
 

 

 

1 

 

Baseball Data Analysis for DraftKings 

Major Qualifying Project  
 

Advisors: 

Donald Brown, Randy Paffenroth 

 

Written By: 

Ardavasd Ardhaldjian, Hailey Delphia, Kaustubh Pandit, & River Yan 

 

Sponsor:  

DraftKings 

 

A Major Qualifying Project 

Worcester Polytechnic Institute 
 

Submitted to the Faculty of the Worcester Polytechnic Institute 

in partial fulfillment of the requirements for the Degree of 

Bachelor of Science in Data Science, and Electrical and 

Computer Engineering. This report 

represents the work of one or more WPI undergraduate students 

submitted to the faculty as evidence of completion of a degree 

requirement. WPI routinely publishes these reports on the web 

without editorial or peer review. 

 

August 2021 - April 2022 



 

 

 

2 

 

Abstract  

In this Major Qualifying Project (MQP), we partnered with the online sports betting 

company DraftKings to develop a process that assisted in setting odds for live propositional bets. 

With a focus on baseball, and more specifically the outcome of an at-bat, the goal of our project 

was to predict the likelihood of an at-bat outcome before assigning odds for that event. Working 

with data retrieved from the MLB API, our finalized dataset contained 16 features with over 80 

thousand rows of data. Utilizing this dataset and machine learning models such as a Random 

Forest Classifier (RFC), K Nearest Neighbors (KNN), and Decision Tree Classifier (DTC) we 

were able to run various tests on model accuracy, which were used as the foundation for 

generating actual odds for each play.    
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Executive Summary  

Sports betting has been around for thousands of years and some of its earliest traces can 

be dated back to the Ancient Greeks, during the Olympic games (Milton, 2017). Gambling since 

then has grown as an industry in many cultures and societies. In today’s age, gambling and sports 

betting have moved to mainly online platforms, with many Sportsbooks beginning to offer 

various types of gambling opportunities on their websites. Some of these options include fantasy 

leagues, money line bets, and propositional (prop) bets for individual sports. One of such online 

companies, DraftKings, is one of the fastest-growing Sportsbooks in the United States. They 

offer their services, partially or in full, in over 43 states to 8 million users (Tatevosian, 2021).  

DraftKings profits off money lines and propositional bets by intentionally setting unfair 

odds for every betting opportunity. This is essentially applying a premium so that the bookmaker 

can generate income from each game. This “premium”, also known as the hold percentage, in 

sports betting is commonly known as the juice or Vigour of sports betting (Miller, 2019). 

Applying a premium is generally an easy process once the odds are set for a game, however, 

setting realistic odds for a sports game can be difficult with all of the player factors at hand. It is 

not the same process as looking at a regular die and knowing that each side has a 1 in 6 chance of 

occurring. On a sports team, there are individual players' statistics at play, coaching strategy, 

weather conditions, and even player injuries that could affect the actual odds of a bet.  

 To explore the issue of setting odds, our team is using the MLP-API, a database of 

baseball data, to extrapolate which variables affect the outcome of an at-bat in baseball. The 

MLP-API gave us access to numerous individual baseball player statistics (Ex. Batting Average, 

Earned Run Average), season games, and at-bat outcomes. This dataset was used to generate a 

customized Pandas DataFrame that our team could apply various machine learning algorithms to 

predict at-bat odds, a practice that DraftKings is trying to develop.  

For our project, we tested out various machine learning algorithms, such as K-Nearest 

Neighbors (KNN), Logistic Regression, Random Forest Classifier (RFC), and Decision Trees. 

The outcomes of these tests were compared to find the best model to predict realistic 

probabilities for an at-bat. These probabilities were then converted into usable odds after 

applying the DraftKings premium. 
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 After rigorous testing, we discovered that using KNN and decision trees, two highly 

effective classification algorithms, were our best methods. The generated models used 16 

features to predict the outcome of an at-bat. Given that 70% of all at-bats in the MLB result in an 

out, this statistic set our baseline model that we worked to improve on during this project. Our 

goal was to beat an algorithm that solely predicted out and was correct 70% of the time. In 

addition, we wanted to go from retrieving model accuracies to producing accurate odds. And in 

the end, we were able to generate these desired odds using the KNN model.  
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1. Introduction 

 After first being established in 2012, DraftKings is now one of the United States’ most 

popular online sports betting and daily fantasy sports corporations. DraftKings is one of the 

largest sports betting companies in the industry as there are around 8 million users currently 

utilizing their services (Wikimedia Foundation, 2022). One of the main features of DraftKings is 

their Sportsbook, where they provide multitudes of player prop bets for users to bet on. One type 

of player prop bets DraftKings offers are live prop bets. This is when current events during a 

certain game change the likelihood of the prop bets. For example, if Kike Hernandez from the 

Boston Red Sox is playing well and has hit the ball at every at-bat and hasn’t received an out yet, 

his odds for hitting the ball at his next at-bat might slightly increase because of his strong 

performance so far. Live prop bets are becoming more popular in the sports betting world where 

bettors are paying extreme attention to games and see if anything during the game will increase 

or decrease a player’s odds in a prop bet. Currently, DraftKings utilizes a third-party corporation 

to generate the money lines for live prop bets. However, DraftKings is trying to move away from 

their third-party vendor and starting to create their own live prop bets. The problem at hand for 

our group is to aid DraftKings with generating money lines for live player prop bets using 

machine learning methodologies.  

 Throughout this project, we used various skills from machine learning, computer science, 

and mathematics. The machine learning models we focused and tested on include Logistic 

Regression, K-Nearest Neighbors, Random Forest Classifier, Random Forest Regressor, Support 

Vector Machines, and a Multi-Layer Perceptron Classifier. To address the initial problem of 

developing live player prop bets, we first started off becoming familiar with machine learning 

and sports betting terminologies and methodologies. We then proceeded to extract our data 

through the MLB API and began creating a dataset. Next, we performed feature engineering on 

our finalized dataset to prepare for the modeling process. Following feature engineering, we 

began to implement machine learning models to try and classify the “result” variable using 

player baseball statistics. Lastly, we were then able to drift away from model predictions to 

constructing money lines. In the end after comparing the various models against one another, we 
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were able to determine that KNN was a promising model for creating money lines to aid 

DraftKings in generating their live player prop bets.    

2. Background 

2.1 DraftKings, Sportsbook, and Online Betting 

 DraftKings is an online Sportsbook provider based in Boston with offices located across 

the world. After being founded in 2012 by Jason Robins, Paul Liberman, and Matt Kalish, 

DraftKings has grown into a billion-dollar company within the last ten years. Their website has 

offerings across 15 professional sports in eight different countries, as well as varying games such 

as Sportsbook, and daily fantasy sports. (Who We Are, n.d).  

 Similarly, to online Fantasy Sports, where people select players and essentially draft an 

imaginary team as a means to compete with others after they earn a score based upon their 

players’ performance, Sportsbook has people betting on how certain players will perform. 

However, unlike Fantasy sports where these players’ performance is evaluated over a period of 

time such as a month, or an entire season, Sportsbook looks at individual game outcomes, and 

often individual event outcomes within a certain game to wage bets upon. For example, a 

Sportsbook wager may involve whether a football team will have a score over or under a certain 

number, or how many touchdowns will be scored in a certain quarter of the match. For other 

sports such as baseball, these bets include on-base results of at-bats for various players, and even 

the type of hit a player will have, with options including a single, double, triple, home run, or an 

out. (Who We Are, n.d).  

2.1.1 Propositional Bets 

 Propositional (prop) bets, or bets that focus on a question, are a key part of Sportsbooks 

and online betting. In terms of baseball, these questions usually involve strikeouts or at-bat 

outcomes, usually centered around specific home plate appearances. Some at-bats can be more 

focused, asking questions about whether or not a player will get on base (two choices: out and 

not out). However, other bets can center around the specific outcome of a hit (home run, triple, 

double, single), or whether the plate appearance will result in a walk, hit, or strikeout. These prop 
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bets have what are called  “derivative markets”, meaning their numbers are derived from those in 

other markets. (What is a Prop Bet?, n.d.). They are low-limit bets that have lines that can move 

fairly quickly depending on the current bets in place. (What is a Prop Bet?, n.d.).  

 For our project, our team focused on the out versus not out outcome of an at-bat in 

baseball. Below, a few screenshots taken from the DraftKings website can be seen that show this 

exact prop bet where the on-base outcome is staked. The “Yes” side corresponds to any result 

that is not an out not, whereas the “No” side corresponds to an out. 

