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Abstract

The ability to numerically determine the received signal in an ultrasound pulse-
echo system is very important for many ultrasound applications such as tissue
characterization, complex object recognition, identification of surface topology, and etc.
The relationship between, on one hand, the output signal from an ultrasound pulse-echo
system, and, on the other hand, the specified ultrasound transducer and the geometry,
orientation and location of the reflector, is very complex. Consequently, only by
numerical modeling can the output signal for a given measurement configuration be
predicted. Especially when it comes to optimizing the design of an ultrasound system to
carry out such tasks as identifying objects of specified shapes, determining surface
topology or alignment of surface, etc., numerical modeling is the only practical way. This
thesis is concerned with the numerically modeling and optimal design of annular array
based ultrasound pulse-echo system.

This thesis describes the implementation of two numerical modeling methods for
calculating received signa from a transducer in a pulse-echo system. One method is the
simple, but computationally demanding Huygens Method, based on the Huygens
Principle, and the other one is the computationally more efficient Diffraction Response

for Extended Area Method (DREAM). The DREAM method operates by dividing the



surface of the reflector into arelatively small number (say, a few hundred) of rectangular
or triangular “tiles’ and performing the spatial integration of the diffraction response over
each tile by an equivalent low pass filtering. In this thesis, the DREAM method is
implemented using both rectangular and triangular tiles. To determine the optimal tile
size for the DREAM method for various combinations of transducers size, reflector
location, etc, the results obtained by DREAM method are compared with the
corresponding results obtained from the Huygens method as an accurate reference. Both
graphical and numerical results are presented. The modeling concept is further extended
to include ultrasound pulse-echo system using planar annular array transducers where the
calculation for the individual array elements is based on calculation of the received
signals from planar circular transducers.

The optimal design of the ultrasound pulse-echo system for object recognition is
based on the annular array transducer that gives us the flexibility to create a wide variety
of insonifying fields and receiver characteristics. These fields and receiver characteristics
can be realized by assigning different delay and amplitude gain values to each array
element in transmit and receive, respectively. As the first step towards solving the
optimization problem for identifying a given type of reflector among many possible ones,
the problem of optimally identifying one out of two specific reflectors is investigated. To
solve this problem, we propose to find the set of transmit and receive delay values which
will maximize the energy of the difference signal between array output signals from the
two reflectors. Two optimization methods have been investigated for the optimal delay
set, the Global Search Method and the Waveform Alignment Method. The Global Search

Method operates by searching through all possible combinations of delay values, applied



to the individual transmitting elements and the receiving elements of the annular array
transducer, then calculates the energy of the difference signa between received output
signals from the two reflectors for each delay value combination. The set of delay values
that produces the largest energy in difference signal is considered the optimal delay set.
The Waveform Alignment Method operates by using a time shifted and amplitude scaled
version of a specific waveform to represent the calculated waveform in the received
signal matrix which contains the received signal for all combinations of transmitting and
receiving array elements. Thus, each received signal in the received signal matrix can be
represented by a delay value and amplitude scale factor. In this thesis, only the delay
values are used to align these waveforms to get the optimal delay matrix. The results
obtained by the Global Search Method and the Waveform Alignment Method are

presented and compared to each other.



Acknowledgements

First of al, I would like to express my sincere gratefulness to my advisor Prof.
Peder C. Pedersen for his tremendous efforts and time spent in teaching me, discussing
with me and refining all my writings. Without his inspiration and guidance, finishing this
thesis might have been impossible. All that | learned from him, including the patience,
carefulness and persistence, benefited me and will benefit me greatly in the future.

| appreciate Prof. Reinhold Ludwig and Prof. Nathaniel A. Whitmal for their help
and being my thesis committee members.

| would aso like to thank Y urong Sun and Ruben Lara-Montalvo, who provided
hearty help and happy hours.

Last but not least, my sincere thanks go to my family and my friends for their care
and encouragement, especially to my husband, whose love is the source of my happiness

and strength.



Table of Contents

Abstract i
Acknowledgements v
List of Figures viii
List of Tables Xiii
Chapter 1.  Introduction 1
1.1 Ultrasound Pulse-Echo Modeling Techniques 1
1.2 Objectives of the Thesis 4
121 DREAM Method and Huygens Method 4
1.2.2  Optimal Design of Ultrasound System 6
1.3 Contributions of the Thesis 7
1.4 Ouitline of the Thesis 8
Chapter 2. Modeling of Ultrasound Pulse-Echo System 11
2.1 Introduction 12
2.2 Diffraction Response Formulation 14
2.3 Computational Strategies for Calculating the Diffraction Response 20
2.4 Huygens Method 25
25 DREAM Method 26
251 Rectangular-tile-based DREAM (R-DREAM) 27
252  Triangular-tile-based DREAM (T-DREAM) 31
2.6 Modedling of Pulse-echo System with Annular Array Transducer 35
Chapter 3. Implementation of Simulation System 39
3.1 Implementation of Huygens Method 39
3.1.1 Calculation of Veaocity Potential Impulse Response for One Single Field Point 40
3.1.2  Calculation of Diffraction Response for One Single Field Point 49
3.1.3  Huygens Method for the Received Signal from Extended Reflector 52



3.2 Implementation of DREAM Method 54

321  Segmentation 56
322 Delay Interpolation 57
323 DREAM Method 60
3.3 Mechanism for Coding 61
Chapter 4. Evaluation of Huygens M ethod 64
4.1 Center Integration versus Corner Integration Huygens Methods 65
4.2 Optimal Tile Size for Huygens Method 69
Chapter 5.  Evaluation of DREAM Method 79
5.1 Introduction to the Behavior of Diffraction Response 81
5.2 DREAM Error versus Radia Distance 84
5.3 Energy of The Received Signal from Small Reflector versus Radial Distance 91
5.4 Normalized DREAM Error versus Radial Distance 94
5.5 The Optima Tile Size for DREAM Method 98
5.6 Received Signal from Small Tilted Reflector 104
5.7 Received Signa from Large Flat Reflector 109
571 Received Signal from Large Flat Reflector Tilted 0.6° 110
5.7.2  Received Signal from Large Flat Reflector Tilted 6° 112
5.8 The Results Obtained for Curved Large Reflector 114

Chapter 6.  Optimal Design of Acoustic Fields and Receiver Characteristics

118
6.1 The Concept of Optimization 121
6.1.1 The Global Search Method 125
6.1.2  The Waveform Alignment Method 126
6.1.3  Comparison of Two Optimization Methods 133
6.1.4  Separating Delay Matrix into Transmit and Receive Delay Sets 133
6.2 Optimal Delay Matrix for Convex Reflector and Tilted Flat Reflector 136
6.21  Results Obtained by the Global Search Method, based on 3-Ring Array 140
6.2.2  Results Obtained by the Waveform Alignment Method, based on 3-Ring Array
140
6.2.3  Results Obtained by the Waveform Alignment Method, based on 6-Ring Array
144
6.3 Optimal Delay Matrix for Concave Reflector and Tilted Flat Reflector 147
6.4 Optimal Delay Matrix for Convex Reflector and Concave Reflector 151

Vi



Chapter 7. Conclusions and Future Work
7.1 Conclusions
7.2 Future Work

References
Appendix A
Appendix B

Vii

154
154
157

159
163
178



List of Figures

21

22

23

24

25

26

2.7

28

29

31

3.2

33

34

35

Illustration of an ultrasound pulse echo system.

Illustration of the simplest pulse-echo system with point scatterer as the reflector.
Comparison of the experimental output voltage (solid line in part @) and the theoretical
prediction (broken line in part b) from 0.8mm diameter axial target at 20mmrange. The
transducer is 8mm radius disk of PZK backed with tungsten-epoxy composite [17].
Flow chart of the calculation of diffraction response.

Illustration of the pulse-echo system with s single rectangular tile.

Delay linearization plane for the delays for the corners of arectangular tile.

Illustration of the pulse-echo system with a single triangular tile.

Delay linearization plane for the delays for the corners of atriangular tile.

Geometry of an N-ring planar concentric annular array, indicating annulus outer radii &;.
The side view of the geometry of the simulation scenario with a planar circular piston

transducer and two field points. The radius of the transducer is a=12.7mm. Theradia
distance of the field point 1, r 1, islessthan a; the radial distance of the field point 2,

r 2, islarger than a.

The velocity potential responses at different field points for a planar circular piston of
radius a=12.7mm. The axial distance of the pointsis 50mm. The radial distance of the
points are Omm, 6mm, 12mm, 18mm respectively.

Magnitude spectrum of velocity potential function of on-axis field point, illustrating how
to determine approximate aliasing error due to its discrete representation.

[lustration of the magnitude spectrum with the aliasing signal for two different field
points for a planar circular piston of radius a=12.7mm. The sampling rate is S0O0OMHz.
The axial distance of the pointsis 50mm. The radial distance of the points are Omm,
18mm respectively.

Enlarged version of Figure 3.4 to highlight the frequency range of interest, i.e. O-
15.625MHz.

viii

12

16

19

24

28

29

32

32

36

41

42

43

45

45



3.6

3.7

38

39

3.10

4.1

4.2

4.3

4.4

4.5

4.6

The relative magnitude error of the transfer functions for the simple differentiator.

[lustration of the steps involved in the calculation of diffraction responses. A planar
circular piston with radius a=12.7 mm acts as both transmitter and receiver. The axia
distance is 50 mm and the radial distance is 0 mm, 6 mm, 12 mm, 18 mm respectively. a)
The convolution of the velocity potential of transmitter and receiver. b) The first
differentiation of the convolution results. ¢) The second differentiation of the convolution
results. d) Enlarged version of c)

Example of pulse-echo diffraction responses from four corners of a Imm* Immtile as well
as the segmentation (3 segments) of the diffraction responses. A planar circular piston
with radius a=12.7mm acts as both transmitter and receiver. Thetile centers at
(x,y,2=(3,3,50)mm and tilted 10° in the y-direction.

The simulation scenario for the delay interpolation method.

Example of how well the estimated pul se-echo diffraction responses obtained by R-
DREAM and T-DREAM delay interpolation method compares to the true response at the
center of 1mm* 1mm planar rectangular tile. Thetile centers at (x,y,2)=(3,3,50)mm and
tilted 10° in the y-direction.

Spectra of received signal from a 1mn 1mm square reflector to show the different results
obtained by center summation Huygens method using different tile size. The reflector
centersat (r, 2 = (7.07, 50) mmand tilted 10° relative to the transducer surface. Two
planar circular piston transducers of radius 3mm and 6mm are used as transmitter and
receiver, respectively.

Spectra of received signal from a Imn 1mm square reflector to show the different results
obtained by center summation Huygens method using different tile size. The reflector
centersat (r, 2 = (7.07, 50) mm and tilted 2° relative to the transducer surface. Two
planar circular piston transducers of radius 3mm and 6mm are used as transmitter and
receiver, respectively.

Spectra of received signal from a Imn 1mm sguare reflector to show the different results
obtained by center summation Huygens method using different tile size. The reflector
centersat (r, 2 = (7.07, 50) mm and tilted 20° relative to the transducer surface. Two
planar circular piston transducers of radius 3mm and 6mm are used as transmitter and
receiver, respectively.

Spectra of the received signals obtained by center summation Huygens method for 6
different simulation scenarios: case 1 to case 6 as described above.

Spectra of the received signals obtained by center summation Huygens method for two
different simulation scenarios: case 2 and case 7 as described above.

The relationship between the radial distance and the Mean Square Error of the spectra of
the received signals obtained with the 100mm ttile size, from a 1mm* 1mm square flat
reflector, which istilted 10° relative to the transducer surface. Part (a): The MSE
produced when same size planar circular piston transducer is used as both the transmitter
and receiver, the radius is 3mm, 6mm, 9mm and 12.7mm, respectively; Part (b) (c) (d) (e)
and (f): The comparison between the M SE produced when two different size planar
circular piston transducers are used as the transmitter and receiver, and the MSE
produced when same size planar circular piston transducer is used as both the transmitter
and receiver.

51

52

55

57

60

69

71

72

75

75

77



51

52

53

54

55

56

57

58

59

[llustration of the different diffraction responses when the radial position of the field
points changes. Two planar circular pistons with radius 3mm and 9mm act as transmitter
and receiver respectively. The axial position of the field pointsis 50mm. The radial
positions are 1mm, 2 mm, 3mm and 4mm in part (a), (b), (c) and (d), respectively.

[llustration of the different diffraction responses when the radial position of the field
points changes. Two planar circular pistons with radius 6.3mm and 9mm act as
transmitter and receiver respectively. The axial position of the field pointsis 50mm. The
radial positions are 1mm, 2 mm, 3mm and 4mmin part (a), (b), (c) and (d), respectively.

[llustration of the simulation scenarios used to illustrate the relationship between the
DREAM Error and the radial location of the reflector.

[llustration of the relationship between the DREAM Error (=M SE) and the radia position,
basing on the M SE of the received signal obtained by DREAM method from small square
reflectors. The results obtained by Huygens method with 100mm point spacing are used
asreference signal. Thereflectors are tilted 0.6° with respect to the surface of the
transducer. The radii of the transmitter and receiver are: in part (a) and part (b): both
6.3mm; in part (c) and part (d): 3mm and 6.3mm. Part (a) and part (c) are for T-DREAM
and part (b) and part (d) are for R-DREAM.

[llustration of the relationship between the DREAM Error (=M SE) and the radial position,
basing on the M SE of the received signal obtained by DREAM method from small square
reflectors. The results obtained by Huygens method with 50mm point spacing are used as
reference signal. The reflectors aretilted 6° with respect to the surface of the transducer.
Theradii of the transmitter and receiver are: in part (a) and part (b): both 6.3mm; in part
(c) and part (d): 3mmand 6.3mm. Part (a) and part (c) are for T-DREAM and part (b) and
part (d) are for R-DREAM.

Illustration of the energy of the received signal from a 0.5mm*0.5mm tile as a function of
the radial position of the center of thetile. The reflector istilted 0.6° with respect to the
transducer surface. Theradii of the transmitter and receiver are: in part (a) both 3mm; in
part (b): 3mm and 6.3mm; in part (c): 6.3mm and 6.3m; in part (d): 9mm and 9mm.

Illustration of the energy of the received signal from a 0.5mm*0.5mm tile as a function of
theradial position of the center of the tile. The reflector istilted 6° with respect to the
transducer surface. Theradii of the transmitter and receiver are: in part (a) both 3mm; in
part (b): 3mm and 6.3mm; in part (c): 6.3mm and 6.3mm; in part (d): 9mm and 9mm.

[llustration of the relationship between the radial position and the Normalized DREAM
Error of the received signal from small square reflector. The results obtained by Huygens
method with 100mm point spacing are used as reference signal. The reflector istilted 0.6°
with respect to the transducer surface. The radii of the transmitter and receiver are: in part
(a) and part (b): both 6.3mm; in part (c) and part (d): 3mm and 6.3mm. Part (a) and part
(c) arefor T-DREAM and part (b) and part (d) are for R-DREAM.

Illustration of the relationship between the radial position and the Normalized DREAM
Error of the received signal from small square reflector. The results obtained by Huygens
method with 50mm point spacing are used as reference signal. The reflector istilted 6°
with respect to the transducer surface. The radii of the transmitter and receiver are: in part
(8) and part (b): both 6.3mm; in part (c) and part (d): 3mm and 6.3mm. Part (a) and part
(c) arefor T-DREAM and part (b) and part (d) are for R-DREAM.

82

83

88

89

90

92

93

96

97



5.10 Illustration of the relationship between the DREAM Error and the radial position of a
small sguare reflector. The results obtained by Huygens method with 50nm point spacing
are used as reference signal. The reflectors are tilted 6° with respect to the surface of the
transducer. The radii of the transmitting and receiving transducers are both 6.3mm.

5.11 Spectra of received signal from a 1Imm* 1mm sguare reflector to show the different results
obtained by Huygens method, R-DREAM, T-DREAM. Part (a), (b), (c) and (d)
correspond to the received signal from reflector positions R1, R2, R7 and RS,
respectively.

5.12 Time-domain received signal from a 1Imm* 1mm square reflector to show the different
results obtained by Huygens method, R-DREAM, T-DREAM. Part (a), (b), (c) and (d)
correspond to the received signal from R1, R2, R7 and R8, respectively.

5.13 Spectra of the received signal from a 15mm* 15mm square reflector to show the different
results obtained by Huygens method, R-DREAM, T-DREAM. The reflector istilted 0.6°
with respect to the transducer surface. Part (a), (b), (c) and (d) correspond to the received
signal for case 1, 2, 9 and 10, respectively.

5.14 Spectra of the received signal from a 15mm* 15mm square reflector to show the different
results obtained by Huygens method, T-DREAM. The reflector is tilted 6° with respect to
the surface of the transducer. Part (a), (b), (c) and (d) correspond to the received signal
for case 11, 12, 19 and 20, respectively.

5.15 Cross-sectional views of the curved reflector.

5.16 Spectra of the received signal from a curved reflector to show the different results
obtained by Huygens method, T-DREAM. Part (a), (b), (c) and (d) correspond to the
received signal for case 21, 22, 29 and 30, respectively.

6.1 Calculation of the Difference Signal Matrix VA8(t) for a 3-ring annular array transducer.

6.2 Calculation of the optimal delay matrix T°" using the Waveform Alignment Method.
Note that in the lower part, the superscript “Opt” for t;; has been left out for clarity.

6.3 The calculation of the actual received signals from individual reflector A and reflector B,
under the condition of optimized energy difference, using the Waveform Alignment
Method: Alignment of array signal components; bandpass filtering and summation of
signal components. Note that in the top part, the superscript “Opt” for t;; has been left out
for clarity.

6.4 Cross-sectional view of the measurement scenarios with convex and tilted flat reflectors.

6.5 Thereceived signal matrix VV(t) for convex reflector.

6.6 Thereceived signal matrix V"(t) for tilted flat reflector.

6.7 Difference signal matrix between the received signal from convex reflector and that from
thetilted flat reflector.

6.8 Thetime-domain and frequency-domain response of the annular array transducers.

6.9 Illustration of the cross-correlation functions between w(t) and the difference signal
shown in Figure 6.7 of the received signal from convex reflector and that from the tilted

Xi

106

107

108

112

114

115

116

123

128

132

136

137

138

139

141

142



flat reflector. The x-axis for all signalsisin msand they-axisfor al signasisin m"/s’.

6.10 The single waveform matrix used to approximate the difference signal matrix of the
received signal from convex reflector and that from the tilted flat reflector shown in
Figure 6.7. The x-axisfor al signalsisin ns.

6.11 The sum received signal from convex reflector, flat reflector and the difference signal
from those two reflectors. The first column is based on the optimal delay matrix obtained
by the Global Search Method and the 3-ring array; the second column is based on
Waveform Alignment Method and the 3-ring array and the third column is based on the
Waveform Alignment Method and the 6-ring array. The x-axis for all signalsisin rs.

6.12 Cross-sectional view of the measurement scenario with concave reflector.

6.13 Difference signal matrix between the received signal from concave reflector and that
from the tilted flat reflector.

6.14 The summed received signal from the concave reflector, flat reflector and the difference
signal from those two reflectors. The first column is obtained with the optimal delay
matrix using the Waveform Alignment Method and the 3-ring array and the second
column is obtained with the 6-ring array. The x-axis for al signasisin .

6.15 Difference signal matrix of the received signal from convex reflector and that from
concave reflector.

6.16 The summed received signal from the convex reflector, concave reflector and the
difference signal from those two reflectors. The first column is obtained with the optimal
delay matrix using the Waveform Alignment Method and the 3-ring array and the second
column is obtained with the 6-ring array. The x-axisfor al signasisin .

Xii

143

146

147

148

150

151

153



List of Tables

31

4.1

4.2

4.3

4.4

51

52

53

54

55

Local to global sampling rate translation and down-sampling ratio used in DREAM.

Mean Square Error of the spectra of the received signals obtained by center and corner
summation methods and with different tile size. The reflector is a 1mm* 1mm square
reflector and centersat (r, 2) = (7.07, 50) mm and tilted 10° relative to the transducer
surface. Two planar circular piston transducers of radius 3mm and 6mm are used as
transmitter and receiver, respectively. The results obtained by the summation of the
diffraction responses of the S5mmtiles are used as reference signal for each method,
respectively. The unit of MSE is“%".

Mean Square Error of the spectra of the received signals obtained by center summation
Huygens method with different tile size and tilt angle of reflector. The reflector isa
Imm* 1mm square reflector and centers at (r, 2) = (7.07, 50)mm. The reflector istilted 2°,
10°, 20° relative to the transducer surface, respectively. Two planar circular piston
transducers of radius 3mm and 6mm are used as transmitter and receiver, respectively.
The results obtained by the summation of the diffraction responses of the 5mmtiles are
used as reference signal for each case. The unit of MSE is“%”.

Summary of the parameters used for different simulation scenarios discussed above.

Mean square error of the spectra of the received signals obtained by center summation
Huygens method for different simulation scenarios. The unit of MSE is“%".

Summary of the simulation scenarios based on the different combination of the
transducers as the transmitter and receiver.

Summary of the optimal tile size for T-DREAM when the reflector is small (with the

dimension of 1mn 1mm, and so on) and tilted around 6° with respect to the transducer
surface.

Summary of the optimal tile size for R-DREAM when the reflector is small (with the
dimension of 1mn 1mm, and so on) and tilted around 6° with respect to the transducer
surface.

Summary of the optimal tile size for both T-DREAM and R-DREAM when the reflector
islarge and tilted around 6° with respect to the transducer surface.

Summary of the position of the 1mm* 1mm square flat reflectors. The radii of the
transmitter and receiver are both 6.3mm and the reflector istilted 6° with respect to the

Xiii

47

68

70

73

74

87

101

102

103

104



transducer surface.

5.6 Optimal tile size, Mean Square Error (M SE) and the computational time for R-DREAM,
T-DREAM method for a Imn 1mm square tile at various radial position. The results
obtained by Huygens method with 50mm point spacing are used as reference signal for
each case.

5.7 Summary of the parameters used for different simulation scenarios to calculate the
diffraction response from 15mm* 15mm square flat reflector.

5.8 Optimal tile size, Mean Square Error (M SE) of the results and the computation time
obtained by R-DREAM, T-DREAM method. The results obtained by Huygens method
with 100mmtiles are used as reference signal for each case.

5.9 Summary of the parameters used for different simulation scenarios to calculate the
received signal from 15mm* 15mm square flat reflector: The tile size used by T-DREAM
method, Mean Square Error of the results and the computation time obtained by T-
DREAM method. The results obtained by Huygens method with 50mm tiles are used as
reference signal for each case. The reflector istilted 6° with respect to the surface of the
transducer.

5.10 Summary of the parameters used for different simulation scenarios to calculate the
received signal from the curved reflector: Thetile size used by T-DREAM method, Mean
Square Error of the results and the computationtime obtained by T-DREAM method. The
results obtained by Huygens method with 50mm tiles are used as reference signal for each
case. The curved reflector isa 10° arc of a cylinder with radius = 86mm and length =
15mm.

6.1 Energy of the summed difference signal, summed received signal from individual convex
and tilted flat reflector.

6.2 Energy of the summed difference signal, summed received signal from individual
concave and tilted flat reflector.

6.3 Energy of the summed difference signal, summed received signal from individual convex
and concave reflector.

Xiv

105

110

111

113

115

145

149

152



Chapter 1
| ntroduction

1.1 Ultrasound Pulse-Echo M odeling Techniques

The ability to numerically determine the received signal in an ultrasound pul se-
echo system is very important for many ultrasound applications such as tissue
characterization, complex object recognition, identification of surface topology, etc.
There exists very complex relationship between, on one hand, the output signal from an
ultrasound pulse-echo system, and, on the other hand, the specified ultrasound
transducer and the geometry, orientation and location of the reflector. As a result, only
by numerical modeling can the output signal for a given measurement configuration be
predicted. Especially when it comes to optimizing the design of ultrasound system to
carry out such tasks as identifying objects of specified shapes, determining surface
topology or alignment of surface, etc., numerical modeling is the only practical way.

There are severa techniques being applied to model the pulse-echo system,
including analytical approaches, Finite-Element Method (FEM), Angular Spectrum
Methods (ASM), and Spatia Impulse-Response Method (SIRM). As we will briefly
discuss in this section, each technique has its own advantages and disadvantages.

Analytical approaches, as the name indicates, are based on the analytical

solutions for the received signal in the pulse-echo system. This type of approaches was



investigated by Johnson and Davaney [1] for a planar circular piston transducer
insonifying an elastic infinite planar reflecting surface strictly at normal incidence.
When the analytical solutions for the recelved signals are available, the analytical
approaches make the computer simulation of the system efficient and general. However,
analytical formulations do not exist for general transducer and reflector geometries; in
addition, the analytical approaches can not include such effects as attenuation,
scattering and refraction; therefore, anaytical approaches are not of much interest in
genera purpose modeling.

The FEM method, which is based on the solution of a complete set of
fundamental differentiation equations with the restriction of linearity, is a well-
established numerical technique for field computations in complex and heterogeneous
media. Lerch applied the FEM in the computation of sound fields in fluids and gases
[2]. His theoretical results was quantitatively verified by measurements of electrical
impedances of a long paralelepiped piezoceramic bar, mechanical displacements of
array transducers and the sound field of piezoelectric transducers immersed in water [2].
Based on the theoretical framework developed by Lerch, the FEM was also applied to
model the pulse-echo behavior of ultrasound transducers by Lerch, Landes and
Kaarmann [3]. In their work, a hybrid scheme was applied, i.e., the FEM is used to
model the transducer and the reflector as well as their fluid environment to calculate the
reflected acoustic pressure while the forward and backward wave propagation between
the transducer and the reflector was calculated via Helmholtz integral. With the FEM, it
is possible to model very complex, thus more redlistic, situations at the price of long

computation time due to the complex model. Another problem of FEM is that when the



source and reflector are far apart, a large number of propagation steps are needed to
propagate the wavefield from the transducer to the reflector and from the reflector back
to the transducer. Therefore, the error introduced for each propagation step could
accumulate to a unacceptably large error.

The ASM method is based on a decomposition of the acoustic field into
harmonic plane waves, and this method alows simple analysis of the propagation of
scalar fields. Orofino and Pedersen discussed a practical angular spectrum
decomposition method based on the 2-D FFT [4]. The angular spectrum decomposition
was expressed as a 2-D spatial Fourier transform which, for afixed temporal frequency,
is afunction of the spatial frequencies of the particle velocity distribution in the x- and
y-directions. This method enables the decomposition of normal velocity and pressure
fields radiated by transducers of arbitrary shape into component plane waves with
amplitudes and propagation directions determined by the temporal frequency and spatial
frequencies. The ASM based method was aso extended to model the received
ultrasound signals from finite planar targets by Pedersen and Orofino [5]. The
propagation from source to reflector of a given plane wave component is directly
achieved by a single phase term, therefore, ASM avoids the accumulative error problem
encountered by the FEM. The ASM is very useful in some situations, particularly for
modeling of reflections from planar reflectors of arbitrary size. However, the ASM is
very computationally intensive when applied to pulse-echo modeling because the ASM
is based on harmonic waves only. Hence, a temporal Fourier Transform is needed to
decompose acoustic field into harmonic waves before the ASM can be applied. Another

drawback of the ASM is that the determination of the spatial frequencies is very



complicated because the spatia frequencies are dependent on the geometry of
transducer and reflector.

