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Abstract 

 

The goals of this project are to study the effects of current harmonics generated by a Doubly-

Fed Induction Generator (DFIG) and to create a reduced scale proof-of-concept of a single phase active 

filtering system designed to reduce non-fundamental current harmonics up to the 13th harmonic. The 

DFIG study was done through modeling of the system using PSPICE. The active filter was then designed 

to measure non-linear current and generates a correction current to negate the non-fundamental 

harmonics via an H-Bridge circuit. 
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Executive Summary 

 

This project dealt with the technology of wind energy.  There are numerous popular turbine 

designs, but this project focused on the doubly fed induction generator (DFIG).  This technology has 

significant market share in the emerging wind energy market due to its low maintenance and technical 

aspects.   

 However, there is a particular drawback to DFIG wind turbine systems. Because of the feedback 

loop used to maintain a constant 60Hz output frequency at variable wind speeds, a source of non-linear 

current is introduced. This non-linear current is passed through the step-up transformer and the eddy 

current losses associated with non-linear current causes heating in that transformer. This heating can 

cause the transformer to age prematurely and forces the wind farm operators to replace them more 

often, causing them to lose money.  

 This feedback loop consists of an AC/DC converter hooked up back to back with a DC/AC 

inverter that powers the rotor in such a way that the stator electric frequency matches the grid. This 

feedback loop is modeled as a simple rectifier system drawing a constant power of 30% of stator power. 

This is typical of the maximum power drawn by DFIG back to back converter systems. The harmonics 

generated is then analyzed using PSPICE.  Depending on particular transformer impedances, the current 

total harmonic distortion can range from between 19.1% to 32.0%. In order to mitigate transformer 

overheating, either the transformer must be derated, or a filtering system must be installed. 

 In the second part of the project, a reduced scale single phase active filter was designed to 

reduce the presence of the current harmonics detected in the line. The objective was to create a system 

that will operate on a 12Vrms line voltage that could produce a correction current of up to 10A. The 



iv 
 

physical circuitry comprises of the sensor system, the microcontroller, and an H-Bridge circuit. The 

sensor system uses three sensors that measure the line voltage, non-linear current, and correction 

current. With these measurements, the appropriate sinusoidal waveform is calculated, and the 

difference between that ideal waveform and the non-linear current waveform becomes the target 

current. Using the information on the present correction current being generated and the target current 

waveform, the system will increase or decrease the correction current in order to match that target 

waveform using the H-Bridge circuit. All logic is performed by the microcontroller system. 

 To test the system, a rectifier was used as a source of non-linear current and the active filter was 

connected between the rectifier and the autotransformer. The rectifier circuit draws a peak current of 

7A, and the current waveform has a total harmonic distortion of 123.8%. When the current to the auto 

transformer is measured, the resulting current harmonic is at only 13.4% THD. Overall the system 

successfully reduced current harmonics present in the line. As a recommendation for future work, we 

suggest adapting the system for three phase operation as well as higher power rating.  
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1 Introduction 

Wind energy is an emerging market in the power industry.  As a renewable energy source it is 

important to evaluate this technology and attempt to alleviate any harm that may arise from its 

implementation to itself of the system it is integrated into in an effort to make the system more feasible 

from a technical and economic standpoint.  This report focuses on the particular problem that is causing 

the premature aging and failure of step up transformers in wind farms most likely due to harmonic 

content in the current supplied from the turbine system. 

These transformers used to step up the energy from wind turbine generators to collector busses 

(WTSU’s) are displaying unique and disturbing tendencies throughout the nation.  They are producing 

high levels of combustible gases within the oil, overheating, and failing prematurely.  The gas levels are 

indicating internal partial discharge and overheating.  Some have been found to have dangerous levels 

of hydrogen.   

 This project will perform all necessary background research to fully understand and mitigate this 

problem.  This investigation will begin by attaining waveform samples of active doubly fed induction 

generator (DFIG) systems that have particularly high gassing to see if there are any anomalies that may 

explain this partial discharge.  Then a physical scale model and computer simulations of a DFIG system 

will be created in order to study the non-sinusoidal effects of the system.   

As a result of this research an active filter design will then be created to be placed on the 

secondary side of the step up transformers to mitigate any power quality issues.  The design of the 

active filter may be scaled down, but will prove the concept for high power application. 
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2 Background 

This chapter will explain all background information needed to fully understand the analysis and 

design performed in this project.  This includes transformer, rectification, single and doubly fed 

induction generators, wind turbine physics and active filter theory.   

 

2.1 Dissolved Gas Analysis 

Oil sampling can be used to determine the integrity of a transformer and investigate any faults that 

may have occurred.  In this project, oil sampling will be used to determine which transformers are most 

heavily affected by the phenomenon in question.  In this chapter, the basic theory and methodology of 

oil sampling, also termed dissolved gas analysis, will be explained. 

 

2.1.1 Chromatography 

Oil samples are procured from transformers pertaining to each wind turbine.  The samples are 

then chromatographically analyzed in a chemical laboratory per ASTM D-3612 [1]. These test results 

display the quantity of gas dissolved in the electrical insulating oil.  The gasses examined in particular are 

seen in Table 1. 

Hydrogen H2 

Methane CH4 

Ethane C2H6 

Ethylene C2H4 

Acetylene C2H2 

Carbon 
Monoxide 

CO 

Carbon Dioxide CO2 

 Table 1: Gasses Examined in ASTM D-3612 [1] 
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These gasses are synthesized through the fragmentation and rearrangement of carbon-

hydrogen and carbon-carbon bonds of the hydrocarbon molecules originating in the oil.  The 

classification of the chemical bond created in the new molecules can be directly associated to the 

temperature and partial pressure it has been subjected to.  This relationship is epitomized in Figure 1. 

 

Figure 1: Halstead's Thermal Equilibrium Plot (Specified in IEEE C57.104-2008) [2] 

 

2.1.2 IEEE Standard 

The correlations seen in Figure 1 have led to the establishment of IEEE C57.104-2008 [2], which 

delineates the acceptable levels of each of the gasses presented in Table 1, along with the acceptable 

volumetric amount of total combustible dissolved gas (TCDG) allowed.  The TCDG can be calculated 

using Equation 1 from the amounts of each gas found through chromatography and oil volume.  Notice 

that CO2 is not included because it is not a combustible gas. 
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Equation 1: Total Dissolved Combustible Gas Equation [2] 

 

2.1.2.1 Gas Limits 

Once the gas levels are known, they can be compared to the limits provided by IEEE C57.104.  

These limits outline the suggested warning level assigned to the different gas levels.  The suggested 

levels can be seen in Table 2. 

 

Table 2: Dissolved Gas Concentration Limits [2] 

As seen in Table 2, there are four “conditions” that denote the severity of the condition of the 

gassing.  The IEEE C57.104 standard also classifies these conditions definitively, which can be seen in 

Table 3. 
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Table 3: Condition Classifications [2] 

As seen in Table 3, dissolved gas analysis requires periodic sampling in order to reach 

conclusions or diagnosis of transformer conditions.  Once multiple samples have been taken, the 

severity of the gassing can be determined by calculating at the rate of increase.  This can be calculated 

using Equation 2. 

  
              

 
 

Equation 2: Gas Generation Rate Equation per IEEE C57.104-2008 [2] 

Where 

R Is the rate (Liters/Day) 

S0 Is the first sample (µL/L) 

ST Is the second sample (µL/L) 
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V Is the tank oil volume (Liters) 

T Is the time (Days) 

 

2.1.3 Fault Type Evaluation 

Gas patterns can be indications of what type of faults are occurring or have occurred in the 

transformer.  This can be accomplished fairly easily by calculating specific gas ratios and comparing their 

values to guides that were predominantly empirically deduced.  The ratios are as follows:  

Ratio 1 CH4/H2 

Ratio 2 C2H2/C2H4 

Ratio 3 C2H2/CH4 

Ratio 4 C2H6/C2H2 

Ratio 5 C2H4/C2H6 

Table 4: Table of Ratios 

The methods of analysis discussed in this section use dissimilar ratios to reach their conclusions and will 

be referred to by their number as seen above. 

 

2.1.3.1 Doernenburg Ratio Method 

 The Doernenburg ratio method makes use of ratios one through four.  For this method to be 

valid the transformer must be of condition one or higher based on the levels of a combustible gas (all 

gasses seen in Table 5 with the exception of CO2).  Once this prerequisite is satisfied, the values of ratios 

one through four can be compared to those in TBL to determine the probable fault type. 



7 
 

 

Table 5: Doernenburg Ratio Fault Types 

The Doernenburg ratio method is simple to use and can be accurate.  But, it is suggested to use 

multiple techniques of analysis when investigating fault type and not all gas patterns can be explained 

by this method. 

 

2.1.3.2 Rogers Ratio Method 

The Rogers ratio method, like the Doernenburg, makes use of ratios to compare to empirically 

trended conclusions. The ratios in use for this technique are one, two, and five.  Once these have been 

calculated, their levels can be compared to Table 6. 

 

Table 6: Rogers Ratio Fault Types 

As with the Doernenburg ratio method, it is suggested that the Rogers ratio method be used in 

conjunction with other protocols to reinforce deduced conclusions. 
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2.1.4 Oil Quality Analysis 

There are several other tests that are run to evaluate the quality of the oil in the transformer tank.  

These include the following: 

Attribute ASTM Standard 

Moisture Content D-1533B 

Interfacial Tension D-971 

Acid Number D-974 

Color D-1500 

Visual/Sediment D-1524 

Dielectric Breakdown D-1816 

Power Factor at @ 25°C and 100°C D-924 

Specific Gravity D-1298 

Table 7: Oil Quality Tests 

These test results can then be compared to IEEE C57.106-2006.  The limits outlined in IEEE C57.106-2006 

[3] can be seen in Table 8, below.  
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Table 8: IEE C57.106-2006 

2.2 Online Transformer Monitoring 

This project made use of online monitoring to determine the actual voltage and current 

characteristics.  A high voltage meter is required to determine the power quality due to the high power 

systems used in this project.  Also, having a meter that calculates a wide array of power quality 
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measurements enables the project team to see any abnormalities that may be occurring that may cause 

problems quickly and easily.  For this project, the Fluke 1750 was chosen. 

 

 

Figure 2: http://www.transcat.com/catalog/productdetail.aspx?itemnum=45832EL 

 

This meter is capable of recording three phase voltage and current waveforms at periodic 

intervals.  These measurements can be saved on the meter for upwards of a month.  Once these 

“snapshots” are recorded they can be revisited and important data such as harmonic spectrum (up to 

the 50th harmonic), RMS currents and voltages, kVA, KVAR, etc. are automatically calculated for easy 

system classifications. 
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The Fluke 1750 enables the project team to quickly analyze transformers at full power as well as 

the scale model of the system.  These measurements can then be easily compared to the theoretical 

values found from the computer simulation of the system. 

 

2.3 Transformer Derating 

This section deals with the amount that transformers must be derated depending on the amount 

of harmonics present and why.  This is pertinent to the project because we are dealing with 

transformers that are under the stresses of harmonic signals.  It must be decided if these harmonics are 

significant enough to impact the integrity of the transformer. 

Harmonics are either AC voltages or currents that possess frequencies that are integer multiples of 

the fundamental frequency. The American standard of the fundamental frequency is rated at 60 Hz. The 

presence of harmonics can add a significant amount of distortion to the ideal sine wave of a system to a 

point where it can no longer be recognized and the system will become very inefficient. Harmonics are 

caused by the use of non-linear loads. There are a few techniques that can be used to prevent the 

existence of harmonics. Such techniques include K-Factor transformers, transformer derating and active 

harmonic filters. [4] 

When non-sinusoidal waveforms are introduced to transformers, there is a derating factor that 

must be strongly considered.  At the base of this problem is the fact that when transformers are 

supplied with waveforms containing harmonics there is an increase in power loss, which leads to an 

increase in heating.  If a transformer is heated beyond its specification it will age at an increased rate 

and will need to be replaced prematurely.  This aging may happen in the form of partial discharge in the 

oil or the degradation of the solid insulation, also called the degree of polymerization. 
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There are three major concerns with load loss in power transformers, which neglects excitation 

losses.  They are as follows: 

               

Equation 3: Load Loss [5] 

Where PLL is the total load loss; P is the total resistive losses (I2R); PEC is the eddy current losses; and POSL 

accounts for all other stray losses.  By further investigation, we can see that all three of these losses are 

related to the input harmonics. 

