

CS-GXS-0502

GRID Portal Application Visualization

submitted to the Faculty

of the

Worcester Polytechnic Institute

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Domenic Giancola

Date:

Amanda J Jamin

Date:

Professor Gábor Sárközy, Major Advisor

Abstract

Parameter studies are useful applications for researchers; however, these

programs, although helpful, tend to be computationally expensive and due to their long

execution time become tedious to execute. In this project we explored a method of

implementing a parameter study module for the P-GRADE Portal at MTA-SZTAKI;

Budapest, Hungary, an existing parallel application that allows users to create and

execute a parallel program in an efficient manner without knowledge of MPI or PVM

programming.

Acknowledgments

We would like to thank MTA SZTAKI, and specifically the Laboratory of

Parallel and Distributed Systems, for giving us this opportunity to develop an extension

of their P-GRADE Portal. Specifically, we would like to thank József Patvarczki and

Gábor Hermann for their continued help and support during the development process.

We would also like to thank WPI and the WPI Interdisciplinary and Global Studies

Division for helping to provide this opportunity. Most of all we would like to thank

Professor Gábor Sárközy for making this entire project and experience possible.

TABLE OF CONTENTS

ABSTRACT.. 2

ACKNOWLEDGMENTS .. 3

LISTING OF TABLES .. 6

1 PROJECT STATEMENT... 7

1.1 THE EXISTING SYSTEM ... 7
1.2 THE NEED FOR A PARAMETRIC STUDY MODULE .. 8
1.3 OUR END RESULTS ... 8

2 BACKGROUND ... 10

2.1 HISTORY OF GRIDS AND GRID COMPUTING .. 10
2.2 HISTORY OF PARALLEL PROGRAMMING ... 13
2.3 PGRADE ... 16

2.3.1 What is PGRADE .. 17
2.3.2 How PGRADE Works .. 17
2.3.3 Uses of the PGRADE System.. 19

2.4 THE PGRADE PORTAL... 20
2.4.1 How the PGRADE Portal Works.. 21

2.5 PARAMETER STUDY .. 22
2.5.1 Uses of Parameter Study Programs.. 22
2.5.2 Implementation of Parameter Study Applications ... 23
2.5.3 Complications with Implementation ... 24
2.5.4 Other Parameter Study Applications .. 25

2.5.4.1 Nimrod...25
2.5.4.2 ILAB..26

3 METHODOLOGY.. 27

3.1 TECHNOLOGIES INVOLVED IN IMPLEMENTATION .. 27
3.1.1 Java Server Pages ... 27

3.1.1.1 How JSP Works..28
3.1.1.2 Alternatives to JSP..29

3.1.2 Portlet Technology .. 29
3.1.3 GridSphere.. 30
3.1.4 Java Swing .. 31

3.1.4.1 History of Swing...31
3.1.4.2 The Use of Swing Within the Portal...32

3.2 EDITING SECTION ... 33
3.3 THE PARAMETER STUDY MANAGER .. 36

3.3.1 Development of the Parameter Study Manager... 39

4 IMPLEMENTATION... 41

4.1 IMPLEMENTATION OF THE WORKFLOW EDITOR SECTION .. 41
4.1.1 Parameter Set Generation Dialog .. 41
4.1.2 Remaining Dialog Extensions .. 43
4.1.3 Integration of the Editing Section... 45

4.2 IMPLEMENTATION OF THE PARAMETER STUDY MANAGER .. 47
4.2.1 Creating a Communication Method Between the JSPs and the Portlet 47
4.2.2 Determining the Range of Indexes for Submission .. 48

4.2.2.1 Evaluation of the Range of Indexes Algorithm...50
4.2.3 Creation of Reusable Code .. 51
4.2.4 Displaying the Current State of the Parameter Study.. 52
4.2.5 Removal of Designed Features... 53

4.2.6 Integration... 54

5 TESTING .. 55

5.1 EXTERNAL TESTING .. 55
5.2 CREATION OF A LOCAL PSTUDYJOBLIST ... 56
5.3 CREATION OF A LOCAL PARAMETRICWORKFLOW OBJECT.. 57
5.4 MONITORING OF TRACE FILES ... 57
5.5 INTEGRATION TESTING WITH THE MANDELBROT SET ... 58

6 CONCLUSIONS ... 60

6.1 THE FINAL PARAMETER STUDY MANAGER .. 60
6.2 THE FINAL PARAMETER STUDY EDITING SECTION ... 61
6.3 FUTURE IMPLEMENTATION .. 61

6.3.1 The Detailed View of a Single Index Set ... 61
6.3.2 Full Integration of the Editing Section.. 62

6.4 RECOMMENDATIONS FOR SZATKI .. 62
6.4.1 Development of a Sztaki Defined JSP Tag Library.. 62
6.4.2 External Documentation .. 63
6.4.3 Code Modularity.. 63

APPENDIX A ALGORITHM TO DETERMINE THE RANGE OF INDEXES FOR SUBMISSION
ALGORITHM.. 68

APPENDIX B EXTERNAL TESTING CODE FOR THE PARAMETER STUDY MANAGER...... 69

APPENDIX C SCREENSHOTS OF THE FINAL PARAMETER STUDY MANAGER.................. 70

Listing of Tables

TABLE 1 JSP TAGS ... 28

LISTING OF FIGURES
FIGURE 2.1 SAMPLE WORKFLOW IN THE P-GRADE PORTAL WORKFLOW EDITOR 16
FIGURE 2.2 DIAGRAM DESCRIBING THE INTERCOMMUNICATIONS OF THE PGRADE PORTAL...................... 21
FIGURE 0.1 VIEW OF A CERTIFICATE DOWNLOAD………………………………………………………..23

FIGURE 3.1 SUGGESTED PARAMETRIC INPUT PORT REPRESENTATION IN THE WORKFLOW EDITOR WINDOW

... 33
FIGURE 3.2 SUGGESTED PARAMETRIC EXTENSION OF THE PORT PROPERTY DIALOG.................................. 34
FIGURE 3.3 SUGGESTED PARAMETRIC EXTENSION OF THE JOB PROPERTY DIALOG 35
FIGURE 3.5 PROPOSED PARAMETER STUDY MANAGER DESIGN... 37
FIGURE 3.6 PROPOSED PARAMETER STUDY MANAGER DETAILED VIEW.. 38
FIGURE 4.1 IMPLEMENTED PARAMETER SET GENERATION DIALOG... 42
FIGURE 4.2 IMPLEMENTED PARAMETRIC PORT PROPERTY DIALOG ... 44
FIGURE 4.3 IMPLEMENTED PARAMETRIC JOB PROPERTY DIALOG .. 45
FIGURE 4.5 KEYS FOR INDICATING THE STATUS OF A PARMATER STUDY... 52

1 Project Statement

Our project aims to develop an interface available via the World Wide Web that will

allow users of the system to execute parallel parametric study applications on grid

computing resources. This interface will exist as a part of a collaborative project between

two research teams who together will produce a Parameter Study Module for an existing

parallel process development tool. This tool is the PGRADE Portal system currently

being developed by the SZTAKI labs in Budapest, Hungary.

1.1 The Existing System

The fully integrated PGRADE project exists in two distinct parts: the PGRADE

System and the PGRADE Portal. Currently these two projects support the creation,

execution and monitoring of parallel applications. The main distinction between the two

portions is where they can be executed. The PGRADE system is not available via the

web whereas the PGRADE Portal, through the use of Portlets, can be accessed by anyone

with an Internet connection and permission to execute a process via the application.

This project will work mainly with the PGRADE Portal. This Portal currently

allows users to create and edit workflows though a WebStart application called the

Workflow Manager. Once designed, these workflows can be scheduled for submission,

and their progress monitored. In addition this system allows the user to choose the grid

or grids on which to run their application. Multiple users can access the software, each

with their own user name and password, regulated by a single administrator. As all of

this is done via a graphical web interface, a user of the PGRADE Portal does not have to

be a master at parallel programming to benefit from its use.

1.2 The Need for a Parametric Study Module

Although the existing PGRADE Portal system allows a user to graphically define

workflows and execute programs in parallel, it has yet to reach its full potential.

Currently, the Portal is limited to those applications that are not parametric applications.

A parametric study is a program that executes numerous times, each time with a different

set of input values. Although there is a vast area of applications that fall into this

category, such as some weather monitoring systems, traffic simulations, and certain

chemistry applications, the Portal can be extended to include parametric studies.

Parametric applications are useful to mathematical and scientific researchers. However,

they are often time consuming to calculate making them tedious to work with. If these

programs were executed in a parallel manner on a grid system, their time consuming

nature would diminish.

The PGRADE Portlet offers the perfect environment to develop a tool to use for the

execution of these parameter studies. As the Portal already allows for programs to be

executed in parallel on a variety of resources, applying the project to parameter study

problems simply requires an extension of the current application. This module would not

only further satisfy the needs of the current users of the Portal, but also create a whole

new user group who could use the application.

1.3 Our End Results

At the conclusion of this project, we aimed to have created a complete user

interface for the Parameter Study Module for the PGRADE Portal system. In order to

have successfully implemented this project, we needed to coordinate our project with the

Development of Algorithms on the GRID MQP team. Our project, although a separate

entity, needed to integrate with this project in order to have a full module to present to the

PGRADE Portal development team.

Prior to our integration, however, we had to first develop two distinct user

interfaces: a client side Workflow Editor for parameter study applications and a server

side Parameter Study Monitor. The Workflow Editor interface required extending the

current PGRADE Portal Workflow Editor so that allowed the user to define the ports

through which the application can be run and describe the parametric keys related to the

study. A more in depth discussion of the implementation of these interfaces will occur

later in this paper.

The Parameter Study Monitor was created as its own set of Java classes and Java

Server Pages (JSP). The tabbed pane that was created as a result of this interface looks

similar to the existing PGRADE interface. This interface will also be discussed in more

detail in the sections that follow.