 

 

Figure 1: Live prop bet of the 20-5-2021 Red Sox versus Yankees game taken from the DraftKings website 

regarding the outcome for Gleyber Torres’ first plate appearance in the second inning. (MLB Odds: Draft Kings, 

2022) 

 

 

Figure 2: Live prop bet of the 20-5-2021 Red Sox versus Yankees game taken from the DraftKings website 

regarding the outcome for Enrique Hernandez’s first plate appearance in the first inning. (MLB Odds: Draft Kings, 

2022) 

 

2.1.2 Setting Lines 

 Money lines are bets in which the bettors simply pick a team to win the game. The bets 

are evaluated by three outcomes which are a win, loss, and draw. A win is when the chosen team 

wins, and the Sportsbook pays out the bet and the winnings. A loss is when the chosen team 

loses, and the Sportsbook keeps the bet. A draw is more applicable on certain parts of the game 

instead of the whole game as baseball very rarely has ties and so a draw is more likely to be on 

bets such as the score of the game at a certain period in the game. Propositional bets are bets that 

are not related to the outcome of a sports match; therefore, a money line bet would not be an 

example of a prop bet. (Miller & Davidow, 2019). 
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Figure 3: Example of money line Odds on DraftKings (MLB Odds: Draft Kings, 2022) 

 

There are many ways of setting lines. American money line odds are one example of 

representing them. The way money lines are set using American odds is by having a money line 

of a “+” or a “-”. The Sportsbook looks at the data and the factors that can influence the outcome 

and determine the favorite and the underdog. The favorite will usually be negative on the money 

line while the underdog will be positive. To explain this in simpler terms, assuming that the 

money line is +110 on the underdog and -110 on the favorite; if a $100 bet is placed on the 

underdog and the bet wins, then the return will be $100 and the $110 in winnings. Conversely, 

for the favorite odds, when a bet of $110 is paid, then the return upon winning would be $100, 

thus meaning that the payout is less (Miller & Davidow, 2019). 

The above picture in reference to baseball shows the lines used in prop bet as discussed in 

the section above. The total runs in the 2nd inning prop bet have two possibilities that can be bet 

on which is whether the total runs in the 2nd inning is over or under 0.5. If one were to bet on the 

“over” which is the less likely outcome, then their payout would be $230 which is $100 (initial 

bet) + $130 which is the winning. If one were to bet on “under”, the payout would be $360 

which is $160 (initial bet) in addition to the $100, which is the winning.  

The following are two more examples of live prop bets that DraftKings provides through 

their platform. In Figure 4 we can see two live prop bets that DraftKings offered during the 

Yankees VS Boston Red Sox game on October 5th during the first inning. The option on top was 
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the odds on whether Aaron Judge would make a 1st place Appearance against Nathan Eovaldi. 

Compared to the prop bet below (Giancarlo Stanton) below, the numbers are grayed out. This 

signifies that at the moment the image was taken, DraftKings betters were unable to place a bet. 

This is usually because the odds are being recalculated to accurately reflect the most current 

information available. It is not unusual for a live prop bet to be recalculated many times within a 

span of a few minutes.  

 

Figure 4: Prop Bet DraftKings Example (MLB Odds: Draft Kings, 2022) 

 

Another example for setting money lines in a game on DraftKings is illustrated in Figure 

5 below. This is another screenshot from the Red Sox and Yankees playoff game. Here in this 

figure, the game has just begun, and the second inning is about to start. The top prop bet of the 

figure is a projection of the total runs that will occur in the second inning. On one hand, there is 

the bet a bettor can select which is “Over 0.5”. This means that the total runs by the end of the 

second inning will be over 0.5 runs. The money line for “Over 0.5” is +130, which means that it 

is about to happen. This propositional bet is also a live bet because since there were 0 runs 

scored in the first inning, the bet was updated to be more likely to have more runs in this inning 

since there weren’t any in the last inning. While on the other hand, the money line for “Under 

0.5” is -160, which means that a bettor can bet on no total runs being scored in the second inning. 

Since the odds are negative, that means it is less likely to happen.    
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Figure 5: Prop Bet DraftKings Example (MLB Odds: Draft Kings, 2022) 

 

The way that the money lines are set up is to make sure that the bookmakers make money 

either way. Usually, the odds would be considered fair if both the teams had the same 

corresponding negative and positive value, however, the difference in the two is called the “vig” 

or the “vigorish” (Miller & Davidow, 2019). By setting up the odds as such, the bookmakers 

stand to make money either way with people betting on both sides. We looked at the different 

types of odds such as decimal odds and fractional odds and settled upon money lines as they are 

the most prevalent in baseball and the USA in general.  

2.2 Baseball 

 In baseball, a total of nine innings are played in a game, with each inning lasting until the 

defensive team (on the field) gets the offensive team (at-bat) out a total of three times. There are 

multiple ways to get out whilst batting in baseball including striking out, the ball a player hits or 

bunts being caught, being tagged by a live ball, or a play being made at a base a runner is 

advancing to. Striking out is when the batter obtains three strikes, where a strike is defined as the 

batter either missing a ball in the predefined strike zone or not swinging at this ball at all. Along 
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with this, if the player doesn't strike out and makes contact with the ball, if the ball they hit is 

caught, or thrown to the base they are running to and caught by that player before they get there, 

the batter is also out.  

While each team has many players, there are a total of nine on the field at once for the 

defensive side, with the positions as follows: pitcher, catcher, first base, second base, shortstop, 

third base, right field, left field, and center field. For the offensive side, those same nine players 

on the opposing team hit in a predetermined order. Once three outs are made, the fielding team 

bats and the batting team becomes the fielding team. The order that the player's bat is determined 

by the coach and the order that the team's bat and field each inning is determined by a coin flip 

during the regular season. A coin flip is used to determine home (fielding first) and away (batting 

first) because it is often said that there is a home team advantage because if the home team is in 

the lead at the end of the game, they don’t need to bat again and the game ends after the top of 

the ninth inning. Additionally, if the home team is behind, they have one final set of three outs to 

attempt to catch up to the away team’s score.  

In the case where the batter doesn’t get out, many situations can occur. A batter can 

advance to the bases by putting the ball in play. This can be either hitting or bunting, walking, or 

advancing on a rule known as “drop third strike”. In the first scenario, a batter can hit either a 

single, double, triple, home run, or a grand slam, which is a home run where the bases are loaded 

already. Along with this, a batter can advance to first base if they bunt, or put the ball in play 

with a static bat, often trying to keep the ball close to the plate. Both a hit and a bunt can result in 

an out if the batter doesn’t beat the defensive player’s throw to first if a play is made on the ball. 

The next case, known as a walk, is when the batter is pitched four balls outside of the strike zone 

before the pitcher pitches them three strikes. If this occurs, the batter is allowed to advance to 

first base without any chance of being called out. Finally, the drop third strike rule is a special 

rule in baseball where if first base isn’t occupied, and the batter receives a called third strike that 

the catcher drops, they are allowed to run to first base in an attempt to get on. The dropped ball 

by the catcher becomes a live ball that must be thrown to first base and beat the runner advancing 

there to get them out, rather than the batter being called out automatically as usual on a third 

strike pitch. Below, there is a table that summarizes the relevant out versus not out batting 

outcomes for our project. (Alderson et al., n.d) 
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Out Not Out 

Strike Out Hit 

Fly Out Walk 

Ground out Hit by pitch 

Caught foul ball Dropped third strike where the batter reaches first base 

Table 1: Possible Outcomes for Out and Not Out 

2.3 MLB API, Libraries and Our Data 

Our main source of data came through the MLB API. To better understand the API, we 

extensively looked through the documentation and functions. The documentation of the functions 

can be outputted as formatted text or Python dictionaries. The functions include box score, game 

highlights, game pace, game scoring plays, last game, league leaders, line score, next game, 

player stats, roster, standings, and team leaders. The following pictures include examples of 

premade functions available to us to access Major League Baseball data.  

 

Figure 6: MLB API Python Dictionaries (toddrob99, 2020) 
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We mainly focused on the Python dictionaries as we worked with Jupyter Notebook. The 

game scoring play data is one of the main features we looked at, where it returns a Python 

dictionary of play-by-play data for a scoring play given a game. In addition, the lookup player 

method lets us find a player “based on first name, last name, full name, jersey number, current 

team ID, position, etc.” This was another function we used in a repeating loop to iterate through 

different players. Another important function we heavily implemented was “player_stat_data” 

(shown in Figure 6), where we were able to extract the important features used from the API to 

predict out or not out.  

Moreover, to extract the data utilizing the MLB API, we utilized built-in functions of the 

API. First, we used the “schedule” function to specify which date range we wanted the plays of 

the games to be from. We did this because gathering all the plays is too much data to collect with 

a slow runtime. The inputs we mainly used for the “schedule” function were “start date” and 

“end date”.  

Upon generating a timeframe of our dataset, we then used the “get” function to extract 

the plays of the games in between the dates we specified. To retrieve the plays of the games from 

the API, we had to specify the first input to be the plays of the games within the “get” function.  

In the following step, we used the “get” function again to get the result of each play. The 

API then outputs the results of each of the plays that include either a flyout, forceout, grounded 

into a double play, groundout, lineout, popout, strikeout, double, hit by pitch, single, or walk. We 

then mapped each of the possible results of an at-bat to either a “0” for any type of out and a “1” 

if the at-bat resulted in anything other than an out. The results that were grouped in the “out” 

category and mapped to “0” were flyout, forceout, grounded into a double play, groundout, 

lineout, popout, or strikeout. On the other hand, the results of a given at-bat that were grouped in 

the “not out” category and mapped to “1” were single, double, hit by pitch, or walk.  

 

Out (0) Not Out (1) 

Flyout Single 

Forceout Double 

Grounded into double play Hit by pitch 
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Groundout Walk 

Lineout - 

Strikeout - 

Table 2: Possible Outcomes of Out and Not Out 

 

 After getting the results of each at-bat, we then created a DataFrame to store information 

about the at-bats from the MLB API. As part of the DataFrame, we first retrieved the information 

about the matchups of batters and pitchers for the at-bats. The matchup data was also retrieved 

from the “get” function where we specified the first input of the function to be “matchup”. For 

our initial dataset, we had three columns: batter ID, pitcher ID, and then result. Using the “get” 

function from the API, we were able to retrieve data for each of those three columns and append 

the columns together to the new data frame.  

