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Table 1: Abbreviations
AI Artificial Intelligence
ANN Artificial Neural Network
API Application Programming Interface
BLE Bluetooth Low Energy
DHCP Dynamic Host Configuration Protocol
CS/MACA Carrier Sense Multiple Access Collision Avoidance
GRU Gated Recurrent Unit
HTTP Hypertext Transfer Protocol
ISN Initial Sequence Number
IML Interactive Machine Learning
IoT Internet of Things
IP Internet Protocol
IDS Intrusion Detection System
LAP Lower Address Portion
MAC Message Access Control
NAP Non-Significant Address Portion
NIST National Institute of Standards and Technology
OUI Organization Unique Identifier
RNN Recurrent Neural Network
TCP Transmission Control Protocol
UAP Upper Address Portion
UDP User Datagram Protocol
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Abstract

As technology advances, personal privacy is constantly being eroded for the sake

of convenience. This trend is evident in the consumer grade smart home and IoT

devices industry, which has enabled access to potentially compromising information

about users and their homes. Current security solutions ignore convenience by re-

quiring the purchase of additional hardware, implementing confusing, out of scope

updates for a non-technical user, or quarantining a device, rendering it useless. This

paper proposes a solution that simultaneously maintains convenience and privacy,

tailored for the Internet of Things. We propose a novel graceful degradation tech-

nique which targets individual device functionalities for acceptance or denial at the

network level. When combined with current anomaly detection and fingerprinting

methods, graceful degradation provides a personalized IoT security solution for the

modern user.

We identified three main areas in our approach: fingerprinting devices to un-

derstand the composition of a users’ network, anomaly detection to detect attacks

on devices and network intrusions, and degradation to allow only user specified

functions to remain active after an anomaly. First, we layer existing fingerprinting

technologies to create a straight-forward device identification process. Then, we

introduce an intrusion detection system through expanding the work of Kitsune,

a lightweight machine learning intrusion detection system, to monitor the devices

for abnormal or malicious behavior. We utilize previous research that highlights

identifying network features for discovering device functionalities for an attack and

leverage it as a defense mechanism. Next, we create a user-friendly traffic labeling

platform to allow home users to label the extracted network features of any IoT de-

vice function within three minutes. We demonstrate that our random forest classifier
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is able to detect and degrade user-trained functionalities with an average accuracy

rate of 94%. The user is provided with information regarding potential privacy risks

if a specific function is compromised, and given the option to degrade or allow it in

lieu of an anomaly. Finally, we consolidate fingerprinting, anomaly detection, user

training and degradation into an intuitive, straightforward User Interface, the GDI

Security Suite.

Our suite enables a user to monitor all devices on their network and train normal

device and network behaviors. Upon detecting an anomaly, we will follow the spec-

ified risk tolerance as to which functions the user wishes to block, and consequently

drop traffic related to that functionality as well as other foreign activity, while still

allowing other desired functions to remain actionable. Lastly, we notify the user of

such events, making them aware of their current state of security, and provide the

ability to dynamically update their risk profile.
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Chapter 1

Introduction

As technology becomes more ubiquitous, and people are in search of convenience

aids, the Internet of Things (IoT) industry continues to automate more aspects of

everyday life. IoT devices are electronic devices that can be remotely controlled,

monitored, or that perform remote commands. IoT devices span from consumer

grade devices controlling home appliances, to financial applications, energy and

water sensors, health care devices, wearable technology and transportation [35].

With 26.6 billion IoT devices connected in 2019 and an estimated 30.7 billion to

be connected in 2020 [52], IoT is one of the largest growing sectors of technology.

Each of these devices is vulnerable to attack or exploit, which could result in an

invasion of privacy, loss of data, or even physical harm. In 2020 it is predicted that

more than 25% of cyber attacks will involve IoT devices [14]. Ironically, 72% of

consumers would own IoT devices to feel safe [7], yet 48% of them were unaware

that these devices can be used to conduct a cyber attack [12]. Consumers lack an

understanding of what data these devices hold, how devices use their data, and what

could happen if their data is exploited by attackers.

Companies who do not specialize in electronics do not take the necessary pre-
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cautions when adding connectivity to their products. They outsource the “smart”

development to IT experts without understanding if a selected third party is specif-

ically an IoT expert. When security and privacy issues arise in these cases, the

manufacturer is of no help to the user, since they lack knowledge of how their prod-

uct was developed [13].

Common security steps in consumer-based devices have been composed of fin-

gerprinting devices, anomaly detection, and mitigation. Currently, mitigation only

consists of quarantining the device off of the network, or asking the home user to

implement confusing firmware updates [36]. Ultimately, most security solutions sim-

ply notify the user that there is something wrong with a device, without explaining

its implications, or suggesting a clear resolution.

Aside from technical solutions, government legislation has attempted to solve

the lack of coherence among the IoT community when it comes to security stan-

dards. Most recently introduced, is the IoT Cybersecurity Improvement Act of 2019

which mainly requires National Institute of Standards and Technology (NIST) to

issue recommendations, and enforces government and vendors to follow those rec-

ommendations, as well as disseminate discovered vulnerabilities sooner and more

widespread. However, there will be an inherent gap in time between the release

of new devices, and when NIST has completed ample penetration testing to make

recommendations, or discover new vulnerabilities to warn companies about. This

legislation only calls for guidelines, and it will remain up to the vendor to adopt

best practices.

A large problem that stems from the sheer size of the IoT industry is the lack

of comprehensive, real world test traffic for researchers to access and analyze. Most

devices and security solutions are tested, or trained on a small sample of data

in an isolated environment, for a miniscule number of devices. In a survey by
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Boutaba et al. the authors “observed that numerous works relied on synthetic data,

particularly in network security. Synthetic datasets are usually simplistic and do

not truly reflect the complexity of real-world settings” [10]. Since there is a lack of

common knowledge regarding the features and normal behavior of the majority of

IoT devices, it is hard to develop a solution that is scalable to all devices.

Despite recent advances in technology and policies regarding IoT security, we

have identified lack of user education and lack of mitigation strategies as consistent

flaws in modern IoT security approaches.

1.1 Contributions

We offer a solution to the problems presented by developing a holistic security

suite that a) identifies devices on Wi-Fi networks, b) monitors network traffic for

anomalous behavior, and c) gracefully degrades device functionalities. We develop a

scalable platform that labels traffic associated with particular device functionalities

by leveraging machine learning. From these labels, we train classifiers to gracefully

degrade user specified functionalities in real-time with minimal user input. Further,

we present risk profiles associated with categorical bins of device functionalities to

educate end users.

Education:

As previously mentioned, nearly 50% of consumers are unaware that the devices

they use everyday in their homes can be turned against them by cyber criminals.

Our security platform informs the home user about their potential vulnerabilities

and perceived risk posture. To accomplish this we show the user what devices

are on their network at any time, what functionalities and features these devices

possess, how different functionalities could be used maliciously or intrude on the
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user’s privacy, and when and which device is under attack. This information will be

portrayed through our Graphical User Interface (GUI) using best Human Computer

Interaction (HCI) practices.

By providing this information, we are arming users with the tools they need to

consider what is an acceptable level of risk for their security and privacy and how

introducing IoT devices will affect their risk posture. Ultimately, a more alert and

aware community will make for a safer and more secure one.

Degradation:

Our main innovation is a mitigation technique customized by the user, to allow

for graceful degradation. Graceful degradation is the practice of maintaining core

functionality, while isolating or disrupting nonessential functions to avoid complete

failure, or in our case, further privacy breaches. Our degradation strategy will also

block anomalous traffic that may be new malicious activity. For example, a Wi-Fi

camera sending email is not a feature that a user would train or expect to occur,

resulting in it being identified as anomalous traffic and dropped in degradation.

Devices have a wide array of applications and in some cases, they may not pose

as a security threat to the home user. For example, a user installs a security camera

placed outside the house to look for intruders. The owner would prefer to continue to

record video and audio, yet still be notified of the devices compromise and prescribed

possible fixes. However, if a camera is used to monitor a child, owners may prefer

to immediately stop video and audio recording if the device is compromised. This

approach allows a user to own their privacy and security while maintaining the

convenience that persuaded them to purchase the device in the first place. Giving

consumers the peace of mind that their security and privacy will be safeguarded,

while still being able to use their devices to their full potentials, will begin to build

a reputation of trust in IoT devices. We believe graceful degradation can provide
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an enormous shift in the IoT community.

Interactive Supervised Machine Learning for Traffic Analysis:

With the ever growing number of IoT devices, no current lab-trained model will be

scalable enough to continue to work for all new devices. We propose an extensible

interactive machine learning model, which prompts a user to easily train and label

exact functionalities of any IoT Wi-Fi device. This technology has not been applied

to device functionality traffic classification before. With this method, any device can

be trained and its individual functions can be isolated for network traffic analysis,

or in our case, degradation. The user’s role is to label what type of functionality,

such as streaming, audio or video, or simple on/off commands is associated with

the traffic, as well as denote exact time frames when that functionality is occurring

within a one hundred and eighty second training interval. This labeled functionality

can then be stored, with the user’s approval, and utilized by the scientific community

or other consumers.
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Chapter 2

Background

2.1 IoT Protocols

Smart homes are comprised of a multitude of devices working alongside each other

in a collaborative mesh of devices, all of which is facilitated by protocols. Proto-

cols tie all devices on a network together, facilitating the flow of information, and

providing ways for devices to communicate with one another, the internet, and the

user. In order to perform fingerprinting, anomaly detection and degradation, un-

derstanding how these devices communicate is important. IoT devices have a large

array of functions, sensors, data streams and varying ways to communicate with

other devices. Due to this wide range of data transfer rates and power sources for

IoT devices, several data-link protocols have been created to best facilitate commu-

nication to meet device requirements. The most widespread of these protocols are

Wi-Fi, Bluetooth Low Energy (BLE) and Zigbee.
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2.2 Current Device Fingerprinting Techniques

Device fingerprinting techniques are used to determine the types of devices present

on a network. IoT fingerprinting is of particular interest in the cybersecurity field

because adversaries routinely exploit Internet-connected devices while considering

their type. Similarly, different types of devices have varying sets of behavioral ca-

pabilities and risk profiles. For instance, a compromised, internet-enabled camera

would likely intrude on user’s privacy more so than a compromised, Internet-enabled

smart plug would. It is easier to gain information about a place and its inhabitants

through a camera live feed rather than knowing if an outlet was drawing power or

not. Device fingerprinting techniques are used to determine the types of devices

present on a network. Current research titles such as AuDI, ProfilIoT, and IFRAT,

use a handful of specific network traffic features to ascertain a device’s manufacturer,

operating system, or categorical classification of capability. Some open source APIs

(application programming interfaces), such as Fingerbank [18], passively query par-

ticular network traffic signatures across databases of historical device identifications.

