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Abstract

Uncoordinated frequency hopping (UFH) has recently emerged as an effective mecha-

nism to defend against jamming attacks. Existing research focuses on the optimal design of

the hopping pattern, which implicitly assumes that the strategy of the attacker is fixed. In

practice, the attacker might adjust its strategy to maximize its damage on the communi-

cation system. In this thesis, we study the design of optimal hopping pattern (the defense

strategy) as long as the optimal jamming pattern (the attack strategy). In particular, we

model the dynamic between the legitimate users and the attacker as a zero sum game, and

study the property of this game. We show that when the legitimate users and the jammer

can access only one channel at any time, the game has a unique Nash equilibrium. In the

Nash equilibrium, the legitimate users and Eve will access or jam only a subset of channels

that have good channel quality. Furthermore, the better the channel, the larger the prob-

ability that Eve will jam the channel and the smaller the probability the legitimate users

will access this channel. We further extend the study to multiple access multiple jamming

case and characterize the Nash equilibrium. We also give numerical results to illustrate the

analytical results derived in this thesis.
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Chapter 1

Introduction

In this chapter, we first introduce the concept, consequences and categories of jamming

attacks in Section 1.1. The conventional anti-jamming method is introduced in Section 1.2.

The concept of uncoordinated frequency hopping (UFH) is introduced in Section 1.3. The

related work about UFH is shown and discussed in Section 1.4. In Section 1.5, we summarize

the main contributions of this thesis.

1.1 Jamming

Wireless technology is becoming more and more popular [1] and is widely used by com-

panies and individuals for important communications, such as mobile e-commerce transac-

tions, email, and corporate data transmissions [2]. As the result, security issues become

more and more important for wireless networks. This is not a trivial problem because wire-

less devices, including smart cellular phones and personal digital assistants (PDAs) with

Internet access, were not originally designed with security as a top priority [2].

Most of wireless network security problems can be mitigated or fully addressed by chang-

ing wireless network security architectures or using more advanced cryptographic meth-

ods [3]. However, there are still some threats that can not be addressed by these methods.

Jamming is an important class of such threats [3].

Due to the openness of the wireless medium, attackers can easily implement jamming

attacks to inject signals into the medium. Attackers can easily observe communications be-
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tween legitimate users, and then make the transmission in wireless networks fail by injecting

false messages. The attackers can implement different kinds of jamming attacks [4]:

1. Constant jammer: The constant jammer continually emits a radio signal.

2. Deceptive jammer: The deceptive jammer constantly injects regular packets to the

channel. So legitimate users will be deceived into believing the jammer is also a

legitimate user in transmitting state.

3. Random jammer: The random jammer alternates between sleeping and jamming.

4. Reactive jammer: The reactive jammer only begins jamming when the jamming de-

tects activity in the channel.

Reactive jamming is the most important threat among the four jammers [5]. The reason

is that, while destroying the packets, the attacker minimizes its risk of being detected [5]. In

frequency hopping, reactive jammer cannot complete the detection process if the hopping

rate is high enough [6]. So it is can be seen that to mitigate jamming, the spread spectrum

techniques are usually adopted [7].

1.2 Spread Spectrum Techniques

Spread spectrum techniques are conventional anti-jamming methods [8]. The spread

spectrum signals usually have the characteristic that the bandwidth is much larger than

the information rate which can be seen as redundancy. This kind of redundancy is added

to the signal due to the signal is required to overcome severe interference in the process

of transmission in the channel. The redundancy of the spread spectrum signal can be

characterize by bandwidth expansion factor which is usually much larger than one [7]. To

introduce redundancy to signal, we know that coding is an efficient method [7]. So how to

code the signal to make it spread spectrum is the first key element in designing the spread

spectrum systems [7].

In the security aspect, in order to avoid the attacker to demodulate the spread spectrum

signals, pseudorandomness is needed [7]. The pseudorandomness of the spread spectrum
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signals makes the signals seem to be random noise to the attacker thus making it very

difficult for the attacker to demodulate the signals [7]. This characteristic is actually related

to the purpose or application of these spread spectrum signals [7].

In [7], the authors list the main purposes of the spread spectrum signals:

1. To combat the effects of interference due to jamming, interference caused by other

users of the channel and self-interference due to multipath propagation.

2. To hide a signal by transmitting it at low power, thus making it difficult for an attacker

to detect the signal in the presence of background noise.

3. To achieve message privacy in the presence of attackers.

4. To obtain accurate range (time delay) and range rate (velocity) measurements in radar

and navigation (this purpose is not directly related to communications).

In combating the effects of interference of intentional jamming, the knowledge of the jammer

is important [7]. If the jammer knows the characteristic of the transmitting signal, it is

easy for the jammer to mimic this signal transmitted by the transmitter and confuse the

receiver [7]. To prevent this to happen, the transmitter introduces the randomness (actually

pseudorandomness) to the signal which is unpredictable for the jammer while known to the

receiver. So the only way for the jammer to do jamming is to transmit an interfering signal

without any prior knowledge about the pseudorandom pattern [7].

Frequency-hopping spread spectrum (FHSS), direct-sequence spread spectrum (DSSS),

time-hopping spread spectrum (THSS), chirp spread spectrum (CSS), and combinations of

these techniques are forms of spread spectrum [7]. Each of these techniques employs pseu-

dorandom number sequences created using pseudorandom number generators to determine

and control the spreading pattern of the signal across the allocated bandwidth [7].

Figure 1.1 shows the traditional frequency hopping (FH) which relies on secrets shared

between the transmitter and receiver. The shared secret then determines the hopping

pattern in FH. A third party who does not know the secret codes cannot predict the trans-

mission [9]. Then the probability of the transmission being jammed is reduced [9]. But the

prerequisite is a secret must be shared by the transmitter and the receiver [9].
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Figure 1.1: Frequency hopping.
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Figure 1.2: Model of spread spectrum system.
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Figure 1.2 shows the model of spread spectrum. Notice that we should have two identical

pseudorandom pattern generators, one at each side. In practice, we require the transmitter

and receiver have the same pattern and we should have the pseudorandom pattern gen-

erator perfectly synchronized [7]. The problem arises that if two nodes which have not

communicated before but want to communicate in the presence of jammer, the pseudoran-

dom pattern cannot be known by the other side [9]. If we want the pattern to be pre-stored

in each node in the network, scalability is a big issue [9]. If the network has N nodes, then

for each of them to communicate with other nodes, N − 1 pairs of pre-shared secrets are

needed for each node. The total number of pre-shared secrets in this network is N(N−1)
2 . If

N is large, it is challenging to pre-distribute and further store N−1 pairs of secrets for each

node. In this context, the uncoordinated frequency hopping discussed below is proposed

in [9] to solve this problem.

1.3 Uncoordinated Frequency Hopping(UFH)

The uncoordinated frequency hopping (UFH) to solve the problem described above is

originally proposed in [9], which can break the circular dependence of conventional spread

spectrum methods.

Figure 1.3 describes the circular dependence problem. In particular, if two devices do

not share any secret keys or codes and want to execute a key establishment protocol in the

presence of a jammer, they have to use a jamming-resistant communication [9]. However,

known anti-jamming techniques such as frequency hopping and direct-sequence spread spec-

trum rely on secret (spreading) codes that are shared between the communication partners

prior to the start of their communication [9]. This creates the circular dependence.

Figure 1.4 illustrates the high level idea of UFH. In UFH, the transmitter and receiver

hop randomly between channels in an uncoordinated manner. The transmission is successful

when they are in the same channel and the jammer is not in that channel. Figure 1.4 shows

3 different scenarios of UFH:

1. In timeslot 1, both transmitter and receiver are in channel 5, while Eve is not in

channel 5. The transmission is successful.
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Figure 1.3: Circular dependence.

Figure 1.4: Uncoordinated frequency hopping.
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2. In timeslot 2, the transmitter and receiver are not in the same channel. The trans-

mission is failed.

3. In timeslot 3, both transmitter and receiver are in channel 3, while Eve is also in

channel 3. This transmission is jammed, so it is failed.

Thus UFH breaks the circular dependence by not relying on the hopping pattern [9]

and by establishing a secret key when the transmission is successful. In [9], it is shown that

UFH scheme can be as resistant to jamming as coordinated frequency hopping. The authors

assume the legitimate communication nodes have the ability to store a few megabytes of

data and can perform elliptic curve cryptography (ECC) based public key cryptography.

The attacker in this model is computationally bounded and also energy constrained. The

goal of the attacker is to interfere the communication of the legitimate nodes by inserting

messages, modifying messages or jamming messages. In their scheme, a message M which

is going to be sent by transmitter is split into l fragments M1, M2,..., Ml. And the behavior

of transmitting fragment Mj does not relate to any channel and does not relate to the

fragments sent before. The authors call this scheme randomized. At the receiver side,

the fragments of message M should be reassembled. This process is to avoid the jamming

attack. In this paper, the authors assume that the receiver switches channel less often than

the transmitter, thus reducing the number of partially received fragments. The scheme

of avoiding inserting messages and modifying messages is also designed using Hash link.

For each fragment Mi, some additional messages are added to Mi to form a packet mi =

id|i|Mi|h(mi+1). id is the message identifier, i is the fragment number, Mi is the fragment

of the message, and h(mi+1) is the hash value of the next packet. For the last packet,

ml = id|l|Ml|h(M1), so it forms an unbreakable hash link in the fragments of messages.

This ensures the attacker cannot perform effective inserting or modifying attack. The

hash-linked packets are transmitted with a high number of repetition. The transmission is

successful when the transmitter receives the reply that the reassembling is successful and

then the transmission is finished. The transmission can also be finished unsuccessfully with

the number of repetitions has exceeded an threshold value. When the packets are received,

the receiver starts to compute the packets into a whole message. First, the receiver link the
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packets according to the fragment number. Second, the receiver computes the hash value

of the i + 1th packet h(mi+1) and compares it with the hash value part in the previous

packet. When all the packets are linked successfully, the receiver sends the reply message.

For the security analysis, given two consecutive packets mi−1 = id|i − 1|Mi−1|h(mi) and

mi = id|i|Mi|h(mi+1) where 2 < i < l, the attacker need to forge a m
′
i. So the attacker

needs to find hi = h(id|i|Mi|hi+1) = h(id|i|M ′
i |h

′
i+1). But this means to find a collision of

hash function h(·), so this is impossible for the computationally bounded attacker to find a

collision of hash function. The process that last packet in chain linking to the first packet

avoids inserting additional chain heads. The attacker needs to forge a m
′
1 = id|1|M ′

1|h2 for

m1 = id|1|M1|h2. So h(M1) = h(M
′
1), which also means finding a collision for h(·). This

UFH scheme for key establishment works like this: first, the transmitter and receiver use

a key establishment protocol to generate a key and use the UFH scheme to communicate

to agree on a key; second, the transmitter and receiver use this key to find the hopping

sequence. In this model, the authors show that for all attacker types, jamming is the best

strategy for the attacker. The authors also state that there is no prior work that focuses

on circular dependence of anti-jamming establishment and they have not been able to find

a scheme to transfer arbitrary length messages without a pre-shared key.

Comparing to FH, UFH does not need shared secrets and synchronization. However,

UFH suffers from low throughput [6], as the transmitter and receiver are uncoordinated

and hence most of them they are operating at the same channel.

1.4 Existing Schemes to Improve Efficiency

As discussed above, since the hopping in UFH is uncoordinated, UFH often achieves a

low efficiency [6]. To alleviate this problem, there have been some recent works attempting

to increase the throughput of UFH. They mainly focus on two aspects: learning based

approach and cooperative broadcasting approach, which will be discussed in Section 1.4.1

and Section 1.4.2 respectively. Section 1.4.3 will discuss some other research related to

UFH.
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1.4.1 Learing Based Approach

In [6], the authors develop an almost optimal and adaptive UFH-based anti-jamming

scheme and give the thorough quantitative performance analysis for this type of schemes.

The UFH-based anti-jamming communication is formulated as a non-stochastic Multi-

armed Bandit Problem and online adaptive UFH algorithm against oblivious and adaptive

jammer is proposed. The authors show that the performance difference between their algo-

rithm and the optimal one is no more than O(kr
√
Tn lnn) in T timeslots, where kr is the

number of frequencies the receiver can receive simultaneously and n is the total number of

orthogonal frequencies. A thorough quantitative performance under various strategies of

the sender, the receiver and the jammer is made. The authors also analyze the parameter

selection to achieve the optimality. In the model of this paper, each node can transmit and

receive over ks and kr channels respectively, where ks ≤ n and kr ≤ n. It is also assumed

that the three parties, i.e., the transmitter, the receiver and the jammer have no prior

knowledge of others’ strategy. The authors do not consider message authentication and

privacy in this model because this can be achieved on the application layer. The authors

assume the jammer can jam kj channels in one timeslot. The authors divide the jammers

into two categories: oblivious jammer and adaptive jammer. The oblivious jammer selects

the jamming strategy independent of the past channel status he has observed. The adaptive

jammer can adaptively change his jamming strategy based on his past experiences and ob-

servations. In this paper, the authors do not assume the channel quality can be estimated

and known before or during transmission. So the algorithm proposed is trying to do online

learning the strategy of jammer and use the strategy of jammer to achieve optimality.

In [10], the authors consider power control jointly with UFH problem. The proposed

approach in this paper utilizes online learning theory to determine both the hopping chan-

nels and the transmitting powers based on the history of channel status. The sender in this

model has a power limited budget. Using the proposed approach, the transmitter can choose

both transmission power of each channel and which channel to transmit simultaneously.

In [11], the authors discuss primary user emulation (PUE) attack to fight over channels

with the secondary user in cognitive radio systems. In this scenario, there are two parties
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instead of three parties in the UFH model. The authors model the PUE and random hopping

as a zerosum game between the attacker and secondary user. The Nash equilibrium of this

model is found. One important assumption here is that the channel statistics are known.

In this paper, available probability of each channel is known.