 In addition to retrieving data from the MLB API, we used several different Python 

libraries to analyze the data we gathered over time. The main libraries that benefited our code 

and analysis were Pandas, Seaborn, Matplotlib, and Scikit-learn. Pandas was a popular library 

that we used initially to read in the CSV data, create data frames, and perform initial exploratory 

data analysis on the dataset. The next library we used was Seaborn, where we mainly utilized 

Seaborn for visualizations like scatterplots and other types of graphs. Similar to Seaborn, we 

used to generate graph visualizations like bar and line graphs. Lastly, we used scikit-learn to 

develop our models and evaluate our models as well. We used Scikit-learn to perform a train-test 

split on the data and implement the models used such as random forest, Logistic Regression, K-

Nearest Neighbors, and Support Vector Machine. Scikit-learn also was used for evaluation where 

we used it for accuracy score, confusion matrices, classification reports, and other evaluation 

metrics including F1-score, recall, and precision. 

2.3.1 Our Dataset and Features 

To build our dataset we began by collecting batting and pitching statistics on all the 

players that MLB API kept information on. This was done using the “statsapi.player_stats” call 

function, which accesses both the season individual and career statistics of each player. Within 
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the scope of this project, emphasis was put on career statistics. Table 3 below includes a 

comprehensive list of all the features that were collected and stored in a DataFrame. 

 

Feature Name Data Type Description 

batter_id integer Six digit batter identification number corresponding to a 

specific player. 

pitcher_id integer Six digit pitcher identification number corresponding to 

a specific player. 

result integer Binary result of an at-bat where 1 corresponds to “not 

out” and 0 corresponds to “out”. 

b_atBats integer Total number of at-bats a batter has had. 

b_batting_avg float A batter’s batting average. 

b_obp float A batter’s on-base percentage. 

bat_side integer Binary integer where 1 corresponds to “right” and 0 

corresponds to “left” for a player’s batting handedness. 

b_ops float A batter’s on-base-plus-slugging percentage. 

b_gamesPlayed integer Total number of games a batter has played. 

b_slg float A batter’s slugging percentage. 

b_babip float A batter’s batting average on balls in play. 

p_atBats integer Total number of at-bats a pitcher has faced. 

p_era float A pitcher’s estimated runs allowed. 
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p_strikePercentage float A pitcher’s strike percentage. 

pitch_hand integer Binary integer where 1 corresponds to “right” and 0 

corresponds to “left” for a pitcher’s handedness. 

p_strikeoutsPer9Inn float A value corresponding to a pitcher’s strikeouts per nine 

innings. 

p_runsScoredPer9 float The number of runs scored against a pitcher per nine 

innings. 

p_hitsPer9Inn float The amount of hits batters have against a pitcher per 

nine innings. 

p_walksPer9Inn float The number of walks a pitcher allows per nine innings. 

Table 3: Definition of Our Features from the Dataset 

 

After storing every player’s career data in a pandas DataFrame, we used another call 

function to collect over 80,000 at-bat results from 2021 with pitcher and batter IDs from that 

play. We then used the batter and pitcher IDs as a join condition, to create a finalized DataFrame 

that included the result of an at-bat and 16 features describing the pitcher and batter in that play.  

2.4 Machine Learning Models 

 Machine learning is a branch of artificial intelligence that uses the constant input of data 

to predict outcomes. The predictions become more accurate with more data input given to the 

models. Machine learning is split into three main types: supervised learning, unsupervised 

learning, and semi-supervised learning (Burns, 2021). For our research, we decided to proceed 

with supervised learning model methodologies.  

 Our reasoning for proceeding with supervised learning was that supervised learning 

requires labeled inputs and the desired output which we had. We had data that was labeled data 
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on baseball statistics, and we had a specific target output which was the result of a specific play 

in terms of “outs” versus “not outs”. 

2.4.1 K-Nearest Neighbors 

 KNN, also known as K-Nearest Neighbors, is a supervised machine learning model that 

we mainly used for classification tasks. KNN performs classification by computing the distances 

between points and grouping together similar points into a cluster (Harrison 2019). The clusters 

of KNN are essentially created where it counts all the points near a certain point and sees which 

ones are in what class (As shown in Figure 7 below). The majority vote counts on what the class 

is and is then assigned to that point. This process is vital to setting our odds for an at-bat, which 

we will go further into detail later, where we implemented a KNN model from scratch to produce 

money lines. Based on the idea of counting the votes of class for each neighbor, we were able to 

utilize that idea to perform a similar task to count the votes of the result of an at-bat in our self-

developed pseudo-KNN model.  

The image below shows part of the process of the KNN model. There are two classes: A 

and B, where the red dot is the point that needs a classification. In the picture, if the k-value 

equates to 3, then the classification for the red dot would be Class B because there are more 

purple dots than yellow dots. If the k-value is 6, then the red dot would be in Class A because 

you count all the dots in the circle and whichever one has the most dots, the KNN will classify 

the new data point to the most popular class. This process shown in the diagram translates over 

to how we implemented our own KNN to produce money lines, where we counted up all the 

votes of  “out” or “not out” in a given circle to show the probability of whether a certain at-bat 

will be “out” or “not out”. This greatly helped us to later generate money lines from these 

probabilities.  
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Figure 7: KNN Model Diagram (Harrison, 2019) 

 

2.4.2 Neural Network 

A neural network is a useful machine learning technique that consists of algorithms that 

can detect hidden patterns within a given dataset, leading to the classification of a given problem. 

Neural networks first start with an input and are passed through mathematical equations to 

eventually produce an output. There are three major parts of a simple neural network: the input 

layer, hidden layer, and output layer (As depicted in Figure 8 below).  



 

 

 

28 

 

 

Figure 8: Neural Network Diagram (IBM Cloud Education, 2020) 

 

 Within the neural network, there are neurons that perform operations on the data. Each 

neuron processes the data through this operation: 

Y = ∑ (𝑊𝑖 ∗ 𝑋𝑖) + 𝐵𝑛
𝑖=0   (Malik, 2021)  

Shown by the equation above, a neuron processes the sum of the given input (Xi) and multiplies 

it by the weights (Wi) of each input. The weights of the input calculate how closely related two 

neurons are to each other. The last part of the equation is adding the bias term (B). Both the 

weights of each neuron and the bias term can be modified to allow the function to fit the data in 

the best way possible. 

Neural networks were one of the classifiers we used next in hopes to find better results. 

More specifically we implemented a Multi-Layer Perceptron (MLP) classifier model to predict 
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whether an at-bat was “out” or “not out”. Our thinking behind picking an MLP classifier was 

utilizing the different layers to find the most optimal function for classification.   

2.4.3 Decision Trees 

One of the simplest methods used in machine learning is as a decision tree. A decision 

tree is a supervised machine learning method. A decision tree is the representation of 

probabilities of certain outcomes which is represented in the form of a tree in which each branch 

represents an outcome or a condition and is called a node. The decision tree splits data based on 

each node's classification or probability. The decision tree will keep on iterating based on 

whether the predetermined condition is met or not. Once the conditions are met, the leaves of the 

tree represent the classifications made by it (Sharma, 2021). As seen in Figure 9 below, the 

decision tree starts with a root node and iterates through the decision nodes until the leaf nodes 

are reached. The basic concept of decision trees is used both for classification and regression 

models in machine learning. 

 

 

Figure 9: Breakdown of a decision tree into its various leaf nodes. (Hanafy et al., 2021) 

 

The split criterion is usually done in two different manners, either by information gain or 

entropy. Information gain is the split at each node where the algorithm determines the 

subsequent split gives the most information to the algorithm or also called information gain. This 

split continues until the algorithm determines there is no more information to be gained and then 

all the nodes will be leaf nodes. Gini Impurity is another method for splitting the tree based on 
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how the tree would misclassify random new data as per the current split of the decision tree 

nodes (Sharma, 2021). 

2.4.4 Random Forest Classifier and Regressor 

 Random forests are supervised machine learning models that make use of the decision 

trees discussed in the previous section. Rather than using one singular decision tree to predict 

what an outcome should be, a random forest utilizes the power of multiple different decision 

trees, using each tree’s outcome to predict and then by a system of voting between the different 

models, makes a final prediction. According to Great Learning, “a random forest technique can 

focus both on observations and variables of a training data for developing individual decision 

trees and take maximum voting for classification and the total average for regression problem 

respectively” (Great Learning Team, 2020). This quote elucidates how Random Forest 

Classifiers work in classifying their outcomes and Random Forest Regressors work in predicting 

the outcomes. As seen in the figure below, the process for any Random Forest model begins with 

the random sampling of the data from the input data. Then, decision trees are built based on the 

random samples of data. The model then runs votes on the decision tree predictions and the tree  

with the most votes is then chosen to be the prediction (Chakure, 2020).  

 

Figure 10: Process of voting in a Random Forest (Chakure, 2020). 
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Random Forest Classifiers work best with discrete values, such as data representing 

either a ‘0’ or a ‘1’, or in this project’s case, an ‘out’ or a ‘not out’ value. Random Forest 

Regressors, however, work best on data that has numerical outputs. For example, if we were 

trying to predict the likelihood that a batter would be out, rather than whether they were just out 

or not out. Conversely, a Random Forest Regressor would be preferential due to its specialization 

in numerical outputs. It could output a number representing this percent likelihood rather than 

just predicting one value (out) or another (not out). 

