
Adaptively-Halting RNN for Tunable Early Time Series
Classification

by

Thomas Hartvigsen

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Data Science

November 2018

APPROVED:

Professor Elke A. Rundensteiner, Thesis Advisor

Assistant Professor Xiangnan Kong, Thesis Co-Advisor

Associate Professor Randy C. Paffenroth, Thesis Reader

Abstract

Early time series classification is the task of predicting the class label of a time series

before it is observed in its entirety. In time-sensitive domains where information is

collected over time it is worth sacrificing some classification accuracy in favor of

earlier predictions, ideally early enough for actions to be taken. However, since

accuracy and earliness are contradictory objectives, a solution to this problem must

find a task-dependent trade-off.

There are two common state-of-the-art methods. The first involves an analyst

selecting a timestep at which all predictions must be made. This does not capture

earliness on a case-by-case basis, so if the selecting timestep is too early, all later

signals are missed, and if a signal happens early, the classifier still waits to generate

a prediction. The second method is the exhaustive search for signals, which encodes

no timing information and is not scalable to high dimensions or long time series.

We design the first early classification model called EARLIEST to tackle this

multi-objective optimization problem, jointly learning (1) to decide at which time

step to halt and generate predictions and (2) how to classify the time series. Each

of these is learned based on the task and data features. We achieve an analyst-

controlled balance between the goals of earliness and accuracy by pairing a recurrent

neural network that learns to classify time series as a supervised learning task with a

stochastic controller network that learns a halting-policy as a reinforcement learning

task. The halting-policy dictates sequential decisions, one per timestep, of whether

or not to halt the recurrent neural network and classify the time series early. This

pairing of networks optimizes a global objective function that incorporates both

earliness and accuracy.

We validate our method via critical clinical prediction tasks in the MIMIC III

database from the Beth Israel Deaconess Medical Center along with another publicly

available time series classification dataset. We show that EARLIEST out-performs

two state-of-the-art LSTM-based early classification methods. Additionally, we dig

deeper into our model’s performance using a synthetic dataset which shows that

EARLIEST learns to halt when it observes signals without having explicit access to

signal locations.

The contributions of this work are three-fold. First, our method is the first neural

network-based solution to early classification of time series, bringing the recent suc-

cesses of deep learning to this problem. Second, we present the first reinforcement-

learning based solution to the unsupervised nature of early classification, learning

the underlying distributions of signals without access to this information through

trial and error. Third, we propose the first joint-optimization of earliness and accu-

racy, allowing learning of complex relationships between these contradictory goals.

2

Acknowledgements

I would like to thank my advisor Dr. Elke Rundensteiner, co-advisor Dr. Xiangnan

Kong, and my research colleague Cansu Sen. Due to their mentorship and support,

I have enjoyed learning about machine learning and data mining over this past

year and improving my scientific practices. I thank the DSRG for feedback on my

work and for providing a productive research community, in particular John Boaz

Lee for his insights in tackling this problem. I would also like to thank the WPI

Academic and Research Computing team, particularly Spencer Pruitt, for their

hard work providing high performance computing resources to the WPI community.

I would also like to thank the U.S. Department of Education for supporting my

PhD studies via the grant P200A150306 on “GAANN Fellowships to Support Data-

Driven Computing Research”.

i

Contents

1 Introduction 1

1.1 Background and Motivation . 1

1.2 State-of-the-Art . 3

1.3 Problem Definition . 3

1.4 Challenges . 4

1.5 EARLIEST . 5

2 Related Work 7

2.1 Early Classification of Time Series . 7

2.2 Conditional Computation . 9

2.3 RNN & LSTM Background . 9

2.4 Markov Decision Processes . 10

3 Methodology 12

3.1 Problem Formulation. 12

3.2 The Proposed Method. 13

3.2.1 Base Recurrent Neural Network. 14

3.2.2 Controller Network. 16

3.2.3 Discriminator Network. 18

3.2.4 Training. 19

ii

3.2.5 Balancing Earliness and Accuracy. 20

4 Evaluation 22

4.1 Experimental Methodology . 22

4.2 Alternative Algorithms . 24

4.3 Implementation Details . 24

4.4 Experimental Results . 25

4.4.1 Experiments on Synthetic Data 25

4.4.2 Experiments on Real-world Data. 29

5 Conclusions 31

5.1 Summary . 31

5.2 Future Work . 32

iii

List of Figures

1.1 Problem definition . 2

2.1 MDP vs. POMDP . 11

3.1 EARLIEST architecture . 14

4.1 Synthetic data accuracy . 26

4.2 Distribution matching . 27

4.3 Synthetic data signal-capture . 28

4.4 Real-world data results . 30

iv

List of Tables

3.1 Basic Notation . 13

v

Chapter 1

Introduction

1.1 Background and Motivation

Traditional time series classification assumes that a time series as a whole is consid-

ered before predicting its class label. In time-sensitive applications, however, it is

essential that predictions are generated before the entire series has been observed.

For example, in clinical diagnosis, it is often worth sacrificing some classification

accuracy in favor of earlier predictions to give clinicians enough time to address

infections as they evolve for the sake of the patient’s health and to curb spread

of infections. In these settings, an analyst must determine how much accuracy to

sacrifice in favor of earliness, with the optimal trade-off depending on the task.

Figure 1.1 depicts an example of the early classification problem where each

time series contains different signals, indicating their respective class labels. Case

1 shows the traditional classification scheme, predicting labels after observing all

timesteps of a time series. This results in a highly accurate classifier that captures

all signals but provides predictions at the very end (indicated by the dashed halting

line). Case 2 shows strict early classifications, choosing a fixed timestep at which

1

actualpredicted
Case 1: traditional classification: late and correct

Case 3: adaptive early classification: early and correct

time series 2

time series 2

Case 2: fixed early classification: early and incorrect
time series 1

time series 1 prediction time

time series 2

time series 1

Figure 1.1: Example of early classification of two time series. + and – denote class
labels; vertical dashed lines indicate halting-points. Timesteps after halting-points
in gray are not used for classification.

to always stop for each of the time series and make the prediction. In this case,

predictions tend to be incorrect more often since signals may not have arrived yet.

