
Towards an End-to-End Training Data Management
System for Machine Learning Models

by

Huayi Zhang

A Dissertation

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Doctor of Philosophy

in

Data Science

by

January 2023

APPROVED:

Elke A. Rundensteiner
Worcester Polytechnic Institute
Advisor

Xiaozhong Liu
Associate Professor, WPI.
Committee Member

Oren Mangoubi
Assistant Professor, WPI.
Committee Member

Samuel Madden
Professor, MIT
External Committee Member

Towards an End-to-End Training Data Management
System for Machine Learning Models

Abstract

A successful machine learning application requires powerful machine learning
models and high-quality training data. In recent years, the machine learning com-
munity has proposed many powerful deep learning models that achieve promising
results on benchmark machine learning tasks. However, techniques and tools to help
practitioners to prepare and evaluate high-quality training data remain relatively lim-
ited. The goal of this dissertation is thus to propose an end-to-end training data man-
agement system that helps practitioners on the following tasks detailed below.

• Removing Anomalies from the Raw Dataset: 1. Raw datasets collected in real
applications may contain low-quality data samples, such as anomalies produced
due to sensor issues. To tackle this, I develop a semi-supervised anomaly de-
tection algorithm called ELITE. While only requiring the users to label an ex-
tremely small set of samples, ELITE significantly improves the state-of-the-art
deep anomaly detection models. Our experiments on public benchmark datasets
show that ELITE achieves up to 30% improvement in ROC-AUC score compared
to the state-of-the-art techniques. This project has been published in KDD2021.

• Labeling Training Data: In practice, it is often infeasible to manually label a
sufficient number of training samples for modern large-scale machine learning
models. To minimize labeling efforts by domain experts, I propose a label prop-
agation system, LANCET, that automatically propagates manually annotated
labels to similar unlabeled data objects. LANCET addresses three challenges in
an integrated framework: (1) which data samples to ask humans to label, (2)
how to propagate labels to other samples automatically, and (3) when to stop la-
beling. Our experiments on diverse public data sets demonstrate that LANCET
consistently outperforms state-of-the-art methods by a large margin – up to 30
percentage increase in accuracy. This project has been published in VLDB2021.

• Curating Training Data: The training data preparation tools, such as the ones
mentioned above, still inevitably generate erroneous training data. To tackle
this, I develop the MetaStore system to help data scientists curate deep learning
models’ training data based on training samples’ gradients produced during the
model training process. MetaStore supports efficient gradient-based analytics
query execution with three key components : (1) a lightweight gradient collector,
(2) a compact gradient storage, and (3) an efficient gradient analytics engine.
Our experiments demonstrate that MetaStore outperforms alternative baseline
methods from 4 to 578x in storage costs and from 2 to 1000x in running time.
This project has been submitted to VLDB2023.

2

PhD Dissertation Defense: Huayi Zhang 3

Contents

1 Introduction 8
1.1 Motivation: The Need for an End-to-End Training Data Management System 8
1.2 ELITE: Robust Deep Anomaly Detection with Meta-Gradient 9

1.2.1 State-of-the-Art in Deep Anomaly Detection 9
1.2.2 Proposed Task I: ELITE: Robust Deep Anomaly Detection with Meta-

Gradient . 10
1.3 LANCET: Labeling Complex Data At Scale 12

1.3.1 State-of-the-Art in Labeling Training Data 12
1.3.2 Proposed Task II: LANCET: Labeling Complex Data at Scale 13

1.4 MetaStore: Meta Data Analytics for Training Data Curation 14
1.4.1 Performance Challenges. 15
1.4.2 Proposed Task III: MetaStore: Meta Data Analytics for Training Data

Curation . 16
1.5 List of Proposed Dissertation Tasks & Road Map 17

I ELITE: Outlier Removal From Training Data 18

2 Preliminaries 18
2.1 Problem Definition . 18
2.2 Unsupervised and Semi-supervised Deep Anomaly Detection 18

2.2.1 Unsupervised Deep Anomaly Detection 18
2.2.2 Semi-Supervised Deep Anomaly Detection 19

3 Proposed Method: ELITE 20
3.1 Overall Process of ELITE . 20
3.2 Objective Functions . 21

3.2.1 Training loss . 21
3.2.2 Validation Loss . 22

3.3 Pseudo Label Inference . 22
3.3.1 Meta-gradient-based Pseudo Label Inference 22
3.3.2 Meta-gradient Estimation . 23
3.3.3 Learning at Scale . 24

3.4 Example: Applying ELITE to Deep SVDD . 26

4 Related Works 29

5 Experiments 30
5.1 Experiment Setup and Methodology . 30
5.2 Varying the Ratio of Anomalies . 32
5.3 Varying the Ratio of Labeled Examples . 33

3

PhD Dissertation Defense: Huayi Zhang 4

5.4 Sensitivity Analysis . 34
5.5 Evaluating the Training Mechanism . 34

5.5.1 Training Process . 34
5.5.2 Distribution of Anomalous Scores . 34

II LANCET: Labeling Complex Data At Scale 35

6 Overall Process of LANCET 35

7 LANCET Theoretical Foundation 37

8 Feature Embedding 40
8.1 Conditional Feature Matching . 40
8.2 The Feature Embedding Method . 43

9 Label Propagation 46

10 Label Candidate Selection & Labeling Termination 48
10.1 Learning RND By Distribution Matching . 48
10.2 Distribution Matching Network (DMN) . 49
10.3 Learning Weights Through DMN: Online Weight Approximation 50
10.4 Termination Condition . 52

11 Related Works 54

12 Experiments 56
12.1 Experiment Setup . 56
12.2 The Accuracy of Generated Labels . 59
12.3 The Accuracy of Trained Models . 60
12.4 Ablation Study . 62
12.5 Evaluation of Termination Condition . 63
12.6 Evaluation of Large Proportion of Manual Labels 63
12.7 Evaluation of Binary Classification Task . 65

III MetaStore: Meta Data Analytics for Training Data Curation 66
12.7.1 Proposed Task III: MetaStore: Meta Data Analytics for Training Data

Curation . 66

13 Preliminaries 68

4

PhD Dissertation Defense: Huayi Zhang 5

14 Gradient-based DNN Analytics 69
14.1 Meta Gradient: The Foundation of Gradient-based Analytics in MetaStore . 69
14.2 MetaStore Gradient-based Analytics . 70

15 System Overview 72

16 Space-Efficient Gradient Storage 74
16.1 Gradient Storage: Linear Layers . 74
16.2 Gradient Storage: Convolutional Layers . 75
16.3 Gradient Storage: Self-Attention Layers . 77

17 Meta-data Analytics Engine: P2P 79
17.1 P2P Operator: Linear Layers . 79
17.2 P2P Operator: Convolutional Layers . 80
17.3 P2P Operator: Self-Attention Layers . 82

18 Meta-data Analytics: Batch Operators 83
18.1 P2B Operator: No Gradient Restore . 83
18.2 Other Operators: B2P and B2B . 84

19 Experiments 86
19.1 Experiment Setup . 86
19.2 Storage Costs . 87
19.3 P2P Operator: End-to-End Execution Time 88

19.3.1 Execution Times for Different DNN Layers 88
19.3.2 Varying Number of Dimensions of Layers 89
19.3.3 Vary the Number of Training Samples 90

19.4 P2B Operator: Execution Time . 90
19.5 Meta-data Collection and Storage Times . 91
19.6 The Usefulness of Gradient-based Analytics 93

20 Related Works 94

IV Conclusion and Future Directions 95

21 Conlusions 95
21.1 ELITE: Outlier Removal From Training Data 95
21.2 Lancet: Labeling Complex Data At Scale . 95
21.3 MetaStore: Meta Data Analytics for Training Data Curation 95

5

PhD Dissertation Defense: Huayi Zhang 6

22 Future Directions 96
22.1 ELITE: Outlier Removal From Training Data 96
22.2 Lancet: Labeling Complex Data At Scale . 97
22.3 MetaStore: Meta Data Analytics for Training Data Curation 98

22.3.1 Cost Based Optimizers . 98
22.3.2 Human-in-the-loop Analytic . 98

6

PhD Dissertation Defense: Huayi Zhang 7

Acknowledgements
I would first like to thank my advisor Professor Elke A. Rundensteiner, who provided me
the opportunity to work on this exciting project. Her guidance helped me in all the time
of research and writing of this dissertation.

My sincere thanks also go to Professor. Lei Cao at the University of Arizona for his pa-
tience, motivation, and immense knowledge. I can’t imagine finishing this topic without
his guidance. I would also like to thank student colleague Yizhou Yan, Peter VanNos-
trand, Dennis Hofmann at the WPI DAISY Lab for their help.

I would also like to thank Professor Samuel Madden,, Professor Xiaozhong Liu, Pro-
fessor Oren Mangoubi for serving as the reader of this paper. I am gratefully indebted to
them for their very valuable comments on this dissertation.

Finally, I must express my very profound gratitude to my family for providing me
with unfailing support and continuous encouragement throughout my years of study
and through the process of researching and writing this thesis. This accomplishment
would not have been possible without them.

7

PhD Dissertation Defense: Huayi Zhang 8

1 Introduction

In recent years, the rapidly growing machine learning community has proposed many
powerful machine learning models. These modern models, especially deep learning
models, achieve state-of-the-art results in various domains. For example, in the computer
vision area, the EfficientNet [99] model achieves 90.2% accuracy on the challenging ima-
genet dataset. The RoBERTa [65] model obtains 97.5% accuracy on the SST semantic clas-
sification task in the Natural Language Processing area. These exciting accomplishments
raise significant interest in applying these novel deep learning models to real-world ap-
plications, such as digital healthcare and autonomous vehicles.

However, the lack of high-quality training data continues to represent a critical bot-
tleneck. Despite their strong performance, most existing deep learning models must be
trained on carefully annotated and error-free benchmark datasets, while the real-world
data arising in practice are often unlabeled and noisy. In order to utilize the powerful ma-
chine learning models, it usually requires practitioners to prepare enough high-quality
training data. In fact, [70] shows that it takes around 40% of project time to collect and
prepare training datasets.

With the development of big data techniques, machine learning practitioners are usu-
ally able to collect and store a large amount of data in real-world applications. However,
these raw data samples can rarely be directly used as the training data of machine learn-
ing models. To prepare a high quality training dataset, the practitioners commonly face
two challenges, 1) efficiently identifying the erroneous data samples (such as the outliers
produced due to hardware issues) and 2) accurately annotating the raw data samples.
Furthermore, instead of preparing the training dataset as a one-shot pre-training step, the
machine learning practitioners often need to adjust the training dataset during the model
development process. After training a few models with the existing training dataset,
the practitioners can diagnose the trained models and determine if there are mislabeled
samples that need to be removed or if some additional samples needs to be collected to
improve the model performance. [6]

This dissertation thus aims to propose an end-to-end system that assists practition-
ers with three critical tasks inherent in this training data construction process, namely,
Cleaning, Labeling, and Curating training data.

1.1 Motivation: The Need for an End-to-End Training Data Manage-
ment System

As a motivating example, I have been participating in a large-scale training data man-
agement system project led by researchers at MIt and at the Neurology Department of
Massachusetts General Hospital, which is used to prepare a training dataset with EEG
segments (450 million segments, 30TB data size) with six classes representing different
types of seizures. This training dataset is used to train a seizure classifier that automat-
ically detects seizures based on EEG signals collected during the clinical observation of

8

PhD Dissertation Defense: Huayi Zhang 9

patients. We conjecture that a successful system should tackle three key tasks to construct
a high quality dataset for training an accurate deep learning model.

