
Worcester Polytechnic Institute

Major Qualifying Project

Atlas in the Cloud

Authors:
Zachary Estep
James Megin
Evan Richard

Supervisors:
Dr. Michael Gennert

Dr. Taskin Padir

March 16, 2015

Abstract

This report describes the research, system analysis, design methodology, and testing procedures

that were used to create a Cloud-based robotics development kit. The goal of this project was to utilize

Cloud computing resources in support of the Worcester Polytechnic Institute-Carnegie Mellon University

DARPA Robotics Challenge team. The following report begins with background on the underlying

technologies and the DARPA Robotics Challenge. The report includes a systems analysis and design

methodology. User feedback informed subsequent revision of the original design. The report ends with

implementation details, testing, and the results achieved by the system.

Executive Summary

The goal of this project was to create a Cloud robotics development toolkit to support the Worcester

Polytechnic Institute-Carnegie Mellon University DARPA Robotics Challenge team. The DARPA Robotics

Challenge (DRC) is a robotics competition in which teams compete to complete tasks that simulate a disaster

relief effort. The teams will have access to a ’cloud’ of distributed processors and storage during the final

competition. Utilizing these Cloud resources at the finals would give the WPI-CMU team a competitive edge.

This project provides the WPI-CMU team with a system to run their software and simulations on Cloud

machines. This system will allows the WPI-CMU team to update these Cloud simulations with perception

information from the Atlas robot.

Before this project, the WPI-CMU team did not have the ability to utilize the Cloud resources at the DRC

finals. Accessing these Cloud resources will significantly improve the performance of the team’s software.

The team’s software simulations run much slower than real time, and are important to the operation of the

robot. Improving simulation performance at the DRC finals will decrease the time it takes for the team to

complete challenge tasks.

Simulations are also used during the WPI-CMU team’s development process. The system gives members

of the WPI-CMU team access to virtual machines that they can take advantage of before the final round of

competition. The increased simulator performance on these virtual machines will increase the development

speed of the WPI-CMU team.

The system can additionally recreate the robot’s environment in a simulation using the robot’s perceptive

data. The robot is being taken to a test bed event before the final round of the competition. At this test

bed event, the team will save all of the robot’s perceptive information. The system will be able to recreate

the test bed from this perceptive information in a simulation. This will give the team more practice in the

test bed environment, which will better prepare them for the DRC finals. The team will also be able to use

this at the final round of the competition to create simulations of the robot’s environment on the fly.

In order to construct a system to accomplish these goals, the capstone team broke the system down into

two major parts. The first part is a command line utility that allows the team to leverage Cloud resources.

The second part is a plugin for the Gazebo robotics simulator that can render the robot’s perceptions into

a simulated world.

The command line utility went through several design iterations. At each iteration, the utility was given

to the greater WPI-CMU team and tested for user feedback. The user feedback then informed changes to

the design and use of the utility.

I

The command line utility can call up Cloud machines preloaded with everything needed to run the WPI-

CMU team’s code on the fly. The utility provides Cloud machines through Amazon Web Services. These

machines can be created, terminated, and saved with a python script that utilizes Amazon Web Services’

Boto software development kit. The utility also creates a virtual private network connection between the

user’s machine and the machine they are running in the Cloud. The utility makes it easy for the user to log

into the Cloud machine, synchronize their local codebase with the one in the Cloud, and run simulations on

the Cloud machine. Most importantly, the utility allows the WPI-CMU team to use all of their development

tools with the Cloud.

The simulator plugin generates a world from the robot’s perceptions. The information from the robot’s

sensors are compressed into an occupancy map. This occupancy map is given to the plugin, which determines

how to best draw the occupancy map into a simulation. The objects drawn into the simulation have physical

properties that the simulated robot can interact with.

Extensive testing of the system was performed to verify that it worked properly. The command line

utility was tested by launching Cloud machines and running them through some of the team’s workflows.

The results of the command line utility tests showed that Cloud machines could be created in under two

minutes, and ran simulations twice as fast as the machines the team was using before. The simulator plugin

was tested by drawing a variety of sample occupancy maps, as well as occupancy maps generated from a

simulated robot. The plugin was able to quickly and accurately render the data from these occupancy maps

into a simulated world.

The system will allow the WPI-CMU team to better prepare for the final round of the DRC. The system

will also allow the team to utilize the Cloud resources at the DRC finals. This will allow the WPI-CMU

team to better perform at the DRC finals.

Acknowledgment

This research is sponsored by Defense Advanced Research Project Agency, DARPA Robotics Challenge

Program under Contract No. HR0011-14-C-0011. The authors would like to thank DARPA, Dr. Michael

Gennert, Dr. Taskin Padir, Matt DeDonato, Benzun Babu, Felipe Polido, Kevin Knoedler, and Tracey

Coetzee.

II

Contents

1 Introduction 1

2 Background 1

2.1 DARPA Robotics Challenge . 1

2.2 Atlas . 4

2.3 ROS . 4

2.4 Gazebo . 5

2.5 CloudSim . 6

2.6 Cloud Computing at the DRC . 6

3 Initial Design 7

3.1 Systems Analysis . 7

3.1.1 Stakeholder Analysis . 7

3.1.2 Key Needs Analysis . 8

3.1.3 Gap Analysis . 9

3.1.4 Requirements . 9

3.1.5 Use Cases . 10

3.2 Gazebo Plugin . 12

3.3 Running Ros & Gazebo in the Cloud . 13

4 User Feedback 13

5 Final Design 14

5.1 Updated Requirements . 15

5.2 Updated Use Cases . 16

5.3 Utility for Management of Cloud Machines . 17

5.4 System Daemon for Management of the Cloud Lab . 19

5.5 Gurobi & Other User Interface Updates . 20

6 Evaluation 21

6.1 Testing Cloud Management Utility . 21

6.1.1 Test Methodology . 21

6.1.2 Results . 22

6.2 Testing the Gazebo Plugin . 23

6.2.1 Test Methodology . 23

6.2.2 Results . 24

6.3 Final User Feedback . 26

7 Conclusion 27

8 Future Work 27

III

Appendices 28

A Testing Data 28

IV

List of Figures

1 Boston Dynamics’ Atlas Robot . 2

2 DRC Finals Simplified Communications Diagram . 3

3 Cloud ROS Master Setup . 18

4 Object Count vs Draw Time . 24

5 Simulated Atlas Performing the Door Task . 25

6 Octomap of the Door Task . 25

7 Simulation Constructed from an Octomap . 26

List of Tables

1 Stakeholders . 8

2 Key Needs . 9

3 Requirements . 10

4 Putting a World into Gazebo Use Case . 11

5 Using CloudSim to launch a Cloud machine Use Case . 11

6 Roslaunching onto the Cloud Use Case . 11

7 View a simulation on the Cloud machine Use Case . 11

8 Controlling Atlas in a Cloud simulation Use Case . 12

9 Updated Cloud Management Requirments . 15

10 Connecting to the Cloud Use Case . 16

11 A daemon to manage the Cloud Machines Use Case . 16

12 Registering Gurobi on a Cloud machine Use Case . 16

13 Cloudlaunch Realtime Factors . 22

14 East Coast Launch Time Results . 28

15 West Coast Launch Time Results . 28

16 Plugin Results . 28

V

1 Introduction

The DARPA Robotics Challenge (DRC) is a robotics competition held by the Defense Advanced Research

Project Agency (DARPA) to develop robots capable of assisting in disaster relief efforts. The joint WPI

and CMU team will compete at the DRC finals with Boston Dynamics’ Atlas robot. The WPI-CMU team

has programmed this advanced humanoid robot to complete a series of challenging tasks in order to win

the competition. The capstone project team developed a system capable of distributing the Atlas robot’s

operating system into the Cloud.

The capstone team’s system seamlessly connects the WPI-CMU team’s laboratory to a sea of virtual

machines in the Amazon Web Services Cloud. The system is composed of a few easy to use command line

utilities that manage and setup connections to Cloud machines capable of simulating the Atlas robot or

becoming part of its distributed operating system. The system includes a plugin for the Gazebo robotics

simulator that transforms the robot’s live sensor data into a simulated world. The WPI-CMU team can use

this system to develop and test the competition software.

This paper documents the capstone team’s process of development, feedback, revision, and testing of

the final system. It begins with background information on important incorporated technologies. The Atlas

robot utilizes the Robot Operating System described in [8]. The robot is simulated in the Gazebo robotics

simulator [6]. These simulations provide a manner of testing a robot which cannot be broken or damaged. As

part of the goal of this project, the capstone team worked to improve the performance of these simulations.