Part of the reasoning behind eddy current losses is explained by the skin effect.  The skin effect 

is the custom for higher frequencies currents to flow or drift in the area along the surface of the 

conductor (transformer). It occurs due to opposing eddy currents that are induced by the alternating 

current. Since the harmonic currents occur at higher frequencies, they travel beneath the surface and 

increase the resistance of the transformer. This increase produces a considerable amount of heating 

which is detrimental to the state of transformer and is why we see that it impacts the derating of the 

transformer. [6] 

As the harmonics content increases, the RMS value may also be increased as a result.  Therefore, 

it can be seen that the P (I2R losses) will be increased.  It is also known that the eddy current losses are 

directly related to the square of both the input current and harmonic level, therefore increasing with the 

amount of harmonic content.  Finally, connections and structural parts of the transformer can be 

affected by harmonic content [7].  This does not have as clear of a relationship as the others. 

There are two common transformer rating standards: the K-Factor, the U.S. standard, and the 

Factor K, the European standard. 
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Equation 4: K Factor [8] 

 

 

Equation 5: Factor K [8] 

 

The K-Factor is a value that regulates the rating of the transformer load as a function of its 

corresponding harmonic currents and is applied to transformers to determine the magnitude of which 

they must be derated to insure proper operation and avoid expedited aging. For instance, a K-Factor of 

1.0 refers to a transformer that has linear load. The K-Factor values range from 1 to 50, thus the 50th 

harmonic is the maximum harmonic current that can be corrected by the use of K-Factor transformers. 

The K-Factor specifies that the total eddy current loss in the transformer will be K times the eddy current 

loss at the fundamental frequency. This allows manufacturers to design transformers with a large 

thermal capacity and a low fundamental eddy current loss, in order to reduce the effect of overheating. 

K-factor transformers are useful because they are designed with values specifically for certain loads and 

efficiently reduce the effect of harmonics. 

In the formula for the K-factor, it can be seen that there are values of “q” and “e”.  The q value is 

an exponential constant dependent on the winding of the transformer. For round rectangular cross 

section conductors in both windings, the q value is 1.7. The e value is defined as the eddy current loss at 

the fundamental frequency over the ohmic loss. Its value has been estimated to be about 0.1. Although 
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transformer derating overcomes the heating effects of harmonics, it is not as efficient as K-factor 

transformers and active filters because it requires a reduction in the power of the transformer. [9] 

The derating values depend on the harmonic content of the power signal, which we will call alpha.  

This is has an exponential relationship to the harmonic content where a higher alpha value represents a 

less distorted, more fundamental, waveform.  The influence of alpha on the harmonic values can be 

seen in Figure 3, below (MATLAB Code seen in Appendix B). 

 

Figure 3: Effect of Alpha Values 

From this we can see that this will affect the Factor K through the “e” value, seen in Figure 4, seen 

below. 
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Figure 4: Derating Value vs Alpha 

Therefore, as the “e” value increase, more derating is necessary to remove the harmonics present in the 

system.  In practice, a value of 0.1 is assumed when more accurate information is not available.  This can 

then be related to the derating percentage as a function of the alpha value for various “e” values. 

Finally, these can be related to the eddy current losses, seen in Figure 5 below. 

 

Figure 5: Eddy Current Loss 
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2.4 Single Phase Rectification 

A rectifier is a component that converts alternating current (AC) to direct current (DC). An 

alternating current changes directions over a period of time while a direct current flows in a single 

direction. A rectifier can output either the half or full waveform of an AC current. A half-wave rectifier 

produces either the negative or the positive sections of the AC waveform while a full-wave rectifier 

produces the full waveform as the DC output. A rectifier can control the output current and voltage by 

means of the components used in the bridge scheme. The rectifier systems that use diodes are 

uncontrolled rectifiers while those that use SCRs are controlled rectifiers. 

 

Figure 6: Single Phase Rectifier [10] 

 

A single-phase bridge rectifier can produce the full wave of an AC current by the use of four 

diodes constructed together, as shown in Figure 6 above. When the positive side of the AC current 

occurs, diodes D1 and D2 are forward biased while the other two diodes D3 and D4 are reverse biased. 

On the negative side, diodes D3 and D4 are now forward biased while D1 and D2 also switch their role 

and become reverse biased. The two pairs of diodes constructed together in this configuration combine 

their periodical waveforms to create the full wave rectified output that is shown in Figure 7 below.  
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Figure 7: Single Phase Rectifier Waveforms [10] 

 

The average output voltage of the single-phase bridge rectifier is determined by the equation 

below where Vm refers to the peak value of the AC RMS source. 

    
    
 

 

Equation 6: Single Phase Rectifier Output Voltage [10] 

 

2.5 Three Phase Rectification  

A three-phase bridge rectifier is constructed with the use of a six diode circuit, as shown in the 

figure below. The circuit is designed with two sets of diodes, the top diodes D1, D3 and D5, and the 

bottom diodes D4, D6 and D2. Only one diode from each set can conduct at a time due to Kirchhoff’s 

voltage law.  
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Figure 8: Three Phase Rectifier [10] 

The conducting of the diodes depends on the values of the three voltage sources. The top diode 

conducts when the voltage source that is connected to its anode has the highest value of the three 

sources. Since Van is the highest source at the start of the source system shown in Figure 9 below, D1 will 

be the first diode of the top set to conduct. The bottom diode conducts when the voltage source that is 

connected to its cathode is the lowest of the three sources. Therefore, D6 will be the first diode of the 

bottom set to conduct because Vbn is the source with the lowest voltage. The complete conducting 

scheme along with the output voltage is also shown in the figure. Since the three-phase rectifier uses 

more diode switching modes for the alternating current, it produces a lower ripple output voltage than 

what a single-phase rectifier would produce.  
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Figure 9: Three Phase Rectifier Output Waveforms [10] 

 

 The average output voltage of the three-phase bridge rectifier is determined by the equation 

below where Vm, L-L refers to the peak value of the line-to-line voltage of the three-phase AC RMS source. 

    
        

 
 

Equation 7: Three Phase Rectifier Output Voltage [10] 

 

2.6 Doubly Fed Induction Generator (DFIG) 

There are four main types of wind energy systems.  The oldest and most basic system is the 

fixed speed system.  It is apparent from the name that these systems run at a single speed.  They also 

include a geared shaft and a reactive power compensator to help with the turbine’s demands. By 

running at a single speed, these systems cannot take advantage of the full power potential, which will be 

discussed more in depth later.  The second type of system is a dynamic slip control system.  This is 

similar to the fixed speed system, but has variable resistance in series with the rotor.  The resistance 

variation changes the speed and slip of the drive.   
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A newer system is the direct drive, which eliminates the gear box by converting to DC and then 

converting back to AC with a DC link connecting the two converters.  This system uses permanent 

magnetic synchronous generation technology, which entails a higher number of poles.  It is a low 

maintenance system due to the simpler mechanical scheme, but is more expensive due to the number 

of permanent magnets. 

The fixed and dynamic speed systems led to the most common wind generation system, the 

doubly fed induction system, which is what this project is mostly concerned with.  Like the direct and 

dynamic systems, the doubly fed induction is a geared system, but differs by having a feedback loop 

from stator to rotor.  Meaning both the stator and rotor have windings.  The feedback loop has a line 

side converter and a rotor side converter that are separated by a DC link.  This allows for varying voltage 

to be applied to the rotor of the system. 

To fully understand this system we must first look at how power is absorbed by wind turbine 

systems and how single fed induction machines work.  From here we will have a proper background to 

fully understand the doubly fed induction system. 

 

2.6.1 Singly Fed Induction Machine 

In order to understand the DFIG system, it is useful to first study a singly fed induction machine. 

The singly fed induction machine consists of a rotor with windings that are shorted.  When the stator is 

excited by a three-phase voltage source it creates a magnetic field in the gap between the stator and 

rotor.  The stator flux will demand movement at what is called synchronous speed.  This is the speed 

that the actual stator flux wave is moving and its definition is: 
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Equation 8: Synchronous Speed [11] 

Where ω1 is the synchronous speed (radians per second), f1 is frequency (in Hertz), and p is the number 

of poles (in pairs).  However, this can be converted from mechanical radians (ωmech) to electrical radians 

(ωm).  This is defined as: 

      
  

 
 

Equation 9: Mechanical Speed [11] 

 

A common term used to define the difference between the mechanical and synchronous speeds is called 

slip.  It is defined as, where S is slip: 

  
        

     
 

Equation 10: Slip [11] 

 

With this value, the direction and operation mode can be determined.  These are outlined in Table 9 

below. 

State Rotor Direction Function 

S > 1 Opposite stator field (ωm < 0) Braking 

S = 1 No movement (ωm = 0) Transformer 

0 < S < 1 Same as stator, but slower (0 < ωm < ωsync) Motor 

S < 0 Same as stator, but faster (ωm > ωsync) Generator 

Table 9: Slip and Generator Function 

This slip value can also help to determine the rotor field velocity and current frequency as: 
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Equation 11: Rotor Field Velocity [11] 

 

          

Equation 12: Rotor Current Frequency [11] 

Where ωr is the rotor field velocity, fr is the rotor current frequency, and fsync is the stator current 

frequency. 

 

2.6.2 Doubly Fed System 

The doubly fed system has windings on both the stator and rotor side.  It makes use of a feedback 

loop running from stator to rotor that include a line side converter (LSC), a DC link and a rotor side 

converter (RSC).  This can be seen in Figure 10, below. 

 

Figure 10: DFIG Feedback Loop 
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The line side converter will regulate the voltage to the DC link.  From there, the rotor side 

converter will convert the DC link to AC at the frequency required at the rotor.  Through the variation of 

these values, the power taken from the line and injected back into the rotor can be controlled. 

Due to the windings on both the rotor and stator, they will both be creating magnetic fields that 

will interact, creating torque.  The torque can be defined as: 

  |  ||  |      

Equation 13: DFIG Torque [12] 

 

Where T is the torque created, ψs is the stator magnetic field, ψr is the rotor magnetic field, and θ is the 

angle between the stator and rotor magnetic fields.  This shows that the torque is at its maximum when 

these two fields are normal to each other. 

Each the stator and rotor will have a three phase winding configuration.  The stator is connected 

to the power grid and the rotor is connected to the rotor side converter (which is in series with the DC 

link connected to the grid side converter and back to the grid), these connections will determine the 

voltages seen at the stator and rotor.  There are: 

                             

         (   
  

 
)          (   

  

 
) 

         (   
  

 
)          (   

  

 
) 

Equation 14: Stator and Rotor Voltages [11] 

Where vsa, vsb, and vsc are the stator voltages on phase a, b, and c.  Similarly, vra, vrb, and vrc are 

the voltages for phase a, b, and c on the rotor. The definition of ω1 is: 
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Equation 15: ω1 [11] 

Where f1 is the grid frequency.  The relationship between ω1 and ωr is: 

       

Equation 16: Rotor Frequency [11] 

Where, similarly to the single fed system, the slip of the doubly fed machine is defined as: 

  
     

  
 

Equation 17: Definition of Slip [11] 

Where ns is the synchronous speed and nr is the mechanical speed of the rotor, both of which are in 

rpm.  The synchronous speed is defined as: 

   
    
 

 

Equation 18: Synchronous Speed [11] 

Where fe is the electrical frequency. 

The system can be represented in a t-circuit with parasitic inductors and resisters on each side 

of two coils with a high coupling coefficient to signify the power transfer between the stator and rotor 

where: 

 

Rs is the rotor resistance 

Ls is the rotor leakage inductance 

Lm is the magnetization branch 
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Ls is the rotor leakage inductance 

Rr is the rotor resistance 

sk is the turns ratio between the stator and rotor 

is is the stator current 

ir is the rotor current 

 

Figure 11: Per Phase Equivalent Circuit of an Induction Machine [12] 

 

The mechanical dissipation can be modeled as Rr(1-s)/s.  Using this notation the mechanical power can 

be calculated by: 

       |  |
 (

   

 
)   

Equation 19: Mechanical Power [12] 

 

The power going through the stator and rotor can be related to each other by: 

                       (
     

  
)               

Equation 20: Relationship between Stator and Rotor Power [12] 
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This leads to a similar definition found in the singly fed machine where there are multiple modes 

of operation depending on the slip.  However, in the case of the doubly fed machine there are two per 

condition of the slip instead of one depending on the direction of the power flow.  They are as follows: 

 

Slip Mechanical Power Stator Power Rotor Power Operation Mode 

S > 0 Outward Inward Outward Motor 

S > 0 Inward Outward Inward Generator 

S < 0 Outward Inward Inward Motor 

S < 0 Inward Outward Outward Generator 

Table 10: Slip and Generator Power 

2.7 Active Filtering 

Active filtering uses components such as switches, logic, and possibly microprocessors to mitigate 

unwanted harmonics.  These are much more versatile than passive filters, which have to be tuned to a 

particular frequency.  However, they are much more complicated.  For the active filter, the designer can 

choose the desired output waveform within a certain tolerance. 