Here, we discuss several existing approaches to fingerprinting that operate with-

out reference to historical databases of known network traffic signatures. AuDI is a

system for quickly and effectively identifying the types of devices on IoT networks by

analyzing network communications [32]. AuDI models the periodic communication

traffic of IoT devices using an unsupervised learning method to perform identifi-

cation [32]. ProfilIoT, a machine learning approach for IoT device identification

based on network traffic analysis uses HyperText Transfer Protocol (HTTP) packet

properties to differentiate between IoT device traffic and non-IoT device traffic [38].

ProfilIoT then enriches source and destination IP addresses and ports with publicly

available data from Alexa Rank and GeoIP to categorize device type [38]. IFRAT,
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an IoT field recognition algorithm based on time-series data, observes sampling

rates of various network features, performs clustering with the self-organizing map

machine learning algorithm, then determines IoT field and specific device type [25].

There are observed disadvantages to machine-learning-based fingerprinting ap-

proaches such as AuDI, ProfilIoT, and IFRAT. First, such techniques require time

for training. With no historical signature data to rely on, machine-learning-based

techniques must extract, organize, and analyze network features as observed in real

time. AuDI, for instance, will rarely perform device identification in less than thirty

minutes [32]. Second, such techniques require that an adversary does not disrupt

the learning stages. Introduction of spoofed network data during learning stages

could easily disrupt a machine-learning-based fingerprinting technique and severely

limit an overall confidence level.

Fingerbank [18] is an existing repository for data that can be used to fingerprint

Internet-enabled devices. Fingerbank [18] takes a Media Access Control (MAC) ad-

dress and Dynamic Host Configuration Protocol (DHCP) fingerprint as parameters

in attempting to identify device type. A device exposes its MAC address, a unique

identifier for its network interface, when it connects to a network; individual manu-

facturers use particular ranges of MAC addresses for their products. Similarly, when

requesting an Internet Protocol (IP) address assignment with DHCP, a device asks

for certain DHCP options such as Domain Name Server (DNS) server, or default

gateway,and the sequential ordering of these option requests can be indicative of

device type. Fingerbank [18] uses patterns in MAC addresses and DHCP option

requests to make a best guess at specific device type and manufacturer. Finberbank

does not directly interact with the device it is attempting to fingerprint, rather it

relies on a user interacting with a device to supply a MAC address and DHCP finger-

print. When Fingerbank [18] receives these values, it queries them across historical
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records in order to ascertain device type in a quickly evolving IoT landscape.

Nmap [30], or the Network Mapper, attempts remote operating system detection

using Transmission Control Protocol (TCP)/IP and User Datagram Protocol (UDP)

stack fingerprinting. Nmap [30] sends a series of TCP and UDP packets to the remote

host and examines the data that is returned [30]. After performing a number of

tests, for example, TCP Initial Sequence Number (ISN) sampling, TCP options

support and ordering, IP ID sampling, and initial window size checking, Nmap [30]

compares results to a database of more than two-thousand known operating system

fingerprints [30]. Each fingerprint includes a textual description of the operating

system and a classification that provides vendor name and device type [30]. Nmap

[30] differs from Fingerbank [18] in that it directly interacts with a device that it

is attempting to fingerprint.

Nmap [30] directly interacts with devices through port scanning, which gener-

ates large quantities of traffic and can slow or disable weaker devices on less robust

networks. Further, target devices can be configured to disable port scanning and

limit the accuracy of Nmap [30] operating system detection. Lastly, Nmap [30] oper-

ating system detection requires sudo privileges on the host device. With this, Nmap

[30] differs from machine-learning-based techniques, such as AuDI, ProfilIoT, and

IFRAT, and signature-repository-based techniques, such as Fingerbank [18], in the

way that it gathers information about a device. The former approaches can per-

form passively on a network, while Nmap [30] requires active engagement with target

hosts.

p0f [53], a passive fingerprinting tool distributed in some versions of Kali Linux,

offers a passive alternative to Nmap [30]. p0f [53] utilizes an array of purely pas-

sive traffic fingerprinting mechanisms to identify the players behind any incidental

TCP/IP communications without interfering in any way [53]. Of note, p0f [53] is
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highly scalable and offers extremely fast identification of the operating system and

software on both endpoints of a vanilla TCP connection, especially in settings where

Nmap [30] probes are blocked, too slow, unreliable, or would simply set off alarms

[53].

2.3 Current Anomaly Detection

Anomaly detection refers to the capability of identifying rare events that differ from

the expected or observed status quo and subsequently raise suspicion. In the cy-

bersecurity space, anomaly detection is a common technique utilized by intrusion

detection systems (IDS). Recently, machine learning and Artificial Intelligence (AI)

techniques have made anomaly detection much more sophisticated and reliable when

properly trained and deployed. The majority of anomaly detection techniques in

IDSs operate on network traffic, examining different statistics and extracting meta-

data from network packets. IoT, however, broadens the scope of anomaly detection.

It can still be applied in the traditional sense to network traffic, but it can also be

applied on user actions as inferred through IoT device states.

Within network based anomaly detection, there are several strategies of varying

complexity and effectiveness. Approaches that aim for extremely low overhead use

simplistic algorithms that are not adequate to address the rapidly developing threat

landscape they face [51, 49]. Signature based approaches [44, 15, 42, 39] rely on

having advance knowledge or a database of known attacks that is constantly kept up

to date. Attacks may be device specific, and with the constant influx of new devices,

these models must evolve. Signature-based models fail at detecting zero-day attacks

as those vectors are not yet known. As attackers deploy new, more sophisticated

attacks, these systems have no mechanism to detect the initial infections.
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IDSs can either be network-based or host-based. In the case of IoT, however,

host-based IDSs present several issues. First, deploying a host-based IDS requires

access to device software and the ability to inject third party code into these devices,

which presents a significant vulnerability. [46, 45]. This change would require more

development work on behalf of nearly all device manufacturers and the creation of

an industry standard to which they would need to comply with for this approach

to be successful. Given the sheer size of the IoT market and its competitive nature,

this would be a monumental feat and is unlikely to happen. Second, the multitude

of IoT devices presents a serious scalability issue. Every device added to the network

would have to be flashed with the IDS software [11]. A main benefit of IoT comes

in the ease of deployment and ubiquity. To maintain usability, approaches that are

less intrusive would be preferred.

Some approaches leverage blockchain technology in attempts to become more

resilient to adversarial attacks during the training phase in which attackers can

inject traffic to have the IDS learn malicious traffic as benign traffic. This requires

additional blockchains per IoT model/firmware [23]. The publishing of additional

chains limits the scalability of this approach, especially in the consumer space where

several models, manufactures, and devices interact.

Another approach is Artificial Neural Networks (ANNs). One class of ANNs is a

recurrent neural network (RNN). The main advantage of RNNs over ANNs in terms

of anomaly detection is the ability to have stored states to examine temporal data

more deeply. A Gated Recurrent Unit (GRU) is a less computationally expensive

flavor of an RNN, requiring less training data. Nguyen et al. [38] leverage GRUs in

a self-learning, distributed IDS for IoT networks. While this system achieves a high

level of success, recent research has suggested improvements.

One issue plaguing modern IoT security and IDS is the low overhead available
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in the system contrasted with the high performance demands of sophisticated ANN

IDS methods. To address the gap between performance demands and available com-

putaional power, Kitsune [34] uses an ensemble of autoencoders. Autoencoders are

ANNs that are able to learn efficient data encodings by reconstructing their inputs,

essentially learning the identity function of the original data. In order to maintain

low overhead costs, the depth of the ANN is limited to three layers. Deep, or layered,

ANNs can learn much more complex concepts than shallower networks but become

computationally expensive to train and execute. Furthermore, autoencoders can

be trained in an unsupervised manner, meaning that labeled training data is not

required. Thus, the costly process of labeling a data set, which can be massive when

examining network traces, can be avoided.

Kitsune provides a relatively lightweight ANN anomaly detection approach through

an ensemble of autoencoders. The low cost of autoencoders, accompanied by benefits

such as online, unsupervised learning, differentiates this solution. The open source

data and code base for Kitsune streamlines the deployment and customization of the

system for nearly any configuration. Implementing Kitsune and taking advantage

of their open source code-base and data sets will satisfy the IDS requirements for

our IoT security platform.

2.4 Current Machine Learning Techniques for Net-

work Traffic Classification

Machine learning is a growing area of Computer Science with seemingly endless

applications. Relative to the context of our research, machine learning provides the

capability of network traffic classification. Network traffic is made up of packets,

each containing several features related to their origin, destination, and content.
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In analyzing numerous packets, there is no apparent correlation between a devices

functionality and its network packet. Machine learning allows for features to be

isolated, weighted based on uniqueness, and compared against each other, to form

patterns and “clusters” of similar traffic. Machine learning algorithms can vary in

two main ways. The first is how data is fed into a model to train the classifier.

There are three different methods of labeling the data to build a foundation off

which to match new unseen traffic to a particular cluster. The second is, which

features of the network packets should be extracted in order to form the desired

clusters. We explore the current research field in relation to these two areas in order

to understand which data labeling and feature extraction approaches best fit our

need for device function clustering.

The three main machine learning training paradigms that can be utilized for

classification are supervised, unsupervised, and semi-supervised. Supervised learn-

ing is a paradigm where an input set of data is completely labeled with the correct

classification or value. Supervised learning is useful for problems concerning classi-

fication and regression. Due its requirement of complete correctness of input data,

supervised learning is highly accurate, but the overhead necessary to label all of

the data is often large and usually requires an expert to label the data accurately.

Unsupervised learning absorbs all unlabeled data and learns to infer structures from

the baseline training data. Unsupervised learning also is applicable for clustering

and association, being able to differentiate whether a data point closely follows a

group of data previously ingested. Unsupervised models have less initial overhead

than supervised, due to the lack of necessity of labeling all of the input. However un-

supervised models are only as good as the quality of input data that is used to train

them. To combine the strengths and weaknesses of both, semi-supervised learning

is an approach that labels small amounts of data to train algorithms to accurately
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and precisely extrapolate associations and structures in unlabeled data. Numerous

methods across all three paradigms have been tested to address the problem of net-

work traffic classification [10]. However, these experiments seek to classify protocols

and types of network traffic rather than classify which traffic corresponds to specific

device functionality.

