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Abstract

For a little over the past decade since the DARPA Grand Challenge in 2004 and

the more successful Urban Challenge in 2007 autonomous vehicles have seen a surge

in popularity with car manufacturers, and companies such as Google and Uber. Light

Detection And Ranging (LiDAR) has been one of the major sensors in use to sense for

acting on the surrounding environment instead of the classic radar which has a much

narrower field of vision. However the cost of the higher end 3D LiDAR systems which

started seeing use during the DARPA challenges still have the high cost of $70,000 a

piece which is an issue when trying to design a consumer friendly system on a family

car.

This work aims to investigate alternate 2D LiDAR systems to the costly systems

currently in use in many prototypes to find a cost efficient alternative that can detect

and track obstacles in front of a vehicle.

The introduction begins by summarizing some related prior works, particularly papers

from after the Grand Challenge as well as some about the competition itself. Detection

and tracking methods for point clouds generated by the LiDAR are explored including

ways to search through the data in an efficient manner to meet real-time constraints.

Some of the trade-offs in going from a 3D system to a 2D system and examined along

with how some of the drawbacks can be mitigated.
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Chapter 1

Background

Contents

1.1 LiDAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Continuous waveform . . . . . . . . . . . . . . . . . . . . . . 3

This chapter provides an introduction to LiDAR systems including an overview of

how they work.

1.1 LiDAR

Light Detection and Ranging (or LiDAR / LADAR) uses a pulsed laser beam that it

measures the return time of to accurately detect the distance to the object the beam hits

as well as the intensity of the returned beam which indicates how reflective the surface

is. They typically operate in the near-infrared spectrum and some can work outdoors

at ranges varying from a few meters out to over a hundred meters.

A LiDAR can measure a single point (one dimensional), a plane of points (two dimen-

sional), or measure multiple planes to scan an entire area of points (three dimensional).

While a single point would be useful for backing up a car to alert the driver if there is
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any obstacles in the way, it is not sufficient for navigational purposes as it does not give

enough information. A two dimensional LiDAR gives out all all points along a plane

every scan which begins to be sufficient for navigational purposes but does not give a

full picture of a scene which is useful but comes with many more points that have to be

analyzed. The LiDAR works by having a rapidly rotating mirror (around 20Hz) with

the laser aimed at it spin around the full scan area and reading back the return beam.

Each point is given back as a polar coordinate where the angle is given of the return

as well as the distance however it trivial to convert it to cartesian. Figure 1.1 shows

how a 2D LiDAR works where the top image shows the LiDAR, the middle image shows

the LiDAR inside of a room with an obstacle, and the bottom image shows what the

system ”sees” which is called a point cloud. Three dimensional LiDAR systems can give

over one hundred thousand points per scan (also 20 Hz) but the points are in multiple

parallel planes to create a three dimensional space. Most work similar to the 2D systems

just with more lasers going at the same time however there are some that also have the

mirror scan in the vertical direction as well as horizontal at the same time.

2



(a) Scan starting, laser on
(b) Cylinder hit, blocks laser

from seeing wall
(c) Scan finished, laser off until

mirror rotates back to start

Figure 1.1: LiDAR scanning a room with an obstacle

1.1.1 Continuous waveform

Typically LiDAR systems will only get one return for each point but there are 2D

systems that can get multiple returns per point. These systems are continuous waveform

meaning that if the laser hit an object that can be penetrated such as a window it will

continue to travel and will return the distance of the next return and so on. [1] Many

commercially available 2D systems have this available to a degree where they will get a

few of these bounce backs, which they call multi-echo meaning it will get N returns. An

example of this works can be seen in Figure 1.2 which shows a SICK LiDAR detecting

five returns and penetrating glass, fog, rain, and dust. On a car, this is a very useful

thing as it allows the LiDAR to work during inclement weather where other systems

such as cameras can fail.
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Figure 1.2: Multi-echo technology. Image courtesy of SICK
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Chapter 2

Introduction

Contents

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 LiDAR vs radar . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Prior work on autonomous navigation . . . . . . . . . . . . . 9

2.4 LiDAR chosen . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

This chapter introduces the motivation of this thesis as well as a brief look into some

of the previous work done with LiDAR on vehicles. It also briefly looks at a simple radar

system which was looked at early on and decided not to be pursued in favor of LiDAR.

2.1 Motivation

Many years ago during the DARPA Grand Challenge and Urban Challenge many cars

were designed to be able to navigate in many different environments. Many different

levels of success were encountered but none better than the winner, Boss, by Tartan

Racing Team [2]. However the sensors used are infeasible to put into anything other

than a research platform, the 64 line LiDAR from Velodyne (64E) costs $70,000 alone
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and gets 2.2 million points per second. An example point cloud from a 3D sensor is

shown in Figure 2.1 which contains over 7 million points which can be achieved in a

little over three seconds with the Velodyne 64E. Every one of these points has an X, Y,

Z, and intensity component which are all floating point numbers meaning the cloud also

takes a large amount of memory.

