

1

Cost Optimization Through Unifying

Multi-Cloud Resources

A Major Qualifying Project Report:
Submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the

Degree of Bachelor of Science
By

Synella Gonzales

Elsa Luthi

Benjamin Nickerson

Date: January 22, 2019

Approved:

Dr. Tian Guo, Major Advisor

2

Abstract
The goal of this project is to create a multi-cloud web interface that provides users with

the cheapest resource provisioning options from Amazon Web Services and Google Cloud
Platform. The user can choose between predefined allocations based on workloads or specify a
custom amount of resources needed. In addition, our application handles deployments to
respective cloud providers. By handling the end-to-end functionality of finding cloud resources
and managing deployments, the user is able to optimize costs from multiple providers.

3

Executive Summary
It is predicted that by 2020, 87% of enterprise workloads will be hosted on the cloud [1].

Migration is due to the fact that cloud technologies allow businesses to economically distribute
their computing needs and data storage. Ability to “rent” the kind of computing power or storage
space offered by top cloud service providers like Amazon Web Services (AWS) or Google Cloud
Platform (GCP) at such a cheap rate is beneficial for individual users. Cloud service providers
remove the bottleneck of individuals needing to meet the hardware requirements of their
workloads. For example, an individual might need to have enough storage space for their data or
have a processor powerful enough to perform their computations.

However, the process of deploying cloud resources can be tedious and overwhelming for
users with no prior experience with cloud services. For example, there are a variety of different
cloud providers each offering different pricing options for each resource. In addition, it can be
challenging to know the optimal amount of resources needed for specific workloads.
 The goal of this project is to create a platform that will optimize this process. We built a
web application that allows the user to enter information about their workload. Then we
developed an algorithm that optimizes the cost of their instance creation across two cloud
providers: AWS and GCP. This work will streamline user’s work, removing numerous manual
steps for choosing instance types and sizes, and simplifying the deployment process.

Through an extensive testing suite, we were able to gain valuable insight on the
performance of our system. First, we confirmed the correctness of our find_instance and
find_instance_workload functions. We also found that AWS provides more storage options
compared to GCP. Furthermore, caching the list of instances and images from both cloud
providers improved the runtime of our pricing algorithm. Lastly, AWS was faster than GCP in
deploying cloud resources.

There are a variety of engineering efforts and system algorithm improvements that can be
made to our application. An engineering effort we recommend is collecting user credentials to
the respective cloud provider in order to deploy resources to their specific account. Possible
implementations include prompting user for credentials to cloud providers, using a token system,
or instructing users how to create private keys with AWS and GCP. A system algorithm
improvement we recommend is integrating machine learning to our cost optimization algorithms.
Implementing machine learning models can be difficult and time consuming, therefore we
suggest it as a direction for future work.

 In summary, we successfully created a multi-cloud prototype that achieved the goal of
recommending the best price to the user. Our system provides a strong basis for future
development. We hope that the system can be improved and utilized by users looking to find the
best options for deploying to the cloud.

4

Table of Contents
Abstract 2

Executive Summary 2

Table of Contents 3

Table of Figures 5

Table of Tables 6

Chapter 1: Background 7

Chapter 2: Literature Review 13

Chapter 3: Implementation 24
I. System Overview 24
II. System Software Architecture 26
III. Interface Detailed Design 28

Chapter 4: Results 30

Chapter 5: Recommendations and Future Work 50

References 50

Appendix A 54

Appendix B 59

Appendix C 68

Appendix D 68

Appendix F 71

5

Table of Figures
Figure 1: Hardware Model for Virtual Machines [5] 8
Figure 2: Diagram showing the difference between Virtual Machines (VMs) and Containers [7] 9
Figure 3: The Top Four Cloud Deployment Model Properties [10] 11
Figure 4: Interface for Cisco CloudCenter, a current multi-cloud deployment platform [24] 22
Figure 5: High-level architecture overview for our multi-cloud interface 24
Figure 6: Flow of information for our multi-cloud solution 25
Figure 7: Home Page 28
Figure 8: Custom Options Page 28
Figure 9: Workload-Based Options Page 29
Figure 10: Top Options Page 29
Figure 11: Deployment Page 30
Figure 12: Launching an AWS Deep Learning AMI using our platform 33
Figure 13: Caching vs. Non-Caching Runtime 40
Figure 14: Runtime Metrics for Deployments 42
Figure 15: Total Deployment and Initialization Time 44
Figure 16: Full Deployment and Initialization Time 44
Figure 17: Analysis from AWS after running the Tensorflow and Keras project on the

platform-recommended image 45
Figure 18: Launching an AWS Deep Learning AMI using AWS’ dashboards 46
Figure 19: Step 3. Look up Amazon Marketplace Pricing Information 47
Figure 20: AWS analysis of TensorFlow and Keras project running on the recommended

t2.micro instance 47

6

Table of Tables
Table 1: Levels of Abstraction 11
Table 2: Cost Models 13
Table 3: Utility Based Pricing Models 14
Table 4: Service Based Pricing Models 14
Table 5: AWS Instance offerings for In-memory workloads [30] 18
Table 6: Google Cloud Engine offerings for in-memory workloads [31] 18
Table 7: AWS Instance offerings for machine and deep learning workloads [30] 18
Table 8: Google Cloud Engine offerings for machine and deep learning workloads [31] 18
Table 9: AWS Instance offerings for general purpose workloads [30] 20
Table 10: Google Cloud Engine offerings for general purpose workloads [31] 20
Table 11: Correctness tests for find_instance function based on user input 31
Table 12: Caching vs Non-Caching Template 32
Table 13: Deployment Testing Template 33
Table 14: First Iteration of Correctness Tests 35
Table 15: Results of Second Iteration of find_instance 36
Table 16: Results of find_instance_workload 37
Table 17: Test Results for Caching 38
Table 18: Test Results for Non-Caching 39
Table 19: Deployment Runtime of AWS and GCP 41
Table 20: Deployment and Initialization Tests for AWS 43
Table 21: Amazon’s Recommendation vs. Platform Recommendation 48

7

Chapter 1: Background

I. Introduction
Computing resources are in high demand due to computationally expensive workloads.

Streaming, the Internet of Things (IoT), machine learning, and artificial intelligence are quickly
becoming ingrained into everyday life. Managing substantial workloads raises challenges for
developers. Cloud computing offers a variety of tools and services to help alleviate issues that
developers face when creating and managing their applications.

Businesses are turning towards cloud computing to host applications. It is predicted that
by 2020, 87% of enterprise workloads will be hosted on the cloud [1]. However, cloud solutions
raise additional challenges. Vendor lock-ins, resource management, and cost optimization remain
a critical concern for maintaining cloud-based solutions [1]. Before addressing the goal of our
project, it is necessary to gain a basic understanding of cloud concepts and technologies.

II. Definition of Key Terms

Cloud Computing
Cloud computing allows convenient and on-demand network access to shared computing

resources [2]. These resources can be both provisioned and deployed with little effort or
interaction with the cloud service provider. According to the National Institute of Standards and
Technology (NIST), there are five key benefits of cloud computing: on-demand self-service,
broad network access, resource pooling, elasticity, and measured quality of service.

Service Level Agreement
The pricing of cloud computing is based on Service Level Agreements (SLAs) that are

arranged by the producer and consumer. In cloud computing, a large part of this agreement is the
quality of service that the producer provides. The SLA is usually comprised of an assurance,
time period, scope, guarantee, recognition, and a way measure any violations [3].

Virtualization
Virtualization is a key component of cloud computing, especially when resource pooling.

It reduces the amount of hardware needed by allowing multiple consumers to utilize an
application hosted by a single machine. When software replaces hardware, the efficiency of
delegating and consolidating resources is increased. There are a few different forms of
virtualization: operating system (OS), platform, storage, network, and application [3].
Application virtualization is the focus of our project.

8

Virtual Machine
A Virtual Machine (VM) is a computer file, typically called an image, that acts like a

physical computer [4]. Virtual machines run like any other program and give the user the same
experience the actual machine. For example, a Windows user can have a Linux virtual machine
installed on their hard drive that allows the user to run Linux programs on their physical
Windows machine.

One of the key features of a virtual machine is that it is completely isolated. This means
that it is unaffected by anything happening on the host operating system, and in turn it has no
effects on the OS. Multiple virtual machines can be used on the same computer to do different
tasks; one for a testing environment, and another for development. Virtual machines are run and
managed by a piece of software that sits between the virtual machine and the host operating
system called a hypervisor [5]. The relationship between the computer hardware, operating
machine, hypervisor, and virtual machines is shown below in Figure 1.

Figure 1: Hardware Model for Virtual Machines [5]

Containers
Containers are designed to virtualize a single application [6]. Containers create an

isolation boundary at the application level rather than at the server level. Isolation means that
events in one container only affect that container, and they do not impact the virtual machine or
the server. Containers can also remove potential compatibility problems between applications
that reside on the same operating system.

Management of containers is a common issue. The size of the system is a critical concern
for updating containers. Larger systems may require multiple container configurations which
make updating a container difficult. However, container management systems such as Docker,
Kubernetes, and Fragate provide services to alleviate these issues. Management services provide
methods for deploying and maintaining containers. For example, Docker provides two ways to
deploy a container: create an image to run in a container or download a pre-created image.
Similar to virtual machines, container utilization raises new challenges for developers.

9

Container security is a concern for end-users. In order to understand it thoroughly we
looked at a case study to about security concerns related to Docker. Previously, Docker
containers had to have root access. This was incredibly unsafe because if the container was to
become compromised, it would have root access to the entire OS. Now, Docker containers
utilize user namespaces, allowing the containers to run as specific users [6].

The integrity of the images used to deploy containers is another challenge for developers.
Container images that are downloaded from third parties are not guaranteed to be secure. As a
result, Docker has tried to remedy this by adding a feature called Docker Content Trust [6],
where images are verified and scanned for vulnerabilities.

The key difference between containers and virtual machines is that containers are isolated
in their deployment. As shown below in Figure 2, virtual machines do not need a full operating
system to be installed with the container. They can operate with only the resources they need to
perform the task they were designed for (libraries, software, etc.). Containers are also portable;
once the container is created, it can be deployed to different servers easily.

Figure 2: Diagram showing the difference between Virtual Machines (VMs) and Containers [7]

10

Workload
A workload is a computing task that is completed in a given amount of time [8]. Cloud

computing offers a variety of resources optimized for different types of workloads. Common
cloud workloads include large streaming, in-memory database, big data storage, and machine
and deep learning workloads. Comparisons of workloads can be found in Chapter 2.