Case 3 shows adaptive early classification which selects a halting-point on a case-

by-case basis (vertical line), allowing for both early and accurate predictions. In

conclusion, an effective model for time series classification in time-sensitive domains

should not only model discriminating signals, but also identify a timestep at which

enough information has been observed to reliably (to the requested degree) predict

a label. It must also be tunable between the domain-specific emphasis on accuracy

versus earliness.

2

1.2 State-of-the-Art

In the literature, early classification of time series (ECTS) has been studied exten-

sively [1–8]. Most of these methods involve searching for sub-time series that imply

a specific class label [1, 2, 5–7], called shapelets [9]. After extensive shapelet search,

distances are computed from identified shapelets to subsequences in the time series.

In this setting, all combinations of subsequence lengths must be considered. This

search-based approach is expensive when considering multivariate time series since

true exhaustive search requires the consideration of all combinations of subsequence

lengths. For high dimensional data and long time series, this becomes an intractible

problem [5].

Some works [3,4] instead search for time series prefixes, limiting the search-space.

These works use many separate classifiers for each different prefix length – without,

however, sharing parameters across these prefix lengths.

The aforementioned methods have two major limitations. First, they do not

address tunability between accuracy and earliness. Second, they are not end-to-

end: they first identify shapelet candidates, then seek early solutions, leading to

objectives with different goals. This also limits tunability since while searching for

shapelets candidates are not discovered with respect to earliness. These topics are

further discussed in Chapter 2.

1.3 Problem Definition

The ECTS problem corresponds to the problem of selecting a timestep in a time

series at which to predict a class label. Given a multivariate time series, the goal of

ECTS is to both classify the time series and find a timestep at which to predict this

classification. The selected timestep must be less than or equal to the full length

3

of the time series. There are two objectives of ECTS: earliness and accuracy. Since

they are contradictory goals, often times there must be a trade-off between these

goals. It is particularly challenging to balance the number of observed timesteps

with expected accuracy since these trade-offs are task-dependent and thus a good

solution for one time series may be bad for another.

1.4 Challenges

Despite the importance of ECTS, many topics remain understudied. We summarize

major challenges as follows:

• Lack of supervision: There are no labels indicating where signals occur within

a time series; instead the complete time series is labeled by its class in most la-

beled data sets. Thus, quantifying whether or not a prediction should be made

at a particular timestep is difficult. This is thus an inherently unsupervised

problem within the otherwise supervised learning problem.

• Multiple conflicting objectives : Earliness and accuracy tend to contradict one-

another. A maximally-early classifier may not have enough information to

make accurate predictions, while a late classification causes unnecessary delay

and misses precious opportunity to react. The balance is task-specific and

optimal trade-offs depend on the task and domain.

• Multivariate signals : In multivariate time series, signals indicative of a partic-

ular class label may develop at vastly different times between variables, making

the identification of halting points for the overall time series composed of all

variables harder.

4

1.5 EARLIEST

In this paper, we propose a solution to the aforementioned challenges called Early

and Adaptive Recurrent Label ESTimator, or for short, EARLIEST. EARLIEST

works by augmenting a recurrent neural network (RNN)-based Discriminator with

a reinforcement learning-based stochastic Controller network and optimizing their

cooperation. The discriminator predicts time series labels and the controller decides

at each timestep whether to stop and predict a label or to wait and request more

data from the next timestep. By rewarding the controller based on the success

of the discriminator and tuning the penalization of late predictions, the controller

learns a halting policy which directs the online halting-point selection. This results

in a learned balance between earliness and accuracy according to requirements of

the task at hand. In contrast to traditional ECTS methods, our proposed method

supports flexible earliness-accuracy trade-offs per task, being optimized for both

earliness and accuracy together in one end-to-end model. The resultant model is also

applicable to a wide variety of time-sensitive classification tasks such as early video

or text classification [10–12]. Empirical studies on real-world tasks demonstrate

that our approach outperforms baseline methods while providing simple balancing

of emphasis on opposing goals.

The main contributions of our work can be summarized as follows:

• We propose the first ECTS method that handles the unsupervised aspect of

early classification by formulating halting-point selection as a reinforcement

learning problem.

• We introduce the first neural-network ECTS method, which learns to combine

any number of variables into low-dimensional representations which are then

used to classify the time series.

5

• We design the first dual-optimization of the earliness and accuracy goals by

combining them into one integrated objective function. This allows for an

analyst to manually select a trade-off depending on the task via one hyperpa-

rameter.

• We apply our method to three real-world time-sensitive time series classifica-

tion tasks. Results show that our method’s performance significantly outper-

forms baselines in accuracy and earliness.

6

Chapter 2

Related Work

To the best of our knowledge, this is the first work supporting task-dependent tun-

ability in ECTS, supporting both univariate and multivariate data. Our work is

built upon ECTS methods, conditional computation in neural networks, recurrent

neural networks, and Partially Observable Markov Decision Processes. We discuss

each of them here.

2.1 Early Classification of Time Series

ECTS deals with predicting labels of time series before the time series is fully ob-

served. Many works have been proposed based on updating traditional distance-

based classifiers, such as kNN [1–3,6,7]. A well-known approach is to do a similarity

search for shapelets, or sub time series indicative of a class [9], and then find their

earliest occurrences. Typically, this involves extracting many sub-time series as

shapelet candidates and pruning them based on their classification power. Then, a

trade-off between accuracy and earliness could be simulated by lowering the support

required to be a shapelet [1]. However, at test time, there is only a matching step

as opposed to actually computing the risk associated with predicting at a particular

7

timestep. Thus, these models are not inherently “time-aware”, as shapelets do not

capture the timing of an event. For example, the same signal may indicate different

classes if it appears at different timesteps according to the class. Shapelet methods

do not consider this to be discriminative. An additional issue with these methods is

that the search space for shapelets increases exponentially with both the time series

length and the number of variables [6].