Figure 2.1: Example cloud from a 3D LiDAR

Many of the major car manufacturers as well as Google, Uber, and many others have

all been working on their own versions of autonomous cars since the competition but

many still have the issues of being infeasible. Either they are too expensive, need large

battery banks to run computers, or can’t work with the current infrastructure in place

already on the road systems.

Autonomous vehicles are going projected to be 75% of all vehicles on the road by the

year 2040 but before this can happen many of the issues need to be addressed [3]. One

of the issues looked at in this paper is using a 2D LiDAR instead of a 3D LiDAR to see

if it is possible to still get workable data from.
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2.2 LiDAR vs radar

Radar can do some similar things to LiDAR such as penetrating through weather

(depending on the wavelength used). However radar cannot get the type of resolution

that a LiDAR can nor can it get the same field of view without making a much larger

radar. Early in the project a radar was tested seen in Figure 2.2 along with a person

running in front of it and the results can be seen where they run approximately 20

meters away from the system and eventually back to it. However as can readily be seen

this data has a large amount of noise, even after filtering and it is only tracking a single

object which would work if following a car but not for looking into other lanes. Radar

will not be covered in this paper, this is just meant to give a quick comparison between

what will be shown later with LiDAR.
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2.3 Prior work on autonomous navigation

In a little over the past decade since the DARPA Grand Challenge autonomous vehicles

have been seeing a surge in popularity with most major vehicle manufacturers joining in

as well as companies such as Google [4] and Uber. [5] [6] [7] Figure 2.3a shows one of the

Google self-driving cars which has a Velodyne 64E 3D LiDAR system on the roof and

Figure 2.3 shows Boss, the winner of the DARPA Urban Challenge with a large array

of sensors on the roof including the same Velodyne sensor. [8] One interesting topic

is driving with tentacles which is presented in [9] and came about from the DARPA

challenge talks about one method to narrow down the large amount of data from the

3D LiDARs and what paths can be taken as 3D simply produces too much data to deal

with and it accounts for how the vehicle is traveling and tries to narrow down to a few

possible paths at the current speed.

(a) Google’s self-driving car

(b) Boss - winner of the DARPA Urban Chal-
lenge

Figure 2.3: Self-driving car from Google and DARPA Challenge

Another application of 3D LiDARs as well as a 2D LiDAR pointed at the ground is

detecting the shape of the road as shown in [10], [11], [12], [13] (also uses stereo vision
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for mapping), [14], [15]. Cameras have typically been used for lane detection and finding

the edges of the road if no marking appear however LiDAR systems are capable of doing

this by using the returned intensity value to detect the difference between the asphalt

and lane markers or even the height difference between the road surface and the edges.

The advantage of LiDAR is that unlike camera systems that fail at night if there is not

adequate lighting the LiDAR solution can continue to work without issue.

There has been some work in people detection in [16] and [17] which is typically a

vision system problem as with LiDAR systems, especially 2D ones have a hard time

classifying a person but will do very well detecting that there is an obstacle. While not

a focus of this paper as people do not walk on the highways it is an important feature

to consider when moving to an urban setting.

Cars such as the Tesla have adaptive cruise control using radar which is similar to

what the system in this paper can achieve with a LiDAR if a state machine added. Some

research has been done in prior in [18] and [19] which both use LiDAR while the second

also uses a radar system in addition.

Due to the prohibitive cost of the 3D LiDAR systems, there has been some work trying

to create a more cost effective system such as [20] which proposed a cheap sonar and

LiDAR method aimed at poorer countries for $225 USD and also implemented peer-to-

peer communication with other cars. Some other interesting work has been done with

cheap warning systems using a 1D LiDAR on a bike in [21] which could be useful for

blind spots on the car in place of more expensive solutions.

The last large area of research with is localization methods such as [22], [23], and

[24] all of which use 2D LiDAR systems as a ”push broom” meaning it is aimed at the

road, some along with a secondary LiDAR looking for landmarks to try to localize the

location of the car. However one major disadvantage with all of these methods is they

rely on having 3D priors of the area already which means they are not useful until a
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map is already built.

2.4 LiDAR chosen

The LiDAR chosen for this thesis is the Hokuyo UXM-30LXH-EWA which has a field

of view of 190◦ and can see out 80m. It was chosen due to its far range and ability to

detect four returns, 1mm resolution, and ethernet interface. The LiDAR can be seen in

Figure 2.4

Figure 2.4: Chosen LiDAR system. Image courtesy of Hokuyo

11



Chapter 3

Mapping with LiDAR

Contents

3.1 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Pass through filter . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.2 Radius outlier removal . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 k-d tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.2 Calculating normals . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.3 Region growing segmentation algorithm . . . . . . . . . . . . 20

3.3 Creating an occupancy grid . . . . . . . . . . . . . . . . . . . 24

3.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

In this chapter, we look at how to take the raw LiDAR data and how to transform it

into usable data in the form of a map. We use some simple filtering in PCL to remove

points that timed out and reported being at maximum range as well as an optional filter

to remove lone points that could indicate rain, dust, insects or other small objects by

looking around for neighbors within a fixed distance and discarding points which do not
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meet a minimum set criteria. The data is then segmented into smaller point clusters

that likely belong together and allows for recognizing different objects when searching

for obstacles later otherwise there is no way to differentiate objects. After all the filtering

and segmentation is done, the final step to create a map is to put the segmented cloud

into an occupancy grid which will move the points into a searchable grid to look for

obstacles.