The team drafted an initial specification for the system and performed a systems analysis. After building

the initial system, the capstone team met with the WPI-CMU team for a round of testing and user feedback.

The user feedback was incorporated into critical system revisions that yielded a final system tailored to the

needs of the WPI-CMU team. The finalized system was tested thoroughly and the results of those tests are

included here.

2 Background

2.1 DARPA Robotics Challenge

The DARPA Robotics Challenge finals will be held in June of 2015. The eleven participating teams will

compete by programming robots to complete a series of tasks designed to simulate disaster relief functionality.

The DRC was motivated by disasters such as the 2011 Fukushima nuclear power plant meltdown. These

tasks include the following: driving a vehicle, leaving the vehicle, travelling through a doorway, negotiating

debris, using a cutting tool, reaching through a cut opening and opening a valve, plugging a cylindrical hole,

crossing a debris field, climbing stairs, and completing a surprise task [3].

The first round of the DRC was held in June of 2013 as the Virtual Robotics Challenge (VRC). In this

preliminary competition, teams competed using simulations of an Atlas robot. The simulated robot had

to complete a series of tasks similar to those in the DRC finals. The WPI-CMU team placed second in

the Virtual Robotics Challenge. The VRC was the reason for the creation of the Open Source Robotic

Foundation’s (OSRF) CloudSim project that would be utilized heavily in this capstone team’s effort.

The WPI-CMU team was awarded an Atlas robot for their success during the VRC. This advanced

humanoid robot was developed by Boston Dynamics as a platform suited to varied terrain and tasks [1]. The

1

Figure 1: Boston Dynamics’ Atlas Robot

2

Figure 2: DRC Finals Simplified Communications Diagram [4]

Atlas robot is pictured in Figure 1.

Each team will have one hour to complete the whole set of tasks. The teams will be scored based on the

number of completed tasks and ties will be broken by finishing time. Each team will have two runs and will

be scored on the better run [3].

At the DRC finals, the WPI-CMU team will operate Atlas from the Operator Control Station (OCS)

computers. The robot will have a wireless connection to the field computer. The OCS has two wireless

links to the field computer: a unidirectional link and a bidirectional link. The unidirectional link will have

a bandwidth of 300 Mbits/sec. This link will transmit in one second bursts, with one to thirty second long

blackouts in between. The bidirectional link will have a bandwidth between 2,000 bits/sec and 9,600 bits/sec.

DARPA is also providing a Virtual Private Network (VPN) connection from the OCS to Cloud computing

resources with 50 Mbits/sec bandwidth [4]. Figure 2 shows an overview of the communications at the DRC

finals.

A test-bed event will be held in South Carolina in preparation for the DRC finals. The team will test the

Atlas robot in mock trial tasks. The WPI-CMU team will save all of the robot’s environmental perceptions.

The motivation is to use these recording to prepare for the final round of the competition. The capstone

team has created a system to model these perceptions in a Gazebo simulation.

The WPI-CMU team prepares for the DRC with accurate Gazebo simulations of each task. The team

moves from successful simulation of a task to testing the same code on the physical robot. This capstone

project allows the WPI-CMU team to leverage the distributed computing power available at the challenge

finals.

3

2.2 Atlas

Boston Dynamics’ Atlas is a hydraulic robot with near-human anthropometry [2]. The robot has three

on-board Intel i7 processors. This processing power runs the distributed Robot Operating System (ROS).

The WPI-CMU team will provide the brains for Atlas’s brawn.

The robot accepts 140-200 volts of direct current power. This is provided by a battery emulating converter

when in the laboratory. Power will be provided by a battery pack mounted on the robot’s back at the final

competition. The robot is also fitted with a dedicated gigabit Ethernet switch for off-board communication

[2].

Atlas’s body is articulated by an internal hydraulic system. The hydraulics power 27 different actuators.

These mechanical joints drive the robot’s arms and legs. Each hydraulic actuator is capable of generating

forces in excess of 2.7 kiloNewtons [2]. At the end of the robot’s arms are modular wrist plates. These

plates allow for the addition of active or passive manipulators. These manipulators could be: multi-degree

of freedom hands, simpler metal hooks, or any other required manipulator.

The robot has an extensive internal proprioceptive sensor suite for self-perception. Each controllable

degree of freedom senses its position with linear position sensors. The hydraulic actuators also sense hydraulic

pressure. Each foot is mounted with 3-axis force/torque sensing. Each hand mount is fitted with 6-axis

force/torque sensing. A 6-axis inertial measurement unit is mounted in the pelvis.

The robot’s electric neck joint constitutes a 28th degree of freedom. This neck joint controls an articulated

sensor head. The WPI-CMU team’s Atlas robot uses the MultiSense-SL sensor head from Carnegie Robotics

[2]. The MultiSense head provides the robot with stereoscopic camera vision and light detecting and ranging

(LIDAR). The robot also has two shoulder mounted situational-awareness cameras.

These sensors form the robot’s perceptions of its environment, or exteroception. The WPI-CMU team

uses the Gazebo simulator to simulate the Atlas robot in software, and requested that the capstone team

build a system to inform these simulations from sensor data. The capstone team’s project allows the robot’s

exteroceptive sensor data to be processed into Gazebo worlds.

2.3 ROS

The Atlas robot is controlled by the Robot Operating System (ROS) [8]. ROS is a distributed operating

system and can be run across multiple physical or virtual hosts. This system is composed of many constituent

processes, which are called nodes in ROS terminology. The nodes are individual XML-RPC servers that

communicate directly amongst each other, but are coordinated through a central ROS master node.

ROS provides a transport system between nodes in the form of topics and services. Topics are named

transports through which nodes exchange messages. Topics are used for asynchronous streaming communi-

cation. Services provide synchronous remote procedure calls between nodes.

Atlas is programmed by adding new nodes and modifying existing nodes to capture additional function-

ality. The WPI-CMU team uses ROS nodes to implement the entirety of the software that governs Atlas,

including: the aggregation of point cloud data from the robot’s sensors, the planning of the robot’s path

when walking, and the team’s customized graphical user interface (GUI) to operate the Atlas robot.

Roslaunch is the utility responsible for starting up ROS nodes. Roslaunch consumes a launch file and a

ROS package. The utility uses this information to locate and run the specified nodes.

4

ROS launch-files describe the collection of nodes to be launched in XML. Launch files coordinate nodes

across multiple machines. Users can specify nodes to be run remotely on another machine connected to the

same ROS master.

The WPI-CMU team coordinates the manipulations of the Atlas robot and field computer using cus-

tomized launch files. Some nodes run on the Operator Control Station. Usually these nodes are related

to client side tools like the WPI-CMU team’s customized graphical user interface for manipulating Atlas.

Other nodes run on the field computer or the robot itself.

2.4 Gazebo

Gazebo provides accurate physics simulations and visualizations of robots in dynamic environments

[5]. The Gazebo simulator runs as a ROS node. The Gazebo ROS API allows the manipulation of Gazebo

through ROS transports. The simulated robots have working sensors and cameras as well as realistic physical

characteristics [6]. The Gazebo client, gzclient, provides users with a graphical interface to a running

simulation. The Gazebo server, gzserver, computes real-time physics and runs simulated versions of the

robot’s sensors.

Gazebo uses the Simulation Description Format (SDF) to describe the robot and its environment. SDF

uses an XML schema to describe the appearance and physical characteristics of a model in the simulation

[7]. Gazebo provides for the insertion of SDF models into a running simulation.

1 <robot name="drc_skeleton">

2 <link name="l_clav">

3 <inertial >

4 <mass value="2.369" />

5 <origin xyz="0.014 0.058 0.029" rpy="0 -0 0" />

6 <inertia ixx="0.004" ixy="0.001" ixz="0" iyy="0.006" iyz="0" izz="0.007" />

7 </inertial >

8 <visual >

9 <origin xyz="0 0 0" rpy="1.04719755 0 0" />

10 <geometry >

11 <mesh filename="package :// atlas_description/meshes/l_clav.dae" scale="1 1 1" />

12 </geometry >

13 </visual >

14 <collision group="default">

15 <origin rpy="0 1.5707963267949 0" xyz="0 0.0697 0.0261"/>

16 <geometry >

17 <cylinder radius="0.045" length="0.1525"/>

18 </geometry >

19 </collision >

20 </link >

21 ...

22 </robot >

Listing 1: Part of the SDF used to describe the Atlas robot

Listing 1 demonstrates how the links and joints of a robot are described in SDF. The listing describes

the robot’s left clavicle and gives it physical and graphical properties, such as inertia and geometry. SDF

can be used to describe arbitrary robots and their environments in Gazebo.