The SIRM method is currently used for calculation of pressure field from a
variety of transducer types [5]; in a similar fashion, the pulse-echo responses from a
given transducer due to a point-like scatterer can be found using this method. The SIRM
can be further extended to the calculation of the received signals due to extended
reflector surfaces in pulse-echo system. Most of the SIRM applications for the pulse-
echo systems are based on the derivation by Weight and Hayman [6] of the received
signal from a small reflector surface insonified by a transducer with short pulse
excitation. Their derivation is based on Rayleigh integral and the principle of acoustic
reciprocity. Using the results in [6], McLaren and Weight made detailed calculation of
the recelved signals arising from solid targets of various size interrogated by short
pulses of ultrasound propagating in a fluid medium [7]. They aso investigated the
effects of target size, field position and material on the amplitude and shape of the
received signals. Later, Lhemery developed a model to predict the received signal from
targets of complex geometry [8], with specific formulations for arbitrary shape targets
with very high acoustic impedance, arbitrary acoustic impedance and near zero acoustic

impedance. More details of SIRM will be presented in section 2.2.

1.2 Objectives of the Thesis

1.21 DREAM Method and Huygens M ethod
A fast impulse-response based numerica modeling tool, the Diffraction

Response from Extended Area Method (DREAM), was developed by Jespersen,
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Pedersen, and Wilhjelm [9]. The DREAM is a SIRM based method. The acoustic
principle behind DREAM is the same as used in [6, 7, 8]. The DREAM s based on
linearity and operates by dividing the surface of the reflector into a relatively small
number (say, a few hundred) of rectangular or triangular “tiles’. The spatial integration
of the diffraction response over each tile is then performed by an equivalent low pass
filtering. The DREAM method is able to efficiently calculate the received signa from a
given ultrasound transducer due to a specified reflector at a specified location and
orientation.

The DREAM method using rectangular tile was implemented as part of the PhD
thesis of S.K. Jespersen at Technical University of Denmark [10]. In his work, he
compared the simulation results obtained using DREAM method with the results
obtained using other simulation techniques, such as the angular spectrum method. For
al the simulations, the transmitting and receiving transducers are both circular planar
transducer with radius of 12.7mm.

The DREAM method can also be implemented using triangular tiles. The use of
triangular tiles solves two inherent problems with the implementation of rectangular
tiles. First, it eliminates the small error introduced by the least squares approximation in
the delay linearization for the rectangular tiles, as will be discussed in the next chapter.
Second, the triangular tile can be used to tessellate a specific reflector surface more
accurately than the rectangular tile. Therefore, one of the objectives of this thesisis to
implement and evaluate the DREAM using triangular tiles. Furthermore, we would like
to investigate the performance of the DREAM method over a wider range of simulation

scenarios, that is, for more types of reflectors and for more different combination of



transmitting and receiving transducers. A simpler, but slower, method based on
Huygens principle, namely, Huygens method, is used as benchmark to evaluate the
results obtained by the DREAM method. The Huygens method is based on the
integration of the diffraction response from a very large number of micro-tiles which

make up the surface of the entire reflector.

1.2.2 Optimal Design of Ultrasound System

The modeling concept of ultrasound pulse-echo system can be extended to array
transducers. With the DREAM method as an efficient modeling tool, the received signa
from any array element due to transmission with any array element can be readily
calculated, based on the superposition of the received signal from planar circular
transducers. With array transducers, a large number of different acoustic fields can be
produced by varying the relative excitation delay and the amplitude scale factor for the
individual transmitting elements. In a similar fashion, a large number of receiver
characteristics can be achieved. By customizing the acoustic field and receiver
characteristics of an ultrasound pulse-echo system with annular array, it may be
possible to develop an acoustic system which can be optimized in the terms of
identifying a given object or interface among a limited set of objects or interfaces.
Therefore, another objective of the thesis is to investigate the optimal design of
ultrasound system for such tasks as identifying objects of specified shapes, determining

surface topology or alignment of surface.



1.3 Contributions of the Thesis

The original work of this thesis has made contributions in the following aspects:

The Huygen method is implemented to model the output signal of a pulse-
echo system and some important implementation issues are investigated.

The DREAM method is implemented using both triangular and rectangular
tiles. The segmentation and the delay interpolation, which are the two most important
aspects in the practical implementation of DREAM, are improved relative to the
implementation in [9] to generate more accurate results for more general simulation
scenarios, especially, when the transmitting and the receiving transducers are of
different size. The issue of finding the optimal tile size for DREAM method is
investigated in details.

- The results obtained by DREAM method are evaluated, in terms of accuracy
and computation time, by comparing to those obtained by Huygens method for a variety
of simulation scenarios.

Two methods, the Global Search Method and the Waveform Alignment
Method, are implemented as the first step towards the optimal design of ultrasound
system in terms of identifying a given object or interface among a limited set of objects
or interfaces. The optimal delay matrix is obtained as a preliminary solution to
differentiate between two specific interfaces by optimizing the delay values assigned to

the elementsin the array.



1.4 Outline of the Thesis

This section describes the overall content of the thesis. Chapter 2 and Chapter 3
provide background material including a description of the pulse-echo system, the
modeling of pulse-echo system and the implementation aspects of such system. Chapter
4 and Chapter 5 present and evaluate the simulation results obtained by Huygens
method and by the computationally efficient DREAM method, respectively. More
results are included in Appendix A and Appendix B rather than in the individual
chapters, in order to keep the main text concise. In Chapter 6, the modeling concept has
been extended to annular array system. It is investigated how to optimally design an
ultrasound system with respect to its ability to identify a given object or interface
among a limited set of objects or interfaces. Chapter 7 presents the conclusion and
future research work related to the work of this thesis. Each mgjor chapter of this thesis
isindividually summarized below for the convenience:

Chapter 2

The ultrasound pulse-echo system is briefly discussed. Definition of Pulse-echo
Diffraction Impulse Response is presented to simplify the formulation of the received
electrical signal in pulse-echo ultrasound systems. Then, the multi-rate algorithm,
which is used to numerically compute the pulse-echo diffraction impulse response, is
described. Two methods, which are used to calculate the received signal in pulse-echo
systems from extended area reflectors, are introduced: Huygens method and Diffraction
Response for Extended Area Method (DREAM). Finally, the modeling concepts are
extended to calculate the received signal from individual array elementsin annular array

system.



Chapter 3:

The details about the implementation of ultrasound pulse-echo simulation
system are discussed in this chapter. First, the velocity potential impulse response as
well as the diffraction response for one single field point are derived. Then, the
Huygens method to calculate the received signal from extended reflector is discussed.
Next, the computational efficient DREAM method is described based on the concepts
of segmentation and delay interpolation. Finaly, the mechanism for the simulation
coding is described in term of efficiency.

Chapter 4.

Different aspects of the Huygens method are discussed in this chapter. First,
Huygens method based on the integration of the response of central point of the micro-
tile is compared with Huygens method based on the integration of the response of
corner point of the micro-tile. Next, the optimal micro-tile size which can be used by
Huygens method to produce results with good accuracy is investigated.

Chapter 5:

The optimal tile-size, which can be used by DREAM method to produce results
with good accuracy, is explored. The relationship between, on one hand, the DREAM
Error, the energy of the received signal, and the normalized DREAM Error for a small
reflector, and, on the other hand, such factors as the radial position of the reflector, the
tilt angle of the reflector and the radii of the transducers are illustrated. Finally, the
received signal from small flat reflectors, large tilted flat reflectors and large curved
reflectors is calculated by the DREAM method (T-DREAM and/or R-DREAM), using

optimal tile size. The results are calculated for different combinations of planar circular



transducers and evaluated by those obtained by Huygens method in terms of accuracy
and computation time.
Chapter 6:

A brief introduction is given to the concept of the optimal design of ultrasound
system, in the terms of identifying a given object or interface among a limited set of
objects or interfaces. Two methods are introduced: the Global Search Method and the
Waveform Alignment Method. Both methods are applied to find the best transmit and
receive characteristics of the array transducer in the form of the optimal delay matrix, to
most reliably differentiate between a tilted flat surface and a convex curved surface,
based on a 3-ring annular array system. The Waveform Alignment Method is also
applied based on a 6-ring annular array system. All the results are compared. In
addition, the Waveform Alignment Method is applied to find the optimal delay matrix to
most reliably differentiate between atilted flat surface and a concave curved surface, as
well as between a convex curved and a concave curved surface, based on both a 3-ring

annular array system and 6-ring annular array system. All the results are compared.
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Chapter 2
Modeling of Ultrasound Pulse-
Echo System

The ultrasound pulse-echo system is the basis for most practical applications of
ultrasound as images of local backscatter level (B-mode images) are readily generated
using linear array transducers. The first section of this chapter begins with descriptions
of an ultrasound pulse-echo system, introducing the operation of such a system, as well
as the importance of numerical modeling of the system for quantitative analysis. In
section 2.2, a term Pulse-Echo Diffraction Impulse Response is defined to simplify the
formulation of the received electrical signal in pulse-echo ultrasound systems, followed
by section 2.3 where a multi-rate algorithm, which is used to compute the pulse-echo
diffraction impulse response, is described. Then the Huygens method and the
Diffraction Response for Extended Area Method (DREAM), which are used to calculate
the received signal in pulse-echo systems from extended area reflectors, are introduced
in sections 2.4 and 2.5. Findlly, in section 2.6, the modeling concept is expanded to

calculate the received signals from individual elementsin an annular array transducer.
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2.1 Introduction

Sound is mechanical energy transmitted by pressure waves in a medium. Sound
waves, whose frequency is greater than 20 KHz, are termed ultrasound. The word
transducer denotes any device that is used to convert signals or energy from one energy
form to another. In the context of thisthesis, the term transducer refers to the ultrasonic
transducer that converts acoustic signals to electrical signals and/or electrical signalsto

acoustic signals[11].

Coupling medium

pulser transducer coject
[ ] M \f‘iu ] >)))) - -

Figure 2.1: lllustration of an ultrasound pulse echo system.

When an ultrasonic transducer transmits short-duration acoustic pulses into a
medium containing a reflecting object, the pulses undergo reflection at the surface of
the object which gives rise to echo signals returning to the receive transducer [11].
Such a system is called ultrasound pulse-echo system and is illustrated in Figure 2.1 in
which the same transducer is used in both transmission and reception. The ultrasound
transducer is typically implemented by using a piezoelectric layer with electrodes on

each side. A piezoelectric transducer is a resonant device which has bandpass filter
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characteristics. The excitation signal from a pulser/receiver is typically a large voltage
spike, which can be modeled by a delta function.

The ultrasound pulse-echo system is the basis for most practical applications of
ultrasound as images of local backscatter level (B-mode images) are readily generated
by using linear array transducers. In many situations, pulse-echo ultrasound is the only
practical way that ultrasonic imaging, the most common qualitative ultrasound
application, can be performed. Ultrasound imaging is carried out in both medical
ultrasound and non-destructive testing. Proper development of quantitative ultrasound,
on the other hand, often requires that the received signa in a pulse-echo system be
determined. Quantitative ultrasound applications include tissue characterization,
complex object recognition and identification of surface topology. Unfortunately, it is
quite difficult to efficiently determine the received electrical signal in pulse-echo
ultrasound systems because of the complexity of generation, propagation,
backscattering and reception of the ultrasound fields in pulse-echo systems. Therefore,
efficient computational tools for pulse-echo system are essential to the progress of the
guantitative medical and industrial applications of ultrasound.

The relationship between the output signal from an ultrasound pulse-echo
system on one hand and the excitation signal, the geometry, properties and location of
the ultrasound transducers and size, geometry, location and orientation of the reflector
on the other hand is very complex, so that only by numerical modeling can the output
signal for a given measurement configuration be predicted. Especialy when it comes to
optimizing the design of ultrasound system to carry out such tasks as identifying objects

of gpecified shapes, determining surface topology or alignment of surface, etc.,
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numerical modeling is the only practical way. The factors that influence the received
signa include: the excitation signal; the geometry, location, electro-acoustic transfer
function of the transmit and receive transducers; the size, shape, surface geometry,
interface orientation, location of the reflector; and the effect of attenuation, absorption,
refraction and non-linearity of the coupling medium [9].

As described in section 1.1.1, there are severa modeling techniques being
applied to model the pulse-echo system: 1) analytical approaches; 2) Finite-Element
Method (FEM); 3) Angular Spectrum Methods (ASM), and 4) Spatia Impulse-
Response Method (SIRM). The Diffraction Response for Extended Area Method
(DREAM method) which is the main topic of this thesis is based on the impulse-
response based approach. DREAM modeling utilizes the diffraction responses derived
from the velocity potentia impulse responses of the transmitting and receiving
transducers as will be discussed in section 2.2. The modeling concept has been
extended to calculate the received signals from individual elements in an annular array

transducer, described in section 2.6.

2.2 Diffraction Response For mulation

It is well known that a sound field from a baffled planar piston source in afluid
can be accurately described by the Rayleigh integral. For a source with a radiating

surface S and a normal particle velocity function u,(,,t), the Rayleigh integral for

time-dependent velocity potentia f (I",t) isgiven by [12 — 14]
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where T

S

represents points on the surface S and 1 represents the field point. The
parameter c is the sound speed in the homogeneous propagation medium. If al of the
points on the source vibrate with equal amplitude and in phase, i.e., the vibration of the
piston is uniform, then u (7,,t)=u, (t) on S and zero outside, and (2.1) can be

expressed as:

(7= T 170) sy () A e, 1) 2.2)

f(r0=0 —
O pir-v

where A is the convolution in time-domain, and h(7,t) isthe spatial impulse response

of the velocity potential and defined as [14]

d(t [T - |/c) d(t- r¢/c)
h = s =0 :
(ry= S 2p|r-r1,| 2pr¢ ds 23)

where r¢= |7 - T, |. The pressure field at point i, p(T,t), can be obtained from f (7', t)
as[7, 15]

it (r) _ - TMu, (t) A h(r, 1)} _

it it (2.4)

0 n(t)A

P =1 “hﬁ{t D

where r, is the density of the medium in front of the transducer. From (2.4), it is not

difficult to understand why the method discussed above is named the “Velocity
Potential Impulse Response Method ” or just the “Impulse Response Method .

The impulse response method has also been applied to calculate the received
signal in a pulse-echo system. The principle of acoustic reciprocity [16, p. 172] is the
basis for the following derivation. One form of the principle states that if the locations

and orientations of a small source and a small receiver are interchanged, the received
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signa will remain the same. For pulsed radiation, the principle is stated as [6]: “For a
given transducer in reception, the output voltage waveform due to a pulse emitted at a
point is identical to the pressure waveform at that point resulting from transmission of

the same pulse by the transducer.”

y
A X

Transducer Point scatterer

!

Figure 2.2 lllustration of the simplest pulse-echo system with point scatterer asreflector.

The first step towards determining the received signal in a pulse-echo system is
to calculate the received signal due to small reflector surface with dimensions much
smaller than a wavelength, i.e., point scatterer. The situation isillustrated in Figure 2.2.

The point scatter is at point I and is subjected to the incident pressure field p (7',t).
Equation (2.4) gives the formulation for p,(F,t) at point 7 . It can be assumed that the

incident field is locally plane if it is observed over a very small region. It is also
assumed that the impedance of the point scatterer is either zero or infinite; therefore, the
reflected pressure magnitude at the surface of the point scatterer is equal to the incident
pressure magnitude. According to the principle of acoustic reciprocity, the received

signal for the receiving transducer can be calculated by assuming the point scatterer acts
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as a point source. The point source is characterized by its surface velocity u (T,t),

which is[16, p. 126]

u,(r,t) =- pr(—rct) (2.5)

and the surface velocity of the point source will create the reflected velocity potential

over the surface of the receiver [17, p. 298-303],

F(r.t) = u(r,t- Ir'/c)dA:_ p (r,t- r'/c)dA (2.6)
4pr dor'r ,C

where r’ is the distance from the point scatterer to the observation point on the
transducer surface and dA is the small surface area of the point scatterer. By combining

(2.4) and (2.6), the reflected pressure on the transducer, p, (F',t), can be found as:

qf (r,t) = - cosfq(r.1)] p.(F,t-r'/c) dA

It qt 4pr'c 27)

p.(r,t) =1, codq(r,t)]

In equation (2.7), q(r,t)is the angle between the unit normal vector of the reflector
surface and the particle velocity vector at T ; Therefore, the output voltage, dv,(F,t),

due to the point scatterer is.

av, (r,t) =E, (t) A p, (r,H)dS (2.8)

where E, (t) is the acoustic-electrical impulse response of the receiving transducer.

With severa straightforward operations and applying equation (2.7), equation (2.8) can

be rewritten as [6, 9]
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where u, (t) is the uniform particle velocity on the surface of the transmitter and
h,(r,t) and h (I',t) are the velocity potential impulse response of the transmitter and
receiver, respectively. Now, the received signal due to a small reflector surface with
dimensions much smaller than a wavelength can be expressed as (2.10) by application
of (2.9) (multiplied by two since the small reflector is now part of an extended, locally
smooth reflector) [8, 9]:

1-[2

dv, (F,t) = cosfq (T, D)]E, (t) A u, () A -
c fit

[h(F,t) A h (F,1)]dA (2.10)

If we express un(t) as u, (t) =V, (t) A E,(t) and then define E(t) = E,(t) A E, (t) where
Ei(t) is the acoustic-electrical impulse response of the transmitting transducer and Vexc(t)
is the excitation voltage applied to the transmitting transducer, equation (2.10) can be
rewritten as:

1-[2

v, (7, ) = 2 cosfq (1, D]E(t) A v, (1) A w?
c fit

[h(F,t)A h (F,t)]dA (2.11)

This result, in a similar format, was originally derived by Weight and Hayman, and
some measurement results were presented [6]. Those measured results, using short
pulses and small targets, are consistent with the theoretical results based on the
reciprocity between transmission and reception. Figure 2.3 illustrates one of the
experimental results obtained in [6]. The transducer is 8mm radius disk of PZK backed
with tungsten-epoxy composite and the target is 0.8mm diameter axial target at 20mm

range. The predicted result in part (b) agrees well with the measured result in part (a),
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apart from a low-frequency component, which according to the authors is due to “radial
mode reverberation in the transducer” and “the limited dynamic range of the transducer

(~55dB)” [6], as well asthe limited bandwidth of the transducer.

-
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Figure 2.3 Comparison of the experimental output voltage (solid linein part a) and the theoretical
prediction (broken linein part b) from 0.8mm diameter axial target at 20mm range. The transducer
is8mm radius disk of PZK backed with tungsten-epoxy composite [6].

To simplify the notation in (2.11), the Pulse-Echo Diffraction Impulse Response

isdefined as:
D(F,t) =1?T22[h(f,t)A h,(F,1)] (2.12)

Further simplification of (2.11) is achieved by: i) assuming that E(t) =d(t) and
V,.(t) =d(t). Although these assumptions are not redlistic, they do not limit the

practical value of the approach because the realistic functions for E(t) and v, (t) can

be convolved onto the calculated response at any time in the process; ii) approximating
q(r,t) with q(r); and iii) defining A :h. Applying these approximations and the
c

definition for D(F,t) to equation (2.11), the resulting expression becomes:

dv. () = A cosiq (F)]D(F, t)dA (2.13)
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2.3 Computational Strategiesfor Calculating the Diffraction Response

From equations (2.13), it can be seen that it is will not be difficult to obtain the
received signal in pulse-echo ultrasound system for a very small reflector surface as
long as the diffraction response can be calculated. With the definition of diffraction
response in equation (2.12), we know that the key to calculate the diffraction response is
to obtan the velocity potential impulse response of the transducer. Analytic
formulations of the velocity potential impulse response for a planar piston transducer
will be presented in section 3.1.1. As will aso be illustrated in section 3.1.1, the
bandwidth of the velocity potential impulse response is quite large, especially when the
field point is near the transducer axis. Therefore, high sampling rates such as 6.4Ghz,
3.2GHz, etc., are required to avoid aiasing effect. However, since the frequency of our
interest is from near dc to 15.625MHz, such high sampling rates are excessive in the
final results, and we can decrease the sampling rates of the velocity potential impulse
response to save computational sources. Therefore, a multi-rate digital signal
processing algorithm is used to calculate the velocity potential impulse response. The
procedure of the algorithm is briefly described as following [15]:

1. Analytica solutions to velocity potential impulse response have been found
for a number of transducer geometries [9], such as a planar circular piston [18, 19], a
rectangular planar piston [20], a spherically curved rectangular strip [21], a spherically
focused circular piston [22] and a triangular piston [23]. These analytical solutions are
the basis for further signal processing.

2.  The anaytica solutions of the velocity potential impulse response must be

sampled or discretized before further signal processing procedure can be carried out.
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There are many types of sampling, including nonuniform sampling, uniform sampling,
random sampling and multiple-function uniform sampling [24]. We have used uniform
(periodic) sampling. The frequency f is the sampling rate and is a fundamental
consideration in many signal processing techniques and applications. It often
determines the convenience, efficiency and/or accuracy with which the signal
processing can be performed. In some cases, it may be necessary to convert the
sampling rates of the signals in the system from one rate to another. Such systems are
referred as multirate system[24].

The first step to sample the analytical solution of the velocity potential impulse
response is to specify the minimum global sampling rates fs, based on different
applications and the error level allowed. Next, the maximal duration of the velocity
potential impulse response is determined. For a planar circular transducer of radius a,
the duration of the velocity potential impulse response, Dt, is aways less than the

travel time of the wave across the transducer surface, Dt =2a/c, where c is the
sound speed as defined in equation (2.1). Based on the specified minimal global
sampling frequency fsy and the maximal duration of the velocity potential impulse
response Dt , the maximum sample sequence length N for a specific transducer can be
obtained as N 3 Dt ~ fg,, which guarantees the sampling rates for all observation

points are higher than or equal to fsn. Then the local sampling frequency fy for a specific
field point is determined by the duration, Dt, of the velocity potential impulse response

a that point and the N: fy, = N/Dt. However, in order to achieve a more efficient

down-sampling scheme by limiting the number of sampling rate values, the velocity
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potential function is sampled at a global sampling frequency f,, which is defined to be

an even multiple of the predetermined minimum global sampling rates fs,,. The chosen
sampling rate for a given observation point is the largest globa sampling rate less than
or equal to the local sampling frequency, fy, of that point [15]. More details and
quantitative analysis will be presented in Chapter 3 “Implementation for simulation
system”.

3.  The globa sampling rates used in step 2 are much higher than the range of
frequencies of interest. Therefore, the velocity potential function obtained in discrete
form in step 2 can be low-pass-filtered and decimated to decrease the sampling rate.
This results in a reduced number of samples, which saves significant amount of CPU
time and computer memory without decreasing the accuracy of the signal processing.
The digital process that converts the sampling rate of a signal from a given rate to a
lower rate [24] is referred to as Decimation. If it is necessary, this step can be repeated
with different down-sampling rates. The fina sampling rate is the same for all
observation points and depends on the specific application. For the calculation of the
velocity potential function and the received signal, only a single lowpass digital filter
was designed with a given set of normalized design parameters. The passband and
stopband cutoff frequencies of such a filter vary with the sampling frequency of its
input sequence. Such implementation simplifies the design work, saves space when
storing the filter coefficients and creates a more efficient decimation calculation.

For the DREAM algorithm, a Linear-Phase Digital Lowpass Filter was chosen
because of the phase-sensitivity of pulse-echo ultrasound system. After the LPF is

designed, the impulse response of the filter in time-domain as well as frequency-domain
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response should be checked because the segmentation algorithm following the LPF and
the decimator is sensitive to the amplitude characteristics of the time-domain response
asit triesto find the peak values of the amplitude of the response.

After the velocity potential impulse responses are obtained for the transmitting
and the recelving transducers, the two velocity potential impulse responses are
convolved, then the results of the convolution is differentiated twice to obtain the
diffraction response as in given (2.12). Because of the high final sampling rate used in
multi-rate algorithm, specifically 400MHz, the straightforward digital differentiation
method can be applied with acceptable error level. This will be discussed in Chapter 3.
Therefore, the procedure to obtain the diffraction response from the velocity potential is
very straightforward. Figure 2.4 illustrates the whole procedure to obtain the diffraction
response. It is noted that step 1 and step 2 are carried out only once for a specific

simulation scenario. Step 3 to step 7 are carried out for each field point.
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Stepl:

Step2:

Step3:

Step4:

Step5:

Step6:

Step7:

Decide the minimal global
sampling rate f_,,, based on different
applications and error allowed.

# Analytical solution to
Calculate the maximal duration V?IOC'W pq‘;@t;%éuncﬁuc:y
of the velocity potential impulse . Joraspecirictieid point.

response, Dtmax, then determine the
maximal sample sequence length N

Calculate the duration of the velocity potential impulse response, D t,
then cal culate the local sampling rate f4 for the specific field point,

then obtain the global sampling rate f_..

!

Sample the analytical solution to velocity potential function,
using the global sanpling rate fg, obtained in step 3.

v

L ow-pass-filter and decimate the sampled velocity potential function
obtained in step 4 to decrease the final sampling rate.

v

Convolve the velocity potential functions obtained in step 5
for the transmitter and receiver .

v

Differentiate the convoluted result in step 6 twice to obtain the
diffraction response .

Figure 2.4 Flow chart of the calculation of diffraction response.
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2.4 Huygens M ethod

As discussed in section 2.2, the received signal from a point scatterer in a pulse-
echo system is obtained using the velocity potential impulse response method. Such
method can be expanded to calculate the received signal from an extended reflector.
With the assumption of linearity, that is, all effects due to multiple scattering, angle
dependent reflection coefficients, etc. are excluded, the received signa from an
extended reflector is just the integration or summation of the responses obtained by

eguation (2.13) over the reflector surface, as shown in (2.14):
v, (t) = A Qycosia (M]D(F,t)dA= A § coslq (7)]D(F,t)DA (2.14)

The most straightforward way to implement (2.14) is to divide the reflector
surface into a large number of planar small surface elements, calculate the responses
from each point and sum the responses. With this approach, it will be possible to obtain
the received signal as long as the diffraction response is calculated. This method will be
referred to as Huygens method.

Huygens principle [25] states that, for a plane vibrating surface, every point
may be considered the source of an outgoing spherical wavelet and that the field at an
arbitrary point can be constructed from the superposition of these wavelets. As
discussed in section 2.2, the calculation of the diffraction response is based on Rayleigh
integral which is a specia case of Huygens principle, in which the radiating source and

boundary lie in aplane. Therefore, the method is named after Huygens.
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2.5 DREAM Method

Huygens method described in last section is straightforward to implement. The
disadvantage of it is that the size of the surface elements must be chosen very small to
satisfy the assumption of point source behavior. Therefore, then the number of the
integrated points is very large, and thus the computation time to obtain the received
signal for the whole reflector is quite long.