2 Background

In order to understand both the PGRADE and PGRADE Portal system and how they

work, one must first understand the technologies that these systems implement. These

systems allow a user to take advantage of grid computing, a relatively new research area

in the computer science field. In addition, they allow a user to break away from the

traditional sequential programming style and develop code that runs in parallel enabling

one to use resources on several systems simultaneously. Furthermore, for one to fully

understand why a Parametric Study would benefit the development of the PGRADE

Portal, how the PGRADE system and the PGRADE Portal work must be described and

the need for parameter studies explained.

2.1 History of Grids and Grid Computing

 The Internet, otherwise known as the World Wide Web, has grown by leaps and

bounds since its invention. Every day people surf around for both business and pleasure,

interconnecting millions of computers for a variety of purposes. Much like how the

Internet has expanded, the average household has also expanded into this new age. Many

more households than ever before have a personal computer (PC). Computer technology

has grown so quickly that a mid to low range PC loses more than 90% of its value every

year. Thus as organizations and even individuals upgrade their machines, their old

machine, being worth very little, is either given to another person, thrown away, or put

into storage. [8]

One new technology that is currently in development by researchers and software

engineers around the globe is a service by which these machines can be put to use, along

with the surplus resources of other PCs and supercomputers. This new service would

pull these resources together into a grid. The grid would be much like the World Wide

Web, but it would be for sharing computer processing power and data storage instead of

information. This would greatly help alleviate many of the resource problems

researchers and scientists have had solving complicated problems that a simple cluster of

computers or even a supercomputer just cannot handle. The eventual dream many people

have for the grid is that it will connect every computer in the world, dynamically allocate

whatever resources the user may need, handle security and permissions issues for them,

and basically allow them to work with a “limitless” supply of computing power.

This resource could help biologists simulate thousands of molecular drug candidates

to see how they react with specific proteins. Physicists could use it to create and share

the 10 Petabytes (10^15 bytes) of data they will be gathering from the collisions of

extremely energetic fundamental particles. Earth Scientists could use it to help keep

track of the levels of atmospheric ozone. Geneticists could use it to help analyze the

massive quantities of data necessary to map the human genome. The grid is what every

researcher has been dreaming of for years. [8]

While that is the dream, reality and the dream have not yet met, though it is definitely

coming. Most of the grid is still in the developmental stages, being worked on by

researchers all over the globe. As such there are many different grid implementations. A

few example projects are:

� Development of Virtual Supercomputing Service Using Academic Network [26]

� Automatic Performance Analysis: Real Tools (APART2) [23]

� GridLab - A Grid Application Toolkit and Testbed [35]

� DataGrid Research and Technological Development for an International Data Grid

[16]

� Graphical Supervising System for Geographically Distributed, Heterogeneous

Metacomputing Environment [28]

� Simbex: A metalaboratory for the priori simulation of crossed molecular beams

experiments [17]

� DemoGrid [5]

� Hungarian Supercomputing GRID [29]

� Chemistry GRID and its Application for Air Pollution Forecast [27]

� JGrid: An Integrated Graphical Application Development and Grid Execution

Environment Based on Jini [25]

� EGEE: Enabling Grids for E-sciencE [13]

As is quite evident even with only this sampling of grid projects, grid computing is a hot

topic in the technological world. Consortiums of developers have created standards to

help speed up and organize the process. These standards allow researchers to build off of

each other much easier and quicken the pace towards the ultimate goal of a global Grid.

 One such project was the Condor project. It was started in 1988 at the University

of Wisconsin to develop a system for pooling the computing resources of all of the

computers in a university. Condor paved the way for later implementations in that it

performed cycle scavenging (using free time on computers for processing), found

appropriate resources, and recovered from faults. Newer versions of Condor are still in

use today in grid computing. One such implementation is Condor-G, which incorporates

some tools from the Globus Toolkit to allow it to submit jobs to the current grid

implementation. [48]

 The Globus Toolkit is the major backbone of protocols and services used by most

current Grid implementations. It is being developed by the Globus Alliance, a

cooperative effort of many programmers from around the world. It is being released as

an open-source software suite to allow others to use, update, and modify the software to

their needs and then share their improvements with the rest of the world. Another benefit

to the Globus Toolkit is that it is being developed through an object-oriented approach.

This allows developers to choose only the portions of the toolkit that they wish to use in

their application. [46]

 With the development of these grid projects, developers were no longer restricted

to using only homogenous clusters as this new infrastructure allowed for heterogeneous

resources comprised of supercomputers and PC clusters to be tied together into true grids.

This heterogeneous grid infrastructure introduced quite a few new problems into the grid

scene, with the main problem being that at the time they did not have the programming

models or libraries necessary for this type of setup. [8]

2.2 History of Parallel Programming

 To use a new technology like the Grid, or any other cluster of computers for that

matter, new programming methods and standards must be developed and followed.

Programming was originally only sequential, in that a program started on a machine, did

what it was programmed to do, and then exited. The program may have communicated

with other programs during its execution, but usually only as different pieces to complete

a task. Parallel programming allows the user to execute one task in pieces on multiple

machines to reach a result sooner than would be possible on a single machine. [44]

 Two main types of parallel programming models exist, data parallel and function

parallel. In a data parallel model processors operate on different pieces of a data set,

sharing results with one another. In a function parallel model a parent process manages a

set of child processes that each perform a given task and then give their results back to

the parent for processing. [44]

 There are two main implementations of these programming models currently in

use- MPI, Message Passing Interface, and PVM, Parallel Virtual Machine. Both

implementations are message-passing libraries, but they differ in their approaches and

functionality. MPI was created by the MPI Forum, a group of vendors, scientists, and

users. It permits programs with separate address spaces to synchronize with one another

and move data from the address space of one process to that of another by sending and

receiving messages. MPI is not technically a language, but it is rather a collection of

subroutines and their arguments. MPI works very efficiently on supercomputers and

inside clusters. As such MPI is typically used for Single Program Multiple Data (SPMD)

style programming. SPMD is a programming model where different processors execute

the same program on different sets of data. However, if an MPI application is distributed

on several Grid sites the performance turns out to be much worse than expected. It is in

these environments that the second implementation, PVM, really shines. [47]

 PVM, or Parallel Virtual Machine, is another message passing library like MPI

and is distributed with a set of tools used to create and execute concurrent and parallel

applications. PVM, while performing the same general function as MPI, does so in more

of an abstract and parallel manner. It is this main difference that allows PVM to be used

more for Multiple Program – Multiple Data (MPMD) style programming. MPMD is a

parallel programming model where different, but related, programs are run on different

sets of data. [41]

 By comparing the two implementations, PVM and MPI, it becomes obvious that

in a heterogeneous environment like a grid, an integration of both MPI and PVM is

necessary for any complex problem. MPI can be used locally within a single cluster to

cut down on overhead with PVM pulling together the general processing nodes together.

This is only one possible model though out of numerous possibilities. This new blended

model is what many researchers and developers are currently working to grasp. [31]

 It is at this new blended model level that the workflow concept has been created.

A workflow is an acyclic dependency graph with the nodes representing jobs and arc

connections between the jobs defining dependency relations. This new model introduces

parallelism at two levels. Top-level parallelism comes from the workflow concept, where

independent branches of a workflow can be executed simultaneously on several Grid

sites. Bottom-level parallelism is applied when some of the nodes are themselves parallel

(MPI or PVM) programs. This new blended model allows for multi-site parallel

application execution without the performance degradation inherent in using solely one

implementation. [31]

Figure 2.1 Sample workflow in the P-GRADE Portal Workflow Editor

2.3 PGRADE

Located in the Hungarian capital, Budapest, there exists an institute dedicated to

research in Mathematics and Computer Science. Named the Computer and Automation

Research Institute of the Hungarian Academy of Sciences (SZTAKI), this organization is

determined to bring university students into contact with the most recent developments in

scientific research [2]. As part of the completion of these goals, SZTAKI has been

broken down into eighteen departments each of which is classified as either a research or

a development department.

One of the research divisions that exists within the SZTAKI infrastructure is the

Parallel and Distributed Systems Laboratory. This lab does research in cluster and grid

computing and has participated in almost every Hungarian Grid Project as well as several

outside of Hungary. Currently, this lab’s main focus is on the development of grid

computing applications and the department has created three programs related to this

task: PGRADE, the PGRADE Grid Portal, and the Mercury Grid Monitor. Our parallel

application project deals directly with this department as its main focus is the extension

of the PGRADE Grid Portal to allow for parameter study applications.

2.3.1 What is PGRADE

 The PGRADE project is a high level graphical interface that allows users to

develop parallel programs that can run on supercomputers, grids, and clusters without

requiring the user to have any extensive programming knowledge. PGRADE is designed

to be used by the non-professional programmer and can be used on almost every software

platform. The system aims at making parallel program development more simplistic,

enabling it to become a tool accessible to all [42].

2.3.2 How PGRADE Works

 PGRADE is implemented in a manner that uses a graphical language, called

GRAphical Process Net Language (GRAPNEL). GRAPNEL allows all inter-process

communications to be defined graphically by the user allowing the underlying message-

passing system to be hidden. From the user’s graphic representation, GRAPNEL

generates all necessary PVM or MPI code. In addition to the GRAPNEL language,

PGRADE uses the GRED editor tool to aid the user in creating the graphical portions of

GRAPNEL. These GRAPNEL programs, edited with GRED, are then saved in an

internal GRP file, which contains all the textual and graphical information that a

GRAPNEL program needs [30].

 Debugging with the PGRADE system requires the use of the DIWIDE debugger.

This tool supports both graphical and C/C++ level debugging. It allows for the creation

of breakpoints, step by step execution, and variable inspection [30].

 PGRADE’s implementation also allows the user to monitor the current running

application. The system supports the use of two tools for monitoring, GRM and

Mercury. GRM sets up a local monitor on each of the hosts on which the user’s

application runs. In addition, GRM sets up a monitor on the system that the user is

working. This main monitor gathers trace information from each of the local monitors

and stores them together.