In [12], the authors change known channel statistics model into unknown channel statis-

tics model. In this model, the secondary users need to face the challenge that how to

address the uncertainties in the channel statistics and the attacker’s policy. The authors

adopt adversarial bandit algorithm which is significantly modified in the context of blind

dogfight in spectrum. This is actually a way to learn the optimal defense strategy using

past experience and adaptively change the strategy to the channel dynamics and attack

strategy. This key idea is similar as [6] which focuses on a different problem.

The learning based approach implicitly assumes that the strategy of the jammer is fixed.

What if the attacker is also intelligent so that the attacker can implement learning method

to learn the strategy of the legitimate users and adjust its own strategy? For intelligent

attackers, we can not use learning based approach and optimize the throughput using the

learned strategy of the attacker since the strategy of the jammer is no longer fixed. This

motivates us to think about the UFH problem with intelligent jammers.

1.4.2 Cooperative Broadcasting Approach

In [13], [14], [15], [16], [17] , [18] and [19], a collaborative UFH-based broadcast (CUB)

scheme to achieve a higher communication efficiency is proposed and the main idea is to

allow nodes that already receive the message to help broadcast. The authors show that their

CUB scheme can achieve higher communication efficiency and is more resistant to jamming

attack than existing jamming resistant broadcast scheme. In this paper, the authors assume

a source node intends to transmit a message to N nodes. The analysis is mainly focused

on single hop. The message is split into M fragments of equal length, and each of them

is transmitted during one time slot (frequency hop). The CUB scheme is an extension

of previous pair-wise UFH schemes. The authors name the straightforward extension of

UFH in the broadcast scenario without cooperation as UFH-based Broadcast (NUB). In

NUB, each node selects one of C channels in each time slot to receive a packet, and repeat
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this until the whole broadcast message is received. NUB does not have relay nodes in the

broadcast process and in this paper it is shown that NUB takes longer time than pairwise

transmission to a single receiver. The authors mainly focus on jamming attack and assume

the computation and transmission capability of the attacker is bounded. The time slot

is tp, and the jamming attack needs tp̄ to successfully jam a packet, and it takes ts time

to sense a channel. The authors categorize the jamming attacks into responsive attacks

and nonresponsive attacks, based on whether the jammer senses the transmission before

implementing jamming attacks. For responsive attacks, it is assumed that CJ channels can

be blocked simultaneously and tJ time is needed to switch those channels. In one time slot,

the number of channels can be jammed is nJCJ and nJ =
tp

tp̄+tJ
. For nonresponsive attacks,

it is assumed that Cs channels can be sensed simultaneously. In one time slot, the number

of channels can be sensed is nsCs and ns =
tp−tp̄−tJ

ts
. The authors assume the attacker can

implement responsive and nonresponsive attacks simultaneously, which is a worst case, and

they call it responsive-sweep strategy. In this worst case, the attacker can jam nsCs+nJCJ

channels in one time slot, and each time slot is jammed with probability nsCs+nJCJ
C . The

authors propose three relay channel selection strategies: Random Relay Channel selection

(RRC), Sweep Relay Channel selection (SwRC), and Static Relay Channel selection (StRC).

In RRC, each relay node selects randomly and independently one channel in all C channels

to transmit a packet. But RRC often results in collision, which is two relay nodes select one

same channel. SwRC is an idealized version of RRC. In SwRC, the first node selects one

channel in all C channels, and the second node selects one channel in the left C−1 channels

and so on. SwRC avoids collision but it requires a lot of information exchange between relay

nodes. In StRC, the selection of channels is no longer random, the channels in broadcast

process is fixed and nonoverlapping. The authors assume the nodes have unique IDs and a

suitable algorithm can make the probability of channel collision is negligible. The authors

mainly adopt a Random Receiving Channel Selection (RRxC) scheme which means the

receiver hops randomly among the C channels. Specially, for StRC, the authors design an

Adaptive Receiving Channel selection (ARxC) strategy. As the StRC, each node in ARxC

is assumed to know the relay channel list. If all the relay channels in the channel list are

jammed, the strategy is switched to RRxC. In CUB, the authors design the control scheme of
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transmission duration, the transmitter (source node or relay node) stops transmitting when

a ACK signal is received or a maximum transmission duration is reached. The authors

also analyze the cooperation gain of RRC and StRC strategy. Simulations also indicate a

significant improvement of performance of CUB compared to noncollaborative UFH-based

broadcast scheme.

[20] investigates efficient Media Access Control (MAC) strategies for the UFH-based

collaborative broadcast. To minimize the broadcast delay and to significantly reduce energy

cost, the closed-form expression of channel access probabilities is given. This paper is based

on [14]. The authors mainly consider two issues: broadcast delay and total energy cost. The

authors divide the synchronization among the relays and source into two categories. The

first category is perfect synchronization relays, all transmitters are synchronized both in

time and transmission content. The second category is asynchronous relays, which is more

realistic one, where two or more transmission over the same channel fail. The broadcast

delay is the time from the beginning of the transmission to the message is successfully

received by the receiver. The energy consumption is all the energy consumed in this process.

The authors give the minimal delay strategy and energy efficient strategy. The authors show

that if broadcast delay is the main concern, the relays should aggressively access the wireless

media. As the network grows, to reduce energy consumption, the channel access probability

should be gradually reduced.

[21] addresses the problem of anti-jamming broadcast communication among nodes

that do not share secret keys. This paper is based on [9]. Three instances of Uncoordi-

nated Spread Spectrum (USS) are presented: Uncoordinated Frequency Hopping (UFH),

Uncoordinated DSSS (UDSSS) and hybrid UFH-UDSSS. UFH randomizes the selection of

the frequency channels and UDSSS randomizes the selection of the spreading codes. The

feasibility and practicability of the schemes proposed was demonstrated by a USRP/GNU

Radio based prototype implementation.

Cooperative broadcasting approach does not focus on improving the throughput of one

hop in UFH. If the throughput of one hop can be increased by choosing appropriate strategy,

the total throughput of cooperative broadcasting can be increased automatically. As the

result, we mainly focus on optimizing the throughput of one hop in UFH.
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1.4.3 Other Research about UFH

In [22], the authors propose a new USD-FH scheme for Diffie-Hellman (DH) key estab-

lishment using UFH before the FH communication starts. This is based on [9], and tries to

design a more efficient scheme. The advantage of this scheme over others is that it does have

to split the DH message into multiple packets. The basic idea of USD-FH is to transmit

each DH key establishment message using a one time pseudorandom hopping pattern, and

before the actual message transmission, the seed of the pseudorandom pattern is disclosed.

For energy bounded jammer, it is very difficult to jam all the channels, so there is always a

chance that the receiver gets the seed of the pseudorandom hopping pattern while the jam-

mer does not. Since the jammer cannot jam the message transmitted using pseudorandom

hopping pattern, so the receiver can receive the DH message correctly. This paper uses

UFH to establish key before FH communication.

[23] mainly talks about the coordination between a secondary transmitter and a sec-

ondary receiver in order to use the same spectrum white space. This is similar to the

synchronization between the transmitter and receiver in UFH. The authors build a new

transmission scheme within a framework of frequency-hopping spread spectrum (FHSS)

transmission with M-ary frequency-shift keying (M-FSK) modulation. When the white

space detection error is large, which happens more often during the beginning stage of the

secondary user transmission, the spreading gain is increased to reduce the interference to

the primary user. When the white space error detection is small enough, which happens

more often after beginning stage of transmission, the white space in spectrum is known, the

spreading gain is decreased to increase the data rate of the secondary users. The purpose

of using FHSS is to avoid interference and to improve security.

In [24], the authors propose an approximation for the channel capacity of M-frequency

T-user multiple access channel.

In [25], the authors propose a detection scheme for uncoordinated narrow-band FH

systems. The detection scheme can detect the existence and the number of the narrow-

band signals colliding with the desired signal.

These papers are mainly focus on designing the UFH scheme in different specific scenar-
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ios. In this thesis, the original model proposed in [9] is used which will lead to more general

results.

1.5 Summary of Thesis

In this thesis, the goal is to optimize the throughput of UFH assuming that the

attacker is intelligent. Since the jammer is intelligent, it will also adapt its attack

strategy. Hence, when we design our optimal hopping strategy, we need to take the dynamics

of the attacker into consideration. In this thesis, we model the interaction of the legitimate

users and the jammer in UFH as a zero-sum game, and study the optimal hopping strategy

of the legitimate users and correspondingly the optimal attack strategy of the jammer using

game theory [26]. In this thesis, we use the name “Alice” to denote the transmitter, “Bob”

to denote the receiver and “Eve” to denote the jammer.

The organization and main contributions of the thesis are the following:

• In Chapter 2, the background of the zero-sum game and the Nash equilibrium are

introduced.

• In Chapter 3, the zero-sum game model of UFH is introduced. The strategies of the

transmitter, the receiver and the attacker are defined. The definition of the Nash

equilibrium of our game is also given.

• In Chapter 4, we study the case that all the channels have the same capacity. We

fully characterize the Nash equilibrium for this case. In the Nash equilibrium, Alice,

Bob and Eve always operate on the same set of channels. We show that Alice, Bob

and Eve always access or jam all channels. Alice, Bob and Eve access or jam each

channel with an equal probability. The average throughput is a decreasing function

of N for N ≥ 2, where N is the total number of channels.

• In Chapter 5, we study the general channel quality case with R1 ≤ R2 ≤ ... ≤ RN ,

where N is the total number of channels. We fully characterize the Nash equilibrium

for this case. In the Nash equilibrium, Alice, Bob and Eve always operate on the

same set of channels. Alice, Bob and Eve do not always access or jam all channels.
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A new variable k∗ is introduced and it is for Alice, Bob and Eve to decide on which

channels they should take actions. k∗ separates “good” channels and “bad” channels.

Alice, Bob and Eve have no motivation to access or jam channels from 1 to k∗ − 1.

When the channel quality is better, Eve jams this channel with a larger probability

while Alice and Bob access this channel with a smaller probability. It is simple to

verify that N − k∗ + 1 ≥ 2. This implies that Alice and Bob will access at least two

channels. Otherwise, if they access only one channel, this channel will be jammed by

the attacker with probability 1.

• In Chapter 6, we extend the model into one access multiple jamming case, in which

case Alice and Bob can access one channel in one timeslot, while Eve can jam multiple

channels in one timeslot. We fully characterize the Nash equilibrium for this case. In

the Nash equilibrium, Alice, Bob and Eve always operate on the same set of channels.

Alice, Bob and Eve do not always access or jam all channels. k∗ is a variable that is for

Alice, Bob and Eve to decide on which channels they should take actions. k∗ separates

“good” channels and “bad” channels. Alice, Bob and Eve have no motivation to access

or jam channels from 1 to k∗ − 1. k∗ is determined by the channel capacity and Mj ,

and it is not related to Alice and Bob. When the channel quality is better, Eve jams

this channel with a larger probability while Alice and Bob access this channel with a

smaller probability. It is simple to verify that N − k∗ + 1 ≥ Mj + 1, and Mj is the

number of channels Eve can jam in one timeslot. This implies that Alice and Bob

will access at least Mj + 1 channels. Otherwise, if they access only Mj channels, this

channel will be jammed by the attacker with probability 1.

• In Chapter 7, we extend the model into multiple access one jamming case, in which

case Alice and Bob can access multiple channels in one timeslot, while Eve can jam

one channels in one timeslot. In the Nash equilibrium, Alice, Bob and Eve do not

always operate on the same set of channels. k∗ is a variable that is for Alice, Bob

and Eve to decide on which channels they should take actions. k∗ separates “good”

channels and “bad” channels. Alice, Bob and Eve have no motivation to access or jam

channels from 1 to k∗ − 1. But in some cases, Alice and Bob have to access channels
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from 1 to k∗−1. k∗ is determined by the channel capacity and Mj , and it is not related

to Alice and Bob. When the channel quality is better, Eve jams this channel with a

larger probability while Alice and Bob access this channel with a smaller probability.

It is simple to verify that N − k∗+1 ≥ 2. This implies that Alice and Bob will access

at least two channels. Otherwise, if they access only one channel, this channel will be

jammed by the attacker with probability 1.

• In Chapter 8, we extend the model into multiple access multiple jamming case, in

which case Alice and Bob can access multiple channels in one timeslot, and Eve can

jam multiple channels in one timeslot. In the Nash equilibrium, Alice, Bob and Eve do

not always operate on the same set of channels. k∗ is a variable that is for Alice, Bob

and Eve to decide on which channels they should take actions. k∗ separates “good”

channels and “bad” channels. Alice, Bob and Eve have no motivation to access or jam

channels from 1 to k∗ − 1. But in some cases, Alice and Bob have to access channels

from 1 to k∗−1. k∗ is determined by the channel capacity and Mj , and it is not related

to Alice and Bob. When the channel quality is better, Eve jams this channel with a

larger probability while Alice and Bob access this channel with a smaller probability.

It is simple to verify that N − k∗ + 1 ≥ Mj + 1. This implies that Alice and Bob will

access at least Mj + 1 channels. Otherwise, if they can access only Mj channels, this

channel will be jammed by the attacker with probability 1.

• In Chapter 9, numerical simulations of our optimal strategies are shown. The proper-

ties of optimal strategies are shown, and we find that the “waste case” which should

be avoided. The comparison between our optimal strategy and the learning approach

algorithm is shown.

• In Chapter 10, conclusions of this thesis are given.
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Chapter 2

Background

In this chapter, we introduce the background of strategic games, including zero-sum

game which will be used to model UFH in this thesis in Section 2.1. In Section 2.2, we

introduce and discuss the concept and implications of the Nash equilibrium.

2.1 Zero-sum Game

A strategic game is a model used to model the interaction of a set of decision mak-

ers [27]. The concept of strategic game theory is widely used in economics, political science,

and psychology, as well as logic and biology [27]. In game theory, the decision makers of a

game is referred as players [27]. In a strategic game model, the interactions between players

are affected not only by his own actions, but also by the actions taken by other players [27].

There is a clear distinction between a strategic game and a one party optimization prob-

lem [28]. The players in a strategic game usually do not have complete control of the result

of their actions, which suits the case in UFH with intelligent jammers, but in a one party

optimization problem, the result can be completely controlled by his own actions, so in

strategic game, we usually cannot get a global optimization result [28].