Specific to network traffic classification, the four main areas for feature extraction

in past research include port number, packet payload, host behavior or flow features.

Port number was an effective early traffic classifier as different protocols often were

restricted to certain port number. However, relying solely on port numbers has

become ineffective due to the use of dynamic port negotiation. Meanwhile, adding

port number alongside other features has shown to boost classification scores [10].

Next, the payload of network packets contains application signatures which are

indicative of the purpose of the traffic. With modern security concerns, however, a

majority of these payloads are encrypted and unavailable for inspection. For those

that are available, searching the payload incurs a high overhead, and the number of

unique signatures needed for identification may grow rapidly, rendering this method

difficult to scale and maintain. Host-based classification relies on a monitoring

system being placed in a network to examine criteria, such as the number of hosts

on the network, to predict the classes of interest. It avoids using direct ports or

payloads and instead monitors how a network is interacting with a group of hosts,

such as mail servers, or peer to peer connections. By analyzing how many hosts

on the network are involved with the communication, how many ports are active

and how often different hosts communicate, it is possible to derive types of traffic

such as mail services and video downloads. The final feature space is known as

flow-based. A network flow is a selected sequence of consecutive packets during a

connection. Within this sequence, countless features can be quickly isolated from
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packets in transit. Example features include direction of flow, source and destination

IP addresses and ports, inter-arrival time, average packet length, and number of

packets per flow. Flow-based classification “has the potential to overcome numerous

limitations of other techniques, such as unregistered port numbers, encrypted packet

payload, routing asymmetries, high storage and computational overhead. However,

it remains to be evaluated if flow feature-based classifiers can achieve the accuracy

of payload-based classifiers” [10]. In this work, we took a combined approach of

testing several feature spaces in order to rapidly identify device functionality without

disrupting normal operation speed or performance.

2.5 Interactive Machine Learning for Network Clas-

sification

Interactive Machine Learning (IML) was first introduced in 2003 as a way to “allow

users to train, classify, view, and correct classifications” [17]. This work focused on

having a user analyze images and create classifications based on the images alone.

Then a classifier would be created from the selected images and display feedback.

The user could either refine the classifier by adding more manual classification or

export the classifier. This demanded that the user knew exactly what the classifier

was supposed to output. IML had the benefits of offloading extensive training time

from technical experts, as well as reducing computation time of model training,

as models could be trained by millions of non-technical users simply by clicking

images or typing words. This methodology has been expanded upon and used in

practice across different areas of study. It is most famously known from Google’s

Recaptcha, an authentication method that prompts users to interpret scrambled

text or images containing certain items. Through the interpretation as to whether
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a picture contains an object like a bus, the millions of data points that have been

entered have helped advance systems such as driver-less cars. Classifying static

images and text has expanded to streaming data within the past few years.

In 2006, active learning was introduced for network protocol analysis

[5]. This patented model extracts features of the traffic and generates examples of it,

then re-trains its learning model to better label traffic in the future, but once again

relies on the user’s accuracy in correct labeling. The combination of IML applied

to streaming data and IoT devices is on the cutting edge of research. In 2019 the

technology was used for activity recognition (standing, walking sitting or lying down,

as well as room occupation) of a user based on IoT device streams [47]. In this case,

a prompt for a user to label activity is time sensitive, as a user may forget what past

actions they were doing at a given time. This study investigated active learning by

asking a user to label streams for one activity from several different devices at once.

Not all of these device streams may be directly related to the activity of the user.

Our approach directly labels specific and individual functions of a single device, at

the time the user chooses, allowing them to know exactly which function they are

entering.

Our approach leverages past methods of allowing a user to label data, in order

to train a model which will then handle all unlabeled data. We apply this to device

functionality traffic, where other dynamic noise will be present. Contrary to the

previously discussed methods, our learning model does not rely on the end-user

having knowledge of the correct output of the classifier. Rather the user labels

provides a friendly name to the traffic of a functionality. This label allows the user

to understand which function they are choosing to degrade or allow.
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2.6 Current Degradation Attempts

When a system is compromised through a cyber-attack, we would like critical in-

frastructure and functionality to remain operable. The majority of people introduce

IoT devices into their smart homes for the purpose of convenience and usability,

automating everyday tasks and generally making life easier. Therefore, consumers

would prefer to maintain as much functionality as possible when an IDS detects

an attack. Incorporating graceful degradation will allow our network to maintain

partial functionality while compromised or under attack.

Removing all device functionality nullifies the benefits of adding these devices

to the home. For example, Minim is a company providing an AI based IoT security

approach to monitor devices and traffic on your network. When a device is infected

or an attack detected, Minim’s response is to quarantine the source device from

the network [33]. This renders the device useless until the attack is resolved. No

functionality of that device may be accessed.

Another comprehensive home security solution, the BitDefender Box, acts as a

network gateway and IDS. How Bitdefender handles security breaches, however, is

not clear. The company simply states that the box “shuts down traffic” [36]. This

language seems to imply quarantining devices or creating an IP blacklist. Nowhere

in their platform does the notion of degradation get mentioned.

Graceful degradation can be approached at multiple levels of complexity. The

simplest method would be to access publicly-available application programming in-

terfaces (APIs) or settings menus programmatically [26, 4]. If this functionality can

be accessed through menus and APIs it is reasonable to assume that an adversary

could do the same, effectively overturning the degraded functionality.

A more complex and robust approach to IoT degradation identifies and targets
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traffic associated with specific device functionality. Accar et al. [3] present a novel

attack that utilized machine learning techniques to profile traffic of smart home

device communications even when the traffic was encrypted. The paper proposes a

passive adversary that is listening to network traffic as part of a multi-layer privacy

attack. By identifying traffic from devices such as light bulbs and locks, an adversary

can determine when the user is home and even what room they could be in. Although

this is framed as an attack, the techniques proposed can be leveraged as a defense

mechanism. By identifying and dropping traffic associated with device functionality,

graceful degradation in IoT-enabled smart homes can be achieved.

The above is an example of a privacy attack [3], but attackers are also interested

in harnessing the power of combining IoT devices into botnets [15]. Such an attack

could have no tangible effects on the end user. The user might not ever know they

were ever compromised.
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Chapter 3

Approach and Methodology

In this chapter, we discuss our fingerprinting, intrusion detection, graceful degrada-

tion, and integration capabilities. Particularly, we present a novel, scalable approach

for the graceful degradation of IoT device functionalities.

Approach 1: In order to enable graceful degradation, our team proposed a

system consisting of of three main modules with a manager handling integration

communication between modules. Our IDS is anomaly detection-based, leveraging

machine learning to differentiate benign and malicious network traffic. Once an

anomaly is triggered it sends a message to the manager with the MAC addresses

that raised the flag. The MAC addresses are then sent to the fingerprinting module.

This module is responsible for identifying and tracking all of the IoT devices present

on the network. Given a MAC address, the fingerprinting module will be able

to identify what device triggered the anomaly. Fingerprinting devices also allows

us to understand what capabilities are present in the smart home and translate

these capabilities to security and privacy vulnerabilities. These attack vectors are

presented to the user, who can decide what functionality to degrade in order to

custom tailor a risk profile that is acceptable to them. The degradation of features
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Figure 3.1: High level system design and service call relationship layout

will be accomplished through traffic classification across multiple protocols such as

Wi-Fi, Zigbee, and Bluetooth.

3.1 Enabling Sniffing of Alternative Protocols

While the testbed infrastructure makes it trivial to sniff for IoT Wi-Fi traffic asso-

ciated with the mqpinet, the other two protocols of BLE and Zigbee require further

hardware. Sniffing these two protocols is necessary for capturing the traffic that

occurs between these devices and determining which packet attributes match device

functionality.

In order to perform such BLE sniffing, our team chose Ubertooth One Hardware

and Ubertooth linux software, due to its low cost, complete documentation and

portability with pcap files and Wireshark integration. Ubertooth One hardware
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was purchased and the software and was installed following the github instructions

[21]. Once the software was installed, the Ubertooth One device was attached to the

computer and bridged into the virtual environment. Ensuring that the device was

found using ubertooth-util -V. Once the device was properly recognized, we followed

the guide [22] for flashing the firmware onto the device. Our device was now capable

of sniffing BLE traffic.

In order to sniff Zigbee traffic, we chose the ApiMote v4 beta developed by

Riverloop security, as it comes pre-flashed with Killerbee firmware, however an ex-

tra antenna was gathered from a router to improve range and performance of the

APiMote. We also installed Killerbee, following the instructions [50]. Once Killer-

bee was installed, and hardware was detected, we were able to sniff Zigbee traffic.

3.2 Change in Approach

We originally considered Bluetooth Low Energy and Zigbee enabled devices to cover

the full scope of common protocols in the IoT space for fingerprinting and degrada-

tion. However through interacting with the devices, we discovered a large portion

of device functionality eventually communicates over Wi-Fi. We decided we would

no longer investigate the Bluetooth and Zigbee protocols in the scope of this project

for the following reasons:

• Nearly all IoT devices have a transport layer of either TCP or UDP and com-

municate over Wi-Fi in some capacity, regardless of use of alternate protocols

[43]

• The majority of Zigbee and BLE devices have hubs that connect to Wi-Fi

and all function traffic is transmitted from a users phone to said hub. In fact

Samsung SmartThings, who is a producer of Zigbee devices, clearly states
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Figure 3.2: Ethernet traffic from Hue Bulb Zigbee device reveals device functionality

“An active Internet connection to the Hub is always required to manually

control your devices and SmartApps via the SmartThings mobile app.” So any

controls sent from your smart-phone to the hub to be relayed to the devices

occurs over Wi-Fi connection. So by sniffing all Wi-Fi traffic, we are able to

identify functionality in Zigbee devices such as Phillips Hue Bulbs.

Next, BLE end devices can only be connected to one master device like a cell-

phone, so the attacker would have to be present to intercept the first Bluetooth

packet in order to connect to it. In this case the home user would be suspicious if

they cannot connect and disconnect it. To exploit BLE or Zigbee directly, the at-

tacker would have to be within 10 to 100 meters of the devices, while 30 m is usually

the cutoff for a reliable connection. Those connection ranges are also recommended

for line of sight with the device [43]. So an attacker would have to be relatively close

to a users’ house and specifically target their devices, rather than find them on the

Internet from a remote location.