Deployment
Deployment is the act of making a resource available on a cloud platform. To choose

which platform gets to use a particular resource, it is necessary to analyze a cloud deployment
model. A cloud deployment model shows how the cloud obtains and manages its resources [9].
The main deployment models are: Public, Private, Hybrid, and Community

Public cloud deployment model is the most common and well-known model. The cloud is
a data center that offers every user the same service [9]. The data center is the information that
has been deployed to the cloud, from all users of the service.

Private clouds have a similar set-up to public clouds; however, the data center is
internally hosted by the customer [8]. This model is helpful when managing sensitive data,
because it allows the customer to control access to shared information. Furthermore, only users
who have access to the private cloud can use its pool of resources. This model is typically more
expensive than public clouds due to additional costs related to on-premise data center
management.

Hybrid clouds are a combination of public and private clouds. This model is suited for
large companies because it combines the privacy of the private cloud and the computing
resources of the public cloud [8]. This is the cloud deployment model our project aims to utilize.

Community cloud is a model in which a group of users utilize a private cloud model [9].
An example of this form of cloud deployment is the United States government. Figure 3 further
outlines the deployment models and some of their properties.

Figure 3: The Top Four Cloud Deployment Model Properties [10]

11

For the scope of this project, it is important to define multi-cloud versus hybrid cloud.
Multi-cloud is the use of multiple cloud providers independently from each other. Hybrid-cloud
is the implementation of a workload that spans across multiple clouds, specifically public versus
private. In this project we will be working on a multi-cloud system.

Cloud Service Provider
A cloud service provider offers a platform where customers can utilize their cloud-based

infrastructure and storage services [11]. Each cloud provider utilizes their own pricing model,
based on the services that they offer to their customers. These differences can often be associated
with the level of abstraction that the cloud service providers outline for their customers.

Levels of Abstraction
The level of abstraction allows companies using the cloud to decide what type of service

they need from the cloud service provider. The different levels all have different services being
provided, and thus have different ways of measuring their quality of service. In Table 1, the
different levels of abstraction are defined according to the service that is associated with them
[3].

 Table 1: Levels of Abstraction

Level of Abstraction Service Provider Performs

Infrastructure as a service (IaaS) Storage of information, or the ability to
transfer files

Platform as a service (PaaS) Provides a platform that includes hardware,
and an operating system

Software as a service (SaaS) Provides a platform that includes hardware, an
operating system, and software

Business process as a service (BPaaS) A whole business function

Information as a service (INaaS) Database of information (such as laws or tax
codes)

12

III. Problem Statement
 Multi-cloud solutions act as a broker between the variety of cloud service providers. In
order to optimize cost, some workloads can span across multiple clouds. Different types of
workloads may be better suited for certain cloud service providers in terms of pricing. By
implementing a cost optimization algorithm, our multi-cloud solution aims to give users the best
price while maintaining quality of service for their workload. It is our belief that we can reduce
costs by a small amount and optimize the usage of cloud resources.
 Analysis of our solution will be based on cost comparisons between two major cloud
providers and the results of our algorithm. We want to ensure that the provisioned resources are
being utilized, and analyze metrics such as CPU usage, storage capacity, and deployment time.

The goal of our project is to provide a cost-effective multi-cloud solution that focuses on
individual users and their workloads. To achieve this goal, we have three main objectives:

1. Optimize cost of cloud resources for different types of workloads.
2. Create a web interface for multi-cloud resource deployments to AWS and GCP.
3. Evaluate the correctness and resource utilization metrics of our multi-cloud resource

manager.

13

Chapter 2: Literature Review

In order to provide a cost-effective multi-cloud system, it is necessary to gain an
understanding of the existing market. This chapter outlines the pricing models of leading cloud
providers, analyzes the market surrounding existing container and cloud technologies, and
defines common workloads leveraged by the cloud. In addition, it explores existing multi-cloud
technologies, highlights two implementation methods of intelligent resource provisioning, and
introduces human-computer interaction concepts that will be adopted by our multi-cloud
solution.

I. Pricing Models
Cloud Computing is a billion-dollar industry that thrives on a large consumer base. In

order to keep up with the industry, it is imperative for companies to provide their product at a
competitive price. Cost models are algorithms that are used to decide how much money a project
will cost. Once a cost model for a project is generated, a pricing model can be derived so that the
provider can profit from their offered services. There are a few types of cost models that are used
in cloud computing listed below in Table 2 [12].

Table 2: Cost Models

Model Description Examples

Subscription-cost pricing
model

Over period of time, there is a
subscription charge paid

IBM SmartCloud for Social
Business

Advertising-based cost model The consumer is not charged,
or rarely charged due to the
amount of ads

free TV provider

Market-based cost model The consumer is charged on a
timed per-usage basis, where
the cost fluctuates based on
demand

Amazon EC2 Spot Instances

Group buying cost model The more consumers there are
in a group the less an
individual has to pay

Groupon

Pricing models define the price that is paid in order to receive the value of a product or a

service [12]. There are a few different pricing models including utility, service, performance, and
marketing-based pricing models [3]. Utility and service-based price models are the most
common in the cloud computing market [3]. The utility-based pricing model is described as

14

when the consumer is monitored and pays accordingly. Examples of utility-based models are
described in Table 3 [3].

Table 3: Utility Based Pricing Models

Model Description Abstraction Level (best use)

Consumption Pay for the resources used IaaS, PaaS

Transaction Pay for the number of
transactions

BPaaS, INaaS, SaaS

Subscription Pay for a time period of
service (usually a month)

All abstraction levels

Service-based pricing models use the risk, or money saved as defined in an SLA to

compute how much the consumer will pay [12]. Examples of service-based pricing models are
listed in Table 4 [12]. We will be using these pricing models in order to get a better idea of the
cloud services we are dealing with, and how they compare to each other.

Table 4: Service Based Pricing Models

Model Description Abstraction Level (best use)

Fixed Price Made up of a nonrecurring
price and a recurring price

All abstraction levels

Volume-Based Cost based on the amount of
users, storage, transaction
speed, or volume of resources
used

All abstraction levels, but
mainly IaaS or PaaS

Tiered Price Creates a tiered model that is
based on the volume, cost, or
SLA

All abstraction levels

15

II. Market Overviews

Container Technologies
The current industry standard for container technology is Docker [13]. Docker originated

as an experiment for deploying Linux containers onto PaaS platforms [14]. According to Docker,
they provide the strongest default isolation capabilities in the industry [15]. The company gained
popularity due to its simplicity -- the code was isolated and portable, making it easy for
developers to deploy the same code into testing and development environments.

As more companies started using Linux containers, they needed an easy way to manage
them due to the isolation of containers. Eventually, Google developed a solution for this in its
Kubernetes technology. Container technology had only been around for approximately four years
when Kubernetes entered the stage [16]. Many companies were rushing to become the industry
standard for container deployment and management, and eventually Kubernetes saw a rise in
adoption [16]. Kubernetes gained popularity because of its stability and adaptability. Forrester
Research stated in their 2018 Cloud Predictions that Kubernetes beat out competitors for
container orchestration [17]. Together, Docker and Kubernetes are a powerful combination that
our team can use to accomplish our goal of creating a multi-cloud deployment platform.
Deployments to containers are often viable solutions for smaller workloads where creating new
virtual machine is not needed.

Cloud Technologies
The cloud computing market is growing rapidly. Two of the largest cloud services are

Amazon Web Services (AWS) and Google Cloud Platform (GCP) [18]. The leading cloud
infrastructure technology platform is AWS [18]. According to Amazon, AWS is a variety of
cloud products that include computing, storage, databases, analytics, and networking. Due to
their resources, AWS controls around a third of the cloud marketplace, and over half of the IaaS
market [18]. In addition, the service provides management and developer tools for their
customers [19]. GCP is one of Amazon’s top competitors [20]. Currently, GCP offers a variety
of services including computing and hosting, storage, networking, big data, and machine learning
[21]. The largest VMs in the cloud marketplace belong to GCP [18]. AWS and GCP are of
interest, because together they control a majority of the cloud computing marketplace.

There are several key differences between AWS and GCP. Amazon has more offerings in
terms of integration with other technologies. For example, if a user needs a cloud SQL solution,
GCP and AWS offer in the solutions that they offer. GCP offers a MySQL solution, while AWS
offers multiple options such as Aurora, MariaDB, Oracle, and Microsoft SQL Server.
Furthermore, Amazon has more data centers across the world [18]. This may be beneficial for
users in countries where some services may be blocked internationally. On the other hand, GCP
offers more configurability for instances on their cloud platform [18]. This allows for the user to
configure their deployments optimally for each process, using only the resources they need. GCP

16

also has more informative dashboard, allowing the user to know exactly what resources are being
used and where [18].

Due to the scope of our project, we decided to focus on GCP and AWS for our multi-
cloud solution. It is important to understand the differences between GCP and AWS as each
cloud service provider offers different services at competitive prices. AWS utilizes what they call
“pay-as-you-go” pricing and offer a 1-year free trial [19]. GCP has a $300 credit that lasts a year,
and a free tier the customer can utilize before committing to their “pay-as-you-go” pricing
scheme [21]. Both AWS and GCP are market-based cost models, that use a consumption-based
pricing model. GCP also includes a tiered price-based pricing model [22]. Although one option
may be cheaper, the user may want the more expensive option for additional functionality. These
issues should be considered when developing a multi-cloud solution.

III. Existing Multi-Cloud Technologies
Enterprises are increasing their demand for cloud management tools. A scan of the

existing market shows that there are a wide range of cloud management tools that offer an array
of solutions. However, there is a lack of cohesion in the current market as many of the cloud
management offerings do not cover all enterprise needs. Many companies utilize a variety of
tools for a holistic solution to cloud management [23].
 Cloud management platforms (CMP) are a series of multifunctional tools that manage the
cloud solutions across a variety of cloud providers. The success of CMPs vary as many
enterprises have to implement other tools for deployments [23]. The requirements for cloud
management involve three major categories: access management, service management, and
service optimization

Service management, the focus of our project, deals with provisioning, orchestration, and
automation. It also includes governance and policy, monitoring and metering, and multi-cloud
brokering. CMPs are more likely to provide capabilities to service management over the other
two major categories [23]. CMPs need to enforce policies on which provider to use and what
resources can be consumed from that provider. In addition, CMPs should reduce lock-ins with
one cloud provider and provide a variety of pricing options for optimization [23].
 There are many vendors that provide CMP solutions. There are two technologies that we
wanted to highlight for different reasons. The first is Cisco CloudCenter. Cisco CloudCenter
defines itself as IT-as-a-Solution (ITaaS). It acts as a service broker for multiple cloud providers
via a single interface. It offers one-click deployment and includes cost controls and reporting
mechanisms on usage statistics [24]. The reason for highlighting this particular technology is the
UI that it utilizes. The UI provides a clean way to deliver cost reporting that many CMP’s in the
market fail to report on. The dashboard section shows the percentage of active virtual machines
from each cloud provider, usage statistics for each provider, and the status of each of the running
applications. Cost reporting and usage data is an important aspect of a multicloud interface and
analyzing this Cisco’s interface from a user perspective will provide benefits when designing our
application.