A new approach to efficiently calculate the received signal due to an extended
reflector of arbitrary geometry has been derived by Professor Pedersen at Worcester
Polytechnic Institute [9]: the Diffraction Response for Extended Area Method (DREAM
method). It is based on the velocity potential impulse response and the basic idea is:
Divide the reflector surface into planar reflector elements (tiles) of moderate
dimensions, such that the tessellated tiles are chosen to approximate the reflector
surface well. Then calculate the received signal contribution from each tile and sum the
received signals. This overal principle is identical to the Huygens method, but the
DREAM adlows for much larger tiles, thus much less computation time. The problem
becomes how to obtain the received signal from a moderate size flat reflector tile based
on the diffraction responses of points on the tile plane, specifically, the corners and the
center of the tile. As will be shown in section 2.5.1 and section 2.5.2, the spatial
integration formulation in equation (2.15) and (2.25) for obtaining the received signal
from a moderate size of the tile is replaced by a time domain filtering of a single
diffraction response, as in equation (2.22) and (2.30). The time-domain filters are

determined by the delay difference of the responses from the corners of the tile. At
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present, the DREAM is implemented for the pulse-echo system in which the transmitter
and receiver are planar circular piston transducers. However this algorithm can be
applied to transmitting and receiving transducers with different geometry.

The DREAM algorithm has been implemented with both rectangular and

triangular tiles, as will be discussed in following subsections.

251 Rectangular-tile-based DREAM (R-DREAM)

Figure 2.5 illustrates the pulse-echo system with a reflector in the form of a
single rectangular tile. The side lengths of the tile are U and V in the u-direction and v-
direction, respectively. It is noted that the rectangular tile is drawn much larger than it
should be for the purpose of clarity. By applying (2.14), the received signal due to the

single rectangular tileis
Vi () = A Q) ) Coslal (uW)]D(u, v dvdu = A coslq (I ¢) D(uv.)dvdu  (2.15)

where q(u,v) is the angle between the unit normal vector of the tile surface and the
particle velocity vector at the position of the tile. Because the tile surface is planar, the
g(u,v) isapproximated as

q(uv)@(r)=2z-n (2.16)
where z is a unit vector in the zdirection and fiis the unit normal vector of the
reflector surface. The basis for this approximation is the fact that the plane waves which
make up the actual field from the transducer propagate mainly in the z-direction as long

as the aperture of the transducer, measured in wavelengths, is large.
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Figure 2.5 lllustration of the pulse-echo system with s single rectangular tile.

During the implementation of diffraction responses of the individual field
points, it is found that, for points situated not too far away from each other, the
responses are quite similar. The responses have similar shape or waveform, similar
amplitude, except for different delays. (Detailed discussion and illustrations will be
presented in section 3.2 “Implementation of DREAM”, and an example of pulse-echo
diffraction responses from four corners of a 1mm*1mm tile will be presented in Figure
3.8). Therefore, the diffraction response of the center of the rectangular tile, with the
propagation delay removed, can be used to approximate the diffraction response of the
field points within the small rectangular area shown in Figure 2.5, apart from the
roundtrip propagation delay associated with each field point. It is also possible to
linearize the delay of the diffraction responses over the rectangular area, i.e., to find a
delay linearization plane to represent the delay of individual diffraction response as a

linear function of its coordinates u and v, based on the diffraction responses of the four
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corners of the rectangular tile. For the delay linearization, the common propagation

delay from transducer to tile and back is removed.

delay linearization plane Vv

Figure 2.6 Delay linearization planefor the delaysfor the cornersof arectangular tile.

From planar geometry, we know that only three points are needed to specify a
plane. Now there are four delay values available to specify the delay linearization plane,
which means it is over-determined. A Least Mean Square Error (LMSE) method is
applied to find an adaptive delay linearization plane which minimizes the mean square
error of the four corners’ delay values of the rectangular tile with respect to the delay
linearization plane [9]. The plane is shown in Figure 2.6 and defined as

t(uv)=t;+Gu+Gv (2.17)
where G, and G are the delay slopes in the u and v-directions. Using LMSE method,

we can derive that [10, section 3.1.2]:

1
Gb :E('t1+t3't2+t4)

1
Q/:E('tl't3+t2+t4)

and
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tf=%[31+t2+t3-t4] (2.18)

The parameterst, t,, t,, t, arethe delays for diffraction response of the four corners
of the rectangular tile shown in Figure 2.5. With (2.17), the diffraction response for
individual field points on thetile plane, D(u,v,t), can be expressed as.

D(U,V,t) = Dy(Fgpe ) Ad (- T (U,V)) (2.19)

where D, (T, t) means the diffraction response of the individual field point at the
center of the rectangular tile, with the propagation delay from the transducer and back
removed. By means of (2.19), (2.15) becomes:
U Vv
Yoo (1) = A cosia (M]Q Q) D(u,v.t)dvdu
= Acosq()IQ) ) Do(Froner D) Ad(t -t (u,V))dvd (2.20)
= A COS[q ()] Dy (Frier 1) A Q) Q) (¢t (u, V)l
It iseasy to find, based on (2.17), that
dt-t(uv)=d(t-t))Ad(t- GuUAd(t- Gv) (2.21)
With some straightforward operations on (2.20), the overal response from the

rectangular tile can be found as:
Vie(t) = A €08[q ()] Dy (T D) A (E- £ 1) A F (1) (2.22)

where F(t) isthe delay filter defined as:
FH)=Q d(t- GUdUA d(t- GYdv= X, ()A X, (1) (2.23)
The functions X, (t) and X, (t) in (2.23) have been derived in [10] and are specified as

follows:
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11/G, 0£t<UG, G >0
_1-1G, UG £t<0, G <0
d(HU, t=0, G =0
{o, otherwise

X, () = Q”d(t- Gu)du

11/G, O0£t<VG, G >0
_1-1UG, VG £t<0, G<0
Tid(V, t=0, G =0
{o, otherwise

X, (1) = QV d(t- Gv)dv (2.24)

In summary, by use of the delay interpolation method, we are able to calculate
the delay slopes in the tile plane using the delays of tile corners, then formulate a delay
filter which is used to filter the reference response, i.e., the diffraction response at the
center of the rectangular tile, with the delay removed, This operation, with some scale

factors added, produces the received signal for the given tile.

2.5.2 Triangular-tile-based DREAM (T-DREAM)

The pulse-echo system with a single triangular tile is shown in Figure 2.7, where
the longest side of the triangular tile ABC is the side AC. It is noted that the triangular
tile ABC is drawn much larger than it should be for the purpose of clarity. The u-v
coordinate system is determined so that the u-axisis in the direction of the BC side and

the origin is at the corner B, which is opposite to the longest side of the triangle.
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Figure 2.7 lllustration of the pulse-echo system with a singletriangular tile.

By applying equation (2.14), the response due to the triangular tile is:

Vi) = A coslg () @P (U, v, t)dvdu (2.25)

In equation (2.25), D refers to the area of the triangular tile.

delay linearization plane

Figure 2.8 Delay linearization plane for the delays for the cornersof atriangular tile.

Similar to the approach used for the rectangular-tile-based DREAM (R-
DREAM), the spatia integration in equation (2.25) which is used to obtain the received

signal from the triangular tile can be replaced by tempora filtering of a single
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diffraction response. The delay filter is decided by the delay linearization plane, which
isshown in Figure 2.8 and defined as:

t(uv)=t,+Gu+Gv (2.26)
where G, and G are the delay slopes in the u and v-directions. Based on equation

(2.26), equation (2.25) becomes:

Vie(t) = A €08[0 (N)] @Po (Tearier 1) A dl (8 - t (u, V))dvdlu

) (2.27)
= A cos[q (F)] Dy (Feener - 1) A (i (L - t 5 - GU- GV)dvdu
D
The delay filter function F(t) is defined as.
FUO) =qyt-ts- Gu- Gv)dvdu (2.28)
D
and the delay filter function can be derived as [ 10, section 3.1.3]:
i (t-t..)*2D
e min , t n ET<t
: (tmed_tmin)(t max _tmin) e
T (t-t_.)*2D
E(t) =1 max , t g EL<t .. 2.29
() ':'(tmax_tmed)(tmin_tmax) e ( )
!
%O, otherwise

where t ., U 0. &€thesmallest, middle, and largest of the delay values at the
three corners of the triangular tile, respectively. The parameter D is the area of the

triangular tile. The received signal from the triangular tile, v, .(t) can now be expressed

ile

as:

Vtile(t) = A& COS[q (r)] DO (rcenter ’t) A F (t) (230)
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where () is the angle defined in (2.16); and D, (T, .t) is the diffraction response

Feenter »
(with the delay removed) of the center of the triangular tile.

It is readily seen that the delay linearization plane of T-DREAM is exactly
determined by the delays of the three corners of the triangular element. For R-DREAM,
the delay linearization plane is over-determined because of the availability of the delays
of four corners; therefore, an approximated delay linearization plane is used. Another
advantage of T-DREAM s that triangle provides a better tessellation and match to the
surface of the reflectors, especially those with complicated shape. The triangular
element is the standard element used in many finite element methods. Therefore, there
are software packages for surface tessellation into triangular elements available [9]
which makes the practical applications of T-DREAM much easier to implement. The
advantage of R-DREAM is that the derivation of its delay linearization plane is much
more straightforward than that of T-DREAM.

Now, based on the discussion in section 2.5.1 and 2.5.2, we observe that the
calculation of the received signal for a flat tile of moderate size is carried out by
calculating the diffraction responses at the corners and at the center of the tessellated
tile, either rectangular or triangular, and finding the corresponding delay filter, followed
by the convolution of the center response with the delay filter. The received signal from

the entire reflector is finaly found by applying (2.14):

Vear () = é Vie (1) (2.31)

all tiles

In summary, the data-processing procedure for DREAM method is as follows:



1) Tessellate the reflector into M tiles (rectangular or triangular), each of which
are small enough to apply DREAM. Calculate the velocity potential impulse responses
of the transmitter transducer and receiving transducers, using multi-rate digital signal
processing algorithm with final sampling rate of 400MHz for the corners and the center

of thetile: h,(r,t) and h(r,t).

2) Cadculate the diffraction response for the corners and the center:

D(r,t) = %zzm(r,t)/'& h, (F,1)]

3) Determine delay filter based on the diffraction responses for the given tile.

4) Calculate the received signal from the tile using delay filtering: v, (t) .

M
5) Calculate overall received signal: v, (t) = § Vy.(t).

all tiles

6) Calculate the spectra of received signal: V,, (w) = F[v,, ()].

2.6 M odeling of Pulse-echo System with Annular Array Transducer

Now, the received signal of the pulse-echo system with planar circular
transducers can be readily formulated, based on the discussion in sections 2.3, 2.4 and
2.5. The actual received signa from a reflector for a specific pair of transmitting and
receiving transducers requires the analytic formulations of the velocity potential
impulse response for a planar circular transducer which will be presented in section
3.1.1. The detailed implementation and results will be presented in following chapters.

The modeling concept can be extended for pulse-echo system with planar

annular concentric array as well. Array transducers are of specific interest in this
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research, as they alow a given transmitter field and a given receiver characteristics to
be formulated for a specific measurement situation. The received signal from a given
element in the array, due to transmission with any element in the same array, can be
derived based on the superposition of the received signal from the planar circular
transducer. Figure 2.9 indicates the geometry of an annular array transducer, which

consists of N concentric rings.

Ve

Figure 2.9 Geometry of an N-ring planar concentric annular array, indicating annulus outer radii
a.

For a given reflector, an N' N signal matrix VREH(t) of the form shown in

eguation (2.32) can be generated in the pulse-echo system with N-ring annular array.

g/fff“(t) CLVED) L v{fﬁ“(t)g
VRFL @ =&FF (1) . . vER@) .. vER(D) (2.32)

¢ y

e . . . . u

=Yl (O IVt (9 IR e (31

The elements of the matrix are represented by v -(t), i, jT [LN]. v (t)

refers to the received signal from the entire reflector, produced with the i ring as
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transmitter and the jth ring as receiver. If the entire reflector is approximated by a
number of small tiles, by applying equation (2.31), it is simple to get

vEL ) = v, (T o1) (2.33)
all tiles

where v, ;(7,t) is the receive signal from a single tile at location 1 on the reflector

surface, produced with the i ring as transmitter and the | ring as receiver. In principle,
p

v, ;(F,t) can be calculated using equation (2.14) and (2.12):

v, (F,0) = A Qeosia (NID(F, ) dA
G o ) (2.34)
= A&QCOS[q(r)]W[hi,i-l(r A A D (T H)]dA

where h;,(F,t) and h, ;,(F,t) arethe velocity potential impulse responses at the field

point for thei™ ring as transmitter and the | ring as receiver, respectively. Based on the

assumption of linearity, we can write

%Z[hi,i.l(r,t)/& e =$—;{[hi (F.)- ho(TOIA L (70 - h (70T}

=$—;[h(ﬁt)A h(F,0)- h(T, ) Ah L (F,t)- ho(F,0)Ah (F,t) +h (T, t)Ah_,(7,1)]
=D, (F,t)- D, .,(F,t)- D, (F,t) + Dy, .4(F,1) (2.35)

In equation (2.35), h (F,t) isthe velocity potential impulse responses at the field point
for the planar circular transducer with radius of & shown in Figure 29 and D, ;(T,t) is

the diffraction impul se response at the field point for a pulse-echo system with a planar
circular transmitter of radius a; and a planar circular receiver of radius a;. As can readily

be seen, now, equation (2.34) can be expanded into four terms as in equation (2.36):
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v, (F,1) = A geosia(NIID (1) - Dy 4(F,1) - Dy (F,t) + Dy 4 (F, ]dA
= A Qcosa(r)]ID; ;(F,t)dA- A Qcos[q(F)]ID, ;,(F, t)dA

- AQeosla (MID, . ;(F,t)dA+ A ycoslq (F)ID,., ;.4 (F,t)dA
(2.36)

Each term in (2.36) represents the received signal from different combinations of planar
circular transmitting and receiving transducers, and can be calculated using either
equation (2.22) or (2.30), based on the shape of the tiles used to tessellate the entire
reflector. Now, by combining equation (2.33) and (2.36), v/ - (t) can readily be
calculated. And the summed output voltage from the entire annular array transducer can

be calculated as

Vew =8 A AAVEAA(E- ¢, # ) (2.37)

i=1 j=1 !
where A is an amplitude scale factor, assigned to the i element in the array in
transmitting mode, Aj¢is an amplitude scale factor, assigned to the ji™ element in the
array in receiving mode, t; is the (positive) delay assigned to the i"™ element in the array
in transmitting mode, t ,-' is the (positive) delay assigned to thejth element in the array in

receiving mode and A indicates convolution.
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Chapter 3
| mplementation of Simulation
System

In this chapter, the details about the implementation of ultrasound pulse-echo
simulation system are discussed. Two methods are implemented to calculate the
received signal due to an extended reflector surface, namely Huygens method and
DREAM method. In this chapter, all implementations are based on planar piston
transducers. However, the approaches can also be applied to other transducer types. In
section 3.1, we discuss the Huygens method. In section 3.2, the DREAM method is
discussed. Findly, the mechanism for the simulation coding is described in term of

efficiency.

3.1 Implementation of Huygens Method

Recall that the expression for the received signal due to an extended reflector

was derived in (2.14) in section 2.4. Equation (2.14) is repeated below for convenience:

v, (t) = A Q cosq(F)]D(F,t)DA (3.2)
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In equation (3.1), A is asystem related constant as defined in section 2.2; g (") isthe

angle between the unit normal vector of the reflector surface and the particle velocity
vector at the field point 7 ; D(r,t) is the diffraction response of one single field point
and DA is the area of a small planar reflecting surface, located at the field point.
Generally, q() is very computationally demanding to evaluate. As long as the field

point is not very close to the surface of the transducer, it is valid to approximate that
q(r)=z-n (3.2

where z is a unit vector in the zdirection and fiis the unit normal vector of the

reflector surface. Recall the definition of diffraction response in (2.12) in section 2.2, it

is restated here for convenience because it will be referred to quite often in the

following parts of the chapter:

D(r,t) =1?T22[h(F,t)A h, (7, 1)] (3.3)

3.1.1 Calculation of Velocity Potential Impulse Response for One Single Field
Point
From (3.1) and (3.3), it is seen that the first step to calculate the diffraction
response is to calculate the velocity potential impulse response h(7,t) for the baffled
transmitter and receiver. As described in section 2.3, the multi-rate digital signal
processing algorithm is used to calculate the velocity potential based on the analytical
solution to velocity potential impulse response. Figure 3.1 illustrates a specific

simulation scenario with a baffled planar circular transducer and two field points.
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Figure 3.1: The side view of the geometry of the simulation scenario with a planar circular piston
transducer and two field points. The radius of the transducer is a=12.7mm. The radial distance of
thefield point 1, r 1, islessthan a; theradial distance of thefield point 2, r 2, islarger than a.

The analytical solutionsof h(r,t) for this case was derived in [18]

L0ty o
; c t0£t<t1;;;
h(r,t) = v r £a
(r. CEWEY L Et<tY
.I.p .I.
i 0 LEL b
L0 t<y g
h(F,t) = | S W, 1) tl£t<t21?, r>a

f 0 LEL b
Thevariables t,, t,, t, and WT,t) are given as:

t,=1z/c
t,=4(a-r)’+z°/c
t,=4y(@+r)’+z°/c

RA2+r?-7%-a

W(r,t) = arccosg
2r Jct? - 2
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In equations (3.4) to (3.7), the parameter z is the axia distance from the plane of the
transducer surface to the field point; r istheradial distance from the field point to the z
axis, and a is the radius of the planar circular piston transducer. The distances zand r

areillustrated in Figure 3.1.

Velocity potential responses for a planar piston a=12.7mm,zp=50mm
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Figure 3.2 The velocity potential responses at different field points for a planar circular piston of
radius a=12.7mm. The axial distance of the points is 50mm. The radial distance of the points are
Omm, 6mm, 12mm, 18mm r espectively.

Figure 3.2 illustrates the velocity potential impulse responses h(r,t) for four
different radial distances from a planar circular piston, which are obtained from the
analytical solutions given in (3.4) and (3.5). The analytical solutionsto h(,t) needsto
be discretized before we can make use of them to calculate the diffraction response. The
sampling rate to discretize h(r,t) must be high enough to make aliasing effects

negligible. As can be found from the shapes of the response in Figure 3.2, the
bandwidth of the velocity potential impulse response increases as the field point moves

closer to the transducer axis, namely, the z-axis. When it moves onto the z-axis, the
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bandwidth of the velocity potential impulse response reaches the maximum and the

h(r,t) has the form of a rectangular function. The thin solid line in Figure 3.3
illustrates the envelope of the spectrum of the on-axis h(r',t), which is a sinc function

and denoted H(f).

Magitude spectrum for field point at zp=50mm rp:Omm
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Figure 3.3 Magnitude spectrum of velocity potential function of on-axis field point, illustrating how
to determine approximate aliasing error dueto its discrete representation.

If the sampling rate is fsand f, = f42 is the corresponding Nyquist frequency, the
dominating contribution to aliasing signal at a given frequency is approximately equal
to Ifl(fS - ) and the dash dot line in Figure 3.3 illustrates the aliasing signal. We can
determine the approximate aliasing error using the envelopes of the true and aliasing

signal. The envelope of H(f) isdenoted E(f) and can be deduced to be [15]:

E(f)=c/pf (3.8)

Similarly, the envelope of the aliasing signal is:
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E(f,- f)=c/lp(f,- )] (39
If Err is defined as the ratio of the aliasing signal frequency magnitude and the true

signal frequency magnitude, it can be approximated as [15]:

e =BG B)_clp(f- O] f
E(f) c/[pf] fo- f

S

(3.10)

Therefore, the minimal sampling rate f, which satisfies the aliasing error requirement
IS

f.3 f  (A+1/Err) (3.12)
where fmax IS the highest frequency of interest, i.e., frax = 15.625MHz in our case. For
Err = 0.3%, i.e, the diasing signal frequency magnitudeis at least 50 dB below the true

signa frequency magnitude at frequency f, we can easily derive that f_3 5.3GHz.

When the field points moves away from the axis, the duration of the velocity potential
increases. Meanwhile, the spectrum of the velocity potentials becomes more narrow, so
that much lower sampling rates can be used to keep the level of aliasing error
acceptable low. One example is given in Figure 3.4 and Figure 3.5. The sampling rate is
800MHz. Within the frequency range that we are interested in, i.e., the frequency less
than 15.625Mhz, for the on-axis field point, the aliasing signa is only about 30 dB
below the true signal at some frequency points, which corresponds to about 3% aliasing
error. While for the field point with 18mm radial distance, the aiasing signals are
amost 50 dB below the true signal, which corresponds to 0.3% aliasing error. So the
minimal sampling frequency, fsm, which is used to sample the long tempora velocity

potential of field points far from the source, may be set equal to 800MHz with



acceptable aliasing error. When the field point moves closer to the z-axis, the duration
of the velocity potential decreases which allows higher sampling rate if the sample
sequence length is the same for all field points. One thing to keep in mind is that the
minimal global sampling frequency is dependent on different applications and the

maximal aliasing error allowed.

Magitude spectrum for field point at z =50mm r =0mm Magitude spectrum for field point at z =50mm r =18mm
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Figure 3.4 Illustration of the magnitude spectrum with the aliasing signal for two different field
points for a planar circular piston of radius a=12.7mm. The sampling rate is 800MHz. The axial
distance of the pointsis 50mm. Theradial distance of the points are Omm, 18mm respectively.
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Figure 3.5 Enlarged version of Figure 3.4 to highlight the frequency range of interest, i.e. O-
15.625M Hz.
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For a planar circular transducer of radius a, the duration of the velocity potential
impulse response, Dt, is aways less than the travel time of the wave across the
transducer surface, which is[15]:

Dt_, = 2alc (3.12)
In equation (3.12), the parameter c is the sound speed. Based on the specified minimal
global sampling frequency fsy and the maximal duration of the velocity potential

impulse response Dt the maximum sample sequence length N for a specific

transducer can be obtained as N 3 Dt ~ f,,, which guarantees the sampling rates for

all observation points are valid, i.e,, al sampling rates are higher than or equa to the

minimal global sampling rate f4, as shown in equation (3.13)

fin = N/Dt,, 3 fg, (3.13)
Thus, from (3.12) and (3.13), it can be derived that if
N3 2*a* f_ /c (3.19)

there exists no invalid sampling regions. In our case, with transducer radius 12.7mm and
800MHz minimal sampling rate, N should be larger or equal to 13547. For the
convenience of following calculation, N is set to 16384, i.e., 2**.
Based on the maximum sample sequence length N, the sampling rate at any field
point can be calculated by
fy=N/Dt (3.15)
where Dt is the duration of the velocity potentia at that field point. fy is called local
sampling rate because it is specified for each individual field point. The actual sampling

is carried out using global sampling rate for efficient calculation. The globa sampling
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rate is defined to be an even multiple of the predetermined minimum global sampling
rate fsn. As discussed above, fs, is 800Mhz for our application, therefore, the global
sampling rates can take on a limited number of specific values, 6.4GHz, 3.2GHz,
1.6GHz, etc. The chosen sampling rate for a given observation point is the largest
global sampling rate less than or equal to the local sampling frequency, fy, of that point
[15]. The conversion from local sampling rate to global sampling rates is illustrated in

thefirst two rowsin Table 3.1.

Table 3.1: Local to global sampling rate trandation and down-sampling ratio used in DREAM.

fq<=6.4| f4<=3.2| f4<=1.6
Local sampling rate: fy (GHz) | f4>=6.4| {,>=32| f,>=16| f,>=0.8| f4<=0.8
Global sampling rate: f 6.4 3.2 16 0.8 Invalid
(GHz)
Down-sampling ratio, M: 16 8 4 2
Final sampling rate (MHz): 400 MHz

The frequency range that we are interested in is from dc component to
15.625MHz. If the high sampling rates, such as 6.4GHz, 3.2GHz, etc., were to be kept
in the following calculation, a lot of resources, such as the computer memory, CPU
time would be wasted. In addition, when the sampling rate is too high, too few
frequency-domain samples are left in the relatively narrow frequency range of interest.
Hence, the discretized velocity potential has to be down-sampled to lower sampling
rate for further calculation. For our purposg, i.e., to calculate the diffraction response
by twice differentiation of the convolution of velocity potentials, the sampling rate of
400MHz is necessary for the direct digital differentiation to be carried out with

negligible error [9], as will be discussed in detail in section 3.1.2. Therefore, the final
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down-sampling rate is set to be 400MHz and the third row of Table 3.1 indicates the
down-sampling ratio corresponding to different global sampling rate. For other
applications, such as mapping of pressure fields, it is convenient to use a second stage
of low-pass-filtering and decimation to decrease the final sampling rate to a much
smaller value.

In order to down-sample the high frequency velocity potential while
minimizing the signal aliasing, the velocity potential must be processed by a low-pass
filter prior to the decimation operation. A Linear-Phase Digital Filter is chosen to low-
pass-filter the high frequency velocity potential because of the phase-sensitivity of
pulse-echo ultrasound system. In order to simplify the design work, save space when
storing the filter coefficients and create a more efficient decimation calculation, only
one single lowpass digital filter was designed with a given set of normalized design
parameters in our implementation. The absolute passband and stopband cutoff
frequencies of such a filter vary with the sampling frequency of its input sequence.
The absolute passband cutoff frequency must be larger than the desired baseband
before the decimation, which is the multiplication of the down-sampling ratio M and
the maximum frequency of our interest, i.e, fnx=15.625MHz. Therefore, the

normalized passband cutoff frequency w,, can be decided by [15]:

M

w, > fmfax—max (3.16)

pb
sgmax

In equations (3.16), the parameter My IS the largest down-sampling ratio, i.e., 16 in
Table 3.1 and fsgmax IS the largest input global sampling rate, i.e., 6.4GHz in Table 3.1.

To prevent aliasing of the decimated output, the stopband cutoff frequency must be less
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than the Nyquist frequency of the subsequent decimation stage, which is fs/M/2. But
because the frequency of our interest is in the range from dc to f=15.625MHz, there
is no aliasing introduced in the frequency range of our interest as long as the stopband
cutoff frequency is less than /M - frax. Therefore, the normalized stopband cutoff
frequency wg, can be decided by [15]:

M T Y @

max sy max

For maximum computational efficiency, w ,, is chosen to be as small as possible, and

wg is chosen to be as large as possible as long as they satisfy (3.16) and (3.17). The

Matlab function “REMEZ” is used to obtain the coefficients of the low-pass-filter
based on the parameters decided by (3.16) and (3.17).

During the actual implementation, the low-pass-filtering and decimation are
implemented at the same time, which means that the filter operates on the decimated
signa directly instead of decimating the low-pass-filtered signal. Therefore, the

computation is more efficient.