Hence, prefix-based ECTS methods are another promising approach where sub-

time series are extracted with the condition that they must begin at the first

timestep [3, 4]. However, these existing methods unfortunately require a multi-

tude of classifiers, one per time series length. Thus, they miss the potential to learn

relationships between time series of similar lengths. Using one model for all time

series lengths allows for the learning of more complicated relationships, potentially

better-supporting time series with varying lengths and leaning upon the fact that

sub-time series of different lengths can still be related to one another.

In these methods [1–4, 6, 7], feature extraction and prediction are entirely sep-

arate, and so the tasks are unaware of each other. Hence, they are not optimized

together in one objective function, possibly missing out on natural connections be-

tween these two goals.

One method also studied ECTS as a multivariate marked point-process and tries

to extract features related to different signals in multivariate time series [8] but does

not address tunability. Beyond time series, some works have also studied early video

classification [8, 11] and early text classification [10].

8

2.2 Conditional Computation

Conditional computation in neural networks deals with learning when to activate

different parts of neural networks, depending on the input data [13]. This can

reduce the extensive computation required to train a neural network since fewer

computations need to be made per example [14]. Additionally, the depth of a neural

network has a major impact on performance [15] but selecting the proper network

complexity remains empirical and is often seen as more an art than a science. This

motivates gating across network layers, allowing for direct information flow, such as

in Highway Networks [16]. One work uses reinforcement learning strategies to learn

a conditional computation policy, selectively turning on and off blocks of a neural

network [17] but does not study early classification. Our model leverages the idea

of selectively activating parts of a neural network and can be viewed as longitudinal

conditional computation: learning when to activate sections of a network in time,

or in other words, learning at each timestep whether or not to activate the neurons

at the next timestep.

2.3 RNN & LSTM Background

RNNs have emerged as the state-of-the-art for many time series analysis mod-

els [18, 19] and other sequence modeling tasks such as sequence generation [20].

Our proposed model builds on RNNs since they have been shown to be powerful

tools for constructing vector representations for real-valued sequences [21]. At each

step of a sequence, a new representation is learned via a function of the previous

representation and new data observed at the current step. The final vector, com-

puted at the final step and modeling dynamics of the sequence, can then be used

for prediction. Empirically, RNNs struggle to model long-term longitudinal depen-

9

dencies due to the vanishing-gradient problem [22]. The Long Short-Term Memory

(LSTM) cell [23] helps with this problem by augmenting the classic RNN with a

memory vector that is persistent across timesteps, learning to remember and for-

get information longitudinally. Much of the success in RNNs has been found using

LSTM cells, and thus our model uses this augmentation as well. However, it is also

possible to easily swap in other memory cells, such as the Gated Recurrent Unit

(GRU) [24].

2.4 Markov Decision Processes

Reinforcement learning problems are a solution to problems that can be described

using Markov Decision Processes (MDP), where an agent exists in an environment

and sequentially takes actions that attempt to ultimately maximize some reward,

which quantifies the agent’s success with respect to a specific task. As the agent

takes actions, the environment changes (e.g., a chess move alters the current status

of the board), and the status of the environment is referred to as the environment’s

current state. In simple examples, this state can be fully observed by the agent (e.g.,

when learning to play chess, a chess-playing agent could see the entire board, thus

having access to all possible available information). Shown in Figure 2.1a, the MDP

begins with an initial state S0. The agent then selects an action A0 which prompts

the transition to the next state S1. S1 then determines the observed reward R1,

which quantifies the success of selection action A0. This process is repeated until

a terminal state ST is reached and the to solve the MDP is to learn a policy which

maximizes the expected sum of rewards, R =
∑T

i=0Ri.

However, when scaling into more complicated settings it becomes impossible

to fully observe all features of the environment. For example, in hospitals, doctors

10

0 1 2

0 1

0 1

(a) Markov Decision Process.

0 1 2

0 1

0 10 1

(b) Partially Observable Markov Deci-
sion Process.

Figure 2.1: MDP vs. POMDP

observe patients, but cannot understand every detail of a patient’s health before they

must take actions (e.g., prescribe treatments). This motivates partially-observable

MDP’s (POMDP) where it is assumed that an MDP still describes the sequential

decision-making problem, but the agent does not have access to the entire state of

the environment. As shown in Figure 2.1b, PODMP shares many traits with MDP.

However, in this setting, actions are selected after receiving observations from the

state, assuming that there is an MDP at play but that the agent does not have

full observation of the state. Additionally, in the partially-observable setting, the

agent needs to remember the list of observations since its actions are based on this

sequence. In our proposed method, the controller network solves a POMDP, thus

learning a halting-policy.

11

Chapter 3

Methodology

3.1 Problem Formulation.

Given a set of labeled multivariate time series, D = {
(
X, y

)
} containing N time

series instances and labels, consider the ith instance

X(i) =


| | |

x
(i)
1 x

(i)
2 · · · x

(i)
T

| | |


where x

(i)
t ∈ RM contains the M variables recorded at time t. Henceforth, for ease-

of-reading, we describe our method for one time series and omit index i when it is

not ambiguous. The aim is to learn parameters θ of a function f(·), which maps a

time series X to a label ŷ, as fθ(X)→ ŷ, ultimately predicting labels for each of the

N instances. During the training process, the goal is to match predicted labels ŷ to

their corresponding true labels y where y ∈ Y denotes the label associated with X

and Y = {0, · · · , L}, the set of possible class labels from a total of L classes.

In this work, we model fθ as a combination of neural networks. However, as op-

12

Table 3.1: Basic Notation

Notation Explanation

N Number of time series instances.
M Number of variables per time series.
L Number of classes.
T (i) Number of timesteps for instance i.

X
(i)
t Variables at timestep t for instance i.

y(i) True label for instance i.
τ (i) Chosen halting-point for instance i.