17

 The second technology is HashiCorp Terraform. This technology provides a mechanism
to make infrastructure as a code portable to other cloud providers. The goal of Terraform is to
provide reliable deployments and prevent vendor lock-ins. In addition, it urges developers to
extend Terraform to fit new needs [25]. The reason for highlighting Terraform is due to its multi-
cloud deployments and flexibility of extending the API to fit our needs.
 In addition to fully functional solutions, there are currently a variety APIs that provide
low-level abstraction [26]. In this project, we will implement and extend an API for our multi-
cloud interface. The API’s that were analyzed include:

1. Apache Libcloud (Python)
2. Apache jCloud (Java)
3. Fog (Ruby)
4. Libretto
5. Pkgcloud

After analyzing each technology, it was concluded that Apache Libcloud provided us
with the greatest benefits for developing a multi-cloud solution. It is supported by a variety of
cloud and container technologies, and it supports an entirely code-based solution [27]. This
mechanism allows us the freedom to develop our own UI design. In addition, it also supports
methods for load balancing, block storage, and object storage across a variety of cloud providers
[27]. Apache jCloud is related to Libcloud and the main difference is that it implements a Java-
based solution [26].
 Fog is a Ruby-based solution that does have many of the mechanisms present in Apache
Libcloud and Apache jCloud. However, often the code quality is not as strong and many of the
drivers are missing tests [26]. In an effort to focus on a fully-functional web interface, we felt
that a Python-based solution is better suited for web development. Finally, Libretto and Pkgcloud
did not provide the full functionality we were looking for in our solution.

18

IV. Workloads
Cloud computing offers a variety of resources optimized for different types of workloads.

A workload is a computing task that is completed in a given amount of time [10]. The types of
workloads that are often leveraged by cloud computing require different configurations of
resources in order to optimize performance.

Common cloud workloads include large streaming workloads, in-memory database
workloads, big data storage workloads, and machine and deep learning workloads. Large
streaming workloads are associated by high throughput. The difficulty related to this workload is
that the end user can cancel the interaction at any moment. Bandwidth to the user and network
speed from storage to the server are major concerns with this type of workload [28]. In-memory
database workloads deal with large amounts of data that is accessed both quickly and often. It is
concerned with real-time processing and speed is the highest priority [28]. Big data storage
workloads manage large databases that are updated in small amounts periodically. The main
concern related to this workload is availability, integrity, and security [28]. Machine and deep
learning workloads are computationally expensive and utilize large amounts of data [29]. Cloud
service providers often offer resources that are better suited for these types of workloads
[30][31]. In addition to these common workloads, we also want to define general purpose
workloads in relation to our project. This type of workload is related to non-intensive tasks that
are not resource dependent for optimization.

AWS and GCP each offer virtual machine configurations that are designed to optimize
performance based on certain workloads. In addition to the pre-configurations, users also have
the ability to define their own resources. In Table 5 and Table 6, we highlighted a minimum and
maximum resource configuration that AWS and GCP offer for in-memory workloads. These
tables illustrate some of the resource levels needed for this type of workload. In addition, each of
the tables only show a small fraction of the total offerings available with AWS and GCP. In
Table 7 and Table 8, we highlighted configurations for machine and deep learning workloads.
Finally, in Table 9 and Table 10, we show the resource configurations that are often utilized for
general purpose workloads. This table is particularly relevant to our project because we are
focused on general purpose workloads.

General purpose workloads are instrumental to our project because of its lack of
dependency on resources. This fact will allow us the freedom to experiment with both virtual
machine solutions and container solutions. In addition, we will be able to analyze usage statistics
and the accuracy of our algorithms. As we feel comfortable in the accuracy of our solution, we
may extend our scope to include machine-learning workloads as well.

19

Table 5: AWS Instance offerings for In-memory workloads [30]

Type # of vCPU Memory
(GB)

Storage
(xGB)

Dedicated bandwidth EBS volumes
(Mbps)

x1e.xlarge 4 122 1x120 500

x1e.32xlarge 128 3,904 2x1920 14,000

x1.16xlarge 64 976 1x1920 7,000

x1.32xlarge 128 1,952 2x1920 14,000

Table 6: Google Cloud Engine offerings for in-memory workloads [31]

Type # of vCPU Memory
(GB)

Max number persistent
disks (PD)

Max total PD size
(TB)

Local
SSD

n1-ultramem-40 40 961 16 64 No

n1-ultramem-160 160 3,844 16 64 No

Table 7: AWS Instance offerings for machine and deep learning workloads [30]

Type # of vCPU Memory
(GB)

Storage
(GB)

Dedicated EBS bandwidth (Mbps)

c5.large 2 4 EBS-only 3,500

c5d.18xlarge 72 144 2x900 SSD 3,500

20

Table 8: Google Cloud Engine offerings for machine and deep learning workloads [31]

Type # of
vCPU

Memory
(GB)

Max number persistent disks (PD) Max total PD size
(TB)

n1-highcpu-2 2 180 16 64

n1-highcpu-96 96 864 16 64

Table 9: AWS Instance offerings for general purpose workloads [30]

Type # of
vCPU

CPU credits per hr Memory (GB) Storage (type)

t3.nano 2 6 0.5 EBS-only

t3.medium 2 24 4 EBS-only

t3.large 2 36 8 EBS-only

t3.2xlarge 8 192 32 EBS-only

 Table 10: Google Cloud Engine offerings for general purpose workloads [31]

Type # of
vCPU

Memory (GB) Max number persistent disks
(PD)

Max total PD size
(TB)

n1-standard-1 1 3.75 16 64

n1-standard-96 96 360 16 64

21

V. Intelligent Resource Provisioning
Intelligent resource provisioning is a critical component to multi-cloud solutions. In order

to optimize costs based on different workloads, our system needs to provision resources in a way
that does not sacrifice quality of service (QoS). Quality of service relies on the resources
ensuring that response time and cost constraints are met. Often, QoS is defined by the cloud
service providers by SLAs [32].

There are two concepts that are implemented for intelligent resource provisioning:
optimization algorithms and machine learning. In order to explain the first concept, we highlight
a system called CherryPick. CherryPick utilizes Bayesian optimization for resource provisioning.
This method estimates confidence intervals of both cost and running time for different
possibilities of cloud configurations [33]. One of the goals is to find an optimal solution to
minimize the cost algorithm.

[33]

The reason that Bayesian Optimization is needed is due to the fact that calculating the running
time under all of the different configurations would result in high total runtime [33]. Bayesian
optimization computes a confidence interval based on samples that come from the cost algorithm
C(x) [33].

The second concept is utilizing machine learning for intelligent resource provisioning.
The system that utilizes this method is PARIS. PARIS created an interface system that
provisions resources for different workloads based on machine learning algorithms [34].
 There are two stages related to machine learning: an offline stage and an online stage.
During the offline stage, information is collected about different VM types. In addition,
benchmark tests are generated with a variety of different resource requirements [34]. During the
online stage, workload queries are created by executing the user’s task on reference VMs that are
currently running. Then, the information from the offline stage and information from the online
stage are combined to successfully model the user’s workload performance [34]. PARIS does
acknowledge that there are difficulties modeling workload resource requirements due to
executions utilizing different resources at different times.

Intelligent resource provisioning is a critical component to our project. As a result, we
need to understand the different implementations that currently exist today. The two concepts
utilized by the systems above are viable solutions to our multi-cloud solution. However, our
approach will use cost optimization algorithms similar to CherryPick. Machine learning,
although useful, adds additional resource and data requirements that exceed the scope of our
project.

22

VI. Human-Computer Interaction (HCI) Principles
Since we are building a web-application, we need to keep in mind the current human-

computer interaction principles to ensure a quality user experience [35].
1. Define the ergonomics of the interface.
2. Determine dialogue design and interface style.
3. Choose a presentation style and screen design [35].

The first step allows us to guarantee two things. First, the user must understand the input they
must give to the program for it to work properly. Second, the user must understand the output
our program will return. These two combined makes for an acceptable user experience.
However, if we want to ensure a quality user experience, we want to follow the second and third
steps.
 Current implementations of multi-cloud deployment platforms are very clean and easy to
follow, shown in Figure 4 below.

Figure 4: Interface for Cisco CloudCenter, a current multi-cloud deployment platform [24]

Cisco CloudCenter, a current multi-cloud solution, offers a variety of services for their users
[24]. Reducing complexity through the user interface allows the user to quickly manage and
deploy workloads. By analyzing this solution, we can gain an understanding of the
configurations we may need for our approach.
 Cisco CloudCenter requires users to link their different accounts with cloud service
providers to the application [24]. In addition, it allows the user to choose SLA agreements that
bet fit the application they wish to deploy. After, the user can choose a desired environment for
their application and Cisco handles the deployment [24]. The process is efficient and streamlined
which increases the user’s understanding of the system.

23

For our application to be successful, we need to implement the proper HCI and web-
development designs in order to provide our users with the best possible experience. User
experience, often not at the forefront of development, is essential for our multi-cloud solution to
be effective. We need to provide an interface that is both intuitive and easy to use.

VII. Conclusion
As more enterprises turn towards cloud computing to handle their workloads, cost

optimization will be a critical concern. Due to the variety of pricing models between cloud
service providers, it is often difficult to predict the best price. Our multi-cloud solution aims to
provide the most accurate prediction of price among providers. We intend to give users optimal
solutions that fit their needs, but at the best price.

24

Chapter 3: Implementation

I. System Overview

 The web interface we developed is designed to take user provided input about a
predefined workload option or custom resource options and generate a virtual machine
recommendation aimed to minimize costs and fulfill workload demands. A high-level overview
of our architecture can be found in Figure 5.