Erroneous Data Removal: Our neurologist collaborators observe that the raw dataset
contains a small ratio of erroneous EEG segments that are produced due to hardware
problems, such as broken or improperly installed sensors. These low-quality segments
are useless for the classification task and potentially stall the model’s training process.
Such erroneous EEG segments thus should be identified and removed from the raw
dataset before labeling the data.

Data Labeling: Our neurologist collaborators expect that well over 20 million labeled
EEG segments are needed to cover the full range of variations in seizures. Relying on
domain experts to manually provide this large quantity of labels is impractical, given
medical experts’ time is extremely limited. An ideal system should help neurologists to
label these segments with minimal annotation efforts.

Training Data Curation: After a training dataset has been annotated by the neurol-
ogist, the machine learning experts in our team train many deep learning models with
different model architectures and hyper-parameters. However, they find that the down-
stream models cannot meet the expected accuracy. They suspect this is because there are
mislabeled segments in the given training dataset. They hope the system could help them
identify some potential mislabeled samples for our neurologist collaborators to review.

1.2 ELITE: Robust Deep Anomaly Detection with Meta-Gradient

One key challenge as well as opportunity in preparing a training dataset is to remove
the low quality data objects, such as the anomalies produced due to measuring hardware
issues. One solution is to regard this problem as a deep anomaly detection task. Deep
anomaly detection methods typically attempt to learn the distribution of normal samples.
Then, any sample that is out of the distribution is rejected as an anomaly.

1.2.1 State-of-the-Art in Deep Anomaly Detection

In recent years deep neural networks have been widely used to detect anomalies from
complex data sources, such as imagery and time series [46, 82, 40]. Because real appli-
cations typically do not have a large number of labeled anomalies available beforehand,
most deep anomaly detection techniques are either unsupervised [46, 82, 40] and do not
use any labels or semi-supervised [82, 40, 124] and use a small set of normal or abnormal
examples to improve the accuracy of unsupervised deep anomaly techniques.

However, these deep anomaly methods, either unsupervised or semi-supervised, re-
quire that the unlabeled training data be clean – not contaminated by any anomalies – so
that they can learn a data representation that captures the distribution of the normal data.
Were the training data to be contaminated by anomalies, the representation learned by
these deep models could encode information about anomalous samples as part of the dis-
tribution of normal data. In this case, there is no guarantee that these models can properly

9

PhD Dissertation Defense: Huayi Zhang 10

Figure 1: This dissertation focuses on three key tasks in the training data construction
process, (Task 1). Cleaning and (Task 2.) Labeling training data before building the
model, and (Task 3.) Curating training data during the model training process.

distinguish between normal and anomalous samples. Unfortunately, in real applications,
such a clean training data set rarely exists.

Although semi-supervised deep anomaly methods improve the quality of unsuper-
vised anomaly detection by leveraging the classical semi-supervised classification strat-
egy, they still suffer from polluted training data. As shown in our experiments (Sec. 5.2),
their performance degrades quickly when the number of the anomalies in the training
data increases.

1.2.2 Proposed Task I: ELITE: Robust Deep Anomaly Detection with Meta-Gradient

In this part, I propose an approach, called ELITE, that leverages labeled examples to solve
the problem caused by polluted training data. Unlike the semi-supervised classification
strategy which uses labeled examples as training data, ELITE uses the labeled examples
as validation data. The core methodology of ELITE is to infer the labels of the polluted
training data samples as normal or anomalous according to their potential influence on
the model’s validation loss. ELITE is based on a basic hypothesis: the correct labels of the
unlabeled training samples should reduce the validation loss on the labeled examples.

10

PhD Dissertation Defense: Huayi Zhang 11

(a) Unsupervised/ Semi-Supervised methods (b) ELITE

Unlabeled Normal Sample
Learned Boundary
Ideal BoundaryLabeled Normal Sample

Unlabeled Anomaly Labeled Anomaly

Figure 2: ELITE: Robust to Polluted Training Data. Leveraging the labeled examples,
ELITE turns the hidden anomalies into useful signals that help to learn a better classifica-
tion boundary.

Thus ELITE uses a strategy that continuously discovers anomalies in the polluted training
data and learns a better deep anomaly model based on the corrected labels.

Moreover, using a tailored loss function that copes with normal and anomalous sam-
ples differently, ELITE trains the model to maximize the anomalous score for unlabeled
samples that are likely anomalies while minimizing this score for unlabeled samples that
are likely normal. In this way, ELITE not only uses the information from labeled exam-
ples, but also effectively turns the anomalies in the training data into useful signals that
help to produce a data representation inherently anomaly-aware.

Clearly, the key of ELITE is how to efficiently identify the optimal labels for the un-
labeled samples that minimize the model’s validation loss. Finding optimal labels by
repeatedly flipping the label of each sample and re-training the model to compute the
validation loss will be too expensive. To solve this problem, ELITE proposes an efficient
label inference method, called ALICE. ALICE introduces the concept of meta-gradients to
directly estimate the potential change of the validation loss caused by altering the label
of any training sample, without having to re-train the model. ELITE then fuses ALICE
into every iteration during the training process to dynamically adjust the labels of the
training samples in a way that is guaranteed to monotonically reduce the validation loss.
ELITE is general in that different categories of unsupervised deep anomaly techniques
can seamlessly plug their objective functions into ELITE and benefit from the labeled ex-
amples, such as Auto-Encoder-based methods [42, 84, 7, 122, 18] and Deep One Class
Classification-based methods [86, 81], as discussed in Sec. 3.4 and confirmed by our ex-
periments (Sec. 5).

11

PhD Dissertation Defense: Huayi Zhang 12

1.3 LANCET: Labeling Complex Data At Scale

In this dissertation, I tackle the task of labeling complex data task by building a labeling
system that produces a sufficient number of labels with minimal human effort. To achieve
this, several problems have to be solved:

(1) Which objects to ask human experts to label? To minimize the labeling efforts, a sub-
set of objects must be selected for the human annotators to label. Compared to other
possible subsets of objects, labeling of this chosen subset should maximally improve the
performance of the machine learning model subsequently trained on it. This selection is
critical for minimizing the human effort, especially when annotating data requires strong
domain knowledge.

(2) How to automatically generate additional labels? Given that human experts will not
be able to provide all necessary labels, a mechanism is needed to auto-generate labels by
propagating manually produced labels to similar but still unlabeled objects. This label
propagation is difficult, particularly when dealing with complex data such as EEG/EKG
data signals, video clips from autonomous vehicles, or other complex data types. First,
when measuring the similarity of complex and often high-dimensional objects, we cannot
simply rely on raw features of the data to distinguish between objects of different classes.
Second, we need an appropriate distance function to measure the closeness of pairs of ob-
jects. Third, a distance threshold is required to determine if two objects are close enough
to be labeled by the same class.

(3) When to stop the labeling process? To avoid wasting valuable human labeling ef-
fort, an effective labeling system must determine whether the labels acquired so far are
sufficient to achieve high training accuracy of the machine learning model. Although ac-
quiring more labels may not hurt the performance of the machine learning model, the
performance improvement brought by new labels is expected to diminish as the number
of the labels increases. Therefore, an effective labeling system should automatically deter-
mine when the promise of additional performance improvement diminishes sufficiently
so to safely terminate the labeling process.

1.3.1 State-of-the-Art in Labeling Training Data

Although some previous research has introduced techniques for reducing human labeling
efforts, in particular by weak supervision [76, 103, 24] and active learning [30, 31, 28, 94,
88, 109, 94], none of these works solve all three problems outlined above.

First, weak supervision methods such as Snorkel [76], Snuba [103], and GOGGLES [24]
automatically generate labels using some labeling seeds. However, they assume the la-
beling seeds are provided either via some user-defined labeling functions or are a priori
user-supplied labeled examples. Although these labeling seeds impact the number and
the error rate of the automatically produced labels, weak supervision does not address
this critical question of which seeds are most effective at producing quality labels and
thus should be initially acquired. That is, weak supervision addresses Problem 2 (Auto-
matic Label Generation), but does not solve Problem 1 (Label Candidate Selection).

12

PhD Dissertation Defense: Huayi Zhang 13

The problem of label candidate selection (Problem 1) is the focus of active learn-
ing [30, 31, 28, 94, 88, 109, 94, 101]. Active learning, however, does not tackle the chal-
lenge of automatically generating labels (Problem 2). Further, active learning techniques
were typically designed to serve specific machine learning models such as Convolutional
Neural Networks [88] or Support Vector Machines [101]. Even if the labeling candidates
recommended by active learning were potentially effective at improving the accuracy of
specific prediction models, they are not guaranteed to be effective when used for auto-
matic label generation.

1.3.2 Proposed Task II: LANCET: Labeling Complex Data at Scale

In this work, I propose the first end-to-end solution called LANCET, that effectively that
tackles three research problems: 1) Which objects to ask human experts to label? 2) How to
automatically generate additional labels? 3) When to stop the labeling process?

Instead of providing a collection of independent techniques each targeting only one
of the three research problems in isolation, LANCET solves all three of the above core
automated labeling problems using a principled approach.

LANCET is built on a theoretical foundation that introduces the Covariate-shift condi-
tion and the Continuity condition in Sec. 7, guiding me to develop the label propagation
and label candidate selection strategies.

Label Propagation. The Covariate-shift condition means that the unlabeled objects
share the label with their near-by labeled neighbors. Intuitively if the distributions of the
labeled objects and the unlabeled objects satisfy the Covariate-shift condition, then I can
accurately produce labels by automatically propagating labels from the labeled objects to
their near-by unlabeled neighbors. However, this Covariate-shift condition rarely holds
true in the raw feature space of complex data. To solve this problem, I propose a feature
embedding strategy, called conditional feature matching (CFM), to learn a new feature space
satisfying this Covariate-shift condition. The key idea is to express the Covariate-shift
condition as a conditional feature matching loss that serves as a regularization term to the
loss function of any semi-supervised feature embedding method I plug into LANCET.

I then show in Sec. 9, that in this feature embedding space, a simple linear model
would be sufficient to automatically propagate labels – without having to explicitly spec-
ify a distance function nor a distance threshold. This is beneficial as it is often impossible
for experts familiar with their domain but not with machine learning to provide such
machine learning specific parameters and functions.

Label Candidate Selection. Next, I observe that to reliably assign a label to each
unlabeled object in a to-be-labeled dataset, each unlabeled object should always have
some sufficiently near-by labeled neighbors in this embedding space. This observation is
formalized as the Continuity condition in Sec. 7.

Guided by the Continuity condition, I design a label candidate selection strategy. It se-
lects the candidate objects to be labeled by the domain experts as those whose coordinates
x in the data space have a large value on the probability density function (PDF) of the un-

13

PhD Dissertation Defense: Huayi Zhang 14

labeled objects, but a small value on the PDF of the labeled objects. I call these unlabeled
objects as the objects with large probability density ratios. These objects are not well repre-
sented by existing labeled objects.

Because estimating the PDF is notoriously hard in a high dimensional space [91, 119,
22, 27], I propose a strategy that estimates the density ratios without having to explicitly
know the PDF. It leverages our insight that the density ratio estimation problem can be
mapped to a distribution matching problem. That is, I show that given a set of weights
w.r.t. each unlabeled object, if these weights together minimize the difference (distance)
between the weighted distribution of the unlabeled objects and the distribution of labeled
objects, they effectively estimate the density ratios.

I then solve this distribution matching problem by designing a distribution matching
network (DMN), which given an object, determines if it is sampled from the weighted un-
labeled distribution or the labeled distribution. I then learn these weights by maximizing
its classification error rate and thus effectively minimizing the difference between those
two distributions.