3.1.2 Calculation of Diffraction Response for One Single Field Point

In section 3.1.1, the discretized velocity potential at any field point is obtained
with same final sampling rate 400MHz for al field points. Now (3.3) is applied to
calculate the diffraction response in two steps.

1) Convolution of the velocity potential for the transmitter with the velocity

potential for the receiver:h(r,t) and h (,t). This step is implemented with Matlab
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command “CONV”. Figure 3.7 part (a) illustrates the convolution signals for a pulse-
echo system using the same planar circular piston as the transmitter and receiver.

2) Double differentiation of the convolution result with respect to time to obtain
diffraction response. The differentiation is implemented using a simplified direct digital

differentiation method, which is based on:

il f(t)- f(t) 319

It ketonr2” t,-t,
The transfer function of (3.18) is

H(f)=j2f sin(pf/f,) (3.19)
Aswell known, the transfer function of an idea differentiator is:

Higew () = j2pf (3.20)
By comparing (3.19) and (3.20), we can find there is no phase difference between the

ideal differentiator and the simple differentiator because both expressions are purely

imaginary. The magnitude error of the smple differentiator is:

| Higea (F) |- 1H(F) | _ 2pf - 2f an(pf /) _ .
Hea (D] 2pf =1- dn(pf / £,)/(pf 1 1,) (3.21)

And Figure 3.6 illustrates the relative magnitude error derived in (3.21) as a function of

normalized frequency f/fs:
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Figure 3.6 Therelative magnitude error of thetransfer functionsfor the smple differentiator.

From Figure 3.6, it can be seen that the error magnitude increases dramatically
when the normalized frequency f/fs increases. For the maximal frequency of interest,
i.e., fmax= 15.625MHz, if the sampling rate is fs= 400MHz, then f./fs = 0.0391 and the
magnitude error is around 0.25% as can be observed in Figure 3.6 or be calculated by
eguation (3.21). This magnitude error is small enough to be negligible.

Figure 3.7 part (b) and (c) illustrate the first and second differentiation result
respectively. Because the signal, resulting from second differentiation, for the field
point with radia distance 18mm is much smaller than others, it is not shown in part ().
Figure 3.7 part (d) is the enlarged version of part (c) to shown more details for field

points with large radial distance.
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Convolution of impulse responses for a planar piston a=12.7mm,z =50mm JoePifferentiation of A(U*h() for a planar piston a=12.7mm.z_=50mm
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Figure 3.7 lllustration of the steps involved in the calculation of diffraction responses. A planar
circular piston with radius a=12.7 mm acts as both transmitter and receiver. The axial distance is
50 mm and the radial distance is 0 mm, 6 mm, 12 mm, 18 mm respectively. a) The convolution of the
velocity potential of transmitter and receiver. b) Thefirst differentiation of the convolution results.
¢) The second differentiation of the convolution results. d) Enlarged version of c)

3.1.3 HuygensMethod for the Received Signal from Extended Reflector

After the extended reflector is tessellated into “microtiles’ and the diffraction
responses from individual field point are obtained, (3.1) can be applied to obtain the
diffraction response from the entire extended reflector by the integration of the
individual response over the reflector surface. In this context, a “microtile” is a small

rectangular planar surface whose dimension must be small relative to the wavelength at
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the highest frequency considered. The data-processing procedures of the Huygens
method is summarized as follows:
1). Tessellate the reflector into N tiles which are small enough to be treated as
simple sources. A ssimple source means a reflector with dimensions much smaller
than awavelength.
2). Cdculate the velocity potential impulse response, use the multi-rate digital

signa processing agorithm with final sampling rate of 400MHz, for each point:
h(r,t)

2
3). Calculate the diffraction response for each point: D(T',t) = %[h(r,t) A h(F,1)]

4). Cdculate recelved signal from the extended reflector using equation (3.1):

v,(t)= A & coslq()]D(F,t)DA

all tiles

During the implementation of Huygens method, there are two things to keep in mind:

1) If the response of central point of rectangle is used for the integration instead of
that of one corner point of the rectangle, the accuracy of the result may be quite
different for some cases.
2) The largest size of the microtile, which can be chosen to obtain acceptable
accuracy for the linear assumption, is quite dependent on geometry and the tilt angle
of the surface.

Different implementation results for Huygens method will be shown and discussed in

Chapter 4 “Evaluation of Huygens method”.
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3.2 Implementation of DREAM Method

Figure 3.8 illustrates the pulse-echo diffraction responses from four corners of a

1mm* 1mm rectangular planar reflector surface with its center at (x,y,2)=(3,3,50)mm and

tilted 10° in the y-direction. In this case, a planar circular piston with radius a=12.7mm

acts as both the transmitter and receiver. For the purpose of clarity, the first positively
going impulses have been truncated at 5*10°m?®/s®, while they actualy extend to

about 3.7*10"m?*/s®. By examining the diffraction responses at the four corners of the
tile with moderate dimension in Figure 3.8, we can find that the shape of the waveforms
from the four corner points are very similar, while the time shift of the waveforms are
quite different. It can also be found that the diffraction responses consist of several short
“impulsive” segments, separated by regions of very low amplitude and different
segments exhibit different amount of time shift. Another observation is that the number
of segments for the four corners is the same. To compensate for the different time shift
of different segments, i.e., the time compression/expansion of the diffraction response, a
segmentation method is used to divide the responses into several segments. Then the
equivalence between spatial integration and delay filtering, which is discussed in
section 2.5, is applied to segments to obtain the corresponding contribution by
individual segments for the entire tile. The overall response from the entire tile is the

sum of the responses of the individual segmentsasin (3.22):

Vo) = A cosq(F))* A ld(t-t,)A seg, (T OAF®M]  (322)

i=1



where n_seg is the number of segments; t ; is the delay of the ith segment of the

diffraction response of the reference point; seg;, is the responses of the ith segment of
the diffraction response of the reference point, with associated propagation delay

removed; Fi(t) isthe delay filter obtained for the ith segment.
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Figure 3.8: Example of pulse-echo diffraction responses from four corners of a Imm*1mm tile as
well as the segmentation (3 segments) of the diffraction responses. A planar circular piston with
radius a=12.7mm acts as both transmitter and receiver. The tile centers at (x,y,2=(3,3,50)mm and

tilted 10° in the y-direction.

It is important to note that the similarity of the diffraction responses from the
corners of the tile (either rectangular tile or triangular tile) is the basis for the DREAM

method, or, specifically, the delay filtering approximation of the spatial integration. For
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some cases, for example, when the radius of the transmitter is 12.7mm and the radius of
the receiver is 3mm, smaller tile size must be chosen so that the diffraction responses
from the corners of the tile do not differ too much. This issue will be discussed in

details from section 5.1 to 5.5 in chapter 5.

3.21 Segmentation
As shown in Figure 3.8, the diffraction responses can generally be divided into
alimited number of segments such that the signal level around each segment boundary
is amost zero. In addition, different segments exhibit different time shift, therefore, it
IS necessary to perform a separate delay filtering for each of these segments. The
procedure of the segmentation of a single responseis as follows:

1) Find the peak points of the overall diffraction response: Find the maximal
amplitude among the peak points of the response first and call it “the largest
response amplitude”. Then identify al the extremes; if the amplitude of one
extreme is larger than a specified fraction of “the largest response amplitude”, it
can be considered as peak point of the diffraction response. For our application,
the fractional valueis set to 20%.

2) Segment the signa with one peak point per segment and set the segment
boundaries to occur at the time instance between the peak points where the
amplitude is closest to zero.

3) Check the boundaries between segments. If the amplitude at a given boundary is
above a specified fraction, i.e., 20% of the smaller amplitude of peak points, the

two segments separated by that boundary are merged into one segment.
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The stars “*” in Figure 3.8 illustrate the segmentation of the diffraction responses for

the four corners of the tile described above.

3.2.2 Delay Interpolation

As discussed in section 2.5, a delay filter is used to filter the response of one
reference point to obtain the overall response of the entire tile. The delay filter is based
on the delay slopes in the tile plane which is calculated by delay interpolation method.
Therefore, it is meaningful to check the delay interpolation method first. Now the delay
interpolation method is used to estimate the diffraction response of the field point c in
Figure 3.9, based on the diffraction responses of other field points on the same plane as
it. Point c is the central point of the rectangle ABCD. The length of the rectangle is U
and the width is V. For the convenience of formulation, it is supposed that there are
three segments of the diffraction response. The formulation of the time delay
interpolation is similar for Rectangular-tile-based DREAM (R-DREAM) and
Triangular-tile-based DREAM (T-DREAM), while not exactly the same. We discuss

the two DREAM methods separately.

B U C B Ue C
\Y \:ﬁ::o:if% Va
A o A
b
@ (b)

Figure 3.9 The simulation scenario for the delay interpolation method.
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As atest of the validity of the delay interpolation method, we will first try to
estimate the diffraction response of point ¢ based on the diffraction responses of point
A, B, C, D which corresponds to the R-DREAM. The response of one corner (e.g. the
upper-right corner B) is chosen to be the reference response. The three segments of the
response of this corner are time shifted by individual delays calculated by the delay

interpolation method and then added to form the total estimated response at the center

of the tile. Mathematically, segg,(F,t), segg,(F,t), segg,(F,t) are defined as the
responses of each segment of the diffraction response at the point B, with the associated
propagation delay t 5 ,(F), tg,(F), t 55(F) removed. t, () is defined as the delay of
the jth segment of the response for the ith corner. Using delay interpolation method [9],

we are able to estimate the delay of the three segments of the center point: t ., (F),
t.,(F) andt ,(r), givent, (r) (i=AB,C,D and j=1,2,3) and the length U and width
V of thetile:
o c LU LV
tei(N=ts; +G " S +G, " (3.23)
where

tg,j :%[3 B,j(r) +t C,j(r) +t A,j(r)_ t D,j(r)];

QJJZZU( BJ+tA,j'th+tD,j);
_1 .
Q/,j _E(_tB,j 'tA,j +tC,j +t D,j)’

Then the estimated diffraction response of the center of thetileis given by:
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a g, (L OAd(E-t,)) (3.24)

=

Similarly, we tried to estimate the diffraction response of point ¢ based on the
diffraction responses of point A, B, C which corresponds to the T-DREAM. Thetriangle
is redrawn in Figure 3.9 part (b) for purpose of clarity. The response of corner B was
chosen to be the reference response. As discussed in section 2.5.2, by applying equation
(2.26), we are able to estimate the delay of the three segments of the center point:

te, (M), te,(F) andt ,(F), givent, (F) (i=AB,Candj=1,273) as:
tc,j(r):tB,j+Q,j*U7C+Q/,j*v_£ (3.25)

In equation (3.25), U isthe length of side BC; V, isthe v-direction component of side
BA, but because in this case, the triangle ABC has been chosen to be aright triangle, V,
is the length of side BA; G,;and G; are the delay slopes in the u- and v- directions,
respectively, for the jth segment of the diffraction response. By plugging the delay
values of the point C and A into equation (3.25), itiseasy tofind G,;and G; as

G, =(tc,;-te;)/Uc

Gy =t~ tay)/Va (3.26)
Then the estimated diffraction response of point c is readily obtained by equation
(3.24).

Figure 3.10 shows the results for diffraction response of the central point of

specific rectangular tile discussed in section 3.2.1. Also for the purpose of clarity, the
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positively going impulse for the first segments has been truncated at 5*10°m?*/s°,

whileit actually extends to about 3.7*10*m?*/s®.

X 10 comparasion of true response and those obtained from delay interpolation

T T T T T
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Figure 3.10: Example of how well the estimated pulse-echo diffraction responses obtained by R-
DREAM and T-DREAM delay interpolation method comparesto the true response at the center of

1mm*1mm planar rectangular tile. The tile centers at (x,y,2)=(3,3,50)mm and tilted 10° in the y-
direction.

It can be found that the results of the time delay interpolation model based on
rectangular tile and triangular tile closely approximate the true response. The good
match between the rea response and the estimated responses obtained by the delay
interpolation method verifies that the delay linearization plane can be used to linearize

the diffraction responses on the planar tile area, either rectangular or triangular tile.

3.2.3 DREAM Method
Based on the discussion in section 2.5, section 3.2.1 and section 3.2.2, the data-

processing procedures of the DREAM method is summarized as following:
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1). Tessellate the reflector into M tiles (rectangular or triangular), which are small
enough to apply DREAM. Normally, M << N where N is the number of tiles
tessellated by Hugyens method.

2). Calculate the velocity potential impulse responses of the transmitter transducer
and receiving transducers, using multi-rate digital signal processing algorithm with

final sampling rate of 400MHz for the corners and the center of thetile: h, (r,t) and
h (F,t).

3). Calculate the diffraction response for the corners and the center of the tile:

D(r,t) = %zzm(r,t)/'& h, (F,1)]

4) Segment the diffraction responses from the corners and the center.
5). Determine delay filters for each segment of the responses of thetile.
6). Calculate the received signal from each tile using segmentation and delay

filtering: v, (t).

M
7) Calculate overall received signal from the entire reflector: v, (t) = § V. (t).
all tiles

Different implementation results for DREAM method will be shown and discussed in

Chapter 5 “Evauation of DREAM method”.

3.3 Mechanism for Coding

One of the most important issues we concern about on the modeling methods is

the computational time of the algorithms. One factor effecting the execution time is the

language used for coding.

61



Currently, Matlab and C are widely used for scientific and engineering numeric
computation. Matlab is an interactive, matrix-based system and its strength lies in the
fact that a solution to the complex numerical problems can be developed easily and in a
fraction of the time required with C. Matlab can also be easily extended to create new
commands and functions. In the terms of signal processing, there are a lot of well-
developed functions in Matlab, such as Fast Fourier transform (FFT), inverse FFT,
functions for filter analysis, implementation and design, etc., not to mention such basic
operations as correlation, convolution and so on. It is also very convenient to visualize
the results obtained in Matlab. The drawback of Matlab is that the execution time is
much larger for some mathematics operations than C codes, especially for “for-loop”
operations. In order to take advantage of both Matlab and C, we decided the mechanism
for the coding as follows: The overall code should be controlled from Matlab, with the
computationally intensive parts written in C. The C subroutines are compiled into
MEX-file routines. After MEX files are generated, there is no need for a C compiler and
the MEX-file routines are callable directly from Matlab as other Matlab functions.

To have an idea about how well our coding mechanism works, the
computational time using two implementation methods are compared for the task of
calculating acoustic pressure field, one is pure Matlab, and the other is C embedded
Matlab. It is found that if all the multi-rate algorithm was implemented in Matlab, it
would take about 71 minutes to calculate the complex pressure field of one frequency
points over a 50*50 grid of spatial observation points and 76 minutes for all 2048
frequencies (from OHz to 62.5MHz with a resolution of roughly 30.52KHz). However if

we calculate the impulse velocity potential functions and implement the low-pass-filter
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and decimator in C, it takes only 59 seconds (compared with 70 minutes) and 74
seconds (compared with 76 minutes) to produce the exactly same results as we obtained
before. The computation time used to calculate the received signal from pulse-echo
system will be presented in chapter 5, together with description of the specific

simulation scenarios and other parameters.
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Chapter 4
Evaluation of Huygens M ethod

In section 2.4 and section 3.1, we discussed the principle and implementation of
Huygens method. In this chapter, Huygens method will be used for calculating the
received signals in ultrasound pulse-echo systems for different parameter values, such
as tile dimension, and different simulation scenarios. Huygens method is based on the
integration of the response from a very large number of micro-tiles which form the
surface of the entire reflector. The dimension of these micro-tiles must be much smaller
than the wavelength at the highest frequency of interest, and they can be viewed as
rectangular or square tiles with afinite small area.

First, in section 4.1, the different results are compared for two implementation
methods. (1) The received signal from the entire reflector is obtained based on the
diffraction response at central point of the micro-tile. (2) The received signal from the
entire reflector is obtained based on the diffraction response at one corner point of the
micro-tile. It is found that the first method produces a higher accuracy. Therefore, the
Huygens method, based on the response of central point of the micro-tile, is used
throughout the following sections in this thesis. In section 4.2, the accuracy of the

spectra of the received signal obtained with different tile size is investigated for



different smulation scenarios. In using Huygens method, it is preferable for the micro-
tile size to be as large as possible to reduce computation time. However, the larger the
tiles are, the larger is also the error. Considering the trade-off between the
computational time and accuracy, we need to find the optimal tile size, which is the size
of the micro-tiles we use to tessellate the entire reflector. It is found that the accuracy of
the spectra of the received signal obtained with a given tile size is dependent on the
parameters of the specific ssimulation scenario such as the tilt angle of the reflector
surface, the radial location relative to the radius of the transducer, shape and size of
reflector, etc. Therefore, the “optimal micro-tile size” is found empirically by “trial and

error” method, and the optimal size is dependent on specific simulation scenario.

4.1 Center Summation versus Corner Summation Huygens Methods

Recall that the expression for the received signa due to an extended reflector

was derived in (2.13) in section 2.4. Equation (2.13) is repeated below for convenience:
v, (t) = AQ coslq(F)]D(F,t)DA (4.1)
The extended reflector is tessellated into micro-tiles which are small enough to be
treated as simple sources (reflectors with dimensions much smaller than a wavelength).
These micro-tiles can be viewed as square or rectangular tiles with finite small area, and
the diffraction response can be calculated at any real point inside the rectangle. The
“real point” means an abstract point with infinite small dimension. In practice, either
the corner or the center of the rectangle is used for convenience. Thus, the received

signal from the extended reflector can be calculated either by the summation of the
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response of the corners of the tessellated micro-tiles or by the summation of the
response of the centers of the tessellated micro-tiles. Because the center is normally
considered a good approximation for all points within the area of the micro-tile,
intuitively, we think that summation using the diffraction response at the center should
produce better result than summation using the diffraction response at the corner, if the
choice of the diffraction response really makes difference. Now both ways are evaluated
and compared for calculating the received signal due to a 1mm* 1mm square reflector.
The reflector is centered at (r, z2) = (7.07, 50) mm and is tilted 10° relative to the
transducer surface. The parameter r is the radial distance of the center of the square
reflector from the z-axis and z is the axial distance from the transducer. Two planar
circular piston transducers of radius 3mm and 6mm are used as transmitter and receiver,
respectively. This simulation scenario is chosen as a representative scenario. Square
tessellation tiles with different side lengths are used for the summation: 500mm, 200mm,
100mm, 50mm, 20mm, 10mm, 5mm. Because the spectrum of the received signal is used
for the error analyses, the following discussion takes place in the frequency domain.
The accuracy of the spectrum of the integrated diffraction responses are compared using

the Mean Sguare Error (MSE) method, and the MSE is calculated as:

15MHz
N\

Q (Vi(D)I- [Vig (F) ) df
SE= 15MHz *100% (4.2
QN (F)F df

In equation (4.2), Vi(f) is the frequency spectrum of v(t), the signal whose accuracy is
to be evaluated. V,«(f) is the frequency spectrum of the reference signal vi(t) (the

reference signal is to be explained shortly). In our calculation, a discrete approximation
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of theintegral in (4.2) is used with a frequency interval Df = 400MHZz/8192 = 48.8KHz,
which is the frequency resolution of discrete Fourier Transform. The MSE is calculated
only for the frequency range of our interest: [0-15MHz]. The smallest tile size to be
considered is 5mm which is much smaller than the smallest wavelength in the frequency
range of interest, i.e. | ,in=1500/(15" 10°) [m] = 100nm. The difference between the
results obtained by the summation of the diffraction responses at the center and corner
of the 5mm tile is just 0.0002% using (4.2), which means they are very close indeed.
Thus, it is reasonable to use the result obtained by summation of the diffraction
responses at the center of 5mm tile as a reference signal, Vi«(f), when evaluating the
accuracy of the center summation method for different tile sizes. Similarly, the result
obtained by summation of the diffraction responses at the corner of 5mm tile is
considered a reference signal when evaluating the accuracy of the corner summation
method for different tile sizes. Table 4.1 illustrates the accuracy obtained by two
methods with different tile sizes. As can be found from Table 4.1, when “center
summation” method is used, the results obtained with 10mm and 20mm tile size are the
same as that obtained with 5mm tile size. In contrast, for “corner summation” method,
there still exists some difference between the results obtained with 10mm and 5mm tile
sizes, although very little. Also can be found from Table 4.1, when the tile size
increases to 50mm, 100mm and larger, the “corner summation” method produces much
larger error compared with “center summation” method. Based on this, we are confident
in saying that the “center summation” method produces higher accuracy than “corner

summation” method, especially when the tile size is relatively large. Therefore, center
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summation Huygens method will be used as a reference for the remaining part of the
thesis.

Table 4.1: Mean Square Error of the spectra of the received signals obtained by center and corner
summation methods and with different tile size. The reflector is a Imm*1mm square reflector and
centers at (r, 2 = (7.07, 50) mm and tilted 10° relative to the transducer surface. Two planar
circular piston transducers of radius 3mm and 6mm are used as transmitter and receiver,
respectively. Theresults obtained by the summation of the diffraction responses of the Smm tilesare
used asreference signal for each method, respectively. The unit of MSE is“%"”.

5mm | 10mm | 20mm | 50mm | 100nm | 200mm | 500mm

center summation 0 0 0 0.0003 | 0.0047 | 0.1879 | 21.8272

corner summation 0 0.0002 | 0.0021 | 0.0208 | 0.1083 | 0.7905 | 48.1841

Figure 4.1 illustrates the spectra of the received signals obtained by center
summation Huygens method using different tile size from the 1mn*1mm square
reflector described above. For the purpose of clarity, the spectra obtained with 10mm
and 20nm tile size are not shown because they are too close to the spectrum obtained
with 5Smmtile size. In using Huygens method, the micro-tile size should preferably be as
large as possible to reduce the computational time. From Figure 4.1, we can observe
that the result obtained with 50nm tile size is also quite close to that obtained with 5nm
tile size, while the result obtained with 100mm tile size has relatively larger difference.
As a result, considering the trade-off between the computation time and accuracy, we
choose the micro-tile size of 50mm to be the optimal micro-tile size for this specific

simulation scenario.
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Figure 4.1 Spectra of received signal from a Imm*1mm square reflector to show the different
results obtained by center summation Huygens method using different tile size. The reflector
centers at (r, 2 = (7.07, 50) mm and tilted 10° relative to the transducer surface. Two planar
circular piston transducers of radius 3mm and 6mm are used as transmitter and receiver,
respectively.

4.2 Optimal Tile Size for Huygens Method

In the previous section, we checked the different results obtained by the center
summation and corner summation Huygens method and found that the center
summation method produces more accurate results. It is also found in previous section
that the optimal micro-tile size is 50mm which is the largest tile size that can be used to
obtain the received signal with high accuracy. It should be emphasized that the optimal
micro-tile size is very dependent on tilt angle of the reflector surface, the location, shape

and size of reflector, the size of the transducers, etc.
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Table 4.2 illustrates the accuracy of the results obtained with different tile sizes
for different smulation scenarios. The reflector and the transducers are the same as
those in section 4.1 except that the reflector istilted 2° and 20°, respectively, relative to
the transducer surface. To make the comparison convenient, the results obtained when
the reflector is tilted 10° are repeated in Table 4.2. It can be found that the different tilt

angle really makes a difference.

Table 4.2: Mean Square Error of the spectra of the received signals obtained by center summation
Huygens method with different tile size and tilt angle of reflector. The reflector is a Imm*1mm
square reflector and centers at (r, 2 = (7.07, 50)mm. The reflector istilted 2°, 10°, 20° relative to
the transducer surface, respectively. Two planar circular piston transducers of radius 3mm and
6mm are used as transmitter and receiver, respectively. The results obtained by the summation of
the diffraction responses of the 5mm tiles are used as reference signal for each case. The unit of
MSE is“%".

5rm | 10mm | 20mm | 50mm | 100nm | 200mm | 500mm
Tilted 2 0 0 0 0 0.0004 | 0.0075 | 0.9266
Tilted 10 0 0 0 0.0003 | 0.0047 | 0.1879 | 21.8272
Tilted 20 0 0 |0.0001| 0.0017 | 0.0436 | 8.0159 | 73.8032

Figure 4.2 and Figure 4.3 illustrate the spectra of the received signals obtained
for a2° tilted reflector and a 20° tilted reflector, respectively. For the purpose of clarity,
the spectra obtained with 10nmm and 20mm tile size are not shown in Figure 4.2 because
they are too close to that obtained with the 5nrm tile size. From Figure 4.2, we can
observe that the result obtained with 100mm tile size is quite close to that obtained with
5mm tile size, while the results obtained with 200mm tile size has an observable
difference. As aresult, we may choose the tile size of 100nm to be the optimal tile size
when the reflector is tilted 2°. However, when the reflector is tilted 20°, as shown in

Figure 4.3, we find that the received signal obtained with 100mm tile size is quite
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different from that obtained with 5Srm. Even the result obtained with 50mm tile size is
not close to that obtained with 5Snm. Therefore, we choose thetile size of 20nm to be the
optimal tile size for this specific ssimulation scenario. In Figure 4.3, for the purpose of
clarity, the received signa obtained with 10mm and 500mm tile size are not shown
because the former is too close to that obtained with 5Smm tile size, while the latter is too

different from that obtained with 5Snrm tile size.
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Figure 4.2 Spectra of received signal from a Imm*1mm square reflector to show the different
results obtained by center summation Huygens method using different tile size. The reflector
centersat (r, 2 = (7.07, 50) mm and tilted 2° relative to the transducer surface. Two planar circular
piston transducers of radius 3mm and 6mm ar e used as transmitter and receiver, respectively.
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Figure 4.3 Spectra of received signal from a Imm*1mm square reflector to show the different
results obtained by center summation Huygens method using different tile size. The reflector
centers at (r, 2 = (7.07, 50) mm and tilted 20° relative to the transducer surface. Two planar
circular piston transducers of radius 3mm and 6mm are used as transmitter and receiver,
respectively.

From Table 4.2 and from the comparison between Figure 4.1, Figure 4.2 and
Figure 4.3, we have found that the accuracy of the results obtained with certain tile sizes
is dependent on the tilt angle of the reflector surface. It is aso found that the accuracy
of the results obtained with certain tile size is dependent on many other factors, such as
the location, shape and size of the reflector, and the transducer size. We will now
present severa different ssmulation scenarios to give a general illustration of this issue.
Case 1: The reflector is a Imm*1mm square flat reflector, tilted 10° relative to the
transducer surface and centered at (r, z) = (0.707, 50) mm. Two planar circular piston
transducers of radius 3mm and 6mm are used as transmitter and receiver, respectively;
Case 2: The simulation parameters are the same as those in case 1, except that the

reflector is centered at (r, z) = (7.07, 50) mm; Case 3: The simulation parameters are the

72



same as those in case 1, except that the reflector is centered at (r, 2) = (14.14, 50) mm;
Case 4, 5 and 6: The simulation parameters are the same as those in case 1, 2 and 3,
respectively, except that a planar circular piston transducer of radius 12.7mm is used as
both the transmitter and receiver; Case 7: The smulation parameters are the same as
those in case 2, except that the reflector is acurved one. It isa60° arc of a cylinder with
radius = 1mm and length = 1mm, with the arc centered at (r, z) = (7.07, 50) mm. Table
4.3 summarizes the different parameters for the seven different simulation scenarios
described above. Table 4.4 presents the accuracy of the results obtained for those seven
cases. In the same way asin Table 4.1 and Table 4.2, the results obtained with the 5nrm
tiles are used as reference signal for each case. We observe that the accuracy of the
received signals obtained with certain tile size is quite dependent on the situation of the
specific simulation scenario. To give a graphical comparison between the ssimulation
scenarios considered, we have included Figure 4.4 to illustrate the spectra of the
received signals for “case 1’ to “case 6”. In Figure 4.5, the spectra of the received
signals for “case 2’ and “case 77 are presented to make comparison between the

received signals of flat and curved reflectors.