In strategic games, each player has his own action set [27], which is the set of actions the

player can take. The action set can be the same for all players, and can also be different for

different players. Each player in a game should has preferences over the action set, which

means the player may prefer some actions more than others because those actions can give
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him more reward. Overall, a strategic game consists of a set of players {1, · · · , N}, a action

set Yi = {yi} for each player and preferences over the action set for each player [27]. And

the preference is a function of strategy in the action set, and is usually called the payoff

function ui, which depends not only on his own action but the actions of other players of

the game.

From the angle of cooperation, there are two types of games: cooperative games and

noncooperative games [27]. In noncooperative games, zero-sum game is one of the most

important form. Zero-sum game is usually used to describe the situation when the players

are in competitive relationship. Players in zero-sum game do not cooperate and the gain of

one player will lead to loss to the other player [28]. As the name of zero-sum game implies,

in zero-sum game the sum of total rewards of all the players is identically zero [27]:

N∑
i=1

ui(y1, · · · , yN ) = 0. (2.1)

In some games, the sum of the total reward is not zero, but a nonzero constant [27]. We

may refer this kind of games including zero-sum game as “constant-sum” game [27]. One

property of zero-sum game which makes it widely used is that, nonzero constant games can

be easily transformed to zero-sum games without changing the nature of the games [27]. So

when we model a constant-sum game, we always choose zero-sum game for it is the same

in nature as nonzero constant-sum game [27].

2.2 Nash equilibrium

As the previous section stated, in strategic games, the global optimization usually cannot

be reached due to the partial control to the game of each player [28]. This is due to the fact

that the optimal action of one player depends on the actions taken by other players [27].

So when choosing an action a player must take account into the actions taken by other

players [27]. So the “belief” of other players is very important. This “belief” may be from

the past experience of other players and this experience is sufficient for the player to predict

what the opponents will behave [27]. Given the other players’ strategies, if the player is

rational, he can choose the optimal strategy. Under this circumstance, the optimal strategy
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of each player given other players’ strategies is important at the optimization aspect [27].

In game theory, the Nash equilibrium is a solution concept of a non-cooperative game

involving two or more players, in which each player is assumed to know the equilibrium

strategies of the other players, and no player has anything to gain by changing only his own

strategy unilaterally [27].

Definition 2.2.1. Let yi denote the strategy of player i, and y−i denote the set of strategies

of players except for player i. ui is the payoff function of player i. y∗ is said to be a Nash

equilibrium if for each player i and every strategy yi taken by the player, y∗ is at least as

good as the strategy (yi, y
∗
−i) in which player i chooses yi while every other player j chooses

y∗j . That is, for every player i and ∀ yi,

ui(y
∗) ≥ ui(yi, y

∗
−i). (2.2)

This definition can be explained this way: if each player has chosen a strategy and

no player can benefit by changing his or her strategy while the other players keep theirs

unchanged, then the current set of strategy choices and the corresponding payoffs constitute

a Nash equilibrium [27]. In the Nash equilibrium, changing one’s own strategy unilaterally

can not lead to a greater reward [27] for him. Everyone is taking his best strategy while

taking into account the decisions of the others [27].

For the UFH problem, if the strategy taken by the legitimate transmitter and receiver

is in the Nash equilibrium, from definition it can be concluded that the jammer cannot do

better even if he knows the strategy of the legitimate transmitter and receiver. So algorithm

of learning the strategy taken by the legitimate transmitter and receiver and then design a

optimal strategy will not work in the Nash equilibrium. This also secures the UFH in the

sense of data rate.
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Chapter 3

Model

In this chapter, we introduce the basic model of our UFH problem. At the same time,

the definition of parameters and the Nash equilibrium in our model are given.

We consider a time-slotted wireless system with N channels, each with channel capacity

Ri, i = 1, · · · , N . Without loss of generality, we assume R1 ≤ R2 ≤ ... ≤ RN . Here, to

assist the presentation, we assume that all terminals can access or jam one channel at any

given time slot. The more general case in which the terminals can access or jam more than

one channel at each time slot will be considered in Chapter 6, Chapter 7 and Chapter 8. In

UFH, the transmitter (Alice) and receiver (Bob) hop randomly through these N channels.

We use pti and pri to denote the probabilities that Alice and Bob will access channel i at

any time slot respectively. Furthermore, we define pt , [pt1, · · · , ptN ] and pr , [pr1, · · · , prN ]

with
∑

pti = 1 and
∑

pri = 1. The jammer will jam channel i with a probability pji , and

similarly we define pj , [pj1, · · · , p
j
N ] with

∑
pji = 1. We assume that if Eve chooses to jam

a channel, then the communication between Alice and Bob through that channel will fail.

The transmission between Alice and Bob is successful when Alice and Bob use the same

channel and at the same time and Eve is not jamming this channel. And we use A, B and

E to denote the support set of channels, for channels in the support set, Alice, Bob and

Eve will access or jam with non-zero probabilities.

Figure 3.1 shows 3 different scenarios of UFH:

1. In timeslot 1, both transmitter and receiver are in channel 5, while Eve is not in
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Figure 3.1: System model.

channel 5. The transmission is successful.

2. In timeslot 2, the transmitter and receiver are not in the same channel. The trans-

mission is failed.

3. In timeslot 3, both transmitter and receiver are in channel 3, while Eve is also in

channel 3. This transmission is jammed, so the it is failed.

The average throughput of UFH is

R̄ =

N∑
i=1

Rip
t
ip

r
i

(
1− pji

)
. (3.1)

Clearly, in UFH, Alice and Bob would like to maximize the average throughput, while

Eve would like to minimize it. We model this scenario as a zero-sum game, with Alice and

Bob being one party and Eve being the other party. In this game, the strategy of Alice and

Bob is to choose pt and pr, and the strategy of Eve is to choose pj . The reward for Alice

and Bob is R̄ and the reward for Eve is −R̄. A strategy pair {(pt∗,pr∗),pj∗} is called a
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Nash equilibrium if

R̄
(
pt,pr,pj∗

)
≤ R̄

(
pt∗,pr∗,pj∗

)
, ∀pt,pr, (3.2)

−R̄
(
pt∗,pr∗,pj

)
≤ −R̄

(
pt∗,pr∗,pj∗

)
, ∀pj . (3.3)

This implies that neither party will receive a larger reward by unilaterally deviate from this

equilibrium, hence they have no motivation to do so.
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Chapter 4

Equal Channel Quality Case

In this chapter, we study the case when all the channels have the same capacity, which

is R1 = R2 = ... = RN . The Nash equilibrium is given at the beginning of this chapter, and

the proof is given in Section 4.1. Remarks are given in Section 4.2.

We can denote

Ri = R, ∀i ∈ {1, 2, ..., N}. (4.1)

Lemma 4.0.2. In this case, the Nash Equilibrium is:

pti
∗
= pri

∗ = pji
∗
=

1

N
, (4.2)

for ∀i ∈ {1, 2, ..., N}.

This result is intuitive which is illustrated in Figure 4.1, Figure 4.2 and Figure 4.3.

Figure 4.1 shows the channel capacity are the same for all channels. Figure 4.2 shows the

strategy of Alice and Bob, they access all the channels with equal probability. Figure 4.3

shows the strategy of Eve, she jams all the channels with equal probability.

4.1 Proof

The proof is organized as:

Let A, B and E denote the support set for Alice, Bob and Eve respectively. In Sec-

tion 4.1.1,we prove E = {1, 2, ..., N}. In Section 4.1.2, we prove E ⊆ A , E ⊆ B, A = B.

So A = B = E = {1, 2, ..., N}. In Section 4.1.3, we determine the Nash equilibrium.
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Figure 4.1: Channel Capacity (N=15).
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Figure 4.3: P j∗ (N=15).

Proof. The reward of Alice and Bob accessing channel i is:

Ri

(
1− pji

)
= R

(
1− pji

)
. (4.3)

The reward of Eve jamming channel i is:

−
N∑

j=1,j ̸=i

Rjp
t
jp

r
j = S +Rip

t
ip

r
i , (4.4)

where S = −
∑N

j=1Rjp
t
jp

r
j .

Then we derive the Nash equilibrium step by step.

4.1.1 Prove: E = {1, 2, ..., N}.

If E ̸= {1, 2, ..., N}, then ∃i ∈ {1, 2, ..., N} s.t. pji
∗
= 0.

Case 1: pti
∗
= pri

∗ = 1, then it is obvious for Eve to increase his reward by jamming

channel i. So this is not a Nash equilibrium.

Case 2: pti
∗ ̸= 1 and pri

∗ ̸= 1. Since Eve never jams channel i, so Alice and Bob can

always increase their reward by allocating more probability into channel i. But they cannot
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achieve maximum reward by setting pti
∗
= pri

∗ = 1. So Alice and Bob can always increase

their reward by changing their strategy unilaterally. This is not a Nash equilibrium.

From above, we can conclude E = {1, 2, ..., N}.

4.1.2 Prove: E ⊆ A , E ⊆ B, A = B.

If E * A, then Eve is jamming some channel that is never used by the transmitter. So

Eve can increase his reward by jamming some other channel. So E ⊆ A 1. The proof is the

same for E ⊆ B.

If A ̸= B, then Alice is transmitting on some channel that is can never used by Bob

or Bob is listening on some channel that Alice’s message never comes from. This means

Alice or Bob is wasting her or his resources. So Alice and Bob can increase their reward by

allocating their probability on the same set of channels. Thus, A = B.

The above conclusion implies that if all the channel quality are equal, then A = B =

E = {1, 2, ..., N}.

4.1.3 Determine pt∗, pr∗ and pj∗

First we will show that to achieve the Nash equilibrium, 1− pji
∗
= C0 and pti

∗
pri

∗ = C1,

where C0 and C1 are constants independent of i.

If 1− pji
∗ ̸= C0, then ∃l1, l2 ∈ {1, 2, ..., N} s.t.

1− pjl1
∗
= max{1− pji

∗}, (4.5)

1− pjl1
∗
> 1− pjl2

∗
, (4.6)

where i ∈ {1, 2, ..., N},

R̄ = R[ptl1
∗
prl1

∗
(
1− pjl1

∗)
+ ptl2

∗
prl2

∗
(
1− pjl2

∗)
+

N∑
i=1
i̸=l1
i̸=l2

pti
∗
pri

∗
(
1− pji

∗)
]. (4.7)

So there exist another strategy of Alice and Bob pt
′
and pr ′ , which satisfy that for i ̸= l1

1The ⊆ symbol does not mean proper set in this thesis.
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and i ̸= l2,

pti
′
= pti

∗
, pri

′
= pri

∗, (4.8)

ptl1
′
> ptl1

∗
, prl1

′
> prl1

∗, (4.9)

ptl2
′
< ptl2

∗
, ptl2

′
< ptl2

∗
. (4.10)

This implies

ptl1
′
+ ptl2

′
= ptl1

∗
+ ptl2

∗
, (4.11)

prl1
′
+ ptl2

′
= prl1

∗ + ptl2
∗
. (4.12)

We can always find strategy pt
′
and pr ′ because we have proved A = B = E = {1, 2, ..., N},

which means the probability of accessing each channel in the game is nonzero. It is obvious

that the strategy pt
′
and pr ′ can increase the reward of Alice and Bob. So Alice and Bob

can always increase their reward by moving their probability of accessing channel l2 into

accessing channel l1. Thus this is not a Nash equilibrium. Then 1− pji
∗
= C0. This means

that all the pji
∗
are all equal, so pji

∗
= 1

N .

Similar to the proof of 1− pji
∗
= C0, if p

t
i
∗
pri

∗ ̸= C1, then ∃l3, l4 ∈ {1, 2, ..., N} s.t.

ptl3
∗
prl3

∗ = max ptip
r
i , (4.13)

ptl3
∗
prl3

∗ > ptl4
∗
prl4

∗. (4.14)

So Eve can always increase his reward by moving his probability of jamming channel l4

into jamming channel l3. So this is not a Nash equilibrium. Then in the Nash equilibrium

pti
∗
pri

∗ = C1.

Under the Nash equilibrium,

R̄ =
N∑
i=1

C1

(
1− 1

N

)
= (N − 1)C1. (4.15)

Since Alice and Bob form one party of the game, so the we can take the pair (pt,pr) as the

strategy of Alice and Bob. So Alice and Bob want maximize R̄, that is, to maximize C1.

We build two vectors

A⃗1 = [
√

pt1,
√

pt2, ...,
√

ptN ], (4.16)

A⃗2 = [
√

pr1,
√

pr2, ...,
√

prN ], (4.17)
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A⃗1 and A⃗2 are two vector in RN . Then |A⃗1| = 1 and |A⃗2| = 1.

A⃗1 · A⃗2 =

N∑
i=1

√
pti

∗√
pri

∗ =

N∑
i=1

√
C1 = N

√
C1, (4.18)

so we can convert the problem of maximizing C1 into maximizing A⃗1 · A⃗2.

A⃗1 · A⃗2 = |A⃗1||A⃗2| cos θ ≤ |A⃗1||A⃗2| = 1, (4.19)

the equality holds when θ = 0, where θ is the measure of angle between A⃗1 and A⃗2. So we

can maximize C1 by setting θ = 0. The two vectors A⃗1 and A⃗2 have the same length, and

the same direction, so they are equal. So

pti
∗
= pri

∗ =
√

C1, ∀i ∈ {1, 2, ..., N}. (4.20)

Then we can determine

pti
∗
= pri

∗ =
1

N
, ∀i ∈ {1, 2, ..., N}. (4.21)

From the proof above, Alice and Bob cannot increase their reward by changing to another

strategy unilaterally.

So in the equal channel quality scenario, the Nash Equilibrium is

pti
∗
= pri

∗ = pji
∗
=

1

N
, (4.22)

for ∀i ∈ {1, 2, ..., N}.

4.2 Remark

Remark 4.2.1. Since the Nash equilibrium is obtained, the average throughput is

R̄ = R
N − 1

N2
. (4.23)

Remark 4.2.2. In the Nash equilibrium, Alice, Bob and Eve always operate on the same

set of channels. In particular, A = B = E = {1, · · · , N}.