Labeling Termination. Using the above DMN, I establish an effective termination con-
dition for the labeling process. Namely, given objects in our data set, if the classification
error rate of the DMN is close to 0.5 – indicating that it fails to distinguish labeled objects
from unlabeled objects – then the labeling process should stop. The intuition is that be-
cause this condition assures that labeled objects effectively represent the distribution of
the unlabeled objects, it would no longer improve the accuracy of the prediction model if
I were to label more objects.

The conditional feature matching strategy, the label candidate selection strategy, and the
labeling termination condition jointly ensure that LANCET produces a sufficient number
of quality labels with minimal human efforts.

1.4 MetaStore: Meta Data Analytics for Training Data Curation

The training process of DNNs produces a massive amount of meta-data, including feature
embeddings [104], losses [89], and gradients [77]. This meta-data, if analyzed appropri-
ately, contains significant value that can be leveraged for a number of tasks critical to
achieving superior model performance. These tasks include but are not limited to clean-
ing noise in the training data, explaining the behavior of trained models, or reusing and
fine-tuning models. For example, research [14, 74, 104] has shown that analyzing training
loss and feature embeddings can explain inference results and help debug DNN models.

To address this need, we are developing a system called MetaStore, that collects,
stores, and then analyzes such meta-data artifacts at scale. It consists of three key com-
ponents: meta-data collection, meta-data storage, and meta-data analytics. During deep
learning modelling, the meta-data collection component non-obtrusively collects a vari-
ety of meta-data types, which the meta-data storage engine maintains. The meta-data
analytics engine then allows users to conduct high-performance analytics over the meta-
data store.

14

PhD Dissertation Defense: Huayi Zhang 15

Promise of Gradient Meta Data. In this dissertation, we focus on one particular type of
meta-data: gradients. DNNs commonly train models using a sequence of gradient descent
steps which gradually fit the model parameters to the training data. Thus, as the bridge
between the data and the model, these gradients can be used to effectively estimate the
influence of training samples or hyper-parameters on the learned model parameters. For
example, in the machine learning literature, many robust deep learning techniques use
gradients [77, 127, 114, 50, 13] during DNN training for a range of tasks, including miti-
gating the impact of potential noise in the training examples and dynamically adjusting
the hyper-parameters such as learning rate.

Similarly, in our setting of offline meta-data analytics, as discussed in Sec. 14.2 and as
shown in our experiments, if these gradients can be compactly stored and appropriately
analyzed, they are of great value in discovering mislabeled training data and anomalies,
explaining model inference results by the relevant training samples, and guiding the col-
lection of new training data to improve the performance of the model. However, to date
no tools have been developed that effectively collect, store, or analyze gradients, because
the size of the gradient tends to be huge.

1.4.1 Performance Challenges.

DNNs are typically is composed of many layers, including convolutional layers, linear
layers, batch normalization, etc. A DNN computes gradients with respect to the training
examples layer-by-layer. At each layer, the dimensionality of the gradient is equivalent
to the number of parameters in the layer; many modern DNN models are huge, with up
to billions of parameters [26]; indeed, this size is essential for achieving superior perfor-
mance in modern ML tasks.

As an example, in the well-known DNN models, such as ResNet [44] or VGG [93],
a single linear layer can have 4096 × 4096 parameters. Given a CIFAR-10 dataset with
50,000 training samples – in itself not considered a very large data set, it would take
about 20.9 TB of disk space to store the gradients produced in just one single linear layer.
Worst yet, deep learning trains models epoch by epoch and thus produces this amount of
gradients per epoch.

Therefore, merely storing this volume of gradients w.r.t. one (or worse yet all) layers
quickly becomes infeasible. Even if we had sufficient (near infinite) storage resources for
keeping all such gradient data for each round of training, the mere task of just collecting
these gradients would be challenging itself. Directly logging the gradients produced by
the DNN training in an online process would dramatically slow down the already ex-
ceedingly expensive training process. Moreover, loading this huge amount of meta-data
into memory for analytics would introduce exorbitant I/O costs during query execution.
On the other hand, if we instead were to re-compute the gradients on-the-fly whenever a
gradient analytics query is issued, this would cause prohibitive query execution costs. This
is because computing a gradient from scratch suffers from a time complexity quadratic
in the number of parameters, and effectively requires re-execution of the NN training

15

PhD Dissertation Defense: Huayi Zhang 16

pipeline.

1.4.2 Proposed Task III: MetaStore: Meta Data Analytics for Training Data Curation

By exploiting the properties of popular DNN models and their gradient computation
methodology MetaStore is able to offer an effective solution to these challenges.

MetaStore Compact Data Storage. First, our careful analysis of the back-propagation
process of DNN training reveals that the huge gradient of a training sample can be decom-
posed into 2 small gradients, namely, prefix and suffix gradients, from which the gradient
can be exactly re-constructed via a matrix product operation. These two partial-gradients
are typically several orders of magnitude smaller than the original gradient especially
when produced in layers with a huge number of parameters. Therefore, they are ex-
tremely compact, cutting the storage costs from terabytes to gigabytes.

MetaStore Lightweight Data Collection. Instead of first computing the full gradi-
ent and then manually decomposing it, we observe that both the small prefix and suffix
gradients correspond to intermediate data that could naturally be produced during the
back-propagation step when computing the gradient. Their collection can thus be done
almost for free, i.e., via a very lightweight process. Better yet, this process is backwards
compatible with existing learning processes. For this reason, it can be easily integrated
into standard deep learning frameworks, such as PyTorch or Tensorflow, without requir-
ing any system modification. This in turn will improve MetaStore’s ease of adoption in
practice.

MetaStore Efficient Analytics. MetaStore is the first system to provide a rich set of
operators that allow users to conduct many gradient-based analytics on the stored meta-
data from discovering erroneous training samples to interpreting model behavior. These
operators often involve computing the inner product similarity of two gradients. This
inner product operation tends to impose a significant computational bottleneck [114, 127].
Worst yet, if we were to store two separate prefix and suffix gradients in place of the actual
gradient, this would further slow down the inner product operation because MetaStore
would have to reconstruct the original gradients each time, before proceeding to execute
the specific analytics operations.

In this work, we design an efficient strategy that is able to exactly compute the gradient
inner product without first reconstructing the gradients. It leverages our observation that
given two gradients in a linear layer, we can directly use their respective prefix and suffix
gradients to compute their inner product via a lightweight linear algebra transformation.
With the prefix and suffix gradients much smaller than the gradient itself, this speeds up
the inner product operation by several orders of magnitude.

Generality of the MetaStore Approach. The efficient collection, storage, and analytics
services of MetaStore are applicable to all common types of layers (beyond just linear lay-
ers) found in popular DNN models such as ResNet [44], VGG [93], and BERT [26]. This
holds because all the commonly used layers in these models (each potentially with many
trainable parameters and thus producing large gradients), such as the convolutional lay-

16

PhD Dissertation Defense: Huayi Zhang 17

ers and the self-attention layers, can be decomposed into a set of linear layers.

1.5 List of Proposed Dissertation Tasks & Road Map

In this dissertation, I propose to complete the following tasks to build an end-to-end train-
ing data debugging system to address the challenges laid out above. The dissertation is
organized into three parts. Part I develops solution that addresses the need for removing
anomalies in the raw dataset. Part II then investigates how to minimize the human effort
needed to label a large amount of training data. Finally, part III aims to build a training
data debugging system that identifies erroneous training data objects during the model
development process. The road map of these three tasks is detailed as below,

1. Part I has been accomplished, resulting in the research paper: Huayi Zhang, Lei
Cao, Peter VanNostrand, Sam Madden, and Elke Rundensteiner. “ELITE: Robust
Deep Anomaly Detection with Meta Gradient”, ACM SIGKDD 2021.

2. Part II has been accomplished, resulting in the research paper: Huayi Zhang, Lei
Cao, Samuel Madden, Elke Rundensteiner. “LANCET: Labeling Complex Data at
Scale”, VLDB 2021.

3. Part III has been accomplished, resulting a research paper “MetaStore: Meta Data
Analytics at Scale” that is in submission to SIGMOD2023.

17

PhD Dissertation Defense: Huayi Zhang 18

Part I

ELITE: Outlier Removal From Training
Data
(The method described in this part has been accepted at KDD2021.)

2 Preliminaries

2.1 Problem Definition

Given a set of unlabeled training samples XU : {xu
1 , · · · , xu

N} that contains anomalies, and
a small set of labeled samples XL : {(xl

1, y
l
1), · · · , (xl

M , ylM)} ∈ X × Y , where Y ∈ {−1, 1}
with yl = 1 denoting normal sample and yl = −1 denoting anomalies, the goal is to train
a neural network ϕ(x; θ) that assigns small anomalous scores to normal data and large
anomalous scores to anomalies:

Ω(x)|y=−1 ≥ Ω(x)|y=1 + C (1)

In Eq. 1, Ω(x) represents the anomalous score of x, while C is a hyper-parameter that
controls the margin of anomalous score between normal data samples and anomalies.

2.2 Unsupervised and Semi-supervised Deep Anomaly Detection

To better present our proposed approach in Sec. 3, in this section we briefly introduce the
key concepts of unsupervised and semi-supervised deep anomaly detection, using one-
class classification-based methods [86, 81], deep Auto-Encoder-based methods [42, 84, 7,
122, 18], and semi-supervised DeepSAD [82] as examples.

2.2.1 Unsupervised Deep Anomaly Detection

Let ϕ(x; θ) be a neural network parameterized by θ, and Ω(x) be the anomalous score
function for a data sample x. The goal of deep one-class classification [86, 81] is to map the
training samples into a compact hypersphere in the learned latent space, where Ω(x) =
∥ϕ(x, θ)− o∥2 with o denoting the center of the learned hypersphere.

The Auto-Encoder-based methods train a dimension reduction model that recon-
structs all training samples with small error. Naturally, it uses the reconstruction error
as the anomalous score function, i.e. Ω(x) = ∥ϕ(x; θ) − x∥. The training objective is to
minimize the average anomalous score of the training samples as shown in Eq. 2.

18

PhD Dissertation Defense: Huayi Zhang 19

argmin
θ

1

N

N∑
i=1

Ω(x) (2)

These unsupervised deep anomaly methods work well when the training dataset con-
tains no or only very few anomalies. However, this assumption does not hold in many
real applications. Minimizing the anomalous score of all training samples thus causes
performance degradation as discussed in Sec. 1.

2.2.2 Semi-Supervised Deep Anomaly Detection

As a semi-supervised deep anomaly method, DeepSAD [82] uses the training loss in-
curred on the labeled anomaly samples to compensate the loss function of the unsuper-
vised Deep SVDD [81].

argmin
θ

1

N +M

N∑
i=1

∥ϕ(xi, θ)− o∥2 + 1

N +M

M∑
j=1

(∥ϕ(xj, θ)− o∥2)yj (3)

In Eq. 3, o represents a vector in the deep feature embedding. N and M are the size
of the unlabeled and labeled set respectively. The first part of Eq. 3 is identical to the loss
function of the unsupervised Deep SVDD [81]. We call it unsupervised loss. The second
part corresponds to the supervised loss. As a penalization function, it pushes the labeled
anomalies further away from the center.

19

PhD Dissertation Defense: Huayi Zhang 20

3 Proposed Method: ELITE

Deep Anomaly Model

Pseudo Label
Inference Labeled Examples

EvaluateUpdate

Train

Unlabeled Normal
Labeled Normal
Unlabeled Anomaly
Labeled Anomaly

Polluted Training Data Pseudo Labels

+1

+1

-1

…

Figure 3: Overall Process of ELITE

3.1 Overall Process of ELITE

Next, we introduce ELITE, a novel approach that effectively leverages a small number
of labeled examples to solve the pollution problem of training samples. ELITE uses the
labeled examples as validation set to evaluate the model trained on the unlabeled training
samples. The key idea of ELITE is to infer the labels of the unlabeled training samples as
normal or anomalous according to the potential influence on model’s validation loss. It
then learns from the corrected labels a better deep anomaly model. In this way, ELITE no
longer relies on the availability of a clean training dataset.