2.4.5 Support Vector Machines 

Another algorithm that we tested is the Support Vector Machine or SVM. This model can 

be used for both classification and regression models and utilizes something referred to as a 

hyperplane. Hyperplanes are, as Gandhi defined, “decision boundaries that help classify the data 

points” by splitting the data into classes depending on where the points fall between the line(s). 

Hyperplane dimensions depend upon the number of input features: two-dimensional 

hyperplanes, in the case of two input features, are lines, and three-dimensional hyperplanes, in 

the case of three input features, are planes (Gandhi, 2018). 

 

Figure 11: Visualization of what a hyperplane looks like in relation to the given data depending on the dimensional 

space it is in (Gandhi, 2018). 
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By utilizing these hyperplanes, the objective of an SVM model is to, “find a hyperplane 

in an n-dimensional space that distinctly classifies the data points.” This can be seen in Figure 

12, where a series of various hyperplanes are drawn between data points, showcasing both the 

numerous possible hyperplanes that may be drawn, and what an ideal hyperplane would look 

like.  

 

 

Figure 12: Graphs of what a set of possible hyperplanes on data (left) can look like. These lines are drawn between 

two selected points with an equal distance apart from the actual points. The right graph shows what an optimal 

hyperplane would look like with perfect data (Gandhi, 2018). 

 

Along with trying to split the data into classes, it is best to find a line or plane that has the 

maximum margin (distance between data points) for each of the classes. These margins can be 

visualized utilizing Figure 13. The points closest to these hyperplanes are what are known as 

support vectors because they influence the position and orientation of it. (Gandhi, 2018). 
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Figure 13: The difference between what a small margin, versus a large margin is referring to in a SVM hyperplane 

(Gandhi, 2018). 

2.4.6 Logistic Regression 

Following the documentation from sci-kit learn, we implemented several Logistic 

Regression models. The first step of the Logistic Regression model is that it uses the logit 

function to compute a probability for a value of the data. After that, the model can classify 

probabilities that are less than or equal to 0.5 to the “0” class and then probabilities that are 

greater than 0.5 to the “1” class. The Logistic Regression classifies the values of the data using 

the logistic function. The shape of this function turns into a sigmoid shape because the classes 

are 0 or 1 (As shown in Figure 14 below) (Jurafsky et al., 2020). Initially, we believed that the 

potential of Logistic Regression for classifying “out” or “not out” was promising. That was 

because there is a classification task to predict the result of an at-bat and Logistic Regression 

does a good job classifying data. However, after later implementing the model, we found out that 

it is always predicting “out”, which is something we were trying to avoid. This was an important 

step to take in the process of generating money lines because it has made us realize that we need 

to start to move on from model predictions to generating money lines.  
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Figure 14: Logistic Function Graph Diagram (Chávez, 2019) 

2.5 Confusion Matrices  

To determine the effectiveness of many of our machine learning models, we used 

confusion matrices. A confusion matrix is used to measure the performance of a classification 

problem with two or more classes. One advantage to confusion matrices is that they are relatively 

easy to generate and understand compared to other data visualization methods (Narkhede, 2018) 

A disadvantage to using a confusion matrix is that it does not perform well on an unbalanced 

data set. This is a challenge we encountered during our project but were able to overcome.  

There are four possible cells that a prediction could fall under in a binary classification 

problem when using a confusion matrix. Each of which is listed in Table 4 below, with 

definitions:  

 

Confusion Matrix Values  

True Positive ( TP ) Correct positive prediction 

True Negative ( TN ) Correct negative prediction 
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False Positive ( FP ) Incorrect positive prediction 

False Negative ( FN ) Incorrect negative prediction  

Table 4: Confusion Matrix Values Table 

 

The following is an example of what a confusion matrix would look like for a binary 

classification problem (Narkhede, 2018) 

 

Figure 15: Confusion Matrix Diagram (Narkhede, 2018) 

 

The accuracy of a classification problem can be calculated by getting the ratio of correct 

predictions (TP + FP) to total predictions (TP + FP + FP + FN). Multiplying that fraction by 100 

will represent the accuracy as a percentage (Kulkarni, 2020).  

One method for improving the quality of a confusion matrix is to add a heatmap over the 

numbers. This is particularly helpful when there are more than two classification outcomes 

possible. In a classification problem with 5 classes, there are 25 possible outcomes. This is 

because each Actual value can be misclassified as 4 more classes. With 25 numbers on the graph, 

it can be difficult to pick out what’s important. With a heatmap, it becomes much easier to 

visualize. The following is an example of a group classification problem (using the popular Iris 

dataset) where a darker shade of blue signifies a larger number.   
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Figure 16: Confusion Matrix Example (Kulkarni, 2020) 

 

In the context of our project, instead of positive and negative being the classification 

outcomes, we used out (encoded as 0) and not out (encoded as 1). A true positive in this case 

would indicate a correct prediction that the outcome of an at-bat is out, and a true negative would 

mean that we correctly predicted that the outcome of an at-bat would be not out.  

2.5.1 Testing Versus Training 

Throughout the machine learning process, an important step is the validation of an 

algorithm’s accuracy. This step ensures that there's no bias in how a developer has set up their 

data science pipeline. There are many forms of algorithm validation. To name some popular 

ones: test/train split, K-Fold Cross Validation & Leave-one-out Cross-Validation (Grootendorst, 

2019). In this process, we decided to use the test/train split method, where the model is created 

using a specified subset of the data and tested on the training subset of the data. 

Now that we know what confusion matrices are, we can talk about how they’re used to 

evaluate results on training and testing data within machine learning algorithms. In Figure 17 

below, there are two confusion matrices displaying the predicted outcomes of the testing and 

training data using a random forest classifier with depth 5. For the sake of simplicity, the data 
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used has been balanced beforehand. There are a total of 36,891 samples in the Training data 

(sum of TP, FP, TN, FN) and 9,223 samples in the testing data meaning there are 46,114 samples 

in total. Using basic algebra, we can find that the test/train split used in this problem was 80/20. 

We can also compare the results from each graph to show if there are any differences.  

 

 

Figure 17: Training and Testing Confusion Matrices 

 

Accuracy Rate (Accurate Prediction / Total Predictions) 

Training Data Accuracy 55% 

Testing Data  53% 

Table 5: Accuracy of Training and Testing Data 

 

In the table above we can see that there are some differences in the accuracies of the 

testing data and training data. This is because, when you test a model on the data it was trained 

on the data you incorporate bias into the model. Generally speaking, the results on testing data 

are more reliable than the latter. 
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2.6 Accuracy Metrics 

To evaluate the predictions and evaluate the tendency of the models in predicting the 

outcome of a specific at-bat. With all the different models being used, there are different metrics 

for accuracy for each of them. In this section, the metrics used to measure the performance of the 

models and which models they were used for are discussed. 

2.6.1 F1-Score, Precision, & Recall 

 In looking at the predictions made by the different machine learning models, some of the 

most important metrics used to evaluate the performance of the models was the F1-score. F1-

score comprises two different measures which are precision and recall. They both evaluate two 

different aspects of the predictions being made by the machine learning models.  

 Precision is calculated using the formula : 
# 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

# 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + # 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (Korstanje, 

2021). The way that the precision score can be understood is that it is the percentage of all the 

classified positive outcomes which are positive. If the model is not precise that means it predicts 

many positive outcomes that are not positive. If the model is precise, it means that the model 

might not predict all the positive outcomes but the percentage of positive outcomes that it 

predicts are more likely to be accurate. 

 Recall is calculated using the formula :
# 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

#𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + #𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (Korstanje, 

2021). Recall is the success rate of finding the true positives from all the positive outcomes. A 

high recall is basically when the model is successful at predicting the positive outcomes to a 

large extent while on the other hand, a low recall indicates the model is not good at predicting 

the majority of the positive outcomes. 

 The F1-score is a combination of the two and can help us evaluate the performance of the 

model. The formula for the F1-score is 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (Korstanje, 2021). The F1-score 

takes both into account and so a high F1-score high precision and recall, a low F1-score indicates 

low precision and recall. The team used the F1-score as an evaluation metric since it proved a 

good metric in evaluating the performance of the machine learning models we used on the data 

we had.  
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2.6.2 Accuracy Score 

The accuracy metric we used to evaluate our models apart from the F1-score was the 

accuracy score which has the formula: 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (Kumar, 2022). The accuracy score helped 

us understand how the model worked in predicting outcomes. We also got a more balanced 

understanding of the predictive ability as the F1-score was more so based on the positive 

outcomes whereas the accuracy score was based more on the overall predictive ability of the 

model.  

2.6.3 Root Mean Square Error, Mean Square Error, & Mean Absolute Error 

To evaluate the difference between the predictions and the actual values of a Random 

Forest Regressor, we used Root Mean Square Error (RMSE), Mean Square Error (MSE), & 

Mean Absolute Error (MAE). Not only did it show us the importance of adding more features, 

but it also allowed us to evaluate the fit of certain regression-based machine learning models 

towards our goal of predicting outs vs not outs and eventually setting lines based on them.  