S
(i)
t Learned representation of X

(i)
0,··· ,t.

posed to using all T timesteps to generate this prediction, we seek prefixes of length

τ ≤ T for each time series which is both small enough to satisfy the requirement

for earliness and large enough to satisfy the requirement for successful classification

accuracy. We refer to the selected τ as the halting-point.

As an example, for in-hospital adverse-event detection, a multivariate time series

X(i) may contain a patient’s vital signs recorded longitudinally throughout her stay.

This instance is labeled positive, y(i) = 1, indicating that the adverse event occurs.

Otherwise, X(i) belongs to the control group and y(i) = 0.

3.2 The Proposed Method.

The aims of our proposed adaptively-halting RNN, named EARLIEST, are twofold.

First, to model multivariate time series for classification, and second, to select

a halting-point at which enough timesteps have been observed to make a task-

dependently adequate prediction. EARLIEST is a deep neural network consisting

of three sub-networks: (1) a Base RNN which learns to model multivariate time

series, (2) a Discriminator Network, or Discriminator, which learns to predict class

labels based on the Base RNN ’s model, and (3) a Controller Network, or Controller,

which decides at each step whether or not to halt the Base RNN and activate the

13

(,)LSTMθb
Xt St−1

St

Xt

Base RNN Controller Discriminator

t = 0 t = 1 t = 2 t = 3
X

()πθc
St

()Dθd
St

move to next timestep: t = t + 1
if a = Wait

if a = Halt

Halt Wait

a

sample action a

No gradient
Gradient

Legend

Figure 3.1: Overview of EARLIEST. Selected action a chooses whether or not to
pass St to the Discriminator or back to the Base RNN to process the next timestep.
Dashed lines indicate no gradient flow through these paths.

Discriminator. As soon as the Controller chooses to halt, the processing of the

current time series is complete. An overview of EARLIEST is shown in Figure 3.1.

The Discriminator is trained with respect to the classification task while the

Controller is rewarded based on the success of the Discriminator and is punished

based on how many steps it takes before deciding to halt. Thus, the Controller

and Discriminator learn to cooperate to make correct predictions. To incorporate

earliness, we add to the final objective function a loss term that competes with the

Controller ’s natural tendency to wait, thus balancing the trade-off between accuracy

and earliness according to the scale of this loss term. The final output of EARLIEST

is a label ŷ which is generated at some halting point τ , where τ ≤ T . The tunability

of the model dictates how much less τ is than T , which often affects the accuracy

of the model, depending on where signals are located in the time series.

3.2.1 Base Recurrent Neural Network.

An RNN augmented with LSTM cells rests at the heart of EARLIEST, mapping

variables observed at each timestep, Xt, to vector representations St ∈ Rk where k

is the number of hidden dimensions, a tunable hyperparameter. Standard to RNN

literature, we refer to the whole recurrent part of the network simply as an LSTM.

14

One vector St is created per timestep and is referred to as the hidden state. The-

oretically, each vector St summarizes the time series dynamics present in X{0,··· ,t}.

Since these vectors inform the other parts of the network, we refer to this recurrent

component as the Base RNN.

The LSTM is a function which learns to represent time series data as vectors.

Hidden state vector St is computed as a function of currently-observed data Xt

and the previous hidden state St−1, hence the recurrent nature of the model. In

an LSTM, the computation of St relies upon the computation of a cell memory

state Ct, which is then used to compute hidden state St. The LSTM’s success

comes from learned gating mechanisms that curate information contained in vector

Ct. To compute Ct, first a forget gate controls what information to remove from

previous cell state Ct−1, where square brackets ([]) indicate a stacked column vector

combining the contents of the brackets into one vector:

ft = σ(Wf · [St−1, Xt] + bf) (3.1)

An input gate controls new information added to Ct:

it = σ(Wi · [St−1, Xt] + bi) (3.2)

Ct is then computed as the gated combination of the previous memory state Ct−1

and the current input Xt using the forget and input gates, where � indicates the

hadamard product:

Ct = ft � Ct−1 + it � η(Wc · [St−1, Xt] + bc) (3.3)

Finally, state representation St is computed through an output gate shown in Equa-

15

tion 3.4 operating on a non-linear Ct shown in Equation 3.5.

ot = σ(Wo · [St−1, Xt] + bo) (3.4)

St = ot � η(Ct) (3.5)

St is then used to inform decisions made by the Controller, generate classifications

by the Discriminator, and compute the next hidden states St+1 if the Controller

so chooses. In these equations, W ’s and b’s are learnable parameters, η(·) is the

hyperbolic tangent function, and σ is the sigmoid function. For conciseness, we

group these parameters into one large matrix θb. We denote this entire process as

function LSTM(·) such that LSTMθb(Xt, St−1) = St. While we use LSTM cells in

this work, it is also possible to use alternative gating-mechanisms, such as the Gated

Recurrent Unit [24].

3.2.2 Controller Network.

The Controller is a reinforcement learning agent that decides whether or not to halt

the Base RNN at each timestep, prompting the prediction of a label. To achieve

this goal, the Controller solves a Partially-Observable Markov Decision Process

(POMDP) where at each timestep observations from a state arrive, an action is

sampled using a learned policy, and a reward is observed according to the quality

of the selected action. Its objective is to optimize long-term rewards according to

the success of the Discriminator, which we accomplish using gradient-based policy

search.

State: At each timestep t, the state is the set of currently observed time series

variables Xt, essentially a slice across all variables at timestep t. Taking advantage

of the representational power of the Base RNN, the hidden state St is used as an

16

observation from this state space. St informs the selection of an action by the policy.

Policy : Next, an action is selected by a stochastic policy πθc(St) = at, which

treats input St as immutable data. We use a one-layer fully-connected neural net-

work to approximate this function. Typical to reinforcement learning, we sample

the action from a parameterized distribution. Thus, we learn a function mapping

St to pt, where pt is the probability of halting, computed as

pt = σ(WhaSt + bha)

=
eWhaSt+bha

eWhaSt+bha + 1

(3.6)

where Wha and bha are learnable parameters for mapping hidden outputs to actions

and σ is the sigmoid function, which ensures outputs between zero and one. pt then

parameterizes a Bernoulli distribution from which action at is sampled according to

P (at = 1) = pt.