Remark 4.2.3. Alice, Bob and Eve always access or jam all channels.

Remark 4.2.4. Alice, Bob and Eve access or jam each channel with equal probability.

Remark 4.2.5. R̄ is a decreasing function of N for N ≥ 2. Notice R̄ reach maximum

when N = 2.
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Chapter 5

General Channel Quality Case

In this chapter, we study the a more general case, R1 ≤ R2 ≤ ... ≤ RN . We characterize

the Nash equilibrium of the game for this general channel quality case. During the deriva-

tion, we also study the properties of the strategies that achieve this equilibrium. The Nash

equilibrium is given at the beginning of this chapter, and the proof is given in Section 5.1.

Remarks are given in Section 5.2.

Lemma 5.0.6. The unique Nash equilibrium of this game is

pti
∗

= pri
∗ =

1√
Ri∑N

l=k∗
1√
Rl

, (5.1)

pji
∗

= 1−
N−k∗

Ri∑N
l=k∗

1
Rl

, (5.2)

for k∗ ≤ i ≤ N , where k∗ = min

{
k|Rk > N−k∑N

i=k
1
Ri

}
, and

pti
∗
= pri

∗ = pji
∗
= 0, ∀i < k∗. (5.3)

Figure 5.1, Figure 5.2 and Figure 5.3 give an example to illustrate our results. Figure 5.1

shows the channel capacity. Figure 5.2 shows the strategy of Alice and Bob, we can see that

Alice and Bob only access channels from k∗ to N , and when the channel quality is better,

Alice and Bob access this channel with a smaller probability. Figure 5.3 shows the strategy

of Eve, we can see that Eve only jams channels from k∗ to N , and when the channel quality

is better Eve jams this channel with a larger probability.
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Figure 5.1: Channel Quality (N = 15, k∗ = 12).
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Figure 5.2: P t∗(= P r∗) (N = 15, k∗ = 12).
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Figure 5.3: P j∗ (N = 15, k∗ = 12).

5.1 Proof

Proof. The proof is organized as follows. In Section 5.1.1, we show that in the Nash equi-

librium if Eve jams channel k with a non-zero probability, it will jam all channels that

have better channel qualities with a non-zero probability. Hence, there exists a number

1 ≤ k∗ ≤ N , such that the jamming set E has the form E = {k∗, k∗ + 1, ..., N}. In Sec-

tion 5.1.2, we show that E ⊆ A, E ⊆ B and A = B. In Section 5.1.3, we show that

A = B = E and determine the Nash equilibrium.

Before proceeding to the detailed proof, we have the following facts.

1. The reward of Alice and Bob both accessing channel i is

Ri

(
1− pji

)
. (5.4)

2. The reward of Eve jamming channel i is

−
N∑

j=1,j ̸=i

Rjp
t
jp

r
j = S +Rip

t
ip

r
i , (5.5)

where S , −
∑N

j=1Rjp
t
jp

r
j .
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Figure 5.4: Proof for E = {k∗, k∗ + 1, ..., N}.

5.1.1 Prove: if pjk
∗
> 0, then pji

∗
> 0 for all i > k. Hence, there exists a

number k∗ such that E has the form E = {k∗, k∗ + 1, ..., N}.

We will prove this by contradiction. Figure 5.4 shows the idea how to prove this. Suppose

this claim is not true, then in the Nash equilibrium strategy of Eve pj∗ , there exists some

k1 > k such that pj
∗

k1
= 0 and pjk

∗
> 0. That is, Eve gives up jamming some channel that

is not the worst in her support set. In this case, the reward of Alice and Bob accessing

channel k1 is

Rk1

(
1− pj

∗

k1

)
= Rk1 . (5.6)

Then we have

Rk1 ≥ Rk > Rk

(
1− pj

∗

k

)
.

We then have the following two cases, each of which will lead to a contradiction.

Case 1: If pt
∗
k = pr

∗
k = 0, that is Alice and Bob never use channel k. Then Eve

can increase its reward by reducing the probability of jamming channel k to zero. This

contradicts with the definition of the Nash equilibrium.

Case 2: If pt
∗
k > 0 or pr

∗
k > 0, then Alice and Bob can increase their rewards by

transferring their probability from channel k to channel k1. This contradicts with the

definition of the Nash equilibrium.
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Figure 5.5: Proof for E ⊆ A.

Figure 5.6: Proof for A = B.

This completes the proof that in the Nash equilibrium, E must have the form E =

{k∗, k∗ + 1, ..., N} with 1 ≤ k∗ ≤ N .

5.1.2 Prove: E ⊆ A, E ⊆ B and A = B

Figure 5.5 and Figure 5.6 show the idea how to prove this. If E * A, namely E\A ̸= ϕ,

then Eve is jamming some channels that are never used by the transmitter. Here E\A ,

{k|k ∈ E and k /∈ A}, and ϕ is the empty set. So Eve can increase his reward by moving

jamming probabilities from channels in E\A to channels in A, which contradicts the def-

inition of the Nash equilibrium. Hence, in the Nash equilibrium, we have E ⊆ A 1. The

proof of E ⊆ B is the same. If A ̸= B, then Alice is transmitting on some channel that

1The ⊆ symbol does not mean proper set in this thesis.
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is can never used by Bob or Bob is listening on some channel that Alice’s message never

comes from. This means Alice or Bob is wasting her or his resources. So Alice and Bob

can increase their reward by allocating their probability on the same set of channels. Thus,

A = B.

Now, we show A = B = {k1, k1 + 1, ..., N} with k∗ − 1 ≤ k1 ≤ k∗. Because we have

proved E ⊆ A, E ⊆ B and A = B, so we have two cases:

Case 1: A = B = E, so k1 = k∗.

Case 2: E ⊆ A and E ̸= A. Since Eve never jams channel 1 to k∗ − 1, so for channel 1

to k∗ − 1,
k∗−1∑
i=1

Rip
t
ip

r
i ≤ Rk∗−1

k∗−1∑
i=1

ptip
r
i ≤ Rk∗−1

(
k∗−1∑
i=1

pti

)(
k∗−1∑
i=1

pri

)
. (5.7)

The equality holds when Alice and Bob access channel 1 to k∗−2 with probability zero. So

Alice and Bob should put all their probability from channel 1 to k∗− 2 into channel k∗− 1.

Then Alice and Bob should set k1 = k∗ − 1. So A = B = {k∗ − 1, k∗, ..., N}.

5.1.3 Determine pt∗, pr∗ and pj∗

Figure 5.7, Figure 5.8 and Figure 5.9 show the high level idea how to determine pt∗,

pr∗ and pj∗. In the Nash equilibrium, in the support set, the reward should be equal to a

constant. Intuitively, if this is not true, the other party will find the channel with maximum

of the reward and use this channel. Next, the concrete proof is provided.

From the side of Eve, Eve is not going to jam channel k∗ − 1. So we have

Rk∗−1p
t∗
k∗−1p

r∗
k∗−1 ≤ Rk∗p

t∗
k∗p

r∗
k∗ = Rk∗+1p

t∗
k∗+1p

r∗
k∗+1 = ... = RNpt

∗
Npr

∗
N = C1, (5.8)

where C1 is a constant.

We have

Rk∗−1p
t∗
k∗−1p

r∗
k−1 ≤ C1, (5.9)

because if this inequality does not hold, then Eve can increase her reward by jamming

channel k∗ − 1 and thus contradicts with the definition of the Nash equilibrium.

From the side of Alice and Bob, we have

Rk∗−1 = Rk∗

(
1− pj

∗

k∗

)
= Rk∗+1

(
1− pj

∗

k∗+1

)
= ... = RN

(
1− pj

∗

N

)
= C0, (5.10)
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Figure 5.7: Channel capacity.
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Figure 5.9: Rewards of Eve for accessing each channel.

where C0 is a constant.

So this implies

Rk∗−1 < Rk∗ ≤ Rk∗+1 ≤ ... ≤ RN . (5.11)

We can find pj∗ first. From the discussion above, we know Ri(1 − pj
∗

i ) = C0 for ∀i ∈

{k∗, k∗ + 1, ..., N}. Then we have pj
∗

i = 1 − C0
Ri

for ∀i ∈ {k∗, k∗ + 1, ..., N}. Summing pj
∗

i

from k∗ to N , we have

1 =
N∑

l=k∗

pj
∗

l =
N∑

l=k∗

(
1− C0

Rl

)

= (N − k∗ + 1)− C0

N∑
l=k∗

1

Rl
.

From this, we have

C0 =
N − k∗∑N
l=k∗

1
Rl

,

pj
∗

i = 1−
N−k∗

Ri∑N
l=k∗

1
Rl

.

So we have C0 < Rk∗ ≤ Rk∗+1 ≤ ... ≤ RN . If Rm satisfies

Rm >
N −m∑N
i=m

1
Ri

, (5.12)
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then for m+ 1,

Rm

(
N∑

i=m

1

Ri

)
> N −m,

Rm

(
N∑

i=m+1

1

Ri

)
+ 1 > N −m,

Rm+1

(
N∑

i=m+1

1

Ri

)
> N − (m+ 1),

Rm+1 >
N − (m+ 1)∑N

i=m+1
1
Ri

,

m+ 1 also satisfies the inequality. The third inequality use the fact that Rm+1 ≥ Rm. By

induction, we can conclude that if k is in the set

{
k|Rk > N−k∑N

i=k
1
Ri

}
, then all the numbers

from k to N are also in that set. So for

j < min

{
k|Rk >

N − k∑N
i=k

1
Ri

}
, (5.13)

we have

Rj ≤
N − j∑N
i=j

1
Ri

. (5.14)

Next, we show that

k∗ = km , min

{
k|Rk >

N − k∑N
i=k

1
Ri

}
. (5.15)

We show this by contradiction. Suppose k∗ = k
′ ̸= km, we have the following two cases:

1. If k
′
> km, the reward of Alice and Bob accessing channel i ≥ k

′
is

Ri

(
1− pj

∗

i

)
=

N − k
′∑N

l=k
′

1
Rl

. (5.16)

From the discussion above, we know that for i < k
′
, pj

∗

i = 0. The reward of Alice and

Bob accessing channel k
′ − 1 is Rk

′−1. We have k
′ − 1 ≥ km, so

Rk′−1 >
N −

(
k

′ − 1
)

∑N
l=k

′−1
1
Rl

,

Rk′−1

 N∑
l=k

′

1

Rl
+

1

Rk′−1

 > N − k + 1,

Rk
′−1 >

N − k
′∑N

l=k
′

1
Rl

= Rk
′

(
1− pj

k′

)
.
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The right hand side term is the reward of Alice and Bob acessing channel k
′
. So the

reward of Alice and Bob accessing channel k
′ − 1 is better than accessing channel

k
′
. Hence, Alice and Bob has the motivation to deviate from this strategy, which

contradicts the definition of Nash equilibrium.

2. If k
′
< km, then

Rk′ ≤
N − k

′∑N
l=k′

1
Rl

, (5.17)

so

pj
k′

= 1−
N−k

′

Ri∑N
l=k

′
1
Rl

≤ 0.

This contradicts with our assumption that E = {k′
, k

′
+1, ..., N} which means pj

k′
> 0.

So in the Nash equilibrium,

k∗ = min

{
k|Rk >

N − k∑N
i=k

1
Ri

}
, (5.18)

pji
∗

= 1−
N−k∗

Ri∑N
l=k∗

1
Rl

, ∀i ∈ {k∗, k∗ + 1, ..., N}. (5.19)

In the following, we characterize pt∗ and pr∗ .

First we show that k1 = k∗. If k1 = k∗ − 1, then we have

Rk∗−1 = C0 =
N − k∗∑N
i=k∗

1
Ri

and

Rk∗ ≥ Rk∗−1.
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The total reward of Alice and Bob is

R̄ =

N∑
i=k1

Rip
t
ip

r
i (1− pji

∗
)

= Rk∗−1p
t
k∗−1p

r
k∗−1 + C0

(
N∑

i=k∗

ptip
r
i

)

= C0

(
ptk∗−1p

r
k∗−1 + ptk∗p

r
k∗ +

N∑
i=k∗+1

ptip
r
i

)

≤ C0

[
(ptk∗−1 + ptk∗)(p

r
k∗−1 + prk∗) +

N∑
i=k∗+1

ptip
r
i

]

= C0

[
ptk∗

′
prk∗

′
+

N∑
i=k∗+1

ptip
r
i

]
,

and the equality holds when ptk∗−1 = prk∗−1 = 0. So the reward of Alice and Bob will

increase if they transfer their effort of accessing channel k∗ − 1 to accessing channel k∗. So

k1 = k∗ − 1 is not a Nash equilibrium. So k1 = k∗.

Since k1 = k∗, we can build two vectors A⃗1 and A⃗2,

A⃗1 = [
√

pt
∗
1 ,
√

pt
∗
2 , ...,

√
pt

∗
N ],

A⃗2 = [
√

pr
∗

1 ,
√

pr
∗

2 , ...,
√

pr
∗

N ],

A⃗1 and A⃗2 are two vector in RN . Then |A⃗1| = 1 and |A⃗2| = 1.

A⃗1 · A⃗2 =

N∑
i=k∗

√
pt

∗
i pr

∗
i

=

N∑
i=k∗

√
C1

Ri

≤ |A⃗1||A⃗2| = 1,

the equality holds when A⃗1 and A⃗2 have the same direction. A⃗1 and A⃗2 also have same

length, so they are equal. Then

C1 =
1(∑N

l=k∗
1√
Rl

)2 .
So

pti
∗
= pri

∗ =

√
C1

Ri
=

1√
Ri∑N

l=k∗
1√
Rl

.
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So the Nash equilibrium is

pti
∗

= pri
∗ =

1√
Ri∑N

l=k∗
1√
Rl

,

pji
∗

= 1−
N−k∗

Ri∑N
l=k∗

1
Rl

,

for k∗ ≤ i ≤ N , where k∗ = min{k|Rk > N−k∑N
i=k

1
Ri

}.