Our original approach to investigating the degradation of a few functions of Zig-
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bee and BLE devices involved capturing the traffic, analyzing the flow rate, and

setting a threshold. This approach was modeled after the Peekaboo attack vector

[3]. However we discovered with Wi-Fi devices, we are able to track specific con-

nections with enough constant features that it is possible to create ML classifiers to

degrade functionality without looking at the traffic in static snapshots to compare

to a threshold. Rather, we can train a model to map certain device functional-

ity to a large number of features. Exploring a solution to automate functionality

degradation, rather than statically proving degradation on small features over these

protocols, will be more fruitful in both the engineering and IoT security space.

Moving forward, our contributions of degradation will not be diminished by

focusing only on Wi-Fi connections, and introducing the ability for any home user

to label, train and degrade any functionality of a device as they choose, making it

truly graceful.

3.3 New Approach

The proposed updated system consists of six main modules with a manager handling

integration and communication between tools and the user. An addition to our new

approach was the addition of a novel user-labeled ML model for device functionality.

The testbed, management system and anomaly detection methods remained the

same. The major difference is that only Wi-Fi devices will be fingerprinted, with

the same tools as before.

The user will be able to access the GUI through a web server hosted on the Pi and

discover all Wi-Fi devices on their network. The fingerprinting will display guesses

and allow the user to name the devices IP address a “Friendly Name” based on the

fingerprinting results. They will be able to identify and train new machine learning
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Figure 3.3: Updated high level system design and service call relationship layout

models for degradation based on each feature of the device. As the user is prompted

to test a new function, the network packets are sampled through netfilterqueue, and

unique identifying features are extracted to form a Random Forest Model. The user

will be able to select devices and trained functions of those devices to pinpoint what

functionality they would like to degrade.

When an anomaly is detected, the corresponding Degradation IP table rules to

which functions the user has selected to degrade will be turned on and that traffic

will be blocked.
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Figure 3.4: An overview of the testbed network architecture.

3.4 Configuring a Standalone, Wireless, Test-bed

Network with Raspberry Pi

In order to perform our experiments without sniffing private traffic from the uni-

versity, or degrading other users’ devices, we created our own private test network.

This network will act like any other Wi-Fi Network; however, only our IoT devices

will be connected to it and the only traffic passing through will be the traffic of

interest to us from these devices. This testbed will serve as the base for all four

aspects of the project mentioned above. The team configured a Raspberry Pi as an

access point in a standalone network using NAT (Network Address Translation) [19].

The inbuilt wireless features of the Raspberry Pi 3 can be used to host a standalone

network with integrated DHCP software.

First, the team used Ethernet to connect the Pi to the existing network present at

the apartment where testing was being conducted. With this, the Pi was connected

to the existing network using eth0 as opposed to wlan0. Second, the team installed

dnsmasq and hostapd software and assigned the static IP address 192.168.4.1 to

the Pi. Third, the team configured dnsmasq such that the Pi would provide IP

addresses between 192.168.4.2 and 192.168.4.20 with a lease time of 24 hours.

Fourth, the team configured hostapd such that the Pi would host a 2.4 GHz wireless
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network called mqpinet using wlan0. Finally, the team added a masquerade for

outbound traffic on eth0 and saved corresponding rules.

After rebooting the Pi and starting dnsmasq and hostapd services, the team

began connecting IoT devices to the mqpinet wireless network. As devices connected

to the mqpinet network, dnsmasq would assign IP addresses on the existing network

in the range 192.168.4.2 to 192.168.4.20 as previously configured. In this way,

all wireless traffic originating from the IoT devices was 1) received by the mqpinet

on the Pi via wlan0 and 2) forwarded to the existing network via eth0. With this,

the team could swiftly differentiate between traffic from the IoT devices involved

in the experiment and traffic from devices on the existing network not involved in

the experiment. From the Pi, the team sniffed wlan0 to only intercept network

traffic interacting with devices on the mqpinet testbed network. Even still, the

team could sniff eth0 to intercept all network traffic from both mqpinet and the

existing network.

3.5 Device Gathering

The team gathered a range of IoT devices for the project. Some devices offered

simple on or off functionalities, such as smart plugs, while some devices offered

complicated audio or video streaming functionalities, such as the Amazon Blink

Wi-Fi cameras and Amazon Alexa Echo Dot.

• Amazon Alexa Echo Dot

• TP-Link Wi-Fi smart plug

• Raspberry Pi 3

• Amazon Blink Wi-Fi camera
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• Amazon Blink Wi-Fi camera

• Etekcity Wi-Fi smart plug

• Particle Photon

• Google Chromecast

• Philips Hue Bridge

3.6 Fingerprinting Configuration

The selected devices were then connected to the Pi testbed network which was acting

as a router for mqpinet at 192.168.4.1. Devices joined this network just like any

other Wi-Fi network. With active devices on our network, the following necessary

step was to identify the devices on the network through the Raspberry Pi itself.

Fingerprinting devices is an important step in consumer security as it allows the

home user to be aware of what devices are on their network, incase an attacker

introduces a rogue device. Fingerprinting also allows us as the security system to

analyze and store information on network traffic to human readable devices, and to

gain insight into what types of traffic there may be, depending upon which device is

generating that traffic. Fingerprinting is a well studied and explored research area, so

we focused on layering pre existing tools, rather than developing our own stand alone

solution. The team centered device fingerprinting capabilities around functionalities

offered by the Fingerbank [18] API and Nmap [30]. By sniffing wlan0 on the Pi

testbed, the team could filter IoT traffic routed through the Pi. Fingerprinting

capabilities were housed and executed on the Pi itself, eliminating the need for

additional hardware.
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First, the team authored fingerbank_handler.py to extract relevant packet fea-

tures and interact with the Fingerbank [18] API. With Scapy sniffing, the team used

filter udp and (port 67 or port 68) on the interface wlan0 to intercept packets

on mqpinet with a DHCP layer. When a packet with a DHCP layer was intercepted,

the fingerbank_handler.py extracted 1) the DHCPv4 fingerprint and 2) the MAC

address of the device from which the packet originated. To determine a DHCPv4 fin-

gerprint, fingerbank_handler.py examined DHCP options from the DHCP layer

and extracted the value of the param_req_list key. To determine a MAC ad-

dress, fingerbank_handler.py examined the Ether layer and extracted the src

MAC address. Once fingerbank_handler.py had extracted a DHCPv4 fingerprint

and MAC address, it queried the Fingerbank [18] API to obtain a JSON package

denoting Fingerbank’s best guesses at manufacturer, operating system, and type

for the device from which the examined traffic originated. It is important to note

that fingerbank_handler.py only queried the Fingerbank [18] API if an extracted

MAC address had not been seen before. fingerbank_handler.py kept record of

API queries that were previously conducted by uniquely identifying JSON packages

by the MAC addresses of devices whose extracted features were being queried.

Second, the team authored nmap_handler.py to 1) map IP addresses to MAC

addresses for hosts on the mqpinet network and 2) perform Nmap [30] operating

system detection on discovered hosts. To map IP addresses to MAC addresses,

nmap_handler.py executed nmap -sP 192.168.4.0/24 with sudo privileges and

used regular expression matching to sequentially extract and pair IP addresses and

MAC addresses from the command’s output. To perform Nmap [30] operating system

detection on a discovered host with IP host_ip, nmap_handler.py first executed

$ nmap -O -Pn --host-timeout 3m host_ip

with sudo privileges. Second, nmap_handler.py used regular expression match-
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ing to extract a MAC address, manufacturer, device type, and operating system

version and details from the command’s output to forge a custom JSON pack-

age. nmap_handler.py also kept record of OS detection scans that were already

conducted on particular hosts, uniquely identifying JSON packages by the MAC

addresses of each historically targeted host.

Third, the team authored p0f_handler.sh to 1) use tcpdump to collect packets

originating from a specified MAC address and 2) assess captured packets for finger-

print signatures with p0f [53]. To capture packets originating from a specified MAC

address, the team used

$ sudo tcpdump -c [number of packets to be captured] -i

wlan0 -w [.pcap to write to] ether src host [target MAC

address]

.

To assess captured packets for fingerprint signatures, the team used

$ sudo ./p0f -r [.pcap written to] -o [.log to write to]

> /dev/null

.

To review p0f [53] logs for operating system guesses, the team authored a Python

script to run regular expression matching over the log. In some cases, p0f [53] offered

varying operating system guesses, such as several guesses for Linux and several

guesses for Android, based on traffic originating from the supplied MAC address.

The Python script considered the amount of times a guess for a particular operating

system appeared in the p0f [53] log while formulating the final p0f [53] JSON.

Fourth, the team authored fingerprint.sh to incorporate

Fingerbank [18], Nmap [30], and p0f [53] capabilities into a single script. While
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Fingerbank [18] capabilities were to always be sniffing in the background, Nmap

[30] and p0f [53] capabilities were to be run in iteration every n minutes. Further,

JSON synthesization needed to be conducted every n minutes as well, following the

completion of Nmap [30] and p0f [53] scans. fingerprint.sh ensured that all three

capabilities could be run in harmony and that JSON records of device fingerprints

would be updated as frequently as possible. To enable automated start and stop

of the script, the team created a sudo-level service called mqp_finger.service. To

start all fingerprinting capabilities, the team called

sudo systemctl start mqp_finger.service. Similarly, to stop all fingerprinting

capabilities, the team called

sudo systemctl stop mqp_finger.service. This interface allowed seamless in-

teraction between the fingerprinting module and all other modules in the project.

Additionally, a Python script was authored to retrieve the most current fingerprint-

ing data on file for any MAC address.

3.7 Anomaly Detection Configuration

In order to protect and secure the smart home we must have an intrusion detection

system in place. This system constantly monitors network traffic to detect and catch

any abnormal behaviors. The specific framework our team selected was the Kitsune

IDS for network based anomaly detection leveraging machine learning techniques.

At the heart of our anomaly detection IDS, constantly inspecting network traffic,

is Kitsune. Kitsune’s use of an ensemble of autoencoders enables unsupervised

learning to be easily deployed on any network. Unsupervised learning eliminates the

need for labeling large training datasets and enables real time, online learning which

is beneficial in the current rapidly evolving threat landscape. Due to the utilization
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of autoencoders and the restriction on neural network depth, this framework is

relatively light weight for a machine learning based IDS. Using as little resources as

possible for a robust solution is imperative in the IoT space where there the majority

of devices have limited computational power.

There were several small tweaks made to the Kitsune codebase to better suit

our application and testbed infrastructure. For the scope of this project, we are not

concerned with low latency anomaly detection times. Therefore, we implemented a

pseudo-live IDS with Kitsune. This implementation uses tcpdump, with the -W and

-G flags to specify time and rotation, to collect the network traffic flowing through

the Raspberry Pi gateway over a user specified time interval and stores these traces

in pcap files. These pcaps are then read by Kitsune for processing and inspection.