For situations when GRM does not function properly, like when there is a firewall

setup between the Grid sites where the local monitors are running and where the main

monitor is running, Mercury can be used instead. Mercury uses sensors to gather

measurements and performance data. These sensors are controlled by producers who can

transfer the information to consumers when necessary. Communication between the

producers and the consumers is handled through channels that can be created by either

process. Channels started by the consumer are used mainly for interactive monitoring

while those created by producers are used primarily for data archiving and event

reporting. Like GRM, Mercury sets up a local monitor on each node on which a part of

the user application is running. These monitors use the sensors as a shared library. Also

like the GRM implementation, the Mercury tool generates a main monitor on the main

system the user is working on, which collects the information gathered by the local

monitors [29].

The trace information created by either of these two systems is then used by

PROVE, allowing the user to visualize and analyze the results. PROVE can be accessed

both on and off-line. The user can control which hosts, jobs, processes and messages

should be focused on. In addition, the user can access source code using a “click-back

and click-forward facility” (W).

2.3.3 Uses of the PGRADE System

 The PGRADE system can be used by mathematicians, researchers, and scientists

with a limited amount of coding experience to perform resource intensive calculations.

One project that has used the PGRADE system is the Hungarian Meteorological

Service’s Nowcasting algorithm which analyzes and predicts ultra-short range weather

changes. These weather situations have the potential to be dangerous as they can destroy

property and have a high risk of death. This project used PGRADE for its most costly

computations, as the system could be easily parallelized within PGRADE’s graphical

environment. By using parallel code, the system could create, calculate, and re-calculate

the current weather conditions allowing warnings to be given in a reasonable amount of

time when necessary [35].

 The University of Westminster located in the United Kingdom also used

the PGRADE system. The cluster located at the school consisted of thirty-two computers

with a single master node. In order to create the simulation, researchers with the

University of Westminster implemented a two part simulation using the MadCity

Simulator [Using Clusters for Traffic Simulations]. The MadCity technology includes

two tools; the Graphical Visualiser (GRV) which helps to design a particular road

network and the SIMulator (SIM) which in this case study was implemented on the

PGRADE system. The SIM portion of this project was implemented as a parallel

program. In further executions of this study, this application was further extended to

simulate numerous cities’ traffic systems as well as interconnected road networks [20].

 PGRADE can also be used for chemistry applications such as Reaction-diffusion

equations. Reaction diffusion equations appear from the variety of spatiotemporal

patterns that arise during chemical reactions and chemical diffusions. The evolution of

these patterns is described through a second order partial differential equation [36].

The Department of Physical Chemistry at the Eötvös University worked with

SZTAKI to implement such a system. The parallelized version of their code was then

deployed on a self-made Linux cluster consisting of twenty-nine interconnected dual-

processing nodes and used to forecast air pollution. As in the case of the weather

forecasting application, the parallelized code enabled the calculations to return the

required data in a timely fashion [35].

2.4 The PGRADE Portal

 The PGRADE Portal uses Portal technology to provide access to the PGRADE

system in an easy to access method. Using high-level Web interfaces, the Portal allows

users to create, execute and monitor jobs workflows. This system allows users to access

the PGRADE project without having to use grid protocols and commands [45].

2.4.1 How the PGRADE Portal Works

 The PGRADE Portal exists in two parts, the client side interface and the server

side interface. On the client side, HTML is generated by the server side dynamic html

web pages. This HTML code includes the entire interface and Java GUI required for

interaction with PGRADE, including, the visualization applet and the workflow editor.

These client side interfaces have corresponding server components in the form of servlets

[45].

 On the server end of the PGRADE Portal, Portlets are written with Java Server

Pages (JSP), providing code that can generate the HTML code needed for the user. There

is also underlying C code that gets accessed through JNI. These libraries include files for

Mercury, trace2png which includes the png images needed for the visualization applet,

and grp2c scripts [45]. These connections are visually shown in Figure 2.2.

Figure 2.2 Diagram describing the intercommunications of the PGRADE Portal

 When running the PGRADE Portal, in order to access the PGRADE system, a

user must first obtain a certificate. In order to do this, the information in the window

displayed in Error! Reference source not found. must first be filled out. For security

purposes, these certificates have a limited lifetime and are downloaded from a MyProxy

server. Once a certificate

Figure 2.3 View of a Certificate Download

has been obtained, it can be set to be used with a particular grid. Once this has been

done, a user can use the workflow tab to create a new job for the PGRADE Portal and

execute it on the grid for which they have a certificate. This job can then be submitted

and its process monitored through the Workflow list also accessible from the Workflow

tab [SZTAKI PowerPoint Presentation].

2.5 Parameter Study

 A parameter study application is a computer program that is capable of executing

the same algorithm numerous times each time with a different set of input values. The

values, or parameters, that are passed to the program vary along a range – also known as

the parameter space. Once the program has completed, the application generates a set of

results known as the parameter study. [51]

2.5.1 Uses of Parameter Study Programs

One function of a parameter study application is the execution of the same

simulation numerous times. Each time the simulation is run a different input value, or set

of input values, is passed to the program. Each execution, and its respective input

parameters, represents a different set of tangible conditions that can occur. This allows a

scientist to examine how something is going to react in the physical world in different

circumstances without altering its current state [51].

Parameter study programs are valuable to the mathematical community.

Statisticians use Monte Carlo applications to find statistical averages. According to the

simplest definition, a Monte Carlo application is any application that involves random

numbers. These problems have applications in economics, chemistry, and even nuclear

physics [50]. The Monte Carlo algorithm needs to be run numerous times, each time

with a random number seed in order to be accurate for statistical purposes. A random

number seed is required in order to provide the algorithm with a sequence of pseudo-

random bits. Computers, being deterministic, cannot generate truly random numbers,

creating a need for a changing seed, such as the time on the system clock, to mimic

randomness [4]. A Monte Carlo algorithm can become a parameter study problem if the

random number seed is treated as the changing input value [51].

2.5.2 Implementation of Parameter Study Applications

 The idea behind parameter study applications is not a new concept; however, the

concept was not feasible until the emergence of Grid Computing. Prior to the existence

of Grid Computing, parameter study applications had to be run locally on one’s own

machine. As it is in the nature of parameter study applications to be executed numerous

times, running them locally created a strain on the computer. This forced the parameter

applications to be less complex then the needs of most scientific and mathematical

problems.

The emergence of Grid Computing and computing advances in programs, such as

Globus and Legion, has allowed parameter study application to be run remotely on grids

[51]. Globus is a software tool used for designing Grids created by the Globus Alliance.

This toolkit handles security, resource and data management, interprocess

communication, error detection and portability [1]. Legion, like Globus, provides a user

with an architecture that will allow them to develop Grid applications. Created as a

project at the University of Virginia, Legion provides a system of hosts and objects that

creates an illusion of a single computer while providing access to resources made

available through their network [33]. Tools like these two enable users to write programs

that are designed as parallel applications, allowing applications that could not be

executed before due to their large computational needs to be executed and in a time

efficient manner. It has now become practical for researchers to develop parametric

applications.

2.5.3 Complications with Implementation

 Although parametric applications are now a realistic consideration for conducting

experiments, with the increase in speed and performance of computing, the complexity of

development also increases. The more complex a parametric program is, the more likely

it is that the application will require several layers of parameterization and the repetition

of processing data and archiving it. It is also to be expected that these program

characteristics will lead to the need for branching within the coding which only further

complicates the process as synchronization of the branches and processes will then also

be necessary [10]. This process can be overall difficult and time consuming.

 Furthermore, in order for parametric study programs to be a feasible solution to

the scientific and mathematical communities, portions of the process must be hidden

from the end user, while still allowing them to have some flexibility in the execution of

their application. Each user should be able to define a logical method for how their

process is run, be able to identify which parameters change and the behavior in which

they change, and determine how their process is parallelized. The rest of the process, as

it is beyond what the user should need to understand, should be hidden from them [10].

 Also, as parameter applications become more complicated, the output data of

these processes becomes larger. In order for this data to be useful to the person who is

running the program, the data must be displayed and stored in a comprehensive manner.

Without this key implementation step, the development of a parameter study system is

futile as researchers using the program will be incapable of interpreting, their results and

replicating their findings [10].

2.5.4 Other Parameter Study Applications

 Other than the PSTUDY application developed as part of the SZTAKI PGRADE

system discussed in this paper, there are several other similar applications that have been

developed. Some of these programs (Nimrod and ILAB) will be discussed in the

following section.

2.5.4.1 Nimrod

 Nimrod is an older parameter study program and can thus only run simple

parameter study applications. The program was developed so that it uses an internal

“meta-language” to implement the creation of the parameter study. One of its strengths is

that it can parameterize command line arguments with ease [51]. However, Nimrod can

only be applied to single-level parametric models due to the simplicity of the declaration

language that it uses. With the development of Nimrod/G and Nimrod/O some

improvements were made as these two programs used the grid services provided by

Globus [10].

2.5.4.2 ILAB

 ILAB was developed by NASA to run on the NASA national infrastructure, the

Information Power Grid (IPG). The goal of the NASA IPG project is to “provide

ubiquitous and uniform access to a wide range of computational communication, data

analysis, and storage resources” [51]. The ILAB project implements a parameter study

program for NASA’s IPG that includes a workflow manager [10]. In addition, ILAB

supports four job modes – execution solely on the local machine without a scheduler,

execution on a cluster without a scheduler, execution on a cluster with a scheduler, and

execution on a cluster with the assumption that Globus middleware and a PBS scheduler

are being used [10]. However, the ILAB software is limited to the complexity of

Computer Aided Design (CAD) which it uses to display output and that does not support

nested levels [51].