5.2 Remark

Remark 5.2.1. Since the Nash equilibrium is obtained, the average throughput is

R̄ =
N − k∗(∑N
l=k∗

1√
Rl

)2 . (5.20)

Remark 5.2.2. In the Nash equilibrium, Alice, Bob and Eve always operate on the same

set of channels. In particular, A = B = E = {k∗, · · · , N}.

Remark 5.2.3. Alice, Bob and Eve do not always access or jam all channels. k∗ is a

variable that is for Alice, Bob and Eve to decide on which channels they should take actions.

Figure 5.10 shows k∗ separates “good” channels and “bad” channels. Alice, Bob and Eve

have no motivation to access or jam channels from 1 to k∗ − 1.

Figure 5.10: k∗ separates “good” channels and “bad” channels.

Remark 5.2.4. When the channel quality is better, Eve jams this channel with a larger

probability while Alice and Bob access this channel with a smaller probability.
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Remark 5.2.5. It is simple to verify that N − k∗+1 ≥ 2. This implies that Alice and Bob

will access at least two channels. Otherwise, if they access only one channel, this channel

will be jammed by the attacker with probability 1.
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Chapter 6

One Access Multiple Jamming

Case

In this chapter, we assume that Eve can jam more than one channels simultaneously,

while Alice and Bob can transmit and receive through only one channel each time. Let Mj

denote the number of channels Eve can jam simultaneously, 1 ≤ Mj ≤ N . Let ΩE denote

the set of channels Eve jams, where ΩE has Mj elements. So pji =
∑

ΩE
i∈ΩE

pjΩE
.

The Nash equilibrium is given at the beginning of this chapter, and the proof is given

in Section 6.1. Remarks about this case are given in Section 6.2.

Lemma 6.0.6. The Nash Equilibrium in this case is,

pti
∗
= pri

∗ =

1√
Ri∑N

l=k
1√
Rl

, (6.1)

pji
∗
= 1−

(N−k+1)−Mj

Ri∑N
l=k

1
Rl

, (6.2)

for k∗ ≤ i ≤ N , where k = min

{
k|Rk >

(N−k+1)−Mj∑N
i=k

1
Ri

}
, and

pti
∗
= pri

∗ = pji
∗
= 0, ∀i < k∗. (6.3)

Figure 6.1, Figure 6.2 and Figure 6.3 give an example to illustrate our results with

Mj = 2. Figure 6.1 shows the channel capacity. Figure 6.2 shows the strategy of Alice
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Figure 6.1: Channel Quality (N = 15, k∗ = 12).

and Bob, we can see that Alice and Bob only access channels from k∗ to N , and when

the channel quality is better, Alice and Bob access this channel with a smaller probability.

Figure 6.3 shows the strategy of Eve, we can see that Eve only jams channels from k∗ to

N , and when the channel quality is better Eve jams this channel with a larger probability.

6.1 Proof

Proof. Similarly, the can prove that E = {k∗, k∗+1, ..., N} and A = B = {k1, k1+1, ..., N},

k − 1 ≤ k1 ≤ k. The strategy of Eve in the Nash equilibrium be found, then we can get

A = B = E. Then we can get the Nash Equilibrium using vector.

The reward of Alice and Bob accessing channel i is

Ri

1−
∑
ΩE

i∈ΩE

pjΩE

 ,

where pjΩE
is the probability for Eve to choose jamming channel set ΩE .
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Figure 6.2: P t∗(= P r∗) (N = 15, k∗ = 12).
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Figure 6.3: P j∗ (N = 15, k∗ = 12).
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The reward of Eve jamming channel i is

∑
ΩE

i∈ΩE

−
∑
j /∈ΩE

Rjp
t
jp

r
j

 =
∑

ΩE
i∈ΩE

S +
∑
j∈ΩE

Rjp
t
jp

r
j

 ,

where S = −
∑

j Rjp
t
jp

r
j .

Similarly, the can prove that E = {k∗, k∗ + 1, ..., N} and A = B = {k1, k1 + 1, ..., N},

k∗ − 1 ≤ k1 ≤ k∗. To achieve the Nash equilibrium,

Ri

1−
∑
ΩE

i∈ΩE

pjΩE

∗

 = C1, ∀i ≥ k∗ (6.4)

∑
ΩE

i∈ΩE

S +
∑
j∈ΩE

Rjp
t
j
∗
prj

∗

 = C2,∀i ≥ k1 (6.5)

where C1, C2 are constants independent of ΩE .

From

Ri

1−
∑
ΩE

i∈ΩE

pjΩE

∗

 = C1,

we have

1−
∑
ΩE

i∈ΩE

pjΩE

∗
=

C1

Ri
,

N∑
i=k∗

1−
∑
ΩE

i∈ΩE

pjΩE

∗

 =

N∑
i=k∗

C1

Ri
,

(N − k∗ + 1)−
N∑

i=k∗

∑
ΩE

i∈ΩE

pjΩE

∗
= C1

N∑
i=k∗

1

Ri
,

(N − k∗ + 1)−

(
N−k∗

Mj−1

)
(N − k∗ + 1)(
N−k∗+1

Mj

) = C1

N∑
i=k∗

1

Ri
,

C1 =
(N − k∗ + 1)−Mj∑N

i=k∗
1
Ri

,

pji
∗
=
∑
Ω

i∈Ω

pjΩE

∗
= 1−

(N−k∗+1)−Mj

Ri∑N
l=k∗

1
Rl

.
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Similarly, we can prove

k∗ = min

{
k|Rk >

(N − k + 1)−Mj∑N
i=k

1
Ri

}
. (6.6)

Obviously, k∗ ≤ N −Mj , that is, Eve has at least Mj + 1 channels to jam, then Alice and

Bob have at least Mj + 1 channels to access.

From ∑
ΩE

i∈ΩE

S +
∑
j∈ΩE

Rjp
t
j
∗
prj

∗

 = C2,

noting S is the same for all different i and

|{ΩE |i ∈ ΩE}| =
(
N − k1
Mj − 1

)
(6.7)

is independent of i, we can rewrite equation 6.7 as

∑
ΩE

i∈ΩE

∑
j∈ΩE

Rjp
t
j
∗
prj

∗ = C3, (6.8)

where C3 is independent of i.

Let us consider two different channels i and j,

∑
ΩE

i∈ΩE

∑
m∈ΩE

Rmptm
∗
prm

∗ =
∑
ΩE

j∈ΩE

∑
m∈ΩE

Rmptm
∗
prm

∗,

∑
ΩE

i∈ΩE ,j∈ΩE

∑
m∈ΩE

Rmptm
∗
prm

∗ +
∑
ΩE

i∈ΩE ,j /∈ΩE

∑
m∈ΩE

Rmptm
∗
prm

∗

=
∑
ΩE

i∈ΩE ,j∈ΩE

∑
m∈ΩE

Rmptm
∗
prm

∗ +
∑
ΩE

i/∈ΩE ,j∈ΩE

∑
m∈ΩE

Rmptm
∗
prm

∗,

∑
ΩE

i∈ΩE ,j /∈ΩE

∑
m∈ΩE

Rmptm
∗
prm

∗ =
∑
ΩE

i/∈ΩE ,j∈ΩE

∑
m∈ΩE

Rmptm
∗
prm

∗,

∑
ΩE

i∈ΩE ,j /∈ΩE

∑
m∈ΩE\{i}

Rmptm
∗
prm

∗ +
∑
ΩE

i∈ΩE ,j /∈ΩE

Rip
t
i
∗
pri

∗

=
∑
ΩE

i/∈ΩE ,j∈ΩE

∑
m∈ΩE\{j}

Rmptm
∗
prm

∗ +
∑
ΩE

i/∈ΩE ,j∈ΩE

Rjp
t
j
∗
prj

∗,
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Notice that ∑
ΩE

i∈ΩE ,j /∈ΩE

∑
m∈ΩE\{i}

Rmptm
∗
prm

∗ =
∑
Ω1

i/∈Ω1,j /∈Ω1

∑
m∈Ω1

Rmptm
∗
prm

∗,

∑
ΩE

i/∈ΩE ,j∈ΩE

∑
m∈ΩE\{j}

Rmptm
∗
prm

∗ =
∑
Ω1

i/∈Ω1,j /∈Ω1

∑
m∈Ω1

Rmptm
∗
prm

∗,

where Ω1 is a M − 1 set. So we have∑
ΩE

i∈ΩE ,j /∈ΩE

Rip
t
i
∗
pri

∗ =
∑
ΩE

i/∈ΩE ,j∈ΩE

Rjp
t
j
∗
prj

∗,

that is

|{Ω|i ∈ Ω, j /∈ Ω}|Rip
t
i
∗
pri

∗ = |{Ω|i /∈ Ω, j ∈ Ω}|Rjp
t
j
∗
prj

∗.

Because

|{Ω|i ∈ Ω, j /∈ Ω}| = |{Ω|i /∈ Ω, j ∈ Ω}| =
(
N − k − 1

Mj − 2

)
,

so we have

Rip
t
i
∗
pri

∗ = Rjp
t
j
∗
prj

∗,

thus

Rip
t
i
∗
pri

∗ = C4,

for all i, where C4 is a constant independent of i.

Then we transform our problem into this: For Alice and Bob, find the optimal solution

of

R̄ =
∑
i∈A

Rip
t
i
∗
pri

∗

1−
∑
ΩE

i∈ΩE

pjΩE

∗

 , (6.9)

∑
ΩE

i∈ΩE

pjΩE

∗
= 1−

(N−k∗+1)−Mj

Ri∑N
i=k∗

1
Ri

, (6.10)

Rip
t
i
∗
pri

∗ = C3. (6.11)

This problem has been solved in Chapter 5. Using the same method, we can prove

k1 = k∗. Then the Nash equilibrium for Alice and Bob is

pti
∗
= pri

∗ =

1√
Ri∑N

l=k∗
1√
Rl

, ∀k∗ ≤ i ≤ N.
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So for the multiple jamming case, the Nash equilibrium is

pti
∗

= pri
∗ =

1√
Ri∑N

i=k∗
1√
Ri

,

pji
∗

= 1−
(N−k∗+1)−Mj

Ri∑N
l=k∗

1
Rl

,

(6.12)

where k∗ = min

{
k|Rk >

(N−k+1)−Mj∑N
i=k

1
Ri

}
, and

pti
∗
= pri

∗ = pji
∗
= 0, ∀i < k∗. (6.13)

Notice that ΩE is a Mj-element set and the element are chosen without replacement

in {k∗, k∗ + 1, ..., N}. So ΩE can take
(
N−k∗+1

Mj

)
values. In the Nash equilibrium, we have

(N − k∗ + 1) equations. It can be easily verified that N − k∗ + 1 ≥ 2. So
(
N−k∗+1

Mj

)
>

(N − k∗ + 1) for Mj ≥ 2, which means pjΩE
has infinite number of solutions. So Eve has

infinite number of specific strategies in the Nash equilibrium, but these strategies have to

satisfy ∑
ΩE

i∈ΩE

pjΩE

∗
= 1−

(N−k∗+1)−Mj

Ri∑N
l=k∗

1
Rl

.

6.2 Remark

Remark 6.2.1. Since the Nash equilibrium is obtained, the average throughput is

R̄ =
N − k∗ + 1−Mj(∑N

l=k∗
1√
Rl

)2 . (6.14)

Remark 6.2.2. In the Nash equilibrium, Alice, Bob and Eve always operate on the same

set of channels. In particular, A = B = E = {k∗, · · · , N}.

Remark 6.2.3. Alice, Bob and Eve do not always access or jam all channels. k∗ is a

variable that is for Alice, Bob and Eve to decide on which channels they should take actions.

Figure 6.4 shows k∗ separates “good” channels and “bad” channels. Alice, Bob and Eve have

no motivation to access or jam channels from 1 to k∗ − 1.
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Remark 6.2.4. k∗ is determined by the channel capacity and Mj, and it is not related to

Alice and Bob.

Figure 6.4: k∗ separates “good” channels and “bad” channels.

Remark 6.2.5. When the channel quality is better, Eve jams this channel with a larger

probability while Alice and Bob access this channel with a smaller probability.

Remark 6.2.6. It is simple to verify that N − k∗ + 1 ≥ Mj + 1. This implies that Alice

and Bob will access at least Mj + 1 channels. Otherwise, if they access only Mj channels,

this channel will be jammed by the attacker with probability 1.

Remark 6.2.7. Alice and Bob have a unique Nash equilibrium, while Eve has infinite

number of strategies in the Nash equilibrium if Mj ≥ 2. The Nash equilibrium of Eve is

given in the form of marginal distribution.
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Chapter 7

Multiple Access One Jamming

Case

In this chapter, we study the case the sender and receiver can access multiple channels

in one time slot, but the attacker can only jam one channel at a time. We assume Alice

and Bob can access Mt and Mr channels respectively, where 1 ≤ Mt ≤ N and 1 ≤ Mr ≤ N .

The strategy of Alice and Bob taken in a time slot is denoted by ΩA and ΩB. Obviously,

ΩA and ΩB are subset of A and B , and ΩA and ΩB are Mt set and Mr set respectively.

Let pti denote
∑

ΩA
i∈ΩA

ptΩA
, and pri denote

∑
ΩB

i∈ΩB

prΩB
. S is a subset of {1, 2, ..., N}, then

RS ,
∑

i∈S Ri. And without loss of generality, we can assume Mt ≥ Mr.

The Nash equilibrium is given at the beginning of this chapter, and the proof is given

in Section 7.1. Remarks about this case are given in Section 7.2.