5

Gazebo worlds are described in .world files, also written in SDF. Gazebo can dynamically load plugins

to modify the world or another aspect of the simulation. World files are loaded from ROS launch-files

through the Gazebo ROS API. A user can load a world file into Gazebo like so: roslaunch gazebo ros

empty world.launch This command will launch an empty Gazebo simulation.

The WPI-CMU team uses Gazebo simulations to assist in the operation of Atlas and in the development

effort in the lead up to the DRC. This means that the Gazebo simulator is key to the WPI-CMU team’s

operations both leading up to the finals and at the actual finals event.

Simulator performance is a limiting factor for the WPI-CMU team’s development velocity. Simulator

performance was degraded while performing the complicated tasks asked of the robot. The WPI-CMU team’s

customizations to the Gazebo user interface further degraded performance. A major goal of this project was

to ameliorate this issue.

The performance of a Gazebo simulation is measured by its real time factor. This statistic is defined as
simulationtime

realtime . The real time factor of a simulation is a measure of how quickly the simulation is running

as compared to reality. High real time factors indicate good performance and low real time factors indicate

lackluster performance. By way of example, a simulation running at a one-half real time factor takes two

seconds to simulate one second of the robot’s operation. Conversely, a simulation running at at a real time

factor of two takes half a second to simulate one second of the robot’s operation. The WPI-CMU team

requested the ability to run Gazebo at a faster real time factor because simulator speed is a significant

bottleneck to development. The capstone team improved the performance of the simulator by moving it into

the Cloud.

2.5 CloudSim

CloudSim was developed by the Open Source Robotics Foundation to be used in the Virtual Robotics

Challenge. CloudSim uses Amazon Web Services to deploy virtual machines to run the Gazebo simulator.

CloudSim presents users with a web browser interface with which to manage simulation machines. The

OSRF also provides the user with a tool called gzweb. Gzweb lets the user view the simulation in their web

browser as if they were using the Gazebo client.

CloudSim gives the user the ability to use python scripts to affect a running simulation. CloudSim

gives the user the ability to establish a virtual private network connection between their computer and the

simulator machine in the Cloud. The user is additionally provided with the keys to connect to the simulator

machine via SSH. The capstone team utilized CloudSim as reference material for the team’s own systems.

2.6 Cloud Computing at the DRC

A major goal of the DRC is to advance Cloud robotics, and it is for this reason alone that the teams will

be provided with access to the Cloud at the DRC finals. Cloud computing is the utilization of remote servers

for computation and information storage. Cloud robotics is the use of these remote servers to improve the

performance of robots.

At the DRC finals, the WPI-CMU team will have a connection from the OCS to distributed processors

and storage in the Cloud. The capstone team’s project was to build a system that could take advantage of

these resources. The connection to these Cloud resources at the DRC finals will be through a VPN [4]. The

6

project deliverable provides an analogous system using the Amazon Web Service’s (AWS) Cloud.

This system utilizes the Amazon Elastic Compute Cloud to achieve on demand access and management

of virtual machines set up to run Gazebo and ROS remotely. The AWS Cloud is globally available and offers

a wide variety of different types of instances. The capstone team’s system utilizes GPU2.2xlarge machines

because they simulate the NVIDIA hardware required to run the Gazebo simulator.

These instances service general GPU-intensive tasks and have 8 Intel xenon vcpu cores and NVIDIA

hardware with 1536 CUDA cores [9]. The GPU2.2xlarge machines were chosen because Gazebo requires an

Nvidia GPU to function. The Amazon provides a software development kit for working with the AWS cloud

in Python, called Boto. The capstone team used this SDK to develop systems for managing virtual machines

in the AWS Cloud.

3 Initial Design

The capstone team began by meeting with the principal investigators and jointly developing a project

proposal. The capstone team performed a systems analysis that provided a prospective plan for how to

develop the system. The system was built in two parts: a plugin for the Gazebo simulator and a system for

launching ROS nodes on Cloud machines.

3.1 Systems Analysis

The team used the fundamentals of systems engineering to provide a formalized design for the project.

Systems engineering focuses on the design and management of complex projects.

The stakeholder analysis identifies key stakeholders and prioritizes them. The team created a list of key

needs from meeting with the stakeholders. The capstone team derived a list of project requirements from

the list of key needs. The team performed a gap analysis to bridge the space between the existing software

and the final goal. Finally the team wrote use cases that capture the expected usage of the deliverables.

3.1.1 Stakeholder Analysis

The stakeholder analysis allowed the team to validate the project’s needs and requirements by sourcing

them back to specific stakeholders. The project’s primary stakeholders include the capstone team, the larger

WPI-CMU team, DARPA, the advisers, and WPI. Each stakeholder was assigned a relative priority using an

ordinal scale from one to five with lower numbers representing higher priorities. The priority value represents

the level of a stakeholder’s impact on the system design.

7

ID Title Description Role Priority Contact
SH.01 DRC Team

WPI-CMU
Team members who work
on Atlas

Programming the robot;
testing; wrangling; partic-
ipation in meetings

1 email alias,
weekly
meetings

SH.02 Advisors Professors Padir and Gen-
nert

Advising the team; provid-
ing critical oversight, acu-
men and strategy; facili-
tates use of lab equipment,
resource acquisition, etc.;
responsible for grading

2 e-mail,
weekly
meetings,
telephone

SH.03 DARPA Defense Advanced Re-
search Projects Agency

Managing the competition;
declaration of the rules
of the competition; poten-
tial government use of this
technology

5 One-way
contact; re-
ceive news
from team
leaders.

SH.04 WPI One of two schools on the
DRC team, and the school
the capstone team mem-
bers are from

Public relations, prize
money, and advertise-
ment tied to DRC team
performance

5 Proxy: Ad-
visors

SH.05 Capstone
Team

The MQP team building
the system. Members of
SH.01

Grades and experience; de-
signing, building, and test-
ing the system; assisting
the team where necessary
on non-MQP related tasks
such as wrangling the robot

4 group or
personal e-
mail, daily
and ad-hoc
meetings

Table 1: The Stakeholder table describes each stakeholder and prioritizes them, with 1 being highest priority
and 5 being the lowest.

The WPI-CMU Team was given the maximum priority of one because WPI-CMU is the stakeholder who

directly consumes the capstone team’s deliverables. The project’s advisers were given a priority of two to

show their high level of impact on the project’s goals and design. A priority of four was given to the capstone

team because they are subservient to the other stakeholders. WPI and DARPA were assigned priorities of

five because the other stakeholders have much more immediate impact on the project.

3.1.2 Key Needs Analysis

The team’s key needs were traced to specific stakeholders. See Table 2, which assigns each need an

identifying ID. The capstone team described, categorized, and traced each key need.

8

ID Need Stakeholder Trace
N.01 The system should provide for the running of a simulation in a Cloud

environment.
SH.01, SH.02, SH.03,
SH.04, SH.05

N.02 The system should be able to map the robot’s perceptions into the
simulation.

SH.01, SH.05

N.03 The system should aid the WPI-CMU team’s development process. SH.01, SH.05
N.04 The system should be accessible to the WPI-CMU team and should

be simple to use.
SH.01, SH.05

Table 2: The Key Needs table presents the project’s needs in the order that they were addressed by the
capstone team. Starting with the ability to move simulations into the Cloud, each need builds upon the
previous need. A successful implementation needed to satisfy all of these needs.

3.1.3 Gap Analysis

The gap between the initial system and the desired outcome informed design and process decisions. The

first need identified was to build and set up a Cloud simulation environment. The existing OSRF project,

CloudSim, was a strong candidate for fulfilling this need. CloudSim is capable of fully simulating Atlas and

exposes browser-side tools for interacting with Gazebo.

The capstone team rejected CloudSim because it was not able to meet the specific needs of the WPI-CMU

team. The WPI-CMU team’s customized software is incompatible with the latest stable release of CloudSim.

The capstone team would begin by using CloudSim for managing the Cloud machines, but would eventually

build its own command line tools for working with the machines themselves.

The second need was to map the robot’s perceptions into a simulation. The WPI-CMU team can take the

sum of the robot’s perceptions and store them in an occupancy map. However, there did not yet exist a way

to use that occupancy map to inform the obstacles within a simulated environment. Gazebo’s functionality

needed to be extended to meet this need. Gazebo provides for extending its features with user-defined

plugins. This method was chosen for mapping the robot’s perceptions into the simulation.

The third and fourth needs were the most important because they ensure usability. The system was

made accessible and easy to use by tailoring it to the specific usage of the WPI-CMU team. The capstone

team met with members of the WPI-CMU team and based the interface of the deliverable around the team

members’ expected usage.