Initially Kitsune was built to take in a single pcap file to learn the features, train

and execute the anomaly detector. After some reverse engineering, it can now

dynamically parse a directory of pcaps, inspecting the pcaps in chronological order.

By adding this functionality we only have to train the feature extractor and

anomaly detector once, and then Kitsune can be run to detect anomalies over the

user specified time interval. All of this functionality was then condensed into a single

python script that can handle training Kitsune, capturing packets, and executing

Kitsune to detect anomalies. A a repository including this script and our modified

version of Kitsune is publicly available in the appendix.

3.8 Anomaly Detection Integration

After Kitsune was properly configured the next step in becoming operational is

determining an anomaly threshold. Picking an appropriate threshold for an IDS is

of paramount importance. The value should result in high confidence that there
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is an anomaly while reducing the number of false positives. A common approach

to determine a threshold is to use a receiver operating characteristic (ROC) curve,

which plots the aptitude of any given threshold. In order to generate a ROC curve

we need experimental data of our IDS’s performance against a variety of attacks.

The autoencoders that drive Kitsune are trained to reconstruct their inputs. In

the case of an network based IDS, the encoders will learn to reconstruct network

traffic based on a sample of benign traffic. Once the IDS is finished training, if the

traffic is malicious, not benign, then it will have a high reconstruction error. Kitsune

measures this error with the RMSE, which will be the metric used to trigger an

anomaly.

Tracing high root mean squared error (RMSE) values to their corresponding

packets was added to begin tracing back anomalies to potentially infected devices

or attack vectors. Once the packet was found for the anomalous error score the MAC

address is extracted. Our fingerprinting framework takes this MAC and matches it

with the corresponding device. Integrating anomaly detection and fingerprinting is

the first step in graceful degradation pipeline because we now have a vague under-

standing of how the vulnerability was introduced into the network. This is also gives

us a strong starting point to begin degrading device specific functionality.

Initially we were hoping to compile experimental results of running our IDS

against benign and malicious traffic over the various different attack pcaps provided

in the Kitsune paper. While just beginning to experiment with the provided pcaps,

we noticed inconsistencies in the RMSE values when executing over the same file.

We were able to trace this difference to the preprocess feature built into Kitsune.

When reading a file, Kitsune checks to see if tshark, the command line version of

wireshark [20], is installed on the system. If tshark is present, it will parse the

pcap with the tool and dump the output to a tsv file. The reason for this being
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that tshark is much faster than scapy, which is used when tshark is not present.

Reducing overhead is beneficial, however, pcaps parsed by tshark were returning

different values than those parsed by scapy. Given as scapy was used to generate the

example plots on Kitsune’s github, we assumed that tshark parsing was a feature

added later in development and subsequently went through less testing. Due to the

accelerating time frame of this project we could not spend any time debugging and

fixing the preprocessing feature.

After the preprocessing bug, we continued examining pcaps and found there were

significant differences between the Mirai experiments and other common network

attacks such as SSDP floods, DoS attacks, wiretaps, and fuzzing. We believe this

discrepancy arises from the footnote in the Mirai pcap description that states it was

recorded on a different IoT network. This would explain the drastic difference in

RMSE value ranges for malicious traffic. The discrepancy in the experimental data

sets left us with two options: generate a ROC curve with all the data excluding

Mirai, or generate data on our own network which could include Mirai. Given the

sheer scale and devastation Mirai wreaked, particularly in IoT devices, we decided

to carry out experimental attacks on the IoT infrastructure we had setup.

The first two attacks deployed were network disruption/denial of service (DoS)

attacks. The attacks were launched from a machine running Kali Linux 2019.3,

and the primary tools used were airmon-ng, airodump-ng [2], and mdk3 [27]. The

attacker also has access to a network card that has both a packet monitoring and

injection mode. In this experiment the Alfa AWUS036NEH network card with

Ralink RT3070 chipset was used. Both attacks started with a brief reconnaissance

phase by utilizing monitor mode to discover and identify devices on the network.

Once the target(s) were identified, airodump-ng was launched to watch the target

traffic. The first attack launched was a targeted DoS attack directed at a Wi-Fi

35



camera. Using airmon-ng, the attacker sent a flood of deauthentication packets

between the IoT access point and the camera, effectively cutting off communication

to and from the camera. The success of this attack was verified through airodump-

ng logs and the inability of the home user to launch a live stream from the targeted

camera. The second attack was not targeted and aimed to disrupt the entire network.

This time airodump-ng was used to monitor the IoT access point and mdk3 sent a

flood of deauthentication packets pointed at the access point. This attack is much

louder and more noticeable than the targeted attack since it disables communication

between all devices connected to the victim access point. The success of the attack

was verified by trying and failing to reach multiple different devices connected to

the victim access point.

The third attack we carried out was a meddler-in-the-middle (MITM) attack.

These types of attacks can be conducting with many different techniques, but we

choose an address resolution protocol (ARP) spoofing attack. In this attack we

assume that the attacker has gained access to the network. Once in the network, the

attacker begins to spoof ARP packets in attempts to associate their MAC address

with the target IP address, thus intercepting all traffic meant for the target. Our

meddler successfully spoofed ARP messages and intercepted traffic between the IoT

access point and an Amazon Alexa. This attack was detected by Kitsune as two

major anomalies. The first is when the attacker joined the network and the second

is when the attacker began routing traffic through their machine.

The fourth and final attack conducted was infecting a device with the Mirai

botnet malware. Mirai targets poorly secured IoT devices to infect as bots. At its

height this botnet contained hundreds of thousands of infected devices that were

able to launch a record breaking 620 Gigabit per second denial of service (DoS)

attack in 2016 [28]. The source code for the malware has since been made public,
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and we retrieved a copy from Github (https://github.com/jgamblin/Mirai-Source-

Code). To ensure that we could deploy the malware safely in our testbed we disabled

several features of the original malware. First we disabled the ability of Mirai to kill

other communication services such as telnet and ssh on the bots so that we could

reconnect and disinfect the devices. We also removed the ability for the botnet

to propogate itself by deleting the loader. However, we kept the scanner for the

purposes of watching the bot attempt to talk to and infect other devices but not

having the means to without the loader. With our custom build of Mirai, we infected

our IoT testbed. A remote command and control (CNC) server was also deployed

to monitor the bots and send attack instructions. Once infected, we instructed the

infected bots to carry out a DoS attack on a target IP. From examining the traffic

and the output from Kitsune, we saw clear spikes when communication with the

CNC server was initiated and when the attack commands were received and carried

out.

The graphs in Figure 3.5 are a compilation of the RMSE values of all four attack

vectors. Notice the scales on each of the graphs and greatly they differ from each

other. Obviously just comparing these value to determine a threshold would not be

effective. We need a data processing technique to compare Kitsune’s output across

its wide dynamic range.

A number of different techniques were considered to address this problem in-

cluding moving averages and whitening transforms. We discovered that by taking

the slope of the standard deviation we were able to compare these datasets with the

same threshold. Standard deviation is a statistical tool used to measure the amount

of variation in a set of values. Therefore, it acts as bridge to compare the variance

between sets that have varying ranges. To look for sudden changes or spikes in this

variance, which would indicate an anomaly, we take the slope of a set of standard
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Figure 3.5: Kitsune’s RMSE output for all four attack vectors.
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Figure 3.6: The affect of our data processing technique.
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deviations. Experimentation yielded the best results when taking the sample stan-

dard deviation of sets of 20 values and then calculating the slope of every 5 standard

deviation measurement. The results of our data processing technique are shown in

Figure 3.6. Note how all graphs now have the same scale.

During this experimentation we discovered another bug that we had introduced

with an earlier revision to the codebase. When making Kitsune pseudo real-time,

we split the large prerecorded pcap files into smaller files that we later stitched

back together to simulate a real operating environment. We noticed that when

stitching pcaps back together we were losing dynamic range for the RMSE values.

We eventually discovered that splitting the first 50,000 packets that Kitsune uses

to train the feature extractor and learn benign traffic patterns causes this loss in

range. During the training phase Kitsune must receive a single pcap for optimal

performance. A change was made in the driver script and now the first capture

waits until the capture reaches 50,000 packets before segmenting pcaps in smaller

time frames.

The attack data was compiled into the excel file ”ROC.xlsx” which can be found

in our Git repository. The generated ROC curve will be discussed in anomaly

detection results, section 4.2.

3.9 Determining Device Functionality Bins for use

in Risk Identification

The team categorized device functionalities across testbed IoT devices into “bins” so

as to provide simple, generalized risks. Across all possible IoT device functionalities,

the team designated the following categorical bins in decreasing order of riskiness:

a) video streaming, such as live video streaming from a smart camera, b) audio
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streaming, such as live audio streaming from an Amazon Echo, and c) device state

change, such as switching a smart plug or lightbulb on or off [3]. Then, the team

considered scenarios in which devices that offered functionalities in these bins were

compromised; here, the team considered risks associated with each type of device

functionality bin.

First, an allowed video streaming functionality on a compromised device would

allow an adversary to access the onboard camera without restriction. The risks

associated with allowing a video streaming functionality on a compromised device

are apparent: an adversary could covertly monitor live-stream camera feeds at any

time [37]. Footage from indoor smart cameras, perhaps positioned in bedrooms or in

living spaces, could be streamed, or even broadcasted publically, at will. Degrading

a video streaming functionality on a compromised device would prevent this from

occurring.

Second, an allowed audio streaming functionality on a compromised device would

allow an adversary to access the onboard microphone and likely onboard speakers

without restriction. The risks associated with allowing an audio streaming func-

tionality on a compromised device are therein straightforward: an adversary could

covertly listen-in at any time or likely make announcements through speakers [37].

This risk is particularly notable when discussing Amazon Echo Dots; having the

ability to listen and to “speak”, an adversary could literally carry a two-way con-

versation with a homeowner. Degrading an audio streaming functionality on a

compromised device would prevent this from occurring.

Third, an allowed state change functionality on a compromised device would

allow an adversary to not only change device state, but to also make powerful

inferences from an end user’s state change patterns. Prior research indicates that

state changes in devices as simple as smart plugs and smart light bulbs could reveal
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user sleep patterns, home and away patterns, and more [3]. With little additional

work, adversaries could leverage this information to coordinate burglaries and home

invasions. Degrading a state change functionality on a compromised device would

prevent this from occurring.