Figure 5: High-level architecture overview for our multi-cloud interface

The front-end web server is written in HTML and Python. In addition, we utilized Flask,

a Python web framework, for our background server. We integrated the Apache Libcloud API
that will allow us to connect to the different cloud service providers, specifically AWS and GCP.
Due to the Apache Libcloud API, a Python server is better suited for our project. Communication
between the client and server is done using the RESTful API, specifically GET and POST
requests. These methods allow us to get input from the user and provide output to the web
clients. In addition, we have a resource provisioning engine that computes the top three optimal
cloud resources based on the user-specified requirements. The flow of information within our
system can be found in Figure 6.

25

Figure 6: Flow of information for our multi-cloud solution

 The workflow of the system begins when the user initiates a request to the multi-cloud
system. There are two options the user can choose: user-defined or custom. After the user
initiates the request by providing the needed input, it is sent to the backend server using the
RESTful API. Our decision engine then calculates the three best options, based on cost, and
sends it back to the user for further input. The user then chooses a deployment option and a
request is sent through the Apache Libcloud API to the respective cloud provider.

Design Constraints

As we conducted our background research, we narrowed the scope of our project which
resulted in design constraints. First, our system design will only use two cloud service providers:
AWS and GCP. In addition, an active cloud account with both providers is needed. We do not
require the user to input account information for each of the cloud providers and instead conduct
a proof of concept using a general set of credentials. In the future, user credentials will need to be
collected in order to pass the resources to the user. Second, we used Flask as our web server
because it is Python-based, and it integrates with the also Python-based Apache Libcloud API.

26

II. System Software Architecture

Flask
 We chose to use Flask instead of Node.js because we will be integrating with Apache
Libcloud, which is a Python-based package. Flask is a micro web framework for Python. It
provides us with reusable code and extensions for common web application operations, such as
request handling, creating database connections, and authentication. Flask will also help us set up
the application’s points of interaction. Furthermore, Flask gives us access to the Python standard
libraries, which will speed up our development process.

RESTful APIs
We will utilize GET and POST methods for transferring user input between the client and

the web server. The GET method will retrieve the user input. The POST method will output the
responses to the client.

Apache Libcloud
 Apache Libcloud is a multi-cloud API that can connect to multiple cloud providers. This
API supports both GCP and Amazon. Specifically, we are focused on the integrated Cloud APIs
for Amazon EC2, Amazon S3, and the Google Compute Engine API. Apache Libcloud is
Python-based and will cleanly integrate with the Flask web server.

Resource Provisioning Engine
 The resource provisioning engine will be our optimization algorithm that computes the
cloud configurations for lowest cost among cloud service providers. Cost optimization
algorithms are essential to our multi-cloud solution. Both AWS and GCP are queried in which a
list of all resources are generated. Then, the lists are filtered based on the user’s input and the top
three lowest prices are chosen.

Inputs

The inputs that are required by the user are based on two categories: user-specified and
workload-specified. The user-specified input allows the customer to provision their own
resources, and workload-specified provides different configurations based on types of workloads.

User-Specified Input:

● Instance Name
● Operating System (Linux, Windows, Redhat, CensOS, etc.)
● Memory (GB)
● Storage (GB)

27

Workload-Specified Input:
● Workload type (Machine and deep learning, big data storage, general purpose, etc.)

Outputs

The output of our system happens in two phases: the initializing phase and the deployment phase.
During the initialization phase, the pricing options are provided to the user in which they must choose
their desired option. In addition, we highlight the optimized cost for the user. During the deployment
phase, we provide users information about their workload deployment. This phase sends information to
the user about their virtual machine, the status of the deployment, and information on how to access it. In
addition, we plan to also provide information on resource utilization such as CPU usage over time,
storage usage, etc.

28

IV. Interface Detailed Design

The home page of our interface will have our application name, and a summary of what
our application accomplishes. We will have links to resources that could be useful to users, as
well as detailed information about our project. From this page the user is able to navigate to the
custom options page, or the predefined workload page based on their preferences. An example of
what this looks like is pictured below in Figure 7.

Figure 7: Home Page
 If the user selects that they want to specify their own cloud resources, the web application
will navigate them to the custom options page pictured in Figure 8. Here the user is prompted to

enter the resources they want to use.

Figure 8: Custom Options Page

29

If the user selects that they want to choose an option based on a set of predefined
resources based on workload, they will be taken to the Workload-Based page pictured in Figure
9. After the user selects their workload, they will be taken to the top options page.

Figure 9: Workload-Based Options Page

 The top options page is where the top cloud provisioning selections is displayed. An
algorithm will run based on the user input, and our system returns a maximum of three cheapest
cloud resource options. It will also outline the specific resources associated with each option and
the price. The user will be able to scroll between the options, as displayed in Figure 10 below.

Figure 10: Top Options Page

30

The last page in the process that the user is taken to is the deployment page shown in
Figure 11 below. The user is taken to the deployment page after an option is selected and the
deploy button is pressed. It will show the name of the instance, an IP address, and the state of the
deployment (pending or ready).

Figure 11: Deployment Page

31

Chapter 4: Results
In the previous chapter, we outlined the design of our system and highlighted specific

functionality that would help us achieve our goal for this project. In this chapter we analyze the
multi-cloud interface to determine correctness, efficiency, and optimality of the solutions. The
metrics we used to measure performance include runtime of our cost optimization functions,
cloud resource usage statistics, deployment times of AWS and GCP cloud resources, and runtime
tradeoffs of our caching implementation.

I. Procedure

Correctness Tests
Table 11, shown below, was created for testing the correctness of our two main functions:

find_instance and find_instance_workload. In order to evaluate the functions, we needed to
analyze the results from our algorithms with the results manually taken from AWS and GCP,
respectively. The input column consists of the parameters entered into our function. The
expected values column is the results that are taken directly from AWS and GCP. In Table 11,
the actual values are the results that are returned using our pricing function, and the final column
is used to indicate whether the expected and actual values matched.

Table 11: Correctness tests for find_instance function based on user input

Test # Input Expected Actual Success (Y/N)

1 1GB Memory
1GB Storage

t3.nano (0.5GB, 0GB, $0.0052) t3.nano (0.5GB, 0GB, $0.0052) Y

In the first step, the input is defined for the purpose of recreation and documentation. For

the find_instance function, the input includes memory and storage. For the purpose of
consistency, the memory is converted to gigabytes in the table although the function takes
megabytes for that parameter. In the second step, we manually found the three cheapest options
based on memory and storage requirements on the two cloud providers’ websites. Finally, we
created a unit testing Python program that automated our testing process and printed out the
returned results. This testing program can be found in Appendix A. After running the program,
we compared the results between the expected return values and actual values.

This testing template can be used for the find_instance_workload function. The only
difference is that the input is a string indicating the type of predefined options. These options
include ‘ml’, ‘gp’, and ‘im’, which stand for machine learning, general purpose, and in-memory,
respectively.

32

Design Optimization Tests
In addition to the correctness tests, we also tested runtime based on the design decision of

implementing caching when finding a virtual machine size from AWS or GCP. Table 12 is a
template used for collecting runtime results from caching versus non-caching. The find_instance
and the find_instance_workload columns contain the runtime, in milliseconds, of each function.
The final column is the absolute value of the difference between the second and third columns.
There will be two sets of Table 12, one that is non-caching and one that is caching.

Table 12: Caching vs Non-Caching Template

Test # find_instance (ms) find_instance_workload (ms) Difference (ms)

1 1000 1000 0

2 1000 1000 0

3 1000 1000 0

We created a testing program to measure the runtime of each of our functions. This can
be found in Appendix A. In addition, we created a flag in the pricing file that switched between
caching versus non-caching in order to understand if the design choice improved efficiency. We
performed 50 tests for each algorithm for caching and non-caching, totaling 200 test cases.

Measuring Deployment Time
 Table 13 is a template used for collecting data used to measure the performance of our
functions and deployment times. For this set of tests, deployment time is defined as when the
request is sent to the respective cloud provider, via the Apache Libcloud API function, to when
the function returns. We are interested in runtime and deployment time of our system in order to
measure its efficiency. The metric we used for measuring runtime is milliseconds and recorded
in column two. The provider column is used to differentiate between AWS and GCP.

33

Table 13: Deployment Testing Template

Test # Deployment Time (ms) Provider

1 1000 AWS

2 1000 GCP

We created a testing program to calculate the total runtime of our two main functions. In
addition, we also measured the total time elapsed for a deployment to complete. This testing
program can be found in Appendix B. For deployment testing, we gathered results from 50 test
cases from AWS and 50 test cases from GCP, totaling 100 test cases.

Resource Usage Analysis
Another way we tested the system was by running projects of our own on the

recommended images. In this specific case study, we focused on our machine-learning
recommendations for AWS. We wanted to see if the allocated resources (CPU and memory)
from the recommended image are able to support the user’s workload based on the user input.
From this, we used AWS’ built-in analytics tools to view the various statistics of our launched
instances.

Machine Learning with Tensorflow and Keras

Amazon AWS has specific images for machine and deep learning workloads, as well as
images that have pre-loaded libraries for workloads that have specific dependencies. In this case
study we compared our platform’s recommendation versus the AWS dashboard for creating an
instance and ran a machine learning project requiring both TensorFlow and Keras libraries. The
project also included an 11.59 MB dataset.

Figure 12: Launching an AWS Deep Learning AMI using our platform

34

On our platform, the test only required two steps:
1. User input.
2. User selection of recommended options.

In order to run this test, we needed to choose a workload-based launch from our system and
compare it to a manual instance option from AWS. After the instances are created, we then ran
the machine-learning project and analyzed the resource usage statistics.

II. Testing

Find_Instance and Find_Instance_Workload
 Find_instance and find_instance_workload are the two most important functions of our
system. They provide the user with a list of valid options based on resource-defined or workload-
defined inputs. As a result, we chose to test both correctness and runtime as the metrics for
analyzing performance. The first set of tests performed focused on correctness and utilized Table
14. We split the tests into two groups and started with find_instance. Testing went through two
iterations due to a bug in the pricing information of our system. The results of the two iterations
for the correctness tests can be found in Table 15 and Table 16.