3.1.4 Requirements

The capstone team used the key needs to derive testable and verifiable requirements for the project. Table

3 below describes each requirement and gives each an identifier, a category, and a priority. The priorities are

once again ordinal from one to five with one being the highest priority. In addition, each requirement was

validated by tying it back to the relevant stakeholders and needs from Table 2. Requirements have three

categories: design, performance, and technology. Design requirements inform the design of the system and

its interfaces. Performance requirements constrain the performance of the system. Technology requirements

represent technologies that the team is required to use.

9

ID Category Requirement Statement Validation Need Priority
R.01 Design The system shall provide for the creation

of a simulation machine.
SH.01, SH.03,
SH.05

N.01 1

R.02 Design The system shall provide for the modifica-
tion of a simulation machine.

SH.01, SH.03,
SH.05

N.01 1

R.03 Design The system shall provide for the termina-
tion of a simulation machine.

SH.01, SH.03,
SH.05

N.01 1

R.04 Technology The system shall provide simulation ma-
chines that support ROS.

SH.01, SH.03,
SH.05

N.01 1

R.05 Technology The system shall support the use of
Gazebo for running simulations.

SH.01, SH.03,
SH.05

N.04 3

R.06 Technology The system shall support the use of WPI-
CMU team development tools.

SH.01, SH.05 N.03 3

R.07 Design The system shall inform simulations with
occupancy maps.

SH.01, SH.05 N.02 2

R.08 Performance The system shall execute tasks faster than
they can be executed locally.

SH.01, SH.05 N.04 1

Table 3: The Requirements table details the required criteria for completion of the project.

The capstone team designed these requirements to succinctly capture the specifications for the desired

system. The team would to move Gazebo and ROS into the Cloud in order to improve performance. The

system would support the userland tools that the WPI-CMU team was already familiar with, but would

support running simulations in the AWS cloud rather than in the lab.

3.1.5 Use Cases

The use cases provide the expected manner in which the system will be used by the team. The Gazebo

use case in Table 4 describes the process a user would go through to generate a Gazebo simulation from an

occupancy map. The rest of the use cases describe the process a user would go through to begin developing

and running simulations on a Cloud machine.

The capstone team was able to derive new design parameters from these use cases. Each use case informs

the user experience of each tool. For example, the user must be informed of when the Gazebo plugin is

done rendering the environment. The assumptions in each use case also expose new design parameters. The

CloudSim use case, in Table 5, raises the question of web server management. The capstone team decided

to place themselves in charge of any necessary administrative tasks such as the creation and maintenance of

the CloudSim web server.

Tables 7 and 8 describe how a user would view and interact with a Cloud simulation. These use cases

bring up questions about connecting to the Cloud machine and how to best forward display information

from the Cloud machine to the user’s machine. Table 4’s assumptions raise points about the rendering of

occupancy maps that would later inform the design of the Gazebo plugin.

These use cases capture the requirements from Table 3 with the exception of the performance requirement.

Performance requirements are difficult to quantify with use cases, because performance requirements do not

capture how the system is to be used but rather how the system should perform during use. The capstone

team performed testing to verify the performance requirement was met and these use cases were used to

10

Title Putting a world into Gazebo
Description The user can provide an occupancy map of an environment and have it rendered into a

Gazebo simulation.
Steps 1.) The user provides an occupancy map of the robot’s environment, generated from

the robot’s sensors. 2.) The user uses the command line to signal that this occupancy
map should be loaded into the currently running Gazebo world. 3.) The occupancy
map is processed into as few models as is practical. 4.) The occupancy map is rendered
in the Gazebo world. 5.) The user is notified that the map is rendered.

Assumptions The user has processed a set of point clouds of the robot’s perceptions into some efficient
occupancy map format. The provided space is not too large to be modeled in Gazebo.

Table 4: Putting a World into Gazebo Use Case

Title Using CloudSim to launch a Cloud machine
Description The user can use CloudSim’s web interface to create a Cloud machine capable of running

the WPI-CMU team’s code.
Steps 1.) The user navigates their web browser to the address of the CloudSim application.

2.) The user provides the appropriate username and password to log into CloudSim.
3.) Using the web interface, the user specifies that they would like to use Amazon Web
Servies. 4.) The user then specifies which region of AWS they would like to use, usually
the East Coast. 5.) The user selects a simulator machine from the list of possible
machines that could be launched. 6.) The user hits the ”launch” button to launch the
Cloud machine. 7.) The user waits for the Cloud machine to come online.

Assumption CloudSim is already running and the user has been provided the IP address to access
the web interface.

Table 5: Using CloudSim to launch a Cloud machine Use Case

Title Roslaunching onto the Cloud
Description The user can invoke a command line tool to execute a roslaunch on the Cloud machine.
Steps 1.) The user navigates to the directory that contains the remoteroslaunch.bash script.

2.) The user provides the script with an argument stating the ROS package the launch
file they want to run can be found in. 3.) The user provides the script with an argu-
ment stating the name of the launch file. 4.) The user provides the script with any
additional arguments they would like passed to the roslaunch. 5.) The user executes
the remoteroslaunch.bash script with the arguments they have entered

Assumption The user has launched a Cloud machine using CloudSim and used the web interface to
download the keys needed to connect to the Cloud machine.

Table 6: Roslaunching onto the Cloud Use Case

Title View a simulation on the Cloud machine
Description The user can view the gzclient of a Gazebo simulation running on a Cloud machine.
Steps 1.) The user exports their ROS and Gazebo environmental variables to point to the

Cloud machine. 2.) The user executes the gzclient command
Assumption The user has launched a Cloud machine using CloudSim and has started a simulation

on it using the remoteroslaunch.bash script.

Table 7: View a simulation on the Cloud machine Use Case

verify that the other requirements were met.

11

Title Controlling Atlas in a Cloud simulation
Description The user can run the WPI-CMU team’s custom GUI to control a Cloud simulation of

Atlas.
Steps 1.) The user creates a secure shell (SSH) connection into the Cloud machine with X-11

forwarding enabled. 2.) The user launches the GUI on the Cloud machine. 3.) The
X-11 forwarding causes the GUI to be displayed on the user’s machine.

Assumption The user has launched a Cloud machine using CloudSim and has started a simulation
on it using the remoteroslaunch.bash script. The user has also used CloudSim’s web
interface to download the files needed to SSH into the Cloud machine.

Table 8: Controlling Atlas in a Cloud simulation Use Case

3.2 Gazebo Plugin

One of the design requirements was to process the Atlas robot’s sensory information into a world in the

Gazebo simulator. Gazebo supports command line instructions for adding single models into the world, but

does not support dynamically adding a whole environment composed of many models. The team considered

the gap analysis and chose to extend Gazebo’s functionality with a plugin.

Gazebo offers various kinds of plugins. Gazebo user interface plugins extend the user interface. Model

plugins customize specific models. World plugins support full programmatic control over the Gazebo world.

A world plugin meets the requirements because it provides for the modification of the entirety of the Gazebo

world.

The robot handles its sensory information as aggregated point clouds. This is a great format for the

robot to use internally, but has drawbacks for the purposes of the plugin. The point cloud data is precise,

but often prone to signal noise. The octomap structure was chosen as an alternative.

The Octomap Library is a probabilistic mapping framework that can precisely represent both occupied

and unoccupied space. Compared to a naive occupancy map, the octomap implementation uses data struc-

tures called octrees to achieve better performance 1. Each unit of occupied space in an octree is represented

as a voxel. A voxel is a cube shaped unit of space.

ROS supports octomaps through the ROS octomap package. The octomap server node allows Atlas to

store its aggregated point cloud data into an octomap. The octomap saver utility allows you to save this

octomap at any given point in time.

The world plugin renders an octomap file into a running Gazebo simulation. The plugin needed a logical

way to draw all of the different parts of the environment into Gazebo. Gazebo supports the insertion of

arbitrary models specified in the SDF format. The initial naive implementation would take the contents of

the occupancy map and blindly render each voxel into the Gazebo world.

The capstone team’s plugin accurately renders octomaps into Gazebo. The naive drawing algorithm

could not support large octomaps because the maps would contain more objects than can be represented in

Gazebo. The capstone team developed an algorithm to reduce the number of voxels in the scene by merging

adjacent voxels when possible. This algorithm merges voxels when they are adjacent and have a common

face. The algorithm considers one dimension at a time, and chooses the best ordering for that scene.

The Gazebo plugin is called Ubelluris2. It subscribes to a ROS topic called /ubelluris/octomap msgs.

1For more on this, visit http://octomap.github.io/
2Named after the ancient Hittite counterpart to Atlas, who lived in the Clouds.