Lemma 7.0.8. The Nash equilibrium in this case is given under three different conditions:

1. Case 1:
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If N − k∗ + 1 > Mt,

pti
∗

=

Mt√
Ri∑N

l=k∗
1√
Rl

, (7.1)

pri
∗ =

Mr√
Ri∑N

l=k∗
1√
Rl

, (7.2)

pji
∗

= 1−
N−k∗

Ri∑N
l=k∗

1
Rl

, (7.3)

for k∗ ≤ i ≤ N ,

where k∗ = min

{
k|Rk > N−k∑N

i=k
1
Ri

}
, and

pti
∗
= pri

∗ = pji
∗
= 0, ∀i < k∗. (7.4)

2. Case 2:

If Mt ≥ N − k∗ + 1 > Mr,

pti
∗

= 1, (7.5)

for N −Mt + 1 ≤ i ≤ N ,

pri
∗ =

Mr√
Ri∑N

l=k∗
1√
Rl

, (7.6)

pji
∗

= 1−
N−k∗

Ri∑N
l=k∗

1
Rl

, (7.7)

for k∗ ≤ i ≤ N ,

where k∗ = min

{
k|Rk > N−k∑N

i=k
1
Ri

}
, and

pti
∗
= 0, ∀i < N −Mt + 1, (7.8)

pri
∗ = pji

∗
= 0, ∀i < k∗. (7.9)

3. Case 3:

If N − k∗ + 1 ≤ Mr,

pti
∗
=

Mt√
Ri∑N

l=kt
1√
Rl

, kt ≤ i ≤ N
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Figure 7.1: Illustration of case 1 in one access multiple jamming case.

Figure 7.2: Illustration of case 2 in one access multiple jamming case.

pri
∗ =

Mr√
Ri∑N

l=kt
1√
Rl

, kt ≤ i ≤ N

pji
∗
= 1−

N−k∗

Ri∑N
l=k∗

1
Rl

, k∗ ≤ i ≤ N

where k∗ = min

{
k|Rk > N−k∑N

i=k
1
Ri

}
, kt = max

{
k|

Mt√
Rk∑N

i=k
1√
Ri

≤ 1

}
.

Figure 7.1, Figure 7.2 and Figure 7.3 illustrate the three cases respectively, and notice

the brackets denote the number of channels one can access or jam, not the strategy. We

can see that case 1 is the case Alice and Bob cannot access all the channels from k∗ to N ,
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Figure 7.3: Illustration of case 3 in one access multiple jamming case.

case 2 is the case only one of Alice and Bob can access all the channels from k∗ to N , and

case 3 is the case both Alice and Bob can access all the channels from k∗ to N .

• Figure 7.4 shows the channel capacity.

• Figure 7.5 and Figure 7.6 give an example to illustrate case 1 with Mt = Mr = 2.

Figure 7.5 shows the strategy of Alice and Bob, we can see that Alice and Bob only

access channels from k∗ to N , and when the channel quality is better, Alice and Bob

access this channel with a smaller probability. Figure 7.6 shows the strategy of Eve,

we can see that Eve only jams channels from k∗ to N , and when the channel quality

is better Eve jams this channel with a larger probability.

• Figure 7.7, Figure 7.8 and Figure 7.9 give an example to illustrate case 2 with Mt = 4,

Mr = 2. Figure 7.7 shows the strategy of Alice, we can see that Alice takes constant

strategy. Figure 7.8 shows the strategy of Bob, we can see that Bob only access

channels from k∗ to N , and when the channel quality is better, Bob access this channel

with a smaller probability. Figure 7.9 shows the strategy of Eve, we can see that Eve

only jams channels from k∗ to N , and when the channel quality is better Eve jams

this channel with a larger probability.

• Figure 7.10, Figure 7.11 and Figure 7.12 give an example to illustrate case 2 with

Mt = 4, Mr = 4. Figure 7.10 and Figure 7.11 shows the strategy of Alice and Bob,
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Figure 7.4: Channel Quality (N = 15, k∗ = 13).
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Figure 7.5: Case 1: P t∗(= P r∗) (N = 15, k∗ = 13).
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Figure 7.6: Case 1: P j∗ (N = 15, k∗ = 13).
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Figure 7.7: Case 2: P t∗ (N = 15, k∗ = 13).
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Figure 7.8: Case 2: P r∗ (N = 15, k∗ = 13).
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Figure 7.9: Case 2: P j∗ (N = 15, k∗ = 13).
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Figure 7.10: Case 3: P t∗ (N = 15, k∗ = 13).
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Figure 7.11: Case 3: P r∗ (N = 15, k∗ = 13).
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Figure 7.12: Case 3: P j∗ (N = 15, k∗ = 13).

we can see that both Alice and Bob take constant strategy. Figure 7.12 shows the

strategy of Eve, we can see that Eve only jams channels from k∗ to N , and when the

channel quality is better Eve jams this channel with a larger probability.

7.1 Proof

Proof. The reward of Alice and Bob accessing channel i is

∑
ΩA,ΩB

i∈ΩA,i∈ΩB

 ∑
m∈ΩA∩ΩB

RΩA∩ΩB\{m}p
j
m +

∑
m/∈ΩA∩ΩB

Rm/∈ΩA∩ΩB
pjm



=
∑

ΩA,ΩB
i∈ΩA,i∈ΩB

 ∑
m∈ΩA∩ΩB

(RΩA∩ΩB
−Rm) pjm +RΩA∩ΩB

1−
∑

m∈ΩA∩ΩB

pjm


=

∑
ΩA,ΩB

i∈ΩA,i∈ΩB

∑
m∈ΩA∩ΩB

Rm

(
1− pjm

)
(7.10)
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The reward of Eve jamming channel i is

−
∑

ΩA,ΩB

RΩA∩ΩB\{i}p
t
ΩA

prΩB

= −
∑

ΩA,ΩB
i∈ΩA∩ΩB

RΩA∩ΩB\{i}p
t
ΩA

prΩB
−

∑
ΩA,ΩB

i/∈ΩA∩ΩB

RΩA∩ΩB
ptΩA

prΩB

= −
∑

ΩA,ΩB
i∈ΩA∩ΩB

(RΩA∩ΩB
−Ri) p

t
ΩA

prΩB
−

∑
ΩA,ΩB

i/∈ΩA∩ΩB

RΩA∩ΩB
ptΩA

prΩB

= −
∑

ΩA,ΩB

RΩA∩ΩB
ptΩA

prΩB
+Ri

∑
ΩA,ΩB

i∈ΩA∩ΩB

ptΩA
prΩB

To achieve the Nash equilibrium, in support set E,

−
∑

ΩA,ΩB

RΩA∩ΩB
ptΩA

∗
prΩB

∗ +Ri

∑
ΩA,ΩB

i∈ΩA∩ΩB

ptΩA

∗
prΩB

∗ = C0

where C0 is a constant independent of i, notice

−
∑

ΩA,ΩB

RΩA∩ΩB
ptΩA

∗
prΩB

∗

is constant for all i, so

Ri

∑
ΩA,ΩB

i∈ΩA∩ΩB

ptΩA

∗
prΩB

∗ = C1, (7.11)

where C1 is a constant independent of i. And in support set A and B,∑
ΩA,ΩB

i∈ΩA,i∈ΩB

∑
m∈ΩA∩ΩB

Rm

(
1− pjm

∗
)
= C2, (7.12)

where C2 is a constant independent of ΩA and ΩB.

From

Ri

∑
ΩA,ΩB

i∈ΩA∩ΩB

ptΩA

∗
prΩB

∗ = C1,

for

pti ,
∑
i∈ΩA

ptΩA

and

pri ,
∑
i∈ΩB

ptΩB
,
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then we have

Ri

∑
ΩA,ΩB

i∈ΩA∩ΩB

ptΩA

∗
prΩB

∗

= Ri

∑
i∈ΩA

ptΩA

∗

∑
i∈ΩB

prΩB

∗


= Rip

t
i
∗
pri

∗

= C1.

From ∑
ΩA,ΩB

i∈ΩA,i∈ΩB

∑
m∈ΩA∩ΩB

Rm

(
1− pjm

∗
)
= C2,

consider two different channels i and j,

∑
ΩA,ΩB

i∈ΩA,i∈ΩB

∑
m∈ΩA∩ΩB

Rm

(
1− pjm

∗
)
=

∑
ΩA,ΩB

j∈ΩA,j∈ΩB

∑
m∈ΩA∩ΩB

Rm

(
1− pjm

∗
)
,

∑
ΩA,ΩB

i∈ΩA,i∈ΩB

 ∑
m∈ΩA∩ΩB\{i}

Rm

(
1− pjm

∗
)
+Ri

(
1− pji

∗)

=
∑

ΩA,ΩB
j∈ΩA,j∈ΩB

 ∑
m∈ΩA∩ΩB\{j}

Rm

(
1− pjm

∗
)
+Rj

(
1− pjj

∗) ,

Now we investigate

∑
ΩA,ΩB

i∈ΩA,i∈ΩB

∑
m∈ΩA∩ΩB\{i}

Rm

(
1− pjm

∗
)

=
∑

ΩA,ΩB
i∈ΩA,i∈ΩB
j∈ΩA,j∈ΩB

∑
m∈ΩA∩ΩB\{i}

Rm

(
1− pjm

∗
)
+

∑
ΩA,ΩB

i∈ΩA,i∈ΩB
j /∈ΩA,j∈ΩB

∑
m∈ΩA∩ΩB\{i}

Rm

(
1− pjm

∗
)

+
∑

ΩA,ΩB
i∈ΩA,i∈ΩB
j∈ΩA,j /∈ΩB

∑
m∈ΩA∩ΩB\{i}

Rm

(
1− pjm

∗
)
+

∑
ΩA,ΩB

i∈ΩA,i∈ΩB
j /∈ΩA,j /∈ΩB

∑
m∈ΩA∩ΩB\{i}

Rm

(
1− pjm

∗
)
,
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∑
ΩA,ΩB

j∈ΩA,j∈ΩB

∑
m∈ΩA∩ΩB\{j}

Rm

(
1− pjm

∗
)

=
∑

ΩA,ΩB
j∈ΩA,j∈ΩB
i∈ΩA,i∈ΩB

∑
m∈ΩA∩ΩB\{j}

Rm

(
1− pjm

∗
)
+

∑
ΩA,ΩB

j∈ΩA,j∈ΩB
i/∈ΩA,i∈ΩB

∑
m∈ΩA∩ΩB\{j}

Rm

(
1− pjm

∗
)

+
∑

ΩA,ΩB
j∈ΩA,j∈ΩB
i∈ΩA,i/∈ΩB

∑
m∈ΩA∩ΩB\{j}

Rm

(
1− pjm

∗
)
+

∑
ΩA,ΩB

j∈ΩA,j∈ΩB
i/∈ΩA,i/∈ΩB

∑
m∈ΩA∩ΩB\{j}

Rm

(
1− pjm

∗
)
.

Let ΩA1 denote a Mt − 1 set, so

∑
ΩA,ΩB

i∈ΩA,i∈ΩB
j /∈ΩA,j∈ΩB

∑
m∈ΩA∩ΩB\{i}

Rm

(
1− pjm

∗
)
=

∑
ΩA1

,ΩB

i/∈ΩA1
,j∈ΩB

j /∈ΩA1
,i∈ΩB

∑
m∈ΩA1

∩ΩB

Rm

(
1− pjm

∗
)
,

and

∑
ΩA,ΩB

j∈ΩA,j∈ΩB
i/∈ΩA,i∈ΩB

∑
m∈ΩA∩ΩB\{j}

Rm

(
1− pjm

∗
)
=

∑
ΩA1

,ΩB

i/∈ΩA1
,j∈ΩB

j /∈ΩA1
,i∈ΩB

∑
m∈ΩA1

∩ΩB

Rm

(
1− pjm

∗
)
.

So we have,

∑
ΩA,ΩB

j∈ΩA,j∈ΩB
i/∈ΩA,i∈ΩB

∑
m∈ΩA∩ΩB\{j}

Rm

(
1− pjm

∗
)
=

∑
ΩA,ΩB

j∈ΩA,j∈ΩB
i/∈ΩA,i∈ΩB

∑
m∈ΩA∩ΩB\{j}

Rm

(
1− pjm

∗
)
.

Similarly, we can prove

∑
ΩA,ΩB

i∈ΩA,i∈ΩB
j∈ΩA,j /∈ΩB

∑
m∈ΩA∩ΩB\{i}

Rm

(
1− pjm

∗
)
=

∑
ΩA,ΩB

j∈ΩA,j∈ΩB
i∈ΩA,i/∈ΩB

∑
m∈ΩA∩ΩB\{j}

Rm

(
1− pjm

∗
)

and

∑
ΩA,ΩB

j∈ΩA,j∈ΩB
i/∈ΩA,i/∈ΩB

∑
m∈ΩA∩ΩB\{j}

Rm

(
1− pjm

∗
)
=

∑
ΩA,ΩB

j∈ΩA,j∈ΩB
i/∈ΩA,i/∈ΩB

∑
m∈ΩA∩ΩB\{j}

Rm

(
1− pjm

∗
)
.



62

Notice

∑
ΩA,ΩB

i∈ΩA,i∈ΩB
j∈ΩA,j∈ΩB

∑
m∈ΩA∩ΩB\{i}

Rm

(
1− pjm

∗
)

=
∑

ΩA,ΩB
i∈ΩA,i∈ΩB
j∈ΩA,j∈ΩB

∑
m∈ΩA∩ΩB

Rm

(
1− pjm

∗
)
−

∑
ΩA,ΩB

i∈ΩA,i∈ΩB
j∈ΩA,j∈ΩB

Ri

(
1− pji

∗)
,

and

∑
ΩA,ΩB

j∈ΩA,j∈ΩB
i∈ΩA,i∈ΩB

∑
m∈ΩA∩ΩB\{j}

Rm

(
1− pjm

∗
)

=
∑

ΩA,ΩB
j∈ΩA,j∈ΩB
i∈ΩA,i∈ΩB

∑
m∈ΩA∩ΩB

Rm

(
1− pjm

∗
)
−

∑
ΩA,ΩB

j∈ΩA,j∈ΩB
i∈ΩA,i∈ΩB

Rj

(
1− pjj

∗)
,

Hence we have,

∑
ΩA,ΩB

i∈ΩA∩ΩB ,j /∈ΩA∩ΩB

Ri

(
1− pji

∗)
=

∑
ΩA,ΩB

j∈ΩA∩ΩB ,i/∈ΩA∩ΩB

Rj

(
1− pjj

∗)
.