MAE is the mean absolute error in the prediction vs actual output. It measures the 

difference between the two and averages it out. It uses absolute values as a calculation which 

assumes all variation is a positive value and therefore evaluates the average residuals for the 

model (Trevisan, 2022). MSE is the mean squared error which is the square of the average 

between the training and testing data. This squared value accounts for negative values as well 

since it is squared as the difference between the prediction vs actual output. It measures the 

variance of the residuals between actual vs predicted values. RMSE is the root of the mean 

square error. It helps us evaluate the standard deviation of the residuals of the predicted vs actual 

values (Trevisan, 2022).  

2.6.4 Standard Deviation 

 Standard deviation is another metric we used to evaluate the performance of our models. 

The formula for standard deviation is 𝜎 = √
𝛴(𝑥𝑖−𝜇) 2

𝑁
 (Hargrave, 2022). In this case “N” is the 
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number of predictions being made, 𝑥𝑖 being a single prediction and 𝜇 being the mean of all the 

predictions. We used the standard deviation to help us see how far away our predictions were on 

average from the actual values. While more helpful in the regressor machine learning models, it 

was also helpful in helping us evaluate the classification models we ran on our data by 

comparing the predictions vs the actual values.  

3. Methodologies 

3.1 Working With Data  

 After a few initial tests with our data, our team had a few obstacles within our dataset. 

First, our starter models all predicted out every single time due to there being a 75:25 ratio of out 

to not out outcomes. Because of this, we needed to balance our training dataset so that the 

models would focus more on the other data we provided it with and not just the perceived known 

likelihood of an outcome. Along with this, we ran into the issue of players with unreasonable 

ERAs and batting averages due to not having enough instances of an at-bat or games pitched. To 

combat this, we also cleaned the data and filtered out some of these players who didn't meet a 

certain numeric threshold. 

3.1.1 Cleaning the Data  

 To process the large amount of data our group was able to obtain, some processing was 

required before the data could be used in our models to ensure the findings we were obtaining 

were as accurate as they could be. During the data collection process, we noticed that the MLB 

API was missing some data points on certain players. While collecting our data, these cells were 

replaced with the code “-1000”, signifying a null value.  To begin the cleaning process, we 

listwise deleted any players that had a “-1000”, or null value from the player statistics DataFrame 

that we created. There were some cases where a pitcher would have no information in his 

pitching stats. This would likely mean the player had no at-bats, so it wouldn’t be an accurate 

representation of a batting average. After this, players with less than 100 pitches and players with 

less than 100 at-bats were filtered out since they wouldn’t have enough in-game experience for 
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their data to be reflective of traditional ERAs and batting averages. To determine these numbers, 

we tested by filtering out varying amounts of data. With this, we determined that filtering by 

each player having at least 1000 at-bats removed too much of our dataset, whereas 10 at-bats 

were not enough to accurately represent a player’s abilities. Because of this, 100 was determined 

to be the best number to filter the at-bats by. This same ideology followed for the number of 

pitches.  This ensured that a player who had, for example, one at-bat wouldn’t be able to skew a 

result by having a batting average of 1 by getting on base once in that one at-bat. Before the 

cleaning process, we had collected a total of 83,843 pitcher/batter matchups with outcomes. 

After this process, we were left with 77,415 matchups. Some additional data cleaning and 

normalization were performed later in the project when working with PCA and certain predictive 

algorithms.  

3.1.2 Balancing the Data 

Next, for our plan to train the models on balanced data before testing them on our 

unbalanced data, our team needed to create a balanced dataset that we could use to train on. To 

do this, we took our 16-feature dataset that had 78,460 total plays and totaled the occurrences of 

both out (55111) and not-out (23349) occurrences. Then, we took a random 75% subsample of 

the not-out plays, and we were left with a 13,134 not-out play count. This 75% was decided upon 

so that when we tested our data, we would have some not-out occurrences that we had not 

trained with to evaluate the accuracy of our model better. Since when we matched a random 

subset of 13,134 of the “out” plays, there was nearly 75% of the out data not being used for 

training purposes, so there were ample amounts of out occurrence data to test our models on that 

we hadn’t used in the initial training. 

3.1.3 Feature Engineering   

To process a large amount of data our group was able to obtain, some processing was 

required before the data could be used in our models to ensure the findings we were obtaining 

were as accurate as they could be. To begin this, we filtered out any “null”, blank, or zero values 

from the datasets in columns where they shouldn't be, such as a 0 for a batting average. This 

would likely mean the player had no at-bats, so it wouldn’t be an accurate representation of a 
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batting average. After this, players with less than 100 pitches and players with less than 10 at-

bats were filtered out since they wouldn’t have enough in-game experience for their data to be 

reflective of traditional ERAs and batting averages. These numbers were selected arbitrarily after 

it was determined that filtering out 1000 removed too many data points, 10 only removed barely 

any data points, and filtering out 100 removed about 6-7%. This ensured that a player who had, 

for example, one at-bat wouldn’t be able to skew a result by having a batting average of 1 by 

getting on base once in that one at-bat.  

3.2 Random Forest Testing  

3.2.1 Feature Importance (Correlation Diagram) 

To begin our random forest testing process, we needed to determine which features, from 

our 16 total, had the highest correlation to the outcome of an at-bat. To do this we implemented a 

heatmap of all the features plotted against each other (Displayed in Figure 18 below).  

 

Figure 18: Features Correlation Heatmap 

 

 In Figure 17 above, all the features are plotted. However, to better visualize just the “result” 

feature against all the other features we developed Figure 19 below. This figure shows some of 



 

 

 

43 

 

the correlations between each feature and the “result” feature. In scikit- learn, the way the 

correlation is calculated is through the correlation coefficient. A high correlation of 1 means that 

the feature is closely related in predicting the “result” feature, while a low correlation of 0 means 

that the feature is not closely related in predicting the “result” feature.  

 

 

Figure 19: Result Feature vs. Rest of Features Correlation Plot 

 

3.2.2 Best Random Forest Depth  

While in the testing phase for the discovery of the best Random Forest Classifier, we 

worked with tweaking three main hyperparameters: The depth of trees being generated, the 

activation function used and the features selected for predicting.  

Our first test used Gini as the criterion for selecting feature importance. The data set was 

manually balanced to extrapolate differences in regions, otherwise, the model would always 

predict out. To balance the data the total number of not-outs was kept constant, and an equal 

number of outs were selected randomly. Next, we tested the accuracy of the model at all depths 

between 1 and 30 on both the testing and training data using 8 pitching and 8 batting statistics for 

each player (16 in total). 
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Figure 20: Testing and Training Accuracies of Random Forest Depths 

 

From this graph we can see that the model performs best at depth 5. After a depth of 5, 

the testing set performs significantly worse and the training set overfits the data. After tuning for 

depth, our team tested the accuracy of the Random Forest Classifier with depth 5 using two 

different criteria: Gini and Entropy. The tables below display the training and testing results of 

these tests. Gini criterion’s performance is significantly better (Shown in Figures 21 and 22 

below).  
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Figure 21: Training and Testing Confusion Matrices of Gini Criterion 

 

 

Figure 22: Training and Testing Confusion Matrices of Entropy Criterion 

 

The final parameter that we tuned for while Random Forest Classifier testing, was the 

number of features used. We ran three tests to find the best combination of features. In all three 

   

Criterion Gini 

   

Criterion Entropy 
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tests, the depth of the trees was 5 and the criterion used was Gini.  The combination of features 

used with each test can be seen in the table below: 

 

Predictive Feature Tuning  

Test #1 Pitching Hand, Batting Hand, ERA, Batting Average 

Test #2 4 of the highest linearly correlated features to result of an at-bat (out/not out) 

Test #3 All 16 features  

Table 6: Feature Testing Tuning 

 

While test #1 performed somewhat worse than test #2 and test #3, there were no 

significant differences in the accuracy results of test #2 and test #3. The Random Forest 

Classifier model that we determined was best at predicting the outcome of an at-bat had a depth 

of 5, used Gini as the criterion, and incorporated all 16 player statistics collected through the 

MLP API. These results helped us further predict the outcome of an at-bat which DraftKings can 

use to set lines.  

3.3 DataRobot / Akkio (AutoML) Testing 

 To evaluate the effectiveness of the models we were testing, we decided to utilize a tool 

called AutoML to compare our prediction quality. To do this, AutoML looks at the data provided 

to it before running a bunch of different models on it to determine which had the best accuracy 

score. To run these tests, a website called Akkio was utilized. This website takes an input of a 

given dataset, as previously discussed, before returning information such as prediction quality, 

the best model to use, and the top fields it used to make that prediction. 

 First, this program was run using our unbalanced dataset with 16 features. It determined 

that the best model type would be a sparse neural network and had an accurate prediction of 

about 66%. However, since this accuracy prediction was in-line with the current accuracy 

predictions we were getting using the Random Forest Classifier, this model was not pursued.  
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Figure 23: Results of the best model type and the resulting prediction quality on an unbalanced dataset using Akkio 

 

 Next, this program was run using our balanced dataset with 16 features. This balanced 

dataset was created per previous experimentation when we took a random subset of 75% of the 

not-out samples before taking an equal random sample of the out samples. With this dataset, it 

determined that the best model type would be a deep neural network with attention and had an 

accurate prediction rate of about 54%. However, like the last experiment, since this accuracy 

prediction was in-line with the current accuracy predictions we were getting using the Random 

Forest Classifier, this model was again not pursued.  
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Figure 24: Results of the best model type and the resulting prediction quality on a balanced dataset using Akkio 

 

We also used a program called DataRobot which helped us assess the quality of our data. 

