

Simulations and Machine Learning for Parachute Navigation

Grace Malabanti, Joseph Scheufele, and Juliette Spitaels

Advisors: Randy Paffenroth and Oren Mangoubi

Sponsoring Co-Advisor: Greg Noetscher (CCDC-SC)

¹ Approved for Public Release

Sponsor

- U.S. Army Combat Capabilities Development Command
- Located in Natick, MA
- Experts in Soldier systems research and development

Problem

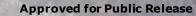
- Soldier required supplies in the field
- DEVCOM-SC specializes in the aerial delivery of these supplies
- Parachutes are navigated by GPS for these deliveries
- Issues with GPS

Solution

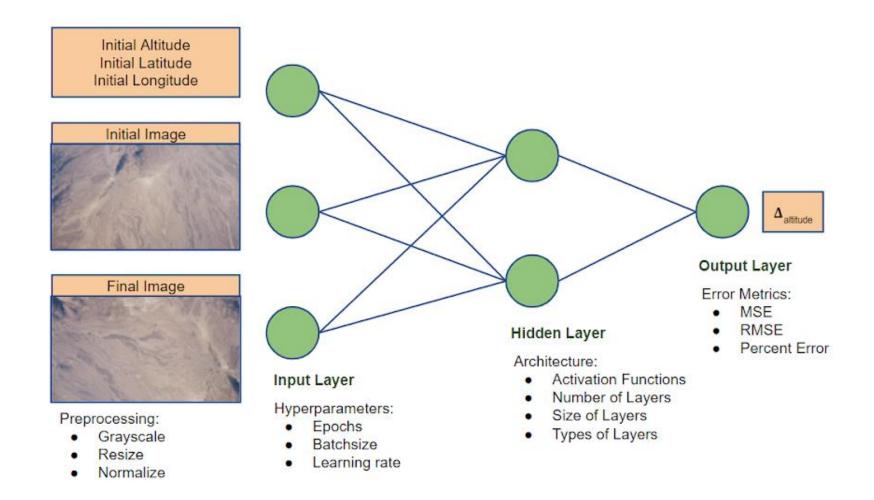
Simulator

Machine Learning

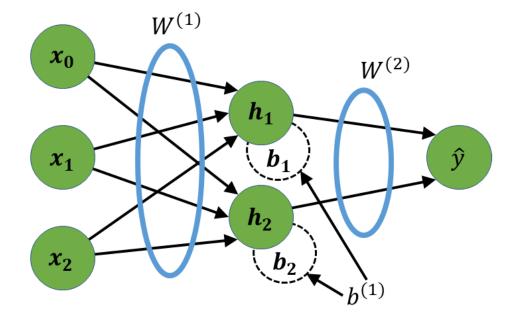
Comparison


Flight Paths

Extracted location information from in the field drops using DEVCOM-SC parser Wrote code to clean and reformat coordinates to recreate drops in original location


Wrote code to transform paths to new locations, based on user defined landing point

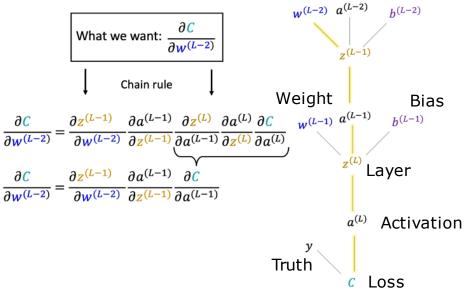
Built projects in new locations all over the world for variety of terrain