This is done using power switches.  These switches can be toggled depending on whether the 

current needs to be sunk or pushed from the line.  In parallel with the switches will be an energy storage 

device, such as a capacitor.  This will need to keep a voltage that is higher than the line voltage.  This 

energy storage device will create the voltage potential that will force the current flow. 

To decide when to toggle these switches, a test signal is generated, in the case of this project, using 

pulse width modulation output from a microprocessor.  This signal is a scaled down version of the 

desired output.  Once the test signal is attained, the circuit must sample the line conditions to compare 
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it to the ideal signal.  Once it is known whether current will have to be added or subtracted the 

appropriate signals can be sent from the microcontroller to the appropriate switches. 

 

Figure 12: Basic Concept of an Active Filter System 

 

The exact design of all the sensors and switching scheme depend on the application.  The particular 

design and analysis for this project will be explained in chapter 3.  In Figure 12 the basic concept of the 

active filter can be seen.  Starting from the left, there is a three phase generation, each generator being 

120⁰ out of phase from each other.  They then each have line losses associated with them in the form of 

resistances and inductances.  Here, it can be seen that the path splits.  The downward path displays the 

harmonic current that is being pulled by the grid side converter in the feedback system of the DFIG 
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system.  The path continuing to the right shows the harmonically distorted current that is left over.  This 

is the problem current that must be fixed. 

It can be seen that the active filter is then in tapped off the line down the line, after the harmonic 

current is pulled away, but before the transformers and grid connection.  This is placed here so that the 

filter can add or subtract the necessary current from the line to produce a sinusoidal wave.  Once this is 

completed, it can be seen that the transformers see a current that has significantly less harmonics, 

which is what it is designed to see and will prolong the life of the equipment. 

 

3 Analysis and Design 

        This chapter will outline the analysis of the DFIG system scale model, computer simulation, and any 

physical research that was done.  All modeling of the system was completed in PSPICE, which can be 

found in Appendix A.   

  

3.1 Transformer A DGA Analysis 

This report outlines the dissolved gas analysis from a transformer in question of being at harm 

due to harmonics.  This analysis is used to determine troubled units so their cases can be studied.  The 

gassing pattern is as follows: 

Date 8/17/2011 5/25/2011 7/10/2010 

Oil Temp 38 35 40 

Hydrogen (H2) 444 433 89 
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Methane (CH4) 1014 810 21 

Ethane (C2H6) 241 254 5 

Ethylene (C2H4) 1600 1378 4 

Acetylene (C2H2) 12 12 0 

Carbon Monoxide (CO) 218 186 110 

Carbon Dioxide (CO2) 437 413 329 

Nitrogen (N2) 73873 64701 55382 

Oxygen (O2) 14391 15636 22714 

Total Gas 92230 83823 78654 

Table 11: Transformer DGA Analysis 

Putting this into a gas spectrum we can make some general deductions.  This spectrum is seen below. 

 

Figure 13: Gas Spectrum 

 

This pattern somewhat resembles the patterns of overheating from IEEE C57.104 [2] seen below but is 

not conclusive.  Therefore, ratios will be used. 
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Figure 14: Possible Overheating 

 

3.2 Ratio Analysis 

 The ratios will be calculated now in order to make use of the Roger’s and Doerenburg methods of 

fault evaluation.  For the most recent sample, the ratios are as follows: 

Ratio 1 CH4/H2 2.2838 

Ratio 2 C2H2/C2H4 0.0075 

Ratio 3 C2H2/CH4 0.0118 

Ratio 4 C2H6/C2H2 20.083 

Ratio 5 C2H4/C2H6 6.639 

Table 12: Gas Ratios 

3.2.1 Doerenburg Method 

We can now check these values against the limit concentrations discussed previously, seen below. 
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Table 13: Limit Concentrations 

 

In this case, we need to have at least one gas that is more than double the minimum 

concentration and at least one more surpass a limit as stated in the table 13 as well.  Here we clearly 

have hydrogen, methane, acetylene, ethylene, and ethane well above these limits.  Therefore, this 

analysis applies and we can compare the ratios to the table 14 found below.  

 

Table 14: Ratio Comparison [2] 

 

It can be seen that the ratios clearly show that there has been thermal decomposition in this 

transformer. 
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3.2.2 Roger’s Ratio Method 

The Roger’s Ratio method is similar to the Doerenburg Method and should yield similar results (this is a 

redundant exercise).  We will be using the ratios calculated previously to investigate what type of fault, 

if any, has occurred in this transformer.  The table 15 used is seen below. 

 

Table 15: Roger’s Ratio for Key Gasses 

 

Here, we can see that we have a case 5 indicating there has been a thermal fault greater than 700˚C.  It 

was found via the Doerenburg Method that there was a thermal fault and it was also seen in the gassing 

distribution.  The Roger’s Ratio method has given a more in depth view of how significant this fault was, 

which, in this case, is of the highest degree. 

 

3.3 DFIG Harmonics Analysis 

This section investigates the harmonics in the doubly fed induction generation system.  It will 

make use of a Fuhrlander turbine for realistic modeling to be done in PSPICE.  From these results, proper 

derating values can be determined. 
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3.3.1 Base Model 

The Fuhrlander FL1500 wind turbine is selected as a basis for our analysis. The manufacturer 

provides the single-phase equivalent circuit diagram shown below:  

 

Figure 15: Fuhrlander Manufacturer’s Specifications [13] 

 

Figure 16: Fuhrlander Single-Phase Equivalent Circuit [13] 
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The circuit provided shows a single phase of the delta connection and is referenced line to line 

instead of line to neutral. In order to simplify the analysis, the magnetizing current is ignored and the 

series impedance is combined. The impedance R’2*(1-s)/s is also ignored and will be treated as a voltage 

source later on. The circuit is then converted to a Wye connection equivalent with values referenced 

from line to neutral as follows: 

 

Figure 17: Calculation of Generator Impedance Value 
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Next, a Delta-Wye transformer is connected to the generator equivalent circuit with the Wye 

side being connected to the generator and the Delta side being connected to a 13.8kV line. For this first 

model, a 1.5MVA transformer with a 5% per unit impedance is chosen. The calculation for the 

equivalent Wye connected inductance is as follows: 

 

Figure 18: Calculation of Transformer Impedance Value 
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Next, the generator voltage and power angle between the generator and grid must be found 

such that the power delivered is approximately 1.5MW. The calculation is as follows:

 

Figure 19: Power Angle Calculation 
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With all the parameters calculated, we can build a PSPICE model using the generator and transformer 

impedances as well as the power angle. The PSPICE circuit for our simplified model can be seen in Figure 

20. 

 

Figure 20: PSPICE Model of the Fuhrlander Generator with No Rectification 

 

The voltage level on the generator side is 410Vrms line-to-neutral or 710Vrms line-to-line. This is set 

slightly higher than the 690Vrms line-to-line value (398Vrms line-to-neutral) to indicate power flow 

towards the transformer. The phase angle is set at 9.525 degrees as previously calculated in Figure 19.  

 

3.3.2 Adding a Three Phase Rectifier as a Model for the Rotor Power Converters 

During steady-state sub-synchronous operation, where the slip is between zero and one, power 

flows from the transformer to the Rotor Power Converters to the rotor itself. As mentioned in the 
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background section, the Rotor Power Converters consists of a Rotor Side Controller, a Grid Side 

Controller, and a DC link in between. In this analysis, the power flow from the Grid Side Controller to the 

DC link is modeled as a three phase rectifier, and the power flow from the DC link to the Rotor Side 

Controller is modeled as a simple resistive load. The model is shown below in Figure 21. 

 

Figure 21: Full PSPICE Model of DFIG System 

 

Thus the rotor power can be virtually adjusted by raising or lowering the load resistance. 

Assuming a lossless DFIG system, the relationship between Pr and Ps is: 
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                       (
     

  
)               

Equation 21: Rotor and Stator Power Relationship 

 

The typical DFIG Rotor Power Converter is rated around 30% of the rated power of the induction 

generator. This means a slip value range of ±0.3. [12] Since the three phase rectifier only models power 

flow in the sub-synchronous operation, we are only interested in slip values that are greater than zero. 

For a study of the worst case scenario for harmonics generation, the maximum slip value of 0.3 is 

chosen. This means that the resistor value must be chosen so that the power across it is 30% of the 

stator power. As seen in Figure 21, a load resistive value of 2 ohms and filter capacitor value of 33mF is 

used to simulate the generated harmonic current. Figure 22 shows the output power of the rectifier is 

approximately 433kW, or about 31.6% of the stator power of 1.37 MW. The output voltage ripple on the 

DC link is approximately 10V, or about 1%. 
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Figure 22: Rectifier Output Voltage and Power, Stator Power, and Power Transmitted to the Line 

 

3.3.3 Analyzing Generated Current Harmonics 

With this model, the effects of the harmonics generated by the rectifier system can be simulated. The 

graphs in Figure 23 below show the current on the stator side, the non-linear current drawn by the 

rectifier system, and the current seen by the transformer, respectively.  
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Figure 23: Stator, Rectifier, and Output Currents 

 

To better understand the parameters of the system which generate these harmonics, different 

impedances were varied and the effects on the harmonics recorded. The results of the study are shown 

in the Figure 24 and Figure 25  below: 
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Figure 24: Normalized Current Harmonic for Varying Transformer Per Unit Impedance 

 

 

Figure 25: Normalized Current Harmonic for Varying Generator Per Unit Impedance 
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By increasing the per unit impedance of the connected transformer, the generated current harmonics is 

reduced. The THD ranges from 19.1% with transformer per unit impedance of 11% to 32.0% THD for 

transformer per unit impedance of 3%.  Also, for generators with a higher per unit impedance, the 

current harmonics become more pronounced. The THD ranges from 17.7% with generator per unit 

impedance of 9% to 42.8% THD at generator per unit impedance of 18%. 

 

3.4 Active Filter 

The active filter design consists of three major sub-sections: the sensors, the controller, and the 

H-Bridge. Four sensors are presented although only three are used in this particular design. The first 

sensor is the non-linear current sensor. The second, based off the same design, is the correction current 

sensor. The third is a line voltage sensor used to keep track of the timing and synchronization of the 

injected current. The fourth sensor that is not implemented is for managing the capacitor voltage that is 

used to power the H-Bridge. In the current design, the capacitor is substituted by a 30V DC power 

supply. The second sub-section is the controller. This is basically the STM32VL-Discovery evaluation 

board. The third sub-section is the H-Bridge circuit that actually drives the current to the line. The block 

diagram for the system is shown below in Figure 26. 
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Figure 26: Active Filter Block Diagram 

 

3.4.1 Switching Scheme 

In order to know which switches to toggle, there are three different conditions to consider: the line 

voltage, the target current, and the actual current minus the target current. With these three conditions 

we can toggle the switches in a way to control the system.  The basic truth table is seen below in table 

16 where A is Vin>0, B is Itarget>0, and C is Iactual – Itarget>0. 

A B C S1 S2 S3 S4 Current Reason 

0 0 0 0 0 0 0 Decrease Charging 

0 0 1 0 1 1 0 Increase Shorting 

0 1 0 1 0 0 1 Increase Discharging 
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0 1 1 0 0 0 0 Decrease Charging 

1 0 0 0 0 0 0 Decrease Charging 

1 0 1 0 1 1 0 Increase Discharging 

1 1 0 1 0 0 1 Increase Shorting 

1 1 1 0 0 0 0 Decrease Charging 

Table 16: IGBT Switching Logic 

 This gives a logic output of (B & ~C) for S1 and S4 and a logic output of (~B & C) for S2 and S3. It 

turns out that the line voltage does not affect the way the system operates. Figure 27 below shows a 

PSPICE simulation of this logic system where the first waveform is the line voltage at 60Hz, the second is 

an arbitrary target current of 300Hz, and the last is the system output current matching the arbitrary 

target current. 