3.1 Filtering

The filtering needed is very simple for both the pass through filter and the radius

outlier removal method. The radius outlier removal is only truly necessary during in-

clement weather however it can also remove stray points that could happen to appear

due to dirt being kicked up on the road and insects flying in front of the car which is

not uncommon at night time as they fly towards the headlights. Each point cloud needs

to be filtered before placing any points into the occupancy grid discussed in Section 3.3

as if a single point lies within a grid cell then it is marked as occupied and if each grid

cell represented a large area (say a meter) it would indicate that there is a 1 meter wide

obstacle in that grid cell. If this happened immediately in front of the car then the car

would want to hit the brakes even though only a bug is in front of the sensor which on

the highway can cause a rear-end collision due to abrupt braking.

3.1.1 Pass through filter

If one of the LiDAR beams goes out past the maximum range it will never report

back a distance as it went of range and will make it seem like there is an obstacle at

maximum range when in fact there is nothing there. This is done with the use of a very

simple pass through filter which check every point in the cloud and sees if it falls within

the specified bounds and tossing any that do not meet the criteria and the results of

13



this can be seen in Figure 3.1.

3.1.2 Radius outlier removal

Radius outlier removal is another simple filter that goes through every point and

checks to see if there are a chosen number of points within a set distance and if not that

point is deleted. This is important as mentioned because if a single point lies within the

occupancy grid then it will be marked as occupied, and obstacles such as rain drops and

bugs are nonfactors in our planning and those points need to be pruned. This process

can be seen in Figure 3.2 where each circle around the blue, green, and purple have a

specified distance ”D” which is the distance to look for neighbors within. Using this

example if a minimum of two points are required the point in circle 1 would be deleted

while the rest kept and if two were required then the points in circles 1 and 2 would be

deleted while only the points within 3 would be kept.

3.2 Segmentation

Many new segmentation methods for point clouds have been developed over the past

two decades to help deal with the rise in popularity of LiDAR over radar, the biggest

focus of which has been on 3D LiDAR which can get a large number of points per scan

which makes the clouds hard to process without additional information. Many of the

algorithms however can also be applied to 2D systems and the one in use in this paper

is called region growing segmentation which tries to look at the K-nearest neighbors

(KNN) to first estimate normals of every single point in the cloud and then to segment

it based off of the the difference in the angles of the neighboring normals. To be able to

find the nearest neighbors, the first step is to create a search tree to be able to quickly

14
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Figure 3.2: Filtering out lone points

find the neighbor for any point as it is needed in both the normal calculation as well as

during the segmentation process.

3.2.1 k-d tree

A k-d tree turns the point cloud into a balanced tree that can be searched to find the

K-nearest neighbors of any point and is used in normal calculation as well as later in

the segmenting the cloud. Being a 2D cloud it is a relatively simple process to split the

cloud using the process as described in [25] that takes O(nlogn) time and O(n) space

and is shown in the recursive function of Algorithm 1. The recursive function works by

starting with a tree and breaking it into a left and right tree by splitting along the X or

Y axis in an alternating fashion to leave half of the remaining points on one side of the

line and the rest on the other until a lone point remains.
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Algorithm 1: BUILDKDTREE Builds a k-d tree out of a 2D point cloud

Input: Point cloud = P , depth = d

Output: Balanced k-d tree v

1 if P contains only one point then

2 return a leaf storing this point

3 else if depth is even then

4 Split P with a vertical line through the median x-coordinate into P1 (left of or

on l) and P2 (right of l)

5 else

6 Split P with a horizontal line through the median y-coordinate into P1 (below

or on l) and P2 (above l)

7 vleft ← BuildKdTree(P1, depth+ 1)

8 vright ← BuildKdTree(P2, depth+ 1)

9 Create a node v storing l, make vleft the left child of v, and make vright the right

child of v

10 return v

This process is shown in Figure 3.3 where a 2D cloud with six points is converted into

a tree using the process described by Algorithm 1 by first splitting the X axis at 7 which

leaves three points to the left and two points to the right. From there the Y axis is split

at 4 and 6 which leaves two and one point respectively on either side of the initial split

and from there we are left with out last points which we can use to generate the tree

that we saw in Figure 3.3.
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(a) A 2D point cloud along with X and Y splits
shown to generate a k-d tree

(b) Tree representation

Figure 3.3: k-d tree construction

With the tree constructed, it is straight forward to search through it as we now

have all the points that lie at either side of the point of interest so it’s a matter of

breaking the tree apart to find the KNN that can be used in normal calculation as well

as segmentation. This process is described in Algorithm 2 from [25] which is a recursive

function which continually breaks apart a tree in the following process which would

search for the nearest neighbor.