3 Methodology

 Prior to implementing our Parameter Study Module, we planned our development

process in order to efficiently spend this phase of our project. During this time, we

determined what technological tools and in what languages our Module should be

written. Furthermore, we determined how our interfaces should look and behave. Our

decisions are explained in detail throughout our Methodology.

3.1 Technologies Involved in Implementation

In order to successfully design and integrate a Parameter Study interface for the

SZTAKI PGRADE system, the interface developed had to have a similar look and feel to

the existing system. In addition, there had to exist a seamless edge between both the old

and the new interface. In order to fulfill these design tasks, technological choices had to

be made regarding how to implement the client and server side interfaces. In the sections

that follow, the tools that were chosen are described and reasons for choosing them are

explained.

3.1.1 Java Server Pages

Java Server Pages (JSP) is a technology used for the creation of dynamic

WebPages. An extension of the Java Servlet technology, the JSP package provides a

method of imbedding Java code into HTML WebPages. In addition to supporting

traditional HTML tags, JSP allows the programmer to define their own tags to be used

within a JSP page. Furthermore, applications that are written in JSP are executable on

nearly every computer platform [18].

3.1.1.1 How JSP Works

As mentioned above, JSP technology is an extension of the pre-existing Java

Servlet technology. In fact, once accessed by a user, JSP files are complied into a Java

Servlet class. This process involves the use of external software known as Tomcat.

Tomcat is an open source program that implements Java Servlet and JSP technologies

enabling them to be viewed on the internet [6]. The Tomcat server compiles the JSP

code and generates the Java class by wrapping the HTML portions of the JSP file into

Java output statements [6]. Then, when the JSP file is accessed from an Internet browser,

the Tomcat server compares the modification timestamp on the JSP file and the

timestamp on the compiled file and recompiles the JSP file if the modification timestamp

is newer than that of the compiled file [6].

Tag Meaning

<%-- … --%> Comment

<%! … %>

Declaration of variables or Methods

<%@ %> Include files, define attributes and tag libraries

<%= %> Convert value of expression to string and write to output

<% %> Code

Table 1 JSP Tags

As mentioned above, JSP supports using HTML tags, user defined tags and Java

code within the same file. In order for this process to work successfully, JSP defines

special tags in order to distinguish between different forms of code. In addition to HTML

supported tags, there are five other usable tags notwithstanding user defined tags and the

inclusion of a tag library. These tags can be found in Table 1 shown above [6].

3.1.1.2 Alternatives to JSP

Overall, JSP is classified as a server side scripting technique. Included in this

classification with it are technologies such as Active Server Pages (ASP) and PHP

Hypertext Pre-Processor (PHP). ASP was designed for Microsoft Web servers. Due to

this, ASP supports more languages than JSP, which only supports Java. These languages

include JScript, VBScript, and C# in addition to other .NET languages. However,

although the intended design of ASP allows ASP to support more languages that JSP, it

also limits the platform compatibility to only Microsoft Web servers, making it a poor

technology option for this project [9].

PHP is a third server side scripting technology. Scripting in PHP, unlike ASP and

JSP, is done using a language written solely for use by PHP scripts. Although normally

not an issue, the lack of support for Java by PHP makes PHP a poor option for this

project as integration between the new Parameter Study Manager Portlet and the pre-

existing PGRADE Portlet would be difficult [9]. For this reason, although PHP is

supported on multiple platforms, it was not chosen as the method of implementation for

this project.

3.1.2 Portlet Technology

As defined by Wikipedia, Portlets are reusable web-based components that

provide information to Portal users [43]. Further defined by IBM during the development

of the WebSphere Portal, a Portlet is defined as "visible active components users see

within their Portal pages... In the simplest terms, a Portlet is a Java servlet that operates

inside a Portal" [15]. Portlets are overall a new method of developing applications for the

web. Due to their young age, there is no standardization as of yet, although steps have

been made towards standardization with the release of Java Specification Request (JSR)

168.

Although Portlets in their simplest form are Servlets that use JSP to create their

pages, there are improvements in the Portlet technology that do not exist in Sevelet

technology. Servlets, when serving requests, use two functions a “doGet” and a “doPost”

which work in the same manner as the GET and POST requests in HTML. Portlets

however, implement these methods through the Portal server rather than through the Web

browser. Portlets also have a better logging system then Servlets and features that are not

available in Servlet development, such as built in support to change the JSP page by

device and the ability to treat user interactions as action events similar to the model used

in Java programming [15]. Portlets were chosen as the implementation technique of

choice for the web based server side interface due to ease of using Portlets with JSP and

because the existing PGRADE Portal uses this technology.

3.1.3 GridSphere

To further extend the capabilities of the project, the Portlet technology will be

implemented in conjunction with the GridSphere Portal [19]. GridSphere is a project

whose objective it is to develop a standards based Portlet framework that will provide

Portlet developers with a complete Grid Portal development application. The GridSphere

Portal utilizes the Grid Application Toolkit (GAT) developed as part of the GridLab

Project. The GridLab Project, of which GridSphere is a member, aims to create a method

through which Portlet application developers to design more powerful Portlets [19].

 The GridSphere Portlet is the encapsulating Portlet for all of the existing

PGRADE Portlets. Through the use of GridSphere, Portlets that exist as part of the

GridSphere project do not need to be re-implemented by PGRADE developers. One use

of the GridSphere technology within the existing PGRADE Portal is the execution of the

“Administration” tab which handles the management of user accounts. As the existing

PGRADE Portal system utilizes the GridSphere project, our Parameter Study Project

does as well.

3.1.4 Java Swing

3.1.4.1 History of Swing

Swing was a project started in 1996 by Sun Microsystems to build up their existing

GUI toolkit, the Abstract Window Toolkit (AWT). AWT was created around the concept

of widgets, or small components, within a GUI that the user interacts with. The main

problem with the AWT implementation was that it relied upon heavyweight components.

Heavyweight components are widgets that rely on native peers within the local OS for

their look-and-feel. This means that a GUI created using AWT would look different on

almost every different operating system it was run on. This caused problems for

developers since they had little control over the look of their components. Often this

would lead to extensive cross-platform code fixes, which seriously hampering

development time. The final problem with AWT was that these cross-platform

incompatibilities made a common application GUI almost impossible. This directly

contradicts what the Java programming language was developed for, a cross-platform

language.

The new Swing GUI design implementation fixed these problems by changing to

more lightweight components. These components were developed using two new design

models -- the Delegation Event Model and the Pluggable Look-and-Feel Model. These

new design models were a variant of the Model-View-Controller Model. The Model-

View-Controller design model operates around three design pieces. The Model is the

element that manages the state of the component, the View is the visual representation of

that component, and the Controller decides how the user can interact with the component.

The Pluggable Look-and-Feel model is “Pluggable” because it allows the application to

change its entire look-and-feel during runtime. It does so by allowing the entire

component tree to define its look-and-feel dynamically through widgets mimicking

design schemes. The final design model necessary, the Delegation Event Model, was

actually developed prior to the development of Swing. It focused on moving away from

the current chain based model of events where only components could handle events and

an event was passed down the chain of components until it was either consumed or

reached the root. The new model created three new elements, events, sources, and

listeners. Events are the actual user interactions being performed, sources are the GUI

components firing the events, and listeners are attached to components to handle the

events specified to them. Using these new design models Swing was able to move away

from many of the problems inherent in the AWT components. The final compatibility

issues were resolved by using only pure Java code to create the components, thus pulling

them completely away from reliance on native components and code. [7]

3.1.4.2 The Use of Swing Within the Portal

The current GUI system within the P-GRADE Portal uses Java Swing components

for all workflow, job, port, and miscellaneous editing windows. This allows the Portal to

hold cross-platform compatibility within the look-and-feel of all of its GUIs. For this

project many of these GUIs were extended to implement the additional GUI components

required by a parametric study. To maintain this level of cross-platform compatibility,

only Java Swing components were used in the creation of the new extended GUIs.

3.2 Editing Section

The editing section’s specific tasks were to extend the current workflow editing

structure and GUI to implement the new addition of parametric study addition. This was

to be completed by extending the workflow editor, port definition, and job property

dialogs and also to create a new parameter set generation dialog for defining parametric

key values.

 The dialog extensions called for:

1. A new parametric input port to be added to the job icon within the

workflow editor window

Figure 3.1 Suggested Parametric Input Port Representation in the Workflow Editor Window

2. A GUI extension within the port property dialog to allow for

parametric input keys to be defined

Figure 3.2 Suggested Parametric Extension of the Port Property Dialog

3. A GUI extension within the job property dialog to allow for the

number of key values used within job execution and their order within

the Cartesian product to be defined

Figure 3.3 Suggested Parametric Extension of the Job Property Dialog

The parameter set generation dialog is a new dialog opened from within the port property

dialog to define the values for a parametric key. This new dialog allows for the user to

Figure 3.4 Suggested Parametric Set Generation Dialog

define the key type (INT, REAL, or CHAR), format (free or bound), and the values for

the key. The values for the key can be generated in four different ways. In the first

method they can be generated through the user entering a set expression. A second way

allows the values can be generated by the user specifying a local file to use that contains

the set expression. Both of these methods call for a special delimiter character to be

specified by the user. A delimiter is a special character used to separate two pieces of

data. The third method uses a simple for-loop structure to define the range of values by

allowing the user to enter the from, to, and iteration values. The fourth and final method

for key value generation uses an internal random number generator to which the user

supplies a seed number to. This method also requires the input of the number of cases to

compute, and from, to, and iteration values which are used for mapping the range in a

linear way.

3.3 The Parameter Study Manager

 To create a seamless edge between the currently existing PGRADE system and

the additional features created through this parameter study project, we decided that the

Parameter Study Manager should exist as a new tabbed pane in the old PGRADE Portal

design. This tabbed pane was designed to look similar to the existing Workflow pane

allowing old users to feel comfortable with the new features almost immediately while

lowering the learning curve for people who are new to the system.