Table 4.3 Summary of the parametersused for different smulation scenarios discussed above.

reflector center position | transmitter radius | receiver radius | reflector shape
case 1 (0.707, 50) mm a =3 mm a =6 mm flat
case 2 (7.07, 50) mm a =3 mm a =6mm flat
case 3 (14.14, 50) mm a =3 mm a =6 mm flat
case 4 (0.707, 50) mm a =12.7 mm a = 12.7 mm flat
case 5 (7.07, 50) mm a = 12.7 mm a =12.7mm flat
case 6 (14.14, 50) mm a = 12.7 mm a =12.7mm flat
case 7 (7.07, 50) mm a =3 mm a =6mm curved
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Table 4.4: Mean square error of the spectra of the received signals obtained by center summation
Huygens method for different simulation scenarios. The unit of MSE is“%".
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Figure 4.4 Spectra of the received signals obtained by center summation Huygens method for 6
different simulation scenarios: case 1 to case 6 as described above.
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Figure 4.5 Spectra of the received signals obtained by center summation Huygens method for two
different simulation scenarios: case 2 and case 7 as described above.

As can be observed from Table 4.4, when two planar circular piston transducers
of radius 3mm and 6mm are used as transmitter and receiver, respectively, the error
produced by a given tile size decreases when the radia distance of the reflector
increases from 0.707mm to 7.07mm and then to 14.14mm; however, when a planar

circular piston transducer of radius 12.7mm is used as both the transmitter and receiver,
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the error produced by a given tile size increases and then decreases as the radial
distance increases from 0.707mm to 7.07mm and then to 14.14mm. Such results are
surprising because, normally, we think that the error should change in a similar way
when the radial distance of the reflector changes.

We have calculated the spectra of the received signals from the 1mm*1mm
square flat reflector, tilted 10° relative to the transducer surface, for a number of
simulation scenarios by changing the size of the transmitter and receiver as well as
changing the radial position of the reflector. For al these ssmulation scenarios, the axial
distance of the center of the reflector is z= 50mm and the radial distance of the center
of the reflector is r = Omm, 0.707mm, 1.414mm, 2.828mm, 4.243mm, 5.657mm,
7.07mm, 8.485mm, 9.899mm, 11.31mm, 12.73mm, 14.14mm, 15.56mm, 16.97mm,
respectively. Figure 4.6 illustrates the relationship between the radial distance and the
Mean Square Error (MSE), obtained with the 100nm tile size for different simulation
scenarios. It is another form of evidence that the accuracy of the received signals
obtained with given tile size is quite dependent on the position of the reflector as well as
the size of the transmitting and receiving transducer. More discussion about Figure 4.6

will be presented in section 5.2 in chapter 5.
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Figure 4.6 The relationship between the radial distance and the Mean Square Error of the spectra
of the received signals obtained with the 100mm tile size, from a Imm* 1mm square flat reflector,
which istilted 10° relative to the transducer surface. Part (a): The M SE produced when same size
planar circular piston transducer is used as both the transmitter and receiver, the radius is 3mm,
6mm, 9mm and 12.7mm, respectively; Part (b) (c) (d) (e) and (f): The comparison between the M SE
produced when two different size planar circular piston transducers are used as the transmitter
and receiver, and the M SE produced when same size planar circular piston transducer is used as
both the transmitter and receiver.
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From above examples, we conclude that the accuracy of the received signals
obtained with a specified tile size is quite dependent on the parameters of the specific
simulation scenario, such as the tilt angle of the reflector surface, the location, shape
and size of reflector, the size of the transducers, etc. Therefore, the “optimal micro-tile

size” needs to be found empiricaly by “trial and error” method.
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Chapter 5
Evaluation of DREAM Method

In chapter 4, the simple, but computationally more demanding Huygens method
was evaluated based on the received signals obtained from a 1mm* 1mm square reflector
under different simulation scenarios. In this chapter, the DREAM method will be used
for calculating the received signal due to reflectors with different size, shape and
position in different ssimulation scenarios. As described earlier in this thesis, the
DREAM method tessellates the reflector into tiles of moderate size. To consider the
trade-off between the computation time and accuracy for DREAM method, we need to
find the optimal tile size for DREAM method. We have carried out a detailed
investigation, and in this chapter we try to develop a set of rules that may help to decide
the optimal tile size efficiently. The two implementations of the DREAM method, based
on both rectangular tile (R-DREAM) and triangular tile (T-DREAM), will be used. The
results obtained by DREAM method using the optimal tile size are compared and
evaluated with the results obtained by Huygens method.

In chapter 4, the results obtained by Huygens method with 5nm micro-tile size
were used as the reference signal to evaluate results obtained with larger tile size.

However, when the reflector size becomes much larger, for example, 15mm* 15mm, the
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computation time using Huygens method with 5mm micro-tile size becomes too long to
be acceptable. More than 140 hours are required to calculate the received signal from
15mm* 15mm square flat reflector for just one set of transmitting and receiving
transducers. As we found in chapter 4, the results obtained by Huygens method using
the optimal micro-tile size are very close to the “ideal” results obtained with 5mm
micro-tile size. Therefore, in this chapter, the results obtained by Huygens method using
the optimal micro-tile size are used to make comparison with the DREAM method.

As discussed in section 2.6, the DREAM method can be used to calculate the
received signa from an annular array transducer, which is the basis for chapter 6, The
Optimal Design of Acoustic Field and Receiver Characteristics. The received signal
from an array is calculated based on the superposition of the received signals from
different combinations of planar circular transducers. Therefore, in this chapter, planar
circular piston transducers with four different radii are used as transmitter and receiver,
and al combinations of transmitter radius and receiver radius are considered. The radii
of the transducers are 3mm, 6.3mm, 9mm and 12.7mm.

In section 5.1, a brief introduction is given to the behavior of diffraction
response versus the radial position of the field points for different transmitting and
receiving transducers. In section 5.2, a new term “DREAM Error” is defined. Section
5.3 evaluates the energy of the received signal from a small reflector, and in section 5.4,
the term “Normalized DREAM Error” is introduced, based on the information from
section 5.3. The DREAM Error, the energy of the received signal, and the normalized
DREAM Error for a small reflector are dependent on such factors as the radial position

of the reflector, the tilt angle of the reflector, and the radii of the transmitting and
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receiving transducers. The relationship between the DREAM Error, the energy, and the
normalized DREAM Error and the above-mentioned factors are illustrated in section
5.2, 5.3 and 5.4, respectively. In section 5.5, the issue of the optimal tile size for
DREAM method is discussed, based on the discussions in sections 5.2, 5.3 and 5.4. In
section 5.6, 5.7 and 5.8, different simulation results are presented. In section 5.6, to give
more illustration to the discussion in sections 5.2 and 5.5, the spectra of the received
signal from 1mm* 1mm square tilted flat reflectors with different radial locations are
presented, for a specific transmitter and receiver combination. The results obtained by
Huygens, R-DREAM and T-DREAM method are presented and compared. Section 5.7
issimilar to section 5.6 except that the reflectors are 15mm* 15mm square flat reflectors
with different tilt angles. In section 5.8, the received signals from a large curved
reflector are presented. By the comparison of the results in sections 5.2 and 5.4, it is
concluded that the T-DREAM produces better results than the R-DREAM for the same
tile area. In addition, we prefer to T-DREAM in the practical applications. Therefore, in
the last part of section 5.7 and section 5.8, only the results obtained by T-DREAM are

presented and compared with those obtained by Huygens method.

5.1 Introduction to the Behavior of Diffraction Response

When the DREAM method is applied, it is also necessary to consider the trade-
off between the computation time and accuracy as was done for Huygens method. That
is, we also need to find the optimal tile size for DREAM method. For the DREAM
method to produce the received signal with a small error, the tile size should be chosen

so that the diffraction responses from the corners of the tile do not differ too much.
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Therefore, it is useful to first have some idea about the behavior of the diffraction
response. The factors which may cause the change of the diffraction response in both
waveform (shape) and amplitude include the radial position of the field point and the

radii of the transmitting and receiving transducers.
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Figure 5.1 Illustration of the different diffraction responses when the radial position of the field
points changes. Two planar circular pistons with radius 3mm and 9mm act as transmitter and
receiver respectively. The axial position of the field pointsis 50mm. The radial positions are 1mm, 2
mm, 3mm and 4mm in part (a), (b), (c) and (d), respectively.

Figure 5.1 illustrates the different diffraction responses when the radial position
of the field point changes from 1mm to 4mm with 1mm increment. The axial position of
the field points is 50mm and the radii of the transmitter and receiver are 3mm and 9mm,
respectively. By examining Figure 5.1, we can get some idea about the change of the
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shape and amplitude of the diffraction responses when the radia position of the field
point changes.

Figure 5.2 is similar to Figure 5.1, except that for Figure 5.2, the radii of the
transmitter and receiver are 6.3mm and 9mm, respectively. By comparing corresponding
parts in Figure 5.1 and Figure 5.2, we can observe that the shape and/or the amplitude
of the diffraction response of a field point at a specific position change a lot when the

radius of one transducer in the pulse-echo system differs.
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Figure 5.2 Illustration of the different diffraction responses when the radial position of the field
points changes. Two planar circular pistons with radius 6.3mm and 9mm act as transmitter and
receiver respectively. The axial position of thefield pointsis 50mm. The radial positions are 1mm, 2
mm, 3mm and 4mm in part (a), (b), (c) and (d), respectively.

83



5.2 DREAM Error versus Radial Distance

Asillustrated in section 5.1, the shape and amplitude of the diffraction responses
change significantly when the radia position of the field points and/or the radii of the
transducers change. However, it is hard to accurately/mathematically describe the
change of the diffraction responses because it is difficult to define the measure for
“change of the diffraction responses’ precisely. The reason why we investigate the
behavior of the diffraction response versus the radial position of the field points for
different transmitting and receiving transducers is that we'd like to make use of such
information to help us to determine the optimal tile size for DREAM method, and then
to calculate the received signal for a pulse-echo system using DREAM method with the
optimal tile size. Therefore, instead of investigating the “change of the diffraction
responses’, we calculate the error of the received signal obtained by DREAM method
with a fixed tile size, using the recelved signal obtained by Huygens method as the
reference signal. Large error (the numerical values will be discussed in section 5.5)
means the tile size is too large for the delay linearization of DREAM method to produce
good approximation. The larger the error when evaluated with a constant tile size, the
smaller isthe proper tile size that must be chosen for DREAM method.

To develop rules for the optimal tile size for a range of measurement situations,
we investigate the relationship between the error and such factors as reflector position,
the radii of the transmitting and recelving transducer, which are the factors closely
related to the change of the diffraction responses. By doing this, we can get some idea

about how those factors affect the choice of the tile size used by DREAM method. The
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error is named “DREAM Error” and is calculated in the frequency domain, using the
same M SE method as defined by equation (4.2) in Chapter 4. Equation (4.2) is repeated

below for convenience:

A V(1= Ve (£) Dc

15MHz
Y

Q0 Nu(f)Fdf

DREAM error = MSE = *100% (5.1

where V/(f) is the frequency spectrum of the received signal calculated with the
DREAM method whose accuracy is to be evaluated. V.«(f) is the frequency spectrum of
the reference signal calculated with the Huygens method.

To illustrate the relationship between the DREAM Error and the radial location
of the reflector, the received signal from a small square reflector (the size of the
reflector will be presented later) is calculated by Huygens method as well as by both T-
DREAM and R-DREAM method using equation (5.1). Next, the DREAM Error is
calculated for both T-DREAM and R-DREAM method. The small square reflector is
tilted 0.6° with respect to the transducer surface as shown in Figure 5.3 (a), followed by
a set of measurements where the small reflector is tilted 6°. The center of the small
square reflector moves in small steps along the dotted line shown in both Figure 5.3 (a)

and (b). The center can be described in polar coordinates as

(r,,2) =(r,,50+ i sin(0.6°))mm (5.2)

1+ (c0s0.6°)?

where r, =4/x* +y* istheradial position of the center of the small reflector and varies

over the range of (0.35, 11.3)mm and z is the axial position of the center. The

parametersr, and z are shown in Figure 5.3 (b).
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Figure 5.3 Illustration of the simulation scenarios used to illustrate the relationship between the
DREAM Error and theradial location of thereflector.

When R-DREAM is applied, the size of the small reflectors is set to be
500nmm*500mm. The received signal from those small reflectors are calculated by
Huygens method using 100mm point spacing and by R-DREAM using tile size of
500mm* 500mm. Then the DREAM Error is calculated for each small reflectors using
eguation (5.1), where V,(f) now is the frequency spectrum of the received signal from
the 500mm* 500mm square reflectors obtained by R-DREAM method and V,«(f) is the
frequency spectrum of the received signal obtained by Huygens method. When T-
DREAM is applied, the size of the small tilesis set to 700mm* 700mm and the received
signa from the tile is calculated by Hugyens method using 100nm point spacing. Each
700mm* 700mm tile is divided up into two equilateral right-triangles of same size along
the diagonal line of the small square reflector and the received signal from the square
tile is calculated by T-DREAM using the two equilatera right-triangles. Then the
DREAM Error is calculated in the same way as that for the R-DREAM. The area of

these triangular tiles used by T-DREAM is 0.7mm*0.7mnv2 = 0.245mn which is about
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the same as the area of those tiles used by R-DREAM, i.e., 0.5mm*0.5mm = 0.25mn?.
Therefore, the DREAM Error can also be used to compare the accuracy of the results
obtained by T-DREAM and R-DREAM.

Our calculations have shown that the DREAM Error aso depends strongly on
the radii of the transmitting and receiving transducers. As described at the beginning of
this chapter, we are considering four transducers of different sizes; therefore, there are
ten simulation sets based on the different combination of these four transducers as
transmitter and receiver. Table 5.1 shows those combinations. It should be noted that,
due to reciprocity, we obtain the same received signal when the transmitter and receiver
radii are a; and ap, respectively, as when the transmitter and receiver radii are a; and ay,
respectively. The procedure described above to illustrate the relationship between the

DREAM Error and radial position is applied to all these ten ssimulation sets.

Table 5.1 Summary of the simulation scenarios based on the different combination of the
transducersasthe transmitter and receiver.

transmitter radius receiver radius
simulation set 1 a=3mm a=3mm
simulation set 2 a=3mm a; = 6.3 mm
simulation set 3 a=3mm a=9mm
simulation set 4 a=3mm a =12.7mm
simulation set 5 & = 6.3 mm a; = 6.3 mm
simulation set 6 & =6.3mm a=9mm
simulation set 7 & = 6.3 mm a =12.7mm
simulation set 8 a&=9mm a=9mm
simulation set 9 & =9mm a =12.7mm
simulation set 10 a =127 mm a = 12.7 mm

Part (4) and (b) in Figure 5.4 illustrate the relationship between the DREAM
Error and the radial position when the radii of the transmitter and receiver are both

6.3mm. Part (a) is for T-DREAM and part (b) is for R-DREAM. Part (c) and (d) in
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Figure 5.4 illustrate the relationship between the DREAM Error and the radial position
when the radii of the transmitter and receiver are 3mm and 6.3mm, respectively. Part (c)
is for T-DREAM and part (d) is for R-DREAM.The results for all the ten sets of

simulation scenarios, listed in Table 5.1, are included in Appendix A.2.

MSE of T-DREAM(tilted 0.6°) a‘:6.3mm; ar:6.3mm MSE of R-DREAM (tilted 0.6°) a‘:6.3mm; ar:6.3mm
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Figure 5.4 lllustration of the relationship between the DREAM Error (=MSE) and the radial
position, basing on the M SE of the received signal obtained by DREAM method from small square
reflectors. Theresults obtained by Huygens method with 100mm point spacing are used as reference
signal. The reflectors are tilted 0.6° with respect to the surface of the transducer. The radii of the
transmitter and receiver are: in part (a) and part (b): both 6.3mm; in part (c) and part (d): 3mm
and 6.3mm. Part (a) and part (c) arefor T-DREAM and part (b) and part (d) arefor R-DREAM.

It is found from Figure 5.4 that, when the radii of the transmitter and receiver
are both 6.3mm, the DREAM Error is relative large in both the region near the

transducer axis and the region whose radial position is about the radius of the
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transducer. The same conclusion holds for the other situations when the size of the
transmitter and receiver are the same. When the size of the transmitter and receiver are
different, the DREAM Error is aso large in the near-axis region. And in most cases, the
DREAM Error is aso large in the region whose radial position is about the radius of the
smaller transducer.

Recall that in section 4.2 of chapter 4, we investigated the relationship between
the radia distance and the Mean Square Error (MSE) of the spectra of the received
signals obtained by Huygens method (for the convenience of discussion, we will refer to
the MSE as Huygens Error). By comparing Figure 5.4 and Figure 4.6, we can observe
that the DREAM Error and the Huygens Error are both large in the region whose radial
position is about the radius of the transducer.

During our investigation, we found that the DREAM Error also depends on the
tilt angle of the reflector with respect to the surface of the transducer. Therefore, we
have repeated the same simulations described above, except that the tilt angle of the

small square reflector with respect to the transducer surface is now increased to 6°,

instead of 0.6°. The trgjectory of the center of the reflector is described as:

(r,,2) = (r,,50+ B §n(6°)mm (5.3)

{1+ (cos6°)?

89



MSE of T-DREAM: a‘:6.3mm; ar:6.3mm MSE of R-DREAM: a‘:6.3mm; ar:6.3mm

0.6 F 1.2
0.5 1
0.4 _. 08
5 5
w w
4] 4]
S o3 =06
0.2 0.4
0.1 0.2
0 . L . o v
0 2 4 6 8 10 12 0 2 4 6 8 10 12
radial distance [mm] radial distance [mm]
MSE of T-DREAM: a‘:3mm;ar:6.3mm MSE of R-DREAM: a‘:3mm;ar:6.3mm
0.7 2.5
0.6
2k
0.5
1.5
< 04T =
5 5
w w
@ @
=03 =
1k
0.2
0.5
0.1
0 . . ; . W 0 . “ﬁ
0 2 4 6 8 10 12 0 2 4 6 8 10 12
radial distance [mm] radial distance [mm]

Figure 5.5 Illustration of the relationship between the DREAM Error (=MSE) and the radial
position, basing on the M SE of the received signal obtained by DREAM method from small square
reflectors. The results obtained by Huygens method with 50mm point spacing are used as reference
signal. The reflectors are tilted 6° with respect to the surface of the transducer. The radii of the
transmitter and receiver are: in part (a) and part (b): both 6.3mm; in part (c) and part (d): 3mm
and 6.3mm. Part (a) and part (c) arefor T-DREAM and part (b) and part (d) arefor R-DREAM.

Figure 5.5 shows the relationship between the DREAM Error and the radial
position when the reflector is tilted 6° with respect to the surface of the transducer, for
the same cases as shown in Figure 5.4. Please refer to Appendix A.5, for the DREAM
Error of all the ten sets of different combination of transducers.

By comparing Figure 5.4 and Figure 5.5, we can observe that the DREAM Error

in 6° case is larger than that in corresponding 0.6° case. However, similar to the cases
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with 0.6° tilted angle, for most cases with 6° tilted angle, the DREAM Error is relative
large both in the region near the axis and the region where the radia position is about
the same as the radius of the transducer. In general, larger DREAM Error means that
smaller tile size should be used by DREAM method. Therefore, we can conclude that
the optimal tile size for a specific set of transmitting and receiving transducers varies
with the radial position of the reflector. More illustration will be presented in section
5.6, after we discuss the optimal tile size for DREAM method in section 5.5.

By comparing the DREAM Error for both T-DREAM and R-DREAM in Figure
5.4 and Figure 5.5, we can tell that T-DREAM produces better results than R-DREAM

does for the same simulation scenario with sametile area.

5.3 Energy of the Received Signal from Small Reflector versus Radial

Distance

The information given in section 5.2 is quite important if we are interested in the
received signal from small reflector with a size such as 0.5mm*0.5mm or Lmm* 1mm.
When we try to calculate the recelved signal from a much larger reflector, for example,
15mm*15mm flat reflector, other considerations should be made when it comes to
finding the optimal tile size. One thing to be noted is that the energy of the received
signal from the small reflector, which was described in section 5.2, differs alot when its
radial position changes. The energy distribution along the radia distance is aso a

function of the radii of the transmitter and receiver. The energy is defined as:
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N\

Ea(r)=¢) N (fr)fdf (5.4)

where Vie(f,rp) is the spectrum of the received signal from the 0.5mm* 0.5mm reflector,

as afunction of theradial position rp.
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Figure 5.6 lllustration of the energy of thereceived signal from a 0.5mm*0.5mm tile as a function of

the radial position of the center of thetile. The reflector istilted 0.6° with respect to the transducer
surface. Theradii of the transmitter and receiver are: in part (a) both 3mm; in part (b): 3mm and
6.3mm; in part (c): 6.3mm and 6.3mm; in part (d): 9mm and 9mm.

Figure 5.6 illustrates the energy of the received signal from a 0.5mm*0.5mm tile
as a function of the radial position of the center of the tile. The reflector is tilted 0.6°

with respect to the transducer surface, and the trgjectory of its center is described by

equation (5.2) in section 5.2. In part (a), the radii of the transmitter and receiver, are
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both 3mm; in part (b): 3mm and 6.3mm; in part (c): 6.3mm and 6.3mm; in part (d): 9mm
and 9mm. Please refer to Appendix A.l, for the energy distribution for all the ten

situations with different combination of transducers.
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Figure 5.7 lllustration of the energy of thereceived signal from a 0.5mm*0.5mm tile as a function of
the radial position of the center of thetile. The reflector istilted 6° with respect to the transducer
surface. Theradii of the transmitter and receiver are: in part (a) both 3mm; in part (b): 3mm and
6.3mm; in part (c): 6.3mm and 6.3mm; in part (d): 9mm and 9mm.

As we did in section 5.2, we repeat the energy calculations for the small
reflector which now is tilted 6° with respect to the transducer surface, and the trgjectory
of its corner is described by equation (5.3) in section 5.2. Figure 5.7 illustrate the

relationship between the energy of the received signal from a 0.5mm*0.5mm tile as a
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function of the radial position of the center of the tile for the same cases as shown in
Figure 5.6. Please refer to Appendix A.4, for the energy distribution for al the ten
situations with different combination of transducers.

By observing Figure 5.6 and Figure 5.7, we find that the received signal from a
small reflector near the axis contains much more energy than the received signal from a
reflector far away from the axis. The smaller the size of the transmitter and receiver, the
more energy is concentrated in the received signal from the small reflectors near the
axis. The energy distribution curves for the 0.6° case are similar to those for the 6° case,

while the overall energy level is much higher when the reflector tilted 0.6° than when it

istilted 6°.

5.4 Normalized DREAM Error versus Radial Distance

In section 5.3, we calculated the energy of the received signal from a small tile
as afunction of the radial position of the center of the tile. As most modeling situations
involve the received signal from an extended reflector, it is appropriate to define a
normalized DREAM Error (or MSE) in which the mean square error of a small tile is
normalized by the energy of the received signal from a large reflector. Such a

normalized DREAM Error is defined as

15MHz
N

. (lVr_tiIe(f T ) |' |Vref _tile(f T ) |)2df
Normalized DREAM Error= *100% (5.4)

15MHz
Y

Q |Vref _reﬂector( f ) |2 df

where V; qie(f,rp) is the frequency spectrum of received signal from the small reflector
obtained by DREAM method. The reflector is tilted either 0.6° or 6° with respect to the

transducer surface, and the trajectory of its corner is described by either equation (5.2)
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or (5.3) in section 5.2. For R-DREAM, the size of the small reflector is 0.5mm*0.5mm,
and the received signal is calculated by R-DREAM using one square tile with area of
0.5mm*0.5mm. For T-DREAM, the size of the small reflector is 0.7mm*0.7mm and the
received signal is calculated by T-DREAM using two equilateral right-triangles with
area of 0.7mnm*0.7mm/2. The function Vi« 1ie(f,rp) IS similar to V; gie(f,rp) except that it
is obtained by Huygens method. Ve refiector(f) 1S the frequency spectrum of the received
signal from a 8mm*8mm flat reflector, which is placed in the first quadrant of the x-y
plane with one of its corner on the z-axis. It is tilted by the same angle as the small
reflector with respect to the transducer surface. Thus, the small square reflector moves
along the diagonal of the large reflector.

Figure 5.8 illustrates the relationship between the normalized DREAM Error
and the radia position when the reflectors are tilted 0.6°. Part (a) and (b) are for T-
DREAM and R-DREAM, respectively, when the radii of the transmitter and receiver
are both 6.3mm. Part (c) and (d) present the relationship between the normalized
DREAM Error and the radial position when the radii of the transmitter and receiver are
3mm and 6.3mm, respectively. Please refer to Appendix A.3 for the results for all ten

combinations of the transmitter and receiver.
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Figure 5.8 Illustration of the relationship between the radial position and the Normalized DREAM
Error of the received signal from small square reflector. The results obtained by Huygens method
with 100mm point spacing are used asreference signal. Thereflector istilted 0.6° with respect to the
transducer surface. The radii of the transmitter and receiver are: in part (a) and part (b): both
6.3mm; in part (c) and part (d): 3mm and 6.3mm. Part (a) and part (c) arefor T-DREAM and part
(b) and part (d) arefor R-DREAM.

Figure 5.9 illustrates the relationship between the normalized DREAM Error
and the radial position when the reflectors are tilted 6° for the same cases as shown in
Figure 5.8. Please refer to Appendix A.6 for the results for all ten combinations of the

transmitter and receiver.
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Figure 5.9 Illustration of the relationship between the radial position and the Normalized DREAM
Error of the received signal from small square reflector. The results obtained by Huygens method
with 50mm point spacing are used as reference signal. The reflector is tilted 6° with respect to the
transducer surface. The radii of the transmitter and receiver are: in part (a) and part (b): both
6.3mm; in part (c) and part (d): 3mm and 6.3mm. Part (a) and part (c) arefor T-DREAM and part
(b) and part (d) arefor R-DREAM.

