran@wpi.edu, 860 995-4606
Alex Horton, aihorton@wpi.edu, 617 640-3204
Drew Tisdelle, ddtisdelle@WPI.EDU, 508 965-0927
Tommy Trieu, ttrieu@wpi.edu, 860 716-8498

Title of Research Study: Unseeable

Sponsor: WPI

Introduction: You are being asked to participate in a research study. Before you
agree, however, you must be fully informed about the purpose of the study, the
procedures to be followed, and any benefits, risks or discomfort that you may
experience as a result of your participation. This form presents information about the
study so that you may make a fully informed decision regarding your participation.

Purpose of the study: The purpose of this study is to obtain playtest feedback in order
to locate/address operational bugs, to identify opportunities for design improvement,
and to gather data to conduct statistical analyses on to measure games effectiveness
towards the experience goal.

Procedures to be followed: You will be asked to play a brief game lasting less than
ten minutes. Instrumentation in the game software will anonymously record your activity
during play. Before and after completing the game, you will be asked to complete brief,
anonymous surveys describing your subjective experience, a positive and negative
affect scale, and an interpersonal reactivity index.

Risks to study participants: There are no foreseeable risks associated with this
research study.

Benefits to research participants and others: You will have an opportunity to enjoy
and comment on a new game under active development. Your feedback will help
improve the game experience for future players.

Record keeping and confidentiality: The only instance of your personal information
being recorded will be whether or not you are colorblind. Records of your participation in

mailto:bmoriarty@wpi.edu
mailto:ilcochran@wpi.edu
mailto:aihorton@wpi.edu
mailto:ddtisdelle@WPI.EDU
mailto:ttrieu@wpi.edu

90

this study will be held confidential so far as permitted by law. However, the study
investigators and, under certain circumstances, the Worcester Polytechnic Institute
Institutional Review Board (WPI IRB) will be able to inspect and have access to this
confidential data. Any publication or presentation of the data will not identify you.

Compensation or treatment in the event of injury: There is no foreseeable risk of
injury associated with this research study. Nevertheless, you do not give up any of your
legal rights by signing this statement.

For more information about this research or about the rights of research
participants, or in case of research-related injury, contact the Investigator listed
at the top of this form. You may also contact the IRB Chair (Professor Kent Rissmiller,
Tel. 508-831-5019, Email: kjr@wpi.edu) and the University Compliance Officer (Jon
Bartelson, Tel. 508-831-5725, Email: jonb@wpi.edu).

Your participation in this research is voluntary. Your refusal to participate will not
result in any penalty to you or any loss of benefits to which you may otherwise be
entitled. You may decide to stop participating in the research at any time without
penalty or loss of other benefits. The project investigators retain the right to cancel or
postpone the experimental procedures at any time they see fit.

By signing below, you acknowledge that you have been informed about and consent
to be a participant in the study described above. Make sure that your questions are
answered to your satisfaction before signing. You are entitled to retain a copy of this
consent agreement.

___________________________ Date: ___________________
Study Participant Signature

Study Participant Name (Please print)

91

Appendix B: Pre-Survey

Pre-survey with ‘Yes’ as the answer to question one.

92

Pre-survey with ‘No’ as the answer to question one.

93

Appendix C: Post-Survey

94

Appendix D: PANAS

95

Appendix E: IRI

96

97

Appendix F: Technical Definitions Glossary

Audio - a Three.js global audio object

AudioBuffer - objects designed to hold snippets of audio

AudioListener - virtual listener of audio effect in the scene

AudioLoader - class for loading an AudioBuffer

BoundingBox - Smallest possible box that contains the entirety of a geometry

BSON - short for binary JSON, a binary-encoded serialization of a JSON like document

Clock - keeps track of time

FBX (Filmbox) - file format that allows import and export of files between 3d animation software

Geometry - vertices, faces, colors, etc of 3D objects

Group - group of objects in Three.js used to manipulate multiple object at once

JSON - JavaScript Object Notation, data format used very often in browser-server

communication

Material - describe the appearance of an geometry, such as texture and reflectiveness

Mesh - the combination of a geometry and material

MeshBasicMaterial - simple material for drawing geometries in a flat way

Mousedown event - fired when a pointing device is pressed on an element

Mousemove event - fired when a pointing device is moved over an element

Npm package - folder containing a program described by a “package.json” file

POST request - HTTP request method that requests that a server accept the data enclosed in

the message body

Raycasting - casting a ray outward from the camera, intersection of the ray with objects is used

to determine what the mouse is over

98

SessionStorage - a property of the browser where values can be saved for as long as the

browser window is open.

Scene - a Three.js object that allows users to set up what and where is to be rendered (e.g.

objects, lights, and cameras).

Spline - smooth curve created from a series of points, used for camera movement

Tween - used in animation to generate intermediate values between two values to give the

appearance of smooth motion

UUID/GUID - Universally/Globally Unique Identifier a 128-bit number used to uniquely identify

objects in programs.

Window - the browser’s window.

99

Appendix G: Game Flow Diagrams

Level 1 Game Flow Diagram

100

Level 2 Game Flow Diagram