 

Figure 27: PSPICE IGBT Logic Verification 
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3.4.2 Voltage Sensing Circuit 

For the test signal to be in phase, the voltage on the line will need to be known to the controller.  

However, the voltage is too high to simply tap directly off the line.  The since the microprocessor used in 

this project can only handle 0-3.3 volts.  To solve this problem the use of a step down transformer and 

some analog circuitry will be made use of, which can be seen in Figure 28 below. 

 

 

Figure 28: Voltage Sensor Circuit 

 

This circuit makes use of an AD820AN operational amplifier which uses ±5V rails.  The positive 

input was biased in the bottom left circle using a voltage divider to make the waveform positive.  A 

voltage divider was also used for the input off the line to make sure it was 3.3V peak to peak.  This 
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circuit actually inverts the waveform, but is accounted for in the processing of the signal.  Common 

resister sizes were used to make this design practical. 

The design of this circuit was created for a scale model of the DFIG system with a line voltage of 

12VAC.  Therefore, if this design were to be adopted for a full power realization of this design, the 

biasing would have to be altered to still create an acceptable output for a microprocessor.  However, the 

overall theory and design will hold true. 

 

3.4.3 Current Sensing Circuit 

A current sensing circuit was designed in order to continuously monitor the AC current of the 

line. The initial design uses a Hall Effect sensor IC (ACS714) [14] to measure the line current. The IC 

possesses an optimized current measurement range of ±20 A and an output voltage that is proportional 

to AC or DC currents. The output of the Hall Effect sensor is biased at a voltage equivalent to VCC/2, 

which for this design is 2.5 V. The output sensitivity is equal to 100 mV/A. The sensor output voltage 

must go through a system of op-amps that will reduce the values so that they can be entered and stored 

in the ADC. The op-amp system consists of an inverting op-amp that will reduce and invert the input 

voltage and another inverting op-amp that will act as an inverting buffer. The schematic of this circuit is 

shown in the figure below. 
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Figure 29: Initial Current Measuring Circuit 

 

 The ACS714 Hall Effect sensor was listed in the datasheet to have a 1.5 % total output error. A 

set of test measurements were performed to confirm that this would be the typical error of the sensor. 

A basic circuit was created using a 15 Ω resistor in series with a voltage supply and ground. The voltage 

supply ranged from 2.5 V to 8.5 V and was stepped up by 0.5 V each test. The output of the current 

sensing circuit was measured and compared with the calculated or expected output to determine the 

error percentage. The expected output was determined by a set of calculations. First, the current 

flowing through the basic load was calculated by using ohm’s law. Next, the output sensitivity (100 

mV/A) and the Hall Effect output were calculated. For example, when the current is 1 A, the output is 

the sum of the sensitivity (100 mV) and the output voltage bias (2.5 V). Thus, the result is an output of 

2.6 V. After this calculation, the output is run through an inverting op-amp, which has a gain of –R1/R2. 

The values for R1 and R2 are 3 kΩ and 5 kΩ, so the gain is -0.6. Finally, the output of the inverting op-

amp is run through an inverting buffer, which has a gain of -1, so that all values can then be entered into 

the ADC.  
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Current Sensing Circuit Test Measurements 

Hall Effect: 5 V Power Supply     Output Bias: VCC/2  

15 Ω Resistor Load 

Hall Effect Output Sensitivity 100 mV/A 

Test Voltages at 2.5 V  to 8.5 V with a 0.5 V step 

Test Voltage 

(V) 

Calculated Output Voltage 

(V) 

Measured Output Voltage 

(V) 

Error 

(%) 

2.5 1.51 1.495 0.9934 

3 1.512 1.496 1.0582 

3.5 1.514 1.4973 1.103 

4 1.516 1.4987 1.1412 

4.5 1.518 1.4997 1.2055 

5 1.52 1.5016 1.2105 

5.5 1.522 1.5027 1.2681 

6 1.524 1.5043 1.2927 

6.5 1.526 1.505 1.3761 

7 1.528 1.5076 1.3351 

7.5 1.53 1.5094 1.3464 

8 1.532 1.511 1.3708 

8.5 1.534 1.512 1.3055 

Table 17: Hall Effect Current Test Measurements 

The test measurements verified that the circuit was correctly built because the error was around 

1.5 %. The figure below demonstrates that the error produces a lower voltage than the calculated 

output voltage. The Measured output voltage is not perfectly linear like the calculated voltage, but it 

does increase in value as the test voltages is brought up. 
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Figure 30: Hall Effect Current Test 

 

 It was determined that the active filter would require two current sensors. One was needed to 

measure the current in the line while the other was needed to measure the current harmonics of the 

system. The difference between these two currents allows the microcontroller to determine the 

injection current that is needed to remove the harmonics from the system. Therefore, two current 

sensors were built both by means of a Hall Effect sensor and an op-amp. The same Hall Effect IC sensors 

and op-amps were used to create the two circuits since they would require the same operating 

conditions. 

A final current measuring circuit was designed to substitute for the initial design. This circuit, 

which is shown below, was created in order to reduce the number of components necessary for the 

sensor. The second op-amp, which acted as an inverting buffer is removed from the circuit and the 

output of the first op-amp is biased before it is sent into the ADC. The output of the first inverting op-

amp is biased in order to produce a non-negative voltage for the ADC.  Additional capacitors and 

resistors were connected to the dual-power supply and the output of the op-amp in order to reduce 
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error and improve the Signal-to-noise ratio (SNR). The voltage bias is constructed by means of a voltage 

divider that is connected to the V+ side of the op-amp.  

       
      

     
 

Equation 22: Opamp Bias Voltage 

 

The voltage bias for an inverting amplifier is calculated by using the equation shown above. 

When the Hall Effect senses zero current, the output is equal to the bias of the sensor (2.5 V). The 

parameter G, which is equal to 3/5, represents the ratio between the resistors R2 and R1. The output 

voltage was chosen to be biased at 1.5 V. With VI set at 2.5 V and VO set at 1.5 V, the voltage bias was 

determined to be 1.875 V. A voltage divider consisting of a 30 Ω and 18 Ω resistor series was 

constructed to produce this voltage bias. 

 

Figure 31: Final Current Measuring Circuit 
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A set of test measurements were also performed for the final design to observe the functionality 

of the circuit and the amount of error reduction in the output voltage. The same 15 Ω resistor and 

power supply were used for these test measurements. The voltage supply ranged from 3.5 V to 8.5 V 

and was stepped up by 0.5 V each test. The output voltage and error percentage were calculated for 

both sensors. The two sensors both produced a significantly lower error percentage than the one tested 

in the original design. 

Current Sensing Circuit Test Measurements 

Measured with Agilent Multimeter 

5.2 Ω Resistor Load 

Test Currents at 0 to 1.5 A with a 100 mA step 

Current 

    (A) 

Calculated Output  

Voltage (V) 

1
st
 Sensor 

(V) 

Error          

(%) 

2nd Sensor 

(V) 

Error 

(%) 

0 1.5 1.515 1 1.504 0.267 

0.1 1.494 1.509 1.004 1.499 0.335 

0.2 1.488 1.504 1.075 1.493 0.336 

0.3 1.482 1.498 1.08 1.487 0.337 

0.4 1.476 1.492 1.084 1.481 0.339 

0.5 1.47 1.487 1.157 1.476 0.408 

0.6 1.464 1.481 1.161 1.47 0.41 

0.7 1.458 1.476 1.235 1.464 0.412 

0.8 1.452 1.47 1.24 1.459 0.482 

0.9 1.446 1.464 1.245 1.453 0.484 

1 1.44 1.459 1.319 1.447 0.486 

1.1 1.434 1.453 1.325 1.441 0.488 

1.2 1.428 1.447 1.33 1.436 0.56 

1.3 1.422 1.442 1.407 1.43 0.563 

1.4 1.416 1.436 1.412 1.424 0.565 

1.5 1.41 1.43 1.418 1.418 0.567 

 

Table 18: Current Sensing Circuit Test Measurements (0 to 1.5A) 
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Figure 32: Final Current Measurements (0 to 1.5A) 

 

 Current Sensing Circuit Test Measurements  

Measured with Agilent Multimeter 

5.2 Ω Resistor Load 

Higher Test Currents at 2 to 5.5 A with a 0.5 A step 

Current 

(A) 

Calculated Output 

Voltage (V) 

1
st
 Sensor 

 (V) 

Error 

(%) 

2nd Sensor 

(V) 

Error 

(%) 

2 1.38 1.403 1.667 1.393 0.942 

2.5 1.35 1.375 1.852 1.365 1.111 

3 1.32 1.346 1.97 1.336 1.212 

3.5 1.29 1.318 2.171 1.307 1.318 

4 1.26 1.29 2.381 1.279 1.508 

4.5 1.23 1.261 2.52 1.25 1.626 

5 1.2 1.233 2.75 1.221 1.75 

5.5 1.17 1.204 2.906 1.193 1.966 

 

Table 19: Current Sensing Circuit Test Measurements (2 to 5.5A) 
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Figure 33: Final Current Measurements (2 to 5.5A) 

 

3.4.4 Power Supply Circuit 

A power supply circuit was designed in order to power the active filter circuit by means of the 

AC wall line. The power supply must support voltages of ± 5 V and + 12 V.  This design uses two voltage 

transformers: a 115 to 12.6 V center-tapped transformer and a 115 to 18 V transformer. The 

transformers are necessary for reducing the voltage of the AC line in order to be run through the 

regulators. Bridge rectifiers are required in order to convert the AC voltages into DC before the voltage 

line values are input into the voltage regulators. The first two regulators used in this circuit include the 

LM7805 and LM7905, which regulate the higher input voltages and produce the ± 5 V outputs. The 

LM7812 is the other regulator and receives an input voltage from the higher rated transformer in order 

to produce the + 12 V output. 
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Figure 34: Power Supply Circuit 

 

 The power supply circuit was simulated on Multisim and tested on a protoboard to confirm its 

accuracy. The simulation was tested with 50 Ω resistors and two virtual transformers with fairly similar 

turns ratios. A 13:1 and a 6.5:1 were used with a 120 VRMS AC Power Supply to produce the AC 

voltages. The outputs of the two transformers were around 9.23 V and 18.46 V and therefore were large 

enough to be input into the regulators. The result of the circuit was that it produced output voltages of 

4.96 V, -4.8 V and 11.8 V. Since these results were very accurate, the design was then tested on a 

protoboard. 

 The protoboard design included the 2.2 mF and 100 uF capacitors that were used in the design 

shown above. The regulators were all tested with a 15 Ω resistor. The transformers were connected to a 

120 VRMS AC outlet. The protoboard design produced output voltages of 4.94V, -4.99 V and 11.8 V. The 
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test measurements proved that the circuit is designed right and successfully outputs the right values for 

our power supply. 

 

3.4.5 Capacitor Voltage Sensor Circuit 

A voltage sensing circuit was designed in order to monitor the capacitor voltage and determine 

when to charge and discharge the capacitor. The design uses an analog optocoupler (HCNR201) [15] to 

create electrical isolation between the input and output of the sensing circuit. Optocouplers prevent 

rapidly changing voltages from harming or destroying any other components that are connected to the 

system. The voltage sensing circuit, which is displayed in the figure below, consists of two op amps and 

two resistors along with the optocoupler IC.   

 

Figure 35: Capacitor Voltage Sensor 

 

The first op-amp is assumed to be a perfect op-amp so that all current flows through the R1 

resistor into the PD1 photodiode located in the IC. When a positive input voltage is applied, the op-amp 

output moves in the direction of the negative rail causing current to flow through the LED. The output of 

the LED is detected by the photodiode PD1 and as a result PD1 generates IPD1.  Since the current is 



57 
 

assumed to flow only through the resistor, the photodiode current IPD1, shown in the equation below, is 

calculated by Ohm’s Law. 

      
    

  
⁄  

Equation 23: Photodiode Current 

 

 PD1 and PD2 are equivalent photodiodes and therefore produce a transfer gain K3 which is 

determined to be IPD2/IPD1 = 1.  The second op-amp connected with the R2 resistor act as a trans-

resistance amplifier that produces the analog output VOUT, which is calculated in the equation below. 

                 

Equation 24: Vout 

 

 These two equations combined together produce the formula below, which illustrates the linear 

relationship between the input and output voltage. Since K3 is essentially unity gain, the relationship is 

determined by the ratio of the two resistors. 