3.10 Graceful Degradation of IoT Device Func-

tionalities

The team defined ”graceful degradation” as the ability to autonomously and se-

lectively allow or disallow particular IoT device functionalities to a configuration

specified by an end user. The team developed an extensible platform that encour-

aged an end user to introduce many types of functionalities across many types of

devices to a maintained degradation knowledge base. The team’s application al-

lowed an end user to specify which functionalities should be allowed or disallowed

if certain devices had been compromised. First, the team investigated network traf-

fic associated with device functionalities to ascertain a packet feature vector for

use in machine learning integration with the sklearn Python library. Second, the

team developed a functionality labeling workflow, supervised by an end user, that

allowed the introduction of new functionalities for devices on the network. Third,

the team developed a functionality modeling workflow, completely unsupervised by

way of machine learning integration, that yielded high-confidence classifications for

traffic associated or disassociated with device functionalities as introduced initially

by an end user. Lastly, the team developed a packet filtering workflow that inte-

grated device functionality machine learning classifiers with analysis of live traffic

so as to determine if packets were associated or disassociated with particular device

functionalities in real-time.
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Figure 3.7: Blink camera functionality as derived from throughput.

3.11 Investigating Network Traffic Associated with

Device Functionalities

First, the team investigated network traffic associated with device functionalities to

ascertain a packet feature vector for use in machine learning integration. Initially, in

modeling the work presented in Peek-a-boo [3], the team examined traffic volume,

or total data throughput per second, of traffic bound for and/or originating from

particular devices in pursuit of recognizing network traffic associated with particular

functionalities. Line plots of data throughput against time illustrated that packet

size is a useful indicator in mapping traffic to particular device functionalities.

There were many reasons as to why the team could not rely solely on through-

put data in classifying traffic, though. Most importantly, with research into Net-

filterQueue [1], the team learned that packets cannot gracefully be “delayed” at

a router until throughput data over a certain interval could be observed. In other
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Figure 3.8: TP-Link plug functionality as derived from throughput.

words, in order to determine throughput per second, the team would need to “delay”

packets at a router for a period of time as to assess the throughput of the preceding

period of time. Herein, using solely packet size in live-time classification would prove

difficult in development and cumbersome in implementation. In further modeling

the work of Peek-a-boo [3] and Kitsune [34], the team expanded the packet feature

vector to include a) packet size, b) TCP source port, c) TCP destination port, d)

an integer hash of TCP flags, e) UDP source port, and f) UDP destination port.

In investigating network traffic, the team considered the possible existence of

certain device functionalities that supported the concurrent maintenance of multiple

TCP streams. TCP differs from UDP in the sense that it is not loss tolerant. The

team identified a theoretical edge case where multiple, concurrent streams belonging

to device functionalities existed, but where only a subset of those streams was to

be degraded. In this case, TCP would attempt to reorganize and resend packets

that had been lost to degradation, making it difficult to differentiate one concurrent

TCP stream with another. However, with extensive testing, the team concluded that

every IoT device to be tested did not support concurrent TCP streaming. The team
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observed that even the most complicated IoT devices, such as the Amazon Echo

Dot, could only maintain a single TCP stream at once. Further, the team noted

that every IoT device to be tested had a “timeout” feature that ceased attempts to

access functionalities when they were actively being degraded. UDP streams, being

loss tolerant, did not concern the team in this context.

3.12 Labeling Device Functionalities with User

Supervision

Second, the team developed a functionality labeling workflow, supervised by an

end user, that allowed the introduction of new functionalities for devices on the

network. To the team’s research, the concept and implementation of an end-user-

supervised functionality introduction phase is a novel contribution to the field. The

functionality labeling workflow invites an end user to supply a) a device functionality

label, such as camera live stream, Echo Dot listen-in, and b) the MAC address of the

device to which this functionality will be added in the degradation knowledge base.

In turn, this phase maintains a base of various functionalities as associated with

various devices as introduced by an end user. Similarly, the team also developed

an unsupervised workflow to collect “baseline” traffic from devices. An example of

baseline traffic includes device communications when an end user was not interacting

with a device so as to make use of a functionality. In booting, the workflow uses

Scapy [8] to filter packets sourced from the target MAC address. While interacting

with this workflow and adding a new device functionality, an end user is asked to

mark start and end timeline bounds for traffic associated with that functionality. For

instance, in adding a live-stream functionality for a smart camera, an end user would,

in real-time, a) mark a start boundary just before starting to live-stream from that
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camera, and b) mark an end boundary just after ending the live-stream from that

camera. In marking time intervals in which device functionalities were being used,

an end user allows the functionality labeling workflow to then autonomously label

individual, captured packets as either a) associated with or b) disassociated with a

particular device functionality. For each functionality across each device, captured

packets are labeled as functionality-associated or functionality-disassociated, added

to a set of (packet, label) tuples, and saved with Python for future reference in

machine learning phases of the team’s application.

3.13 Modeling Device Functionalities without User

Supervision

Third, the team developed a functionality modeling workflow, completely unsuper-

vised by way of machine learning integration, that yielded high-confidence classifica-

tions for traffic associated or disassociated with device functionalities as introduced

initially by an end user. This workflow was performed autonomously immediately

following a user-supervised stage as described previously. As discussed, each in-

troduced functionality for each device maintained a saved set of (packet, label)

tuples. In modeling the work of Peek-a-boo [3], the team used each picked set,

and the saved sets of baseline traffic and of other existing device functionalities,

to create a random forest classifier for each device functionality. For instance, in

creating a classifier for a new device functionality “A”, the team considered existing

packet captures previously associated with baseline traffic, device functionality “B”,

device functionality “C”, etc. With this approach, the team utilized existing, saved

packet sets to provide “noise” from other device functionalities when modeling a

new functionality so as to improve sample size. The modeling workflow extracted

46



a) packet size, b) TCP source port, c) TCP destination port, d) an integer hash

of TCP flags, e) UDP source port, and f) UDP destination port from each saved

packet, labeling each as functionality-associated or functionality-disassociated using

the labels provided by the user-supervised workflow. In turn, for each device func-

tionality, a matrix of as many rows as there were saved packets in the training set

was created with a) packet size, b) TCP source port, c) TCP destination port, d)

an integer hash of TCP flags, e) UDP source port, f) UDP destination port, and

g) functionality associated by indicating whether a particular packet was associated

with a device functionality as column headers. Across all device functionalities, the

team achieved an average model confidence of 94% using the random forest algo-

rithm. Tuples of model objects and model accuracies were created and saved for

each device functionality for reference in live packet filtering.

3.14 Integrating Functionality Models into Live

Packet Filtering

Lastly, the team developed a packet filtering workflow that integrated machine learn-

ing models to identify device functionality so as to determine if packets were associ-

ated or disassociated with particular device functionalities in real-time. The degra-

dation system maintained a directory of saved random forest models as associated

with particular device functionalities. For each device with modeled functionality,

the packet filtering workflow paired a NetfilterQueue queue [1] and iptables rule,

$ sudo iptables -t raw -I PREROUTING -m mac --mac-source

{device MAC address} -j NFQUEUE --queue-num {queue number}

so as to direct traffic sourced from such devices to a uniform Python workflow.
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Figure 3.9: From one stream of traffic, a Netfilterqueue is created for each device
on the network, and all feed into one classifier.

In utilizing the PREROUTING table, the team could drop packets even before they

had been routed, significantly increasing overall performance [31]. Initially, the

team attempted to use a singular NetfilterQueue queue to handle all traffic on the

network. With further investigation, the team made the realization that, for best

performance, packets need to be “in and out” of a NetfilterQueue queue in under

500 milliseconds. To achieve this peak performance, the team decided to create one

queue per device to be secured, but maintain a single target Python workflow so as

to maintain scalability.

For each intercepted and queued packet, the Python workflow extracted a) packet

size, b) TCP source port, c) TCP destination port, d) an integer hash of TCP flags,

e) UDP source port, and f) UDP destination port. The workflow would extract

source MAC address, as well, so as to determine the appropriate random forest

models to reference. All random forest models across all device functionalities were

loaded into memory at the start of live-filtering to improve live-time responsiveness.

After identifying the appropriate models for a device, the Python workflow used the

packet feature vector as extracted from each packet to make a prediction against

each functionality model so as to associate or disassociate a queued packet with

a functionality. In testing, the team determined that a single prediction could be

48



Figure 3.10: Blink camera live stream fails when degraded in real time.

made in approximately 40 milliseconds, meaning that around twelve functionalities

could be added for each device while maintaining peak performance. If a packet

was predicted to be associated with a particular functionality, and if the particular

functionality was to be degraded as specified by an end-user, that packet would

be dropped. Similarly, if a packet could not be positively classified as a particular

device functionality by any of random forest models on record, that packet was

assumed to be anomalous and was dropped.

3.15 Constructing and Integrating the Graphic

User Interface

This integration platform would take the form of a user-friendly Graphic User In-

terface for a nontechnical home user to interact with.

Since we were hosting the GUI on the Raspberry Pi, which was situated behind a
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router, we needed to set up port forwarding such that all HTTP traffic to a specified

port of the router, would connect into the Pi. We mapped Port 8081 on the Pi to

port 2023 on the router. On the Pi, the GUI was hosted at 192.168.0.149, the Pi’s

private IP address, on port 8081. Once running on the Pi, the GUI can be opened

from any web browser by entering the routers IP 68.116.160.168, a colon, followed

by the forwarding port, 2023, for example http://68.116.160.168:2203/.

In selecting a development platform for a front end, we had the following re-

quirements:

1. We need the ability to run headless, since the suite will be ran from the Pi

without a connected display

2. We need abundant documentation to support the rapid development needed

for the scope of this project

3. We need a lightweight solution with few dependencies, as the resources avail-

able on the Pi are limited

4. We need the ability to run commands and to dynamically load and change

data to display

We considered Django, Pyramid, PyQT, and PySimpleGUI as possible solutions.

We selected PySimpleGUIWeb [40] as it met all of our criteria. First, web hosting

functionality available and streamlined through Remi python package. Second, full

“cookbook” of documentation for various programs as well as tutorials. Third,

Remi is the only other package installed with PySimpleGUI. Fourth, while elements

cannot be created or deleted during runtime, they can be hidden or shown, and

can use subprocess through python to execute commands as normal to a shell.

PySimpleGUI is a python wrapper for tkinter, Qt, wxPython and Remi as a means
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for rapid development through less lines of code. It is deployable on almost all OS’s

as well as deployable on hardware form Android devices, Raspberry Pi Monitors,

computers, and web browsers.