35

First Iteration

Table 14: First Iteration of Correctness Tests

Test # Input Expected Actual Success
(Y/N)

1 0.8GB
Memory

0 GB
Storage

t3.micro (1GB, 0GB, $0.0104)
t2.micro (1GB, 0GB, $0.012)
g1-small (1.7GB, 0GB, $0.027)

t3.micro (1GB, 0GB, none)
t2.micro (1GB, 0GB, $0.012)
g1-small (1.7GB, 0GB, $0.027)

N

2 16 GB
Memory

10 GB
Storage

r5d.large (16GB, 75GB, $0.144)
m5d.xlarge (16GB, 150GB, $0.226)
m2.xlarge (17.1GB, 420GB, $0.245)

r5d.large (16GB, 75GB, none)
m5d.xlarge (16GB, 150GB, none)
c5.2xlarge (16GB, 120GB, $0.245)

N

 After running two tests during the first iteration, we noticed that prices were being
returned as none, highlighted in Table 14. Instances of those types on AWS are not free of
charge. As a result, we investigated where the pricing data is being generated from. The Apache
Libcloud API stores a default pricing file that is used for setting the price of each size from AWS
and GCP. Reviewing the file showed that it had not been updated with new prices or instance
types from either cloud provider. As a result, we had to manually enter the pricing options for the
missing instances into the pricing file. Small discrepancies in price between actual values and
expected values are due to the pricing file not being updated.

36

Second Iteration

Table 15: Results of Second Iteration of find_instance

Test # Input Expected Actual Success
(Y/N)

1 0.8GB Memory

0 GB Storage

t3.micro (1GB, 0GB, $0.0104)
t2.micro (1GB, 0GB, $0.012)
g1-small (1.7GB, 0GB, $0.027)

t3.micro (1GB, 0GB, $0.0104)
t2.micro (1GB, 0GB, $0.012)
g1-small (1.7GB, 0GB, $0.027)

Y

2 16 GB Memory

10 GB Storage

r5d.large (16GB, 75GB, $0.144)
m5d.xlarge (16GB, 150GB, $0.226)
m2.xlarge (17.1GB, 420GB, $0.245)

r5d.large (16GB, 75GB, $0.144)
m5d.xlarge (16GB, 150GB, $0.226)
m2.xlarge (17.1GB, 420GB, $0.245)

Y

3 25 GB Memory

10 GB Storage

n1-highmem-4 (26GB, 10GB,
$0.2606)
r5d.xlarge (32GB, 150GB, $0.305)
i3.xlarge (30.5GB, 950 GB, 0.343)

n1-highmem-4 (26GB, 10GB, $0.2606)
r5d.xlarge (32GB, 150GB, $0.305)
i3.xlarge (30.5GB, 950 GB, 0.343)

Y

4 125 GB Memory

175 GB Storage

r5d.4xlarge (128GB, 600GB, $1.221)
i3.4xlarge (125GB, 3800GB, $1.373)
r3.4xlarge (125GB, 320GB, $1.463)

r5d.4xlarge (128GB, 600GB, $1.152)
i3.4xlarge (125GB, 3800GB, $1.248)
r3.4xlarge (125GB, 320GB, $1.33)

Y

5 500 GB Memory

500 GB Storage

x1.16xlarge (976GB, 1920GB,
$6.669)
x1e.8xlarge (960GB, 960GB, $6.672)
r5d.24xlarge (768GB, 3600GB,
$6.912)

x1.16xlarge (976GB, 1920GB, $6.669)
x1e.8xlarge (960GB, 960GB, $6.672)
r5d.24xlarge (768GB, 3600GB, $6.912)

Y

6 1000 GB Memory

2000 GB Storage

x1.32xlarge(1952 GB, 3840GB,
$13.338)
x1e.32xlarge(1952GB, 3840GB,
$26.668)

x1.32xlarge (blank GB, 3840GB, $13.338)
x1e.32xlarge (blank GB, 3840GB, $26.668)

Y

7 5000 GB Memory

0 GB Storage

None None Y

8 0 GB Memory

0 GB Storage

t3.nano (0.5GB, 0GB, $0.0052)
t2.nano (0.5GB, 0GB, $0.0059)
f1-micro(0.6GB, 0GB, $0.008)

t3.nano (0.5GB, 0GB, $0.0052)
t2.nano (0.5GB, 0GB, $0.0059)
f1-micro (0.6GB, 0GB, $0.008)

Y

37

Table 16: Results of find_instance_workload

Test # Input Expected Actual Success
(Y/N)

1 “ml” c5.large (4GB, 0GB, 0.085)
c5d.large(4GB, 50GB, 0.096)
c5.xlarge(8GB, 0GB, 0.17)

c5.large (4GB, 0GB, 0.085)
c5d.large(4GB, 50GB, 0.096)
c5.xlarge(8GB, 0GB, 0.17)

Y

2 “gp” t3.nano(0.5GB, 0GB, $0.0052)
t2.nano(0.5GB, 0GB, $0.0059)
f1-micro(0.6GB, 0GB, $0.008)

t3.nano (0.5GB, 0GB, $0.0052)
t2.nano (0.5GB, 0GB, $0.0059)
f1-micro (0.6GB, 0GB, $0.008)

Y

3 “im” n1-highmem-2 (13GB, 10GB, $0.126)
r4.large(15.25GB, 0, $0.133)
n1-highmem-4 (26GB, 10GB, $0.252)

n1-highmem-2 (13GB, 10GB, $0.126)
r4.large(0, $0.133)
n1-highmem-4 (26GB, 10GB, $0.252)

Y

The second iteration consisted of 8 tests for find_instance and 3 tests for

find_instance_workload. Due to the updated pricing file, our results align with our expected
values. The find_instance set of tests attempted to encompass a wide range of user defined
inputs, including edge cases such as resources that were too large or too small. In addition, the
tests included variations in storage options. The results showed limited options for GCP when
storage was requested by the user. In test cases 2-6 from Table 15, only AWS instances were
recommended for the user. However, when storage was not included in test cases 1 and 8, GCP
often occupied at least one of the top three options.
 Find_instance_workload consisted of 3 tests based on the possible input parameters. Due
to the scope of our project, we only created three workload-specific options: general purpose, in-
memory, and machine learning. The correctness is based on the cheapest options based on AWS
and GCP optimized virtual machines for each of the three workloads. For example, GCP’s “n1-
highmem” and AWS’ “r4/r5” group of virtual machines are optimized for in-memory
workloads. Therefore, the cheapest options from that group will be returned to the user. The
expected values and actual results matched for each workload test.

Caching Optimizations
During the creation of our system, we made several design decisions for improving the

overall efficiency. Caching was an optimization decision that was made due to delayed
connection times to each cloud provider when gathering virtual machine sizes. The goal was to
only have to gather virtual machine information from the cloud providers every 10 days versus
connecting each time a user makes a request. We gathered results for each function
implementing caching and non-caching. We needed to gather results on both designs in order to
analyze the overall cost savings. Table 17 contains the first 15 test results for non-caching and
Table 18 contains the first 15 test results for caching. Full results can be found in Appendix C.

38

Table 17: Test Results for Caching

Test # find_instance (ms) find_instance_workload (ms) Difference (ms)

1 59 52 7

2 53 53 0

3 63 52 11

4 59 53 6

5 61 51 10

6 53 52 1

7 65 53 12

8 57 53 4

9 60 51 9

10 51 53 2

11 62 53 9

12 57 53 4

13 60 52 8

14 52 53 1

15 64 55 9

39

Table 18: Test Results for Non-Caching

Test # find_instance (ms) find_instance_workload (ms) Difference (ms)

1 1418 1179 239

2 1131 1389 258

3 1145 1207 62

4 1118 1248 130

5 1058 1248 190

6 1202 1051 151

7 1219 1124 95

8 1526 1203 323

9 1458 1046 412

10 1250 1224 26

11 1073 1170 97

12 1333 1412 79

13 1150 1384 234

14 1013 1282 269

15 1231 1574 343

After gathering the results of 200 test cases, we noticed that caching significantly
improved the overall performance of find_instance and find_instance_workload. Figure 13
shows the average runtime for each function when caching is implemented versus not
implemented.

40

 Figure 13: Caching vs. Non-Caching Runtime

According to the figure, non-caching results in an average of 1194.46 milliseconds for

find_instance and 1207 milliseconds for find_instance_workload. When caching is implemented,
there is a significant reduction in the average runtime for each function, resulting in 58.53
milliseconds and 53.39 milliseconds, respectively. We then concluded that implementing
caching in our system significantly improved the efficiency of our system due to not having to
connect to the cloud providers for each user request.

Measuring Deployment Time
 Deployment time is critical to the functionality of our web interface. Since we are using
two different cloud providers, it is our assumption that the total deployment time varies
depending on each provider. In addition, we also need to know how long before the user can use
the newly deployed resources. Table 19 displays the first 15 test cases for measuring deployment
runtime. The full set of tests can be found in Appendix D.

58.53125

1194.46

53.390625

1207

0

200

400

600

800

1000

1200

1400

Caching Non-caching

Ti
m

e
(m

s)

Caching vs. Non-Caching Runtime

Find_instance Find_Instance_Workload

41

Table 19: Deployment Runtime of AWS and GCP

Test # Milliseconds Provider Test # Milliseconds Provider

1 1370 AWS 1 25000 GCP

2 1692 AWS 2 24000 GCP

3 2081 AWS 3 20000 GCP

4 1661 AWS 4 15000 GCP

5 1409 AWS 5 18000 GCP

6 1514 AWS 6 20000 GCP

7 1253 AWS 7 15000 GCP

8 1385 AWS 8 19000 GCP

9 1864 AWS 9 18000 GCP

10 1398 AWS 10 20000 GCP

11 3386 AWS 11 32000 GCP

12 1460 AWS 12 20000 GCP

13 1843 AWS 13 18000 GCP

14 1289 AWS 14 17000 GCP

15 2312 AWS 15 25000 GCP

We created a unit testing Python program that calculated the runtime for deploying to
AWS and GCP. We then collected the values and stored them in a table. Full results can be
found in Appendix E. As shown in Figure 14, AWS deploys much faster than GCP.

42

Figure 14: Runtime Metrics for Deployments

The average deployment time for GCP is 20,860 milliseconds compared to 1608.52

milliseconds for AWS. Deploying to AWS is much more efficient then deploying to GCP.
However, this data does not illustrate the reason why GCP is significantly longer than AWS.