Similar in Chapter 6, Ri

(
1− pji

∗)
= Rj

(
1− pjj

∗)
, we have

Ri(1− pji
∗
) = C3, ∀i ≥ k∗.

Similarly, we can give the solution as

pji
∗

= 1−
N−k∗

Ri∑N
i=k∗

1
Ri

, (7.13)

for k∗ ≤ i ≤ N , where k∗ = min

{
k|Rk > N−k∑N

i=k
1
Ri

}
.

Now we can notice k∗ is determined by the channel quality, but Mt and Mr are deter-

mined by users. From discussion in Chapter 5 and Chapter 6, we notice that Alice and

Bob have no motivation to access channels from 1 to k∗ − 1. So we should discuss different

cases.
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If N − k∗ + 1 > Mt, from conclusion in Chapter 5 and Chapter 6 we have k1 = k∗, we

can simplify our problem as,

Rip
t
i
∗
pri

∗ = C1, ∀i ≥ k∗,
N∑

i=k∗

pti
∗

= Mt,

N∑
i=k∗

pti
∗

= Mr.

Using the same vector method Chapter 5 and Chapter 6, we have

pti
∗

=

Mt√
Ri∑N

l=k∗
1√
Rl

,

pri
∗ =

Mr√
Ri∑N

l=k∗
1√
Rl

,

But there is still one question unanswered: Is pti
∗
< 1 and pri

∗ < 1? Now we define we set:

K1 =

{
k|Rk >

N − k∑N
i=k

1
Ri

}
,

K2 =

k|
√

Rk >
N − k∑N
i=k

1√
Ri

 .

For ∀k ∈ K1,
N∑
i=k

Rk

Ri
> N − k.

This is because
Rk

Ri
≤ 1, ∀i ≥ k,

so √
Rk√
Ri

≥ Rk

Ri
.

Then we have
N∑
i=k

√
Rk√
Ri

≥
N∑
i=k

Rk

Ri
> N − k.

So k is also in K2. So minK1 ≥ minK2. So for k∗ = min{k|Rk > N−k∑N
i=k

1
Ri

},

√
Rk∗ >

N − k∗∑N
l=k∗

1√
Rl

≥ Mt∑N
l=k∗

1√
Rl

.
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Figure 7.13: k∗ separates “good” channels and “bad” channels.

So pti
∗
< 1. The proof is same for pri

∗ < 1.

If Mt ≥ N − k∗ + 1 > Mr, Alice can cover all the channel from k∗ to N , while Bob

cannot. C3 = N−k∗∑N
l=k∗

1
Rl

≥ Rm where m = 1, 2, ..., k∗ − 1 , and we know Alice and Bob have

no motivation to access channels except channel k∗ to N . So Alice have to constantly access

channels from N −Mt + 1 to N , and the strategy of Bob keeps random.

If Mr ≥ N−k∗+1, both Alice and Bob can cover all the channel from k∗ to N . We know

Alice and Bob have no motivation to access channels except channel k∗ to N , however, both

Alice and Bob have to access some other channel to access Mt and Mr channels respectively.

So both Alice and Bob will access some channels below k∗.

7.2 Remark

Remark 7.2.1. Under the Nash equilibrium in this case, Alice, Bob and Eve do not always

operate on the same set of channels.

Remark 7.2.2. k∗ is a variable that is for Alice, Bob and Eve to decide on which channels

they should take actions. Figure 7.13 shows k∗ separates “good” channels and “bad” chan-

nels. Alice, Bob and Eve have no motivation to access or jam channels from 1 to k∗ − 1.

But in Case 2 and Case 3, Alice and Bob have to access channels from 1 to k∗ − 1.

Remark 7.2.3. k∗ is determined by the channel capacity and Mj, and it is not related to

Alice and Bob.
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Remark 7.2.4. When the channel quality is better, Eve jams this channel with a larger

probability while Alice and Bob access this channel with a smaller probability.

Remark 7.2.5. It is simple to verify that N − k∗+1 ≥ 2. This implies that Alice and Bob

will access at least two channels. Otherwise, if they access only one channel, this channel

will be jammed by the attacker with probability 1.

Remark 7.2.6. Alice and Bob do not have a unique Nash equilibrium if Mt ≥ 2 and

Mr ≥ 2, while Eve has unique strategy under the Nash equilibrium. The Nash equilibrium

of Alice and Bob is given in the form of marginal distribution.
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Chapter 8

Multiple Access Multiple Jamming

Case

In this chapter, we study the case Alice, Bob and Eve can access or jam more than one

channel simultaneously. Alice and Bob can access Mt and Mr channels respectively, while

Eve can jam Mj channels, 1 ≤ Mt ≤ N , 1 ≤ Mr ≤ N and 1 ≤ Mj ≤ N . Let ΩA, ΩB and

ΩE denote the set of channels Alice, Bob and Eve access or jam. ΩA is a Mt set, ΩB is a

Mr set and ΩE is a Mj set. Let pti denote
∑

ΩA
i∈ΩA

ptΩA
, pri denote

∑
ΩB

i∈ΩB

prΩB
and pji denote∑

ΩE
i∈ΩE

pjΩE
. And without loss of generality, we can assume Mt ≥ Mr. Figure 8.1 shows an

example of multiple access multiple jamming case with Mt = 2, Mr = 2 and Mj = 2.

The Nash equilibrium is given at the beginning of this chapter, and the proof is given

in Section 8.1. In the end, some remarks about this case are given in Section 8.2.

Lemma 8.0.7. The Nash equilirium in this case is given under three different conditions:

1. Case 1:
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Figure 8.1: Example of multiple access multiple jamming case.

If N − k∗ + 1 > Mt,

pti
∗

=

Mt√
Ri∑N

l=k∗
1√
Rl

, (8.1)

pri
∗ =

Mr√
Ri∑N

l=k∗
1√
Rl

, (8.2)

pji
∗

= 1−
N−k∗+1−Mj

Ri∑N
l=k∗

1
Rl

, (8.3)

for k∗ ≤ i ≤ N , where k∗ = min

{
k|Rk >

N−k+1−Mj∑N
i=k

1
Ri

}
, and

pti
∗
= pri

∗ = pji
∗
= 0, ∀i < k∗. (8.4)

2. Case 2:

If Mt ≥ N − k∗ + 1 > Mr,

pti
∗

= 1, (8.5)
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for N −Mt + 1 ≤ i ≤ N ,

pri
∗ =

Mr√
Ri∑N

l=k∗
1√
Rl

, (8.6)

pji
∗

= 1−
N−k∗+1−Mj

Ri∑N
l=k∗

1
Rl

, (8.7)

for k∗ ≤ i ≤ N ,

where k∗ = min

{
k|Rk >

N−k+1−Mj∑N
i=k

1
Ri

}
, and

pri
∗ = 0, ∀i < N −Mt + 1, (8.8)

pri
∗ = pji

∗
= 0, ∀i < k∗. (8.9)

3. Case 3:

If N − k∗ + 1 ≤ Mr,

pti
∗
=

Mt√
Ri∑N

l=kt
1√
Rl

, kt ≤ i ≤ N

pri
∗ =

Mr√
Ri∑N

l=kt
1√
Rl

, kt ≤ i ≤ N

pji
∗
= 1−

N−k∗+1−Mj

Ri∑N
l=k∗

1
Rl

, k∗ ≤ i ≤ N

where k∗ = min

{
k|Rk >

N−k+1−Mj∑N
i=k

1
Ri

}
, kt = max

{
k|

Mt√
Rk∑N

i=k
1√
Ri

≤ 1

}
.

Figure 8.2, Figure 8.3 and Figure 8.4 illustrate the three cases respectively, and notice

the brackets denote the number of channels one can access or jam, not the strategy. From

the figures, we can see that case 1 is the case Alice and Bob cannot access all the channels

from k∗ to N , case 2 is the case only one of Alice and Bob can access all the channels from

k∗ to N , and case 3 is the case both Alice and Bob can access all the channels from k∗ to

N .

• Figure 8.5 shows the channel capacity.
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Figure 8.2: Illustration of case 1 in multiple access multiple jamming case.

Figure 8.3: Illustration of case 2 in multiple access multiple jamming case.
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Figure 8.4: Illustration of case 3 in multiple access multiple jamming case.
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Figure 8.5: Channel Quality (N = 15, k∗ = 12).
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Figure 8.6: Case 1: P t∗(= P r∗) (N = 15, k∗ = 12).
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Figure 8.7: Case 1: P j∗ (N = 15, k∗ = 12).
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Figure 8.8: Case 2: P t∗ (N = 15, k∗ = 12).

• Figure 8.6 and Figure 8.7 give an example to illustrate case 1 with Mt = Mr = 2 and

Mj = 2. Figure 8.6 shows the strategy of Alice and Bob, we can see that Alice and

Bob only access channels from k∗ to N , and when the channel quality is better, Alice

and Bob access this channel with a smaller probability. Figure 8.7 shows the strategy

of Eve, we can see that Eve only jams channels from k∗ to N , and when the channel

quality is better Eve jams this channel with a larger probability.

• Figure 8.8, Figure 8.9 and Figure 8.10 give an example to illustrate case 2 withMt = 6,

Mr = 2 and Mj = 2. Figure 8.8 shows the strategy of Alice, we can see that Alice

takes constant strategy. Figure 8.9 shows the strategy of Bob, we can see that Bob

only access channels from k∗ to N , and when the channel quality is better, Bob access

this channel with a smaller probability. Figure 8.10 shows the strategy of Eve, we can

see that Eve only jams channels from k∗ to N , and when the channel quality is better

Eve jams this channel with a larger probability.

• Figure 8.11, Figure 8.12 and Figure 8.13 give an example to illustrate case 2 with

Mt = 6, Mr = 5 and Mj = 2. Figure 8.11 and Figure 8.12 shows the strategy of Alice
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Figure 8.9: Case 2: P r∗ (N = 15, k∗ = 12).
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Figure 8.10: Case 2: P j∗ (N = 15, k∗ = 12).
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Figure 8.11: Case 3: P t∗ (N = 15, k∗ = 12).
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Figure 8.12: Case 3: P r∗ (N = 15, k∗ = 12).
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Figure 8.13: Case 3: P j∗ (N = 15, k∗ = 12).

and Bob, we can see that both Alice and Bob take constant strategy. Figure 8.13

shows the strategy of Eve, we can see that Eve only jams channels from k∗ to N , and

when the channel quality is better Eve jams this channel with a larger probability.

8.1 Proof

Proof. The organization of proof is the same as Chapter 7.
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The reward of Alice and Bob access channel i is:

∑
ΩA,ΩB

i∈ΩA∩ΩB

∑
ΩE

RΩA∩ΩB\ΩE
pjΩE

=
∑

ΩA,ΩB
i∈ΩA∩ΩB

 ∑
ΩE

ΩE∩ΩA∩ΩB=∅

RΩA∩ΩB
pjΩE

+
∑
ΩE

ΩE∩ΩA∩ΩB ̸=∅

RΩA∩ΩB\ΩE
pjΩE



=
∑

ΩA,ΩB
i∈ΩA∩ΩB

RΩA∩ΩB

1−
∑
ΩE

ΩE∩ΩA∩ΩB ̸=∅

pjΩE

+
∑
ΩE

ΩE∩ΩA∩ΩB ̸=∅

(RΩA∩ΩB
−RΩA∩ΩB∩ΩE

) pjΩE



=
∑

ΩA,ΩB
i∈ΩA∩ΩB

RΩA∩ΩB
−

∑
ΩE

ΩE∩ΩA∩ΩB ̸=∅

RΩE∩ΩA∩ΩB
pjΩE


In the Nash equilibrium,

∑
ΩA,ΩB

i∈ΩA∩ΩB

RΩA∩ΩB
−

∑
ΩE

ΩE∩ΩA∩ΩB ̸=∅

RΩE∩ΩA∩ΩB
pjΩE

∗

 = C0,

where C0 is a constant independent of i. So we have

∑
ΩA,ΩB

i∈ΩA∩ΩB

RΩA∩ΩB
−

∑
ΩE

ΩE∩ΩA∩ΩB ̸=∅

RΩE∩ΩA∩ΩB
pjΩE

∗



=
∑

ΩA,ΩB
j∈ΩA∩ΩB

RΩA∩ΩB
−

∑
ΩE

ΩE∩ΩA∩ΩB ̸=∅

RΩE∩ΩA∩ΩB
pjΩE

∗

 ,

where j is a channel index different from i.
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∑
ΩA,ΩB

i∈ΩA∩ΩB

RΩA∩ΩB
−

∑
ΩE

ΩE∩ΩA∩ΩB ̸=∅

RΩE∩ΩA∩ΩB
pjΩE

∗


=

∑
ΩA,ΩB

i∈ΩA∩ΩB

Ri

(
1− pji

∗)
+

∑
ΩA,ΩB

i∈ΩA∩ΩB

RΩA∩ΩB\{i} −
∑
ΩE

RΩA∩ΩB\{i}∩ΩE
pjΩE

∗



=
∑

ΩA,ΩB
i∈ΩA∩ΩB

Ri

(
1− pji

∗)
+

∑
ΩA,ΩB

i∈ΩA∩ΩB
j∈ΩA∩ΩB

RΩA∩ΩB\{i} −
∑
ΩE

RΩA∩ΩB\{i}∩ΩE
pjΩE

∗



+
∑

ΩA,ΩB
i∈ΩA∩ΩB
j /∈ΩA∩ΩB

RΩA∩ΩB\{i} −
∑
ΩE

RΩA∩ΩB\{i}∩ΩE
pjΩE

∗

 ,

Notice that

∑
ΩA,ΩB

i∈ΩA∩ΩB
j /∈ΩA∩ΩB

RΩA∩ΩB\{i} −
∑
ΩE

RΩA∩ΩB\{i}∩ΩE
pjΩE

∗



=
∑

ΩA,ΩB
j∈ΩA∩ΩB
i/∈ΩA∩ΩB

RΩA∩ΩB\{j} −
∑
ΩE

RΩA∩ΩB\{j}∩ΩE
pjΩE

∗

 ,

and

∑
ΩA,ΩB

i∈ΩA∩ΩB
j∈ΩA∩ΩB

RΩA∩ΩB\{i,j} −
∑
ΩE

RΩA∩ΩB\{i,j}∩ΩE
pjΩE

∗



=
∑

ΩA,ΩB
i∈ΩA∩ΩB
j∈ΩA∩ΩB

RΩA∩ΩB\{i,j} −
∑
ΩE

RΩA∩ΩB\{i,j}∩ΩE
pjΩE

∗

 ,

so we have ∑
ΩA,ΩB

i/∈ΩA∩ΩB
j∈ΩA∩ΩB

Ri

(
1− pji

∗)
=

∑
ΩA,ΩB

i∈ΩA∩ΩB
j /∈ΩA∩ΩB

Rj

(
1− pjj

∗)
.
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Because

|{(ΩA,ΩB)|i /∈ ΩA ∩ ΩB, j ∈ ΩA ∩ ΩB}| = |{(ΩA,ΩB)|i ∈ ΩA ∩ ΩB, j /∈ ΩA ∩ ΩB}|,

so

Ri(1− pji ) = C1, ∀i ∈ A ∩B,

where C1 is a constant independent of i.