Fig. 3 depicts the overall process of ELITE. Given a polluted training set XU :
{xu

1 , · · · , xu
n}, ELITE starts with assigning a pseudo label to each sample in XU and trains

a deep learning model on these pseudo labels. Initially, we assume all samples are nor-
mal. It then uses the labeled examples to validate the effectiveness of the model. Next,
ELITE uses a pseudo label inference method that leverages the gradient of the validation
loss to correct the pseudo labels of the training samples in a way guaranteed to reduce
the validation loss. ELITE then updates the deep anomaly model based on the corrected
labels. It iterates the pseudo label inference and model update steps until updating the
labels of the training samples no longer decreases the validation loss. ELITE deploys the
final deep anomaly model to detect anomalies from user data.

20

PhD Dissertation Defense: Huayi Zhang 21

In the rest of this section, we first introduce ELITE’s objective functions including the
training loss and validation loss in Sec. 3.2. Then in Sec. 3.3 we propose an effective
strategy to update the pseudo labels and analyze its time complexity and convergence.
Finally, we show how ELITE works seamlessly with the existing unsupervised anomaly
methods using Deep SVDD [81] as example.

3.2 Objective Functions

3.2.1 Training loss

The objective of ELITE is to train a deep learning model ϕ(x; θ) that assigns large anoma-
lous score to anomalies and small anomalous score to normal data, e.g., Ω(x)|y=−1

≥ Ω(x)|y=1 + C. To achieve this goal, we design a tailored hinge loss function that copes
with anomalous and normal samples differently. More specifically, given the pseudo label
y of the training sample x, we define the loss function as:

l(x, y) =

{
Ω(x), y = 1

max{C − Ω(x), 0}, y = −1
(4)

In Eq. 4, Ω(x) can be any anomalous score function used by existing unsupervised
deep anomaly methods as discussed in Sec. 2.

Given the pseudo labels y and the loss function defined in Eq. 4, ELITE learns the
optimal parameters θ∗(y) to minimize the average loss incurred by these pseudo labels.
The objective function is defined as follows.

θ∗(y) = argmin
θ

1

Nu

Nu∑
i=1

l(xi, yi) (5)

Given the pseudo labels ŷ, it is straightforward to learn θ∗(y), using the existing train-
ing methods.

Note in Eq. 4 C is a hyper-parameters that controls the margin of anomalous score be-
tween normal samples and anomalies. The optimal parameters θ∗(y) will concurrently
minimize the anomalous score of normal samples and grow the anomalous score of
anomalies to a value no smaller than C.

An appropriate hyper-parameter C is critical to the performance of ELITE. A too large
C tends to make the training process unstable, while a small C fails to separate anoma-
lies from normal samples. We design an intuitive method to automatically determine
C. Given an unsupervised counterpart of ELITE denoted as ϕ(x; θ0) where θ0 represents
its initial parameters, we simply set the hyper-parameter C as its training loss averaged
on all samples. The intuition is that because the training process targets minimizing the
training loss on the normal examples, the final model will produce a training loss on each
normal example that in average is guaranteed to be much smaller than the initial average
loss. Therefore, a hyper-parameter C set in this way tends to be effective in separating
anomalies from normal samples.

21

PhD Dissertation Defense: Huayi Zhang 22

3.2.2 Validation Loss

Given a set of labeled examples as validation set, ELITE defines the validation loss Lv as
follows.

Lv(θ) =
1

N l

N l∑
j=1

l(xl
j, y

l
j; θ) (6)

In Eq. 6, N l represents the number of labeled examples and l(xl
j, y

l
j; θ) corresponds to

the training loss function (Eq. 4).
ELITE aims to assign a pseudo label y to each unlabeled training sample so that the

validation loss of the trained model is minimized.

y∗ = argmin
y
Lv(θ∗(y)) (7)

Here θ∗(y) corresponds to the optimal parameters learned from the current pseudo
labels as discussed in Sec. 3.2.1.

3.3 Pseudo Label Inference

The key of ELITE is to effectively identify the optimal pseudo labels that minimize the
model’s validation loss. Obviously, inferring such optimal pseudo labels by recursively
flipping the label of each sample, re-training the deep anomaly model, and calculating
the validation loss will be too expensive.

To solve this problem, ELITE proposes an efficient pseudo label inference method,
called ALICE. The key idea is to use the gradient of the current model’s validation loss to
predict how altering the label of one training sample will change the validation loss.

3.3.1 Meta-gradient-based Pseudo Label Inference

Assume we have already trained a model using all training samples XU and denote its
learned parameters as θ∗. Given a training sample xt in XU , if we flip its label, we could
learn a new model parameterized by θ∗−.

Let Lv(θ) denote the validation loss of a model parameterized by θ, that is, the model’s
loss on the validation set. If we are aware of the difference between the validation loss
of the original model θ∗ and that of the new model θ∗−, namely, Lv(θ∗)− Lv(θ∗−), it will be
straightforward to decide if we should flip the label of xt. That is, assume xt was normal.
If Lv(θ∗) − Lv(θ∗−) > 0, ELITE should flip xt to be abnormal, and change its pseudo label
as ŷ = −1, because this will reduce the validation loss. Otherwise, xt remains normal.

Because we already have θ∗ of the original model, computing its validation loss Lv(θ∗)

is straightforward, that is, Lv(θ∗) = 1
M

∑M
i l(xl

i, y
l
i; θ

∗). The goal of ALICE is to estimate
Lv(θ∗)− Lv(θ∗−) without learning the new model θ∗−.

22

PhD Dissertation Defense: Huayi Zhang 23

By the objective function (Eq. 5), θ∗ is learned as: argminθ L(θ) where L(θ) =
1
N
[
∑N

i ̸=t l(x
u
i , y

u
i ; θ) + Ω(xt; θ)]. Here by the loss function (Eq. 4), Ω(xt; θ) represents the

loss on xt if considering xt as normal.
Without loss of generality, we assume C in the loss function (Eq. 4) is large enough and

therefore max{C − Ω(x; θ), 0} = C − Ω(x; θ) that corresponds to the loss of an anomaly x.
Now if we change xt to anomaly, the new model θ∗− can be learned as follows:

θ∗− = argmin
θ
{L(θ)− 2

N
Ω(xt; θ)} (8)

This is because altering the label of xt from normal to abnormal is equivalent to first
removing Ω(xt; θ) from L(θ), and then adding C − Ω(x; θ∗) back.

Next, we use ϵ to represent - 2
N

that weights the training loss of xt. Now Eq. 8 changes
to: θ∗− = argminθ{L(θ)+ ϵ Ω(xt; θ)}. Similar to [21, 54, 77], we consider ϵ as a variable [21].
Now θ∗− is a function of ϵ, denoted as θ(ϵ). When N is sufficiently large, ϵ approaches 0.

ALICE then uses the gradient of θ(ϵ) at ϵ = 0 to approximate the change from Lv(θ∗)
to Lv(θ∗−).

Lv(θ∗)− Lv(θ∗−) =
dLv(θ∗(ϵ))

dϵ

∣∣
ϵ=0

(9)

We call the gradientM = dLv(θ∗(ϵ))
dϵ

∣∣
ϵ=0

as meta-gradient.
Once getting the meta-gradient, applying the update rule defined below is guaranteed

to reduce the validation loss.

Definition 3.1. Update Rule.

ŷ = − sign(Lv(θ∗)− Lv(θ∗−)) = − sign(
dLv(θ∗(ϵ))

dϵ

∣∣
ϵ=0

) (10)

The reason is that a positive value of Lv(θ∗+)− Lv(θ∗−) means treating the new training
sample as an anomaly will lead to a smaller validation loss than treating it as normal, and
vice versa.

Note above we assume the training sample xt was originally normal. However, the
update rule equally works if xt was abnormal.

3.3.2 Meta-gradient Estimation

To compute meta-gradient, the only thing missing here is θ∗(ϵ). Similar to [77] ALICE
approximates θ∗(ϵ) by taking one step of gradient descent on the original model θ∗.

θ̂(ϵ) = θ∗ − ηθϵ∇θ∗Ω(xt, θ
∗) (11)

ηθ represents leaning rate, a hyper-parameter of deep learning.

23

PhD Dissertation Defense: Huayi Zhang 24

Given θ̂(ϵ), ALICE now is ready to apply the update rule to approximate ŷi. More
specifically,

ŷi = − sign (
dLv(θ̂(ϵ))

dϵ

∣∣
ϵ=0

)

= − sign (
d

dϵ

1

M

M∑
i=1

l(xl
i, y

l
i; θ̂(ϵ))|ϵ=0)

(12)

Intuitive Interpretation of ALICE. First, we unroll Equation 12 with the chain rule. Given
a training sample xi, we have θ̂(ϵ) = θ∗ when ϵ = 0. Then we have:

ŷi = − sign (
dLv(θ̂(ϵ))

dϵ
)

= sign (
Lv(θ̂(ϵ))

dθ

∣∣∣
θ̂(ϵ)

d(θ∗ − 1
N
ηθϵ∇θΩ(xi; θ

∗))

dϵ

∣∣∣
ϵ
)

= sign (
ηθ
N

dLv(θ∗)

dθ

∣∣∣
θ∗

dΩ(xi; θ
∗))

dθ

∣∣∣
θ∗
)

(13)

Eq. 13 shows that ŷi corresponds to an inner product between the gradient of the train-
ing loss of the given training sample and the gradient of the validation loss. Given a train-
ing sample xi initialized as normal, if its gradient is in the same direction to the gradient
of the validation loss, then xi will indeed be a normal object. This is because in this case
minimizing its training loss by gradient descent – the typical practice of deep learning
optimization, will also minimize the validation loss. Otherwise, xi should be an anomaly.

3.3.3 Learning at Scale

The Learning process. Next, we introduce how ELITE infers the optimal pseudo labels
for the entire unlabeled dataset. ELITE fuses ALICE into every iteration during the train-
ing process of the deep anomaly model and dynamically adjusts the labels of the training
samples. ELITE starts with assuming that all unlabeled training samples are normal.
Once one training iteration is done, ELITE estimates the meta-gradient for each sample
xi and applies the update rule to update its pseudo label. Thereafter, ELITE updates the
parameters of the deep anomaly model using Eq. 14.

θt+1 = θt − ηθ[
1

N

N∑
i=1

αi∇θl(xi, ŷi; θ)] (14)

In Eq. 14, θt+1 represents the new parameters, while θt represents the parameters pro-
duced in last iteration. ηθ is the learning rate. Same to the traditional gradient descent
optimization, Eq. 14 uses the gradient of the loss function ∇θl(xi, ŷi; θ) to update θt. But

24

PhD Dissertation Defense: Huayi Zhang 25

ELITE weights the meta-gradient at each training sample xi with αi = ηM · ∥Mi∥, where
∥,Mi∥ represents the absolute value of the meta-gradient, and ηM is a hyper-parameter.
The intuition is that, if the meta-gradient of a training sample xi has a larger absolute
value, xi is more important. This is because by our ALICE method, potentially xi will
contribute more in reducing the validation loss.
Batch Optimization. Although ELITE effectively avoids recursively re-training the deep
learning model, it still tends to be expensive when the unlabeled training dataset is large.
Similar to [77, 41], ELITE employs a mini-batch based optimization strategy to address the
efficiency concern. During each training iteration, ELITE randomly divides the unlabeled
training samples into many mini-batches and then concurrently updates the labels with
respect to each mini-batch. Each mini-batch contains only n ≪ N unlabeled objects.
Therefore, it significantly speeds up the training process. As a standard deep learning
training process, ELITE can run on any deep learning platform such as TensorFlow and
Pytorch.
Time Complexity Analysis. Compared to unsupervised deep anomaly methods, ELITE
requires an extra forward and backward pass to obtain the gradient of each training sam-
ple and an additional forward and backward pass to calculate ŷi. Thus, ELITE is ap-
proximately 3× slower than the unsupervised deep anomaly methods. We argue that the
additional computing cost is worthwhile in practice because ELITE is robust to polluted
training data and significantly improves the accuracy of anomaly detection.
Convergence Analysis.