DataRobot allowed us to set the target variable to the outcome of the play and then it assessed all 

the other features by correlation to the target variable. 

 

 

Figure 25: Importance of features in comparison to the target variable as per DataRobot 
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We used this to inform us of the importance of specific features towards the final 

prediction. DataRobot also scanned our data for any possible target leakage which is when a 

certain feature indicates the outcome of the target variable.  

Figure 26: Data Quality assessment of our dataset as per DataRobot 

 

DataRobot allowed us to evaluate our data for data quality issues and allowed us to 

handle any issues with our data as well. We didn’t need to use this feature since we had cleaned 

and preprocessed our data before we ran machine learning models on them. However, to make 

sure we put it through DataRobot and were able to clarify its suitability to be analyzed by 

machine learning models. 

4. Results 

4.1 Why Unbalanced Data Didn’t Work Initially 

 After implementing our classification models, we discovered a common theme in the 

result of each of the models. The common theme between the models was that the models were 

always predicting “out”. This problem doesn’t help generate money lines using the unbalanced 

data because if the model is always predicting “out”, then it is impossible to generate money 

lines for results that are “not out”. If the model doesn’t predict “not out” then the probabilities of 

“out” and “not out” can’t be calculated which is a vital step for developing betting money lines. 

This result is a key stepping point to eliminate the possibility of using solely unbalanced data and 

Figure  SEQ Figure \* ARABIC 25: Data Quality 
assessment of our dataset 
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helped us take a step further in transitioning from model accuracy to generating money lines. 

After realizing that the unbalanced data wasn’t going to work by itself, we moved on to balanced 

data and implemented a Random Forest Classifier.   

4.2 Balanced Random Forest Classifier  

One of the main models that we experimented with was a Random Forest Classifier. The 

implementation of this model was done in two separate forms––both on a balanced version of the 

dataset and on the raw unbalanced form of the data. This distinction needed to be made due to 

the model’s tendency to predict “out” heavily since that is the outcome of an at-bat about 70% of 

the time. In order to place more importance upon the features of our dataset rather than the 

frequency of out occurrences versus not out, we balanced our dataset so that the number of not 

out instances equaled the number of out instances before implementing our test-train split. 

4.2.1 Best Random Forest Depth  

With our balanced data set we ran a collection of Random Forest Classifier tests, with 

varying depths, activation functions, and test/train splits. The following test shows the best 

results from our testing using an 80/20 test/train split and Gini as the criterion to measure the 

quality of the splits and all 16 of the collected features. 

Figure 27 shows the accuracy of this test on various decision tree depths from 1 to 30. 

Both the image on the left and the right, have the same hyperparameters. The difference stems 

from the randomness of the Random Forest Classifier. The two best accuracies recorded were 5 

and 11.  
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Figure 27: Testing vs. Training Accuracies of Random Forest Depths 

 

Confusion Matrix 

Best Testing Accuracy Depth = 5  Depth = 11 

Training Accuracy 0.551 0.688 

Testing Accuracy  0.543 0.549 

Table 7: Accuracy Comparison of Different Depths 

 

Unfortunately, we were unable to generate money lines from our results the balanced data 

because the odds being generated did not accurately reflect the true unbalanced results from our 

dataset. One idea that we had, that we were unable to pursue given time restrictions was using 

the best hyperparameters uncovered above, to generate a decision tree model on the balanced 

dataset. However, instead of using the 16 features individually, we would use Principal 

Component Analysis (PCA) to reduce the dimensionality of our features to 2. This would allow 

us the ability to graph our results without losing information about our features, and accuracy.  

 The next step would be to use the decision tree splits generated on the balanced data, as a 

basis for classifying the unbalanced data. After this, we could use a process similar to KNN by 
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counting the number of not-outs and outs within a split region as a basis for generating the odds 

for an at-bat. For example, on the right image of Figure 28, there are four regions, as defined by 

the decision tree splits. On the upper right region, there is a red ( aka Out ) point circled in red. 

The true odds for this at-bat would be calculated by counting the number of red points ( Outs ) 

and green points (not outs ) in that region. Before these odds are offered by a sportsbook, such as 

DraftKings, a 5% premium would be applied so that the sportsbook could ensure profit.  

 

 

Figure 28: Left - Balanced Model, Right - Unbalanced model 

 

4.2.2 Model Evaluation 

Initially, as discussed in section 4.2.1, our team had settled upon using a max depth of 5 

as a preventative measure to decrease the risk of overfitting. During our experimentation to 

determine how adding more features would increase the accuracy, we generated the below 

confusion matrices.  
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Figure 29: Figure 29a (Left) and Figure 29b (Right): This figure displays both the testing and training confusion 

matrices for our dataset when we increased the number of features from 4 to 16. The training matrix showcases the 

balanced nature of the data and its initial predictions, and the right testing matrix shows the predictions on the 20% 

of the data allocated for testing purposes after the model had learned from the 80% of the data on the left. 

 

In our experiment, we ran the RFC ten times over the same dataset, generating different 

testing accuracy scores, training accuracy scores, and confusion matrices. The final testing 

accuracy score of 0.541 and the final training accuracy score of 0.557 was an average of the 

scores from all ten iterations in the experiment. The confusion matrices, however, are just the 

samples from the last iteration of the experiment, not an average. 

Once we had a dataset with sixteen features to run our models on, we needed to 

determine the best possible set of features to utilize for our model. To achieve this, a correlation 

heatmap was created to determine the relationships between all the features.  

 



 

 

 

54 

 

 

Figure 30: This heatmap shows the correlations between the various features within our dataset. 

 

As expected, features such as batting average and a batter’s OBP had a very high 

correlation of positive 0.81, and a pitcher’s ERA and runs scored per 9 innings had a correlation 

of positive 0.98. On the other end, features such as pitcher’s walks per nine innings and strike 

percentage had a high negative correlation of -0.74. These logical correlations verified the 

validity of our dataset with the added columns of information. 

 

Figure 31: This figure shows the testing confusion matrix of a Random Forest Classifier utilizing 10 features with 

the highest correlations. A max depth of 10 was used with an 80/20 train/test split, and all correlations were greater 

than 3%. 
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With this heatmap and the various correlation coefficients we obtained; our team 

conducted experiments on which combination of the features would yield the best results. After 

selecting the ten features with the highest correlation coefficients (> 3%), when a Random Forest 

Classifier model was used, it was producing an average accuracy of 0.537, with a standard 

deviation of about 0.004. This is shown in the confusion matrix of Figure 31 above. Out of the 

9,223 total outcomes we tested on, the model correctly predicted 2,193 outs and 2,724 not-outs. 

This model also broke away from the biases we had previously seen where the classifier was 

leaning towards more heavily predicting out over not out. While an out result is the case nearly 

70% of the time in at-bat outcomes, our model predicting not-out more led to it predicting not-

out correctly 2724 times, which is where many of our prior models had fallen short. Therefore, 

our correct out and correct not-out predictions were more balanced, rather than mainly correctly 

predicting out to receive high accuracy. After comparing the accuracy scores of this experiment 

to the previously mentioned ones utilizing all 16 features, we determined that using all 16 

features generated better results than solely using the features with the highest correlations, and 

we reverted to using all 16 features.  

 

 

Figure 32: This figure shows the testing confusion matrix of a Random Forest Classifier utilizing the Gini criterion, 

100 trees with a max depth of 11, and all 16 of the dataset’s features. 
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As mentioned in section 4.2.1, tests on the max depth of the Random Forest Classifier 

were done to determine which depth was best regarding both the testing and training data. After 

this additional experimentation, our team was able to land on an accuracy of about 0.540 with a 

standard deviation of 0.005 when all sixteen features were used at a max depth of 11. Figure 32 

above showcases this result.  

4.2.3 Number of Features Versus Accuracy 

 As with any machine learning task, we used a variety of features in our task of predicting 

outs vs not-outs. We had a process of adding features to our dataset. We kept the depth constant 

at 5 using an 80/20 test/train split and Gini as the criterion to measure the quality of the split. 

This allowed us to change the factors apart from the depth and the split criterion, and experiment 

with adding more features to affect the prediction accuracy of our machine learning predictions. 

We started with 2 features with those being handedness of the pitchers and batter’s bat side. We 

ran a Random Forest Classifier with these 2 features. 

 

 

Figure 33: This figure shows the testing confusion matrix of a Random Forest Classifier utilizing the Gini criterion, 

100 trees with a max depth of 5, and bat side and pitch hand as features. 
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As seen in this confusion matrix, the model with bat side and pitch hand tended to predict 

the outcomes mostly as outs. The model had an accuracy of 50.2% over 10 trial runs. The 

accuracy of the model is very similar to that of a coin flip with the probability of 50%. This 

classifier tends to classify most outcomes as out and so as a result we decided to improve upon 

our dataset and add more features that could improve our accuracy score and get a better 

classifying classifier. 

 

Figure 34: This figure shows the testing confusion matrix of a Random Forest Classifier utilizing the Gini criterion, 

100 trees with a max depth of 5, and bat side, pitch hand, batting average, and ERA as features. 