1. Recursively traverse down the tree splitting the search on whichever side is closest

to the given point until a leaf is hit and save that as the best match

2. Go back up the tree and check for better matches on the other side of the split, if

so check it otherwise keep going up

3. Return the best matching point that was found

18



Algorithm 2: SEARCHKDTREE Builds a k-d tree out of a 2D point cloud

Input: The root of a k-d tree v, a range R
Output: All points at leaves below v that lie within the range R

1 if v is a leaf then
2 return Whether v lies within R

3 if region(lc(v)) is fully contained in R then
4 return SUBTREE(lc(v))

5 else if region(lc(v)) intersects R then
6 return SEARCHKDTREE(lc(v), R)

7 if region(rc(v)) is fully contained in R then
8 return SUBTREE(rc(v))

9 else if region(rc(v)) intersects R then
10 return SEARCHKDTREE(rc(v), R)

3.2.2 Calculating normals

Once a k-d tree is generated the next step is to use it to take the k points to fit a

plane to it, but because the point cloud is 2D this comes down to fitting a line to a set

of points and taking the inverse slope. The simplest way to do this is with least squares

fitting as explained in [26] and it can be done with a special case known as linear least

squares fit which is given in Equation 3.1 where the normal is represented by a line of

y = β1 + β2x.

y = β1 +
n+1∑
i=2

βixi−1 (3.1)

Going through all points using the KNN means that any points that are separated

by a large enough distance will not be considered in calculating the normal which stops

different objects from affecting the calculations provided there are enough nearby points.

One of the obvious drawbacks is when a small object is detected with not enough neigh-

bors points that are a considerable distance away will affect normal calculations however

this is dealt with in the region growing segmentation.
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Figure 3.4: Calculated normal of KNN points

3.2.3 Region growing segmentation algorithm

Region growing segmentation is a method that takes the normals of a point cloud and

tries to separate data based off of smoothness meaning that it tries to group similar nor-

mal calculations together. The smoothness helps differentiate different faces of objects

as it can be helpful when iterating over the different segments which is shown in Figure

3.5 where three different connected walls are all fitted with lines matching the detected

points and each line if a different color representing a different segment. Segmenting the

data in this way is not very important while on the highway however and therefore a lot

of curvature is allowed for as if a connected object if found while driving, especially on

the highway we need to track the entire object moving and not the separate faces which

could be an issue as we would see multiple object moving when there is only one.
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Figure 3.5: Segmenting different faces

The modifiable parameters for the algorithm are the number of neighbors to look for,

the minimum and maximum cluster size, and the allowable curve detected from the

changing normals between points. The issue mentioned previously of not having enough

points for a small object and getting bad normals is dealt with by having a minimum

cluster size which will just group them in with the nearest object. This is mostly seen in

scans that has bushes and other shrubs where the laser does not get a continuous object

back and it ends up grouping all of the small clusters together This process is described

in [27] and is is presented in Algorithm 3 and works as follows.

1. Start with a cloud sorted by normals to have the smooth (flat) parts first

2. Pull the first point adding it to the seeds and start to looking at the neighbors

3. If the neighbor has an acceptable difference in angles with respect to the normal,

add it to the seed

4. Remove the current seed and report it as one region

5. Repeat until everything is classified
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Algorithm 3: REGIONGROWINGSEGMENTATION Segments a given point
cloud using smoothness constraint

Input: Point cloud = {P}, point normals {N}, residuals {r}, neighbor finding
function Ω(.), residual threshold rth, angle threshold θth

Output: A segmented point cloud {Rc}
1 Initialize Region List {R} ← Φ, Available points list {A} ← {1...Pcount}
2 while {A} is not empty do
3 Current region {Rc} ← ∅, Current seeds {Sc} ← Φ
4 Point with minimum residual in {A} → Pmin

5 Pmin
insert−−−→ {Sc}&{Rc}

6 Pmin
remove−−−−→ {A}

7 for i = 0 to size({Sc}) do
8 Find nearest neighbors of current seed point {Bc} ← Ω(Sc{i})
9 for j = 0 to size({Bc}) do

10 Current neighbor point Pj ← Bc{j}
11 if {A} contains Pj and cos−1 (|〈N{Sc{i}}, N{Pj}〉|) < θth then

12 Pj
insert−−−→ {Rc}

13 Pj
remove−−−−→ {A}

14 if r{Pj} < rth then

15 Pj
insert−−−→ {Sc}

16 Add current region to global segment list {Rc}
insert−−−→ {R}

17 Sort {Rc} according to the size of the region. return {Rc}
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3.2.3.1 Results

Results are very good from the LiDAR and cars almost always segmented as one

continuous object which is the main desired outcome. A scan was taken from the data

set can be seen in Figure 3.7 where in the raw cloud it is colored by intensity value

and in the segmented cloud the points are colored by which segment they belong to.

A corresponding image from a camera can be seen in Figure 3.6 taken from the stereo

camera system attached to the roof of the car. Looking at the data from the camera the

main features that can be seen is the car in the left lane as well as trees on either side

of the road.

Figure 3.6: Camera view of data to be segmented by LiDAR

Looking at the LiDAR data all of these features are very easy to detect and will be used

when creating and filling an occupancy grid with the detected features. The segmented
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cloud is saved as a second point cloud where each point has a number associated with

it corresponding to which cluster it belongs to as well as a link to the original cloud so

the original point can be examined again if desired.