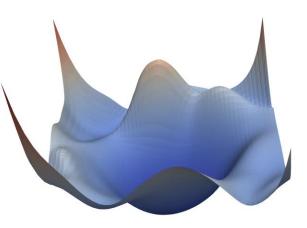
Our Neural Network

8 Approved for Public Release

Neural Networks

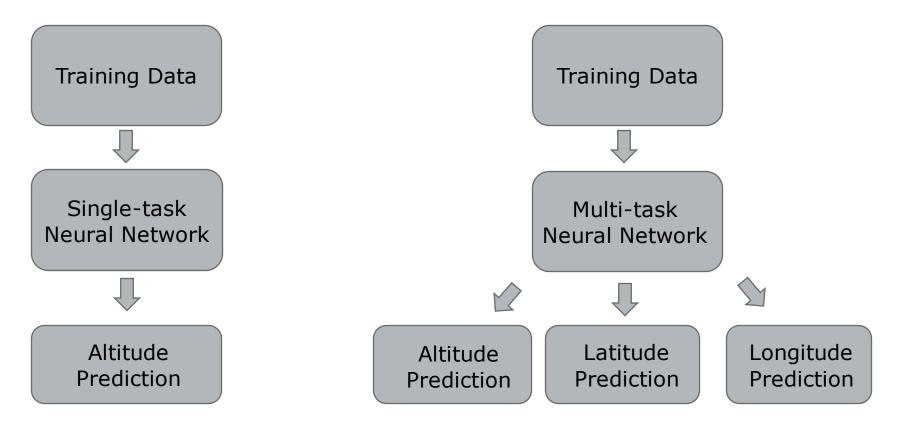

$$f(W^{(2)}f(W^{(1)}X+b^{(1)})+b^{(2)})=\hat{y}$$

Forward Pass


- Densely connected network
- Each neuron has a weight and bias
- Activations control passing of information

Training

Backpropagation



 $MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

- Backward Pass
 - Finding the global min
 - Chain Rule for updating network
 - Surface depends on Loss Function
- 10 Approved for Public Release

Single-task vs. Multi-task Neural Networks

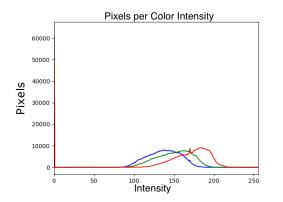
$$MSE_{multi} = \frac{1}{3}(MSE_{alt} + MSE_{lat} + MSE_{lon})$$

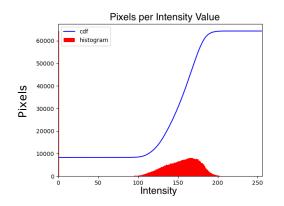
Caruana, R. Multitask Learning. *Machine Learning* 28, 41–75 (1997). Worcester Polytechnic Institute

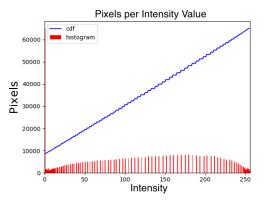
11 Approved for Public Release

 $MSE_{alt} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

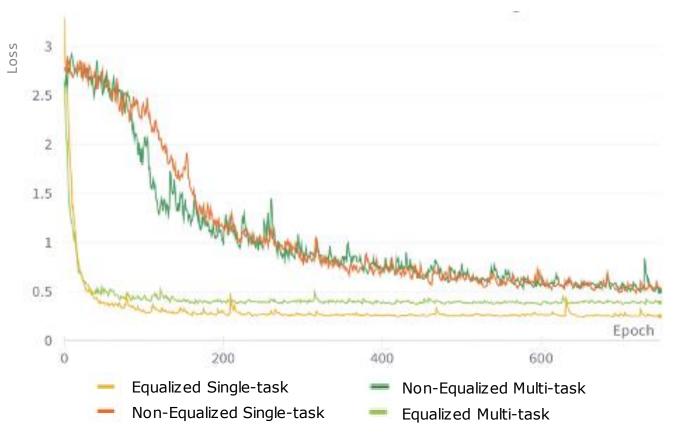
Image Processing


Original





Equalize



12 Approved for Public Release

Effects of Equalization

- Faster convergence
- Lower final error
- Smoother loss surface

13 Approved for Public Release

Results

Variables		Testing Error		Validation Error		
Single or multi?	Equalized	Activation Function	RMSE	Percent Error	RMSE	Percent Error
Single	None	ReLU	25.607	0.489	78.474	1.379
Multi	None	ReLU	25.664	0.484	77.809	1.005
Single	Pairwise	ReLU	18.540	0.262	79.264	3.249
Multi	Pairwise	ReLU	18.673	0.291	18.907	0.294
Single	Pairwise	GELU	18.370	0.261	78.867	3.226
Multi	Pairwise	GELU	18.510	0.283	18.697	0.290
Single	Pairwise	Leaky ReLU	17.952	0.257	79.012	3.222
Multi	Pairwise	Leaky ReLU	17.528	0.264	17.493	0.277

Conclusions

- It could be that multi-task neural networks smooth the loss landscape, explaining our discrepancy in error between the testing and validation sets.
- The availability of unlimited simulated data allowed our team meaningfully apply ML models, and in turn showed additional evidence for the possibility of effective GAVN technology that could outperform traditional GPS signaling.