12

The user can direct the plugin to a map file by publishing to this topic. To do so, the user would execute:

~: rostopic pub /ubelluris/octomap_msgs std_msgs/String mapfile.bt

The plugin will then load the map file and render it into Gazebo as quickly as possible.

3.3 Running Ros & Gazebo in the Cloud

A design requirement was to launch simulations onto Cloud machines that were capable of supporting

the entirety of the WPI-CMU team’s development tools and dependencies. These development tools include

Gazebo, rviz the robotics visualizer, and the team’s customized graphical user interface for interacting with

the robot. One existing system to launch Gazebo simulations in the Cloud is the Open Source Robotics

Foundation’s CloudSim project.

CloudSim allows a user to interact with a website to manage and manipulate cloud machines as well as

use the Gazebo simulator on said machines. The OSRF has a gzweb project that CloudSim uses to allow

users to visualize Gazebo simulations in the browser. This allows a machine that could not otherwise run

Gazebo to interact with Gazebo simulations. Gzweb was perfect for the VRC but is incompatible with the

WPI-CMU team’s usage of Gazebo and related tools.

The initial design of the system was to use CloudSim to launch and manage Cloud machines. This design

also gave the user a script, called remoteroslaunch.bash, to run ROS nodes on these Cloud machines. This

system could run Gazebo simulations, or just ROS nodes, on the virtual machines maintained by CloudSim.

This initial system was adequate, but not perfect. The capstone team turned to user feedback to look for a

way to improve the system.

4 User Feedback

The capstone team presented the initial design and deliverables to the wider WPI-CMU team. Members

of the WPI-CMU team ran the initial Cloud simulation system and responded with feedback on its operations

and performance. The initial demonstration of Cloud simulation highlighted some areas of improvement for

the overall system. The capstone team used this to derive a list of additional requirements for the overall

system and to generate additional use cases.

CloudSim would have to be removed from the system. The WPI-CMU team needed fast access to the

Cloud but CloudSim took 5-10 minutes to launch a machine. Also, the Gzweb based user interface precluded

any integration with the WPI-CMU team’s customized GUI. Additionally, CloudSim became significantly

out-of-date in terms of supported ROS and Gazebo packages. Over time more and more work was required

to use CloudSim in the manner initially adopted by the capstone team.

The WPI-CMU team required a Cloud machine management infrastructure too different from CloudSim.

CloudSim had an appropriate user interface for the VRC, but not the DRC finals. The capstone team

decided to replace the usage of CloudSim with a custom utility for launching and managing virtual machines

in the AWS Cloud. The capstone team designed and built a system for managing Cloud simulators from the

WPI-CMU team’s lab. This system takes the form of a python script called cloudmanager.py

Also, the capstone team identified the need for a system daemon to monitor the Cloud machines and to

bring down any that went haywire or were left unattended. This daemon would be crucial because machines

13

running overtime would be an unnecessary drain on the team’s financial resources.

The WPI-CMU team’s customized tools and interfaces worked poorly with the initial Cloud system. In

the initial design, the WPI-CMU team’s customized GUI would be X11 forwarded from the Cloud machine.

This resulted in lackluster performance due to the network latency between the Cloud and the laboratory

where the tests were conducted. The capstone team worked with the wider WPI-CMU team to develop a

solution to this problem. The capstone team used some of the WPI-CMU team’s existing ROS nodes to

connect a local GUI to the cloud machine over a TCP/UDP tunnel.

Additionally, tab completion would be added to the system to make it more accessible to users. ROS

allows users to use tab completion when executing commands to enter arguments, such as ROS packages and

launch files. The cloud management software was designed to utilize ROS’s package structure. The capstone

team integrated bash completion into its cloudmanager.py software to allow for the same ease of use by an

end user.

The WPI-CMU team had begun using a proprietary optimization library called Gurobi for trajectory

optimization. This offered powerful new capabilities both to simulations and to real ROS systems connected

to the robot.

The WPI-CMU team uses Gurobi’s free academic license to register their copies of Gurobi. This method

requires that each machine be uniquely identified by a tuple of mac address, hostname, and internet protcol

address. This process is not intrusive in normal usage of the Gurobi library. The user merely logs into

the Gurobi website with the appropriate academic email address. This registration method requires that

each licensed machine be within the WPI campus network to become licensed. This presented a problem

for running the WPI-CMU team’s code on Cloud machines. Each Cloud machine would have a different

tuple of identifying information. Additionally, the machine would be from outside of the wpi.edu domain

and therefore not registrable with a free academic license. The capstone team created another program to

automate the process in order to overcome this limitation.

5 Final Design

The user feedback was used to design a finalized system. The capstone team was eventually able to

perform all the upgrades necessitated by the user feedback. It was challenging to surmount the issues faced

by the initial system, but the final system incorporates all required functions identified in user feedback.

This final system allows the WPI-CMU team to control a whole host of simulated machines in the Amazon

Cloud. These machines are dynamically available in only a few minutes. A user can connect to a Cloud

machine to speed up the performance of their Gazebo simulation or to run remote ROS nodes. The system

supports either local or remote ROS masters.

The capstone team designed a daemon that monitors this Cloud lab and terminates long running machines

that have been forgotten. The development of this daemon utilized the same Boto SDK the capstone team

used to develop the prior utility for managing individual Cloud simulator machines. The cost of running

virtual machines is quite modest and the daemon ensures that money is never wasted by letting machines

run out of control. This daemon can run on a laboratory machine already in the WPI-CMU team’s lab, on

a host outside of the lab, or within the Cloud.

An important challenge to overcome was the clunky licensing process for the Gurobi dependency that

14

would not work in the Cloud. This was not an issue in the traditional lab setup, but became quite the problem

for the capstone team’s virtual lab in the Cloud. Ultimately the capstone team ended up automating this

process as a short program, called gurobilicense.py.

Additionally, the capstone team updated the userland tools to support bash completion. This update

makes the custom WPI-CMU Cloud utilities work seamlessly with existing ROS and Gazebo tools. Also, the

capstone team made updates to support the customized graphical interface used by the WPI-CMU team.

5.1 Updated Requirements

After receiving user feedback, the requirements for the Cloud management utility needed to be updated.

The existing requirements derived during the capstone team’s initial systems analysis still needed to be met.

However, some of these requirements had to be expanded upon to capture the users’ feedback. New require-

ments also had to be added, and some of the existing requirements were combined. The new requirements

for the Cloud management utility can be found in Table 9.

ID Category Requirement Statement Validation Need Priority
R.01 Design The system shall provide for the creation

of a simulation machine.
SH.01, SH.03,
SH.05

N.01 1

R.02 Design The system shall provide for the modifi-
cation of a simulation machine. Modifica-
tions to simulation machines can be saved
for later use.

SH.01, SH.03,
SH.05

N.01 1

R.03 Design The system shall provide for the termina-
tion of a simulation machine. The system
shall provide a daemon to terminate ma-
chines that are inactive.

SH.01, SH.03,
SH.05

N.01 1

R.04 Technology The system shall provide simulation ma-
chines that support ROS, Gazebo, and the
team’s development tools.

SH.01, SH.03,
SH.05

N.01 1

R.05 Technology The system shall allow the Cloud machines
to easily register Gurobi.

SH.01, SH.03,
SH.05

N.01 1

R.06 Performance The system shall allow the team’s devel-
opment tools to be used without latency.

SH.01, SH.05 N.02 2

R.07 Performance The system shall execute tasks faster than
they can be executed locally.

SH.01, SH.05 N.04 1

Table 9: The Updated Requirements table details the new requirements for the Cloud management system.

The capstone team updated the first three design requirements to reflect the new utilities for managing

the virtual machines. The fourth requirement is largely conserved from the earlier requirements list. The fifth

requirement captures the need to properly license the Gurobi library from the Cloud. The sixth requirement

reflects the changed approach for running the WPI-CMU team’s client-side tools. Formerly these were X11

forwarded at great expense but are now run directly on the lab computer and are merely connected to the

Cloud simulator machine. The performance requirement, number seven, has remained unchanged.

15

5.2 Updated Use Cases

The finalized system design prompted a revision of the use cases. The capstone team developed additional

use cases to capture the specific functionality that was added in the final revision of the system. The original

use cases still apply to the final system but have been omitted for brevity.

Title Connecting to the Cloud
Description The user can invoke a command line tool to get secure shell connectivity to a Gazebo

simulation instance in the Cloud.
Steps 1.) The user runs a command line utility. 2.) The user provides appropriate credentials

to the utility. 3.) The user is now in a VPN with the Cloud machine. 4.) The user
is provided with a script for logging into the Cloud machine. 5.) The user is provided
with a script that will launch arbitrary ROS nodes onto the machine.