 

This confusion matrix shows that upon adding the two features of batting average and 

ERA, we were able to improve the accuracy with which the model predicts the out vs not out. In 

this case, the model was able to predict the real outcome with an accuracy of 53%. It was a 

whole 3% percent better than the model with just the bat side and pitch hand. This model is 

better at predicting a not-out outcome compared to the model with 2 features. This made us 

realize that by possibly adding more features, we could get an even higher accuracy score. We 

decided to add a lot more features to our Random Forest Classifier. 
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Figure 35: This figure shows the testing confusion matrix of a Random Forest Classifier utilizing the Gini criterion, 

100 trees with a max depth of 5.The features include atBats, batting avg, obp, bat side, ops games Played, slg, 

babip, atBats, era, strike Percentage, pitch hand, strikeoutsPer9Inn, runsScoredPer9, hitsPer9Inn, and 

walksPer9Inn. 

 

As seen in this figure above, adding more features caused the Random Forest Classifier 

to classify the outcome of a play around 1% better. The accuracy is 54% which is better than the 

classifier with 4 features. However, in comparison to the previous Random Forest Classifiers, 

this Random Forest Classifier is better at classifying “not outs”, however, it does tend to under 

classify outs compared to the other models with fewer features. 

4.3 Pseudo KNN Results for Lines 

 To create the data for the Pseudo KNN model, we used the unbalanced data. After 

veering away from the unbalanced data in Section 4.1, we came back to the unbalanced data and 

discovered a new way that successfully uses the unbalanced data to generate odds and money 

lines. This was an important step as we went back to the unbalanced dataset from the balanced 

dataset as we developed a solution to incorporate the unbalanced data. Using the unbalanced data 

is key because the data isn’t skewed and won’t create any bias when developing a money line. 

The steps taken to concoct the Pseudo KNN model are described in the steps below.     
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4.3.1 Scatterplots 

After experimenting with different models, we wanted to drift away from model accuracy 

and shift our focus towards creating money lines. This led us to implement our Pseudo K-nearest 

neighbor (KNN) model. For the first step of the Pseudo KNN model, we performed a filter on 

the dataset of 83,843 rows. We filtered out the number of at-bats that were below 100 at-bats. 

This is because we wanted to ensure that there were enough at-bats for every pitcher and batter 

to eliminate potential outliers. In the second step, we normalized our original dataset. This was 

done by using Min-Max Normalization to transform the data shown in Figure 36 below to Figure 

37. The reason for doing this was that the different statistics we used had different ranges. 

Furthermore, we wanted to standardize the ranges of statistics, while maintaining the same 

distances for each statistic.  

 

 

Figure 36: Screenshot of Our Dataset 
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Figure 37: Screenshot of Our Normalized Dataset 

4.3.1.1: OBP vs. ERA 

 Next, we then proceeded to create scatter plot visualizations to compare two statistics, 

one for a batter and one for a pitcher. The two statistics we closely examined were On-Base 

Percentage (OBP) and Earned Runs Average (ERA). These statistics were later used for 

generating the money lines. The distribution of the two features is displayed in Figure 38 below 

along with the corresponding result.  
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Figure 38: OBP vs. ERA Scatterplot 

 

4.3.1.2: Batting Average vs. ERA 

We then proceeded to examine other feature combinations as well. In Figure 39 shown 

below, we decided on using batting average for the batter and earned runs allowed (ERA) for the 

pitcher. In this scatter plot we also analyzed the points to be out or not an out.  
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Figure 39: Batting Average vs. ERA Scatterplot 

 

4.3.1.3: Batting Average vs. Strike Percentage 

The next scatterplot we used was batting average and strike percentage. As shown in 

Figure 40 below, it had a slightly different appearance than the graph above where it was shifted 

upwards.  
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Figure 40: Batting Average vs. Strike Percentage Scatterplot 

 

4.3.1.4: OBP vs. Strike Percentage 

Lastly, we chose on-base percentage (OBP) and strike percentage as the next two 

statistics we wanted to explore (Displayed in Figure 41 below). This scatter plot had a relatively 

similar shape to the batting average and strike percentage scatter plot. This followed our thinking 

because on-base percentage and batting average are relatively similar statistics.  
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Figure 41: OBP vs. Strike Percentage Scatterplot 

 

 After examining the scatterplots, we picked a point on the scatter plot as the input used to 

calculate the money lines. Next, we then drew a circle around the point with a radius equaling 

0.1. The value for the radius derives from the Z-transformed length of the OBP and ERA 

statistics. We then proceeded to and counted each point within that circle that was either “out” or 

“not out”. By counting each vote within the circle, we then were able to generate a probability 

for “out” or “not out”. These probabilities are then used in the money line equation from the 

Logic of Sports Betting (Miller, E., & Davidow, M., 2019). Using an initial hold percentage of 

0.05, we were able to then generate the money line for “out” or “not out” for a given pitcher and 

batter matchup.  

4.3.2 Comparisons with DraftKings Lines 

 Upon following the generation of the money lines, we wanted to compare the money 

lines we generated with our model with the DraftKings money lines. As shown in Figure 42 

below, we took screenshots of the live prop bets DraftKings created for the Boston Red Sox and 

New York Yankees playoff matchup. In this screenshot, readers can see the matchup between 
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Enrique (Kike) Hernandez, a hitter for the Red Sox, against Gerrit Cole, a pitcher for the 

Yankees. Enrique Hernandez had an OBP of 0.337 for the 2021 season, while Gerrit Cole had an 

ERA of 3.23 for the 2021 season (MLB stats, scores, History, & Records Baseball Reference). 

This money line is for a 1st plate appearance for Enrique Hernandez in the first inning. A 1st 

plate appearance is equivalent to what we are looking for: “out” or “not out”. If there is a 1st 

plate appearance, that means that the batter either got a ground hit, home run, or walked. If there 

isn’t a 1st plate appearance, that means the batter either received a strikeout or fly out. Therefore, 

the odds that DraftKings set were +180 for “not out” and -250 for “out”.  

 

Figure 42: Money Line for Enrique Hernandez vs. Gerrit Cole (Featured betting odds & lines: DraftKings 

Sportsbook, n.d.) 

 

 To compare the DraftKings money line results with our money line results from our 

model, we looked at different money line calculations based on different hold percentages. A 

hold percentage is the profit a casino or Sportsbook like DraftKings makes on average. 

Illustrated in Table 8 below, we experimented with the hold percentage values ranging from 0.01 

to 0.09. The closest money line from our model to the DraftKings money line is highlighted in 

green where the hold percentage equates to 0.05. Conversely, the farthest money line from our 

model to DraftKings is highlighted in red, which was a hold percentage of 0.09. In this example 

of Enrique Herandez and Gerrit Cole, our model’s money line was not too far off from the 

DraftKings money line from the screenshot above.  
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Table 8: Created Money Lines for Different Hold Percentages 

 

 In another comparison, we compared Gleyber Torres and Nathan Eovaldi. Gleyber Torres 

is a batter for the Yankees, while Nathan Eovaldi is a pitcher for the Red Sox. Gleyber Torres 

had a 2021 season OBP of 0.331, while Nathan Eovaldi had a 2021 season ERA of 3.75 (MLB 

stats, scores, History, & Records). Similar to the screenshot example above, the prop bet is 

asking whether or not the result of the at-bat is “out” or “not out”. The odds for “not out” is 

+210, while the odds for “out” is -295 (Shown in Figure 43 below).  

 

 

Figure 43: Money Line for Enrique Hernandez vs. Gerrit Cole (Featured betting odds & lines: DraftKings 

Sportsbook, n.d.) 

 In conjunction with the Enrique Hernandez and Gerrit Cole table of hold percentage 

comparisons, we generated a similar table for Gleyber Torres and Nathan Eovaldi. Displayed in 

Table 9 are the money lines for “out” and “not out” for each of the hold percentages from 0.01 to 
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0.09. As shown in the green highlighted text, the hold percentage of 0.08 was closest to the 

money line produced by DraftKings while the red highlighted text was the furthest away from 

the DraftKings money line. In this comparison, the “not out” money line wasn’t too close to the 

DraftKings money line but the “out” money line from our model was extremely close to the 

DraftKings money line.  

 

Table 9: Created Money Lines for Different Hold Percentages 

 

4.3.3 Principal Component Analysis (PCA) 

To follow up on creating money lines through our version of a KNN, we used a Principal 

Component Analysis (PCA) model. The money lines through KNN used all of the 16 features of 

the dataset, 8 for batters and 8 for pitchers. We wanted to further examine the money lines by 

creating a PCA where we used two components. The reason for using a PCA was to perform 

dimensionality reduction on the numerous information. While reducing the dimension of the 

dataset, the PCA model also keeps the most important variables that impact our target variable, 
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which was the result of an at-bat. As displayed in Figure 44 below, the two principal components 

are plotted against each other with the result of the at-bat as well.  

 

Figure 44: PCA Scatterplot 

 

 After generating the scatterplot for the two principal components, we used a similar 

procedure to generate the money lines from the KNN method above. After picking a given point 

on the scatterplot, we counted the number of votes for “out” or “not out” within the circle of that 

point (Shown in Figure 45 below). After that, we used the same methodology to generate 

probabilities and produce money lines for “out and “not out” as shown in the DataFrame figure 

below. This DataFrame is a small screenshot of the larger dataset, where we generated lines for 

all 77,415 rows of the dataset.  
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Figure 45: PCA DataFrame 

4.4 Decision Tree Betting Odds Generator 

4.4.1 Decision Tree Splits Diagram   

 To illustrate how the decision tree betting odds generator process worked, we created 

diagrams as shown in Figure 46 below. In this process, the data was split into the decision tree 

cutoffs as shown in the lines below. After visualizing the cutoffs, we then proceeded to count 

each matchup for a class within the given sections to determine the probability of each result. 