Actions : Sampled action at dictates the proceedings of the Base RNN as fol-

lows: if at = 0, the Controller has selected WAIT. This prompts the Base RNN

to move forward one timestep, the action-selection process beginning again with

LSTM(Xt+1) = St+1. On the other hand, if at = 1, the Controller has selected

HALT, at which point the Discriminator is activated to predict a label and process-

ing of the current time series ends. Once the controller selects HALT (or if t = T),

we consider t to be the halting point τ . To add exploration to the Controller, we use

an ε-greedy approach: with probability ε, action at is replaced with a random action

and exponentially decrease ε from 1 to 0 during training, as shown in Equation 3.7.

17

As the model trains, ε exponentially decreases from 1 to 0.

at =


at with probability 1− ε

random action with probability ε

(3.7)

Reward : To train the Controller, it must observe returns which qualify the

parameters of the current policy. To encourage cooperation between the Controller

and Discriminator, this return takes the form of a reward that quantifies the success

of the Discriminator. Thus, when the Discriminator is correct, we set reward rt = 1,

and when it is incorrect, rt = -1. The objective of the Controller is to maximize

total reward R =
∑τ

t=0 rt.

3.2.3 Discriminator Network.

The Discriminator generates a prediction ŷ by first projecting the hidden state St

into L-dimensional space using a fully-connected layer. Next, the resulting vector is

normalized to sum to one via the softmax function and can be treated as probabili-

ties. This computation is shown in Equation 3.8 where Who and bho are parameters

for mapping the hidden state to the output space and are grouped into matrix θd.

P(Y = i | St,Who, bho) = softmax(WhoSt + bho)

=
eWhoSt+bho∑
j e

WhoSt+bho

(3.8)

Since the output vector sums to one, predicted label ŷ is simply the maximum

probability:

ŷ = arg max
i

P(Y = i | St,Who, bho) (3.9)

18

3.2.4 Training.

In the training phase, the goal is to iteratively update all learnable parameters

of EARLIEST, minimizing errors made by the Discriminator and maximizing the

rewards observed by the Controller. For readability, we gather all learnable param-

eters of EARLIEST into matrix θ. EARLIEST is optimized by minimizing one loss

function J(θ), shown in Equation 3.14, using stochastic gradient descent (SGD).

The Base RNN and Discriminator are optimized together with respect to cross

entropy loss shown in Equation 3.10 where θbd indicates the parameters from the

Base RNN and Discriminator.

Jbd(θbd) = −(y log(ŷ) + (1− y) log(1− ŷ)) (3.10)

In contrast to the Base RNN and Discriminator, the goal of the Controller is to

find parameters θc that attain the highest expected return

θ∗c = arg max
θc

E[R]. (3.11)

Since the Controller involves sampling actions, back-propagation does not di-

rectly apply, mandating transformation from this raw form to a surrogate loss func-

tion [25]. This objective can thus be optimized using gradient descent by taking

steps in the direction of E[R∇ log π(S0,··· ,τ , a0,...,τ , r0,··· ,τ)] [26]. The gradient can

be transformed into the loss function shown Equation 3.12 resulting in the REIN-

FORCE algorithm [27].

Jc(θc) = −E

[
R

τ∑
t=0

log π(at|St)

]
(3.12)

19

However, minimizing Jc(θc) directly leads to gradient estimates that change dra-

matically across examples, resulting in high-variance policy updates since each ex-

ample is treated as if in isolation. To handle this, we add a baseline to Jc(θc), similar

to [28], so that θc is updated based on how much better than average the observed

reward is, resulting in

Jc(θc) = −E

[
τ∑
t=0

log π(at|St)
[T∑
t′=t

(
R− bt)

)]]
, (3.13)

where bt is predicted at each timestep. We learn this baseline by reducing the mean

squared error between bt and R, forcing bt to approximate the mean R.

3.2.5 Balancing Earliness and Accuracy.

Up to this point, the Controller ’s only objective is to maximize the performance

of the Discriminator. To add earliness, we employ an additional loss term, shown

as the final term of our final loss function J(θ) in Equation 3.14. This loss term

encourages halting, depending on hyperparameter λ. When λ is large, to minimize

the loss, the probability of selecting HALT must be large. Specifically, λ technically

has an unlimited range of possible values, but below zero values will flip its effect

(negative λ encourages WAIT) and at some large enough value, EARLIEST will

be halting at the first time step for all time series and increasing λ any more is

meaningless. Empirically, we explore λ ∈ [0, 0.15], which captures this range in our

experiments.

J(θ) = Jbd(θbd) + Jc(θc) + λ
τ∑
t=0

− log π(at = 1 | St) (3.14)

20

Thus, since minimizing the log probability corresponds to increasing the probability,

by increasing λ, we effectively increase emphasis on HALT. On the other-hand, when

λ is small or 0, it leaves the Controller free to exclusively maximize the performance

of the Discriminator. We note that in some cases, this may not mean observing all

timesteps. For example, if a time series is too long, the LSTM may have trouble

remembering relevant information. Altogether, this loss term creates competition

on the optimization of the Controller ’s parameters as they are tugged in opposite

directions, the force of the tugging being controlled by λ.

21

Chapter 4

Evaluation

4.1 Experimental Methodology

We evaluate our method on synthetic data and three real-world datasets.