    
    ⁄          

  
  

⁄   

Equation 25: Gain 

 

Voltage Measured with Agilent Multimeter 

Test Voltages at 0 to 50 V with a 5 V step 

Capacitor Voltage  

(V) 

Input Divider Voltage  

(V) 

Cap Sensor  

(V) 

Error  

(%) 

0 0 0.003 − 

5 0.3 0.29 -3.33 

10 0.6 0.58 -3.33 

15 0.9 0.87 -3.33 

20 1.2 1.161 -3.25 
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25 1.5 1.451 -3.267 

30 1.8 1.741 -3.278 

35 2.1 2.03 -3.33 

40 2.4 2.32 -3.33 

45 2.7 2.61 -3.33 

50 3 2.9 -3.33 

Table 20: Capacitor Sensor Test  

 The test measurements proved that the circuit was correctly built because the input/output 

voltage relationship was linear. The difference between the test voltage and the sensor voltage grew 

after each voltage step as the test voltage was increased. The average error of this test measurement 

was calculated to be 3.248%.  

 

Figure 36: Capacitor Output Voltage 

 

 The optocoupler would successfully output the analog input voltage as long as the power supply 

of the op-amps was greater than or equivalent to the input voltage. In order to power the op-amps with 

a small power supply and measure a large input voltage range, a voltage divider is attached to the 
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capacitor. A capacitor voltage of 50 V is reduced to 3 V, so that all necessary voltages can be measured 

by the circuit. The op-amps and optocoupler are powered by a 5 V supply voltage. 

 

3.4.6 H-Bridge Inverter Circuit 

A practical H-Bridge based inverter needed to be designed in order to create a source of 

correction current to be injected into the line. The circuit is designed to create a maximum injection 

current of 10A. Four IRGB8B60KPBF IGBTs are used for the H-Bridge switching at 24kHz. These IGBT’s 

have a continuous collector current rating of up to 19A at 100⁰C junction temperature. The Icollector vs Vce 

graph shows a Vce of approximately 2.2V for a Vge of 12V. In order to drive the IGBT gates, a Vge of 12V 

needs to be supplied. Isolated power supply for each IGBT proves an expensive an impractical option. 

Instead a bootstrap based design was chosen. The IR2110 half bridge driver was picked because it can 

drive both the high and low side IGBTs while only needing one isolated 12V supply. It is also able to drive 

up to 2A of gate drive current. MCT-6 opto-couplers are used to isolate microcontroller signals from the 

driver, thus providing complete galvanic isolation between the power circuitry and the logic hardware. 

The circuit diagram below shows the design of this H-Bridge: 
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Figure 37: H-Bridge Circuit Schematic 

 

Two square wave signals of opposite polarity are used to drive the circuit. They are set to be 

high for 1/(24kHz) – 5us (dead time) = 36.7us and with a period of 2*(1/24kHz) = 83.4us. In this design, 

only one 12V supply is needed to power both the opto-couplers and the two IGBT drivers because of the 

bootstrap topology. The bootstrap circuit works by charging up the bootstrap capacitors (C_LBS and 

C_RBS) through the bootstrap diode (D_LBS and D_RBS) when the opposite IGBT pair gets turned on. 

The capacitors then reach 12V above line voltage. This stored charge is used to drive the IGBT when the 

state switches. In order to have the bootstrap circuit function correctly, the capacitor size must be large 

enough to store the charge required to drive the high side IGBT. A film type capacitor was chosen 

because of its low leakage current. The bootstrap diode is an ultra-fast recovery diode also chosen to 

minimize leakage current. Component values were determined using International Rectifier Design Tip 

04-4: Using Monolithic High Voltage Gate Drivers [16] as a guide. The following equation is used to 

determine the capacitor size: 
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Equation 26: Minimum Bootstrap Capacitor Value 

Where 

              (                                           )        

Equation 27: Total Charge for Bootstrap Capacitor 

 

QG : IGBT turn on required Gate charge (IRGB8B60KPBF - 29nC) 

ILK_GE : IGBT gate-source leakage current (IRGB8B60KPBF  - max. 100nA) 

IQBS : Floating section quiescent current (approximate as 0) 

ILK : Floating section leakage current (approximate as 0) 

ILK_DIODE : Bootstrap diode leakage current (UF4004GP – max. 100uA) 

IDS- : Desat diode bias when on (approximate as 0) 

QLS : Charge required by internal level shifters (approximate as 0) 

ILK_CAP : Bootstrap capacitor leakage current (approximate as 0 since we are using a non-
electrolytic capacitor) 

THON : High side on time (24KHz switching speed gives an average on time of 41.7uS) 

Thus QTOT ≈ 33nC. 

 

And  

                     
       

 

Equation 28: Bootstrap Capacitor Ripple Voltage 

 

VCC : IC voltage supply (12V) 

VF : Bootstrap forward voltage drop (1.3V) 
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VCEon : IGBT operating collector-emitter voltage (2.2V) 

VGEmin : Minimum maintained gate-emitter voltage (VGE(th) = 4.5V) 

Thus ∆VBS ≤ 4V 

 

Using equation x, the minimum bootstrap capacitor value is 8.29nF. However, a 1uF capacitor was 

chosen because the higher capacitance guarantees better performance when the switching time is 

longer. It will also stay at the charged voltage for a longer time while not significantly affecting the 

circuit in other respects. 

   
       

    
 

Equation 29: Determining Gate Resistor Value 

Where  

     
       

   
 

Equation 30: Average Gate Current 

 

From the IRGB8B60KPBF datasheet, we know that Qgc = 14nC and Qge = 3.7nC. Thus Iavg = 0.4248A and 

RG ≈ 17.7Ω. A value of 10Ω was tested and found to work. (IRF DT04-4 revA) 

The inductor in the circuit is used to limit di/dt. The value is set to 9.68mH, which is the value of 

the inductor available on hand that is of a workable size. In order to minimize the voltage spike on the 

IGBT caused by inductive kickback, the HFA15TB60PBF ultrafast soft recovery diode is placed between 

each IGBT’S common and emitter terminals. An RC snubber is also placed between the common and 

emitter to further reduce any remaining spikes [17]. The IR2110 SPICE model from the International 
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Rectifier website was used in this simulation. Below is the Multisim simulated graph of Vce and Vge of 

the left high side IGBT: 

 

Figure 38: Vge and Vce of Left High Side IGBT 

 

 

Figure 39: Actual Measured Vce on Left High Side IGBT 
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From Figure 38 above, Vge is at 12V, which is the voltage the IGBT gate is set to be driven at. The Vce 

graph shows very little spiking and oscillation. This is bacuse of the freewheeling diode and snubber 

circuit. Figure 39 shows the actual measured Vce, with waveform similar to that seen in the simulation. 

 

Figure 40: H-Bridge Injected Current (no line voltage aaplied) 

 

Figure 40 above shows the simulated injection current with the source voltage turned off. The di/dt is at 

3A/mS. 

 

3.4.7 Microcontroller 

The microcontroller used is the STM32VL-Discovery evaluation board. This particular controller is 

used because of its speed (24MHz), price, availability of free compiler and IDE, and the ease of use of 

the provided ST Standard Peripheral Library. 
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The microcontroller’s job is to collect the data value of the line voltage, non-linear current, and 

correction current, then calculate a target correction waveform and implement the switching logic with 

some dead-time between switching. The basic program flow is shown in Figure 41 below. 

 

Figure 41: Basic Program Flow Chart 

  

At the start of the program, the system goes through an initialization process where all the 

hardware peripherals are configured. This includes setting up the timers, setting the ADC in continuous 

conversion mode, and setting up the DMA vectors to bring converted ADC values directly to the global 
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variables in the main program. The SysTick timer is set to interrupt the program at 24kHz. This means 

that for a 60Hz cycle, SysTick will interrupt 400 times. The program is set to loop and continually update 

sensor values until either the TimeToUpdate flag is set, or when the beginning of a new cycle is 

detected. Each time SysTick interrupts, the TimeToUpdate flag is set, causing the program to go through 

the output logic and send out gate drive signals the GPIO pins if the count is less than 400. When it does 

this, the non-linear current value is squared and summed up with what was already in 

I_NonLinearLoadSquared. When the 400th count is reached, the program divides that value by 400 and 

takes the square root of that number. This way, the RMS value of the previous cycle’s non-linear current 

in obtained. The external interrupt is used to set the BeginningOfCycle flag and keeps the program 

synchronized to the line voltage. 

The particular logic for determining the target current is fairly simple. With an RMS value obtained 

from the previous cycle, a reference sinusoid of the same magnitude can be generated with a sine table. 

The difference between the present non-linear load value and the reference sinusoid is the target 

current value. With both the actual correction current value and a target current value, the output for 

the switches can be determined according to the switching scheme in section 3.4.1. The program then 

checks if there have been any changes from the previous state and will add a 5us dead-time if that is the 

case. The dead-time prevents any possible shoot through current in the H-bridge circuitry. In this way, 

the microcontroller generates an appropriate correction current that will cancel out any of the lower 

current harmonics.  
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4 Results 

This chapter will outline the results of the physical scale model that was designed and simulated in 

the previous chapter.  To test the filter the grid side converter wars replicated using a rectification 

circuit.  The circuit that was built can be seen in Figure 42. 

 

Figure 42: Rectification Test Circuit 

 

This circuit was found to draw a non-linear current that can be seen in Figure 43. 
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Figure 43: Non-Linear Current Drawn from Rectification 

 

Using the Fluke 1750 to analyze the harmonics in this wave, it was found to have significant 

triplen harmonics, which can be seen in Figure 44. 

 

Figure 44: Rectification Harmonics 
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Seeing that the rectification process created a significant amount of harmonic current, the 

active filter was then connected to mitigate these harmonics.  The resulting waveform can be seen in 

Figure 45. 

 

Figure 45: Active Filter Mitigation Oscilloscope 

 

In the oscilloscope reading above the red waveform is the filtered current, and the black 

waveform is the non-sinusoidal current being pulled to the rectifier.  It can be seen that the non-

sinusoidal current has even harmonics, which may be due to a slight mismatch in component VI 

characteristics of the diodes.  The noise on the red waveform is the switching from the filter.  This is a 

function of the switching speed and the size of the inductance that is connecting the filter to the system.  

This can be reduced by increasing the switching speed, increasing the inductance, and/or installing a 

tuned passive filter.  Looking at the harmonics present in this mitigated waveform, which can be seen in 

Figure 46, the filter has significantly reduced the harmonics, both even and odd. 
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Figure 46: Active Filter Experimental Harmonics 

 

This graph can be easily summarized by looking at the %THD and the even and odd harmonics.  

This can be seen in Table 21, where “A” is the non-linear current and “B” is the corrected current. 

 

Table 21: Current Harmonic Comparison 

It can be seen that the current harmonics are greatly reduced from 123.8% to 13.4%.  Therefore, 

this system is working as designed to greatly reduce the current harmonics seen by the step up 

transformer that would be in an actual system. 
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5 Conclusions and Future Recommendations 

 

Although this system is working as expected, there are possible improvements that can be made to 

the system.  One improvement would be to replace the power supply that acted as the storage device 

for the H-bridge and replace it with a stand-a-lone source, such as a capacitor.  This would require a 

charging circuit to ensure that the necessary power would always be available from the energy storage 

device to supply the system with the needed current. 

Another possible improvement would be to eliminate the switching noise created by the system.  

These can be mitigated by either increasing the switching frequency or increasing the inductance that 

ties the system to the line.  Both of these solutions would have to be balanced and can never fully 

mitigate the switching noise.  The most practical solution may be a simple tuned passive filter. 