3.16 Viewing the Results of Fingerprinting

The management system displays the fingerprint data to the GUI by analyzing the

output folder from our Fingerprint module. If a new folder is discovered it is added to

the data structure and the device’s MAC address is displayed under found devices.

Then, the detailed information and fingerprint result json is parsed.The several

nested dictionaries within each synthesized json had to be flattened. Extraneous

information such as boolean values, numbers, or empty lists, were also removed.

The final display output is the most relevant non-empty fields that were obtained

from fingerprinting, and useful to a home user in matching the description to a

device they own.

3.17 Loading Saved Trained Functions

When the “Load Functions” button is pressed, any saved device function models will

be identified and loaded into the GUI as a list. This will search through each device

folder that has been generated from fingerprinting. If a sub-directory is discovered

that is not “baseline” training data, then the name of that function, the device

MAC address and default rule of “allow” is added as a single line in a text file

named degradeRules.txt.
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3.18 Anomaly Detection Integration and Notifi-

cations

Upon start-up of the GDI Suite, a threaded call to the runIDS() function from

gui_kitsune.py begins training for anomaly detection. Arguments can be passed

for anomaly trigger threshold, the number of packets to collect for training, the .pcap

time interval, and max auto encoder size. Currently we pass (10, 30000, 10, 15).

Once trained, if an anomaly occurs, the source and destination MAC addresses will

be appended to a log file. The GUI must actively look for modifications to this

file without blocking other processes. Through the python library watchdog [6],

we create a pattern matching observer that monitors the log file for modifications.

When modification is detected we pull the last added line of the log file for the

source and destination MAC addresses of the anomaly. We notify the user, activate

the degradation filter and display the friendly names of the anomalous devices if

available.

3.19 Viewing and Changing a Function’s Degra-

dation Status

Upon selecting a function from the displayed list, a look-up function is called to

check the current rule by MAC address and function name pair. If educational

flags are found, the relevant educational information is displayed. Depending on the

current rule in the text file for degrade or allow, the opposing choices button will be

enabled and highlighted. For example, if a rule is currently allowed, Only the option

to block the function will be highlighted. Upon clicking block in this example, the

look-up function is called again, to update the value within degradeRules.txt from
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allow to block. The allow button will now be highlighted to provide the option to

accept this function once again.

3.20 Training a New Function through the User

Interface

Once a user populates the device and function information. When ready the user

can click the “Train Function”, button. This will pass MAC address, and function

name to a blocking subprocess in the form of

$ sudo python3 /home/pi/MQP/degradation/create_training_set,py --mac

MAC --feature functionName

.

When successfully trained, the MAC, function name, allow, and educational flags

stored as numbers are added to “degradeRules.txt”. Then another blocking process

calls update_models.py, which will update the random forest classifier models of

all functions.

3.21 Activating the Degradation Filter

The degredation filter is triggered by anomalies and can also be manually trig-

gered through clicking the “Activate Degrade Filter” button. This allows a user

to have the option to always enact their preferred level of privacy. When the

degradation filtering rules are activated, we parse the MAC,function,rule lines from

degradeRules.txt into pairs of a device MAC, followed by all of its functions and

corresponding rules. Example of such pairs can be seen as
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“MAC1,function1,rule1,function2,rule2 MAC2,function1,rule1”. These pairs are passed

as arguments to a subprocess of secure_filter.py. From there secure_filter.py

builds the IP table rules to degrade the functions accordingly.

3.22 Disabling the Degradation Filter

When the user either wishes to update their device functionality preferences, or

deactivate the filter, they press the red button which states it will remove the filter.

This calls

$ pkill -TERM -P pid

where pid is the process ID (PID) of the sudo command which activated the filter.

This will kill the process and all child processes of the PID which spawn from issuing

with sudo privileges. Next a subprocess is issued to ensure the IP Table rules are

flushed via

$ sudo iptables -t raw -F

. All degradation is stopped, and can be started again if the filter is triggered by

anomaly or button selection.
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Chapter 4

Results, Discussion, and

Limitations

Here, we discuss the fortes and limitations of the approach aforementioned. We

speak to fingerprinting, intrusion detection, graceful degradation, and integration

capabilities as developed.

4.1 Fingerprinting

To validate the fingerprinting approach aforementioned, the team conducted re-

search to determine actual manufacturers, operating systems, and device types of

the testbed IoT devices. Then, the team referenced fingerprinting data obtained

from Nmap [30], Fingerbank [18], and p0f [53] and cross-checked these results with

open source information known to be correct [29] [48] [9] [16] [41]

[24]. A summary of fingerprinting accuracies can be observed in the table below.

Overall, the team’s fingerprinting approach correctly determined device manufac-

turer in 89% of cases, operating system in 67% of cases, and device type in 67%
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Figure 4.1: Correctness of manufacturer, operating system, and device type guesses
made by fingerprinting capabilities (correct guesses highlighted in green).

of cases. However, the probability that at least two of the three categories were

determined correctly for a device was 89%. Below, correct guesses are highlighted

in green. Full fingerprinting results can be found in the Appendix.

The team’s layered approach to device fingerprinting yields generally reliable

data. The results above suggest that device manufacturers can be determined ac-

curately, but that device operating systems and broadened device types are more

difficult to ascertain. In some cases, fingerprinting capabilities would yield the man-

ufacturer of a device’s network card. Though accurate, these guesses could confuse

an end user attempting to identify devices on his or her network. The team ac-

knowledges that previous works such as AuDI [32], ProfilIoT [38], and IFRAT [25]

provide comprehensive suites that more accurately fingerprint devices. However,

for the purposes of this project, which focuses primarily on intrusion detection and

graceful degradation, the team found its fingerprinting capabilities to be satisfac-

tory. In future work, the team would integrate a more comprehensive fingerprinting
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solution so as to provide increased ease of use for an end user.

Although our fingerprinting approach accurately determined two of three finger-

printing indicators (manufacturer, operating system, broader type) for 89% percent

of tested devices, we consider possible limitations of the capability. First, Nmap [30]

is “active”, meaning that it interacts directly with a targeted device via network

communication. Fingerprinting traffic between a router and a targeted device can,

in some cases, be flagged as anomalous by an intrusion detection system. Although

we did not encounter this scenario in testing, we recognize that this problem could

arise in future work. Second, the team uses well-known and well-documented finger-

printing tools that could harbor known vulnerabilities. A well-read attacker could

tailor tool-specific traffic spoofers so as to misdirect Nmap [30], Fingerbank [18], or

p0f [53] with the ultimate goal of undermining fingerprinting confidence.

4.2 Anomaly Detection

After exploring a multitude of attack vectors and collecting and labeling network

captures, we synthesized the data into a ROC curve. This visualization allowed

us to determine an appropriate threshold based on the trade off of detecting an

attack versus triggering a false positive. By utilizing this tool, we are able to select

a threshold that limits false positives and maximizes meaningful alerts. Minimizing

false positives is necessary to build trust between the system and the user, as the

user does not want to be bombarded by false alerts. If the false positive rate is too

low, however, then the IDS begins to loose detection sensitivity. For example, by

selecting the threshold that has less than a 10% false positive rate we achieve an

attack sensitivity rate of nearly 50%.

While Kitsune excelled at providing an efficient and effective IDS, it is not infal-
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Figure 4.2: ROC Plot for Kitsune IDS.

lible. Unsupervised learning, for example, is susceptible to poisoning attacks. This

can occur when malicious behavior is present in network traffic during the training

or learning phases of the feature extractor and anomaly detector. The consequences

of a successful poisoning attack would mean that the IDS would not detect malicious

traffic as it was trained to consider that traffic as normal.

Additionally, when carrying out a MITM on our testbed network, the intro-

duction of a foreign device to the network triggered an anomaly. The behavior is

beneficial in the case that the foreign device is actually an attacker with malicious

intent. In this situation, the user would like to be notified when such an event oc-

curs. However, if the foreign device is benevolent device, such as a new device the

user is adding to thier home, they would not like to trigger an anomaly. Kitsune

would have to be retrained to include benign traffic from this additional device.
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Figure 4.3: Average classifier confidences for trained functionalities across devices.

4.3 Degradation

To validate the degradation approach aforementioned, the team determined an aver-

age classifier confidence and attempted to positively identify device functionalities in

real time. First, the team’s approach formulated a random forest classifier for each

device functionality. Each random forest classifier provided a confidence level, that

is, a self-determined, but theoretical, measure of accuracy. Across trained device

functionalities, an average classification confidence level of 0.9440 was achieved.

Second, the team used ten live tests to record a confusion matrix for each device

functionality as trained. For the purposes of experimentation, the team started

degradation capabilities in a passive context so that device functionalities would be

recognized but not degraded. In five of the ten tests, the team demonstrated a target

functionality and then recorded the functionality recognized by the degradation

capabilities. For example, if the team was testing for recognition accuracy of smart

camera live streaming, the team would initiate live streaming from a mobile app and

then record the functionality as recognized by the degradation suite. Similarly, in the
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Figure 4.4: Average classifier accuracies for trained functionalities across testbed
devices, determined with real-time experimentation.

other five tests, the team would demonstrate other, trained device functionalities,

but not the target functionality. For example, if the team was testing for recognition

accuracy of smart camera live streaming, the team would initiate another feature,

such as motion detection arming, and then record the functionality as recognized by

the suite. Results per functionalities were represented as follows in the matrices as

presented herein: a) true positive: a functionality was demonstrated and classified,

b) false positive: a functionality was not demonstrated but was classified, c) true

negative: a functionality was not demonstrated nor classified, and d) false negative:

a functionality was demonstrated but not classified. Across all confusion matrices,

the team achieved an average accuracy, or ACC, of 0.9260.

The team’s degradation results demonstrate that three minute, user-supervised,

functionality training phases can be leveraged to accurately identify packets as-

sociated with particular IoT device functionalities in real time. By maintaining

functionality-labeled packets as retrieved from previous training phases, the team

creates accurate classifiers infused with noise from extraneous device functionalities
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and requires a very brief training phase for new functionalities. The results demon-

strate that noise improves classifier confidence. The team expects this approach

would scale across all IoT devices that utilize Wi-Fi or Ethernet communication as

random forest classifiers are created individually for each and every device function-

ality. Further, this approach shows that even functionalities with encrypted traffic

can be classified with high confidence.