Theorem 1. Suppose the validation loss Lv(x; θ) is Lipschitz smooth with constant L, and the
gradient of training data is bounded by σ. Then as long as the learning rate ηyηθ ≤ 2n

Lσ2 , the
validation loss decreases monotonically,

Lv(θt+1) ≤ Lv(θt) (15)

Proof. Without loss of generality, we assume C in the loss function (Eq. 4) is large enough
and therefore max{C − Ω(x; θ), 0} = C − Ω(x; θ) which corresponds to the loss of an
anomaly x. Combining Equation 14 and Equation 13, we have,

θt+1 = θt − ηyηθ{
1

n

n∑
i=i

[∇θL
v(θt)∇θLi(θt)]∇θLi(θt)} (16)

where ∇θL
v(θt) = ∂Lv(θt)

∂θ

∣∣∣
θt

and ∇θLi(θt) = ∂Ω(xi;θt))
∂θ

∣∣∣
θt

. For simplicity of expression,

we denote∇θL
v(θt) as∇Lv and ∇θLi(θt) as∇Li.

Since the validation loss Lv(θ) is Lipschitz smooth with constant L, from [36],

Lv(θt+1) ≤ Lv(θt) + (∇Lv)T△θ +
L

2
∥△θ∥2 (17)

Plugging in Equation 16,

25

PhD Dissertation Defense: Huayi Zhang 26

Lv(θt+1) ≤ Lv(θt)− I1 + I2, (18)

where,

I1 = ηyηθ

m∑
i=1

(∇Lv∇Li)
2 (19)

and,

I2 =
L

2
∥ηyηθ

n

m∑
i=1

(∇Lv∇Li)∇Li∥2

≤ L

2

η2yη
2
θ

n2

m∑
i=1

∥(∇Lv∇Li)∇Li∥2

=
L

2

η2yη
2
θ

n2

m∑
i=1

(∇Lv∇Li)
2∥∇Li∥2

≤ L

2

η2yη
2
θ

n2

m∑
i=1

(∇Lv∇Li)
2σ2

(20)

The first inequality comes from the triangle inequality, and the second inequality holds
since the gradient of training data is bounded by σ. If we denote a value τ at iteration t,
τt =

∑m
i=1(∇Lv∇Li)

2, then we have,

Lv(θt+1) ≤ Lv(θt)−
ηyηθ
n

τt(1−
Lηyηθσ

2

2n
) (21)

Note by definition τt is non-negative and ηyηθ ≤ 2n
Lσ2 , we have,

Lv(θt+1) ≤ Lv(θt) (22)

Theorem 1 is proven. 2

3.4 Example: Applying ELITE to Deep SVDD

In this section, we show that ELITE is able to easily adapt existing unsupervised deep
anomaly methods to benefit from the anomaly examples at hand. More specially, to sup-
port one unsupervised deep anomaly method, the only change we need to make is to plug
its anomalous score function ω(x) into the loss function of ELITE (Eq. 4 in Sec. 3.2). Next,
we use Deep SVDD [81] as an example to showcase this. Deep SVDD is briefly reviewed
in Sec. 2.

As shown in Algorithm 1, ELITE starts with initializing the neural network‘s param-
eters θ and the hypersphere center o exactly as what Deep SVDD does. Then, in each
epoch ELITE samples a mini-batch of unlabeled samples BU and uses the labeled sam-
ples as validation set. Next, ELITE assigns an initial pseudo label ŷi to each unlabeled

26

PhD Dissertation Defense: Huayi Zhang 27

Algorithm 1 ELITE on Deep SVDD

Input:
Unlabeled data: XU : {x1, . . . , xN}
Validation examples: XV : ({(x̃1, ỹ1), . . . , (x̃M , ỹM)}
Hyperparameters: ηM , ηθ, Hypersphere center, o, Margin, C
Loss Function: Ω(x, o) =∥x− o∥

1: Initialize:
Neural network weights: θ

2: for each epoch do
3: for each mini-batch do
4: Draw mini-batch BU :{x1, . . . , xn} from XU

5: Draw mini-batch BV :{(x̃1, ỹ1), . . . , (x̃m, ỹm)} from XV

6: Initialize:
7: ŷi ← 0 ∀xi ∈ BU

8: θ̂(ŷ)← θ − ηθ[
1
n

∑n
i=0 ŷi∇θΩ(x, θ)]

9: Update:
10: Mi ← ηy

∂
∂yi

1
m

∑m
i=1 L

v(x̃i, θ̂(ŷ))|ỹ)
11: ŷi = − sign (Mi)
12: αi = ηM · ∥Mi∥
13: θ ← θ − ηθ[

1
n

∑n
i=0 αi∇θl(xi, ŷi; θ)]

Output: Trained Model: ϕ⋆(x, θ⋆)

27

PhD Dissertation Defense: Huayi Zhang 28

sample in BU . ELITE uses these pseudo labels to learn the parameters θ of the network. It
then computes the validation loss using the loss function in Eq. 4, alters the pseudo labels
according to the update rule in Def. 3.1, and updates the parameters by Eq. 14. These
steps iterate until the validation loss is minimized or reaching the epoch limit.

28

PhD Dissertation Defense: Huayi Zhang 29

4 Related Works

Unsupervised Deep Anomaly Detection. Unsupervised deep anomaly techniques in
general can be characterized into two categories. The first category learns a repre-
sentation that better distinguishes anomalies from normal data. Some of these tech-
niques [42, 84, 7, 122, 18] use the reconstruction errors of Auto-Encoder as the anomalous
score to directly detect anomalies, assuming that Auto-Encoders incur larger reconstruc-
tion errors on anomalies than normal objects. Some other techniques use the same prin-
ciple, but apply different deep learning techniques to learn the data representation, such
as Generative Adversarial Networks [73, 121, 4], self-learning models [37] and Auto-
regressive models [2]. One-class classification-based methods [86, 81, 82, 29, 83] instead
learn a feature embedding that maps normal objects into a minimal volume hyper-sphere;
then the objects out of the hyper-sphere are considered as anomalies. The second category
of deep anomaly techniques [97, 90, 129, 102] use learned deep embedding to enhance the
classical shallow anomaly detection methods. To learn a representation that is effective
in separating anomalies, most of these methods require a clean training data set – a data
set not containing any anomalies. However, such clean training data rarely exist in real
applications.
Robust Deep Anomaly Detection. Robust deep anomaly detection [128, 10, 113, 16] tar-
gets this problem. Based on the assumption that anomalies in the training samples tend
to incur large training loss in the training process, these techniques iteratively remove
anomalies from the training set in each training epoch. However, they suffer from the
chicken-egg problem. That is, identifying anomalies based on the training loss requires
an accurate model, while training an accurate model needs a clean training set. Another
strategy is to use the deep learning techniques that are robust to anomalies [57, 29] to
learn the representation. However, to overcome the influence of anomalies these tech-
niques often assume the distribution of the normal examples is known beforehand. This
assumption usually does not hold in practice.
Semi-supervised Deep Anomaly Detection Semi-supervised deep anomaly detec-
tion [82, 46, 40] uses a small number of anomaly examples to improve the accuracy of
unsupervised deep anomaly techniques. Similar to classical semi-supervised classifica-
tion, their key idea is to use these anomaly examples as labeled training data that are mod-
eled as labeled loss to supplement the loss function of the unsupervised deep learning
method. However, these techniques still assume that the unlabeled training data is clean
and essentially treat them as labeled normal examples. Therefore, they suffer from the
performance degradation caused by the hidden anomalies in the unlabeled training data.
Our ELITE approach instead uses a small set of anomaly examples as validation set. It
effectively discovers the anomalies hidden in the polluted training data and turns these
anomalies into useful signals that help to learn a data representation that better distin-
guishes between normal and abnormal samples.

29

PhD Dissertation Defense: Huayi Zhang 30

5 Experiments

We conduct an experimental study to evaluate the effectiveness of ELITE. Specifically, we
focus on the following four questions:

1. Robustness to Polluted Training Data: How does ELITE compare with existing
deep anomaly techniques in term of the robustness to the polluted training data?

2. Performance with different number of labels: How does ELITE perform in con-
trast to the existing deep anomaly methods when using different number of labels?

3. Sensitivity Analysis: Is ELITE sensitive to the selection of its hyper-parameters?
4. Training Mechanism: How is our training mechanism different from the standard

semi-supervised learning?

5.1 Experiment Setup and Methodology

Experimental Setup. All experiments are conducted on Google Cloud with a virtual
machine with 12 CPU cores and 4 P-100 GPUs. All code is developed with Python 3 on
Pytorch 1.5.0.

(a) CIFAR-10 (b) FMNIST (c) MNIST

Figure 4: ROCAUC: Varying the Ratio of Anomalies in Training data

(a) CIFAR-10 (rp = 0.1) (b) FMNIST (rp = 0.1) (c) MNIST (rp = 0.1)

Figure 5: ROCAUC: Varying the Number of Labeled Examples (Lightly Polluted)

Datasets. We evaluate ELITE using three benchmark datasets which are also fre-
quently used in the experiments of the state-of-the-art deep anomaly works we compare
against [82, 81].

30

PhD Dissertation Defense: Huayi Zhang 31

(a) CIFAR-10(rp = 0.5) (b) FMNIST (rp = 0.5) (c) MNIST (rp = 0.5)

Figure 6: ROCAUC: Varying the Number of Labeled Examples (Heavily Polluted)

• MNIST: The MNIST dataset consists of 28 × 28 pixel grayscale images of the hand-
written digits 0-9. Each image contains only one digit centered in the frame and is given
a class label corresponding to the digit it contains. Given the relatively simple and clear
shape of the digits and the consistent black background, we consider it as the least com-
plex dataset among the three datasets we use.
• FMNIST: The FMNIST or Fashion-MNIST dataset was created to be a more complex
replacement for MNIST. FMNIST consists of 28x28 pixel grayscale images for ten types of
clothing articles such as T-shirts, coats, and sneakers with corresponding labels.
• CIFAR-10: The CIFAR-10 dataset consists of 32x32 color images of ten distinct object
classes. Four of the classes are types of vehicles – airplane, automobile, ship, truck – with
the remaining six being varying types of animals. Images in this dataset were originally
drawn from internet search engines and converted to the 32x32 resolution.
Alternative Methods. We compare ELITE against the state-of-the-art unsupervised
(DeepSVDD [81]), semi-supervised (DeepSAD [82], SSAD [40], and robust (RSRAE [57])
deep anomaly methods. Moreover, to show ELITE is model agnostic, we implement
ELITE on top of two types of unsupervised deep anomaly models, namely the one-class
classification-based DeepSVDD [81] and Auto-Encoder.
• DeepSVDD [81] is the state-of-the-art unsupervised anomaly method, which detects
anomalies by mapping the training data into a compact hyper-sphere, assuming the train-
ing data is clean.
• DeepSAD [82] extends Deep SVDD method to the semi-supervised setting and uses
the labeled examples as training data to improve the accuracy of anomaly detection. We
consider DeepSAD as the most related work to ELITE.
• SSAD [40] is a popular shallow semi-supervised anomaly method built on vanilla
SVDD [100]. Similar to DeepSAD, it directly uses the labeled examples as training data
and encourages the model to generate large anomalous score on the labeled anomalies.
• RSRAE is the state-of-the-art robust deep anomaly method, which combines a simple
Auto-Encoder with robust deep learning techniques, more specifically Robust Subspace
Recovery (RSR) layer. The RSR layer is used to learn a subspace within the latent space
where normal and anomalous samples are well separated.