Overall, this project was successful in the design and creation of an active filter to mitigate current 

harmonics. Simulations of a doubly fed induction generation (DIFIG) system were made to determine 

harmonic content. A reduced scale active filter design was created and simulated to mitigate current 

harmonics caused by a non-linear load. The scale model of the filter system was then built and was 

found to reduce both even and odd current harmonics by over 90%, therefore proving the concept. The 

model could then be scaled up in power and adapted for a three phase system. 
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Appendix A – Pspice Simulation Code 

DFIG_HARMONICS_XPU_STUDY.CIR 
 
.SUBCKT DiodeWSnubber 1 2 
D 1 2 DI 
Cs 1 3 28n IC=0 
Rs 3 2 30k 
.MODEL DI D(RS=1m BV=5000 N=0.01) 
.ENDS 
 
.SUBCKT ThreePhaseRectifier 1 2 3 4 5 
X1 1 4 DiodeWSnubber 
X2 2 4 DiodeWSnubber 
X3 3 4 DiodeWSnubber 
X4 5 1 DiodeWSnubber 
X5 5 2 DiodeWSnubber 
X6 5 3 DiodeWSnubber 
.ENDS 
 
.PARAM phase_a = 9.525 
*.STEP PARAM phase_a LIST -70 -40 -10 0 10 40 70 
.PARAM phase_b = {phase_a - 120} 
.PARAM phase_c = {phase_a + 120} 
.PARAM Rgen_value = 3.667m 
.PARAM Lgen_value = 130.8u 
.PARAM Lxfmr_value = 42.10u 
* Varying Xpu of transformer from 3% to 12% 
*.STEP PARAM Lxfmr_value LIST 25.26u 33.68u 42.10u 50.52u 58.94u 67.35u 75.77u 84.19u 92.61u 
101.03u  
 
 
Vgen_a 1 50 SIN(0 580 60 0 0 {phase_a}) 
Vgen_b 2 50 SIN(0 580 60 0 0 {phase_b}) 
Vgen_c 3 50 SIN(0 580 60 0 0 {phase_c}) 
R_a 1 4 {Rgen_value} 
R_b 2 5 {Rgen_value} 
R_c 3 6 {Rgen_value} 
L_a 4 7 {Lgen_value} IC=0 
L_b 5 8 {Lgen_value} IC=0 
L_c 6 9 {Lgen_value} IC=0 
 
Vtm_a 10 0 SIN(0 563.38 60 0 0 0) 
Vtm_b 11 0 SIN(0 563.38 60 0 0 -120) 
Vtm_c 12 0 SIN(0 563.38 60 0 0 120) 
Lxfmr_a 10 7 {Lxfmr_value} IC=0 
Lxfmr_b 11 8 {Lxfmr_value} IC=0 
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Lxfmr_c 12 9 {Lxfmr_value} IC=0 
 
Rm 7 71 0.01m 
 
Xrect 71 8 9 20 21 ThreePhaseRectifier 
Cfilter 20 21 33m IC=0 
Rload 20 21 2.0 
.FOUR 60 13 I(Lxfmr_a) 
.PROBE 
.TRAN 100m 1500m 1400m .1m UIC 
.END 
 
 
******************************************************** 
 
 
ACTIVE_FILTER_V1.CIR 
 
.SUBCKT IdealTransistorSwitch 1 2 5 6 
D1 1 3 DI 
D2 2 1 DI 
Rs 1 4 5 
Cs 4 2 22n IC=0 
S1 3 2 5 6 Switch 
.MODEL Switch VSWITCH(RON=1m ROFF=10G VON=1 VOFF=0) 
.MODEL DI D(RS=1m BV=5000 N=0.01) 
.ENDS 
 
.SUBCKT LogicTransistorSwitch 1 2 5 6 
D1 1 3 DI 
D2 2 1 DI 
Rs 1 4 80k 
Cs 4 2 30n IC=0 
S1 3 2 5 6 Switch 
.MODEL Switch VSWITCH(RON=1m ROFF=10G VON=1 VOFF=0) 
.MODEL DI D(RS=1m BV=50000 N=0.01) 
.ENDS 
 
.PARAM inductance = .25m 
*.STEP PARAM inductance LIST .5m 1m 5m 15m 
 
.SUBCKT ActiveFilterV1 1 2 11 12 13 14 15 
R1 1 3 0.1m 
L1 3 4 {inductance} IC=0 
X2 5 4 12 15 IdealTransistorSwitch 
X1 5 2 11 15 IdealTransistorSwitch 
X4 4 6 14 15 IdealTransistorSwitch 
X3 2 6 13 15 IdealTransistorSwitch 
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Vbat 5 6 DC 50 
*Cbat 5 6 1000u IC=50 
.ENDS 
 
* LOGIC GATES 
 
* NOT GATE 
.SUBCKT NotGate 1 2 3 
Xnot 2 3 1 3 LogicTransistorSwitch 
R 5 2 1k 
V 5 3 DC 1 
Cout 2 3 5n IC=0 
.MODEL Lswitch VSWITCH(RON=1m ROFF=10G VON=1 VOFF=0) 
.ENDS 
 
* AND GATE 
.SUBCKT AndGate 1 2 3 4 
V 5 4 DC 1 
Xand1 5 6 1 4 LogicTransistorSwitch 
Xand2 6 3 2 4 LogicTransistorSwitch 
R 3 4 1k 
Cout 3 4 5n IC=0 
*.MODEL Lswitch VSWITCH(RON=1m ROFF=10G VON=1 VOFF=0) 
.ENDS 
 
* AND GATE 3 INPUT 
.SUBCKT AndGate3 1 2 3 4 5 
V 6 5 DC 1 
Xand1 6 7 1 5 LogicTransistorSwitch 
Xand2 7 8 2 5 LogicTransistorSwitch 
Xand3 8 4 3 5 LogicTransistorSwitch 
R 4 5 1k 
Cout 4 5 5n IC=0 
*.MODEL Lswitch VSWITCH(RON=1m ROFF=10G VON=1 VOFF=0) 
.ENDS 
 
* OR GATE 
.SUBCKT OrGate 1 2 3 4 
V 5 4 DC 1 
Xor1 5 3 1 4 LogicTransistorSwitch 
Xor2 5 3 2 4 LogicTransistorSwitch 
R 3 4 1k 
Cout 3 4 5n IC=0 
*.MODEL Lswitch VSWITCH(RON=1m ROFF=10G VON=1 VOFF=0) 
.ENDS 
 
* OR GATE 3 INPUT 
.SUBCKT OrGate3 1 2 3 4 5 
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V 6 5 DC 1 
Xor1 6 4 1 5 LogicTransistorSwitch 
Xor2 6 4 2 5 LogicTransistorSwitch 
Xor3 6 4 3 5 LogicTransistorSwitch 
R 4 5 1k 
Cout 4 5 5n IC=0 
*.MODEL Lswitch VSWITCH(RON=1m ROFF=10G VON=1 VOFF=0) 
.ENDS 
 
 
* S1 LOGIC ( (B&~C) | (~A&~B&C) )  // new B~C 
.SUBCKT S1Logic 1 2 3 4 5 
Xnotgate1 1 6 5 NotGate 
Xnotgate2 2 7 5 NotGate 
Xnotgate3 3 8 5 NotGate 
Xandgate1 6 7 3 9 5 AndGate3 
Xandgate2 2 8 10 5 AndGate 
Xorgate1 9 10 4 5 OrGate 
*.SUBCKT S1Logic 1 2 3 4 5 
*Xnotgate1 3 6 5 NotGate 
*Xandgate1 2 6 4 5 AndGate 
 
.ENDS 
 
* S2 LOGIC ( (~B&C) | (A&B&~C) )  //~BC 
.SUBCKT S2Logic 1 2 3 4 5 
Xnotgate1 2 6 5 NotGate 
Xnotgate2 3 7 5 NotGate 
Xandgate1 1 2 7 8 5 AndGate3 
Xandgate2 6 3 9 5 AndGate 
Xorgate1 8 9 4 5 OrGate 
.ENDS 
 
* S3 LOGIC ( (A&~B&C) )   // ~BC 
.SUBCKT S3Logic 1 2 3 4 5  
Xnotgate1 2 6 5 NotGate 
Xandgate1 1 6 3 4 5 AndGate3 
.ENDS 
 
* S4 LOGIC ( (~A&B&~C) )    // new B~C 
.SUBCKT S4Logic 1 2 3 4 5 
Xnotgate1 1 6 5 NotGate 
Xnotgate2 3 7 5 NotGate 
Xandgate1 6 2 7 4 5 AndGate3 
.ENDS 
 
* 24V 
Vs 1 0 SIN(0 24 60) 
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Vd 1 2 DC 0 
Xaf 2 0 21 22 23 24 0 ActiveFilterV1 
 
*Control 
 
* Actual Current Waveform 
Ecia 51 0 VALUE={I(Vd)} 
 
* Ideal Current Waveform 
Ecid 52 0 VALUE={-6*SIN((300*PI*TIME)-(.3*PI))} 
*Vtriangle 70 0 PULSE(-6 6 0 8.33m 8.33m 1n 16.67m) 
*Vsin 71 0 SIN(0 2 120) 
*Ecid 52 0 VALUE={V(70) + V(71)} 
*Ecid 52 0 VALUE ={6*SIN(2*PI*((10000*TIME))*TIME)} 
 
 
* Difference Actual-Ideal 
Rcd 51 52 1 
 
* V>0?  Output on node 53 
Ecv 53 0 TABLE {V(1,0)}=(-1000000,0)(-0.1,0)(0.1,1)(1000000,1) 
Rcv 53 0 1M 
 
* Ii>0? Output on node 54 
Eci 54 0 TABLE {V(52,0)}=(-1000000,0)(-0.1,0)(0.1,1)(1000000,1) 
Rci 54 0 1M 
 
* Ia-Ii>0? Output on node 55 
Ecai 55 0 TABLE {V(51,52)}=(-1000000,0)(-0.1,0)(0.1,1)(1000000,1) 
Rcai 55 0 1M 
 
* Vcap > 150? Output on node 56 
Ecap 56 0 TABLE {V(Xaf.5,Xaf.6)}=(-1000000,0)(139.9,0)(140.1,1)(1000000,1) 
Rcap 56 0 1M 
 
Xs1logic 53 54 55 21 0 S1Logic 
Xs2Logic 53 54 55 22 0 S2Logic 
Xs3Logic 53 54 55 23 0 S3Logic 
Xs4Logic 53 54 55 24 0 S4Logic 
 
.PROBE 
.TRAN 100m 100m 0 .1m UIC 
.END  
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Appendix B – MATLAB Code 

function [y] = AlphaH(fh, alpha) 
%   AlphaH: Produces the harmonics by means of the alpha value 
h = fh./60; 
y = 1./(h.^alpha); 

end 

 

Command Script 
 
fh = [60 180 300 420 540 660 780]; 

b1 = AlphaH(fh,0.1); 

b2 = AlphaH(fh,0.2); 

b3 = AlphaH(fh,0.4); 

b4 = AlphaH(fh,0.6); 

b5 = AlphaH(fh,0.8); 

b6 = AlphaH(fh,1); 

h = [1 3 5 7 9 11 13]; 

bar(h,b1); 

hold on 

bar(h,b2); 

hold on 

bar(h,b3); 

hold on 

bar(h,b4); 

hold on 

bar(h,b5); 

hold on 

bar(h,b6); 

 

function [y] = FactorK(x,q,e) 
%   FactorK: Produces the transform derating factor 
x1 = (x(1)* (sqrt(sum((x./x(1)).^2)))); 
N = length(x); 
n=1:N;  All integer numbers from 1:N 

x2 = sum((n.^q).*((x./x(1)).^2)); 
x3 = x2-1; 
d = sqrt(1 + ((e/(1+e))*((x(1)/x1)^2)* x3)); 
y = 1/d; 
end 

 

 

function [y] = FactorKoddp(x,q,e) 
%   FactorKoddp: Produces the derating factor percentage (for odd harmonics) 
x1 = (x(1)* (sqrt(sum((x./x(1)).^2)))); 
N = length(x); 
n=1:2:((2*N)-1);  Odd integer numbers from 1:N  

x2 = sum((n.^q).*((x./x(1)).^2)); 
x3 = x2-1; 
d = sqrt(1 + ((e/(1+e))*((x(1)/x1)^2)* x3)); 
y = 1/d; 
end 
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function [y] = FKplot(fh,e) 
%   FKplot: Produces derating k values versus alpha values with desired e 
%   value 
y1 = FactorKoddp(AlphaH(fh,0.1),1.7,e); 
y2 = FactorKoddp(AlphaH(fh,0.2),1.7,e); 
y3 = FactorKoddp(AlphaH(fh,0.3),1.7,e); 
y4 = FactorKoddp(AlphaH(fh,0.4),1.7,e); 
y5 = FactorKoddp(AlphaH(fh,0.5),1.7,e);  
y6 = FactorKoddp(AlphaH(fh,0.6),1.7,e); 
y7 = FactorKoddp(AlphaH(fh,0.7),1.7,e); 
y8 = FactorKoddp(AlphaH(fh,0.8),1.7,e); 
y9 = FactorKoddp(AlphaH(fh,0.9),1.7,e); 
y10 = FactorKoddp(AlphaH(fh,1),1.7,e); 
end 