3.3 Creating an occupancy grid

One of the issues with having a point cloud is the resolution of the LiDAR has too

high of a resolution (1mm) and having a 160m by 80m searching distance would results

in 12,800,000 possible spots for a point to appear which is too many spots to check for

an obstacle in real-time. The way this issue is addressed is by creating an occupancy

grid which subdivides the space into are more manageable form where any points that

fall within a grid cell means the cell is marked as occupied by an object. This can be

seen easily with the example shown in Figure 3.8 where some simple shapes are drawn

on the grid and any cell that contains any bit of the shapes is shaded gray marking it

as occupied meaning nothing can pass through it. The advantage of this method being

that the cloud will be reduced as all of the points that are tightly packed can be mapped

to the same grid cell and if a good good resolution is picked this will make the data

easily searchable while still retaining enough data about the detected objects.

The grid was created by using a 2D fixed sized array with a resolution of 20cm x 20cm

based off of [28] as well as empirically testing scans to find a good trade off between the

overall size of the grid as well as retaining the shape of obstacles and results in a total

of 320,000 cells. As the LiDAR is in the center of the bottom of the cloud as was seen

in Figure 3.7 the cloud needs to be shifted to be stored into an array as half the data is

in the negative X space which cannot be indexed in an array so everything is shifted by

40m or half of the total X distance. From here both the X and Y location of the points
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Figure 3.8: Example occupancy grid

is divided by the chosen resolution of 20cm to place each point into the appropriate grid,

and the point’s segmented cluster number is used to mark each cell as occupied so each

cluster can be differentiated from another.

3.3.1 Results

Converting the same scan from Figure 3.7 into an occupancy grid results in Figure

3.9 where the dark blue cells represent free space. As is expected much of the grid is

unoccupied as the point cloud indicates and all of the obstacles are colored according to

their cluster similar to the segmented point cloud.

Zooming in on one of the features on the grid shows Figure 3.10 where the white

grid represents the 20cm resolution and the larger red grid represents 200cm cells. The

directly connected object see in this figure is the pole that was seen in the camera view

on the right side of the image near the tree line and the few detected returns from the

trees behind it can also be seen to belong to the same cluster due to there not being
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enough points in the cluster for either by themselves.

Figure 3.10: Minor ticks = 20 cm, major = 200 cm
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Chapter 4

Searching for obstacles

Contents

4.1 Searching collision zones . . . . . . . . . . . . . . . . . . . . . 30
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Once the occupancy grid is constructed the next step is to search through the grid

for obstacles so in the next step we can track them at each time step. In this chapter

we look at how we accomplish object detection and tracking within the occupancy grid

and how the grid was searched with real-time constraints.
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4.1 Searching collision zones

The first 20m in front of the car in both the side lanes are deemed the collision zones

as traveling at 65mph a car can travel that distance in about 0.5 seconds so if anything

is closer than that we do not want to consider merging due to safety reasons. All that

the LiDAR will look for is if any sized obstacle is within this first 20m of the lane and

if so it will report it as unsafe to merge. The breakdowns of the lanes can be seen in

Figure 4.1 where each rectangular zone is 20m long and 3m wide which is the average

width of a lane on the highway, the lanes marked ”T” are tracking areas and the ones

marked ”C” are the collision zones. How this looks on the actual grid can be seen in

Figure 4.2.

4.2 Tracking obstacles

4.2.1 Detecting obstacles

At highway speeds a car can only go straight or change lanes so searching for obstacles

can be vastly simplified to look at our current lane as well as to either side side of the

car to check on cars or other obstacles within the lanes. The first step is to check the

center lane, where we are traveling, for any obstacles and if we see any unoccupied cells

we need to see if it has been seen previously or if it is a brand new obstacle, or conversely

if we see nothing but last time step had an obstacle we need to prune it as we are no

longer tracking it. The way that a detected object is matched with any previously seen

ones is based off of the width of the obstacle which is allowed to be one grid cell wider

or thinner, and this is because of Figure 4.3 which shows a car occupying three cells in

one scan and two cells in another. This is because the grid is fixed in reference to the
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Figure 4.1: Lane searching configuration. Note: the white sphere represents the position
of the LiDAR
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LiDAR and any shift of obstacles to the left or the right can mean that they can sit just

barely inside of one cell to mark it as occupied and this is a drawback of the resolution

of the grid however it is not difficult to account for by allowing the shape to grow or

shrink by one between scans.

(a) 2 cells wide car (b) 3 cells wide car

Figure 4.3: Same car taking occupying a different number of cells

4.2.1.1 Top level function

The side lanes work in the exact same fashion but they instead start tracking after

20m as before that is the collision zone discussed in the previous section. The first step

of the tracking process can be seen in Listing 4.1 which is the top level function that

takes the following steps which uses the two functions from the Section 4.2.1.2 as well

as some other similar functions omitted for brevity.