31

PhD Dissertation Defense: Huayi Zhang 32

Methodology. Following the state-of-the-art [82], for each dataset we select one class
as normal and consider other classes as abnormal. To ensure that results are not class
dependent, we repeat each set of experiments with a different class selected as the normal
class until all classes are exhausted. We then report the average of these results. For
each experiment, we randomly select 5,000 objects to create a training dataset. This set
contains samples from both normal and anomalous classes, with the ratio of anomalies
controlled by the value rp. In general rp is selected to be small such that the majority of
the training samples are drawn from the normal class, while the few anomalies are drawn
from the remaining classes. From each dataset, we randomly sample an equal number of
normal samples and anomalies to be used as the labeled training dataset and consider the
remaining samples to be unlabeled. We vary the ratio of training points allocated to the
labeled training set rl and the ratio of pollution in the training dataset rp to analyze the
performance of ELITE in a wide variety of scenarios. Again, following [82], we use the
Area Under Curve (AUC) score of the Receiver Operating Characteristic (ROC) curve as
the metric to evaluate the accuracy of each method.

5.2 Varying the Ratio of Anomalies

In this experiment, we investigate the robustness of different deep anomaly detection
methods to the increasing ratio of anomalies in the training set. To do this, we vary the
ratio of anomalies in training set from 0.1 to 0.5. We fix the ratio of labeled examples
rl, and repeat the experiments on all ten classes and report the average results over all
experiments on each dataset. For MNIST and FMNIST we use 20 labeled examples, while
for CIFAR-10 we use 100 to account for its much higher complexity.

Figure 4 indicates that both of our ELITE-based methods, ELITE AE and ELITE
SVDD, outperform all other methods by up to 30%, especially on the complex datasets

such as CIFAR-10. Also, we find that the performance of ELITE never degrades with the
increasing ratio of anomalies in training data. However, the performance of the state-
of-the-art methods, including the robust deep anomaly method RSRAE, significantly de-
crease as the ratio of anomalies in the training data increases. Furthermore, on the CIFAR-
10 and FMNIST dataset, ELITE achieves even higher performance when the anomaly
ratio is highest, i.e. rp = 0.5. This is because ELITE not only identifies the anomalies in
the training dataset, but also effectively uses them to learn an anomaly-aware data rep-
resentation that improves the accuracy of anomaly detection. This confirms that ELITE
not only outperforms the other methods but also is much more robust to anomalies in the
training dataset. Furthermore, we find that the shallow SSAD method even outperforms
its deep competitor, DeepSAD. We argue that this shows it is easier for deep anomaly de-
tection models to overfit the anomalies in the training data due to their complex network
structure using a large number of parameters.

32

PhD Dissertation Defense: Huayi Zhang 33

5.3 Varying the Ratio of Labeled Examples

In this scenario, we compare the performance of different semi-supervised deep anomaly
methods given a different number of labeled examples. For this experiment, we evaluate
our method on both lightly polluted training data where rp = 0.1, and heavily polluted
training data where rp = 0.5. For FMNIST and MNIST we vary the number of labeled
samples from 20 to 100 in steps of 10 (rl = 0.004 − 0.02), while for CIFAR-10 we test 100
to 500 labeled samples with intervals of 50 (rl = 0.02 − 0.1). Again, we exhaustively use
every class in each dataset as normal samples and report each dataset’s average result.

Figure 5 and Figure 6 show the result on lightly polluted (rp = 0.1) and heavily pol-
luted datasets (rp = 0.5) respectively. Both of our methods significantly outperform the
other methods on all heavily polluted datasets by up to 25%. This again shows ELITE
is significantly more robust to anomalies in the training data, because ELITE effectively
leverages the labeled examples. Moreover, ELITE reaches very high accuracy with very
few labeled examples. This is because ELITE uses the labeled examples as validation data,
and it requires much fewer labels to evaluate the model performance than training the
model. Therefore, although increasing the number of labels improves the performance of
DeepSAD, it is consistently less accurate than our ELITE-based methods. Note that even
when the dataset is lightly polluted, DeepSAD still requires 2 - 3 times more labeled ex-
amples to achieve comparable performance to ELITE on complex datasets like CIFAR-10
and Fashion-MNIST.

Figure 7: Sensitivity Analysis of ηM of ELITE

(a) ROCAUC VS Training Epochs(b) Labeled Loss VS Training
Epochs

(c) Distribution of Anomalous
Scores

Figure 8: ROCAUC: Varying the Number of Labeled Examples

33

PhD Dissertation Defense: Huayi Zhang 34

5.4 Sensitivity Analysis

Here we investigate how sensitive ELITE is to the value of hyper-parameter ηM which
controls the factor that the validation loss plays in the learning process. We report the re-
sults on our ELITE SVDD method, although ELITE AE shows the similar trend. We set
rp to 0.1 and we use 20 labeled examples for both MNIST and FMNIST and 100 labeled ex-
amples for CIFAR-10. We vary ηM from 1 to 100, while keeping all other hyper-parameters
fixed. Figure 7 show that the performance of ELITE is stable. This confirms that ELITE is
not sensitive to the hyper-parameter ηy, and thus partially mitigates the hyper-parameter
tuning problem. We also observe that FMNIST and MNIST prefer small ηM as the perfor-
mance decreases with the increase of ηM . However, on CIFAR-10 ELITE achieves slightly
better performance as ηM increases. Therefore, based on these results, we recommend to
set a large ηM on complex datasets and set a small value if the data set is relatively simple.

5.5 Evaluating the Training Mechanism

5.5.1 Training Process

To better understand the training mechanism of ELITE, we compare ELITE with the semi-
supervised DeepSAD which is based on the classical semi-supervised classification mech-
anism. To ensure a fair comparison, we apply the same loss function (Eq. 4) to both
ELITE and DeepSAD. We report the results on the FMNIST dataset. Figure 8(a) and Fig-
ure 8(b) depict how ROCAUC score and labeled loss change over the training process.
In DeepSAD, the loss on labeled examples quickly decreases to 0, while it reduces slowly
in ELITE. Meanwhile, the ROCAUC score of DeepSAD decreases after reaching the peak,
potentially because the deep neural network starts overfitting the labeled examples. In
contrast, the ROCAUC score of ELITE increases stably.

5.5.2 Distribution of Anomalous Scores

As discussed in Sec. 3.3, ALICE, ELITE’s label inference method, uses meta-gradient to
determine the anomalous score of the training data, because the meta-gradient of anoma-
lies tends to show distinct patterns from that of normal samples. Here we verify its effec-
tiveness by measuring the distribution of ŷ · ∥M∥ which represents the anomalous score
of each training sample. In this experiment, we run ELITE on MNIST with rp = 0.5 and
rl = 0.004. We separately report the ŷ · ∥M∥ of normal and anomalous samples aver-
aged over the first 500 iterations. Figure 8(c) shows that the anomalous score effectively
separates anomalous samples from normal ones. That is, ELITE assigns small scores (neg-
ative) to anomalous samples, while large scores (positive) to normal samples. Although
ELITE still erroneously assigns negative score to some normal samples, their scores still
tend to be larger than those of the real anomalies. This confirms the effectiveness of our
ALICE method.

34

PhD Dissertation Defense: Huayi Zhang 35

Part II

LANCET: Labeling Complex Data At
Scale
(The system described in this part has been accepted at VLDB2021.)

LANCET System

Feature
Embedding

Human
Annotators

Labeling
Candidates

Label
Propagation

Labeled
Objects

Unlabeled
Objects

Manually
Labeled Objects

Labeled
Objects

Semantic
Features

Labeling
Termination

Class i:

Class j:

Unlabeled Labeled

Label Candidate
Selection

Figure 9: Overall Process of LANCET

6 Overall Process of LANCET

LANCET targets the multi-class classification problem defined over an input spaceX ∈ R
and a label space Y = {1, ..., C}. The objective of LANCET is to use minimal human
labeling efforts to produce labels that are sufficient to solve the classification problem.

As shown in Fig. 9, LANCET consists of four components, namely feature embedding,
label propagation, label candidate selection, and labeling termination. Next, we briefly
introduce how to use LANCET to solve the labeling problem.

Labeling in LANCET is an iterative process. Using the existing manually labeled ob-
jects, LANCET first employs the feature embedding component to project the raw input
data into a semantic feature space that takes the classification task into consideration.
On top of the semantic feature space, LANCET uses the label propagation component
to propagate labels from the manually labeled objects to the unlabeled objects. The la-
beling termination component then determines if existing labels are already sufficient to
train an accurate classification model. If not, LANCET uses the label candidate selec-
tion component to select at most b objects as candidates for manual labeling, where b is a
user-controlled parameter.

In the next iteration, LANCET uses the enriched pool of manually labeled objects to
update the semantic feature space and continues the labeling process. It stops when the

35

PhD Dissertation Defense: Huayi Zhang 36

labeling termination component determines that continuing to label will not lead to clear
performance gains.

36

PhD Dissertation Defense: Huayi Zhang 37

7 LANCET Theoretical Foundation

In this section, we establish the theoretical foundation for LANCET. The key insight is
that as long as the distributions of both the labeled objects and unlabeled objects satisfy
certain statistical properties, we can accurately infer the labels of the unlabeled objects.
This finding guides the design of our strategies for feature embedding, label propagation,
and label candidate selection.

We denote the labeled objects asDl = {(xi
l, y

i
l)}

Nl
i=1 and unlabeled objects asDu = {xi

u}Nu
i=1,

where yil is the label of object xi
l, and Nl and Nu denote the number of labeled and unla-

beled objects, respectively. We assume the labeled objects are sampled from the joint
probability distribution Pl(x, y) in domain X ×Y . Accordingly, the unlabeled data objects
are sampled from the joint probability distribution Pu(x, y). Note that in practice, we do
not have access to their ground truth labels for the unlabeled data objects {yiu}Nu

i=1.
We show that, if the labeled and unlabeled objects jointly satisfy certain conditions de-

tailed below, we can accurately predict the label ŷu of each unlabeled object xu. More
formally, as long as these conditions hold, there exists a classification model ϕ(x) that
makes Eq. 23 hold.

E(x,y)∈Pu(x,y)[loss(ŷ, y)] =

∫
x

pu(x)loss(ŷ, y)dx < ϵ (23)

In Eq. 23, ϵ is a positive value that can be arbitrarily small. ŷ represents the label w.r.t.
each object x predicted by ϕ(x). loss(ŷ , y) corresponds to the cross entropy loss between
the prediction ŷ = ϕ(x) and the ground truth label y, as defined in Eq. 24.

loss(ŷ, y) = −
C∑
i=1

pu(yi|x)logp(ŷi|x) (24)

In other words, the two conditions introduced below ensure that the label propagated
to the unlabeled objects has an expected cross entropy loss close to 0 and hence is near
perfect. Next, we introduce these two conditions and then formally prove the above
sufficiency claim in Lemma 2.