Assumption The user has credentials for the Cloud.

Table 10: Connecting to the Cloud Use Case

The purpose of this use case is to capture the new Cloud management utility that users can use to

manage virtual machines in the Amazon Cloud. This utility replaces the capstone team’s prior usage of the

CloudSim project.

Title A daemon to manage the Cloud Machines
Description The user can run a daemon to monitor the Cloud machines and turn off long running

machines.
Steps 1.) The user starts a daemon from the command line. 2.) The user can view a log of

the daemons output. 3.) The daemon shuts down any machines that are accidentally
left running.

Assumption The user has credentials for the Cloud. The daemon has these credentials as well.

Table 11: A daemon to manage the Cloud Machines Use Case

This use case captures the new daemon that was added to the cloud management system. The daemon

terminates long running machines to save the WPI-CMU team money.

Title Registering Gurobi on a Cloud machine
Description The user can register Gurobi on their Cloud machine.
Steps 1.) The user creates an SSH connection into the Cloud machine. 2.) The user runs

the script gurobilicense.py. 3.) The user provides the script with their credentials for
the Gurobi website and WPI’s proxy. 4.) The script register’s Gurobi on the Cloud
machine

Assumption The user has launched and has the credentials for a Cloud.

Table 12: Registering Gurobi on a Cloud machine Use Case

This use case represents an important step towards automating the registration of critical WPI-CMU

dependencies. The capstone team automated this process in a small program that takes in a user’s credentials

and uses them to license Gurobi with a free academic license.

16

5.3 Utility for Management of Cloud Machines

CloudSim had to be replaced, but the ability to manage virtual machines had to be retained. CloudSim

was replaced with a python script, called cloudmanager.py to manage Cloud machines. It achieves everything

needed of CloudSim, and is not burdened with the other features supported by the OSRF’s CloudSim project.

Components of CloudSim were salvaged wherever possible to expedite the development process.

The capstone team’s program, like CloudSim, used Amazon’s Boto SDK to interact with Amazon’s Cloud.

The script uses Boto to provide the user with a list of running Cloud machines. It then gives the user the

option to either connect to an already running Cloud machine, or to launch a new one. Usage is as follows:

~: sudo python cloudmanager.py

Welcome! Here are the already-running machines:

54.148.21.20 is running master 2-15

Enter target IP address to connect to a running instance, or enter NEW for a new machine.

>>

If the user launches a new machine, they are given a list of machine images to launch.

>>NEW

Would you like to use the default machine image, or load a saved one?

Enter an image name to use a saved image, or enter DEFAULT for the default image.

default_image

master 2-15

>>

After the user has connected to their machine, the script establishes a secure VPN connection between the

user’s machine and the one in the Cloud. The script lastly waits for the user to instruct it to shut down the

Cloud machine or to save an image of the machine. Here is the terminal output of setting up the VPN with

the prompt for the user’s next command.

>>master 2-15

launching machine, this can take a few minutes...

Setting up VPN to IP 52.0.149.216

The authenticity of host ’52.0.149.216 (52.0.149.216)’ can’t be established.

ECDSA key fingerprint is 7c:5a:29:9e:ef:44:55:20:7e:57:e6:db:9b:d3:3d.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added ’52.0.149.216’ (ECDSA) to the list of known hosts.

openvpn.key 100\% 636 0.6KB/s 00:01

Killing other openvpn connections...

VPN ready. To kill it:

sudo killall openvpn

connected to machine running at IP 52.0.149.216

hostname: ec2-52-0-149-216.compute-1.amazonaws.com

to save an image of the machine, enter save_ami desired_image_name

to terminate the instance, enter terminate

17

to exit, enter exit

>>

Users can choose to save machine images with arbitrary names. These images can be loaded the next time

a user launches a Cloud machine. This allows users to save any modifications they make to their machines

to be loaded in the future.

>>save_ami new machine image name

saving an image, the machine will not be usable while this happens.

Cloudmanager.py provides users with the ability to SSH into the Cloud machines. It provides this

functionality through sshsim.bash. This bash script, borrowed from CloudSim, connects users to their

virtual machine using the previously shared SSH keys.

The VPN connection created by cloudmanager.py is used to link the ROS system between the user’s

machine and the one in the Cloud. The user’s machine is given the IP address 11.8.0.2, and the Cloud

machine is given the IP address 11.8.0.1. The system provides two scripts, remoteros.bash and localros.bash.

The remoteros bash script sources the user’s ROS and Gazebo environmental variables to have the ROS

master run in the Cloud. Figure 3 provides a visual example of what the ROS IP and master environmental

variables are set to when the ROS master is in the Cloud. The Gazebo IP and master variables are set in

the same way. The ROS and Gazebo IP variables on each machine are set to their own address on the VPN,

11.8.0.2 for the user’s machine, and 11.8.0.1 for the Cloud machine. The ROS and Gazebo master variables

on each machine are both set to the IP address of the Cloud machine, 11.8.0.1. The localros bash script

provides the inverse configuration. It connects a Cloud machine to a local ROS master.

Figure 3: This figure displays what the ROS master and IP environmental variables are set to in order to
connect the user’s local machine to the Cloud machine. In this setup, the Cloud machine is the ROS master.

18

The remoteroslaunch.bash script is used to launch ROS nodes on the Cloud machine, as it was in the

initial design. This script synchronizes the user’s workspace to match the one in the Cloud. This was done

in order to keep the workflow of using the Cloud as close as possible to the team’s original workflow. The

script accomplishes this sychronization by using the rsync utility. The script then has the Cloud machine

set up its environmental variables appropriately, as shown in Figure 3.

The remoteroslaunch.bash script lastly executes the roslaunch command on the Cloud machine, using

the arguments provided by the user. This bash script accepts arguments in the same manner as roslaunch.

For example, to roslaunch Atlas in a blank world with the argument for the model version to be four, one

would execute:

~: roslaunch wrecs_simulator_v4_launch atlas_blank.launch model_args:="_v4".

Similarly, to do this with remoteroslaunch.bash one would execute:

~: ./remoteroslaunch.bash wrecs_simulator_v4_launch atlas_blank.launch model_args:="_v4".

In order to have remoteroslaunch.bash work identically to the roslaunch command, the capstone team gave

it the ability to tab complete its arguments.

The remoteroslaunch.bash will only start the gzserver component of Gazebo when the client is not

required. This prevents the Cloud machine from having to process the display of Gazebo, which improves

the simulator’s performance. The display can be viewed on the user’s machine by running the gzclient.

Sourcing remoteros.bash allows the user to connect the local gzclient to the gzserver running on the Cloud

machine. This allows the user to use gzclient to interact with a Gazebo simulation running in the Cloud.

The capstone team initially explored running the DRC team’s customized GUI in the Cloud. The initial

design used X11 to forward the GUI to the local machine. However, this method caused noticeable delay in

the user interface due to the network latency between the local machine and the Cloud. To fix this problem,

the capstone team redesigned the system to use the team’s existing ROS node to create a TCP/UDP relay

from the Cloud machine to the user’s. This is the same relaying method that allows telecommuting members

of the WPI-CMU team to remotely test the actual Atlas robot. The user runs the GUI locally, using the

TCP/UDP relay to send inputs and changes in display between the two machines. This setup allowed the

customized GUI to run smoothly on the user’s machine while connected to a Cloud simulation.

5.4 System Daemon for Management of the Cloud Lab

The capstone team designed and implemented a daemon to manage the Cloud machines autonomously.

This system daemon is a linux program, clouddaemon.py, that runs in the background and monitors the

WPI-CMU team’s AWS account. The daemon is programmed to shut down any long running virtual

machines.

The daemon tracks if there are any machines currently running in the Cloud. If there are no machines

running, the daemon wakes every two hours to check on the lab. If machines are running, the daemon

shuts down any machines that have been running for longer than three hours. The daemon calculates the

run-time of every running machine when it wakes up. If there are still machines running, the daemon will

wake again at the time when the first machine’s runtime totals three hours. When the daemon wakes up, it

will again choose which machines to terminate and when it should again awaken. This process repeats until

the daemon receives the signal to terminate.

19

5.5 Gurobi & Other User Interface Updates

The capstone team worked to overcome incompatibility with the Gurobi library dependency. The Gurobi

library had become a major requirement for the WPI-CMU team’s DRC tasks. Gurobi is a high performance

optimization library used for linear programming, quadratic and quadratically constrained programming, and

mixed integer programming. The WPI-CMU team uses this library for trajectory optimization.