 

 

Command Script ------------------------------------------------------------------------------------- 

 

fh = [60 180 300 420 540 660 780]; 

e1 = .076/.924;                     7.6% eddy current loss 

e2 = .146/.854;                     14.6% eddy current loss 

e3 = .12/.88;                       12% eddy current loss 

y1 = FKplot(fh,e1); 

y2 = FKplot(fh,e2); 

y3 = FKplot(fh,e3); 

y4 = FKplot(fh,0.1); 

alpha = [0.1:0.1:1]; 

plot(alpha, y1); 

hold on 

plot(alpha, y2, 'red'); 

hold on 

plot(alpha, y3, 'black'); 

hold on 

plot(alpha, y4, 'green'); 
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Appendix C – C++ Code 

/* 
 ************************************************************************************************************  
 * File:  Main.c 
 * Author:  Warranyu Walton 
 * Version: 1.8 
 * Date: 4/10/2012 
 * Brief: Main file for Active Filter System 
 */ 
 
/********************************************** INCLUDES and DEFINES ****************************************/ 
 
#include "stm32f10x.h" 
#include "stdlib.h" 
#include "math.h" 
 
#define ADC1_DR_Address    ((uint32_t)0x4001244C) // define ADC address 
int __errno; 
 
/*************************************** INITIALIZE ST LIBRARY SRUCTURES *************************************** 
 - Timer 
 - DMA 
 - ADC 
 - NVIC 
 - External Interrupt 
 - GPIO 
*************************************************************************************************************/ 
 
TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure; 
TIM_OCInitTypeDef  TIM_OCInitStructure; 
TIM_BDTRInitTypeDef TIM_BDTRInitStructure; 
ADC_InitTypeDef ADC_InitStructure; 
DMA_InitTypeDef DMA_InitStructure; 
EXTI_InitTypeDef   EXTI_InitStructure; 
NVIC_InitTypeDef   NVIC_InitStructure; 
GPIO_InitTypeDef GPIO_InitStructure; 
 
/****************************************** IMPORT EXTERNAL VARIABLES ***************************************/ 
 
extern volatile uint8_t EnableCount; 
extern volatile uint8_t TimeToUpdate; 
extern volatile uint32_t TickCount; 
extern volatile uint8_t TIM2_CountNotComplete; 
extern volatile uint8_t BeginningOfCycleFLG; 
 
/***************************************** INITIALIZE GLOBAL VARIABLES **************************************/ 
 
uint16_t TimerPeriod = 0; 
uint16_t Channel1Pulse = 0; 
__IO uint16_t ADCConvertedValuesTab[4]; 
 
/********************************************* INITIALIZE CONSTANTS *****************************************/ 
 
// Sine wave table 
static const int SINTABLE[400] = 
{ 
 0, 16, 31, 47, 63, 78, 94, 110, 125, 141, 156, 172,
 187, 203, 218, 233, 249, 264, 279, 294, 
 309, 324, 339, 353, 368, 383, 397, 412, 426, 440, 454, 468,
 482, 495, 509, 522, 536, 549, 562, 575, 
 588, 600, 613, 625, 637, 649, 661, 673, 685, 696, 707, 718,
 729, 740, 750, 760, 771, 780, 790, 800, 



82 
 

 809, 818, 827, 836, 844, 853, 861, 869, 876, 884, 891, 898,
 905, 911, 918, 924, 930, 935, 941, 946, 
 951, 956, 960, 965, 969, 972, 976, 979, 982, 985, 988, 990,
 992, 994, 996, 997, 998, 999, 1000, 1000, 
 1000, 1000, 1000, 999, 998, 997, 996, 994, 992, 990, 988, 985,
 982, 979, 976, 972, 969, 965, 960, 956, 
 951, 946, 941, 935, 930, 924, 918, 911, 905, 898, 891, 884,
 876, 869, 861, 853, 844, 836, 827, 818, 
 809, 800, 790, 780, 771, 760, 750, 740, 729, 718, 707, 696,
 685, 673, 661, 649, 637, 625, 613, 600, 
 588, 575, 562, 549, 536, 523, 509, 495, 482, 468, 454, 440,
 426, 412, 397, 383, 368, 353, 339, 324, 
 309, 294, 279, 264, 249, 233, 218, 203, 187, 172, 156, 141,
 125, 110, 94, 78, 63, 47, 31, 16, 
 0, -16, -31, -47, -63, -78, -94, -110, -125, -141, -156, -172,
 -187, -203, -218, -233, -249, -264, -279, -294, 
 -309, -324, -339, -353, -368, -383, -397, -412, -426, -440, -454, -468,
 -482, -495, -509, -522, -536, -549, -562, -575, 
 -588, -600, -613, -625, -637, -649, -661, -673, -685, -696, -707, -718,
 -729, -740, -750, -760, -771, -780, -790, -800, 
 -809, -818, -827, -836, -844, -853, -861, -869, -876, -884, -891, -898,
 -905, -911, -918, -924, -930, -935, -941, -946, 
 -951, -956, -960, -965, -969, -972, -976, -979, -982, -985, -988, -990,
 -992, -994, -996, -997, -998, -999, -1000, -1000, 
 -1000, -1000, -1000, -999, -998, -997, -996, -994, -992, -990, -988, -985,
 -982, -979, -976, -972, -969, -965, -960, -956, 
 -951, -946, -941, -935, -930, -924, -918, -911, -905, -898, -891, -884,
 -876, -869, -861, -853, -844, -836, -827, -818, 
 -809, -800, -790, -780, -771, -760, -750, -740, -729, -718, -707, -696,
 -685, -673, -661, -649, -637, -625, -613, -600, 
 -588, -575, -562, -549, -536, -523, -509, -495, -482, -468, -454, -440,
 -426, -412, -397, -383, -368, -353, -339, -324, 
 -309, -294, -279, -264, -249, -233, -218, -203, -187, -172, -156, -141,
 -125, -110, -94, -78, -63, -47, -31, -16 
}; 
 
/******************************************* FUNCTION DECLARATIONS ******************************************/ 
 
void RCC_Config(void);   // Configure hardware RCC 
void GPIO_Config(void);   // Configure GPIO 
void EXTI9_Config(void);  // Configure External Interrupt 
void TIM1_Config(void);   // Configure Timer 1 for IGBT Test Signals with hardware dead-time generation 
void TIM2_Config(void);   // Configure Timer 2 for actual in program dead-time generation 
void TIM1_Run(void);   // Run Timer 1 
void TIM2_Run(void);   // Run Timer 2 
void DMA_Config(void);   // Configure DMA for circular transfer of data from ADC 
void ADC_Config(void);   // Configure ADC for two channel continuous scan 
void SetSysClockTo24(void);  // Setup the system clock using external 8MHz crystal with PLL up to 24MHz 
void NVIC_Configuration(void); // Configure Nested Vectored Interrupt Controller 
 
 
/*********************************************** MAIN PROGRAM ***********************************************/ 
 
int main(void) 
{ 
 /* 
  Initialize System 
 */ 
 SystemInit(); 
 SetSysClockTo24(); 
 RCC_Config(); 
 GPIO_Config(); 
 TIM1_Config(); 
 TIM2_Config(); 
 NVIC_Configuration(); 
 TIM1_Run(); 
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 DMA_Config(); 
 ADC_Config(); 
 EXTI9_Config(); 
 SysTick_Config(SystemCoreClock / 24000);       // tick every 41.67us 
  
 /* 
  Set up GPIOC 8 and 9 as diagnostics LEDs 
 */ 
 GPIOC->BRR = GPIO_Pin_8; 
 GPIOC->BRR = GPIO_Pin_9; 
 
 /* 
  Initialize Variables 
 */ 
 int LineVoltage = 0;   // Keeps the value of the Line Voltage measured from ADC channel 13 (PC.03) 
 int I_NonLinearLoad = 0;  // Keeps the value nonlinear current measured from ADC channel 11 (PC.01) 
 int I_CorrectionActual = 0;  // Keeps the value of the correction current measured from ADC channel 12 (PC.02) 
 int I_NonLinearLoadSquared = 0;  // Non-linear load squared values for RMS calculation 
 int I_CorrectionTarget = 0;  // Stores target value for the correction current 
 int I_rmsVal = 0;   // RMS value calculated after one 60Hz cycle 
 int count = 0;   // Step count (there are 400 steps in a 60Hz cycle) 
 uint8_t S1_prev = 0;   // Switch 1 previous state 
 uint8_t S2_prev = 0;   // Switch 2 previous state 
 uint8_t S3_prev = 0;   // Switch 3 previous state 
 uint8_t S4_prev = 0;   // Switch 4 previous state 
 TimeToUpdate = 0;   // Flag to signify that it is time to calculate and output new switch positions 
 TickCount = 0;   // System Tick Count, used to measure time and set the TimeToUpdate Flag 
 EnableCount = 0;   // Enable Count Flag 
 BeginningOfCycleFLG = 0;  // Beginning of Cycle Flag 
 
 while(1) 
 { 
  
  /* 
   This section keeps looping and updating voltage and current values. Every 400th of a cycle (24KHz), 
   the TimeToUpdate Flag is set based on the SysTick count. When the Flag is set, the program breaks 
   out of the loop to perform necessary calculations and output appropriate switch signals to the 
   IGBT gate drive IC via optocouplers. 
  */ 
  do 
  { 
   LineVoltage = (ADCConvertedValuesTab[2] - 2048);  // Updates Line Voltage Value 
   I_NonLinearLoad =(ADCConvertedValuesTab[0] - 2083);  // Updates Non-Linear Current Value 
   I_CorrectionActual = -1*(ADCConvertedValuesTab[1] - 2041); // Updates Correction Current Value 
 
   if(BeginningOfCycleFLG)    // If it is the beginning of a 60Hz Cycle 
   { 
    __disable_irq();    // Disable interrupts 
    EnableCount = 1;    // Enable Count (only applies to the first 

// time the beginning of the cycle is 
// detected after power up) 

    SysTick->VAL = 0;    // Reset the SysTick value to 0 
    I_NonLinearLoadSquared = 0;   // Reset I_NonLinearLoadSquared to 0 so it 

// can accumulate new values for this cycle 
    TimeToUpdate = 1;    // Set TimeToUpdate Flag to 1. This will get 

// the program out of the update values 
// loop to the actual switching 

    count = 0;     // Reset the program count to 0 
    GPIOC->BSRR = GPIO_Pin_8;   // Light up onboard LED to mark beginning 

// of cycle 
    BeginningOfCycleFLG = 0;   // Reset the Beginnning of Cycle Flag to 0 
    __enable_irq();    // Enable Interrupts again 
   } 
  }while (TimeToUpdate != 1); 
 
  /* 
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   When it is time to do the switching, the program checks if it is still less than the 400th count, 
   which marks the end of the cycle. If the step count is less than 400, then it will: 
    - Reset the TimeToUpdate Flag 
    - Turn off the onboard LED when half a cycle has passed 
    - Square the new value of the non-linear current and add it to the  

I_NonLinearLoadSquared value 
    - Calculate the appropriate target current value based on the previously calculated RMS 

current 
     from the last cycle and the current non-linear current value. 
    - Assign Boolean values to denote certain conditions (I_CorrectionTarget > 0, and 

(I_CorrectionActual - I_CorrectionTarget) > 0) 
    - Perform logic to assign switch states for each of the four switches 
    - If there are any changes in the switch state, assign a dead-time of 5us where all switches 
     are off before making changes 
    - Output the new switch states 
   Otherwise, the end of the cycle has been reached. At this point the RMS value of the nonlinear current 
   is calculated by dividing the I_NonLinearLoadSquared by 400 and then taking the square root. Both 
   I_NonLinearLoadSquared and Count is then reset to 0. 
  */ 
   
  TimeToUpdate = 0;    // Reset the TimeToUpdate Flag 
 
  if(count > 200) 
  { 
   GPIOC->BRR = GPIO_Pin_8;  // Turn off LED to mark half cycle 
  } 
 
  if(count < 400) 
  { 
   // Update I_NonLinearLoadSquared value 
   I_NonLinearLoadSquared += (I_NonLinearLoad * I_NonLinearLoad);  
   /* 
    The I_CorrectionTarget calculation is based off of the difference between the current non-linear 

current value and a sinusoidal value with a peak equal to sqrt(2) times the rms value of the current 
measured last cycle 