SimpleSignal: As signals within time series are rarely labeled, we create a

synthetic dataset to better evaluate how EARLIEST chooses halting points. Each

time series is 10 timesteps long and is initialized with a 0 at every timestep. Then, for

positive examples, we sample a location t ∈ {0, . . . , T} from a selected distribution

and substitute a 1 at timestep t. Negative examples remain 0’s. The selection of this

distribution allows us to test EARLIEST’s signal-capturing performance in a variety

of settings. We use four signal distributions in our experiments: uniform, normal,

left-skewed, and right-skewed. Since these distributions result in drastically different

signal locations, we can better understand if EARLIEST halts upon observing a

signal. For instance, the right-skewed signal distribution allows us to test whether

or not EARLIEST waits for long periods of time when it does not observe a signal.

Ideally, EARLIEST matches these distributions without having direct access to this

information.

22

Datasets Mortality and MRSA come from the publicly-available MIMIC III database

[29] comprised of Electronic Health Records (EHR) collected from the Beth Israel

Deaconess Medical Center in Boston, Massachusetts. Contained in these clinical

records are time series of vital signs and microbiology tests. For each clinical task,

early predictions allow clinicians to take actions that directly benefit patient well-

being. For Mortality we extract patients with positive Mortality Flags, indicating

that they perished during their stay. The task is to predict early whether or not

a patient will die. MRSA is a prevalent in-hospital acquired infection. To extract

patients who test positive for MRSA, we use positive microbiology tests for organism

“80293”. For both datasets, we ensure a balance between positive and negative

classes by drawing negative examples randomly from the rest of the database. For

each task, we use the five most frequently recorded vital signs as our variables.

Mortality consists of 11,508 instances and MRSA consists of 2600 instances. Since

the raw timestamps can be very fine-grained, leading to sparse data as variables

aren’t often recorded at the same time, we take hourly averages for each variable,

fill missing values with variable-wise means, and finally use only the first 10-hours

of recordings. Each of these tasks is of utmost clinical importance and the sooner

a caretaker can be made aware of ailments as the develop, the better the outcomes

for patients.

ItalyPowerDemand [30] comes from the publicly-available UCR Time Series

Classification Archive and is frequently used for classification problems. This dataset

contains 1,096 time series with 24 timesteps each and 2 classes. Since the pre-selected

training set is small and neural networks tend to succeed with larger training sets,

we first combine the given training and testing sets, then shuffle the instances into

80% training, 10% validation, and 10% testing subsets. To ensure fairness in this

paper, we train methods only on these splits.

23

4.2 Alternative Algorithms

We compare the performance of EARLIEST to the following algorithms.

• LSTM-FH [11, 31]. Fixed halting-point selection is common in time-sensitive

classification tasks. It requires that an analyst pre-selects a timestep at which

all classifications will be made. Since EARLIEST uses an LSTM, we use a

fixed halting-point version of LSTM, referred to as LSTM-FH.

• LSTM-s [11]. Designed for early classification of video, LSTM-s can be ap-

plied to time series. It is similar to an LSTM version of the ECTS algorithm

ECDIRE [4]. LSTM-s encourages early confidence in its predictions by penal-

izing the model when it becomes less confident. This method also uses fixed

halting-points, classifying all time series at the same pre-selected timestep.

Other existing ECTS algorithms that support multivariate time series [6, 7] do

not support multiple trade-offs so our model is not directly comparable to them.

4.3 Implementation Details

For all datasets, we use an 80% training, 10% validation, and 10% testing splits.

For each dataset, we use the training set to tune the model’s parameters and the

validation set to evaluate the performance a particular hyperparameter setting (e.g.,

nodes per layer or learning rate). The training and validation sets are used many

times to tune hyperparameters, then the testing set is used once to compute the final

accuracy. Using the validation set to pick hyperparameters, we learn 10-dimensional

embeddings for time series variables, and sequences of 10-dimensional representa-

tions for each time series. All results shown are averages over 10 repetitions of the

24

training process on random dataset splits. The model is optimized using RMSProp

with a learning rate of 0.001.

4.4 Experimental Results

4.4.1 Experiments on Synthetic Data

We first evaluate the performance of EARLIEST in a controllable setting where

signal locations are known using SimpleSignal, our synthetic dataset described

in Section 4.1. We evaluate EARLIEST in two ways: First, computing how early

and accurate EARLIEST is compared to our baselines, driven by controlling λ, the

earliness-accuracy trade-off hyperparameter. Second, how quickly EARLIEST halts

when it observes signals, thus matching the true distribution of signal locations.

Accuracy and timing : EARLIEST should more accurately classify instances ear-

lier than the baseline methods due to its adaptive-halting. In Figure 4.1, EARLIEST

is run using the earliness hyperparameter λ ∈ [0.0, 0.15], which empirically led to

full coverage of all possible halting points. Any larger or smaller λ values do not

change the results of these experiments. λ does not directly control accuracy or

earliness, instead urging the optimization in one direction or the other. Thus, for

each λ, EARLIEST stabilizes at some accuracy and distribution of halting points.

From ten iterations of each λ, we extract the mean accuracies and halting-points

(computed as the average percent of timesteps used, or τ
T

) with baseline predictions

made at the same time. We see in Figure 4.1a that for nearly all halting-points,

EARLIEST significantly outperforms the baselines. We report the average accu-

racy and percent timesteps used for each λ in Figure 4.1b, showing that λ allows

for smooth coverage of all halting-points.

Signal-capturing : EARLIEST should halt when it sees a signal, and wait oth-

25

10 20 30 40 50 60 70 80 90 100

Percent Timesteps Used

65

70

75

80

85

90

95

100

A
cc

u
ra

cy

LSTM-FH

LSTM-s

EARLIEST

(a) Accuracy and timing

50
60
70
80
90

100

A
cc

u
ra

cy

0.0 0.02 0.04 0.06 0.08 0.1 0.12

λ

10

40

70

100

%
 S

te
p

s
U

se
d

(b) λ coverage

Figure 4.1: Accuracy and prediction times on synthetic data. (a) EARLIEST makes
predictions more accurately and earlier than baselines across. (b) λ has control over
halting at all timesteps.

erwise. To understand if this is the case, we compute the root mean squared error

(RMSE) between EARLIEST’s selected halting points and the true distribution

of signals, thus quantifying how well EARLIEST halts when it sees a signal. In

SimpleSignal we use four distributions of signals. For each distribution we expect

that EARLIEST should halt when it observes a positive signal and otherwise wait

until the end of the time series to classify negative instances. Next, in Figure 4.2,

we show the raw timesteps where EARLIEST chooses to halt using λ = 0.014, a

value which empirically performs well on all distributions. Shown halting-points are

averages over ten random shuffles of the dataset.