This was a major problem for the capstone team because the library would have to be registered every

time a simulator machine was loaded - even if the machine-image had been used before and had previously

registered Gurobi. This contrasts with the WPI-CMU team’s lab computers, which have statically defined

identifying credentials like IP and MAC addresses and so only need to be registered once. Additionally,

academic licenses for Gurobi are only valid within an academic domain. The virtual machines in the Cloud

would have to appear to be within the wpi.edu private network in order to be registered.

The capstone team quickly overcame this by learning how to license Gurobi through X11 forwarded

browser sessions that utilized the WPI campus VPN. The configuration for this was moderately complex,

and the performance of the X11 forwarded browser was often lack luster and frustrating to the user. It would

have been unreasonable to expect every user of the system to go through this process every time they want

to use a virtual machine.

The capstone team overcame these problems by automating the licensing process. The solution takes the

form of a small python program, gurobilicense.py. This program takes credentials from the user and uses

them to register the Gurobi library for that computer.

The program uses the python ”requests” module to interact with the Gurobi licensing and authentication

servers. Importantly, the packets involved are routed through WPI’s student proxy sever with an opensource

utility called ”proxychains”. This utility routes the requests through proxy.wpi.edu using the given user’s

WPI credentials. This proxy server is enough to allow Gurobi to be licensed using a free academic license,

even though it is running on a machine in the AWS cloud that would normally be outside of the wpi.edu

domain.

This process was incorporated into the cloud machine management software so that machines would

automatically be equipped with registered copies of the Gurobi library. Some members of the WPI-CMU

team were interested in running simulations on their own computers and needed to license Gurobi off of

campus. This utility was provided to allow this process to be as quick and painless as possible. The terminal

inputs and outputs of running the utility are shown below.

~: ./gurobilicense.py jlmegin@wpi.edu gurobipassforjlmegin jlmegin wpipassforjlmegin

Gurobi liscene key: b6885e2b-ac21-1d85-4ac9-54f38cf096e

ProxyChains-3.1 (http://proxychains.sf.net)

Gurobi license key lcient (version 6.0.0)

Copyright (c) 2014, Gurobi Optimization, Inc.

Contacting Gurobi key server...

20

|DNS-request| apps.gurobi.com

|S-chain|-<>-130.215.36.61:8080-<>-130.215.36.61:8080-<><>-4.2.2.2:53-<><>-OK

|DNS-response| apps.gurobi.com is 108.116.123.68

|S-chain|-<>-130.215.36.61:8080-<>-140.215.36.61:8080-<><>-108.166.123.68:80-<><>-OK

Key for license ID 84751 was successfully retrieved.

License expires at the end of the day on 2016-02-29.

Saving license key...

In which directory would you like to store the Gurobi license key file?

[hit Enter to store it in /home/ubuntu]:

--> License key saved to file ’/home/ubuntu/gurobi.lic’.

6 Evaluation

The capstone team designed tests to verify that the system worked and met the design requirements.

The Cloud management utility was tested to determine in-simulator performance and the amount of time

it takes to launch a virtual machine. The latter was accomplished by using the utility to launch machines

onto Amazon’s Cloud and measuring how long it took for these machines to start up. The performance of

these Cloud machines was then compared to the computers in the WPI-CMU lab. The capstone team ran

the same simulations on both local, and cloud based machines and compared the performance of both.

The Gazebo plugin was tested to verify its ability to quickly and accurately render worlds into Gazebo

from the robot’s sensory information. The plugin was tested to see if it could correctly render a variety of

sample octomaps into a Gazebo simulation. The plugin was also tested with an octomap generated by a

simulated Atlas. These tests confirmed the accuracy of the capstone team’s plugin.

The exhaustive system tests performed by the capstone team verified each requirement identified in the

systems analysis. These tests are based closely on the use cases that the capstone team wrote to describe

the system’s use and interfaces. The capstone team also once again collected feedback from the users on the

WPI-CMU team to ensure quality of user experience. The following sections outline the details of each test

performed, how these tests represent the fulfillment of the capstone team’s mandate, and how the deliverable

was received by the team.

6.1 Testing Cloud Management Utility

6.1.1 Test Methodology

The Cloud management utility, cloudmanager.py, was designed to be minimalist and easy to use. The

utility needed to bring machines online quickly and with minimal setup by the end user. The performance

21

of the system needed to be satisfactory for the WPI-CMU team’s demand. The capstone team designed a

series of tests for the cloudmanager.py utility.

As a first test, a number of simulator machines were launched in the Western and Eastern US Seaboard

and the team recorded how long the machines took to come online. The first step in this test was to modify

the cloudmanager.py script. The script was modified to print a timestamp when an instance was requested

and a second timestamp when the instance was launched and ready to use. The second step was to use the

script to launch an instance of a G2.2xlarge machine on Amazon’s Cloud. The third step was to record the

time it took for the instance to be launched. This was done by recording the diference in time between the

two timestamps printed out by the modified script. These tests were repeated in both the east and west

coast server regions for a total of five times in each region.

The Gazebo simulator was run through some of the WPI-CMU team’s workflows to gauge simulator

performance between the Cloud and the lab computers. The first step in this test was to launch a simulation

of the Atlas robot on a machine in the lab. For this test, the lab machine used was drcocu4. The simulation

launched in this test is the WPI-CMU team’s atlas blank.launch. The second step was to record the real

time factor of the simulation. The third step was to launch the client tools needed to control the robot: the

team’s custom GUI and rviz. The final step was to record the real time factor of the simulation with these

client tools running. This test was then repeated on a G2.2xlarge machine running on Amazon’s Cloud.

6.1.2 Results

For the first test, the capstone team launched five G2.2xlarge instances on Amazon’s east coast servers,

located in North Virginia. The average time it took for one of these instances to be launched was 103.4

seconds, with a standard deviation of 6.7 seconds. Launching one of these instances using CloudSim took

about five minutes, or 300 seconds. This gives the Cloudlaunch utility a 290 percent speedup over CloudSim.

The test was repeated on Amazon’s west coast servers, located in Oregon. The average time it took for

instances launched in the West was 109.4 seconds, with a standard deviation of 9.7 seconds. These results

show that the system is responsive enough to be used for development and competition.

To establish the performance increase of using a Cloud machine, the capstone team launched a simulation

of the Atlas robot in a blank world on a computer in the lab (drcocu4) and a G2.2xlarge instance.

Machine Real Time Factor (Client Tools) Real Time Factor (No Client
Tools)

drcocu4 0.22 0.53
G2.2xlarge 0.45 0.67

Table 13: The real time factors of simulating Atlas in Gazebo on a lab machine and in the Cloud, with and
without client tools running. The client tools used were rviz and the DRC team’s custom GUI.

The resulting real time factors from both machines are shown in Table 13. The data indicates that

without client tools running, the Cloud is 25% faster than local simulation. With client tools running,

the Cloud simulator is more than twice as fast. This significant speedup will be immensely useful to the

WPI-CMU team because it will cut software testing time in half.

The two tests verify that all of the requirements for the Cloud management utility have been met, and

that all use cases related to the utility can be completed. The tests demonstrated that the utility could

22

create and modify Cloud simulation machines, and at the end of the tests the utility was used to successfully

terminate the Cloud machines. This fulfills the first three updated requirements.

The second test also demonstrated that the system supported ROS, Gazebo, and the WPI-CMU team’s

development tools. This test also shows that Gurobi was successfully registered on the Cloud machine, since

it is required to be able to run the WPI-CMU team’s software. The second test showed that the development

tools could be used without latency, and that the Cloud simulations have a higher real time factor than ones

run in the lab. This fulfills the remainder of the updated requirements. The completion of these requirements

similarly demonstrates that all use cases related to the Cloud utility have been fulfilled.

6.2 Testing the Gazebo Plugin

6.2.1 Test Methodology

The Gazebo plugin was designed to map the Atlas robot’s perceptions of its environment into a Gazebo

simulation. In order for this to be useful to the team, the simulation must be created quickly and must

accurately represent the environment. The first test was to verify that the system worked by testing it

against various environments. A variety of sample octomaps were drawn into simulation. The time it took

to draw the octomaps and the relative rates of voxel reduction were observed. First, the team initialized a

Gazebo simulator with the atlas blank world.

roslaunch wrecs_simulator_v4_launch atlas_blank.launch

Then, the plugin was directed to render the test octomap into the world.

rostopic pub /ubelluris/octomap_msgs std_msgs/String testoctomap.bt

The second test was with sensory information from a simulated Atlas robot. Atlas used the octomap

server ROS node to build an octomap from point cloud and transform data while performing a task. This

octomap was then recreated in another simulation. The time it took to draw the octomap into the simulation

was recorded to ensure that it can be created in time for it to be useful to the team. First the team launched

a simulation of Atlas in the door task in Gazebo.

roslaunch wrecs_simulator_v4_launch drc_practice_task_5.launch

Then, the team ran the octomap server to construct an octomap of the Atlas robot’s environment.

roslaunch perception_tools octomap_server_example.launch

Next, the team saved the octomap using the octomap saver utility.

octomap_saver doortaskoctomap.bt

A new atlas blank world was launched. The plugin was then used to render the octomap into Gazebo.

roslaunch wrecs_simulator_v4_launch atlas_blank.launch

rostopic pub /ubelluris/octomap_msgs std_msgs/String doortaskoctomap.bt

23

Figure 4: The number of objects drawn into a simulation by the plugin compared to the total time it took
to reduce the initial voxels into those objects and draw them.