Many advanced traffic classification schemes, such as Peek-a-boo [3] and Kit-

sune [34], leverage machine learning approaches to draw meaningful associations

and dissociations between feature vectors as derived from packets of various device

functionalities. Random forest, as used in this project, was evaluated by the au-

thors of Peek-a-boo [3] and reported to have an accuracy of 91% when mapping

network traffic to device functions; expectedly, our team achieved a comparable

accuracy of 94% using random forest classifiers. This is understandable because

our team’s leverage of machine learning to degrade functionalities was very similar

to Peek-a-boo’s [3] leverage of machine learning to ascertain device activity from

an adversarial standpoint. Of note, Peek-a-boo [3] also evaluated the k-nearest

neighbors algorithm, which was reported to have an accuracy of 89%. Future work

could explore various machine learning algorithms in the context of degradation as

supported by machine learning.

Although our approach yielded high confidences and accuracies, we consider

possible limitations of the system. First, this particular approach could face lower

accuracies while attempting to classify traffic associated with automated firmware

updates. Automated updates perform at random time intervals and are inherently

difficult to classify without existing knowledge of their behavioral characteristics,

which oftentimes vary across iterations. Therefore, automated updates would likely

be labeled as anomalous in a contingency scenario where a compromised device was
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Figure 4.5: A full look at the completed GDI Security Suite.

attempting to update automatically. However, if a user were to train an “update

functionality” manually, this problem would likely not arise as traffic associated with

the update could be modeled and identified as a functionality. Second, while brief,

the degradation stages of this approach still require user supervision. Assuming that

a home user will cooperate in training is critical to the success of this system, and

while training periods are short, if a user does not train functions, there is no way

to detect or degrade them.

4.4 User Interface

We successfully unified all three platforms into one straightforward, appealing user

interface we named the GDI Security Suite, see Figure 4.5. Our user interface

implements the HCI practices of repetition, alignment, contrast, and spacing to

create a familiar and easier to navigate interface for users.

From the GDI Suite, a user can fingerprint devices, view device information,

apply friendly names to the MAC addresses of devices, load trained device functions,
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Figure 4.6: On top is all running python processes, followed by the normal UI display
shown in green and the empty iptable rules.

Figure 4.7: With the degrade filter on, the iptable rules are bound and notification
displayed.

train new device functions, toggle a device function between allowed or blocked, and

activate the security filter.

In Figure 4.6 we see the background information related to the GDI Suite running

in an uninfected state. In Figure 4.7, we see the updates to both the UI and the

back-end when an anomaly is detected, and the degrade filter is enabled.

The GDI Suite can provide the following optional educational text:

• This function operates basic device states like on or off. Hackers can turn these

devices on and off at their choosing. Also functions that control the powering

on or off of devices such as lights, or thermostats, may allow hackers to infer
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when you are home or awake, versus away or asleep.

• This function records audio. Hackers can view camera feeds, take pictures,

and activate or deactivate cameras. Again they can see if you are home or

awake, versus away or asleep.

• This function records video. Hackers can listen to and record audio files from

your device. They may also be able to broadcast their own audio announce-

ments over the speakers whenever they choose.

Our UI faced latency issues which stem from two main issues. The first is

that PySimpleGUI is designed for rapid development of simple form-like UIs. It is

meant for the simple getting of text and values, not for a complex dynamic web

application. The size and complexity of the UI causes occasional glitches where not

all of the information is fully displayed and requires another click, which should be

eliminated for a final product. The second, and largest attributor to lag in the UI

is the hardware restrictions of the Raspberry Pi. We are using a Raspberry Pi 3

with 1 GB of RAM and limited processing power, running Raspian Buster operating

system. From this device we host a web server, train machine learning algorithms,

host an intrusion detection system, and run several subprocesses. The random forest

models are loaded directly into RAM to ensure quick matching, yet consume almost

the entirety of the available 1 GB in some cases. The learning of new functions

and intrusion detection is carried out by the CPU. The RAM and CPU are central

limiting factors to this projects current scalability and performance speed.

Another limitation of the UI is the lack of user testing for the educational value

of our system. While our system implements HCI design principles and provides

simplicity and ease of use, there is no ground truth for its educational value to a

non-technical home user.
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Chapter 5

Future Work

In this chapter, we summarize limitations of our current work and highlight areas

for future improvement. To summarize, we believe our current limitations include:

• Latency from hardware restrictions

• Fingerprinting inaccuracies and/or lack of specificity

• Degradation requires user interaction

• Susceptibility to adversarial machine learning attacks

• Creating a more sensitive IDS while still minimizing the false positive rate

In order to fully automate the system, a team could develop a traffic classification

approach that could identify clusters as indicative of particular functionalities with-

out supervision. The fingerprinting and anomaly degradation stages as discussed

previously are completely unsupervised; an unsupervised degradation stage would

make the team’s approach completely autonomous.

While already automated, anomaly detection could be made more robust by cre-

ating a device functionality-based anomaly detection system. Currently, our model
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intercepts network-based attacks. However, being able to view types and combi-

nations of device functionalities as well as their frequncies, offers a more holistic

anomaly detection system. For example, if a Hue light bulb starts turning off and

on rapidly in the middle of the night, an attacker could be causing such issue that

should trigger an anomaly. Function-based anomaly detection would require a much

more in depth training phase as a users “normal” device usage must be learned over

several days or even weeks. During this training phase, the device may be suscep-

tible to start up attacks, since the large period of time allows for attackers poison

the benign training data with unnatural device functionalities.

We would also like to continue testing our implementation of Kitsune to both

validate our data processing technique and test the IDS against a wider array of

attack vectors. The more thoroughly we test the IDS the better we can adapt it to

the dynamic threat landscape that it will undoubtedly see. Additional implemen-

tation would also include a retrain functionality that will activate after events such

as firmware updates and the introduction of a new, benign device.

Further integration between anomaly detection and the UI could include a slider

to tune the sensitivity of the IDS. Based on our generated ROC curve, different

thresholds can be used to achieve a less sensitive IDS with smaller probabilities of

raising false positives and vice versa. Incorporating a slider to allow a user to tune

the IDS enables to user to customize the security suite to their desired acceptable

risk tolerance.

A future user testing experiment would provide feedback on the interface design,

labeling queries, and risk education of our system. Updates could then be added

to restructure the information in a more logical order to users, or streamline areas

users found confusing.

As mentioned, our current system could be expanded to save the function-traffic
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feature mappings to a database, and used in the future by the scientific community.

The findings from a 2018 survey of machine learning practices and techniques for ML

in network applications, highlights a need for such live device traffic: “Therefore,

a combined effort from both academia and industry is needed, to create public

repositories of data traces annotated with ground truth from various real networks”

[10]. We already classify and store rules for each functionality with a friendly name.

With the consent of a home user, a friendly name and training sample pair can be

saved to a public database and used to boost performance of classifying the same

feature, as well as used by researchers for similar work.

If future devices depend heavily on Bluetooth or alternative protocols, we believe

our random forest classification, and training method would allow for alternate

protocol functions to be degraded similar to Wi-Fi. This would require the proper

hardware to sniff these protocols. New features would have to be identified unique to

the transmission packets of those protocols. Those features would then be extracted

and computed with the random forest classifier. Alternate protocols do not have IP

Tables, so enacting rules to allow or drop packets will be more complex, possibly

requiring additional hardware.
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Chapter 6

Conclusion

In conclusion, the team engineered a complete, integrated IoT security suite that

accurately and confidently fingerprinted WiFi devices, detected network-based in-

trusions, and gracefully degraded individual device functionalities. First, across

89% of tested devices, the team accurately fingerprinted manufacturer and oper-

ating system, manufacturer and type, or operating system and type. Second, our

near real-time IDS detects network attacks and intrusions with greater than 90%

accuracy by leveraging a lightweight ensemble of autoencoders. Third, the team

unified all of these successful tools into one cohesive, user-friendly, graphical user

interface. The interface allowed non-technical end users to identify and train device

functionalities while learning about the risks associated with different categorical

classifications of device functionalities. Lastly, across all device functionalities as

trained, the team achieved a) an average traffic classifier confidence of 94% and

b) an average traffic classifier accuracy of 93%. The performance of our degrada-

tion capabilities were greatly enhanced by training the functionality classifiers with

network traffic already recorded from previous training phases.

If widely adopted, the approach presented would offer an elevated level of net-
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work security and user privacy for WiFi networks harboring IoT devices. We present

a highly scalable, accurate, and confident framework that remains comprehensible

and customizable to the average end user. GDI security differs from current solu-

tions in presenting a graceful degradation strategy that allows compromised devices

to maintain a minimum level of functionality in lieu of complete isolation or quaran-

tine. The IoT device industry only continues to grow, introducing new security and

privacy vulnerabilities. GDI security provides and adaptable, comprehensive home

security suite for the IoT era.
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Chapter 7

Appendix

In this section, we present confusion matrices and console logs as obtained through

degradation testing and additional screenshots of the user interface.
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Figure 7.1: Classifier confidences for Blink camera.

Figure 7.2: Confusion matrix for Blink baseline behavior experimental testing.

Figure 7.3: Confusion matrix for Blink motion detection experimental testing.
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Figure 7.4: Confusion matrix for Blink live photo experimental testing.

Figure 7.5: Confusion matrix for Blink live video experimental testing.

Figure 7.6: Classifier confidences for Echo Dot.
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Figure 7.7: Confusion matrix for Echo Dot baseline behavior experimental testing.

Figure 7.8: Confusion matrix for Echo Dot audio announcement experimental test-
ing.

Figure 7.9: Confusion matrix for Echo Dot live, audio drop-in experimental testing.
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Figure 7.10: Classifier confidences for Etekcity smart plug.

Figure 7.11: Confusion matrix for Etekcity smart plug baseline behavior experimen-
tal testing.

Figure 7.12: Confusion matrix for Etekcity smart plug on and off behavior experi-
mental testing.
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Figure 7.13: Classifier confidences for Raspberry Pi 3.

Figure 7.14: Confusion matrix for Raspberry Pi 3 SSH connection initiation behavior
experimental testing.

Figure 7.15: Classifier confidences for TP-Link smart plug.
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Figure 7.16: Confusion matrix for TP-Link smart plug baseline behavior experimen-
tal testing.

Figure 7.17: Confusion matrix for TP-Link smart plug on and off behavior experi-
mental testing.
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Figure 7.18: Classifying Alexa drop-in behavior
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Figure 7.19: Classifying Alexa baseline behavior
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Figure 7.20: Classifying TP-Link plug on/off behavior
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Figure 7.21: Classifying Blink camera arm/disarm behavior
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Figure 7.22: Classifying Blink camera live picture behavior
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Figure 7.23: Classifying Blink camera live video stream behavior
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Figure 7.24: Renaming a device in the UI

Figure 7.25: Choosing to degrade a function through the UI
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