Figure 3.5 Proposed Parameter Study Manager Design

 Like the existing Workflow tab, the planned Parameter Study tab was designed

with a table that will contain a list of the current user’s existing Parameter Study jobs (see

the above Figure 3.5). As a user submits, attaches, and deletes jobs, this table refreshes

in order to insure accuracy. Furthermore, in addition to listing the names of each of the

user’s jobs, the table includes other basic information about the job such as its status, the

full set of the Cartesian product for that job, the number of instances of that job that have

been submitted, the number of instances that have failed, and the number of instances that

have finished. In addition to this basic information about a job, more information about

the Parameter Study is accessible through the “Detailed” button which brings up a second

view of the Parameter Study Manager.

 The Detailed View of the Parameter Study Manager pane includes information

regarding each of the parameters whose values can be changed from one instance of a job

to another. In addition to the name of the parameter, information regarding the overall

Figure 3.6 Proposed Parameter Study Manager Detailed View

range of values; the range of values currently being chosen from for each instance,

statistics regarding the number of successful, failed, and currently running tasks, and the

hosts on which the computations that use the parameters are running are displayed.

Through this window, the user can also submit (or attach) their job, view the graphical

results of their job, and abort the job. In addition, if the job is a ranged job, the user can

re-submit the entire job and fill in information regarding the hosts. A visual

representation of this design is shown above in Figure 3.6.

 In order to implement the aforementioned GUIs in a manner that reflects the

current design while allowing for the proposed design to be successfully completed,

Portlets were chosen as the implementation technique. This technique, already used in

the PGRADE system, allowed the new GUIs to look as much like the old ones as

possible especially when it is taken into account that a Portlet implementation supports

the usage of the existing PGRADE Portal cascading style sheet (CSS). In order to create

these Portlets, JSPs were written and called through the Parameter Study Manager’s

Portlet class. In addition, a bean class was created for the Parameter Study Portlet. This

class stores useful functions necessary for the implementation of the Parameter Study

Portlet.

3.3.1 Development of the Parameter Study Manager

In order to create the server side interface that is the Parameter Study Manager,

the first task that had to be completed was the creation of the tab itself. This required

editing three preexisting Extensible Markup Language (XML) files so that these

documents referenced a new Portlet which, in following the naming standards established

by the SZTAKI development team, are called the PStudyPortlet. This Portlet was

designed to mimic the current PGradePortlet. This was because the role the Parameter

Study Monitoring tab fulfills relates to the Parameter Study Module in the same manner

that the role of the Workflow tab corresponds to the PGRADE Portal.

Once the Portlet itself was created, a JSP file was written that displays the initial

window. This window, designed to look like Figure 3.5, was temporarily written with the

entries for the Parameter Study table hardcoded. This changed during the integration

phase of our project when our interfaces were joined with the applications developed by

the Development of Algorithms on the Grid MQP team with whom we have worked in

conjunction. Once integration was completed this table became a dynamic listing of the

current parametric jobs that a given user has submitted for execution.

In addition to the main JSP file, other secondary JSP files were created to handle

events that result from user interactions with the aforementioned main interface. One of

these JSP files handles the detailed view of the Parameter Study Manager. This interface,

whose importance ranks near that of the main interface, will be designed to look like

Figure 3.6. JSP files were also created to create a user friendly system. These files

include, but are not limited to, a help page, and confirmation of submission, abortion, and

deletion.

A bean class was also created to be used by the PStudyPortlet class. This class

stores standard functions that are necessary for the Parameter Study class. These

functions are be implemented as a bean so that future Portlets that wish to interact with

the Parameter Study jobs can do so without rewriting these basic functions. Furthermore,

this bean class extends the existing PGradeBean so that functionality that the two beans

share, such as storage of the username, did not have to be duplicated. This class,

continuing with the naming style of the PGRADE Portal, was called the PStudyBean.

4 Implementation

Once a design for the project was completed, implementation of these tasks was

begun. The implementation, as planned in the planning portion of our project, was

completed in two phases – the development of the extension of the Workflow Editor of

the PGRADE system to allow for parameter study and the creation of a graphical

Parameter Study Manager. The process of completing these two phases of the Parameter

Study Module is discussed in detail below.

4.1 Implementation of the Workflow Editor Section

4.1.1 Parameter Set Generation Dialog

Development of these extensions began first with the parameter set generation

dialog in an offline form as this allowed for a quicker implementation with integration

following at a later date. The parameter set generation dialog seemed a logical choice for

the first piece to implement as it was the only completely new dialog to be created and

thus would take the greatest amount of development time.

 It was initially thought that this dialog was going to be created manually, but due

to design time constraints the Visual Editor plugin extension for the Eclipse development

tool was chosen to speed up development. The Visual Editor plugin allowed for visual

development of the GUI, which greatly sped up design and testing phases. As with any

visual editor though, this added a good amount of additional cleanup time as the code

needed to be reworked and optimized for better performance and readability. [12]

Figure 4.1 Implemented Parameter Set Generation Dialog

 One major design issue encountered within this piece of development was the

data structure or object to be used for the keys and their generated values. The initial

suggestion was to create a linked list containing a designation as either a “P – Plain Text

Node” or “K – Parametric Key Node”. The plain text nodes would then link to a string

object while the parametric key nodes would link to an array containing the keys values.

The final implementation differed from this suggestion. The parametric key list and

parametric keys were created as classes with the parametric key list object extending

Java’s LinkedList class. This allowed for close functionality with the initial suggested

implementation while also allowing greater modularity. After generation of this new

object to contain the specified structures the integration of this object into the middleware

piece of the parametric study addition had to be addressed.

 Since the parameter set generation dialog lives entirely within the client side of

the application, the corresponding objects and data files must be uploaded to the server

before they can be accessed and used by the middleware layer. As such parsing methods

to pull the necessary data from the new key object for uploading were necessary. Three

such methods were implemented – one to pull out all of the keys, a second to pull out

their generated values, and a third to parse the two together into a delimited text string for

uploading. The third one was the main parsing method necessary for integration but the

other two were helpful to local access methods within the other dialogs. The delimited

text string representation was necessary as all transfers were done through an HTTP

transfer layer over TCP/IP.

 The second major design problem encountered was exactly where to place the

parametric key class objects within the object hierarchy. The first implementation had

the objects entirely within the port property and parameter set generation dialogs but this

did not allow visibility to the workflow editor itself. To fix this problem the parametric

key class objects were moved up into the new parametric input port class to allow for

visibility within all of the necessary dialogs.

4.1.2 Remaining Dialog Extensions

 After the set generation dialog was created the ability to access the dialog from

the workflow editor and the other dialogs was the next logical implementation step. The

first piece to implement was to add the new parametric input port icon to the job icon

within the workflow editor. This was accomplished by first creating a new parametric

input port class extending the current input port class. The new class contains the

parametric input file, the parametricKey class, and a linked list representation of the input

file text and the parametric keys and their values.

This new parametric input port object is defined within the new extended

parametric port definition dialog. The new dialog allows for defining the parametric

input file, left and right delimiters for input file text parsing, direct editing of the input

file text, and allows for accessing and defining the values for each parametric key by

opening the parametric set generation dialog upon the user double clicking a parametric

key within the GUI.

Figure 4.2 Implemented Parametric Port Property Dialog

A new parametric job class was now necessary to implement the connection between the

workflow jobs and their new parametric input port.

 The new parametric job class extends the current job class allowing for greater

modularity within the code. The main extensions within this new class are the ability to

set the order of the parametric keys within the Cartesian product for execution

scheduling, the ability to submit all or a specified number of parametric key/value

combinations, and the connection to the new parametric input port. The parametric job

object and the new extended functionalities mentioned above are accessed through a new

parametric job property dialog.

Figure 4.3 Implemented Parametric Job Property Dialog

4.1.3 Integration of the Editing Section

 With the connection hierarchy and new parametric classes and dialogs now

created, integration into the P-GRADE Portal and the other project sections began. This

started with the development of communication standards between the new editing

section windows and the middleware layer created by the Development of Algorithms on

the GRID MQP team.

The main communication link is established during saving/uploading of the

current workflow in the parametric workflow editor. A new workflow file format was

established to define the new parameters necessary for later execution of the parametric

workflow. This new workflow file was structured as shown on the following page-

workflow "WorkflowName"

{

}

{

"JobName" JOB_TYPE (is_instrumented=true/false;monitor=true/false)

"[Location of the executable]"

{

""

}

"LINUX"

{

"&&##!!HOSTNAME!!##&&"

}

 PortNumber "[Port File Location]" PERMAMENT/VOLATILE

INPUT/OUTPUT

}

{

"JobName" X Y

}

The next communication standard necessary was for the content of the parametric

input file, and the parametric key list file. The final representation was that the

parametric key list file would be structured as-

“left_delimiter;right_delimiter;key_name1,value1,value2,…;key_name2,value1,value2,…”. The

included left and right delimiters were used to then parse out the key names from within

the parametric input file. This allowed for all transmissions to be done cleanly and purely

via text strings.

4.2 Implementation of the Parameter Study Manager

As mentioned earlier, the Parameter Study Manager was implemented as a

collection of Java files and JSP files. Integrated together, these files formed a visual

method of interaction with the PStudy Module for the user. Once these files were

created, they were integrated with the code developed by the Development of Algorithms

for the GRID MQP team to create a fully functionally parameter study application.

4.2.1 Creating a Communication Method Between the JSPs and the
Portlet

When developing with JSPs, there is no method to pass variables directly from

one JSP to another. In order to maintain a concurrent version of the Parameter Study

data, the active JSP must send information back to the Portlet which invoked it and, once

the data has reached the Portlet, the Portlet must save this information in a manner that

allows it to pass the data along to future JSPs. For example, if a user submits a Parameter

Study Job through the index JSP, in order for the other JSPs to register the job’s state

change, the index JSP must register the submit action with the Portlet. The Portlet, in

turn, must save this state change and, when necessary, pass the updated data to other

JSPs, such as the JSP that loads the detailed view.