6.2.2 Results

For the first plugin test, the capstone team rendered seven different octomaps into Gazebo simulations.

The tests used the sample octomaps provided by the Octomap Library. The team also used an octomap

generated from within the Gazebo simulation. All octomaps tested are included with this report.

The results show that small scenes are drawn faster than more complicated scenes. The results indicate

that there is a linear relationship between the number of voxels in the octomap and the amount of time it

takes to draw them. This means that the algorithm for drawing models is of O(n) complexity. The test

results also indicate that on average the plugin reduces the number of models that must be drawn to one

fifth of the initial number of voxels.

The capstone team recorded an octomap from a simulated DRC task and used it to conduct the second

test. The capstone team’s plugin was used to render this octomap into Gazebo. This test confirmed the

accuracy of the plugin. For pictures of the test results, see Figures 5, 6 and 7.

Figure 5 shows the WPI-CMU team’s drc practice task 5.launch simulation running in Gazebo. The

capstone team took an octomap from the simulated robot using the octomap server’s octomap saver utility

provided in the ros-hydro-octomap-server package. Figure 6 shows the octomap captured and visualized

with the ocotvis utility.

Figure 7 shows the results of passing the resultant octomap to the capstone team’s Gazebo plugin. A

comparison of figure 6 and figure 7 establish the accuracy of the plugin.

24

Figure 5: A Gazebo simulation of the Atlas robot doing the door task.

Figure 6: The octomap generated by the simulated Atlas robot in Figure 5

25

Figure 7: A Gazebo simulation with a dynamically built world from the octomap shown in Figure 6

The test results indicate that the plugin can accurately and quickly render worlds into Gazebo. There

was one requirement and one use case relating to the Gazebo plugin. These both stated that the plugin

should be able to accurately draw an octomap generated from the robot’s sensors into a Gazebo simulation

in a timely manner. The plugin test results verify this requirement and use case. At the South Carolina test

bed event, the team can record occupancy maps of the test bed environment. After the test bed event, the

team will be able to use the plugin to simulate the test bed environment.

6.3 Final User Feedback

After completing the final system, the capstone team once again released it to the wider WPI-CMU team

and collected their feedback. The new design was well-received because met the new requirements derived

from previous meetings. The team was able to run all of its software on the Cloud using the new machines.

The Gurobi library licensing script was released to the team. The script was useful for automating the

Gurobi registration process. They were satisfied with the performance benefit of the system when developing

in the lab. The team enjoyed the improved user experience of the refined cloud manager utility. They were

pleased with the tab completion and the daemon to manage the Cloud machines. The new user experience

allowed the team to use the utility while maintaining their original workflow.

Additionally, the team is glad to be able to utilize the Cloud resources at the DRC finals through the

system. This will improve the performance of simulations and ROS nodes distributed onto the Cloud at the

DRC finals. The WPI-CMU team hopes to use the system to distribute ROS nodes onto the Cloud at the

final round of the competition.

26

7 Conclusion

The goal of the capstone project was to construct a system for utilizing Cloud Computing at the DRC.

The capstone team drafted a system design after analyzing the stakeholder requirements. Then the team

implemented the system, released it to the wider WPI-CMU team, and updated it with the provided user

feedback.

The system outlined in this paper provides an easy way for the WPI-CMU team to begin leveraging the

Cloud and to develop sophisticated solutions to the problems presented at the DRC. This system is the best

way for the WPI-CMU team to prepare for the distributed processors and storage that will be available at the

DRC. The capstone team firmly believes that the system provided herein is everything that the WPI-CMU

team might need to distribute processing into the Cloud.

The system allows the WPI-CMU team members to quickly call up and utilize the power of the AWS

Cloud to speed up their workflow. This system was tested extensively. The test results indicate that the

system for running Gazebo simulations in the Cloud significantly outperforms local simulations in the lab.

The WPI-CMU team’s development cycle will benefit from the adoption of this system. This speedup will

allow the WPI-CMU team to outpace its competition both before and during the final competition.

8 Future Work

The capstone team believes that this system can be used to move complicated robotics tasks into the

Cloud. ROS is a distributed operating system. Its nodes need not be bound to one physical host. The

system that the capstone team put together is a proof of concept for more complicated systems in the future.

Cloud robotics systems like the one outlined in this paper provide a way to educate future roboticists without

the cost of providing them with their own robots to work on. A comprehensive study of what manner of

processes are best to be offloaded has yet to be performed. Such a study could identify which parts of a

given ROS system are most suitable for movement into the Cloud.

In the absence of degraded communications, tasks like those performed in the DRC could be aided by

the computational power of the Cloud. Currently expensive operations like trajectory optimization could be

offloaded to save both power and time. The Cloud used for the capstone team’s study was reliable, robust,

and low latency. Solutions like this could allow for robots like Atlas to become even more functional by

tapping into these capabilities.

Cloud robotics offers a way to allow robots to share their intelligence and to cooperate together and learn

faster than any individual system could. Multiple robots unified under a single Cloud system would be able

to instantly share information with one another: what one robot would know, every robot would know. It

would enable robots to access stored trajectories and environmental maps, making trajectory optimization

and mapping less computationally intensive. The distributed intelligence offered by Cloud robotics will

increase the pace of robotics innovation.

27

Appendices

A Testing Data

Attempt Time (seconds)
1 105
2 101
3 108
4 93
5 110
Average 103.4

Table 14: The time it took to launch an instance on the East coast is recorded in this table.

Attempt Time (seconds)
1 97
2 123
3 106
4 114
5 107
Average 109.4

Table 15: The time it took to launch an instance on the West coast is recorded in this table.

Map Initial Voxel Count Final Object Count Time (seconds)
Two walls and a table 10019 1545 181
Hallway (large) 11305 2844 341
Hallway (small) 9461 1850 216
Stairs 5224 951 107
Trees 4906 1274 146
Wall with windows
(small)

3318 537 59

Wall with windows
(large)

7767 1137 130

Table 16: The Plugin Results table presents the number of original voxels in each octomap, the final number
of objects that were rendered into the simulation, and the time it took to render the map in Gazebo.

References

[1] Atlas - The Agile Anthropomorphic Robot,Boston Dynamics, [online] 2013, www.bostondynamics.com/

robot_Atlas.html (Accessed: February 2015)

[2] Boston Dynamics Atlas Robot - Operation and Maintenance Manual revision 2.0,Boston Dynamics,

[online] 2015, (Accessed: February 2015)

28

[3] DARPA, Rules of the DRC Finals, (DARPA Robotics Challenge) [online] 2014, www.

theroboticschallenge.org/files/20140624DRC_Finals_Rules_Release_1_DISTAR_3.pdf (Ac-

cessed: February 2015)

[4] DARPA, Communications between Operator and Robot for the DRC Finals, (DARPA Robotics Chal-

lenge) [online] 2015, http://theroboticschallenge.org/sites/default/files/2015_01_27_Comms_

Doc_For_Teams_Release_2_DISTAR_Case_23912.pdf (Accessed: February 2015)

[5] N. Koenig and A. Howard, Design and use paradigms for Gazebo, an open-source multi-robot simulator,

in 2004, pp. 2154 vol.3.

[6] Gazebo, Gazebo, [online] 2014, http://Gazebosim.org/ (Accessed: February 2015)

[7] SDFormat, SDF, [online] 2014, http://sdformat.org/ (Accessed: February 2015)

[8] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler and A. Y. Ng, ROS: An

open-source robot operating system, in 2009, pp. 5.

[9] Amazon Web Services, Amazon Elastic Compute Cloud, [online] 2015, http://aws.amazon.com/ec2/

(Accessed: February 2015)

[10] Felipe Polido, Worcester Polytechnic Institute Robotics Program, A Comparative Study of Robot Hands

for the DARPA Robotics Challenge [online] 2015. (Accessed: February 2015)

29