 In order to better understand where the bottleneck was happening, we measured
deployment time with the time until the instance is ready. When a user deploys to the cloud,
there is a brief window of time in which the resources are being provisioned and initialized. We
measured the time of each of these parts to see if the initialization time contributes to the gap in
deployment times. Initialization time is synonymous with the provisioning time it takes for GCP
and AWS to get the resources ready for the user.

1608.52 1477.5

20860
20000

0

5000

10000

15000

20000

Average Median

Ti
m

e
(m

s)

Runtime Metrics for Deployments

AWS GCP

43

Table 20: Deployment and Initialization Tests for AWS

Test # Initialization Time (ms) Deploy Time (ms) Total (ms)

1 11972ms 1677 13649

2 8255 1115 9370

3 9315 1610 10925

4 10143 1504 11647

5 8102 1783 9885

6 9274 1216 10490

7 9224 2235 11459

8 7957 1356 9313

9 8348 1200 9548

10 8488 1215 9703

11 8272 1518 9790

12 7234 1996 9230

13 12740 1231 13971

14 10097 1321 11418

15 8735 1162 9897

Table 20 contains 15 of the test results for AWS deployment and initialization times.
Appendix F has the full set of test results for AWS and GCP. After gathering results from 50
deployments to both cloud providers, we concluded that the reason GCP deployments are longer
than AWS is due to the fact that the Apache Libcloud API includes initialization time in its
deployment function for GCP.

44

Figure 15: Total Deployment and Initialization Time

Figure 15 shows the total deployment time, including initialization time, for each of the

50 tests to AWS and GCP. Based on the data, the gap between deployment times is shortened
when initialization time is taken into consideration. However, the average time still demonstrates
that AWS is faster deploying and provisioning resources. Figure 16 shows the average and
median deployment and initialization times. The average difference between AWS and GCP is
12,683 milliseconds, or approximately 12.68 seconds.

Figure 16: Full Deployment and Initialization Time

0

5000

10000

15000

20000

25000

30000

35000

1 6 11 16 21 26 31 36 41 46

Ti
m

e
(m

s)

Test Number

Total Deployment and Initialization Time

AWS GCP

10095.44 9783

22778.46
23555

0

5000

10000

15000

20000

25000

Average Median

Ti
m

e
(m

s)

Full Deployment and Initialization Time

AWS GCP

45

Resource Usage Analysis
We chose the workload-based launch of machine-learning in our system, filled in our

workload information, and received the recommendation to launch an “Amazon Base Deep
Learning AMI” with an instance type “c5.large”. The “c5” family of AWS EC2 instances are
compute-optimized and better equipped to handle the large amounts of computing power many
machine learning projects require. Furthermore, machine learning workloads typically require
large datasets, so more memory is also required for optimal performance. In total, it took 2 steps
to choose a recommended option.

This option included 2 virtual CPUs and 4 GB of memory to run a 12.9 KB program,
while also storing the 11.59 MB dataset on the virtual machine. It cost $0.085 per hour. The
analysis from AWS’ built-in analytics tool, shown in Figure 17 below, proves that this option
was in fact the cheapest option that was capable of handling that workload.

Figure 17: Analysis from AWS after running the Tensorflow and Keras project on the platform-
recommended image

As shown in the figure above, the “c5.large” instance type utilized at most only 13.8% of

its CPU to run and complete the testing program, and only required the instance to run for 20
minutes. Each of the steps took little time and effort, from the secure shell (SSH) connection to
the secure copy protocol (SCP) of the test program from a local machine to the instance. In
addition, there was no wait for the instance to be ready to run the program, and it finished within
5 minutes. The entire process of running a program on an instance launched from our platform
was less than 1 hour.

46

However, on Amazon’s “Create Instance” dashboard it took 4 steps to create an instance.

Figure 18: Launching an AWS Deep Learning AMI using AWS’ dashboards

Steps 1 and 2, pictured in Figure 18 above, require entering a workload type and being

prompted to use the recommended image from AWS’ marketplace. It is important to note that
this selection screen does not display the price-per-hour for every instance. This makes it more
difficult for the user to perform an effective cost-benefit analysis as they will have to look up the
prices on a different page (Figure 19 below).

47

Figure 19: Step 3. Look up Amazon Marketplace Pricing Information

As shown in Figure 19, the recommended image “t2.micro” is not even on the pricing
information on AWS Marketplace’s listing for the Deep Learning Base AMI (Ubuntu). The
closest instance type to the recommended option is a “t2.small” instance, costing $0.023 per
hour. Step 4 requires going back to the console with this new information and finalizing the
instance launch.

Once the deployment was chosen, running the TensorFlow and Keras project on the
recommended instance proved to be difficult. Results are shown in Figure 20 below.

Figure 20: AWS analysis of TensorFlow and Keras project running on the recommended “t2.micro”
instance

48

The instance struggled to connect via SSH and failed when copying the program from the
local disk. When the program began to run, the instance started to lag, and eventually the
instance crashed and the SSH connection was lost. Clearly, the AWS recommended image was
not suited for the type of workload that was running, as the project failed to complete. A full
comparison between our platform and the AWS console can be seen below in Table 21.

Table 21: Amazon’s Recommendation vs. Platform Recommendation

Instance # Steps to
Launch
Instance

Total Time
Running

Max CPU
Utilization (%)

Completed
Task?

Total Cost to
Complete Task

AWS
Recommend
ed t2.micro

4 20 minutes 59.14% No N/A

Multi-Cloud
Recommend
ed c5.large

2 20 minutes 13.8% Yes $0.028

49

III. Conclusion and Summary of Results
The goal of our project was to create a multi-cloud web interface that minimizes costs

and provides optimizations for different types of workloads. Based on the results of our system,
we achieved optimal costs for resource assignments. The correctness tests illustrated that based
on custom resource provisioning options, our algorithm returned the optimal instance results. In
addition, we were able to evaluate the efficiency of our system and deployment times from AWS
and GCP. Finally, we were able to test specific workloads on recommended options of our
system. The summary of results are as follows:

● Our algorithm for find_instance and find_instance_workload returned results that
matched the expected values. Table XX and XY contain the full results of these tests.

● For default instances, AWS provides more options for storage than GCP.
● Caching significantly improved performance and reduced the average runtime by

approximately 1,135.92 milliseconds for find_instance and 1,153.61 milliseconds for
find_instance_workload. Refer to Figure XYZ for full results.

● AWS is significantly faster in deploying resources than GCP. The average deployment to
AWS took 1,608.52 milliseconds, while the average to GCP took 20,860 milliseconds.

● For the Apache Libcloud API, GCP includes initialization time in its deployment
function. The initialization time for GCP is 0 milliseconds, while the average
initialization time for AWS is 8707.12 milliseconds.

● Our algorithm returned a more expensive instance per hour, but it was more efficient in
completing the machine-learning workload task which reduced the overall cost of
running the project.

50

Chapter 5: Recommendations and Future Work
The goal of this project was to optimize the cost of multi-cloud resources based on the

needs of the user. We created a multi-cloud web interface that allowed the user to specify needed
resources and recommended the best virtual machine options from two cloud providers. Based
on the results, were able to successfully recommend the cheapest options to users and
successfully deploy to the respective provider. However, there are a variety of engineering
efforts that can be made to our system.

The first effort is collecting user credentials to the respective cloud provider in order to
deploy resources to their specific account. Currently, our application acts as a proof of concept in
which we demonstrate the flow of the system and deploy based on a common set of credentials.
This method is not possible if the web interface were to be used commercially. Possible
implementations include prompting user for credentials to cloud providers, using a token system,
or instructing users how to create private keys with AWS and GCP.

The second engineering improvement to our system is to allow the user to choose an
image for deployment. Currently, we have a set of basic images that are used based on the user-
specified operating system. Different projects may require certain dependencies to be installed
on the system, such as Keras or TensorFlow. AWS and GCP offer images with pre-installed
packages that can be used for deployments. A possible implementation is to create a second page
in which the user can choose specific dependencies, and the system then finds a possible image
that complies with those requirements.

In addition to the potential engineering efforts, there are additional improvements that
can be made to the system algorithm. The first improvement is integrating machine learning to
the cost optimization algorithms. Machine learning can provide an accurate recommendation to
the user. Choosing a model and training set can be difficult, which is why we recommend it as a
potential direction for future project work.

The second recommended improvement to the system algorithm is to add a feedback
option. A feedback option could range between a simple thumbs up or thumbs down button on
recommendations to allowing the user to save favorite instances to their account. Feedback acts
as a way to collect data from users, which in turn could be used to train the machine learning
algorithm. Due to the complexity of implementing each of the engineering efforts and system
algorithm improvements, we recommend these options for future project work.

In summary, we successfully created a multi-cloud prototype that achieved the goal of
recommending the best price to the user. Our system provides a strong basis for future
development. We hope that the system can be improved and utilized by users looking to find the
best options for deploying to the cloud.

51

References
[1] L. Columbus, “83% Of Enterprise Workloads Will Be In The Cloud By 2020”, Forbes, Jan.

7, 2018. [Online], Available: https://www.forbes.com/sites/louiscolumbus/2018/01/07/83-of-
enterprise-workloads-will-be-in-the-cloud-by-2020/#596a74e46261. [Accessed: Sept. 9,
2018]

[2] P. Mell and T. Grance, "The NIST Definition of Cloud Computing," 2011.

[3] N. B. Ruparelia, Cloud Computing. Cambridge, MA: The MIT Press, 2016.

[4] Microsoft, “What is a Virtual Machine and How Does it Work,” Microsoft Azure. [Online].

Available: https://azure.microsoft.com/en-us/overview/what-is-a-virtual-machine/.
[Accessed: Sept. 9, 2018].

[5] Hypervisor Market – Latest Trends and Key Drivers Supporting Growth Through 2025

Research Report By Application, Products Research Industry Analysis, Growth, Size, Share,
Trends, Forecast to 2025,” Latest Industry News, Aug. 6, 2018. [Online]. Available:
https://www.latestindustrynews.com/11491/hypervisor-market-latest-trends-and-key-drivers-
supporting-growth-through-2025-research-report-by-application-products-research-industry-
analysis-growth-size-share-trends-forecast-to-2/. [Accessed: Sept. 9, 2018]

[6] Containers: R. Shapland, “Cloud containers -- what they are and how they work,”

SearchCloudSecurity. [Online]. Available:
https://searchcloudsecurity.techtarget.com/feature/Cloud-containers-what-they-are-and-how-
they-work. [Accessed: Sept. 9, 2018].