Thank you! Questions?

16 Approved for Public Release

Image References

DEVCOM-SC:

https://ccdcsoldiercenter.army.mil/#/whatwedo

Loss Surface:

https://www.cs.umd.edu/~tomg/projects/landscapes/

Back Propagation:

https://towardsdatascience.com/the-maths-behindback-propagation-cf6714736abf

Error Metrics

- n = number of data points
- y_i = observed values
- $\hat{y_i}$ = predicted values

Mean Squared Error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

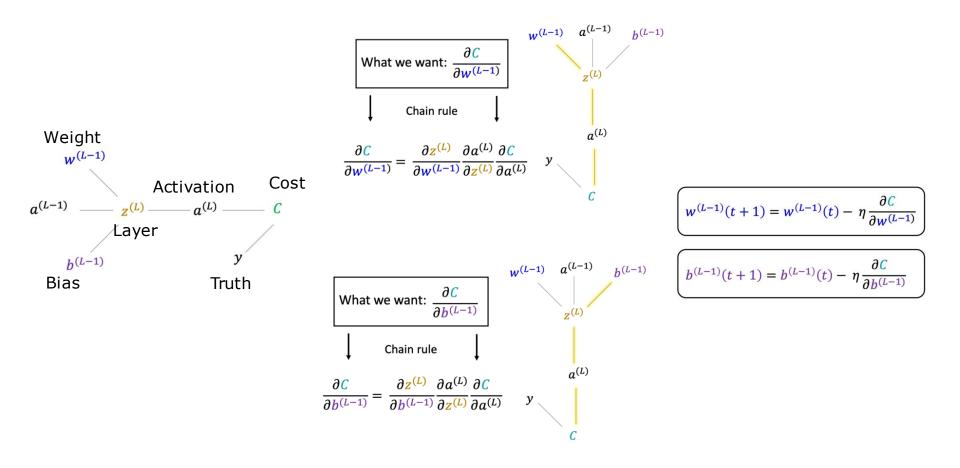
Root Mean Squared Error

$$\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

Percent Error

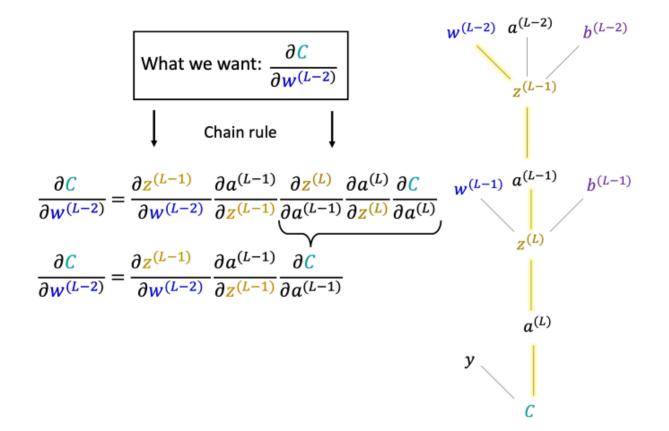
Percent Error =
$$\left|\frac{y_i - \hat{y}_i}{\hat{y}_i}\right|$$

18 Approved for Public Release

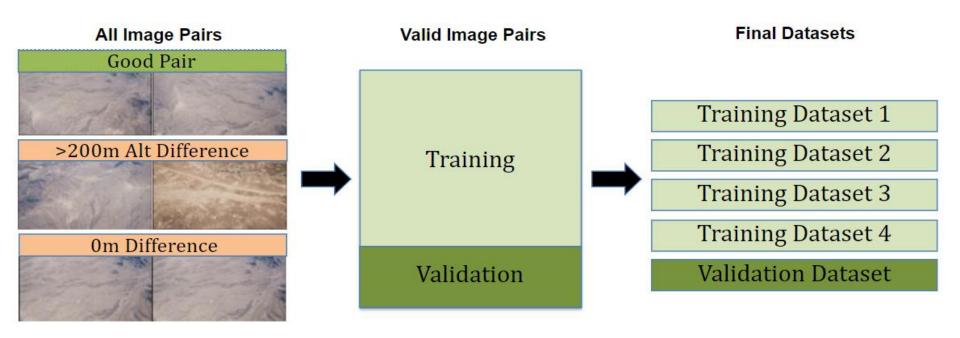

Future Work

Future teams that work on this project teams could:

- Develop new features in the simulator
- Refine the preprocessing techniques
- Run the network with more diverse environments
- Improve the neural network

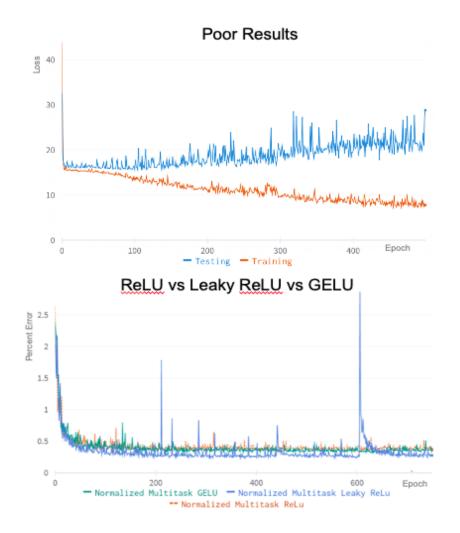


Back Propagation II



20 Approved for Public Release

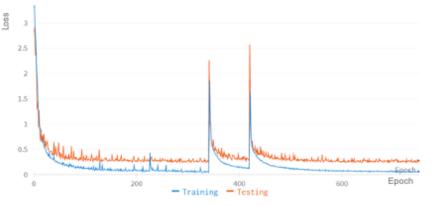
Back Propagation III

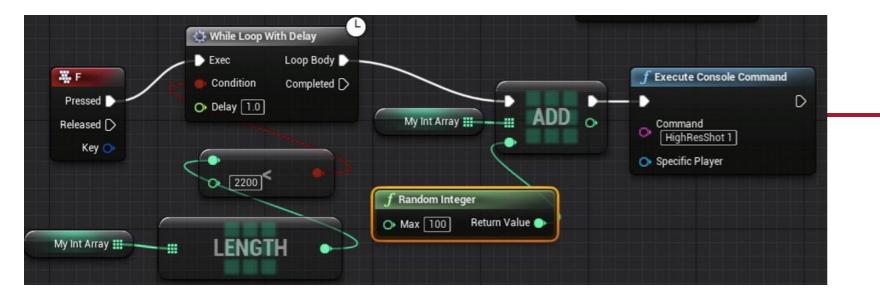


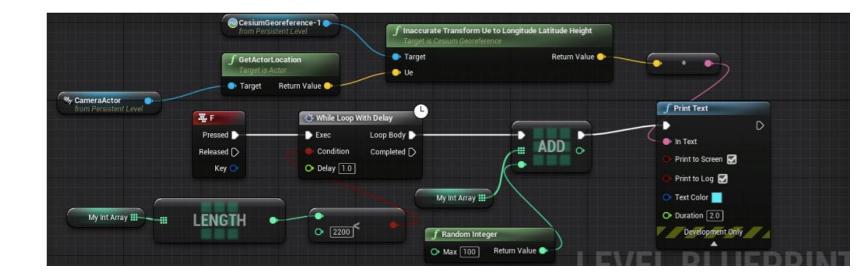
Datasets



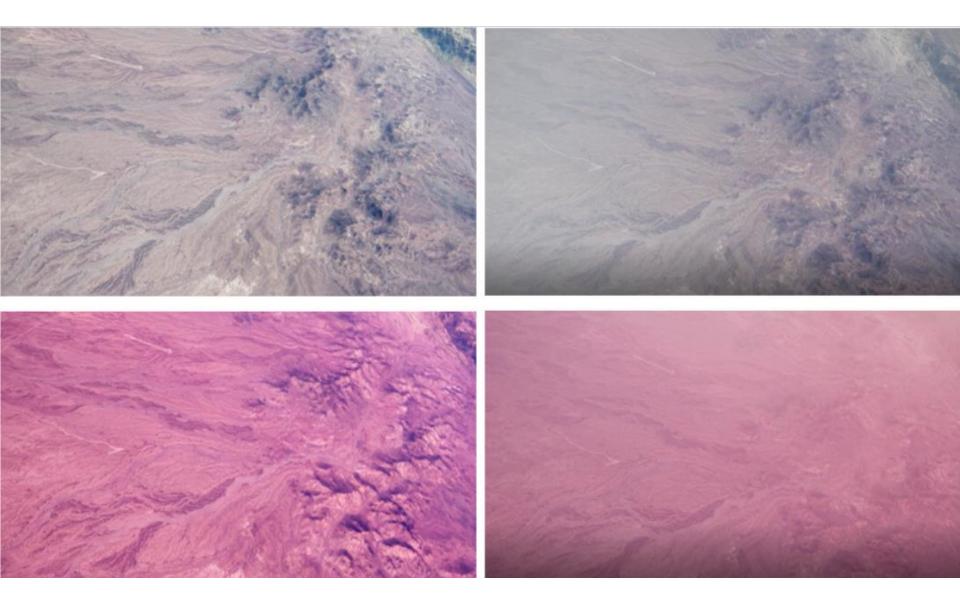
Random Forest


Trained on 5000 grayscale images 100 trees RMSE of 55.74 m


Effects of Equalization on Multitask vs Single Task



Best Network: Equalized Multitask with Leaky ReLU



24 Approved for Public Release

25 Approved for Public Release

27 Approved for Public Release

Neural Network Hyperparameters			
Epochs	750		
Batch Size	128		
Step Size	0.001		

Normalized, Multi-task with Leaky ReLU							
	MSE RMSE Percent Error						
Dataset 0	302.196	17.384	0.275				
Dataset 1	287.701	16.982	0.274				
Dataset 2	311.733	17.656	0.259				
Dataset 3	327.277	18.091	0.248				
Average	307.227	17.523	0.264				

Normalized, Multi-task with GELU							
MSE RMSE Percent Error							
Dataset 0	313.538	17.707	0.251				
Dataset 1	360.078	18.976	0.362				
Dataset 2	357.839	18.917	0.283				
Dataset 3	339.036	18.413	0.238				
Average	342.623	18.503	0.283				

Normalized, Multi-task with ReLU							
MSE RMSE Percent Error							
Dataset 0	327.976	18.110	0.254				
Dataset 1	346.760	18.621	0.376				
Dataset 2	365.185	19.110	0.262				
Dataset 3	354.875	18.838	0.273				