To maintain an accurate data set, the implemented PStudyBean was used. By

declaring a single bean variable globally in the PStudyPortlet, each Portlet function was

able to access the bean’s variables such as the current job list id. This single bean entity

was then updated as user actions were preformed. In addition to being accessible by each

function in the PStudyPortlet class, this same been entity could then be made accessible

by each of the JSPs by having the function that instantiated the next JSP call

PortletRequest.setAttribute(). Although the JSP cannot update the bean once it has been

invoked, it can fake this action by passing parameters back to the Portlet through hidden

fields. The Portlet can then receive this data through the PortletRequest.getParameter()

function and update the bean’s data accordingly. Both of these two functions

(getParameter and setParameter) implement HTML functions in their low level

implementation.

4.2.2 Determining the Range of Indexes for Submission

In order to submit a parameter study job to the job manager, a range of indexes must

be passed to the PStudyJobList class’s submit function. This range of indexes represents

the array of values of each key (or parameter) which should be executed. This range of

indexes, however, does not contain the actual values, but a listing of the ids of the values

(based upon their location in the internal array in which the values are stored) in every

possible combination of the ids. For example, if a parameter study contained three keys;

72 13 54 8

.28

.31

1
50

100

length, width, and height; and these keys had values that could be .28 or .31; 72, 13, 54,

or 8; and 1, 50 or 100 respectively, this range of indexes would be [{0,0,0}, {0,0,1},

{0,0,2}, {0,1,0}, {0,1,1}, {0,1,2}, {0,2,0}, {0,2,1}, {0,2,2}, {0,3,0}, {0,3,1}, {0,3,2},

{1,0,0}, {1,0,1}, {1,0,2}, {1,1,0}, {1,1,1}, {1,1,2}, {1,2,0}, {1,2,1}, {1,2,2}, {1,3,0},

{1,3,1}, {1,3,2}]. A graphically representation of this is shown in Figure 4.4. Although

an easy list to produce for a specific circumstance, this range becomes difficult to

innumerate when one realizes that for each parameter study not only can the number of

keys vary, but the range of acceptable values for each of these keys can also change from

study to study.

 In order to develop an algorithm that would produce this list of numbers for all

situations, we first analyzed the situation mathematically. According to combinatorics, if

there are n objects there are n! ways in which these objects can be arranged. Applied to

this problem, this statement becomes more complicated. Here we have n distinct sets of

objects and one object from each set must be included in the final result. As the order of

the sets within the final result is fixed in order to provide accuracy when submitting, the

number of final permutations in based solely on the changing parameters. Applying the

combinatoric theorem stated above, this indicates that if there are n parameters, and each

parameter have a difference between there maximum and minimum values of mi where i

goes from 0 to n-1, the number of ways to arrange the indexes of these values is (mi *

mi+1 * mi+2 * … * mn-1). Although this calculation is easy enough in the present

circumstances, enumerating and storing each of these permutations in a manner that can

be used to submit the parameter study is a little more computationally costly.

One necessary characteristic of the algorithm designed to solve this problem is that it

must choose an index value for each key between some minimum index value and some

maximum index value. In designing our algorithm, we choose to use a for-loop to

execute this process. By using a for-loop, we ensured that every possible value within a

given key’s range of indexes is seen by the algorithm. However, it is not enough for our

algorithm to know ever index within the range of each key. Our algorithm needs to pair

each of these indexes with every other key’s range of index values. In order to complete

this task, each key’s for-loop was imbedded within the for-loops of the other keys. For

the example given earlier, the puesdo code would be as follows:

 for i = 1 � i = 2

 for j = 2 � j = 4

 for k = 4 � k = 5

 permutation = i, j, k

However, as the number of keys can vary from job to job, it cannot be known prior to

execution how many for-loops to embed. To solve this problem, we chose to design our

algorithm to be recursive. By writing our algorithm in this method, a for-loop can be

executed for each key without limiting the number of keys a user can have. The code for

our final algorithm can be found in Appendix A.

4.2.2.1 Evaluation of the Range of Indexes Algorithm

The first computation the algorithm requires is the calculation of the maximum

number of permutations that can be formed by the range of indexes for each key. In

order to compute this number for an arbitrary number of keys, this product is formed

through the implementation of a for-loop. This for-loop performs one iteration for every

key therefore it runs in n time where n is the number of keys.

The second computation preformed by the algorithm embeds a for-loop for each key

in the parameter study. Each for-loop runs from the minimum index to the maximum

index for its respective key. If each of these for-loops has a range mi where i corresponds

to the key index, beginning at 0 and incrementing by one up to n, the innermost for-loop

will execute for (mi * mi+1 * mi+2 *… mn-1 * mn) iterations. This product, called the

Cartesian product, will grow depending on the number of keys and the range for each

key. In test runs of this algorithm, for small numbers the execution took a unnoticeable

number of milliseconds. However, for larger numbers, such as 20,000 the lag in

execution was noticeable. For the purposes of this Parameter Study Module, however,

numbers this large are not factors in execution time as users are limited to a Cartesian

product of no more than 10,000 which still executes in a reasonable time.

4.2.3 Creation of Reusable Code

As the Parameter Study Module of the PGRADE Portal will continue to be

developed after the completion of this project due to new developments in this research

area, it was determined that the internal functions of the PStudyPortlet and the JSP files

should be as reusable as possible. This implementation choice will allow future

developers to make changes to the code without having to change the same lines

numerous times. However, in order to implement the submission, abortion, and deletion

of both a ranged and single Parameter Study job from the detailed view, a global data

type had to be declared that would maintain the user inputted range value for each key.

This variable allowed the user confirmation to be handled by one function for ranged

operations and a second for the single set operations but the actually task, either abortion,

deletion, or submission, to be handled by a single function.

Three variables were declared in the Java bean to handle this design issue. Two

of these were int[]. One of them held the minimum values selected and the other the

maximum. The third variable held the String[] that contained the entire listing of

combinations required by the back end for submission, deletion, and abortion. Each time

the detailed page is refreshed, or a button is pressed on the detailed page, these variables

are updated.

4.2.4 Displaying the Current State of the Parameter Study

One important aspect of the Parameter Study Manager is its ability to display the

current execution state of each parameter study to the user. In order to complete this task,

a key of states was developed. Each state – running, submitted, initialized, error and

aborted – were assigned their own font color and background color. The job state re-

submitted was considered the same as submitted for these purposes. These colors were

each stored in an array in the index corresponding to the number version of their state.

This allowed the user to easy recognize the status of their study with limited confusion.

The keys chosen are shown below in Figure 4.5.

Figure 4.5 Keys for Indicating the Status of a Parmater Study

4.2.5 Removal of Designed Features

During the course of integration, it was determined that two features originally

included in the design of the Parameter Study Manager should not be included in the final

implementation. One of these features was the “Hosts” button. This button was

originally designed to allow a user manually decide on which host each instance of the

parameter study should be executed. However, as a parameter can have numerous

instances, this task could become tedious. In addition, if the user were to make a poor

decision, their actions would make the execution less than optimal. Instead, the back end

was implemented in a manner that dynamically distributed each instance to a host. The

load balancing algorithm used decides on each host not at the beginning of executing, but

as jobs finish and resources free up. This insures the host being assigned never has

finished with all previous instances before another one is added to its queue. However,

although this button has been removed from the tab, information regarding the hosts can

be added to the detailed view’s table allowing the user to know which host is running a

particular key.

A second button which has been removed is the “X-Y tab” button. Rather than

developing this feature as another portion of the Parameter Study Portal, it was

programmed as a separate Portal accessible through its own tabbed pane. This allowed

this feature to be implemented not only for parameter studies, but regular workflows as

well. The development of this portion of the module was completed by the Development

of Algorithms for the GRID team and incorporated with our project during the integration

phase.

4.2.6 Integration

Once the Parameter Study Manager was completed, it had to be made functional

through implementation with the Portal Back End. In order for this process to be

successful, prior to the beginning of implementation, it was determined what

functionality the back end had to support. These functions included submission of both a

range of index sets and a single index set Parameter Study, abortion of both a range of

index sets and a single index set Parameter Study, deletion of an entire Parameter Study

Job, and resubmission of a Parameter Study given a range of indexes. Stubs for these

functions were created allowing for the Parameter Study Portal to include these functions

before they were fully implemented. Once these functions for these processes were

written these functions were able to be executed without changes being made to the

Parameter Study Manager.

In addition to integrating with the back end, the Parameter Study Manager had to

integrate with the Workflow editor. The “Attach” buttons and the “Parameter Study

Editor” button both call the Workflow editor allowing a user to create a workflow for a

parameter study job. However, unlike integration with the back end, standards did not

have to be determined beforehand as the Workflow Editor operates as an applet, which a

JSP can easily initiated.

5 Testing

Throughout the course of our development phase, we locally tested our project

ensuring that each section worked before implementing the next state. Once this had

been done, integration with the Development of Algorithms for the GRID team was done.

Following our integration we tested the entire project as a working module. Our methods

of completing these stages of testing are further explained in the sections that follow.

5.1 External Testing

One method of testing used in development of this project was external testing.

When executing this form of testing, code was removed from the Java project and copied

into a separate Java application. In the development of the Parameter Study Manager this

allowed Java code to be tested without involving communication between the Portlet and

the JSP. Through this manner we were able to determine whether a segment of code was

failing due to communication issues between the JSP and the Portlet or due to logical

errors in the Java code. This is necessary as JSP programs upon compiling and executing

does not often meaningful error messages; most of the time either the webpage does not

display or an “Attempt to invoke invalid Portlet action” error message is displayed. One

area in which this method of testing was used was during the development of the

Evaluation of the Range of Indexes Algorithm. The test files for this code segment can

be found in Appendix B.