It can be observed from Figure 5.8 and Figure 5.9 that the normalized DREAM
Error is quite large in the region near the transducer axis. However, when the radial
distance increases, the normalized DREAM Error becomes much smaller which means
that this region contributes only a small fraction to the overall error. Consequently,
larger tile size may be used in this region. It can also be found that the normalized
DREAM Error largely depends on the sizes of the transducers, especially the size of the

smaller of the transmitter and receiver. Generaly, the smaller the size of the transducer,
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the larger is the normalized DREAM Error and the smaller is the optimal tile-size. The
observation holds true when the received signal is calculated for an extended reflector
covering both near-axis region and the far-axis region. Figure 5.8 and Figure 5.9 aso
shows that the normalized DREAM Error is smaller in 0.6° case than that in 6° case and
that T-DREAM produces better results than R-DREAM does in the same simulation

scenario with samettile area, as we aso found in section 5.2.

5.5 The Optimal Tile Sizefor DREAM Method

So far, we have calculated and analyzed severa factors that may affect the error
of the results obtained by DREAM method. The error magnitude in turn affects the
optimal tile size that can be used by DREAM method to calculate the received signal in
a pulse-echo system. The specific optimal tile size being chosen is also dependent on
the allowable error level of the results in a specific application. In the work of this
thesis, we define the optimal tile size in the DREAM method as the size which gives the
shortest computation time and which at the same time keeps the error of the result
obtained by DREAM less than 0.2%, compared with the result obtained by Huygens
method, using equation (5.1).

One thing that should aways be kept in mind is that the optimal tile size also
depends on the shape of the reflector surface. The tile size must be chosen so that the
tessellated tiles can approximate the surface sufficiently accurate. The more
complicated the shape of the reflector surface is, the smaller the tile size should be

chosen. How to optimally approximate a specific reflector surface with flat rectangular
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or triangular tiles is an important topic closely related to DREAM method.
Unfortunately, because of the limit of time, it is beyond the scope of this thesis. We will
just try to keep the size of the tile moderate for the purpose of the optimal surface
approximation. Although it is possible that, for some simulation scenarios, the DREAM
method may produce good results with larger tile size, for all the following simulations,
we limit the largest possible side length of the rectangular tile of R-DREAM method to
1mm and limit the largest possible side length of the triangular tile of T-DREAM
method to 1.414mm which corresponding to the length of the diagona line of the
rectangular tile. For the ease of tessellation, the tessellated triangular tiles in the
following parts are all right triangles generated by splitting a rectangular tile along the
diagonal line. However, the T-DREAM is equally applicable to arbitrary-shaped
triangular tiles. Furthermore, tessellation using arbitrary triangular tiles might be able to
produce better results because the arbitrary-shaped triangular tiles can approximate the
complex reflector surface more effectively. That is also one of the reasons that we
prefer the T-DREAM to the R-DREAM.

For the convenience of tessellation, if atile of specific size does not produce the
results with required accuracy, it is tessellated into four smaller tiles with the same area.
In most cases presented in the following part of this thesis, the R-DREAM uses square
tiles and the T-DREAM uses equilateral right-triangular tiles. Note that we will use the
side length of the sguare tile or the length of the hypotenuse of the equilateral right-
triangular tile to describe the tile size used by R-DREAM or T-DREAM. Additional
explanation will be given when the tile is not a square tile or an equilatera right-

triangular tile for some cases. For the R-DREAM, the tile side length is set to be either
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1000mm, 500mm, 250mm or 125mm. For the T-DREAM, the hypotenuse is set to be
either 1414mm, 707mm, 354nmm or 174mm. Of course, these values may be adjusted
dightly for the convenience of the tessellation for a specific reflector surface.

Based on the discussion in previous sections, we try to develop several rules that
may help to decide the optimal tile size efficiently. However, similar to what we found
for Huygens method, the optimal tile size for DREAM method is quite dependent on
specific simulation scenario and the allowable error level of the results. It is impossible
to tell which tile size to be used in a specific situation without actual numerical
experiments, and the basic way to decide the optimal tile size is “trial and error”
method. Based on the discussion in previous sections and “trial and error method”, we
find that, in general, when the tilt angle of the reflector is small, for example, less than
2° or 3°, 1000nm or 500mm tile size can be used by R-DREAM and 1414nm can be
used by T-DREAM.

When the tilt angle of the reflector becomes larger, the optima tile size is
dependent on factors such as the radia position of the tile, the size of the transducer and
receiver. For the purpose of clarity, we use tables to summarize the optimal tile size for
different situations. Based on the relationship between the DREAM Error and the radial
position illustrated in Figure 5.5 and Appendix A.5, Table 5.2 and Table 5.3 summarize
the optimal tile sizes when the reflector is small (dimensions in the order of 1mm* 1mm)
and tilted around 6° with respect to the transducer surface. Table 5.2 is for T-DREAM

method and Table 5.3 is for R-DREAM method. Results based on the optimal tile size
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will be presented in section 5.6 for small reflectors. More explanation will be presented

in section 5.6.

Table 5.2 Summary of the optimal tile size for T-DREAM when the reflector is small (with the
dimension of Imm*1mm) and tilted around 6° with respect to the transducer surface.

radii of T-DREAM optimal tile
transducers reflector radial positionr size

r <3.5mm 354mm
3mm 3mm 3.5mmE r <45mm;8mmeEr < 707mm
45mmEr <8mm;10mm£E r < 11mm 1414mm
r <3mm 354mm
3mm 6.3mMm | 3mm£r < 8mm;10mm £ r < 11mm 707mm
8mm £ r < 10mm 1414mm
r <3mm 354mm
3mm 9mm 3mmE£ r < 11mm 707mm
r <2mm 354mm
3mm 12.7mm 2mméE r < 11mm 707mm
r<1.5mm4mmeE r < 7mm 354mm
6.3mm | 6.3mm | 1.5mmEr <4mm;7mmE£ r < 8mm 707mm
SmmE r < 11mm 1414mm
r <2mm;3.5mmeE r < 5.5mm 354mm
6.3mm 9mm 2nmE£ r < 3.5mm;5.5mmE r < 707mm
r <1.5mm;3.5mmE r < 5mm 354mm
6.3mm | 12.7mm 1.5mmErr < 3.5mm5mmEr < 707mm
r<1.5mm; 7mmeEr <9mm 354mm
9mm 9Omm | 1.5mmEr < 7mm9mmE r < 11mm 707mm
r<1.5mm; 6mmeE r < 8mm 354mm
Omm | 12.7mm | 1.5mm£r < 6mm:8mmE r < 11mm 707mm
r <1.5mm 354mm
12.7mm | 12.7mm 1.5mme£ r < 11mm 707mm
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Table 5.3 Summary of the optimal tile size for R-DREAM when the reflector is small (with the
dimension of Imm*1mm) and tilted around 6° with respect to the transducer surface.

radii of transducers reflector radial position r R-DREAM optimal tile size
r <3.5mm 125mnm
3mm 3mm 3.5mm£ r < 5mm 250mm
5mmeEr <11lmm 500mm
r <1.5mm 125mnm
3mm 6.3mm 1.5mm £ r < 5mm 250mm
5mmeEr <11lmm 500mm
r <1.5mm 125nm
3mm 9mm 1.5mm £ r < 5mm 250mm
5mmeEr <11lmm 500mm
r <1.5mm 125mnm
3mm | 12.7mm 1.5mm£ r < 5mm 250mm
5mmeEr <11lmm 500mm
r <1.5mm;4mmeEr < 7mm 250mMm
6.3mm | 6.3mm | 1.5mm £r < 4mm;7mm £r < 9mm 500mm
ImMmEr < 11mm 1000mMm
r <1.5mm 125mnm
6.3mm 9mm 1.5mm £r < 9mm 250mm
OmMmEr < 11mm 500mm
r <1.5mm 125mnm
6.3mm | 12.7mm 1.5mm £r < 9mm 250mm
9mMmEr < 11mm 500mm
r <2mm 125mm
9mm 9mm 2mmEr < 11mm 250mm
r<2mm 125mnm
9mm | 12.7mm 2mmEr < 11mm 250mm
r <2mm 125mnm
12.7mm | 12.7mm 2mmEr < 11mm 250mm

When the reflector is large and covers both regions near the transducer axis and
the regions far from the transducer axis, the rules for the optimal tile size are a little
different from that for the small reflectors. Based on the “trial and error” method and
the relationship between the normalized DREAM Error and the radial position

illustrated in Figure 5.9 and Appendix A.6, Table 5.4 summarizes the optimal tile size
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when the reflector is large and tilted around 6° with respect to the transducer surface.
Results for large reflectors based on the optimal tile size will be presented in sections

5.7 and 5.8.

Table 5.4 Summary of the optimal tile size for both T-DREAM and R-DREAM when the reflector
islarge and tilted around 6° with respect to the transducer surface.

radii of transducers | tileradial positionr | T-DREAM | R-DREAM
r<4mm 354mm 125mnm
3mm 3mm Amm £ r < 11mm 707nmm 500nMm
r <3mm 354mm 125nm
3mm 6.3mMm | 3mmé£r < 11mm 707mm 500mMm
r <3mm 354mm 125nm
3mm 9mm 3mmEr < 11mm 707mm 500mMm
r <3mm 354mm 250mm
3nm | 127mm | 3mm£r < 11mm 707nmm 500nMm
r<2mm 354mm 250mm
6.3mm | 6.3mMmM | 2mme£r < 6.3mm 707mm 500mm
6.3MmE r <11mm 1414mm 1000mm
r <6.3mm 707mm 500mm
6.3mm 9mm | 6.3mmEr <11mm | 1414nm 1000mMm
r <6.3mm 707mm 500mm
6.3mm | 12.7mm | 6.3mm£Er < 11mm | 1414mm 1000mM
r<9mm 707mm 500mm
9mm 9mm 9mmE r < 11mm 1414mn 1000mM
9mm 12.7mm r<1lmm 1414mm 1000mMm
12.7mm | 12.7mm r<1lmm 1414mm 1000mMm
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5.6 Received Signal from Small Tilted Reflector

To validate the conclusion we drew in sections 5.2 and 5.5, the DREAM method
is used to calculate the spectra of the received signals due to 1mm*1mm square flat
reflectors, using the optimal tile size. The reflector is tilted 6° with respect to the
transducer surface and the radii of the transmitter and receiver are both 6.3mm. Table

5.5 summarizes the position of center of these small reflectors.

Table 55 Summary of the position of the Imm*1mm square flat reflectors. The radii of the
transmitter and receiver are both 6.3mm and thereflector istilted 6° with respect to the transducer
surface.

reflector center position

reflector 1 (R1) (0.71, 50.05) mm
reflector 2 (R2) (2.12,50.16) mm
reflector 3 (R3) (3.53,50.26)mm

reflector 4 (R4) (4.94, 50.37)mm
reflector 5 (R5) (6.35, 50.47)mm
reflector 6 (R6) (7.76, 50.57)mm
reflector 7 (R7) (9.17, 50.68)mm
reflector 8 (R8) (10.58, 50.78)mm

The optimal tile size is based on the values listed in Table 5.2 and Table 5.3 and
is listed in Table 5.6 together with the MSE of the results obtained by R-DREAM and
T-DREAM. The received signals obtained by Huygens method with 50mm point
spacing are used as reference for the calculation of MSE. It is noticed that for some
cases, for example for reflector position R1, the MSE of the result obtained by T-
DREAM with 354mm is 0.0083%, which is much smaller than the M SE value we used
to define the optimal tile size for DREAM, namely, 0.2%. However, if we were to use

707mm tile size for T-DREAM in this case, the MSE becomes 0.3431%, which doesn’t
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satisfy our definition of the optimal tile size. Therefore, 354mm is the optimal tile sizein

this case.

Table 5.6: Optimal tile size, Mean Square Error (M SE) and the computational time for R-DREAM,
T-DREAM method for a Imm*1mm square tile at various radial position. The results obtained by
Huygens method with 50mm point spacing are used asr eference signal for each case.

R-DREAM T-DREAM Huygens

tilee-size | MSE(%) | Time(s) | tile-size | MSE(%) | Time(s) | Time(s)

R1 250mm | 0.0574 1.76 354mm | 0.0083 2.74 13.02

R2 500mm | 0.1409 0.6 707mm | 0.0929 0.93 14.66

R3 500mM 0.126 0.66 707mm | 0.1078 1.04 16.53

R4 250mm | 0.0991 3.02 354mm | 0.0127 4.4 18.68

R5 250m 0.017 3.18 354mm | 0.0265 4.89 21.09

R6 500mm | 0.1103 1.04 707mm | 0.0296 1.7 23.67

R7 1000mm | 0.0926 0.33 1414mm | 0.0653 0.49 26.09

R8 1000mm | 0.0313 0.33 1414nm | 0.0268 0.55 29.55

In Table 5.6, the computation time for each tile position is aso included for the
Huygens method, T-DREAM and R-DREAM. By comparing the computation time, we
may easily determine how efficient the DREAM method is. One thing to note is that the
“computation time” is NOT a forma and strict way to evauate the efficiency of
different algorithms, because the computation time depends not only on the algorithms,
but also on such factors as the kind of operating system used, the current status of CPU
usage and so on. But it does provide a straightforward and convenient measure to
roughly compare the computational efficiency of different algorithms.

For the convenience of further discussion, Figure 5.5 (a) and (b) in section 5.2
are presented as Figure 5.10 again. The graph illustrates the relationship between the
radia distance and the DREAM Error when the reflector is tilted 6° with respect to the
transducer surface and the radii of the transmitter and receiver are 6.3mm. Recall that in

section 5.2, we concluded that the larger the DREAM Error is, the smaller the tile size
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must be chosen for DREAM method to obtain the results with good accuracy. By
comparing the optimal tile size given in Table 5.6 and the DREAM Error curve givenin
Figure 5.10, we find that our conclusion really holds. Take the results for R-DREAM
for example: when the tile center is at (0.71, 50.05) mm, which is very near the axis, the
DREAM Error found in Figure 5.10 is relative large with the value at about 0.5%,
therefore, the tile size must be chosen small to get good results, i.e., 250mm in this case;
when the tile center is at (2.12,50.16) mm, the DREAM Error found in Figure 5.10 is
relative small with the value at about 0.15%, therefore, larger tile size may be used, i.e.,
500mm; when the tile center is at (4.94, 50.37)mm, the DREAM Error found in Figure
5.10 is large, then smaller tile size must be used. Similar analysis can be given to the
results obtained for all the other reflectors listed in Table 5.5, as well as to the results

obtained by T-DREAM.

MSE of T-DREAM: a‘:6.3mm; ar:6.3mm MSE of R-DREAM: a‘:6.3mm; ar:6.3mm
0.7 T T T T T 1.4

0 2 4 6 8 10 12 0 2 4 6 8 10 12
radial distance [mm] radial distance [mm]

Figure 5.10 Illustration of the relationship between the DREAM Error and the radial position of a
small square reflector. The results obtained by Huygens method with 50mm point spacing are used

as reference signal. The reflectors are tilted 6° with respect to the surface of the transducer. The
radii of the transmitting and receiving transducer s are both 6.3mm.
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Figure 5.11 (a), (b), (c) and (d) illustrate the spectra of the received signals from
four reflector positions defined in Table 5.5: R1, R2, R7 and R8. Please refer to

Appendix B.1 for the spectra of the received signals from all the reflector positions.
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Figure 5.11 Spectra of received signal from a 1Imm*1mm square reflector to show the different
results obtained by Huygens method, R-DREAM, T-DREAM. Part (a), (b), (c) and (d) correspond
to thereceived signal from reflector positions R1, R2, R7 and R8, respectively.
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Figure 5.12 Time-domain received signal from a Imm*1mm sgquare reflector to show the different
results obtained by Huygens method, R-DREAM, T-DREAM. Part (a), (b), (c) and (d) correspond
to thereceived signal from R1, R2, R7 and R8, respectively.
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Figure 5.12 (@), (b), (c) and (d) illustrate the time-domain received signals from
the same four reflector positions: R1, R2, R7 and R8. Please refer to Appendix B.5 for
the time-domain received signals from all the reflectors. We find that the received
signals obtained by different methods agree very well except that, in part (a) and (b), the
signal obtained by Huygens method contains some very high frequency oscillations in
the time range [66.5~ 67]ns. These oscillations appear because the Huygens method
uses discrete summation instead of the continuous integration of the diffraction

response over the reflector surface which is not able to smooth out the strong impulses
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at the start of the diffraction response unless even smaller micro-tile size is used by
Huygens method. However, the high frequency oscillations will not give error in the
frequency range of interest. Based on the spectra of the received signal, we may
investigate the system response only in the frequency range of interest. In general, the
ultrasound transducers may be considered a bandpass filter with moderate bandwidth;
therefore, only a certain frequency range of the received spectrum produces the output
signa. In addition, we expect that more features identifying a given reflector can be
found in the spectra. Therefore, for the smulations in later sections, only the spectra of
the received signal will be included while the time-domain received signals may be

found in corresponding Appendices.

5.7 Received Signal from Large Flat Reflector

In this section, the DREAM method is used to calculate the received signal due
to 15mm* 15mm square flat reflectors in different ssmulation scenarios. In section 5.7.1,
the flat reflector istilted 0.6° with respect to the transducer surface. Results obtained by
both R-DREAM and T-DREAM are presented and compared with the corresponding
results obtained by Huygens method for al ten sets of transmitter and receiver
combinations. In section 5.7.2, the flat reflector istilted 6° with respect to the transducer
surface. Here, only the results obtained by T-DREAM are presented and compared with
those obtained by Huygens method for all ten sets of transmitter and receiver

combinations.
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5.7.1 Received Signal from Large Flat Reflector Tilted 0.6°

To validate the conclusion drawn in section 5.5, that is, when the tilt angle of the
reflector is small, large tile size can be used by DREAM to produce good results, the
DREAM method is used to calculate the received signals from the flat reflector when it
is tilted 0.6° with respect to the surface of the transducer. Table 5.7 summarizes the
relevant parameters, and Table 5.8 presents the optimal tile size used as well as the
MSE obtained for R-DREAM and T-DREAM. The results obtained by Huygens
method with 100mm point spacing are used as reference signal. For the convenience of

the comparison, the relative computation time of DREAM method to that of Huygens

method is presented in the columns “Time” of Table 5.8.

Table 5.7 Summary of the parameters used for different simulation scenarios to calculate the

diffraction response from 15mm*15mm squar e flat reflector.

transmitter radius | receiver radius | tilted angle
casel a=3mm a=3mm 0.6°
case 2 a=3mm ar = 6.3 mm 0.6°
case 3 a=3mm a=9mm 0.6°
case 4 a=3mm ay =12.7 mm 0.6°
case 5 a; =6.3mm ar = 6.3 mm 0.6°
case 6 a;=6.3mm a=9mm 0.6°
case/ a=6.3mm ay =12.7 mm 0.6°
case 8 a=9mm a=9mm 0.6°
case 9 a=9mm ay =12.7 mm 0.6°
case 10 a=12.7 mm a, =12.7 mm 0.6°
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Table 5.8 Optimal tile size, Mean Square Error (MSE) of the results and the computation time

obtained by R-DREAM, T-DREAM method. The results obtained by Huygens method with 100mm
tilesare used asreference signal for each case.

R-DREAM T-DREAM

optimal size | MSE (%) Time optimal size | MSE (%) Time
case 1l 500mMm 0.0244 14.1% 1414mm 0.0219 5.9%
case 2 500mMm 0.0216 16.9% 1414mn 0.0601 6.6%
case 3 500mm 0.0151 17.5% 1414mm 0.0873 7.4%
case 4 500mMm 0.0432 19% 1414mn 0.1232 8.2%
case 5 500mMm 0.0342 16.6% 1414mn 0.0756 6.5%
case 6 1000mMm 0.0559 4.2% 1414mm 0.0217 6.6%
case 7 1000mMm 0.06 4.7% 1414mm 0.0234 7.3%
case 8 1000mMm 0.0874 4.9% 1414mn 0.0556 7.1%
case 9 1000mMm 0.048 4.7% 1414mm 0.0091 7.3%
case 10 1000mMm 0.0636 4.8% 1414mn 0.0175 7.3%

Figure 5.13 illustrates the spectra of the received signal for cases 1, 2, 9 and 10
in Table 5.7. Please refer to Appendix B.2 for the spectra of the received signal and
Appendix B.6 for the time-domain received signals for al the cases. It can be seen from
the figuresin Figure 5.13 and the numerical valuesin Table 5.8 that the results obtained

by DREAM methods really match those obtained by Huygens method very well.
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15*15mm2flat reflector, center at (rp‘zp):(O,SD)mm, tilted O GD‘ a‘:Qmm; ar:12.7mm 15*15mm2flat reflector, center at (rp‘zp):(O,SD)mm, tilted O GD‘ a‘:12.7mm. ar:12.7mm
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Figure 5.13 Spectra of the received signal from a 15mm*15mm sguare reflector to show the
different results abtained by Huygens method, R-DREAM, T-DREAM. The reflector is tilted 0.6°
with respect to the transducer surface. Part (a), (b), (c) and (d) correspond to the received signal for
case 1, 2, 9 and 10, respectively.

5.7.2 Received Signal from Large Flat Reflector Tilted 6°

Now, the DREAM method applying the optimal tile size in Table 5.4 is used to
calculate the received signal due to 15mm* 15mm square flat reflector, which istilted 6°
with respect to the transducer surface. We found in sections 5.2 and 5.4 that the T-
DREAM produces better results than the R-DREAM does. In addition, in practical
applications, triangular tiles can approximate reflector surface better than rectangular
tiles. Based on these reasons, only results obtained by T-DREAM will be presented
from now on. Table 59 summarizes the different parameters for the simulation
scenarios and presents the optimal tile size used as well as the MSE obtained for T-
DREAM. The results obtained by Huygens method with 50mm point spacing are used as
reference signal. In Table 5.9, the column “Time” gives the relative computation time of
DREAM method to that of Huygens method for the convenience of the comparison.

Figure 5.14 illustrates the spectra of the received signal for cases 11, 12, 19 and 20 in
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Table 5.9. Please refer to Appendix B.3 for the spectra of the received signa and

Appendix B.7 for the time-domain received signals for all the cases.

Table 5.9 Summary of the parameters used for different simulation scenarios to calculate the
received signal from 15mm*15mm square flat reflector: The tile size used by T-DREAM method,
Mean Square Error of the results and the computation time obtained by T-DREAM method. The
results obtained by Huygens method with 50mm tiles ar e used asreference signal for each case. The
reflector istilted 6° with respect to the surface of the transducer.

T-DREAM

radii of transducers optimal size MSE (%) | Time
if r <4mm, 354mm; 0.1981 | 9.2%

casell| 3mm 3mm else 707mm
if r <3mm, 354mm; 0.0798 | 7.7%

casel12| 3mm 6.3mm else 707mm
if r <3mm, 354mm; 0.0923 | 8.8%

cae 13| 3mm 9mm else 707nm
if r <3mm, 354mm; 0.0702 | 9.5%

casel4| 3mm 12.7mm else 707mm
if r <2mm, 354mm; 0.0928 | 5.2%

2mmeE r < 6.3mm, 707mm

casel1l5| 6.3mm | 6.3mm else 1414mm
if r <6.3mm, 707mm; 0.1238 | 4.4%

case 16| 6.3mm 9mm else 1414mm
if r <6.3mm, 707mm; 0.1467 | 4.7%

casel7 | 6.3mm | 12.7mm else 1414mm
if r <9mm, 707mm; 0.1467 | 4.5%

case 18| 9mm 9mm else 1414mm
case19| 9mm 12.7mm 1414mm 0.1011 | 1.8%
case20 | 12.7mm | 12.7mm 1414mm 0.1333 | 1.8%
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Figure 5.14 Spectra of the received signal from a 15mm*15mm sguare reflector to show the
different results obtained by Huygens method, T-DREAM. Thereflector istilted 6° with respect to
the surface of the transducer. Part (a), (b), (c) and (d) correspond to the received signal for case 11,

12, 19 and 20, respectively.
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5.8 The Results Obtained for Curved L arge Reflector

In this section, the DREAM method is used to calculate the received signa due
to a large curved reflector for different smulation scenarios. The curved reflector is a
10° arc of a cylinder with radius = 86mm and length = 15mm, with the arc centered at

(rp, 2 = (0, 50) mm. The x-y cross-sectional area of the reflector is 15mn 15mm. Figure

5.15 illustrates the cross-sectional views of the curved reflector.
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cross-sectional view of the curved reflector
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Figure5.15 Cross-sectional views of the curved reflector.

For this case, it is hard to tessellate the reflector using equilateral right triangles.

We tessellate it using right triangles with side length of 1000mm, 750mm and 1250mm,

respectively. Table 5.10 summarizes the different parameters for the simulation

scenarios and presents the optimal tile size used as well as the MSE of the received

signal obtained for T-DREAM. The results obtained by Huygens method with

50mm* 37.5nm micro-tile size are used as reference signal.

Table 5.10 Summary of the parameters used for different simulation scenarios to calculate the
received signal from the curved reflector: The tile size used by T-DREAM method, Mean Square
Error of the results and the computationtime obtained by T-DREAM method. The results obtained
by Huygens method with 50mm tiles are used asreference signal for each case. The curved reflector
isa 10° arc of a cylinder with radius = 86mm and length = 15mm.