Average	348.699	18.670	0.291				

Baseline

Layer	Input Size	Output
		Size
Input: 1	204,480	1024
Hidden: 2	1024	512
Hidden: 3	512	256
Hidden: 4	256	128
Hidden: 5	128	64
Hidden: 6	64	32
Hidden: 7	32	16
Hidden: 8	16	8
Output: 9	8	3

Input Size Output Size Layer Input: 1 204,4802048Hidden: 2 20481024Hidden: 3 1024512Hidden: 4 512128Hidden: 5 12832Hidden: 6 8 32Output: 7 8 single: 1 multi:3

Shallower

Bigger Input

Layer	Input Size	Output Size
Input: 1	204,480	4096
Hidden: 2	4096	2048
Hidden: 3	2048	512
Hidden: 4	512	256
Hidden: 5	256	128
Hidden: 6	128	64
Hidden: 6	64	32
Hidden: 6	32	16
Hidden: 6	16	8
Output: 7	8	single: 1
		multi:3

Straight Layers

Layer	Input Size	Output Size
Input: 1	204,480	2048
Hidden: 2	2048	1024
Hidden: 3	1024	256
Hidden: 4	256	256
Hidden: 5	256	64
Hidden: 6	64	32
Hidden: 6	32	8
Output: 7	8	single: 1
		multi:3

30 Approved for Public Release

Variables		New Architectures		
Single or Multi?	Layer Structure	MSE	RMSE	Percent Error
Single	Straight	318.320	17.842	0.342
Multi	Straight	322.673	17.963	0.001
Single	Larger	329.667	18.157	0.284
Multi	Larger	630.166	25.103	0.588
Single	Shorter	334.532	18.290	0.300
Multi	Shorter	300.133	17.324	0.250

Contacts

Advisors:

- Randy Paffenroth- <u>rcpaffenroth@wpi.edu</u>
- Oren Mangoubi- <u>omangoubi@wpi.edu</u>

Sponsoring Co-Advisor:

Greg Noetscher- <u>gregn@wpi.edu</u>

<u>Students:</u>

- Grace Malabanti- <u>gmalabanti@wpi.edu</u>
- Joe Scheufele- jcscheufele@wpi.edu
- Juliette Spitaels- jspitaels@wpi.edu