External testing was also used heavily for the editing section of the parametric

study Portal extension. This allowed testing of the look-and-feel of the GUIs as well as

inter-functionality prior to integrating them into the full P-GRADE Portal system. Many

problems located too late after trying to compile it into the system using ANT could be

quickly spotted this way and corrected prior to taking the time necessary for transfer to

the Portal testing environment.

5.2 Creation of a Local PStudyJobList

A second method of testing involved the creation of a local version of a

PStudyJobList instance. This involved creating dummy PStudyJobs, adding them to the

fake PStudyJobList, and setting the respective variable in the PStudyBean to this

PStudyJobList. By implementing these temporary local test variables, basic functionality

of the Parameter Study Manager could be tested without waiting for other portions of the

project to finish.

In order to be useful testing objects, the dummy jobs were created with a various

number of keys and with each key having a different number of values. Furthermore,

grids were set for each of the jobs so that certificate validation could be checked. These

features allowed the dynamic formation of the tables on both the Parameter Study

Manager window and the Detailed View to be checked. In addition, it allowed the

verification JSP and the window redirections to be validated prior to the calling of the

back end’s functions. This limited the number of locations errors could exist when

integration took place.

These testing variables also made it possible to work without having an active

Workflow Editor. Had these variables not existed, the Parameter Study Manager’s

functionality would not have been able to be tested until the very end of the project at

which point it would have been too late to fix any bugs found.

This phase of testing was the most useful as it allowed errors in the JSP code to be

found. In addition, it enabled progress to be made without having a functional parameter

study application. Furthermore, it allowed us to test every combination of buttons that a

user could and would press in order to determine if the right event happened at the right

moment.

5.3 Creation of a Local ParametricWorkflow Object

Due to difficulties integrating the new extended parametric study GUIs into the P-

GRADE Portal a local testing system was developed using dummy ParametricWorkflow,

ParametricJob, and ParametricPort objects. This allowed for dry run tests through the

extended GUIs using sample data to test their functionality.

Sample workflows were created to mimic possible scenarios encountered by the

GUIs in actual external use. These workflows consisted of many different possible

combinations of jobs, ports, parametric keys, and value combinations allowing for

extensive testing of the system. One example configuration was one created to mimic the

Mandelbrot program created by the Development of Algorithms for the GRID MQP

team. Using this system we were able to ensure that the existing foundation for the

parametric study GUI worked correctly and could easily be expanded and integrated

further in the future.

5.4 Monitoring of Trace Files

Testing was also done using trace files. Prior to our implementation, The

PGRADE Portal allowed output statements to be written to a file name Catalina.out.

Through this file, details about how the system was operating could be seen. During the

development and integration phases of our project, we took advantage of this file. By

adding output lines to our program, we could monitor the execution steps of the system.

The allowed us to determine how data was being received from functions enabling us to

limit where errors were occurring. This was especially useful when ensuring the

Parameter Study bean was correctly passing information to and from the JSPs.

5.5 Integration Testing with the Mandelbrot Set

Once our project was integrated with the Development of Algorithms for the

GRID team, the entire system had to be tested to ensure each portion of the module was

operating correctly when combined with the other sections. During the course of the

development of their project, the Development of Algorithms for the GRID team

developed a parameter study that solved a Mandelbrot equation and produced graphically

output for the program. The Mandelbrot Set is created through the following function:

Zn+1 = Zn
2
 + c where Z0 = 0

The c represents any complex number. This function is recursively evaluated for the

desired number of iterations. Based on whether for a particular value the function

converges or goes to infinity, a graph can be colored where each color represents a

different rate of convergence [49]. An example output for a particular Mandelbrot set is

shown in Figure 5.1

Through the Mandelbrot program, all aspects of the module could be tested. Prior

to this form of testing, only local hardcoded PStudyJobLists and PStudyJobs were run

through the program. This did not some features to be tested, such as the refresh

operation and whether data changed in the index view was updated on the detailed view

(and vice versa). In addition, prior to this, it was impossible to test whether the

aforementioned state keys changed correctly for all possible states. Furthermore, full

integration testing could only be completed through the execution of an actual

application. Overall, this stage of testing was a complete success.

Figure 5.1 Output from a Mandelbrot Set

6 Conclusions

After designing, implementing, integrating and testing our project, we were able to

implement the majority of a Parameter Study Module for the PGRADE Portal. Paramter

Study applications are just beginning to be developed. Due to this, there are additional

features that can be added to our project, but that due to time constraints, are not currently

implemented. Our recommendations for these features are described below.

Furthermore, in addition to recommending future additions to our module, we have made

recommendations to the Sztaki development team for future improvements to the overall

system.

6.1 The Final Parameter Study Manager

After the completion of the implementation and testing stages of our Parameter

Study Manager development phase, our project resulted in a complete Parameter Study

Manager interface. This design, although slightly different than the original plan, is a

working model of each of the features. Submission, abortion, deletion, and re-submission

of jobs all seem to successfully operate. In addition, the interface is capable of

displaying messages to the user and displaying confirmation windows for most user

actions making it a very user friendly design. Furthermore, information regarding each

state is displayed to the user accurately and updated upon refresh allowing the user to

always have an up to date status report on their job. Overall, the implementation of the

Manager was a success. Final screen shots of this GUI can be found in Appendix C.

6.2 The Final Parameter Study Editing Section

Following the final testing and integration phase the editing section GUIs and

supporting classes created a solid foundation for future development in this area. A

complete Parameter Set Generation Dialog was developed with all main functionality

intact. Also the necessary underlying ParametricKey, ParametricKeyList, and supporting

classes were developed and supported all necessary functionality. Foundation classes and

GUIs were created for the remaining dialogs and GUI extensions and implemented most

of the functionality required.

6.3 Future Implementation

As parallel parameter study applications are a relatively new area of development,

there are several functionalities that can be added to our current Parameter Study Module.

On the Parameter Study Manager’s detailed view, there is an unimplemented buttons that

exist in the original design -- the detailed view for a single set of indexes. Also, future

work within the Portal GUI is necessary to integrate the Parametric Study Editor.

6.3.1 The Detailed View of a Single Index Set

The “Detailed” button that is linked to from the Parameter Study Detailed View

would work for a single set of indexes. A user would select values from the “From”

column and specific information regarding that particular instance of the Parameter Study

job would be displayed. Information that could be viewed from this page would be the

particular host that instance is running on, the state of that instance, and the output file for

that instance. It is recommended for consistency reasons that this section be displayed in

the form of a table.

6.3.2 Full Integration of the Editing Section

The editing section, while providing a solid foundation for later development, was never

fully integrated into the P-GRADE Portal due to time constraints. Future work in this

area should focus on greater modularity between the base Portal GUI and the Parametric

Study GUI. After this modularity is established then integration of the two systems

should be much faster to accomplish and should result in better system interoperability.

6.4 Recommendations for Szatki

As new members of the Sztaki development process, we were able to see the

current development process from an outsider’s perspective. This allowed us realize

possible improvements in methods of implementation that a veteran of the team may not

consider. In order to improve future development by new members of the Sztaki team,

we have described these improvements below.

6.4.1 Development of a Sztaki Defined JSP Tag Library

One of the advantages of writing JSPs is the ability to define a tag library. This

allows one to make commonly used designs automatic. Currently, the PGRADE Portal is

implemented using only the GridSphere Portalui library. However, close inspection of

this library revels that although it implements common HTML features, such as tables

and listboxes, it removes functionality from these tags. For example, in current versions

of HTML, the width of a button can be set to a defined length. This allows all buttons on

a page to be the same size improving the look of the GUI. However, the GridSphere tag

library does not allow for this element. For this reason, each button on the detailed view

of the Parameter Study Manager is a different size. If, instead of using the GridSphere

library, a PGRADE Portal library was defined, these HTML supported features could be

created. Furthermore, common necessities, such as validation of text fields, could be

defined in a tag. This would allow a developer to create numerous textfields that

accepted only integers without having to write a validation function.

6.4.2 External Documentation

The second improvement to the Sztaki development process would be external

documentation regarding how to complete common development operations. Such

operations would include setting up a grid on the PGRADE Portal, how to create and

debug a Portal, and what information is stored in each trace file. These tasks, while

simple, are not known to new developers. In our situation, we discovered how to

complete these tasks late in our development process. If external documents had been

presented to us regarding these matters at the beginning of development, the overall

process would have been much smoother.

6.4.3 Code Modularity

One final improvement to the Sztaki development process would be to highly

encourage greater code modularity among their developers. Development of the

parametric study extension of the workflow editor would have gone much smoother and

quicker if the functionality and physical representation of the components had been

modularized according to common coding practices. It is always a good practice to

separate an object’s functionality and it’s GUI representation. All functionality though

within the workflow editor was kept directly within the GUI so extension of these classes

was greatly hampered. Any future GUI development for the P-GRADE Portal should

strive to implement this type of code modularity by separating their classes away from

their GUI representations. This will greatly improve any future extensions of the Portal.

Bibliography

[1] About the Globus Toolkit. Retrieved from http://www-

unix.globus.org/toolkit/about.html

[2] About the Institute. (2000) http://www.sztaki.hu/sztaki/about.jhtml

[3] Bailey, A. (2005) Introduction to Java, Part 2 – JSP. Retrieved from

http://www.macromedia.com/v1/handlers/index.cfm?ID=16558

[4] Basten, C., (March, 2002) Random Number Seed. Retrieved from

http://statgen.ncsu.edu/qtlcart/manual/node31.html

[5] Benczúr, A., (2002) DemoGRID - Connecting Heterogeneous Systems to Solve Data

and CPU Intensive Problems. Retrieved from http://caesar.elte.hu/eltenet/

projects/demogrid/index.html

[6] Burden, P. Introduction to JSP. Retrieved from

http://www.scit.wlv.ac.uk/~jphb/sst/jsp/intro.html

[7] Cannings, R., (2000) Java Intermediate Course. Retrieved from

http://cannings.org/oldCourses/JavaIntermediate/swing.html

[8] CERN, (2005) The Grid Café. Retrieved from http://gridcafe.web.cern.ch/gridcafe

/index.html

[9] Comparison of ServerSideScripting Techniques. Retrieved from

http://www.b2bsim.de/documents/wewior/main.html

[10] Currle-Linde, N., Boes, F., Lindner, P., Pleiss, J., & Resch, M. (2004). A

Management System For Complex Parameter Studies and Experiments in Grid

Computing [Electronic Version].