From there, we then proceeded to convert the probabilities to betting odds.   

 
Figure 46: Decision Tree Split Visualization 
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4.4.2 Decision Tree Results  

We ran two similar tests to generate betting odds using the decision tree classifier. In both 

examples, the criterion for measuring the quality of split is “Gini”.  In the first test, the minimum 

number of samples required to be at a leaf node of the model was set to 5000. As a reminder, the 

decision tree model was generated on a manually balanced subset of the data. The model 

generated can be seen in the images below where features 2, 3 are on-base percentage, batting 

hand of the batter, and feature 13 is p_runsScoredPer9 which is the number of runs scored 

against a pitcher per nine innings. 

 

 
Figure 47: Decision Tree Splits 

 

 

The following is an example of odds generated from the model above for pitcher and 

batter matchups. Yes, indicates that the batter (in this case Enrique Hernandez) will make it on 

first base and No means the batter will not make it to first place. Later, in the results, there will 

be a section comparing these odds with the odds set on the Draft Kings website.  

 

Enrique Hernandez vs. Gerrit Cole (Matchup Betting Odds, Using 5% Hold Percentage) 

DraftKings Odds Yes    +180 No    -250 

Figure 48: DraftKings Generated Odds 

 

For the next iteration of using decision tree split nodes to generate odds on prop bets, we 

used a nearly identical hyperparameter criterion as the previous decision tree. The only change is 
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the criterion for a decision tree node to continue requiring a split. In this result, a tree node would 

continue to split until the number of samples in a leave was less than or equal to 1000. This 

resulted in a decision tree model with a larger depth and imbalance. Since the number of splits 

and features used is much larger than in the previous example, it is not easily visualized. The 

following is a simplified version of what the decision tree model generated looks like.  

 

 

Figure 49: Decision Tree Splits 

 

The following figures are some examples of odds generated from the model above for 

pitcher and batter matchups in the MLB produced by the updated Decision Tree model. Figure 

50 below shows the odds generated from our Decision Tree model for Amed Rosario versus Jake 

Diekman.  
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Amed Rosario vs. Jake Diekman (Matchup Betting Odds, Using 5% Hold Percentage) 

Decision Tree Odds Yes    +172 No    -256 

Figure 50: DraftKings Odds Comparison (Rosario vs. Diekman) 

 Another matchup we looked at was Austin Riley and Javy Geurra, where the generated 

odds are shown in Figure 51 below.  

 

Austin Riley vs. Javy Guerra (Matchup Betting Odds, Using 5% Hold Percentage) 

Decision Tree Odds Yes    +193 No    -294 

Figure 51: DraftKings Odds Comparison (Riley vs. Guerra) 

 Lastly, we examined Ji-Man Chio and Spencer Watkins and generated the betting odds 

depicted in Figure 52 below.  

  

Ji-Man Chio vs. Spencer Watkins (Matchup Betting Odds, Using 5% Hold Percentage) 

Decision Tree Odds Yes    +142 No    -204 

Figure 52: DraftKings Odds Comparison (Chio vs. Watkins) 

4.5 Pseudo KNN and Decision Tree Result Comparison 

 To compare the two betting odds generators, we took a closer look between the Pseudo-

KNN model and the Decision Tree model. To compare our models, we analyzed them against 

the odds that were generated by DraftKings. As shown in Table 10 below, the Pseudo-KNN 

came closest to the DraftKings generated odds. On the other hand, the odds that were furthest 

away from the DraftKings odds was the Decision Tree model that had a minimum sample leaf 

size of 1000.  

  

Enrique Hernandez vs. Gerrit Cole (Matchup Betting Odds, Using 5% Hold Percentage) 

DraftKings Odds Yes    +180 No    -250 

Pseudo-KNN Odds Yes    +189 No    -287 

Decision Tree Odds (Min 
Sample Leaf of 5000) 

Yes    +191 No    -290 

Decision Tree Odds (Min 
Sample Leaf of 1000) 

Yes    +202 No    -312 

Table 10: All Model Comparison with DraftKings on Generated Betting Odds 
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After completing some of the experiments with the Pseudo-KNN a Decision Tree 

models, we would recommend to further pursue the Psuedo-KNN model based on the knowledge 

we know. This is because the Pseudo-KNN model didn’t have any major limitations, while the 

Decision Tree model did. With the Decision Tree model, a major limitation was that based on the 

number of splits there is only that number of odds generated per split. For example, if there is a 

split of four, there will only be four odds generated. When more betting odds need to be 

generated, this limitation is not ideal where it can only produce a few betting odds. However, to 

address this issue, increasing the number of splits of the Decision Tree will allow for more 

distinct odds to be produced. When increasing the number of splits, one needs to be conscious of 

the amount of data that they have access to. This becomes relevant when the number of points in 

leaf nodes becomes dangerously low. Finding the right balance when building the decision tree 

model is critical.  

5. Conclusion 

Initially, the lines were based on the pseudo-KNN model due to which we were able to 

generate lines with the dimensionally reduced features for batting and pitching features for all 

77,415 plays in our dataset. We were able to get lines that were very close to the example 

DraftKings lines we had for reference. However, we also wanted to generate lines based on the 

decision trees model machine learning model and then compare them to the lines we obtained by 

using the pseudo-KNN model. We decided to also implement a decision tree model which would 

provide a comparative set of lines to evaluate our pseudo-KNN lines against.  

5.1 Takeaways 

As we finished up our project, we had a few takeaways from our analysis. We had 

takeaways on everything from the data processing to the solution to the problem. Our data was 

very unbalanced after we extracted it from the MLB API, when we ran machine learning models 

on the data we had, the models tended to predict outcomes skewed towards predicting outcomes.  
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However, when we balanced the data and then ran the models predicting on unbalanced data, our 

models performed better in predicting outs and not-outs thus reducing the skewness of the 

predictions the models made.  

We were working with Random Forest Classifiers with balanced data to accurately 

predict the outcome of a specific play. We then planned on using these predictions to set lines. 

However, we decided to take a step back and use a simple scatter plot to run a KNN analysis. 

This simpler approach allowed us to use the unbalanced dataset to generate odds based on the 

features. We took an approach of simplifying the data and filtering instead of balancing in this 

case and were able to generate lines like the DraftKings money lines.  

However as mentioned above, we realized upon simplifying our approach from Random 

Forest classifier to a decision tree split model, that there is a tradeoff between accurate odds and 

simplicity of the tree and further splitting of the data manually using more trees and bigger trees 

will give us more accurate odds at the cost of possibly overfitting.  

5.2 Recommendations & Future Work 

As with any experiment and analysis, there is a scope for improvement in our work. This 

section discusses the possible improvements that can be made towards the objective of setting 

odds for “out” versus “not out”. In this section, we look at some ways that our work can be 

improved and built upon. In terms of future work, as mentioned before the lines generated were 

based on the KNN and Decision Tree machine learning models. We did not reach a point in our 

analysis in which we were able to use the Random Forest machine learning model to set lines. 

Additionally, machine learning models apart from Random Forest Classifiers and KNN could 

also be used to generate lines from the dataset. Our dataset is very comprehensive and has a lot 

of data points and so the data can be used with more complex models and possibly better data 

cleaning and sampling. 

In our analysis of the data, we were unable to use non-baseball factors for our 

predictions. Some of the non-baseball factors we discussed included weather, sunlight, current, 

and past events, fan support, and even political indicators. The weather with the wind, humidity, 

and precipitation at the time of a certain play can all affect the pitch played to a batter. The 
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sunlight similarly affects the temperature and visibility conditions during a play and can affect 

the quality of the pitch played.  

Current and past events, political indicators, and fan support can be used as an indicator 

of the atmosphere in the game. While they can be good indications of factors as they affect 

player performance, it is hard to numerically quantify them and so we were not able to use these 

other factors in our analysis. These factors are intangibles that make a difference to player 

performance to a high extent. For this, we thought that a game state dataset could be useful to the 

project as it would consider the factors such as game events before a specific on-bat and other in-

game and out-of-game events into account. However, due to not being able to numerically 

quantify the intangibles and not being able to find a consistent data source for the game state, we 

could not create the game state dataset. 

Finally, the last future work that we think could be worked upon is the complexity of the 

Decision Tree models we used. We based our decision tree model’s splits of data based on the 

number of samples left in the leaf and since we had so much data, our splits were limited in 

number thus giving us fewer odds and bigger group splits. To counter this, a bigger tree with 

more leaf nodes, and possibly more trees together to form a random forest model could be used. 

However, the issue was the high number of features and the amount of datapoints that we did 

have made it hard to do so. As a result, our main recommendation would be to improve upon our 

decision tree model and provide a better comparison of odds with the pseudo-KNN model. 

In conclusion our main recommendations are to use other machine learning models to 

classify the outcomes, use other external factors in the classification problem, and finally to use 

more complex trees and maybe even random forest models to create more splits to generate more 

accurate odds.   
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