T-DREAM

radii of transducers optimal size M SE (%) Time
case 21 3mm 3mm 1000mm* 750nmm /2 0.034 1.5%
case 22 3mm 6.3mm 1000mm* 750nmm /2 0.064 1.7%
case 23 3mm 9mm 1000mm* 750nmm /2 0.1439 1.8%
case 24 3mm 12.7mm 1000mm* 750nmm /2 0.1928 2%
case 25 6.3mm 6.3mm 1000mm* 750nmm /2 0.0886 1.6%
case 26 6.3mm 9mm 1000mm* 750nmm /2 0.0511 1.6%
case 27 6.3mm 12.7mm 1000mm* 750nmm /2 0.0744 1.8%
case 28 9mm 9mm 1000mm* 750nmm /2 0.0932 1.8%
case 29 9mm 12.7mm 1000mm* 750nmm /2 0.0914 1.8%
case 30 12.7mm 12.7mm 1000nm* 750mm /2 0.0916 1.9%
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Figure 5.16 illustrates the spectra of the received signal for cases 21, 22, 29 and
30in Table 5.10. Please refer to Appendix B.4 for the spectra of the received signal and
Appendix B.8 for the time-domain received signals for al the cases. It can be seen from
the figures in Figure 5.16 and the numerical values in Table 5.10 that the results
obtained by T-DREAM methods with tile size of 1000m™ 750mMV2 match those

obtained by Huygens method very well.
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Figure 5.16 Spectra of the received signal from a curved reflector to show the different results
obtained by Huygens method, T-DREAM. Part (a), (b), (c) and (d) correspond to the received
signal for case 21, 22, 29 and 30, respectively.
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Recall the results presented in Table 5.9 in section 5.7.2 for a flat reflector tilted
6° with respect to the transducer surface. When the radius of the smaller transducer is
3mm, a small tile area of 354mm* 354nmV2 must be used by T-DREAM in the region
near the axis to produce good result. In this case, T-DREAM using large tile area of
1000mm* 750mm/2 produces good results even when the radius of the smaller transducer
is 3mm. To approximate a 10° arc, the largest tilt angle of the flat triangular tiles is 5° at
the edge of the reflector. For those tiles near the axis, the tilt angle is much smaller and
large tile size may be used by T-DREAM, even when the radius of the smaller
transducer is small. For the region far from the transducer axis with large tilt angle, as
illustrated by the relationship between the normalized DREAM Error and the radial
position in section 5.4, the normalized DREAM Error is very small, therefore, large tile
size may aso be used in this region to produce good results. Therefore, such large tile
size as 1000mm* 750mm/2 may be used to generate good results for this curved reflector
when the radius of the smaller transducer is 3mm. When the radius of the smaller
transducer is large, as we can seein Table 5.9 in section 5.7.2, the T-DREAM is able to
produce good results with large tile size when the entire reflector is tilted 6° with
respect to the transducer surface. Therefore, it is not strange that T-DREAM s able to
produce good results with large tile size for the curved reflector, for which the largest

tilt angle of the reflector surfaceisonly 5°.
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Chapter 6

Optimal Design of Acoustic Fields

and Recelver Characteristics

As discussed in section 2.6, the modeling concept of ultrasound pulse-echo
system can be applied to an annular array transducer. The received signal from any
array element due to transmission with any array element can be derived, based on the
superposition of the received signal from planar circular transducers. With the annular
array transducer, a large number of different acoustic fields can be produced, by varying
the relative excitation delay and the amplitude scale factor for the individual
transmitting elements. Similarly, a large number of recelver characteristics can be
generated by varying the relative delay and gain factor for the individua receiving
element. By customizing the acoustic field and receiver characteristics of an ultrasound
pulse-echo system with annular array, the system can be optimized in the terms of
identifying a given object or interface among alimited set of objects or interfaces.

To redlize the optimal identification, a sequence of several numerical methods
are required: 1) An effective means to determine the received signal from a given array
element when transmitting with any given array element, based on the shape, location

and orientation of the reflector; 2) a method for determining optimal acoustic field and
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receiver characteristics for a specific application, by varying the relative delays and/or
amplitude scale factors to the individua transmitting and receiving elements; 3) neural
networks or self-organizing maps to achieve the most accurate classification of the
actual reflector.

In previous chapters, we discussed the modeling of ultrasound pulse-echo
system, as well as the implementation of the numerical modeling system, especially for
a system with planar circular transmitter and receiver. Based on those discussions, the
received signal from an array element or from an entire array can readily be derived. In
this chapter, the optimal design of acoustic field and receiver characteristic will be
explored which is carried out by varying the relative excitation delay of the individual
transmitting and receiving elements. The last step in the sequence, “neural networks or
self-organizing maps’, will not be covered in the thesis.

In chapter 5, the DREAM method using optimal tile size was used to calculate
the received signal from different reflectors for different sets of planar circular
transducer combinations. All the results obtained by DREAM method were compared to
those obtained by Huygens method. The results obtained by both methods match very
well in both frequency-domain (0 to 15MHz) and in time-domain, while DREAM
method is much more computationally efficient. It was also shown in chapter 5 that T-
DREAM produces better results than the R-DREAM does when using the same tile
area. In practical applications, triangular tiles can approximate reflector surface better
than rectangular tiles. Therefore, in this chapter, only T-DREAM with optimal tile size

will be used to determine the received signal in an annular array system.
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In this chapter, both a 3-ring annual array system and a 6-ring annua array
system are used. The radii of the rings are chosen so that the area of each ring is about
the same. The radius of the whole annular array is 9mm for the 3-ring array and 12.7mm
for the 6-ring array. Consequently, for the 3-ring array, the outer radii of each ring are
5.2mm, 7.3mm and 9mm, respectively; for the 6-ring array, the outer radii of each ring
are 5.2mm, 7.3mm, 9mm, 10.4mm, 11.6mm and 12.7mm, respectively.

In section 6.1, a brief introduction is given to the concept of the optimization
which will be used to find the set of delay values for an annular array system to
optimally differentiate between two specific interfaces. Two methods are introduced:
the Global Search Method and the Waveform Alignment Method. In section 6.2, both
methods are applied to find the optimal set of delay values or the optimal delay matrix
to best differentiate between a'tilted flat surface and a convex curved surface.

The optimal delay matrix is the delay matrix which will maximize the energy of
the difference signal between the received signals from two specified reflectors. As will
be discussed later, the delay values contained in the optimal delay matrix need to be
decomposed into separate transmit and receive delays; thus, the optimal delay matrix is
an intermediate result from which the optimal set of delay values may be obtained.
Because the Global Search Method is computationally infeasible when the number of
elements in an array is large, it is only applied for a 3-ring annular array system. The
Waveform Alignment Method is applied for given sets of two reflectors, using both 3-
ring and 6-ring annular array systems. The actual output signals are presented as well.
Specifically, in section 6.3, the Waveform Alignment Method is applied to obtain the

optimal delay matrix which will best differentiate between a tilted flat surface and a
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concave curved surface, using both 3-ring and 6-ring annular array systems. Section 6.4
is similar to section 6.3, except that the two reflector surfaces are a convex curved

surface and a concave curved surface.

6.1 The Concept of Optimization

In section 2.6, the summed received signal (output voltage) from an annular
array transducer due to an unspecified reflector is derived in equation (2.36), which is

repeated below for convenience:

N N
vear=a a AAVETAd(t- ¢+ ) (6.1)

i=1 j=1

REFL

In equation (6.1), v (t) refers to the received signal from a specific reflector,

produced with the i ring as transmitter and the j ring as receiver. Due to reciprocity,

REFL [y — . REFL
J (t)_vj,i

v, (t); A is an amplitude scale factor (excitation signal amplitude)
assigned to the i element in the array in transmitting mode; A" is an amplitude scale
factor (gain value) assigned to the j™ element in the array in receiving mode; t; is the
delay assigned to the i element in the array in transmitting mode; t i’ Is the delay
assigned to thejth element in the array in receiving mode and A indicates convolution.
As a first step to solve the optimization problem more generally, our objective in this
thesis is to differentiate between only two specified interfaces at atime. In addition, we
only consider the optimization of the delay assigned to the elements in the array and

hence all A and A values will be set equal to unity. Therefore, equation (6.1) is

simplified to
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N
VL) = A & VM AdE- @ 4 ) 62)

=1 j=1

Now, consider an N element annular array transducer and two reflectors with
specified shape, location and orientation, namely, reflector A and reflector B. As
discussed in section 2.6, an N N signal matrix of the form shown in equation (2.32) can
be generated for the received signals from each reflector, namely VA(t) and VE(t).
Therefore, an N' N difference signal matrix VAB(t) = VA(t) - VE(t) can readily be
generated for the difference signal between the received signals from reflector A and
reflector B. Figure 6.1 illustrates the calculation of the difference signal matrix for 3-
ring annular array transducer. Equation (6.3) illustrates the general form of the

difference signal matrix VA B(t):

g/ff(t) VA (O IR AR (3 1V
u

vA'B(t)=g/ﬁB(t) CVERD va(t)g (6.3)
é . . . U
=V (9 I Vol ol (9 IR Ver v (31

In equation (6.3), each element of the matrix, v*°®(t), for i, jT [L N], refers to the
difference signal between the received signals from reflector A and reflector B,
produced with the i ring as transmitter and the | ring as receiver, and

VB = v (1) - v () (6.4)
Obviously, VAB(t) is symmetric due to reciprocity, as long as no time shifts have been

introduced.
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Figure 6.1 Calculation of the Difference Signal Matrix VA&(t) for a 3-ring annular array
transducer .

When separate transmit and receive delays are assigned to the individual

components in the difference signal matrix, the summed output voltage of the difference

signal from the two reflectors, v/ > (1), is:
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total (t) th)‘tal (t) - Vt%tal (t)

=_é’1N a VAt ¢+ ) gévﬁ.am(t- t +i))
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=aa (- viO)AdE- ¢ +t5)
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i=1
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|
i=1

I
Qo=

.ﬂ

In equation (6.5), v/, (t) and v> () refer to the summed output voltage from
reflector A and reflector B, respectively, produced by the entire annular array

transducer. v

e (1) @nd v, (t) are calculated using equation (6.2); v (t) and v/ J(t)

total

refer to the received signal from reflector A and reflector B, respectively, produced with

the i ring as transmitter and the j" ring as receiver; v/ ®(t) is as defined in equation

(6.4). Clearly, v/ °(t) can take on many forms, depending on the chosen set of t;, t; i,
jT [1, N]. We define the difference energy between v., (t) and V2, (t) as EA® which
is formulated as
& 8 Ny 2
S8 =0, Vel 0=, (B & VA EIt- ¢+ )]t (6.6)
i=1 j=1

If we can find a set of time delays, that is, a set of t;, t,-', i,jT [1, N] which will maximize

then v2

total

the difference energy E2 (t) and v, (t) will be considered optimally

total ! total

separated in terms of energy of the difference signal. Two different ways are
implemented to find the optimal delay set to maximize the difference energy defined in

eguation (6.6): the Global Search Method and the Waveform Alignment Method.
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6.1.1 TheGlobal Search Method

The most straightforward method to find the optima delay set is to search
through all possible delay combinations for the elements of the annular array transducer
in either transmitting or receiving mode. That is, apply al the possible combination of t;
and t ,-', for i, jT [1, N], in equation (6.6) to calculate the corresponding difference
energy. The set of t; and t ,-', which produces the largest difference energy, is then the
optimal delay set.

Because the delays are relative delays and one delay can be set arbitrarily, there
are N-1 transmit delays to be chosen independently for the N rings in transmitting
mode. Similarly, there are N-1 independent receive delays. If there are my possible
transmit delay values and mp receive delay values, m™? " m™? =(m =~ m,)™ P
calculations are needed to find the optimal delay set for a N-ring array with Global

Search Method. As an example, a 3-ring annular array will be considered. We
arbitrarily set t, =t ,'=0 and assume that the transmitting delay values t; can be set to
be one of —1ns, Onsand Insfori = 2, 3; and the receiving delay valuest;’ can be set to
be one of —2is, Ons and 2rs for j = 2, 3. Therefore, there are 3% 339 = 81 possible
combinations of (t;, t;'), fori, j T [1, 3], or, 81 sets of delay values {t,, t,, ts, t;" .t
ts'}. They are {0, -1, -1, 0, -2, -2} ns, {0, -1, -1, 0, -2, O} ns, {0, -1, -1, 0, -2, 2} ns,
{0, -1, -1, 0, 0, -2} ns, and so on. All the 81 sets of delay values are plugged into

equation (6.6) to calculate the difference energy; the set which produce the largest

energy in equation (6.6) is the optimal delay set.
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Two major disadvantages of this method are: 1) The search can only be carried
out over a limited delay range with discrete delay steps, which makes it probable that
the optimal delay sets found is sub-optimal. 2) The computation time is so long that the
Global Search Method is computationa infeasible when the number of the elementsin
the array is large. For example, using just 41 discrete delay steps for both transmitting
and receiving delays, which corresponds to 0.1rs step for a delay range of —21s to 2118,
a 6-ring array transducer would require 41°®Y calculations, i.e., 1.34" 10" calculations.
For afast calculation speed of one calculation per microsecond, about 426 years would
be needed. An example with specified simulation scenario will be presented in section
6.2 to find the optimal delay set for a 3-ring array system with the Global Search

Method.

6.1.2 TheWaveform Alignment M ethod
For the convenience of following discussion, we define an N° N delay matrix T

of the form shown in equation (6.7):

éty, t, a0 &+t t,+t t,+tyu

é a é a

é a é ‘ u
T=6t, t | tyu=¢€t +t, t,+t t,+t U (6.7

é ua € a

gm tN,j tN,NH 8N+t1 tN+tj tN+tNH

In equation (6.7), t; and t;’, for i, j T [1, N], have the same definition as in equation
(6.1). Therefore, each element of the delay matrix T, tij, is the combination of
transmitting and receiving delays, which is exactly the delay values that should be

assigned to the element of the difference signal matrix V”™®(t) to obtain the summed
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output voltage of the difference signal, v..>(t). By doing this, equation (6.6) is

simplified as:

e Vet dt=q, ‘(& év. B[t (¢, +t §)])2dt
i=1 j=1

(6.8)

Z

N
O O

c‘) @av;°(t-t,)d

i=1 j=1

A-B
total

and the delay matrix which maximize the E_ ’° isthe optimal delay matrix.

The concept behind the Waveform Alignment Method is to represent each
dlement, or signal, v °(t), in the difference Signal Matrix V*"®(t) by atime shifted and

amplitude scaled version of a specified waveform, termed w(t), solely for the purpose of
establishing the optimal delay matrix. The waveform w(t) is chosen to be a good
approximation to the impulse response of the combined transmitting and receiving array
transducer; it should be remembered that in actual experiments, the measured received
signa is a convolution of this impulse response with the received signal as calculated
under the assumption of frequency-independent transducers. Furthermore, the center
frequency of the array transducer should be selected so that it will capture much of the
energy of the difference signal; in other words, the mean (magnitude) spectrum of the
difference signa should have a significant overlap with the (magnitude) spectrum of

w(t). The single waveform approximation isillustrated in the top part of Figure 6.2.

127



Difference signal matrix,
vA-B (t), for 3-ring

annular array transducer,
from Figure 6.1

Single waveform matrix,
providing best match

twil ’ ‘ twis ’ !
between difference signal
matrix, VAB (1), and W, o g
waveform  w(t)
"y
P
L

tW

W tW
) 11 12
Delay matrix, TWae generated
from positions (_)f w(t) insingle W, v,
waveform matrix
tW
31

) . B _ o
Optima delay matrix, ty, = toex — twll t,= tg —t 1 tg =t — s
TOPt | with time delay
valuesto be applied to th =t — Vo ty = L — Vs 3 = thex — tWog
signalsinmatrix VAt

g ) B () 31=t —tW t =t _tW t33=tmax_ tW33
and matrix V= (t) max 31 32 "max 32

Figure 6.2 Calculation of the optimal delay matrix T°" using the Waveform Alignment M ethod.
Notethat in the lower part, the superscript “Opt” for t;; has been left out for clarity.

As described earlier, we need to represent v ®(t) by atime shifted and scaled

version of w(t), in order to determine the optimal delay matrix. Thus, v/} °(t) and w(t)
are approximately matched as follows:

VR » AW Ad(t-15) = A jw(t-tY) (6.9)
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In equation (6.9), Aj; is the amplitude scale factor and t;7 is the time shift relative to
some time reference. To determine t;] and A;j, the cross-correlation function of w(t)

and vi’fjf B(t) is calculated, and the location and amplitude of the cross-correlation peak
is determined. This operation is performed separately on all the elements in the
difference signal matrix VVA"®(t). The operation of representing v ®(t) by A w(t-t")
may be viewed as a wavelet transform of v/, °(t) where only the first term is retained.

Further description of the actual implementation of the Waveform Alignment Method is
given in section 6.2.2.

The value of the scale factor, A;j, is not utilized in research presented here, but

the time delay, t,", is used to define a waveform alignment delay matrix, T"*" as
follows:
ety t tyy U
€ ua
e -G
T =et” t" t'y U (6.10)
€ ua
gl\ilvyl o tl\(lv,j tKJV,N H

The top part of Figure 6.2 illustrates the “best match” locations of w(t) for the
signals in the difference signal matrix V*®(t), as determined by the cross-correlation
function. The amplitude scale factor has been left out for clarity. The delay matrix,
T"*®is then obtained from the “best match” locations, as also shown in Figure 6.2.

The difference between the summed output voltage from reflector A and the

summed output voltage from reflector B is denoted v/ °

total

(t) and was defined in equation
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(6.5) where the delays t;, and t,-' were left unspecified. In order to align the signal

components in the difference signal matrix V*®(t), and thereby maximize the energy of

A-B
Vtotal

(t), the signal components need to be individually time shifted.
Only the Global Search Method, performed with very small time steps, can

identify the set of time shifts that maximizes the energy of v °

total

(t). However, as has

been shown, the computation time required to execute the Global Search Method makes
this method impractical except for array transducers with only a few elements. The
Waveform Alignment Method is based on the idea that the set of time shifts which
aligns the waveforms in single waveform matrix also will align the signals in the

difference signal matrix V*"(t) in such away that, at least to a first approximation, the

energy of v2°

total

(t) is maximized.

Equation (6.5) for calculating v/ °

total

(t) was written for arbitrary transmit and

receive delays, t; and t;, respectively. In order to maximize the energy of v E(t), an

total

additional delay, referred to as the optimal combined transmit and receive delay,

t°" =t, +t, is determined so that the waveforms, w(t- t" ), in the single waveform

matrix will be aligned. Applying the approximation for vif*J?B(t) from equation (6.9) to

OPT !

equation (6.5) and substituting 77" fort; +t; gives.

V2> A & A WOAdE-t)Ad(E- 1)
o (6.11)

N N
o O

=a.a A,WHAE- ¢}+HT)

i=1 j=1
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If we want to maximize the energy of v/ °(t), the tifj”+tf?jPT should be the same for all |,

total

iT [1, N]. With the practical implementation of the Waveform Alignment Method in
mind, only positive time shifts will be considered. For this purpose, we identify the

maximum delay value in the delay matrix T"* as t

max

and set it to be t, +t™" . For
the case illustrated in Figure 6.2, t__ = t,5. Therefore, the optimal combined delay

values, 17

, hecessary for the waveforms in single waveform matrix to be aligned are
given as

OPT _ w

G =l b (6.12)

and the optimal delay matrix T is readily obtained as shown in the lower part of

A-B

Figure 6.2. The summed difference signal v, (t), optimized to have the largest energy,

can be calculated using equation (6.11). The corresponding difference energy can be
calculated from equation (6.8).

To obtain the actual received signals from reflector A and reflector B, under the
condition of optimized energy difference, the delay values in the optimal delay matrix
TOPT are applied to the corresponding signals in the signal matrices, V*(t) and V&(t),
respectively. This is illustrated in the top part of Figure 6.3. Next, each signal in the
signal matrices VA(t) and VE(t) are bandpass filtered with a filter with the impulse
response wW(t). This operation emulates the filtering effect of the transmitting and
receiving transducers, as discussed earlier in this section. Finally, the actual received

signals from reflector A and reflector B are obtained by simply summing all the signals

in the filtered signal matrices VA(t) and V5(t), respectively, as shown in Figure 6.3.
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Figure 6.3 The calculation of the actual received signals from individual reflector A and reflector B,
under the condition of optimized energy difference, using the Waveform Alignment Method:
Alignment of array signal components; bandpass filtering and summation of signal components.
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6.1.3 Comparison of Two Optimization Methods

In the previous sections, two optimization methods are introduced, i.e., the
Global Search Method and the Waveform Alignment Method. It is important to note
that the results produced by the two methods differ in some important ways.

The result obtained by the Global Search Method is the optimal set of separate
transmit and receive delay values. The delay values can be used directly to implement
an actual experiment. In general, the optimal transmit delay values are different from
the optimal receive delay values, which means that the array transducer will have
different transmit and receive characteristics and the corresponding optimal delay
matrix iS not symmetric.

In contrast, the result produced by the Waveform Alignment Method is the
optimal delay matrix, whose terms are a combination of the transmit and receive delays.
We need to decompose the delay matrix into separate transmitting and receiving delay
matrices before the optimal system can be implemented for an actual experiment. More
discussion about the decomposition of the delay matrix will be presented in subsection
6.1.4 “Separating delay matrix into transmit and receive delay sets’. Further, the
optimal delay matrix obtained by the Waveform Alignment Method is symmetric.
Based on the modeling results given later in this chapter, this aspect does not seem to

have a seriously negative effect on the performance.

6.1.4 Separating Delay Matrix into Transmit and Receive Delay Sets
As mentioned in subsection 6.1.3, we need to decompose the delay matrix into

separate transmit and receive delay matrices before the optimal system can be

133



implemented for an actual experiment, based on the results obtained by the Waveform

Alignment Method. It can be done using the relationship betweent ;, t ;" and t; ;, for i,

i
T [1, N], as presented in equation (6.7). This task is far from trivial. We will discuss it
in this section without providing an actual solutions. For this reason, in section 6.2, 6.3
and 6.4, the delay values will be presented in the form of optimal delay matrix T9F"
instead of separated transmit and receive delay sets, and the received signals will be
calculated based on T,

We know that the difference signal matrix VAB(t) is symmetric, i.e,
v B(t) =v{iB(t), as long as no time shifts have been introduced. Except for this

symmetry relationship, no other relationship between the terms in the matrix has been
determined and hence, the number of independent termsis (N+1)N/2 for aN"~ N matrix.
Therefore, for a N-ring array system, there are (N+1)N/2 independent terms in the

OPT
T

optimal delay matrix obtained by the Waveform Alignment Method. However, as
we discussed in section 6.1.1, in an actual physical system, there are N-1 independent
transmitting delays and N-1 independent receiving delays. Therefore, there are only
2(N-1) independent terms in the delay matrix for a real system, which means that the
optimal delay matrix obtained by Waveform Alignment Method is over-determined.
The easiest way to solve this problem is to formulate 2(N-1) equations using
only 2(N-1) independent terms in the optima delay matrix and solve for the

transmitting and receiving delays. However, this means that the remaining [(N+1)N/2] —

[2(N-1)] delay values are not considered for the optimization.
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For the convenience of the following discussion, equation (6.7) is rewritten as

follows in equation (6.13),

t; ti,j+1

i,] ti+t' ti+tj+l
t t

+t j+l

. 6.13
t i+1 +t j t i+1 ( )

i+1,] i+1,j+1

_|
I
@D: D> D M D> (D> D D> D
Sooncoo oo C
I
@D: D> D M D> (D> D> D> D
[ e e e e ey e o

It is easily seen that, if we want to separate t; ; into t; +t J any element in the delay

matrix must satisfy

ti+l,j =t i+1 +t j :ti +t j +t i+1 +t ‘j+1 - (t| +t ‘j+1)

(6.14)

=t g b
An appropriate way is to modify the optimal delay matrix T°"" obtained by Waveform
Alignment Method, so that the rule in equation (6.14) is fulfilled. Obvioudly, there are
an infinite number of modified delay matrices T™ which can satisfy equation (6.14).
However, the best T™ is a modified delay matrix which minimizes the difference
between T and T™. In the other words, the strategy is to minimize the error defined in

equation (6.15).

" - 1) (6.15)

i

Qo=
Qo=

i j=1

.ﬂ
1

In equation (6.15), the term t7} is the element of the modified delay matrix T™ Itisan

undesirable aspect of the Waveform Alignment Method that it produces a symmetrical

delay matrix while not fulfilling the rule given in equation (6.14) which is required.
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However, the modified delay matrix, T™, will in general only differ dightly from a

symmetrical delay matrix.

6.2 Optimal Delay Matrix for Convex Reflector and Tilted Flat

Reflector

In section 6.1, two different ways are introduced to find the optimal delay matrix
which gives a maximum differentiation between two reflectors with respect to the
energy of the received signal. In this section, both methods are applied to find the
optimal delay matrix to differentiate between a convex reflector and a tilted flat
reflector. Figure 6.4 illustrates the simulation scenario. The transducer is the 3-ring
array or the 6-ring array as described at the beginning of this chapter. The convex
reflector is a 10° arc of a cylinder with radius = 86mm and length = 15mm. The x-y
cross-sectional area of the convex reflector is 15mm” 15mm. The other one is a
15mm’” 15mm square flat reflector which is tilted 0.6° with respect to the transducer
surface. The two reflectors are both centered on the acoustic axis of the transducer and
the axial distance is 50mm.

50mm

< > < Somm >
tilted angle=0.6°
! z z

v »
w ®
Convex w® Flat

Annular array reflector Annular array reflector
transducer transducer
(a) (b)

Figure 6.4 Cross-sectional view of the measurement scenarios with convex and tilted flat reflectors.
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As we discussed in sections 2.6 and 6.1, using T-DREAM method, two 3" 3
signal matrices V() and V"?(t) can be generated for the received signals from the
convex reflector and the tilted flat reflector for al the combinations of transmitting and
receiving rings in a 3-ring annular array transducer. Figure 6.5 and Figure 6.6 illustrate
the recelved signal matrices where Figure 6.5 is for the convex reflector and Figure 6.6

isfor the tilted flat reflector.
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Figure 6.5 Thereceived signal matrix V"*(t) for convex reflector.
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Figure 6.6 Thereceived signal matrix V"(t) for tilted flat reflector.

By subtracting the received signal matrix in Figure 6.6 from that in Figure 6.5,
we can obtain the difference signal matrix between the received signals from the convex
reflector and the tilted flat reflector for the 3-ring annular array system. Figure 6.7

illustrates the difference signal matrix.
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Figure 6.7 Difference signal matrix between the received signal from convex reflector and that from

thetilted flat reflector.

Now the difference signal matrix is obtained as shown in Figure 6.7; both the
Global Search Method and the Waveform Alignment Method use the difference signal
matrix as input functions. In section 6.2.1, the optimal set of delay values is calculated
by the Global Search Method, based on the 3-ring annular array described at the
beginning of this chapter. In section 6.2.2, the optimal delay matrix is calculated by the
Waveform Alignment Method, based on the same 3-ring annular array as in section
6.2.1. In section 6.2.3, the optimal delay matrix is calculated by the Waveform

Alignment Method, based on the 6-ring annular array described at the beginning of this

chapter.
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6.2.1 Results Obtained by the Global Search Method, based on 3-Ring Array

Now, the Global Search Method is applied to find the optimal set of delay
values. We arbitrarily chooset; = 0 and t, = 0. We aso limit the possible transmitting
and receiving delays t;, t,-', i, jT [2, 3] to be the values in the range of —2ns to 2rrs with
0.1msincremental step. Therefore, there are 41* possible combinations of (t;, t i), fori, ]
T [1, 3], or 2,825,761 sets of possible delay values{t,, t,, ts,t, ,t,, t3'}. The optimal
delay set, which produces the largest difference energy in equation (6.6), is found to be:
{0,-0.1,-0.1, 0, 0, 0} ns; and the corresponding optimal delay matrix is:

60 0 04
Tom =g 01 - 01 - 0.1
g 01 -01 -0.1§

6.2.2 Results Obtained by the Waveform Alignment Method, based on 3-Ring

Array

As discussed in section 6.1.2, al the difference signals in Figure 6.7 can be
approximated by an amplitude scaled and time shifted version of a single waveform
w(t) as in equation (6.9). Recall that the measurements with transducer can be
considered as filtering operations, and the spectrum of w(t) should closely match the
combined transmit-receive frequency response of the actual ultrasound array transducer.
In this chapter, we assume that the annular array transducers acts like a bandpass filter
with 7.5MHz centra frequency and 7.5MHz bandwidth at the —3dB level. Figure 6.8
illustrates the time-domain and frequency-domain impulse response of the annular

arrays.
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Figure 6.8 The time-domain and frequency-domain response of the annular array transducers.