[11] Developing and Deploying Portlets. (2003) Retrieved from

http://docs.sun.com/source/816-6758-10/ch6.html

[12] Eclipse contributors and others, (2004) The Eclipse Project. Retrieved from

http://www.eclipse.org

[13] EGEE: Enabling Grids for E-sciencE. (2005) Retrieved from http://www.egee.hu/

[14] EU Closing In On Transparent Grid. GRID Today 3(3). (January, 2004). Retrieved

from http://www.gridtoday.com/04/0119/index.html

[15] Fred, A., & Lindesmith, S., (February, 2003) The case for Portlets, How to decide if

Portlets are your best option. Retrieved from http://www-

106.ibm.com/developerworks/ibm/library/i-Portletintro/

[16] Gagliardi, F., (2004) DataGrid Research and Technological Development for an

International Data Grid. Retrieved from http://www.datagrid.cnr.it/

[17] Gervasi, O., (2005) Simbex: A metalaboratory for the a priori simulation of crossed

molecular beams experiments. 2005 Retrieved from http://www.lpds.sztaki.hu/

index.php?load=projects/current/simbex.php

[18] GreenSuite Technical Glossary (2005). Retrieved from

http://www.greensuite.com/whitepapers/whitepapers_03.html

[19] Gridsphere Portal Framework, About. Retrieved from

http://docs.sun.com/source/816-6758-10/ch6.html

[20] Gourgoulis, A., Kacsuk, P., Terstyanszky, G., & Winter, S., Using Clusters for

Traffic Simulation

[21] Hall, John F. (1995) Parameter study of the response of moment-resisting steel

frame buildings to near-source ground motions. Technical Report:

CaltechEERL:1995.EERL-95-08. California Institute of Technology.

[22] Hepper, S., & Hesmer, S. (August, 2003). Introducing the Portlet Specification. Java

World. Retrieved from http://www.Javaworld.com/Javaworld/jw-08-2003/jw-

0801-Portlet.html

[23] IST Working Group, (2004) Automatic Performance Analysis: Real Tools

(APART2). Retrieved from http://www.fz-juelich.de/apart/

[24] JavaServer Pages – Apache Tomcat. (2004) Retrieved from

http://Java.sun.com/products/jsp/tomcat/

[25] JGrid: An Integrated Graphical Application Development and Grid Execution

Environment Based on Jini. (2004) Retrieved from http://pds.irt.vein.hu/jgrid/

[26] Kacsuk, P., (2002) Development of Virtual Supercomputing Service Using

Academic Network. Retrieved from http://www.lpds.sztaki.hu/index.php?

load=projects/completed/ni2000.php

[27] Kacsuk, P., (2004) Chemistry GRID and its application for air pollution forecast.

Retrieved from http://www.lpds.sztaki.hu/index.php?load=projects/current/ikta5-

137.php

[28] Kacsuk, P., (2002) Graphical Supervising System for Geographically Distributed,

Heterogeneous Metacomputing Environment. Retrieved from http://www.lpds

.sztaki.hu/index.php?load=projects/completed/otka.php

[29] Kacsuk, P., (2003) Hungarian Supercomputing GRID. Retrieved from

http://www.iif.hu/mszgrid/

[30] Kacsuk, P., Dozsa, G., Kovacs, J., Lovas, R., Podhorszki, N., Balaton, Z., &

Gombas G., P-GRADE: a Grid Programming Environment. Retrieved from

http://lpds.sztaki.hu

[31] Kacsuk, P., Sipos, G., & Farkas, F., (2004) World-wide Parallel Processing by the

P-GRADE Grid Portal Retrieved from http://lpds.sztaki.hu

[32] Klaene, M., Understanding the Java Portlet Specification. Retrieved from

http://www.developer.com/Java/web/article.php/3366111

[33] Lagzi, I., Lovas, R., & Turanyi, T., (2004) Development Of A Grid Enabled

Chemistry Application. In Distributed and Parallel Systems: Cluster and Grid

Computing, Kluwer International Series in Engineering and Computer Science,

Vol. 777, pp. 137-144

[34]Legion A Worldwide Virtual Computer. Retrieved from

http://legion.virginia.edu/overview.html

[35] Lovas, R., Kacsuk, P., Horváth, A., & Horányi, A., (2002) Application of P-GRADE

Development Environment in Meteorology. In Proceedings of the 4th Austrian-

Hungarian Workshop on Distributed and Parallel Systems, DAPSYS 2002, pp.

109-116.

[36] Lovas, R., Kacsuk, P., Lagzi, I., & Turanyi, T., (2004) Unified development solution

for cluster and grid computing and its application in chemistry. In Computational

Science and Its Applications – ICCSA 2004, LNCS 3044, 226-235

[37] [34] Lopez, I., Follen G., Gutierrez, R., Foster, I., Ginsburg, B., Larsson, O., Martin,

S., Tuecke S., & Woodford D. NPSS on NASA's IPG: Using CORBA and

Globus to Coordinate Multidisciplinary Aeroscience Applications [Electronic

Version]

[38] Mazzoni, S., (April, 2005). …Run Parameter Study. Retrieved from

http://peer.berkeley.edu/~silvia/OpenSees/gettingstarted/765.htm

[39] Nabrzyski, J., (2005) GridLab - A Grid Application Toolkit and Testbed. Retrieved

from http://www.gridlab.org

[40] Novotny, J., Russell M., Wehrens, O., (2004) GridSphere and the GridLab Project.

Retrieved from http://www.gridsphere.org/gridsphere/wp-

4/Slides/gridsphere/pdf/GridLabOverview.pdf

[41] Oak Ridge National Laboratory, (2005) PVM – Parallel Virtual Machine. Retrieved

from http://www.csm.ornl.gov/pvm/

[42] PGRADE. (2003) Retrieved from http://www.lpds.sztaki.hu/pgrade/main.php?m=1

[43] Portlet. (January, 2005) In Wikipedia the Online Encyclopedia. Retrieved from

http://en.wikipedia.org/wiki/Portlet

[44] SARA Computing and Networking Services, (2005) Backgrounds of Parallel

Computing. Retrieved from http://www.sara.nl/userinfo/reservoir

parallel_general/index.html

[45] The PGRADE Portal. (2005) Retrieved from http://www.lpds.sztaki.hu/pgPortal20/

[46] The Globus Alliance, (2005) The Globus Project. Retrieved form

http://www.globus.org/

[47] University of Tennessee, (1999) MPI – Message Passing Interface. Retrieved from

http://www-unix.mcs.anl.gov/mpi/

[48] University of Wisconsin-Madison, (2005). Condor High Throughput Computing,

Retrieved from http://www.cs.wisc.edu/condor/

[49] Ward, M., Mandelbrot and Julian Sets. Retrieved from http://davis.wpi.edu/~matt/

courses/fractals/mendel.html

[50] Woller, J., (1996) The Basics of Monte Carlo Simulations. Retrieved from

http://www.chem.unl.edu/zeng/joy/mclab/mcintro.html

[51] Yarrow, M., McCann, K., Biswas, R., & Van derWijngaart, R., (2000). An

Advanced User Interface Approach for Complex Parameter Study Process

Specification on the Information Power Grid [Electronic Version].

Appendix A Algorithm to Determine the Range of Indexes
for Submission Algorithm

Algorithm to Find the Maximum Number of Combinations:

For j = 0 � number of Keys

 numCombinations = numCombinations * (MaxOfKey[6]-MinOfKey[6])

Algorithm to Find all the Permutations of the Key’s Indexes:

 if NumberOfCombinationsLeft == 0

 break

 else

 for i = minNumIndexes[CurrentKey] � maxNumIndexes[CurrentKey]

 ListOfIndexes[CurrentKey] = i

 NumberOfCombinationsLeft = findIndexes(ListOfIndexes)

 findIndexes(ListOfIndexes)

 if NumberOfKeysLeft == 0

 NumberOfCombinationsLeft--

 else

 for i = minNumIndexes[CurrentKey] � maxNumIndexes[CurrentKey]

 ListOfIndexes[CurrentKey] = i

 NumberOfCombinationsLeft = findIndexes(ListOfIndexes)

Appendix B External Testing Code for the Parameter Study
Manager

Testing Code for the Determining the Range of Indexes for Submission Algorithm

public class Tester

{

 private static int numCombinationsLeft = 0

 public static void main(String[] args)

 { tester(); }

 public static void tester()

 {

int numKeys = 3;

 int[] minNumValues = new int [numKeys];

 minNumValues[0] = 0;

 minNumValues[1] = 0;

minNumValues[2] = 0;

 int[] maxNumValues = new int [numKeys];

 maxNumValues[0] = 2;

 maxNumValues[1] = 4;

 maxNumValues[2] = 3;

int numCombinations = findMaxCombinations(numKeys, maxNumValues, minNumValues);

 String[] indexes = new String[numCombinations];

 int tmpNumKeys = numKeys;

 numCombinationsLeft = numCombinations;

findIndexes(numKeys, tmpNumKeys, numCombinations, maxNumValues, minNumValues,

indexes);

 String[] stringIndexes = new String[numCombinations];

 int[] intIndexes = new int[numKeys];

 for(int i = 0; i<numCombinations; i++)

 System.out.println(indexes[3]);

}

Appendix C Screenshots of the Final Parameter Study
Manager

Final view of the index.jsp

 Final view of the detailed.jsp