Definition 7.1. The Covariate-shift condition [119, 91], expressed by Eq. 25, indicates
that the joint distribution of unlabeled objects pu(x, y) and that of labeled objects pl(x, y)
should have the same conditional probability mass function given a value x in the feature
space X .

pu(y|x) = pl(y|x) (25)

Intuitively, if the Covariate-shift condition holds, highly likely an unlabeled object
will share the label with its close labeled neighbors. Otherwise, it would be impossible to
accurately infer the labels of unlabeled objects no matter how many labeled objects were
to exist. This is because machine learning models tend to infer the class of an unlabeled
object based on its similarity to labeled objects. This Covariate-shift condition guides us

37

PhD Dissertation Defense: Huayi Zhang 38

to develop the feature embedding approach to simplify the label generation problem, as
described in Sec. 8.
Continuity Condition. The Continuity condition is based on the concept of Radon-
Nikodym derivative (RND) [119].

Definition 7.2. The Radon-Nikodym derivative (RND) [119] is denoted as β(x) = pu (x)
pl (x)

,
where pu(x) and pl(x) represent the probability density functions (PDF) of unlabeled ob-
jects and labeled objects respectively. The Continuity condition holds if β(x) < B and
B ≪∞.

The Radon-Nikodym derivative (RND) is also called the importance weight or density
ratio in the literature [119, 63]. RND is not well defined if there exists an unlabeled ob-
ject with coordinate x such that x has a large value on the PDF of the unlabeled objects
(pu(x) > 0), but a very small value on the PDF of the labeled objects (pl(x) ≈ 0). Intuitive,
in this case this object does not have close labeled neighbors to represent it. Driven by
this Continuity condition, we design a label candidate selection method (Sec. 10).

Based on the definitions of Covariate-shift condition and Continuity condition, we are
ready to prove the key sufficiency claim.

Lemma 2. Assume in a feature space X , the unlabeled objects xu ∈ Du and labeled objects
xl ∈ Dl satisfy the Covariate-shift and Continuity conditions. Then given a classification
model ϕ(x) which infers the label of each object ŷ, if

∫
x∈Dl

pl(x)loss(ŷl , yl))dx ≤ ϵ
B

,then∫
x∈Du

pu(x)loss(ŷu , yu))dx ≤ ϵ, where ϵ corresponds to a positive value that can be arbi-
trarily small and B is the threshold used to define Continuity condition.

Proof. When the Covariate-shift and Continuity conditions hold, the expected cross-entropy
loss on the unlabeled objects can be easily estimated based on the training loss of the la-
beled objects and the RND value β(x) used in Continuity condition.∫

x

pu(x)loss(ŷu, yu)dx = −
∫
x

pu(x)[
C∑
i=1

pu(yi|x)logp(ŷi|x)]dx

= −
∫
x

pu(x)

pl(x)
pl(x)[

C∑
i=1

pl(yi|x)logp(ŷi|x)]dx

=

∫
x

β(x)pl(x)loss(ŷl, yl)dx

≤ B

∫
x

pl(x)loss(ŷl, yl)dx ≤ ϵ

(26)

Lemma 2 is proven. 2

Lemma 2 shows that a model ϕ(x) will be effective at propagating labels in a feature
space that satisfy the Covariate-shift and Continuity conditions, if ϕ(x) is able to mini-
mize the training loss on the labeled objects close to 0. Such a model ϕ(x) tends to exist

38

PhD Dissertation Defense: Huayi Zhang 39

in practice. This is because it is widely observed [123] that machine learning models, es-
pecially deep learning models, can perfectly fit any training dataset even if its labels are
randomly produced. In other words, they are able to minimize the training loss to 0.

However, usually the Covariate-shift and Continuity conditions do not naturally hold
in the real world, complex data sets. The goal of LANCET is thus to make the data satisfy
these conditions and ensure the effectiveness of the downstream classification tasks by
transforming the data space (Sec. 8), effectively propagating labels (Sec. 9), and smartly
selecting objects for human to labels (Sec. 10).

39

PhD Dissertation Defense: Huayi Zhang 40

8 Feature Embedding

Feature Embedding
by State-of-art

Higher
certainty

Higher
certainty

(a)

Desired
Feature Embedding

(b)

Figure 10: (a) The semantic features extracted by existing semi-supervised models [85,
22]. Because theses models tend to overfit the labeled objects by pushing them far from
decision boundaries, the semantic features of labeled and unlabeled data diverge from
each other. (b) The desired semantic features to perform label propagation. The labeled
and unlabeled objects should be close to each other if they fall into the same class.

According to the Covariate-shift condition, to accurately infer the labels of the unla-
beled objects, any unlabeled object should share the label of its close labeled neighbors as
shown in Fig. 10 (b). However, this often does not hold in the raw feature space of the in-
put data, especially for the highly complex, high dimensional data such as images or time
series. This is because the raw features of the complex data typically are not informative
at distinguishing between the objects belonging to different classes [39]. Thus, the objects
are not naturally separable by their classes.

To solve this problem, we develop a feature embedding method customized for our
labeling task, called conditional feature matching or CFM for short. Guided by the small
number of labels at hand, CFM projects the input data into a semantic feature space Z in
which Eq. 25 holds, as required by the Covariate-shift condition.

8.1 Conditional Feature Matching

Our goal is to learn a feature embedding modelM(x) that maps the input data X into a
semantic feature space Z satisfying the Covariate-shift condition. LANCET learnsM(x)
based on both the labeled objects Dl and unlabeled objects Du. We use both classes of

40

PhD Dissertation Defense: Huayi Zhang 41

objects for two reasons. First, the Covariate-shift condition reflects the statistical proper-
ties of both labeled and unlabeled objects. Therefore, the feature embedding model has
to take the labeled objects into consideration. Purely unsupervised feature embedding
method such as AutoEncoders [106, 96] do not satisfy this need. Second, in the labeling
task, not many labeled objects are available apriori. Therefore, it is not practical to train a
purely supervised feature embedding model.

Intuitively, semi-supervised classification techniques such as SemiGAN [85, 22] ap-
pear to be a natural solution to this problem. Semi-supervised classification learns a clas-
sification model by jointly minimizing the loss incurred by both the labeled objects and
unlabeled objects, namely the labeled loss and the unlabeled loss. Similar to the classical
deep learning models, the learned classification model F(x, θ) automates the feature ex-
traction process. Therefore, logically it can be decomposed into a feature extractorM and
a classifier f . That is, F(x, θ) = f(M(x)).M(x) produces a semantic feature space Z .
The Insufficiency of Existing Semi-supervised Feature Embedding. Although the se-
mantic features learned in this way is shown to be effective at separating objects belong-
ing to different classes, they do not necessarily respect the Covariate-shift condition. In
particular, we observe that these techniques tend to overly minimize the labeled loss by
pushing the labeled objects far from the classification decision boundary in the learned
semantic feature space. As a consequence, the labeled objects often are isolated far from
the unlabeled objects, thus violating the Covariate-shift condition, as depicted in Fig. 10
(a).
Solution: Condition Feature Matching. To solve this problem, we propose the condi-
tional feature matching strategy. The key idea is to express the Covariate-shift condition
defined in Eq. 25 as a conditional feature matching (CFM) loss (Eq. 27). This way, it can be
seamlessly plugged into the loss function of the semi-classification model F(x, θ) which
originally had only included the labeled loss and the unlabeled loss. As a regularization
of the learning process, this conditional feature matching loss enforces that the unlabeled
objects are close to the labeled objects in the semantic feature space Z if they belong to the
same class; and it satisfies the Covariate-shift condition with a theoretical guarantee.

In the semantic feature space Z , we denote a labeled object as z il ,cm if it belongs to
class cm. We use Nl,cm to represent the number of labeled objects that belong to class cm.
Accordingly, we denote one unlabeled object as z iu,cm if it is classified to class cm. Nu,cm

denotes the number of unlabeled objects classified to class cm. Next, we formally define
the CFM loss.

losscfm =
C∑

cm=1

[∥µl,cm − µu,cm∥+
C∑

n̸=m

max{0, λ− ∥µl,cm − µu,cn∥}] (27)

In Eq. 27, µl ,cm = 1
Nl,cm

∑Nl,cm
i=1 z il ,cm represents the center of all class cm labeled objects,

while µu,cm = 1
Nu,cm

∑Nu,cm
i=1 z iu,cm represents the center of all unlabeled objects that are pre-

dicted as class cm. λ controls the distance between µu,cm and µu,cn , where cm and cn denote
two different classes. Minimizing Eq. 27 thus will encourage the unlabeled and the

41

PhD Dissertation Defense: Huayi Zhang 42

labeled objects to centralize into the same region in the semantic feature space if they po-
tentially share the same label, and push them far away from each other if they belong to
different classes.
Theoretical Guarantee. We first show that an unlabeled object is guaranteed to share
the label with its close labeled neighbor if we can minimize the CFM loss to 0. Then we
establish the connection between the CFM loss and the Covariate-shift condition.

Assume the unlabeled objects in class cm follow the Gaussian distribution. So do the
labeled objects. The distributions are independent to each other. Their covariance matri-
ces are the unit matrix, i.e. {zil,cm}

Nl,cm
i=0 ∼ N (µl,cm , I), {zju,cm}

Nu,cm
j=0 ∼ N (µu,cm , I). Given a

pair of labeled and unlabeled objects (zil , z
j
u), we use c(i = j) to represent that they belong

to the same class and use P+
ij to denote its probability. Accordingly we use c(i ̸= j) to

represent the pair of objects belonging to different class and denote its probability as P−
ij .

We use dij to denote zil − zju.

Lemma 3. Assume the labeled objects {zil,cm}
Nl,cm
i=0 and unlabeled objects {zju,cm}

Nu,cm
j=0 of

class cm independently show Gaussian distribution Then given a pair of labeled and un-
labeled objects (zil , z

j
u) where ∥dij∥ < ϵ with ϵ denoting a small value close to 0, if the CFM

loss is minimized to 0, then P (c(i = j)
∣∣∥dij∥ < ϵ) ≥ P+

ij

P+
ij+

∑
i ̸=j P

−
ij e

−λ2
4

.

Proof. By [61], dij follows the Gaussian Distribution dij ∼ N (µl,cm − µu,cn , 2I), where zil
belongs to class cm and zju belongs to class cn. Then the probability that a pair of labeled
and unlabeled objects (zil , z

j
u) has a distance smaller than ϵ is,

P (∥dij∥ < ϵ) =
1√
4π

∫
ϵ

e−
1
4
[x−(µl,cm−µu,cn)]

2

dx =
1√
4π

e−
1
4
∥µl,cm−µu,cn∥2 (28)

Because the CFM loss is minimized to 0, ∀ cm, µl,cm = µu,cm , and ∀ cm ̸= cn, ∥µl,cm −
µu,cn∥ ≥ λ.

Given a labeled object zil and an unlabeled object zju, if they belong to the same class
cm, the probability that ∥dij∥ < ϵ is:

P (∥dij∥ < ϵ
∣∣ c(i = j)) =

1√
4π

e−
1
4
∥µl,cm−µu,cm∥2 =

1√
4π

(29)

If the two objects belong to two different classes cm and cn, then the probability that
∥dij∥ < ϵ is,

P (∥dij∥ < ϵ
∣∣c(i ̸= j)) =

1√
4π

e−
1
4
∥µl,cm−µu,cn∥2 ≤ 1√

4π
e−

λ2

4 (30)

Based on the Naive Bayesian rule, when ∥dij∥ < ϵ, then the posterior probability that

42

PhD Dissertation Defense: Huayi Zhang 43

Input Data Feature Embedding

Supervised
Loss

Unsupervised
Loss

Desired
Semantic Features

Conditional
Feature Matching

Loss
Labeled Data
Unlabeled Data
Backpropagation

Figure 11: Training Process of Conditional Feature Matching

zil and zju belong to the same class is,

P (c(i = j)
∣∣∥dij∥ < ϵ) =

P (∥dij∥ < ϵ|c(i = j))P+
ij

P (∥dij∥ < ϵ)

=
P (∥dij∥ < ϵ|i = j)P+

ij

P (∥dij∥ < ϵ|c(i = j))P+
ij +

∑
cm ̸=cn

P (∥dij∥ < ϵ|c(i ̸= j))P−
ij

≥
P+
ij

P+
ij +

∑
c(i ̸=j) P

−
ij e

−λ2

4

(31)

Lemma 3 is proven. 2

Note 0 ≤ P−
ij ≤ 1. Because the parameter λ is large, e−

λ2

4 is close to 0. Therefore,
typically P (c(i = j)

∣∣∥dij∥ < ϵ) is close to 1. This shows that, if a pair of labeled and
unlabeled objects are close, then the probability that they belong to the same class is close
to 1.