[7] S. J. Vaughan-Nichols, “What is Docker and why is it so darn popular?,” ZDNet, 21-Mar-

2018. [Online]. Available: https://www.zdnet.com/article/what-is-docker-and-why-is-it-so-
darn-popular/. [Accessed: 10-Sep-2018].

[8] Technopedia, “Workload,” Technopedia, 2018. [Online]. Available:

https://www.techopedia.com/definition/13544/workload [Accessed: Sept. 13, 2018]

[9] Apprenda. (2018). Deployment to the Cloud. [Online] Available at:

https://apprenda.com/library/cloud/deployment-to-the-cloud [Accessed Sept. 9, 2018].

[10] Vold, N. (2018). Cloud basics – Deployment models. [Online] Visma Corporate Blog.

Available at: https://www.visma.com/blog/cloud-basics-deployment-models/ [Accessed 9
Sept. 2018].

52

[11] Microsoft Azure, “What is a cloud service provider?”, Microsoft Azure. [Online]. Available:
https://azure.microsoft.com/en-us/overview/what-is-a-cloud-provider/. [Accessed: Sept. 13,
2018]

[12] Z. Mahmood, Cloud Computing; Challenges, Limitations and R&D Solutions. (2014th ed.)

Cham: Springer International Publishing, 2014.

[13] M. Heusser, “30 essential container technology tools and resources,” TechBeacon, 31-Jul-
2018. [Online]. Available: https://techbeacon.com/30-essential-container-technology-tools-
resources. [Accessed: 15-Sep-2018].

[14] C. Matsumoto, “Why Docker and Google Kubernetes Are Like PaaS Done Right,”

SDxCentral, Aug. 17, 2015. [Online]. Available:
https://www.sdxcentral.com/articles/news/why-docker-and-google-kubernetes-are-like-paas-
done-right/2015/08/. [Accessed: Sept. 15, 2018].

[15] “Why Docker,” Docker, 11-Sep-2018. [Online]. Available: https://www.docker.com/why-

docker. [Accessed: 15-Sep-2018].

[16] “4 Reasons Why Kubernetes Is Hot,” Network Computing, 18-Jun-2018. [Online].

Available: https://www.networkcomputing.com/data-centers/4-reasons-why-kubernetes-
hot/704546519. [Accessed: 15-Sep-2018].

[17] S. McCarty and IDG Contributor Network, “What you need to know (now) about container

standards,” InfoWorld, Nov. 16, 2017. [Online]. Available:
https://www.infoworld.com/article/3237645/containers/what-you-need-to-know-now-about-
container-standards.html. [Accessed: Sept. 15, 2018].

[18] R. Aboukhalil, “A Tale of Two Clouds: Amazon vs. Google” Medium, March 13, 2017.

[Online]. Available: https://medium.com/@robaboukhalil/a-tale-of-two-clouds-amazon-vs-
google-4f2520516a38. [Accessed: Sept. 15, 2018].

[19] Amazon, “AWS Pricing,” Amazon Web Services, 2018. [Online]. Available:

https://aws.amazon.com/pricing/. [Accessed: Sept. 14, 2018].

[20] C. Baun, M. Kunze, J. Nimis, and S. Tai, Cloud Computing Web-Based Dynamic IT

Services. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.

[21] Google, “About the GCP Services,” Google Cloud, June 28, 2018. [Online]. Available:

https://cloud.google.com/docs/overview/cloud-platform-services. [Accessed: Sept. 15, 2018].

53

[22] Google, “GCP Pricing”, Google Cloud, 2018. [Online]. Available:
https://cloud.google.com/pricing/. [Accessed: Sept. 14, 2018].

[23] D. Smith and M. Govekar, "Market guide for cloud management platforms," Gartner, Inc,

April 25,. 2017.

[24] Cisco, “Cisco CloudCenter Solution Use Case: Hybrid IT as a Service,” Cisco, 2017. [PDF].

Available: https://www.cisco.com/c/dam/en/us/products/collateral/cloud-systems-
management/cloudcenter/solution-overview-c22-737217.pdf. [Accessed: Aug. 28, 2018].

[25] Hashicorp. Introduction to Terraform. Available: https://www.terraform.io/intro/index.html.

[26] A. Shaw, "Multi-cloud, what are the options? Part 1- Low level abstraction libraries," Sept.

18, 2016. [Accessed: Aug. 28, 2018].

[27] The Apache Software Foundation. Apache Libcloud. Available:

https://libcloud.readthedocs.io/en/latest/compute/index.html.

[28] W. Mulia, N. Sehgal, S. Sahoni, J. Acken, C. Stanberry, & D. Fritz, “Cloud Workload

Characterization,” in IETE Technical Review, vol. 30, no. 5, p. 382-397, Sept. 1, 2014.
[Online]. Available: https://doi.org/10.4103/0256-4602.123121. [Accessed: Sept. 17, 2018].

[29] M. Guignard, M. Schild, C. Bederián, N. Wolovick, & A. Vega, “Performance

Characterization of State-Of-The-Art Deep Learning Workloads on an IBM Minsky
Platform,” in Frontiers in AI and Software Engineering, 2018. [Online]. Available at:
http://hdl.handle.net/10125/50591. [Accessed: Sept. 18, 2018].

[30] Amazon, “Amazon EC2 Instance Types,” Amazon Web Services, 2018. [Online]. Available:

https://aws.amazon.com/ec2/instance-types/. [Accessed: Sept. 14, 2018].

[31] Google, “Machine Types”, Google Cloud, Aug. 3, 2018. [Online]. Available:

https://cloud.google.com/compute/docs/machine-types. [Accessed: Sept. 14, 2018].

[32] S. Singh, I. Chana, “Cloud resource provisioning: survey, status and future research

directions,” Knowledge and Information Systems, vol. 49, no. 3, p. 1005–1069, Dec. 2016.
[Online]. Available: https://doi.org/10.1007/s10115-016-0922-3

[33] O. Alipourfard, H. Liu, J. Chen, S. Venkartaraman, M. Yu, M. Zhang, “CherryPick:

Adaptively Unearthing the Best Cloud Configurations for Big Data Analytics,” in
Proceedings of the

54

14th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’17),
Boston, MA, March 27-29, 2017. [Online]. Available:
https://www.usenix.org/system/files/conference/nsdi17/nsdi17-alipourfard.pdf

[34] J. Gonzalez, B. Hariharan, R. Katz, B. Smith, N. Yadwadkar, “Selecting the Best VM across
Multiple Public Clouds: A Data-Driven Performance Modeling Approach,” in Proceedings
of SoCC ’17, Santa Clara, CA, Sept. 24–27, 2017. [Online]. Available:
https://doi.org/10.1145/3127479.3131614

[35] A. Dix, Human-computer interaction. Harlow: Pearson Prentice-Hall, 2011. [PDF].

55

Appendix A

--
FIND_INSTANCE
--
find_instance_results = []

TEST 1
start = datetime.now()
instance, top_three, valid_instances = find_instance(0, 0)
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
find_instance_results.append(final)
print("--------------------------")
print(" FIND_INSTANCE ")
print("--------------------------")
print(" -------- TEST 1 --------")
print("Total time: " + str(final))

TEST 2
start = datetime.now()
instance, top_three, valid_instances = find_instance(16000, 0)
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
find_instance_results.append(final)
print(" -------- TEST 2 --------")
print("Total time: " + str(final))

TEST 3
start = datetime.now()
instance, top_three, valid_instances = find_instance(800, 0)
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
find_instance_results.append(final)
print(" -------- TEST 3 --------")
print("Total time: " + str(final))

TEST 4
start = datetime.now()
instance, top_three, valid_instances = find_instance(800, 0)
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
find_instance_results.append(final)
print(" -------- TEST 4 --------")
print("Total time: " + str(final))

56

TEST 5
start = datetime.now()
instance, top_three, valid_instances = find_instance(800, 0)
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
find_instance_results.append(final)
print(" -------- TEST 5 --------")
print("Total time: " + str(final))

TEST 6
start = datetime.now()
instance, top_three, valid_instances = find_instance(800, 0)
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
find_instance_results.append(final)
print(" -------- TEST 6 --------")
print("Total time: " + str(final))

TEST 7
start = datetime.now()
instance, top_three, valid_instances = find_instance(800, 0)
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
find_instance_results.append(final)
print(" -------- TEST 7 --------")
print("Total time: " + str(final))

TEST 8
start = datetime.now()
instance, top_three, valid_instances = find_instance(800, 0)
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
find_instance_results.append(final)
print(" -------- TEST 8 --------")
print("Total time: " + str(final))

TEST 9
start = datetime.now()
instance, top_three, valid_instances = find_instance(800, 0)
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
find_instance_results.append(final)
print(" -------- TEST 9 --------")
print("Total time: " + str(final))

57

TEST 10
start = datetime.now()
instance, top_three, valid_instances = find_instance(800, 0)
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
find_instance_results.append(final)
print(" -------- TEST 10 --------")
print("Total time: " + str(final))

--
FIND_INSTANCE_WORKLOAD
--
find_workload_results = []

TEST 1
start = datetime.now()
instance, top_three, valid_instances = find_instance_workload('ml')
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
find_workload_results.append(final)
print("--------------------------")
print(" FIND_WORKLOAD ")
print("--------------------------")

print(" -------- TEST 1 --------")
print("Total time: " + str(final))

TEST 2
start = datetime.now()
instance, top_three, valid_instances = find_instance_workload('ml')
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
find_workload_results.append(final)
print(" -------- TEST 2 --------")
print("Total time: " + str(final))

TEST 3
start = datetime.now()
instance, top_three, valid_instances = find_instance_workload('ml')
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
find_workload_results.append(final)
print(" -------- TEST 3 --------")
print("Total time: " + str(final))

TEST 4
start = datetime.now()
instance, top_three, valid_instances = find_instance_workload('ml')

58

end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
find_workload_results.append(final)
print(" -------- TEST 4 --------")
print("Total time: " + str(final))

TEST 5
start = datetime.now()
instance, top_three, valid_instances = find_instance_workload('ml')
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
find_workload_results.append(final)
print(" -------- TEST 5 --------")
print("Total time: " + str(final))

TEST 6
start = datetime.now()
instance, top_three, valid_instances = find_instance_workload('ml')
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
find_workload_results.append(final)
print(" -------- TEST 6 --------")
print("Total time: " + str(final))

TEST 7
start = datetime.now()
instance, top_three, valid_instances = find_instance_workload('ml')
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
find_workload_results.append(final)
print(" -------- TEST 7 --------")
print("Total time: " + str(final))