   */ 
   I_CorrectionTarget = -(I_NonLinearLoad-(((I_rmsVal*141)*(SINTABLE[count]))/100000));  
 
   int B = (I_CorrectionTarget > 0) ? 1: 0;    // Assign logic condition 
   int C = ((I_CorrectionActual - I_CorrectionTarget) > 0)? 1: 0;  // Assign logic condition 
 
   int S1 = !(B && !C);      // Assign Switch 1 state 
   int S2 = !(!B && C);      // Assign Switch 2 state 
   int S3 = !(!B && C);      // Assign Switch 3 state 
   int S4 = !(B && !C);      // Assign Switch 4 state 
 
   if((S1 != S1_prev) || (S2 != S2_prev) || (S3 != S3_prev) || (S4 != S4_prev)) 
   { 
    // switch changing states.. generate dead time of 5us 
    GPIOA->BSRR = GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_3 | GPIO_Pin_4; 
    TIM2_CountNotComplete = 1; 
    TIM2_Run(); 
    while(TIM2_CountNotComplete); 
    TIM2_CountNotComplete = 1; 
   } 
 
   GPIO_WriteBit(GPIOA, GPIO_Pin_4, S1);    // PA.04 drives S1 (LH) 
   GPIO_WriteBit(GPIOA, GPIO_Pin_12, S2);    // PA.12 drives S2(RH) 
   GPIO_WriteBit(GPIOA, GPIO_Pin_3, S3);    // PA.03 drives S3 (LL) 
   GPIO_WriteBit(GPIOA, GPIO_Pin_11, S4);    // PA.11 drives S4 (RL) 
 
   S1_prev = S1;      // Set S1_prev to current value 
   S2_prev = S2;      // Set S2_prev to current value 
   S3_prev = S3;      // Set S3_prev to current value 
   S4_prev = S4;      // Set S4_prev to current value 
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  } 
  else 
  { 
   count = 0; 
   I_rmsVal = sqrt((I_NonLinearLoadSquared/400)); 
   I_NonLinearLoadSquared = 0; 
  } 
  count++;        // Increment the step counter 
 } 
} 
 
 
/******************************************* FUNCTION DEFINITIONS *******************************************/ 
 
void RCC_Config() 
{ 
 // TIM1, GPIOA, GPIOB, GPIOC, GPIOE, ADC, and AFIO clocks enable 
 RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1 | RCC_APB2Periph_GPIOA | 
         RCC_APB2Periph_GPIOE | RCC_APB2Periph_GPIOB | 
         RCC_APB2Periph_GPIOC | RCC_APB2Periph_ADC1 | 
         RCC_APB2Periph_AFIO, ENABLE); 
 
 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); 
 
 // ADCCLK = PCLK/2 
 RCC_ADCCLKConfig(RCC_PCLK2_Div2); 
 // Enable DMA1 Clock 
 RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); 
} 
 
void GPIO_Config() 
{ 
 GPIO_PinRemapConfig(GPIO_PartialRemap_TIM1, ENABLE); 
 
 //GPIOA Configuration: Channel 1 as alternate function push-pull 
 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10; 
 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; 
 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; 
 GPIO_Init(GPIOA, &GPIO_InitStructure); 
 
 //GPIOB Configuration: Channel 1N as alternate function push-pull 
 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15; 
 GPIO_Init(GPIOB, &GPIO_InitStructure); 
 
 //GPIOB Configuration: BKIN pin (connect to ground -- will set break to timer operation if HIGH) 
 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12; 
 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; 
 GPIO_Init(GPIOB, &GPIO_InitStructure); 
 
 // Configure PC.01, PC.02, PC.04 (ADC channel 11, 12, 13 and 14) as analog input 
 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_4; 
 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; 
 GPIO_Init(GPIOC, &GPIO_InitStructure); 
 
 // Configure P.C08 and P.C09 as outputs (LEDs) 
 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10; 
 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 
 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; 
 GPIO_Init(GPIOC, &GPIO_InitStructure); 
 
 // Configure P.A11, P.A12, P.A13, and P.A14 as outputs 
 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_3 | GPIO_Pin_4; 
 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 
 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; 
 GPIO_Init(GPIOA, &GPIO_InitStructure); 
} 
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void TIM1_Config() 
{ 
 TimerPeriod = (SystemCoreClock / 20000) - 1; 
 // The Timer pulse is calculated as follows: 
 // - ChannelxPulse = DutyCycle * (TIM1_Period - 1) / 100 
 Channel1Pulse = (uint16_t) (((uint32_t) 50 * (TimerPeriod - 1)) / 100); 
 
 TIM_TimeBaseStructure.TIM_Prescaler = 0; 
 TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; 
 TIM_TimeBaseStructure.TIM_Period = TimerPeriod; 
 TIM_TimeBaseStructure.TIM_ClockDivision = 0; 
 TIM_TimeBaseStructure.TIM_RepetitionCounter = 0; 
 
 TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure); 
 
 // Channel 1 Configuration for PWM mode 
 TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; 
 TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; 
 TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable; 
 TIM_OCInitStructure.TIM_Pulse = Channel1Pulse; 
 TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low; 
 TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_Low; 
 
 TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set; 
 TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Reset; 
 
 TIM_OC1Init(TIM1, &TIM_OCInitStructure); 
 
 // Automatic Output enable, Break, dead time and lock configuration 
 // BDTR -- Break and Dead Time Register, get it? 
 
 // Actual Dead time = TIM_DeadTime/SystemCoreClock (24MHz) 
 // For a dead time of 5us, TIM_DeadTime = 120 
 
 TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable; 
 TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable; 
 TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_1; 
 TIM_BDTRInitStructure.TIM_DeadTime = 120; 
 TIM_BDTRInitStructure.TIM_Break = TIM_Break_Disable; 
 TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High; 
 TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable; 
 
 TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure); 
} 
 
void TIM1_Run() 
{ 
 /* TIM1 counter enable */ 
 TIM_Cmd(TIM1, ENABLE); 
 
 /* Main Output Enable */ 
 TIM_CtrlPWMOutputs(TIM1, ENABLE); 
} 
 
void TIM2_Config() 
{ 
   /* Time base configuration */ 
   TIM_TimeBaseStructure.TIM_Period = 250; 
   TIM_TimeBaseStructure.TIM_Prescaler = 0; 
   TIM_TimeBaseStructure.TIM_ClockDivision = 0; 
   TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; 
   TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); 
 
   TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Timing; 
   TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; 



87 
 

   TIM_OCInitStructure.TIM_Pulse = 65535; 
   TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; 
 
   TIM_OC1Init(TIM2, &TIM_OCInitStructure); 
 
   TIM_ITConfig(TIM2, TIM_IT_CC1, ENABLE); 
 
} 
 
void TIM2_Run() 
{ 
 /* TIM2 counter enable */ 
 TIM_Cmd(TIM2, ENABLE); 
} 
 
 
void DMA_Config() 
{ 
 DMA_DeInit(DMA1_Channel1); 
 DMA_InitStructure.DMA_PeripheralBaseAddr = ADC1_DR_Address; 
 DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)&ADCConvertedValuesTab; 
 DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; 
 DMA_InitStructure.DMA_BufferSize = 4; 
 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; 
 DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; 
 DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; 
 DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; 
 DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; 
 DMA_InitStructure.DMA_Priority = DMA_Priority_High; 
 DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; 
 DMA_Init(DMA1_Channel1, &DMA_InitStructure); 
 
 // Enable DMA1 Channel1 
 DMA_Cmd(DMA1_Channel1, ENABLE); 
} 
 
void NVIC_Configuration(void) 
{ 
 NVIC_InitTypeDef NVIC_InitStructure; 
 
   /* Enable the TIM2 gloabal Interrupt */ 
   NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn; 
   NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; 
   NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; 
   NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; 
 
   NVIC_Init(&NVIC_InitStructure); 
} 
 
 
void ADC_Config() 
{ 
 ADC_InitStructure.ADC_Mode = ADC_Mode_RegSimult; 
 ADC_InitStructure.ADC_ScanConvMode = ENABLE; 
 ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; 
 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; 
 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; 
 ADC_InitStructure.ADC_NbrOfChannel = 4; 
 ADC_Init(ADC1, &ADC_InitStructure); 
 
 // ADC1 regular channel14 configuration 
 ADC_RegularChannelConfig(ADC1, ADC_Channel_11, 1, ADC_SampleTime_1Cycles5); 
 ADC_RegularChannelConfig(ADC1, ADC_Channel_12, 2, ADC_SampleTime_1Cycles5); 
 ADC_RegularChannelConfig(ADC1, ADC_Channel_13, 3, ADC_SampleTime_1Cycles5); 
 ADC_RegularChannelConfig(ADC1, ADC_Channel_14, 4, ADC_SampleTime_1Cycles5); 
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 // Enable ADC1 DMA 
 ADC_DMACmd(ADC1, ENABLE); 
 
 // Enable ADC1 
 ADC_Cmd(ADC1, ENABLE); 
 
 // Enable ADC1 reset calibaration register 
 ADC_ResetCalibration(ADC1); 
 
 // Check the end of ADC1 reset calibration register 
 while(ADC_GetResetCalibrationStatus(ADC1)); 
 
 // Start ADC1 calibaration 
 ADC_StartCalibration(ADC1); 
 // Check the end of ADC1 calibration 
 while(ADC_GetCalibrationStatus(ADC1)); 
 
 // Start ADC1 Software Conversion 
 ADC_SoftwareStartConvCmd(ADC1, ENABLE); 
} 
 
void EXTI9_Config() 
{ 
 /* Enable GPIOB clock */ 
 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); 
 
 // Configure PB09 as input floating 
 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; 
 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; 
 GPIO_Init(GPIOB, &GPIO_InitStructure); 
 
 // Enable AFIO clock 
 RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE); 
 
 // Connect EXTI9 to PB.09 
 GPIO_EXTILineConfig(GPIO_PortSourceGPIOB, GPIO_PinSource9); 
 
 // Configure EXTI9 Line 
 EXTI_InitStructure.EXTI_Line = EXTI_Line9; 
 EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; 
 EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising; 
 EXTI_InitStructure.EXTI_LineCmd = ENABLE; 
 EXTI_Init(&EXTI_InitStructure); 
 
 NVIC_InitStructure.NVIC_IRQChannel = EXTI9_5_IRQn; 
 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; 
 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; 
 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; 
 
 NVIC_Init(&NVIC_InitStructure); 
 
} 
 
void SetSysClockTo24(void) 
{ 
  /* SYSCLK, HCLK, PCLK2 and PCLK1 configuration -----------------------*/ 
  /* RCC system reset(for debug purpose) */ 
  RCC_DeInit(); 
 
  /* Enable HSE */ 
  RCC_HSEConfig(RCC_HSE_ON); 
 
  /* Wait till HSE is ready */ 
  int HSEStartUpStatus; 
  HSEStartUpStatus = RCC_WaitForHSEStartUp(); 
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  if (HSEStartUpStatus == SUCCESS) 
  { 
    /* Flash 0 wait state */ 
    FLASH_SetLatency(FLASH_Latency_0); 
    /* HCLK = SYSCLK */ 
    RCC_HCLKConfig(RCC_SYSCLK_Div1); 
 
    /* PCLK2 = HCLK */ 
    RCC_PCLK2Config(RCC_HCLK_Div1); 
 
    /* PCLK1 = HCLK */ 
    RCC_PCLK1Config(RCC_HCLK_Div1); 
 
    /* PLLCLK = (8MHz/2) * 6 = 24 MHz */ 
    RCC_PREDIV1Config(RCC_PREDIV1_Source_HSE, RCC_PREDIV1_Div2); 
    RCC_PLLConfig(RCC_PLLSource_PREDIV1, RCC_PLLMul_6); 
 
    /* Enable PLL */ 
    RCC_PLLCmd(ENABLE); 
 
    /* Wait till PLL is ready */ 
    while (RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET) 
    { 
    } 
 
    /* Select PLL as system clock source */ 
    RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); 
 
    /* Wait till PLL is used as system clock source */ 
    while (RCC_GetSYSCLKSource() != 0x08) 
    { 
    } 
  } 
  else 
  { 
    /* If HSE fails to start-up, the application will have wrong clock configuration. 
       User can add here some code to deal with this error */ 
 
    /* Go to infinite loop */ 
    while (1) 
    { 
    } 
  } 
} 