We first show results from sampling signal locations from a uniform distribution.

Thus, when building SimpleSignal, each timestep is equally likely to be selected

26

1 2 3 4 5 6 7 8 9 10
Timestep

0

3

6

9

12

C
ou

nt

True Signal
Predicted Locations

(a) Uniform signals.

1 2 3 4 5 6 7 8 9 10
Timestep

0

5

10

15

C
ou

nt

True Signal
Predicted Locations

(b) Normal signals.

1 2 3 4 5 6 7 8 9 10
Timestep

0

10

20

30

C
ou

nt

True Signal
Predicted Locations

(c) Left-skewed signals.

1 2 3 4 5 6 7 8 9 10
Timestep

0

10

20

30

C
ou

nt

True Signal
Predicted Locations

(d) Right-skewed signals.

Figure 4.2: True Signal indicates where signals actually appear in the time series,
Predicted Locations shows the halting-points selected by EARLIEST. λ = .014 for
each setting.

while adding signals. Figure 4.2a that EARLIEST matches the underlying distri-

bution of signals despite not having direct access to this information. Second, we

sample signal locations from a normal distribution with a mean of 5.0 and a stan-

dard devion of 2.0, in order to keep the signals roughly in the center of the time

series. We see in Figure 4.2b that EARLIEST matches the distribution, neither

halting too early nor too late. In Figures 4.2c and 4.2d we see that the model cap-

tures the signals close to their true locations, waiting when it does not observe a

signal. Thus, the model learns an effective halting-policy which can be expected to

halt when it observes signals and wait otherwise.

We next compare signal-capture between EARLIEST and the alternative algo-

rithms. In Figure 4.3a EARLIEST with λ = .014 dramatically outperforms LSTM-

FH and LSTM-s, showing that EARLIEST is superior at halting when it observes

signals. Additionally, we show how sensitive RMSE is to hyperparameter λ in Fig-

27

EARLIEST LSTM-FH LSTM-s
Method

0

1

2

3

4

R
M

S
E

(a) Method comparison.

0.0 0.02 0.05 0.07 0.1 0.12
λ

1

2

3

4

5

6

R
M

S
E

(b) RMSE sensitivity to λ.

Figure 4.3: EARLIEST’s signal-capturing capabilities. (a) Comparing how well each
method captures the true signal distribution. (b) Lower points indicate EARLIEST
halting when it sees signals.

ure 4.3b. As expected, RMSE is poor with both low λ (emphasizing waiting) and

high λ (emphasizing halting), and better in between. This indicates that λ controls

how effectively EARLIEST halts and captures signals.

28

4.4.2 Experiments on Real-world Data.

We next present results using real-world datasets ItalyPowerDemand, Mortality,

and MRSA, explained in Section 4.1. We compare accuracies and average locations in

Figure 4.4. Each point for EARLIEST represents averaged results from λ settings

that lead to halting at each timestep. This makes the points comparable with the

baseline metrics, but as shown in the synthetic examples, λ allows for a high range

of potential average accuracies and average halting-points. In Figures 4.4a and 4.4b,

we observe that EARLIEST outperforms baselines for the selected percent timesteps

used. However, in Figure 4.4c, we see that EARLIEST falls back to the performance

of the baselines. This implies that for some portions of the time series, there is no

room for earliness, dependent on the data. From these experiments, we conclude

that for many parameter settings EARLIEST has higher classification accuracy than

the baselines while using fewer timesteps, and for all settings EARLIEST at least

maintains the accuracy of the baselines. However, in general it is not guaranteed that

EARLIEST should always win, since room for earliness depends on the underlying

data and where signals appear.

29

10 20 30 40

Percent Timesteps Used

65

70

75

80

85

90

A
cc

u
ra

cy

LSTM-FH

LSTM-s

EARLIEST

(a) ItalyPowerDemand

10 20 30 40 50

Percent Timesteps Used

68

70

72

74

76

78

80

A
cc

u
ra

cy

LSTM-FH

LSTM-s

EARLIEST

(b) Mortality

10 20 30 40 50 60 70 80 90 100

Percent Timesteps Used

50

55

60

65

70

75

A
cc

u
ra

cy

LSTM-FH

LSTM-s

EARLIEST

(c) MRSA

Figure 4.4: EARLIEST’s performance on real-world data. (a) and (b) show strong
performance, (c) shows performance comparable to the baselines. Error bars are
standard deviation over 10 experiment repetitions.

30

Chapter 5

Conclusions

5.1 Summary

In this work, we develop an adaptive model for the early classification of time series

on a case-by-case basis that allows for the tuning between emphasis on earliness and

accuracy. We demonstrate that reinforcement learning provides a useful framework

for adding analyst-controlled tunability to contradictory goals while simultaneously

tackling the unsupervised nature of early classification. It directly models multiple

objectives of early classification, accuracy and earliness, allowing for their joint

optimization despite being conflicting goals. This method is generally applicable

to tasks where it may be beneficial to halt an RNN before it reaches the end of

a sequence. Our experimental results using both synthetic and real-world datasets

indicate that EARLIEST can effectively learn to halt when it observes a signal

and wait otherwise, leading to fine-tuned and reactive case-by-case signal-capturing.

EARLIEST effectively balances earliness and accuracy through one hyperparameter,

allowing for analyst-controlled task-dependent solutions. When classifying a time

series, our model learns representations of multivariate time series that can be jointly

31

used to inform early-stopping decisions and classifications.