1. Define the lane search bounds based off of the desired lane to check and set

LaneClustersPtr to be equal to any previously seen clusters

2. Record any found clusters into clustersSeen
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3. If no clusters were found clear any previous tracking data and exit

4. If any clusters were found, try to see if we can find any matches to our previous

data and store it into matchingHits

5. If there are no matches input everything as clusters that we’ll begin to track

6. If there are matches update the speeds of them as appropriate

,
1 void laserScansMaps : : ca lcSpeed ( char lane ) {

// w i l l s t o r e the speeds o f anything we see
3 speedL i s t ∗ l aneC lu s t e r sPt r ;

5 // s e l e c t appropr ia t e l i s t f o r our po in t e r
i n t l e f tCe l lX , l e f t C e l l Y ;

7 switch ( lane ) {
// pick proper s t a r t /end c e l l s

9 }

11 // grab the c l u s t e r s that we see
c l u s t e r L i s t c l u s t e r s S e e n = searchForward ( laneClus te r sPt r , l e f tCe l lX ,

l e f t C e l l Y ) ;
13 // i f we got no c l u s t e r s , we have no speeds

// j u s t empty the l i s t as we aren ’ t t r a ck ing anything
15 i f ( ! c l u s t e r s S e e n . s i z e ( ) ) {

l a n e C l u s t e r s . c l e a r ( ) ;
17 // a l l done , nothing was seen

return ;
19 }

21 // otherwi se l e t ’ s look f o r a matching c l u s t e r i f we have any prev ious
data

c lus te rMatches matchingHits ;
23 i f ( l a n e C l u s t e r s . s i z e ( ) ) {

f indMatches ( c lu s t e r sSe en , matchingHits , l aneC lu s t e r sPt r ) ;
25 }

27 // i f we have no prev ious speeds ( hence no match ) i t ’ s new d e t e c t i o n
i f ( ! l a n e C l u s t e r s . s i z e ( ) ) {

29 f i l l N o P r i o r ( c l u s t e r sSe en , l aneC lu s t e r sPt r ) ;
//we ’ re done i f we didn ’ t have anything a l r eady

31 re turn ;
}

33

// i f we had prev ious speeds and at l e a s t some matches
35 i f ( matchingHits . s i z e ( ) ) {

f i l lWithMatches ( c l u s t e r sSe en , matchingHits , l aneC lu s t e r sPt r ) ;
37 }
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39 // i f we have anything l e f t that ’ s new , we need to add i t
f i l l R e m a i n i n g ( c lu s t e r sSe en , l aneC lu s t e r sPt r ) ;

41

// p r in t out the speeds o f what we ’ re t r a ck ing
43 }

Listing 4.1: Top level for detection and tracking

4.2.1.2 Detection and tracking of clusters

The next step in the process is to look for obstacles for the tracking zones as shown

in Listing 4.2 and perform the following actions

1. Create a list that will store

• Cluster number (from segmentation)

• Minimum and maximum X location hits (to calculate the width)

• Minimum Y distance detected per cluster

2. Search through the grid cells for our defined range (lane location)

3. When we first see the cluster (not in the list) add it with the corresponding data

filled in representing that grid cell

4. When we iterate through the other cells, modify each cluster as appropriate until

finished

5. Return the final list back to the top level function

,
1 c l u s t e r L i s t laserScansMaps : : searchForward ( i n t l e f tCe l lX , i n t l e f tCe l lY ,

i n t width , i n t d i s t ) {
// w i l l s t o r e a l l o f our c l u s t e r s that we saw and

3 // c l u s t e r #,minHit , maxHit , d i s t
c l u s t e r L i s t c l u s t e r s S e e n ;

5

// i t e r a t e through every c e l l in the lane we ’ re s ea r ch ing
7 f o r ( i n t i = l e f t C e l l X ; i < l e f t C e l l X + width ; i++){

f o r ( i n t j = 0 ; j < d i s t ; j++){
9 i n t c e l l = gr id [ i ] [ j+l e f t C e l l Y ] ;
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11 i f ( c e l l > 0) {
// i f the c l u s t e r e x i s t s in the l i s t , modify i f needed

13 i n t foundCluster = 0 ;
f o r ( i n t k = 0 ; k < c l u s t e r s S e e n . s i z e ( ) ; k++){

15 // i f the i element matches the c l u s t e r we saw , we modify the
va lue s i f needed

i f ( c l u s t e r s S e e n [ k ] [ CLUSTERIDX] == c e l l ) {
17 //add 1 i n c a s e i t ’ s a 0 , we ’ l l subt rac t i t l a t e r (0 matches

f r e e space )
foundCluster = k+1;

19 break ;
}

21 }
// i f we found the c l u s t e r

23 i f ( foundCluster ) {
// s h i f t index back ( undo e a r l i e r s h i f t up 1)

25 i n t idx = foundCluster − 1 ;
// f i n d the edges o f the width , modify p r e v i o u s l y seen max/min as

appropr ia te
27 i f ( i < c l u s t e r s S e e n [ idx ] [ MINHITIDX ] ) c l u s t e r s S e e n [ idx ] [ MINHITIDX

] = i ;
i f ( i > c l u s t e r s S e e n [ idx ] [ MAXHITIDX] ) c l u s t e r s S e e n [ idx ] [ MAXHITIDX

] = i ;
29 // d i s t anc e ( take c e l l c l o s e s t to us )

i f ( ( j+l e f t C e l l Y ) < c l u s t e r s S e e n [ idx ] [ DISTIDX ] ) c l u s t e r s S e e n [
idx ] [ DISTIDX ] = j+l e f t C e l l Y ;