Amplitude of impulse response
o
[
Magnitude of impulse response in dB

The waveform w(t) shown in Figure 6.8 () is cross-correlated with each
difference signal shown in Figure 6.7 to obtain the time shift t", for w(t) which will best
approximate the difference signal. Then a scale factor is calculated to match the energy
of the difference signal and the time shifted w(t). Figure 6.9 illustrates the cross-
correlation functions between w(t) and the difference signal between the received signal

from convex reflector and that from the tilted flat reflector shown in Figure 6.7.
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Figure 6.9 Illustration of the cross-correlation functions between w(t) and the difference signal
shown in Figure 6.7 of the received signal from convex reflector and that from the tilted flat
reflector. The x-axis for all signalsisin msand they-axisfor all signalsisin m¥/s’.

Figure 6.10 illustrates the single waveform matrix obtained to approximate the
difference signal matrix shown in Figure 6.7. The amplitude and the start time of the
waveform w(t) are indicated in Figure 6.10; the start time of the waveforms are the
same as those shown in Figure 6.9. The amplitudes of the waveforms are the product of
scale factors shown in Figure 6.9 and the amplitude of the waveform shown in Figure

6.8 (a).

142



x10° ring 1 & ring 1 x10° ring 1 & ring 2 x10° ring 1 &ring 3

[ A=8.1e8¢ 1 A=3.6e8 2 0 A=1.9e8
6L 3 15-
— — 2 —
Py 4 En o o1-
< 2 L
E E E
s 2f gt s 05"
€ |Tau=66.4325 S |Tau=66.5325 < Tau=66.605
2 ol 2 ol g o
£ £ E
< < <
2 1 0.5
a4l 2 1-
66.4 66.6 66.8 67 67.2 66.4 66.6 66.8 67 67.2 66.4 66.6 67.2
x10° ring 2 & ring 1 x10° ring 2 & ring 2 x10° ring 2 & ring 3
5 3c
77777777777777777777777777777 A=3.6e8 [ A=4.7e8 e A=2.8e8
3l 4
3
—2 o &
)
2 2, 2
E L £ . %
@
$  |Tau=66.5325 g Tau=66.41 ]
3 ol %0 H
E £ E
< < <
1
al
2
2| -
66.4 66.6 66.8 67 67.2 66.4 66.6 66.8 67 67.2 67 67.2
x10° ring 3 & ring 1 x10° ring 3 & ring 2 x 10" ring 3 & ring 3
L A=1.9e8 3y T A=2.808 T S — A=1.8e8
2.5-
15-
2.
% 1- o 15- %
< &2 <
E 1- =
- 05- % -
E Tau=66.605 $ 0.5 -Tau=66.4225 3
= L 3 =
g o g o £
< < ! <
0.5-|
0.5 !
-
-1- 15-] i
66.4 66.6 67.2 66.4 66.6 66.8 67 67.2 67.2

Figure 6.10 The single waveform matrix used to approximate the difference signal matrix of the
received signal from convex reflector and that from thetilted flat reflector shown in Figure 6.7. The
x-axisfor all signalsisin ns.

In Figure 6.10, we observe that the waveform with the largest shift, i.e,

66.605ms, is found when the received signal is due to ring 1 and ring 3. As was

discussed in section 6.1.2, thisvalue is set to be t and using equation (6.12), we can

max ?

obtain the optimal delay matrix as:

€.1725 00725 0 1§
Toms = 0.0725 0195 0182518
g 0 0185 005§
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6.2.3 Results Obtained by the Waveform Alignment Method, based on 6-Ring
Array
In this section, the optimal delay matrix is calculated for the 6-ring array system.
The waveform w(t) is the same as that in section 6.2.2. Using similar steps to those in

section 6.2.2, we can obtain the optimal delay matrix as:

60855 07525 0.6825 05725 047 036750

.7525 08775 08675 07 06525 0385
or _60.6825 08675 07375 07375 044 067750
e T 5725 07 07375 0465 07225 0.68 HTB
€047 06525 044 07225 0815 007 U

33.3675 0385 0.6775 068  0.07 0

oOC

Now, the optimal delay matrix has been obtained by three ways: the Global
Search Method based on the 3-ring array; the Waveform Alignment Method based on
the 3-ring array; the Waveform Alignment Method based on the 6-ring array. Using

equation (6.8), with t, ; =t , the energy of the summed difference signal from the two

reflectors can readily be calculated. Table 6.1 gives the energy of the summed
difference signal as well as the energy of the summed received signal from individual
convex reflector and tilted flat reflector. All the signals are filtered using the band-pass
filter with the frequency response of the array transducer, shown in Figure 6.8 because

we assume that the annular array transducers act like a bandpass filter.
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Table 6.1 Energy of the summed difference signal, summed received signal from individual convex
and tilted flat reflector.

Convex Tilted flat Difference
reflector reflector signa

Global search optimal delay
matrix in 3-ring array system 1.1656e+011 1.6329e+011 3.5207e+011

Waveform alignment optimal
delay matrix in 3-ring array 2.4786e+011 8.3998e+010 4.5159e+011
system

Waveform alignment optimal
delay matrix in 6-ring array 4.7206e+011 2.5082e+011 1.0992e+012
system

From Table 6.1, we can find that the difference energy obtained with the optimal
delay matrix obtained by the Waveform Alignment Method is larger than that obtained
with Global Search Method, for the 3-ring array system. The possible reasons for this
result are that: 1) The global search can only be carried out in alimited delay range with
discrete delay steps which makes it most probably that the optimal delay sets found is
sub-optimal. The smaller the delay steps, the better the sub-optimal results should be. 2)
The waveform alignment cal culates the combined delay for the transmitter and receiver
ring pair directly, which in general cannot be directly decomposed into separate delays
for individual transmitter and receiver rings. If we have to modify the delay matrix to
decompose it into separate transmit and receive delays, the energy of the difference
signal obtained by the modified delay matrix must be become less.

We can also find from Table 6.1 that the difference energy obtained with the
optimal delay matrix obtained by Waveform Alignment Method for the 6-ring array

system is larger than that for the 3-ring array system. It also agrees with our expectation
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because the 6-ring array presents more flexibility in varying the relative delay for

individual array elements.
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Figure 6.11 The sum received signal from convex reflector, flat reflector and the difference signal
from those two reflectors. The first column is based on the optimal delay matrix obtained by the
Global Search Method and the 3-ring array; the second column is based on Waveform Alignment
Method and the 3-ring array and the third column is based on the Waveform Alignment Method
and the 6-ring array. The x-axisfor all signalsisin nms.

Figure 6.11 illustrates the time-domain summed signals after the bandpass
filtering. The three signals in first column are the summed received signal from convex
reflector, the summed received signal from the tilted flat reflector, and the difference

signal, respectively, based on the optimal delay matrix obtained by the Global Search
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Method and the 3-ring array. The signals in second column are those based on the
optimal delay matrix obtained by the Waveform Alignment Method and the 3-ring
array. The signalsin third column are those based on the optimal delay matrix obtained

by the Waveform Alignment Method and the 6-ring array.

6.3 Optimal Delay Matrix for Concave Reflector and Tilted Flat

Reflector

In this section, the Waveform Alignment Method is applied to find the optimal
delay matrix to differentiate between a concave reflector and atilted flat reflector. Both
the 3-ring array and the 6-ring array transducer are used. The concave reflector is a
square 10~ arc of a cylinder with radius = 86mm and side length = 15mm. The x-y cross-
sectional area of the reflector is 15mm” 15mm. The concave reflector is centered on the
acoustic axis of the transducer and the axial distance is 50mm. Figure 6.12 illustrates the
cross-sectional view of the concave reflector. The tilted flat reflector is same as

described in section 6.2.

50mm
4 | .
z
} |
AN
B N Concave
Annular array reflector
transducer

Figure 6.12 Cross-sectional view of the measur ement scenario with concave r eflector.
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Figure 6.13 illustrates the 3" 3 difference signal matrix V*5(t) generated for the

difference signal between the received signals from the concave reflector and the tilted

flat reflector for a 3-ring annular array system.
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Figure 6.13 Difference signal matrix between the received signal from concave reflector and that

from thetilted flat reflector.

Using similar steps and the same waveform w(t) used in sections 6.2.2 and

section 6.2.3, we can obtain the optimal delay matrix to optimally differentiate between

the concave reflector and the titled flat reflector as:

OPT
Tal ign_3 A

.

.0
.0
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0 00925 0.0575)
925 0.115 0.1053%
575 0.105 0.1275§



€.3025 1.3975 1.3625 132 1275 1205(
§.3975 14175 14075 122 13375 1.28253
or 613625 14075 143 12575 13525 131 4
WneT2132 122 12575 1365 12425 0 HTS
1275 1.3375 13525 12425 1.335 0.5875(0
§1205 12825 131 0 05875 1.3225)

Table 6.2 illustrates the energy of the summed difference signal, as well as the
energy of the summed received signal from the concave reflector and the tilted flat
reflector. Asin section 6.2, all the signals are filtered using the bandpass filter shown in

Figure 6.8 before the energy is calculated.

Table 6.2 Energy of the summed difference signal, summed received signal from individual concave
and tilted flat reflector.

Concave Tilted flat Difference
reflector reflector signa

Waveform alignment optimal
delay matrix in 3-ring array 9.2091e+010 2.5164e+011 5.0486e+011
system

Waveform alignment optimal
delay matrix in 6-ring array 1.2581e+011 7.0590e+011 1.1585e+012
system

Figure 6.14 illustrates the time-domain summed signals after band-pass filtering.
The summed signals are received from the concave reflector, the tilted flat reflector and
the difference signal between these two reflectors. The signals in the first column are
those based on the optimal delay matrix obtained by the Waveform Alignment Method
and the 3-ring array. The signals in the second column are those based on the optimal

delay matrix obtained by the Waveform Alignment Method and the 6-ring array.
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Figure 6.14 The summed received signal from the concave reflector, flat reflector and the
difference signal from those two reflectors. The first column is obtained with the optimal delay
matrix using the Waveform Alignment Method and the 3-ring array and the second column is
obtained with the 6-ring array. The x-axisfor all signalsisin ns.

150



6.4 Optimal Delay Matrix for Convex Reflector and Concave Reflector

Figure 6.15 illustrates the 3" 3 difference signal matrix V*8(t) which contains
the difference signals between the received signals from the convex reflector and the
concave reflector for the 3-ring annular array system. The convex reflector and the

concave reflector are the same as were described previoudly.
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Figure 6.15 Difference signal matrix of the received signal from convex reflector and that from
concave reflector.
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Using similar steps and the same waveform used in sections 6.2 and section 6.3,
we can obtain the optimal delay matrix to optimally differentiate between the convex

and concave reflector as:
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Table 6.3 illustrates the energy of the summed difference signal as well as the

energy of the summed received signal from the individual convex and concave

reflectors. Asin sections 6.2 and 6.3, al the signals are filtered using the bandpass filter

shown in Figure 6.8 before the energy is calculated.

Table 6.3 Energy of the summed difference signal, summed received signal from individual convex

and concave r eflector .

Convex Concave Difference
reflector reflector signa
Waveform alignment optimal delay
matrix in 3-ring array system 2.3688e+011 | 1.8166e+011 | 4.2275e+011
Waveform alignment optimal delay
matrix in 6-ring array system 6.2343e+011 | 1.1232e+011 | 8.0054e+011

Figure 6.16 illustrates the time-domain summed signals after the bandpass filtering. The

summed signals are received from convex reflector, concave reflector and the difference

signa between these two reflectors. The signals in the first column are those based on

the optimal delay matrix obtained by Waveform Alignment Method applied to the 3-

ring array. The signals in the second column are those based on the optima delay

matrix obtained by Waveform Alignment Method applied to the 6-ring array.
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Figure 6.16 The summed received signal from the convex reflector, concave reflector and the
difference signal from those two reflectors. The first column is obtained with the optimal delay
matrix using the Waveform Alignment Method and the 3-ring array and the second column is
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Chapter 7
Conclusons and FutureWork

7.1 Conclusions

This thesis describes the implementation of a fast numerical modeling method,
the Diffraction Response from Extended Area Method (DREAM), for calculation of the
received signal from a transducer in a pulse-echo system. The modeling concept has
been extended to calculate the received signal from individual elements in an annual
array transducer, in which case the recelved signa is based on the superposition of the
received signals from planar circular transducers. Then, based on the modeling of
annular array system, we investigated the optima design of ultrasound pulse-echo
system for tasks such as identifying objects of specified shapes, determining surface
topology or alignment of surfaces.

The DREAM method operates by dividing the surface of the reflector into a
relatively small number (say, a few hundred) of rectangular or triangular “tiles’ and
performing the spatial integration of the diffraction response over each tile by an
equivalent low pass filtering. The DREAM method has been implemented based on
both rectangular tiles (R-DREAM) and triangular tiles (T-DREAM). Improvements
have been made to the segmentation and the delay interpolation which are the two most

important aspects in the practical implementation of DREAM. The results obtained by
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both R-DREAM and T-DREAM are evaluated by comparing with the results obtained
by the simpler, but sower method based on Huygens' Principle. The results from the
two techniques match well. We have concluded that DREAM method is more
computationally efficient than Huygens method. We have aso found that T-DREAM
performs better than R-DREAM in terms of accuracy and computation time. T-DREAM
eliminates the small error introduced by the least squares approximation in the delay
linearization for the rectangular tiles. In addition, in practical applications, triangular
tiles can approximate reflector surface better than rectangular tiles do, and triangular
tiles are standard elements used for surface tessellation. As a result, we decided to use
T-DREAM as the modeling tool for our further research work.

The optimal design of the ultrasound pulse-echo system is based on annular
array transducer which gives us the flexibility to create a wide variety of insonifying
fields and receiver characteristics. As the first step to solve the optimization problem
more generally, our objective is to differentiate between only two specified interfaces.
We only consider the optimization of the delay values assigned to the elements in the
array while the excitation amplitude and the receiver gain are kept constant for al the
elementsin the array. The optimization is realized by finding the optimal set of transmit
and receive delay values, which will maximize the energy of difference signal between
the array output signals from the two reflectors. Two optimization methods have been
investigated for the optimal delay set: the Global Search Method and the Waveform
Alignment Method.

The Global Search Method is searching through all possible delay combinations

of the elements of the annular array transducer in either transmitting or receiving mode,
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then calculating the difference signal between the received output signals from the two
reflectors for each delay value combination. The set of delay values that produces the
largest energy in difference signal is considered the optimal delay set. The disadvantage
is that the search time increases even faster than exponentially with the number of array
elements, and becomes computationally overwhelming even for a modest number of
elements. In addition, the search can only be carried out in a limited delay range with
discrete delay steps, which makes it probably that only a sub-optimal delay set is found.

The Waveform Alignment Method is using a time shifted and amplitude scaled
version of a specified waveform to approximate the difference signa between two
specified reflectors for each transmitting and receiving ring pair. Thus, each difference
signal in the difference signal matrix can be represented by a delay value and amplitude
scale factor. In our current research work, only the delay values are then used to align
these waveforms to get the optimal delay matrix. The Waveform Alignment Method is
very efficient. However, as it is currently implemented, the results obtained by the
Waveform Alignment Method is the optimal delay matrix, whose items are combined
transmit and receive delays. The optimal delay matrix is symmetrical and, in generdl, it
cannot be decomposed into separate transmit and receive delays. This problem needs to
be solved before the optimal system can be implemented for an actual experiment. In
addition, as noted in the next section “future work”, much more research work needs to

be carried out with respect to the optimal design of ultrasound system.
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7.2 Future Work

As part of the work of this thesis, we implemented and investigated the efficient
modeling tool of ultrasound system: DREAM method. An important topic closely
related to DREAM method, but not covered in this thesis, is how to optimaly
approximate a specific reflector surface with flat rectangular or triangular tiles. For
future work, it is advantageous to merge the DREAM tools with optimal surface
tessellation tools, in order to apply DREAM method to more complicated reflector
surfaces.

Waveform Alignment Method is a promising method for the optimization of
ultrasound pulse-echo system with respect to its ability to identify a given object or
interface among a limited set of simple objects or interfaces. Future work on the
Waveform Alignment Method may include: The optimal differentiation between two
reflectors which includes: 1) developing the theory for separating the combined
transmit-receive delays in the optimal delay matrix which is obtained by the Waveform
Alignment Method into separate transmitting and receiving delays; 2) the optimization
of the amplitude gain values assigned for each array element in transmitting and
receiving modes; 3) exploring the effect of choosing different waveforms to represent
the received signal for each transmitting and receiving ring pair; 4) using different
criteria, for example, spectral features, for the optimization rather than maximizing the
energy of the difference signal. After we accomplish the optimal differentiation between
two reflectors, the next step is to exploring the optimal delay sets to identify a given

reflector among more than two reflectors.
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Another research topic closely related to the optimization of the ultrasound
system is the development of the neural network or Self-Organizing Maps to achieve
the most accurate classification of the actua reflectors. The inputs to the neural
network are the received signals in the ultrasound pulse-echo system from the entire
array transducer. The transmit and receive delays of each element in the array are
adjusted according to the optimal delay sets obtained by the Waveform Alignment
Method.

Experiments can be carried out as the verification of the numerical modeling
results and the optimization techniques. The Tomoscan Focus (TF) instrument,
manufactured by R/D Tech in Quebec City in Canada, can generate customized acoustic
fields and recelver characteristics under software control. Therefore, by connecting the
TF instrument and the computer to the array transducer in area ultrasound pulse-echo
system, the transmit and receive delays of each element in the array can be customized
according to the optimal delay sets obtained by the Waveform Alignment Method. The
received signals from the experiments can be used to verify the ssimulation results
obtained by the DREAM modeling method. In addition, the experimental results can be

used as the inputs to the neural network for the classification.

158



Refer ences

[1]

[2]

[3]

[4]

[5]

[6]

R.K. Johnson and A.J. Devaney, “Transducer effects in acoustic scattering
measurements’, Appl., Phys., Lett., vol. 41, No. 7, pp. 622 — 624, 1982.

R. Lerch, “Finite element analysis of piezoelectric transducers’, Proceedings of
1988 Ultrasonics Symposium, pp. 643 — 654, Chicago, 1988.

R. Lerch, H. Landes, and H.T. Kaarmann, “Finite element modeling of the pulse-
echo behavior of ultrasound transducers’, Proceedings of 1994 Ultrasonics
Symposium, pp. 1021 — 1025, Cammes, France, 1994.

D.P. Orofino and P.C. Pedersen, “Efficient angular spectrum decomposition of
acoustic sources — Part |I: Theory”, IEEE Transactions on Ultrasonic,
Ferroelectrics and Frequency Control, vol. 40, No. 3, pp. 238 — 249, May 1993.
P.C. Pedersen and D.P. Orofino, “Modeling of received ultrasound signals from
finite planar targets’, |IEEE Transactions on Ultrasonic, Ferroelectrics and
Frequency Control, vol. 43, No. 2, pp. 303 — 311, March 1996.

J.P. Weight and A.J. Hayman, “Observations of the propagation of very short
ultrasonic pulses and their reflection by small targets’, The Journal of the

Acoustical Society of America, vol. 63, No. 2, pp. 396 — 404, February 1978.

159



[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

S. Mclaren, JP. Weight, “Transmit-receive mode responses from finite-sized
targets in fluid media’, The Journal of the Acoustical Society of America, vol. 82,
No. 6, pp. 2102 — 2112, December 1987.

A. Lhemery, “Impulse-response method to predict echo-responses from targets of
complex geometry. Part I: Theory”, The Journal of the Acoustical Society of
America, vol. 90, No. 5, pp. 2799 — 2807, November 1991

SK. Jespersen, P.C. Pedersen, and JE. Wilhjelm, “The diffraction response
interpolation method”, IEEE Transactions on Ultrasonics, Ferroelectrics and
Freguency Control, vol. 45, No. 6, pp. 1461 — 1475, November 1998.

S.K. Jespersen, Tools for Improving the Diagnosis of Atherosclerotic Plague using
Ultrasound, PhD thesis, Technical University of Denmark, 1997.

J.A. Zagzebski, Essentials of Ultrasound Physics, Mosby-Y ear Book, 1996.

G.R. Harris, “Review of transient field theory for a baffled planar piston”, The
Journal of the Acoustical Society of America, vol. 70, No. 1, pp. 10 — 20, July
1981

G. Scarano, N. Denisenko, M.Matteucci, and M. Pappalardo, “A new approach to
the derivation of the impulse response of a rectangular piston”, The Journal of the
Acoustical Society of America, vol. 78, No. 3, pp. 1109 — 1113, September 1985

P. Wu and T. Stepinski, “Spatial impulse response method for predicting pulse-
echo fields from a linear array with cylindricaly concave surface”, |EEE
Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 46, No.

5, pp. 1283 — 1297, September 1999.

160



[15] D.P. Orofino and P.C. Pedersen, “Multirate digital signal processing algorithm to
calculate complex acoustic pressure field”, The Journal of the Acoustical Society
of America, vol. 92, No. 1, pp. 563 — 582, July 1992

[16] L.E. Kinder, A.R. Frey, A.B. Coppens, and JV. Sanders, Fundamentals of
Acoustics, Fourth Edition, John Wiley & Sons, Inc., 2000.

[17] V.M. Ristic, Principles of Acoustic Devices, John Wiley & Sons, Inc., 1983.

[18] P.R. Stepanishen, “Transient radiation from pistons in an infinite planar baffle”,
The Journal of the Acoustical Society of America, vol. 49, No. 5, pp. 1629 — 1638,
1971.

[19] P. Kielczynski and W. Paewski, “Acoustic field of gaussian and Bessel
transducers’, The Journal of the Acoustical Society of America, vol. 94, No. 3, pp.
1719 -1721, 1993.

[20] JL.S. Emeterio and L.G. Ullate, “Diffraction impulse response of rectangular
transducer”, The Journal of the Acoustical Society of America, vol. 92, No. 2, pp.
651 — 662, 1992.

[21] P. Faure, D. Cathignol, and J. Y. Chapelon, “On the pressure field of a transducer
in the form of a curved strip”, The Journal of the Acoustical Society of America,
vol. 95, No. 2, pp. 628 — 637, 1994.

[22] A. Penttinen and M. Luukkala, “The impulse response and pressure nearfield of a
curved ultrasonic radiator”, Phys. D: Appl. Phys., 9:1547-1557,1976.

[23] JA. Jensen, “Ultrasound fields from triangular apertures’, The Journal of the

Acoustical Society of America, vol. 100, No. 4, pp. 2049 — 2056, 1996.

161



[24] R.E. Crochiere and L.R. Rabiner, Multirate Digital Sgnal Processing, Prentice-
Hall, Inc., 1983.
[25] B.B. Baker and E.T. Copson, The Mathematical Theory of Huygens Principle,

Second Edition, Oxford at the Clarendon Press, 1969.

162



Appendix A

Appendix A.1

The relationship between the radial distance and the energy of the received signal from
a 0.5mm*0.5mm square flat reflectors for the simulation scenarios given in section 5.3
when the reflector is tilted 0.6° relative to the transducer surface. Refer to section 5.3

for more details.
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Appendix A.2

The relationship between the radia distance and the DREAM Error (=MSE) of the
received signal from small square flat reflectors for the simulation scenarios given in
section 5.2 when the reflector is tilted 0.6° relative to the transducer surface. Refer to
section 5.2 for more details.
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Appendix A.3

The relationship between the radial distance and the normalized DREAM Error (=M SE)
of the recelved signal from small square flat reflectors for the simulation scenarios
given in section 5.4 when the reflector is tilted 0.6° relative to the transducer surface.

Refer to section 5.4 for more details.
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Appendix A.4

The relationship between the radial distance and the energy of the received signal from
a 0.5mm*0.5mm square flat reflectors for the simulation scenarios given in section 5.3
when the reflector is tilted 6° relative to the transducer surface. Refer to section 5.3 for

more details.
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Energy of 0.5*0.5mmztile, a‘:6.3mm; ar:12.7mm Energy of 0.5*0.5mmztile, a‘:Qmm; ar:Bmm
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Appendix A.5

The relationship between the radia distance and the DREAM Error (=MSE) of the
received signal from small square flat reflectors for the simulation scenarios given in
section 5.2 when the reflector is tilted 6° relative to the transducer surface. Refer to
section 5.2 for more details.
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12

MSE of R-DREAM: a‘:12.7mm. ar:12.7mm
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The relationship between the radia distance and the normalized DREAM Error (=M SE)
of the received signal from small square flat reflectors for the simulation scenarios
given in section 5.4 when the reflector is tilted 6° relative to the transducer surface.
Refer to section 5.4 for more details.
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Appendix B

Appendix B.1

The spectra of the received signal from 1mm* 1mm square reflectors discussed in section

5.6. The parameters of the simulation scenarios are summarized in Table 5.5.

l*lmm2 flat reflector, center at (rp‘zp):(0.71,50.05)mm‘ tilted GD‘ a‘:6.3mm; ar:6.3mm

0
m/\

T

= huygen:50um
T-dream:354um
—— R-dream:250um

A\

[~ AT
g \\ e
£ \ =
: |
|
-60
0 5

Frequency [MHz]

10 15

l*lmm2 flat reflector, center at (rp‘zp):(3.53,50.26)mm‘ tilted GD‘ a‘:6.3mm; ar:6.3mm

0 T
@ huygen:50um
\ T-dream:707um
—— R-dream:500um
.10 \\\
E . f’—\
2
g
2 .30
&
@
k]
2
c
2 -40
=
-50
-60
0 5 10

Frequency [MHz]

178
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Appendix B.2

The spectra of the received signa from 15mm* 15mm square reflectors discussed in
section 5.7.1. The reflector istilted 0.6° relative to the surface of the transducer and the
parameters of the simulation scenarios are summarized in Table 5.7.
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Appendix B.3

The spectra of the received signal from 15mm* 15mm square reflectors discussed in
section 5.7.2. The reflector istilted 6° relative to the surface of the transducer and the
parameters of the simulation scenarios are summarized in Table 5.9. Refer to section

5.7.2 for more details.
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Appendix B.4

The spectra of the received signal from curved reflectors discussed in section 5.8. The
parameters of the simulation scenarios are summarized in Table 5.10.
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Appendix B.5

The time-domain received signal from 1mm* 1mm square reflectors discussed in section

5.6. The parameters of the simulation scenarios are summarized in Table 5.5.
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Appendix B.6

The time-domain received signa from 15mm*15mm square reflectors discussed in
section 5.7.1. The reflector istilted 0.6° relative to the surface of the transducer and the
parameters of the simulation scenarios are summarized in Table 5.7.
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Appendix B.7

The time-domain received signa from 15mm*15mm square reflectors discussed in

section 5.7.2. The reflector is tilted 6° relative to the surface of the transducer and the
parameters of the simulation scenarios are summarized in Table 5.9.
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The time-domain received signal from
parameters of the simulation scenarios are summarized in Table 5.10.
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10° curved reflector, a‘:3mm; ar:Qmm
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