The reward of Eve jamming channel i is:

−
∑
ΩE

i∈ΩE

∑
ΩA,ΩB

RΩA∩ΩB\ΩE
ptΩA

prΩB

= −
∑
ΩE

i∈ΩE

 ∑
ΩA,ΩB

ΩA∩ΩB∩ΩE ̸=∅

(RΩA∩ΩB
−RΩA∩ΩB∩ΩE

) ptΩA
prΩB

+
∑

ΩA,ΩB
ΩA∩ΩB∩ΩE=∅

RΩA∩ΩB
ptΩA

prΩB



= −
∑
ΩE

i∈ΩE

 ∑
ΩA,ΩB

RΩA∩ΩB
ptΩA

prΩB
−

∑
ΩA,ΩB

ΩA∩ΩB∩ΩE ̸=∅

RΩA∩ΩB∩ΩE
ptΩA

prΩB

 .

In the Nash equilibrium,

−
∑
ΩE

i∈ΩE

 ∑
ΩA,ΩB

RΩA∩ΩB
ptΩA

∗
prΩB

∗ −
∑

ΩA,ΩB
ΩA∩ΩB∩ΩE ̸=∅

RΩA∩ΩB∩ΩE
ptΩA

∗
prΩB

∗

 = C2,

where C2 is a constant independent of i. Because∑
ΩE

i∈ΩE

∑
ΩA,ΩB

RΩA∩ΩB
ptΩA

∗
prΩB

∗

is the same for all i, so∑
ΩE

i∈ΩE

∑
ΩA,ΩB

ΩA∩ΩB∩ΩE ̸=∅

RΩA∩ΩB∩ΩE
ptΩA

∗
prΩB

∗ = C3, ∀i ∈ E

where C3 is a constant independent of i. Then,∑
ΩE

i∈ΩE

∑
ΩA,ΩB

ΩA∩ΩB∩ΩE ̸=∅

RΩA∩ΩB∩ΩE
ptΩA

∗
prΩB

∗

=
∑
ΩE

i∈ΩE

∑
ΩA,ΩB

i∈ΩA∩ΩB

RΩA∩ΩB∩ΩE
ptΩA

∗
prΩB

∗ +
∑
ΩE

i∈ΩE

∑
ΩA,ΩB

i/∈ΩA∩ΩB
ΩA∩ΩB∩ΩE ̸=∅

RΩA∩ΩB∩ΩE
ptΩA

∗
prΩB

∗
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=
∑
ΩE

i∈ΩE

∑
ΩA,ΩB

i∈ΩA∩ΩB

Rip
t
ΩA

∗
prΩB

∗ +
∑
ΩE

i∈ΩE

∑
ΩA,ΩB

i∈ΩA∩ΩB

RΩA∩ΩB∩ΩE\{i}p
t
ΩA

∗
prΩB

∗

+
∑
ΩE

i∈ΩE

∑
ΩA,ΩB

i/∈ΩA∩ΩB
ΩA∩ΩB∩ΩE ̸=∅

RΩA∩ΩB∩ΩE\{i}p
t
ΩA

∗
prΩB

∗

=
∑
ΩE

i∈ΩE

∑
ΩA,ΩB

i∈ΩA∩ΩB

Rip
t
ΩA

∗
prΩB

∗ +
∑
ΩE

i∈ΩE

∑
ΩA,ΩB

ΩA∩ΩB∩ΩE ̸=∅

RΩA∩ΩB∩ΩE\{i}p
t
ΩA

∗
prΩB

∗

=
∑
ΩE

i∈ΩE

∑
ΩA,ΩB

i∈ΩA∩ΩB

Rip
t
ΩA

∗
prΩB

∗ +
∑
ΩE

i∈ΩE
j /∈ΩE

∑
ΩA,ΩB

ΩA∩ΩB∩ΩE ̸=∅

RΩA∩ΩB∩ΩE\{i}p
t
ΩA

∗
prΩB

∗

+
∑
ΩE

i∈ΩE
j∈ΩE

∑
ΩA,ΩB

ΩA∩ΩB∩ΩE ̸=∅

RΩA∩ΩB∩ΩE\{i}p
t
ΩA

∗
prΩB

∗

Consider a channel j different from i, notice

∑
ΩE

i∈ΩE
j /∈ΩE

∑
ΩA,ΩB

ΩA∩ΩB∩ΩE ̸=∅

RΩA∩ΩB∩ΩE\{i}p
t
ΩA

∗
prΩB

∗ =
∑
ΩE

j∈ΩE
i/∈ΩE

∑
ΩA,ΩB

ΩA∩ΩB∩ΩE ̸=∅

RΩA∩ΩB∩ΩE\{j}p
t
ΩA

∗
prΩB

∗,

and we can subtract the common term

∑
ΩE

i∈ΩE
j∈ΩE

∑
ΩA,ΩB

ΩA∩ΩB∩ΩE ̸=∅

RΩA∩ΩB∩ΩE\{i,j}p
t
ΩA

∗
prΩB

∗,

then we have

∑
ΩE

i∈ΩE
j /∈ΩE

∑
ΩA,ΩB

i∈ΩA∩ΩB

Rip
t
ΩA

∗
prΩB

∗ =
∑
ΩE

i/∈ΩE
j∈ΩE

∑
ΩA,ΩB

j∈ΩA∩ΩB

Rjp
t
ΩA

∗
prΩB

∗.

Because

|{ΩE |i ∈ ΩE , j /∈ ΩE}| = |{ΩE |i /∈ ΩE , j ∈ ΩE}|,

so

∑
ΩA,ΩB

i∈ΩA∩ΩB

Rip
t
ΩA

∗
prΩB

∗ =
∑

ΩA,ΩB
j∈ΩA∩ΩB

Rjp
t
ΩA

∗
prΩB

∗.
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∑
ΩA,ΩB

i∈ΩA∩ΩB

Rip
t
ΩA

∗
prΩB

∗ = C4

where C4 is a constant independent of i. And we can rewrite it as

Rip
r
i
∗pti

∗
= C4

So far we have

Ri(1− pji ) = C1, ∀i ∈ A ∩B

Rip
r
i p

t
i = C4, ∀i ∈ E∑

i∈A
pti

∗
= Mt,∑

i∈B
pri

∗ = Mr,∑
i∈E

pji
∗

= Mj ,

where C1 and C4 are constant independent of i.

From the discussion in Chapter 6 and Chapter 7, we can give the result same as the

lemma.

8.2 Remark

Remark 8.2.1. Under the Nash equilibrium in this case, Alice, Bob and Eve do not always

operate on the same set of channels.

Remark 8.2.2. k∗ is a variable that is for Alice, Bob and Eve to decide on which channels

they should take actions. Figure 8.14 shows k∗ separates “good” channels and “bad” chan-

nels. Alice, Bob and Eve have no motivation to access or jam channels from 1 to k∗ − 1.

But in Case 2 and Case 3, Alice and Bob have to access channels from 1 to k∗ − 1.

Remark 8.2.3. k∗ is determined by the channel capacity and Mj, and it is not related to

Alice and Bob.
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Figure 8.14: k∗ separates “good” channels and “bad” channels.

Remark 8.2.4. When the channel quality is better, Eve jams this channel with a larger

probability while Alice and Bob access this channel with a smaller probability.

Remark 8.2.5. It is simple to verify that N −k∗+1 ≥ Mj+1. This implies that Alice and

Bob will access at least Mj + 1 channels. Otherwise, if they can access only Mj channels,

this channel will be jammed by the attacker with probability 1.

Remark 8.2.6. The Nash equilibrium of Alice, Bob and Eve is given in the form of marginal

distribution.
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Chapter 9

Numerical Simulation

In this chapter, we show the numerical simulation results of the Nash equilibrium. In our

simulation, the channel quality is independently generated by the same probability density

function, we choose exponential distribution. Ri ∼ exp(100), where i = 1, 2, ..., N .

9.1 Equal Channel Quality Case

In this section, we show how the average data rate is affected by the total number of

channels. From Figure 9.1, we can see that the average data is maximized when N = 2.

This is because when N becomes larger, the total probability 1 need to be spread among

more channels, it becomes harder for Alice and Bob to be in the same channel. We have to

keep N ≥ 2 because this is needed to avoid being jammed with probability 1.

9.2 General Channel Quality Case

First we set N = 10 and E(Ri) = 100 to make numerical analysis about R̄. So Ri are

i.i.d. From R̄ = N−k∗

(
∑N

l=k∗
1√
Rl

)2
, we can see that this is an order statistic problem. In this

problem, R̄ depends on another random variable k∗, which also depends on the distribution

of R. The involvement of k∗ makes the theoretical analysis complex. The following analysis

here is numerical and we show that for a not so large N the distribution of R can be

approximated by Gamma distribution. Each simulation runs 105 times.



83

0 20 40 60 80 100
0

5

10

15

20

25
average data rate

total number of channels (N)

av
er

ag
e 

da
ta

 r
at

e

Figure 9.1: Average data rate vs. Total number of channels.
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Figure 9.2: Distribution of R̄, N = 10.
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Figure 9.3: Distribution of R̄, N = 1000.

From Figure 9.2, we can see the distribution of R̄ can be approximated by Gamma

distribution when N = 10.

We set N to N = 1000. From Figure 9.3 we can see the approximation of Gamma

distribution is not as good as N = 10 but it is still acceptable.

9.3 One Access Multiple Jamming Case

In this numerical examples, we illustrate the case of one access multiple jamming case.

We set the total number of channels to N = 100. The data we use in this and next section

are the same set of R. In this case, Eve has infinite numbers of the Nash equilibrium,

but they all achieve the same performance, so we just choose one solution which assumes

jamming each of the channels are all independent. From Figure 9.4, we can see that with the

number of channels Eve can jam increasing, the average throughput is decreasing. Notice
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that Eve can increase her reward by jamming more channels, but if the number of channels

is already larger than a threshold, for example Mj > 20 in our simulation, her effort may

not worth the money to buy a more powerful device. This is because the channel becomes

very bad when their rank in the whole channels becomes low.

9.4 Multiple Access One Jamming Case

The simulation result shows that with the number of channels Alice and Bob can access

increased, the average throughput is increased. N = 100 in this section.

From Figure 9.5, we can see the curve is not so steep as the performance of multiple

jamming. But we can still see that if the number of channels is already larger than a

threshold, their reward increased per channel becomes small due to the channel becomes

worse with channel index decreases. If we increase M from 1 to 20, R̄ is increased by more
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Figure 9.6: R̄ affected by Mt under different Mj .

than 2000, but if we increase M from 80 to 100, R̄ is increased by about 1400.

9.5 Multiple Access Multiple Jamming Case

Multiple access multiple jamming case is similar to the multiple access one jamming

case in nature. The difference is that in this case Eve can jam two or more channels. What

we concern is just the average data rate of Alice and Bob, so we investigate this by setting

different values of Mj .

From Figure 9.6, we can see that with Mj increasing, the average data rate is decreasing,

this is similar to one access multiple jamming case.

Figure 9.7 shows that with Mt(= Mr) increasing, the average data rate is increasing,

this is similar to multiple access one jamming case.

Now we investigate the “waste case” by setting M = Mt −Mr. In multiple access case,
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when Alice can access more channel than Bob, Alice will have the chance to waste energy

as analyzed before. We can call this case “waste case”.

In Figure 9.8, we can see if Mt and Mr is large enough, the performance of different M

is the same, so there is no motivation to use a large M due to the concern of power and

device cost.

In Figure 9.9, we compare the performance under the Nash equilibrium in our model and

the performance in learning based approach. We use the algorithm proposed in [6]. We can

see that our strategy performs better in two aspects: First, throughput of our strategy is

higher, because in the learning based algorithm, the authors always leave some probability

for “bad” channels; Second, our strategy do not need time to reach the maximum.
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Figure 9.9: R̄ under the Nash equilibrium in our model and learning based approach.
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Chapter 10

Conclusion

The uncoordinated frequency hopping has been modeled as a zero-sum game between

the legitimate users and the attack. In the general channel quality case, we have obtained

the unique Nash equilibrium. For the case when the legitimate users or the attacker can

access or jam more than one channels, following similar steps in general channel quality

case, we have obtained the Nash equilibrium. In general, for better channels, it is more

probable for Eve to jam, while it is less probable for Alice and Bob to access. But there are

also some channel are not good enough so that none of Alice, Bob or Eve will access or jam

these channels. To determine which channels to access or jam, k∗ is an important variable

to separate good channels and bad channels.

Using numerical simulation, we have shown the performance of UFH under the Nash

equilibrium. In general, if Alice and Bob have the ability to access more channels, the

average data rate will become larger, while if Eve has the ability to jam more channels, the

average data rate will become smaller. However, there is a special case called “waste case”

which needs more attention. In the “waste case”, Alice is wasting power to access some

channels that is never accessed by Bob. And we also show that our strategy outperforms

the learning based strategy.
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