5.2 Future Work

This work is extensible in many directions. For instance, there are many early

classification problems on sequential data that are not time series. For instance, early

video classification [11] is an interesting direction, particularly because recurrent

neural networks are used very frequently for such problems. Additionally, since

EARLIEST is an augmented version of an RNN, EARLIEST can work as any RNN

where it would be beneficial to stop the processing of an RNN early, for example

generating text earlier during speech-to-text transcription.

The concept of adding a stochastic controller to an RNN also has many poten-

tial directions. In this work we give the controller access to breaking the recurrent

loop of an RNN, but since RNN’s have many moving parts, there are many controls

which may be handed off to such a controller, allowing for complex case-by-case

conditional computation in RNNs. For example, popular RNN architectures involve

passing information directly through portions of large networks without non-linear

transformations. However, this typically involves a preset plan for where informa-

tion is passed. Instead, a controller could learn when and where to pass different

information depending on the input data, allowing for more complex use of the re-

current neural network. As another example, there is work on changing the number

of hidden layers at each timestep of an RNN. A stochastic controller could be an al-

ternative method for making these decisions, avoiding issues mandating leaky gates

and allowing for discrete decisions at each timestep.

32

Bibliography

[1] Z. Xing, J. Pei, P. S. Yu, and K. Wang, “Extracting interpretable features for
early classification on time series,” in SDM, pp. 247–258, 2011.

[2] Z. Xing, J. Pei, and P. S. Yu, “Early classification on time series,” Knowledge
and Information Systems, vol. 31, no. 1, pp. 105–127, 2012.

[3] Z. Xing, J. Pei, and P. Yu, “Early prediction on time series: A nearest neighbor
approach,” in IJCAI, pp. 1297–1302, 2009.

[4] U. Mori, A. Mendiburu, E. Keogh, and J. A. Lozano, “Reliable early classifica-
tion of time series based on discriminating the classes over time,” Data Mining
and Knowledge Discovery, vol. 31, no. 1, pp. 233–263, 2017.

[5] Y.-F. Lin, H.-H. Chen, V. S. Tseng, and J. Pei, “Reliable early classification on
multivariate time series with numerical and categorical attributes,” in PAKDD,
pp. 199–211, 2015.

[6] G. He, Y. Duan, R. Peng, X. Jing, T. Qian, and L. Wang, “Early classification
on multivariate time series,” Neurocomputing, vol. 149, pp. 777–787, 2015.

[7] M. F. Ghalwash and Z. Obradovic, “Early classification of multivariate tempo-
ral observations by extraction of interpretable shapelets,” BMC Bioinformatics,
vol. 13, no. 1, p. 195, 2012.

[8] K. Li, S. Li, and Y. Fu, “Early classification of ongoing observation,” in ICDM,
pp. 310–319, IEEE, 2014.

[9] L. Ye and E. Keogh, “Time series shapelets: a new primitive for data mining,”
in ACM SIGKDD, pp. 947–956, 2009.

[10] Z. Huang, Z. Ye, S. Li, and R. Pan, “Length adaptive recurrent model for text
classification,” in ACM CIKM, pp. 1019–1027, 2017.

[11] S. Ma, L. Sigal, and S. Sclaroff, “Learning activity progression in lstms for
activity detection and early detection,” in CVPR, pp. 1942–1950, IEEE, 2016.

[12] M. Weber, M. Liwicki, D. Stricker, C. Scholzel, and S. Uchida, “Lstm-based
early recognition of motion patterns,” in ICPR, pp. 3552–3557, IEEE, 2014.

33

[13] J. Schmidhuber, “Self-delimiting neural networks,” arXiv, 2012.

[14] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating gradients
through stochastic neurons for conditional computation,” arXiv, 2013.

[15] D. Cireşan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks
for image classification,” arXiv, 2012.

[16] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,” arXiv,
2015.

[17] E. Bengio, P.-L. Bacon, J. Pineau, and D. Precup, “Conditional computation
in neural networks for faster models,” arXiv preprint arXiv:1511.06297, arXiv,
2015.

[18] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep
recurrent neural networks,” in IEEE ICASSP, pp. 6645–6649, 2013.

[19] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur, “Recur-
rent neural network based language model,” in ISCA, 2010.

[20] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and
Y. Bengio, “Show, attend and tell: Neural image caption generation with visual
attention,” in ICML, pp. 2048–2057, 2015.

[21] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14, no. 2,
pp. 179–211, 1990.

[22] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with
gradient descent is difficult,” IEEE Transactions on Neural Networks, vol. 5,
no. 2, pp. 157–166, 1994.

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Com-
putation, vol. 9, no. 8, pp. 1735–1780, 1997.

[24] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn
encoder-decoder for statistical machine translation,” arXiv, 2014.

[25] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,” in NIPS,
pp. 1057–1063, 2000.

[26] J. Schulman, N. Heess, T. Weber, and P. Abbeel, “Gradient estimation using
stochastic computation graphs,” in NIPS, pp. 3528–3536, 2015.

34

[27] R. J. Williams, “Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning,” Machine Learning, vol. 8, no. 3-4, pp. 229–256,
1992.

[28] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu, “Recurrent models of
visual attention,” in NIPS, pp. 2204–2212, 2014.

[29] A. E. Johnson, T. J. Pollard, L. Shen, L.-w. H. Lehman, M. Feng, M. Ghas-
semi, B. Moody, P. Szolovits, L. A. Celi, and R. G. Mark, “Mimic-iii, a freely
accessible critical care database,” Scientific Data, vol. 3, 2016.

[30] E. Keogh, L. Wei, X. Xi, S. Lonardi, J. Shieh, and S. Sirowy, “Intelligent
icons: Integrating lite-weight data mining and visualization into gui operating
systems,” in IEEE ICDM, pp. 912–916, 2006.

[31] J. Wiens, E. Horvitz, and J. V. Guttag, “Patient risk stratification for hospital-
associated c. diff as a time-series classification task,” in NIPS, pp. 467–475,
2012.

35