TEST 8
start = datetime.now()
instance, top_three, valid_instances = find_instance_workload('ml')
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
find_workload_results.append(final)
print(" -------- TEST 8 --------")
print("Total time: " + str(final))

TEST 9
start = datetime.now()
instance, top_three, valid_instances = find_instance_workload('ml')
end = datetime.now()
delta = end - start

59

final = int(delta.total_seconds() * 1000)
find_workload_results.append(final)
print(" -------- TEST 9 --------")
print("Total time: " + str(final))

TEST 10
start = datetime.now()
instance, top_three, valid_instances = find_instance_workload('ml')
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
find_workload_results.append(final)
print(" -------- TEST 10 --------")
print("Total time: " + str(final))

print("--------------------------")
print(" FINAL RESULTS ")
print("--------------------------")
print(find_instance_results)
print(find_workload_results)

60

Appendix B
--
FULL DEPLOYMENT TEST
--

--
AWS DEPLOYMENT TESTS
--
print("--------------------------")
print(" AWS Deployments ")
print("--------------------------")

full_aws_ids = []

TEST 1
start = datetime.now()
instance_options = find_instance(800, 0)
node = instance_options[0]
deployed_node = deployment(node, 'rhel', 'test1')
full_aws_ids.append(deployed_node)
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)

print(" -------- TEST 1 --------")
print("Total time for deployment: " + str(final))

TEST 2
start = datetime.now()
instance_options = find_instance(800, 0)
node = instance_options[0]
deployed_node = deployment(node, 'rhel', 'test2')
full_aws_ids.append(deployed_node)
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
print(" -------- TEST 2 --------")
print("Total time for deployment: " + str(final))

TEST 3
start = datetime.now()
instance_options = find_instance(800, 0)
node = instance_options[0]
deployed_node = deployment(node, 'rhel', 'test3')
full_aws_ids.append(deployed_node)
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
print(" -------- TEST 3 --------")
print("Total time for deployment: " + str(final))

TEST 4

61

start = datetime.now()
instance_options = find_instance(800, 0)
node = instance_options[0]
deployed_node = deployment(node, 'rhel', 'test4')
full_aws_ids.append(deployed_node)
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
print(" -------- TEST 4 --------")
print("Total time for deployment: " + str(final))

TEST 5
start = datetime.now()
instance_options = find_instance(800, 0)
node = instance_options[0]
deployed_node = deployment(node, 'rhel', 'test5')
full_aws_ids.append(deployed_node)
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
print(" -------- TEST 5 --------")
print("Total time for deployment: " + str(final))

TEST 6
start = datetime.now()
instance_options = find_instance(800, 0)
node = instance_options[0]
deployed_node = deployment(node, 'rhel', 'test6')
full_aws_ids.append(deployed_node)
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
print(" -------- TEST 6 --------")
print("Total time for deployment: " + str(final))

TEST 7
start = datetime.now()
instance_options = find_instance(800, 0)
node = instance_options[0]
deployed_node = deployment(node, 'rhel', 'test7')
full_aws_ids.append(deployed_node)
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
print(" -------- TEST 7 --------")
print("Total time for deployment: " + str(final))

TEST 8
start = datetime.now()
instance_options = find_instance(800, 0)
node = instance_options[0]
deployed_node = deployment(node, 'rhel', 'test8')
full_aws_ids.append(deployed_node)
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)

62

print(" -------- TEST 8 --------")
print("Total time for deployment: " + str(final))

TEST 9
start = datetime.now()
instance_options = find_instance(800, 0)
node = instance_options[0]
deployed_node = deployment(node, 'rhel', 'test9')
full_aws_ids.append(deployed_node)
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
print(" -------- TEST 9 --------")
print("Total time for deployment: " + str(final))

TEST 10
start = datetime.now()
instance_options = find_instance(800, 0)
node = instance_options[0]
deployed_node = deployment(node, 'rhel', 'test10')
full_aws_ids.append(deployed_node)
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
print(" -------- TEST 10 --------")
print("Total time for deployment: " + str(final))

for i in full_aws_ids:
 destroy("Amazon", i)

--

--
GCP DEPLOYMENT TEST
--
print("--------------------------")
print(" GCE Deployments ")
print("--------------------------")

full_node_list = []

TEST 1
start = datetime.now()
instance_options = find_instance(800, 0)
node = instance_options[1][2]
deployed_node = deployment(node, 'linux', 'test1')
full_node_list.append(deployed_node)
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
flag = 1
user_node = get_node("Google", deployed_node.name)
while user_node.state == 'pending':
 user_node = get_node("Google", deployed_node.name)
 flag = 2

63

if flag == 1:
 ready_time = final
else:
 final2 = datetime.now().second
 ready_time = final2 - final
print(" -------- TEST 1 --------")
print("Total time: " + str(final))
print("Time until ready: " + str(ready_time))

TEST 2
start = datetime.now()
instance_options = find_instance(800, 0)
node = instance_options[1][2]
deployed_node = deployment(node, 'linux', 'test2')
full_node_list.append(deployed_node)
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
flag = 1
user_node = get_node("Google", deployed_node.name)
while user_node.state == 'pending':
 user_node = get_node("Google", deployed_node.name)
 flag = 2
if flag == 1:
 ready_time = final
else:
 final2 = datetime.now().second
 ready_time = final2 - final
print(" -------- TEST 2 --------")
print("Total time: " + str(final))
print("Time until ready: " + str(ready_time))

TEST 3
start = datetime.now()
instance_options = find_instance(800, 0)
node = instance_options[1][2]
deployed_node = deployment(node, 'linux', 'test3')
full_node_list.append(deployed_node)
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
flag = 1
user_node = get_node("Google", deployed_node.name)
while user_node.state == 'pending':
 user_node = get_node("Google", deployed_node.name)
 flag = 2
if flag == 1:
 ready_time = final
else:
 final2 = datetime.now().second
 ready_time = final2 - final
print(" -------- TEST 3 --------")
print("Total time: " + str(final))
print("Time until ready: " + str(ready_time))

TEST 4

64

start = datetime.now()
instance_options = find_instance(800, 0)
node = instance_options[1][2]
deployed_node = deployment(node, 'linux', 'test4')
full_node_list.append(deployed_node)
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
flag = 1
user_node = get_node("Google", deployed_node.name)
while user_node.state == 'pending':
 user_node = get_node("Google", deployed_node.name)
 flag = 2
if flag == 1:
 ready_time = final
else:
 final2 = datetime.now().second
 ready_time = final2 - final
print(" -------- TEST 4 --------")
print("Total time: " + str(final))
print("Time until ready: " + str(ready_time))

TEST 5
start = datetime.now()
instance_options = find_instance(800, 0)
node = instance_options[1][2]
deployed_node = deployment(node, 'linux', 'test5')
full_node_list.append(deployed_node)
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
flag = 1
user_node = get_node("Google", deployed_node.name)
while user_node.state == 'pending':
 user_node = get_node("Google", deployed_node.name)
 flag = 2
if flag == 1:
 ready_time = final
else:
 final2 = datetime.now().second
 ready_time = final2 - final
print(" -------- TEST 5 --------")
print("Total time: " + str(final))
print("Time until ready: " + str(ready_time))

TEST 6
start = datetime.now()
instance_options = find_instance(800, 0)
node = instance_options[1][2]
deployed_node = deployment(node, 'linux', 'test6')
full_node_list.append(deployed_node)

end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
flag = 1

65

user_node = get_node("Google", deployed_node.name)
while user_node.state == 'pending':
 user_node = get_node("Google", deployed_node.name)
 flag = 2
if flag == 1:
 ready_time = final
else:
 final2 = datetime.now().second
 ready_time = final2 - final
print(" -------- TEST 6 --------")
print("Total time: " + str(final))
print("Time until ready: " + str(ready_time))

TEST 7
start = datetime.now()
instance_options = find_instance(800, 0)
node = instance_options[1][2]
deployed_node = deployment(node, 'linux', 'test7')
full_node_list.append(deployed_node)
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
flag = 1
user_node = get_node("Google", deployed_node.name)
while user_node.state == 'pending':
 user_node = get_node("Google", deployed_node.name)
 flag = 2
if flag == 1:
 ready_time = final
else:
 final2 = datetime.now().second
 ready_time = final2 - final
print(" -------- TEST 7 --------")
print("Total time: " + str(final))
print("Time until ready: " + str(ready_time))

TEST 8
start = datetime.now()
instance_options = find_instance(800, 0)
node = instance_options[1][2]
deployed_node = deployment(node, 'linux', 'test8')
full_node_list.append(deployed_node)
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
flag = 1
user_node = get_node("Google", deployed_node.name)
while user_node.state == 'pending':
 user_node = get_node("Google", deployed_node.name)
 flag = 2
if flag == 1:
 ready_time = final
else:
 final2 = datetime.now().second
 ready_time = final2 - final
print(" -------- TEST 8 --------")

66

print("Total time: " + str(final))
print("Time until ready: " + str(ready_time))

TEST 9
start = datetime.now()
instance_options = find_instance(800, 0)
node = instance_options[1][2]
deployed_node = deployment(node, 'linux', 'test9')
full_node_list.append(deployed_node)
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
flag = 1
user_node = get_node("Google", deployed_node.name)
while user_node.state == 'pending':
 user_node = get_node("Google", deployed_node.name)
 flag = 2
if flag == 1:
 ready_time = final
else:
 final2 = datetime.now().second
 ready_time = final2 - final
print(" -------- TEST 9 --------")
print("Total time: " + str(final))
print("Time until ready: " + str(ready_time))

TEST 10
start = datetime.now()
instance_options = find_instance(800, 0)
node = instance_options[1][2]
deployed_node = deployment(node, 'linux', 'test10')
full_node_list.append(deployed_node)
end = datetime.now()
delta = end - start
final = int(delta.total_seconds() * 1000)
flag = 1
user_node = get_node("Google", deployed_node.name)
while user_node.state == 'pending':
 user_node = get_node("Google", deployed_node.name)
 flag = 2
if flag == 1:
 ready_time = final
else:
 final2 = datetime.now().second
 ready_time = final2 - final
print(" -------- TEST 10 --------")
print("Total time: " + str(final))
print("Time until ready: " + str(ready_time))

gce_destroy_all(full_node_list)
--

67

Appendix C

Non-Caching

68

Caching

69

Appendix D

70

Appendix F

AWS

71

GCP