31 }
// otherwi se we need to add the c l u s t e r to our l i s t

33 e l s e {
// c r e a t e a new c l u s t e r and s e t the va lue s

35 scanArr newHit ;
newHit [CLUSTERIDX] = c e l l ;

37 newHit [MINHITIDX] = i ;
newHit [MAXHITIDX] = i ;

39 newHit [ DISTIDX ] = j + l e f t C e l l Y ;
c l u s t e r s S e e n . push back ( newHit ) ;

41 }

43 }
}

45 }
// i f we found c l u s t e r s r epor t the speeds

47 // otherwi se r epor t we saw nothing

49 // return the l i s t o f c l u s t e r s
re turn c l u s t e r s S e e n ;

51 }

Listing 4.2: Search for obstacles
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The next step is to go through every found cluster and fill in matchingHits in the

top level which is a list that stores the index of where a match lies in the previous data

and the current data. This comparison is done off of width as it is the only data that

is available from the 2D point cloud for comparison along with last seen distance. The

matchingHits list is then returned back to the top level function which now has a link

between the past to the current objects that it can operate on to calculate new speeds

as appropriate.

The tracking function has a few variations for adding clusters to the previously seen list

however they all work in a similar manner. Listing 4.3 shows how all of the clusters that

were seen are taken in and how they are updated to calculate the speed of a previously

seen object which we know based off of the detector. The steps are as follows for every

matching cluster we found previously

1. For every match we have from findMatches() we pull out the data from its past

and current width, speed, and distance

2. If the obstacle is still at the same distance, increment the INSTIDX variable so

that we know it was seen at the same distance an additional time

3. If the obstacle is at a new distance, take the INSTIDX variable and multiply it by

the resolution of the grid to update the speed then change the INSTIDX variable

to 1 as it’s the first time we’ve seen it at this distance

4. Update the width of the obstacle if necessary

5. Erase the previously seen cluster from our currently seen list so we don’t add it in

again when filling in the rest of the data

,
1 void laserScansMaps : : f i l lWithMatches ( c l u s t e r L i s t& c lu s t e r sSe en ,

c lus te rMatches& matchingHits , speedL i s t ∗ l aneC lu s t e r sPt r ) {
//de−r e f e r e n c e the po in t e r

3 speedL i s t& l a n e C l u s t e r s = ∗ l aneC lu s t e r sPt r ;
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5 // repor t how many d i f f e r e n t c l u s t e r s we found and need to c a l c u l a t e the
speed o f

7 // f o r every c l u s t e r we found
f o r ( i n t i = 0 ; i < matchingHits . s i z e ( ) ; i++){

9 //we need to update the matching index o f the c l u s t e r to speed
// to change the width , d i s tance , speed , i n s t a n c e s ( a l l as appropr ia te )

11 i n t h i t s I d x = matchingHits [ i ] [ 0 ] ;
i n t speedsIdx = matchingHits [ i ] [ 1 ] ;

13

// get the new and prev ious d i s t a n c e s so we can f i n d the speed
15 f l o a t newDist = c l u s t e r s S e e n [ h i t s I d x ] [ DISTIDX ] ;

f l o a t newWidth = c l u s t e r s S e e n [ h i t s I d x ] [ MAXHITIDX] − c l u s t e r s S e e n [
h i t s I d x ] [ MINHITIDX ] ;

17 f l o a t prevDist = l a n e C l u s t e r s [ speedsIdx ] [ DISTIDX ] ;
f l o a t prevSpeed = l a n e C l u s t e r s [ speedsIdx ] [ SPEEDIDX ] ;

19

// i f the d i s t ance hasn ’ t changed
21 i f ( newDist == prevDist ) {

// i f i t ’ s been the same f o r a while , s e t the speed to 0
23 l a n e C l u s t e r s [ speedsIdx ] [ INSTIDX ] += 1 ;

// update width i f needed
25 l a n e C l u s t e r s [ speedsIdx ] [WIDTHIDX] = newWidth ;

i f ( l a n e C l u s t e r s [ speedsIdx ] [ INSTIDX ] > SPEEDDECAY) l a n e C l u s t e r s [
speedsIdx ] [ SPEEDIDX] = 0 . 0 ;

27 }
// otherwi se we need to f i n d the speed o f the ob j e c t

29 e l s e {
// d i s t anc e in cm changed

31 f l o a t changedDist = ( newDist − prevDist ) ∗ CELLINV;
// repor t c e l l s changed in how many s t ep s

33 f l o a t changedStep = l a n e C l u s t e r s [ speedsIdx ] [ INSTIDX ] ;
f l o a t changedSpeed = changedDist / ( changedStep ∗ FREQ) ;

35 // save speed as mph
l a n e C l u s t e r s [ speedsIdx ] [ SPEEDIDX] = changedSpeed ∗ CMSTOMPH;

37 // f i r s t time we ’ ve seen t h i s
l a n e C l u s t e r s [ speedsIdx ] [ INSTIDX ] = 1 . 0 ;

39 l a n e C l u s t e r s [ speedsIdx ] [ DISTIDX ] = newDist ;
l a n e C l u s t e r s [ speedsIdx ] [WIDTHIDX] = newWidth ;

41 }
//now we need to e ra s e what we j u s t did from h i t s

43 c l u s t e r s S e e n . e r a s e ( c l u s t e r s S e e n . begin ( ) + h i t s I d x − i ) ;
}

45 }

Listing 4.3: Speed calculations
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4.3 Results

One scene tested for tracking results can be seen in Figure 4.4 where one car is in

the center lane and is tracked for velocity and a second car starting in the collision zone

and eventually entering the tracking zone for the side lane as they are going much faster

than our car. The corresponding point cloud can be seen in Figure 4.5 along with the

occupancy grid in Figure 4.6 both of which shows both cars in their starting positions

and this scene is used both in the following sections.

Figure 4.4: Camera view of obstacles being tracked
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Figure 4.5: Point cloud for tracking test. Note: the white sphere represents the position
of the LiDAR and the scan is flipped horizontally
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4.3.1 Detection

Figure 4.7 shows the output of the program which sees the center car 87 grid cells away

(17.4m), detects an obstacle which happens to be a wall in the left lane and finally the

car next to us within the collision zone. The detection of the wall within the tracking

zone is undesirable however it is not really an issue as normally we would have an

additional sensor such as a camera or another LiDAR detecting lanes telling us that is

not a valid path and additionally as we track it we will find that it moves at impossible

speeds however this data is still somewhat useful. In the case of an emergency where it

is needed to change lanes due to a danger within the center lane we’ve already found

that the right line is not safe however if the side lane were a breakdown lane we would

still be able to detect that it is empty and can be entered if an obstacle needed to be

immediately avoided within the current lane.

4.3.2 Tracking

Taking the previous results of the detector and continuing to step through the data

results in Figure 4.8 which shows the car in the center lane going 2.2 MPH faster than

us which is 0.1 MPH off from his actual speed of 2.3 MPH. Once the car in the side

lane entered the tracking zone and is stepped through three scans it can be seen flipping

between 8.9 MPH and 17.9 MPH faster than us, a range of 9 MPH total in 0.05 sec

intervals!

Measuring the actual speed of the car shows that it is traveling at 15 MPH which is

in between the two value and this a a drawback of the occupancy grid method which

can only detect changes in increments of one grid cell at a time and what is happening
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Figure 4.7: Searching results. Note: the scan is flipped horizontally
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Figure 4.8: Speed of cars in two lanes

44



in this particular case is he is alternating between traveling one cell in the 8 MPH scans

and 2 cells in the 17 MPH scans. Tracking this further begins to reveal a sort of pattern

shown in Table 4.1.

Time 0.05 0.10 0.15 0.20 0.25 0.30 0.35 .40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
Speed 8.948 17.896 8.948 17.896 8.948 17.896 17.896 8.948 17.896 17.896 8.948 8.948 17.896 17.896 8.948 17.896

Table 4.1: Recorded speeds over 16 steps

As can be seen there are some steps where it does not alternate between the two speeds

and instead has multiple occurrences of a speed due to the nature of the occupancy grid.

To more correctly track the speed there are two options each which are rather simple

that can get a lot closer if it is required, the first of which is to take the moving average

filter which just convolves the data data when a pattern such as this is detected. Using

a window size of two and feeding in our data to a filter results in Figure 4.9 which can

be seen to be at 15 MPH much of the time and with smoothing can allow for additional

filtering to not allow the speed to change abruptly which happens at a couple of the

time steps after reaching the 15 MPH estimation.

The second way to deal with this is to create a link from the point cloud to the

occupancy grid cells where we need at least one point per occupied cell. We then can

then perform all of the searching normally in the occupancy grid and then pull out

a raw point to calculate the speed as the change in distance from the car which has

1mm resolution instead of 20cm. Doing this we also get the speed of 15 MPH however

smoothing out the data is still desirable as it will allow for eliminating some of the noise

of small changes in speed so there is not oscillation on a much smaller scale however
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Figure 4.9: Moving average of the data

both solutions will give a more accurate speed.

4.4 Run time

As real-time performance is desired 100 scans were taken and every step was run on

every scan and the average time was taken to get a total time of

0.05 [S] to scan and segment the data

+ 0.013 [S] to segment and store the data

+ 7.393E-5 [S] to search the grid and track data

0.063 [S] on a 4GHz i7

which means there is still 0.037 seconds left until the next scan that are free for
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additional work if desired in the future or if it is put onto a slower processor it has a

higher probability of working as we only consume about 25% of our available time for

everything.
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Chapter 5

Conclusions

In this thesis, we present a way to track vehicles in front of of a car while traveling

on the highway in real-time. We propose to use a data segmentation method to convert

a point cloud into a segmented cloud representing different objects and then taking it

and putting it into an occupancy grid that can be search efficiently.

For future work we would like to add additional sensors to be able to detect vehicles

in the rear as well as the sides of the car and to detect the lanes in the road. Further-

more some simple filtering needs to be investigated to be able to get some better speed

estimations if high accuracy tracking is desired.
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