The Connection to Covariate-shift Condition. By Lemma 3 if ∥zil − zju∥ < ϵ, then the
probability that they belong to the same class is close to 1. That is, P (c(i = j)

∣∣∥zil − zju∥ <
ϵ) = 1. This is equivalent to pl(y |z) = pu(y |z + ϵ · r), where r represents any unit vec-
tor. When ϵ approaches to 0, then (z + ϵ · r)→ z. Therefor, the Covariate-shift condition
pu(y|z) = pl(y|z) holds.

8.2 The Feature Embedding Method

Because Eq. 27 is differentiable, the conditional feature matching loss can be seamlessly
plugged into the loss function of the semi-supervised classification model F(x, θ), re-

43

PhD Dissertation Defense: Huayi Zhang 44

quiring no change to its learning strategy. Therefore, we can leverage any existing semi-
supervised model to learn a semantic feature space satisfying the Covariate-shift condi-
tion. In this work, we adopt the state-of-the-art of semi-supervised classification, namely,
Generative Adversarial Network (GAN)-based SemiGAN model [85, 22].
An Overview of SemiGAN. SemiGAN is an extension of the Generative Adversarial
Networks(GAN) [66, 75]. GAN is a model originally developed to generate synthetic
data objects. Toward this goal, GAN model trains a Generator network G to transform a
random vector z ∼ N (0, I) to a synthetic data objects. To evaluate the quality of generated
objects, GAN contains a discriminator network D that is trained to distinguish the true
data objects and synthetic data objects. The generator network is then trained to fool
the discriminator network to accept its output as being real. In turn the discriminator
network needs to learn a precise boundary of true data objects to reject the fake objects.
In the learning process, GAN produces a good feature embedding of the true data.

Same to GAN, SemiGAN also has a generator G and a discriminator D. Unlike the
traditional GAN, in the SemiGAN model, the discriminator and generator use different
objective functions in order to leverage a small number of available labels. The generator
aims to generate fake objects that have a similar feature embedding to that of real objects
in the semantic feature space. The discriminator is jointly trained to satisfy two objectives,
namely correctly classifying the labeled objects and distinguishing the fake objects from
real objects.

Formally, the objective function of the generator in SemiGAN is:
lossG = ||Ex(M(x))− Es(M(G(s)))||22 (32)

whereM is the feature embedding model of the discriminator. s is the input of the gen-
erator model and sampled from a Gaussian distribution. G(s) is the fake data object
produced by the generator.

In a K class classification task, the objective function of the discriminator in SemiGAN
is composed of two types of losses, namely, the labeled loss to classify the real objects:

lossl = Ex,y∈Dl
(logPD(y|x, y ≤ K)) (33)

and the unlabeled loss that distinguishes the real and fake objects:

lossu = Ex,y∈Du(logPD(y ≤ K|x)) + Es(logPD(K + 1|G(s))) (34)

By Eq. 34, the discriminator classifies the unlabeled real objects into one of the K
classes, while assigns the fake objects to a K + 1th class.
Enhancing SemiGAN with CFM. LANCET learns a semantic feature space that satis-
fies the Covariate-shift condition by adding the conditional feature matching loss losscfm
(Eq. 27) into the objective of the discriminator, as depicted in Fig. 11.

lossD = lossl + lossu + losscfm (35)

Because the conditional feature matching losscfm is differentiable, the optimization
strategy of SemiGAN is still effective at minimizing the new form of loss function lD
without further change.

44

PhD Dissertation Defense: Huayi Zhang 45

Note LANCET does not rely on any specific semi-supervised models to extract fea-
tures. Rather, users can choose a semi-supervised model that best fits their targeted clas-
sification task and their dataset. Our conditional feature matching loss can seamlessly be
added into its loss function.

45

PhD Dissertation Defense: Huayi Zhang 46

9 Label Propagation

Next, we introduce our label propagation strategy that automatically propagates labels
from manually labeled objects to the unlabeled data objects. As described in Sec. 8, af-
ter the semantic feature embedding, objects belonging to the same class are close to each
other in the semantic feature space. In this scenario, label propagation seems straightfor-
ward. For example, we could first measure the similarity between the labeled object zl
and the unlabeled object zu, and then if they were close enough we could propagate the
label of zl to zu. However, this intuitive strategy raises some critical research questions:

(1) How to decide if two objects are similar? The semantic feature space typically
corresponds to a high dimensional space, especially when the original input data is com-
plex. Yet effectively measuring the similarity in high dimensional spaces remains an open
problem due to the curse of dimensionality [67].

(2) How close is close enough? We need an appropriate similarity threshold to deter-
mine if two objects are close enough to be said to belong to the same class. This threshold
is hard to set.
A Linear Model-based Solution. LANCET uses a lightweight machine learning model
to solve the above problems. It fully explores the advantage of the semantic feature space
Z produced by our conditional feature matching (CFM) strategy in that it satisfies the
Covariate-shift condition (Def. 7.1). Instead of explicitly measuring the similarity among
the objects and carefully selecting a similarity threshold to propagate labels, LANCET
learns a machine learning model F(z) to propagate labels in the semantic feature space
Z . This model F(z) produces a prediction for each unlabeled object given its features in
Z . Because Z satisfies the Covariate-shift condition, F(z) can be very lightweight. We
will prove that in fact a linear neural net [59] is sufficient for this label propagation task.

More precisely, we parameterize the linear neural network F(z) by a weight matrix W
and a bias vector b, i.e., F(z|W, b) = W · z + b. We use cross-entropy as the loss function.
Given an unlabeled object zu, F(z|W, b) produces a label vector ŷu = [y1,, yC], where C
represents the number of classes. Each dimension of ŷu represents the probability that zu
belongs to one particular class i ∈ {1, ..., C}. In deep learning, this vector is typically pro-
duced by a softmax function f(·). Learning this linear neural network is straightforward,
and we use the common approach of SGD optimization [39].
Theoretical Guarantee. We formally prove that this lightweight model is effective at
propagating labels, leveraging that the semantic feature space satisfies the Covariate-shift
condition (Eq. 25).

Lemma 4. Given a linear neural network F(z|W, b) parameterized by W and b, with the
softmax activation function f , if a labeled object zl and an unlabeled object zu satisfy that
||zu − zl || < δ, then ||ŷu − yl || ≤ ∥W ∥ ·

√
C · δ.

Proof. Given the softmax function f(·), we get Eq. 36 by [88]:

||f(F(zu))− f(F(zl))|| < ||J ||∗F ||F(zu)−F(zl)|| (36)

46

PhD Dissertation Defense: Huayi Zhang 47

where ||J ||∗ = max ||J ||, and ||J || is the Jacobian matrix of the softmax function. Given
a vector v, we denote vi as the ith element of v, and f(v)i as the softmax value of v cor-
responding to class i. Then the softmax function and the Frobenius norm of its Jacobian
matrix are computed as follows [88]:

f(v)i =
evi∑C
j=1 e

vj

||J(f)||F =

√√√√ C∑
i=1

C∑
j=1,i ̸=j

f(v)2i f(v)
2
j +

C∑
i=1

f(v)2i (1− f(v)i)2

Note
∑

i f(v)i = 1, then (1 − f(v)i)
2 = (

∑
j ̸=i f(v)j)

2. By Cauchy inequality, (
∑N

i=1 ai)
2 ≤

N
∑N

i=1 a
2
i . And since ∀i, 0 ≤ f(v)i ≤ 1 and

∑
i f(v)i = 1, we have (

∑N
i=1 f(v)i)

2 ≤ 1. Thus
we have,

||J(f)||F =

√√√√ C∑
i=1

C∑
j=1,i ̸=j

f(v)2i f(v)
2
j +

C∑
i=1

f(v)2i (
∑
j ̸=i

f(v)j)2

≤

√√√√ C∑
i=1

f(v)2i [
C∑

j=1,i ̸=j

f(v)2j + (C − 1)
C∑

j=1,i ̸=j

f(v)2j]

≤

√√√√C
C∑
i=1

f(v)2i ≤
√
C

(37)

Next, we give the upper bound of ||F(zu)−F(zl)||. Since ||zu − zl || < δ, from Eq. [88], we
have,

||F(zu)−F(zl)|| ≤ ∥W∥ · δ (38)

Combining Eq. 37 and 38, we get ŷu − ŷl ≤
√
C · ∥W∥ · δ. Since ŷl = yl, we have ŷu − yl ≤√

C · ∥W∥ · δ. Lemma 4 is proven. 2

By Lemma 4, with high probability this model will correctly propagate the labels of
zl to the unlabeled objects zu when ||W || is small. Note that we can always learn a small
||W || by applying some regularization to the objective function of the neural net [39].
Jointly Learning with Conditional Feature Matching. Due to the linearity of this model,
it is jointly learnable with the semantic feature embedding model. For example, if LANCET
uses SemiGAN to realize our CFM strategy to produce the semantic feature space, then
our linear neural network can thus be simply implemented as the final layer of the dis-
criminator of SemiGAN. Therefore, LANCET can learn the semantic feature extraction
model and the label propagation model jointly using Stochastic Gradient Decent (SGD)
and back propagation, following the typical training process of SemiGAN.

47

PhD Dissertation Defense: Huayi Zhang 48

10 Label Candidate Selection & Labeling Termination

In this section, we first introduce our label candidate selection method. Then in Sec 10.4
we show that this method naturally establishes an effective criteria for termination of the
labeling process.
Continuity Condition Driven Label Candidate Selection. Guided by the Continuity
condition in Sec. 7, LANCET selects (at most) b objects that, if labeled by the human an-
notators, would be most effective at improving the quality of the produced labels, where
b is a user configurable parameter.

Our label candidate selection method is inspired by the Continuity condition. To re-
cap, the Continuity condition holds as long as the Radon-Nikodym derivative (RND)
β(z) = pu (z)

pl (z)
is bounded by a small value (Sec. 7). Here pu(z) and pl(z) represent the prob-

ability density functions (PDF) of unlabeled objects and labeled objects, respectively. In-
tuitively, given an unlabeled object with its value as z, if the RND β(z) is large, then it
does not have a close labeled neighbor to represent it.

We thus conclude that to satisfy the Continuity condition, we should give high pri-
ority to the unlabeled objects with large RND when selecting objects for labeling, so that
unlabeled points have sufficient numbers of labeled points near-by to perform propaga-
tion. Therefore, once we have computed the RND for each object, naturally we can select
as labeling candidates the b objects that have the largest RNDs.

However, calculating the RND requires the estimation of the PDF pu(z) and pl(z). This
is hard in our scenario where the dimensionality of the semantic feature space often is
high, because accurately estimating the PDF of high dimension data is an open prob-
lem [91, 119, 22, 27].

10.1 Learning RND By Distribution Matching

To solve this problem, we propose a method that directly estimates the RND β(z) without
having to first separately estimate pl(z) and pu(z). For the ease of presentation, we define
the concept of weight w(z) = pl (z)

pu (z)
as the reverse of β(z). Essentially, w(z) represents the

probability that a unlabeled object has a close labeled neighbor.
Solution: Mapping to the Weighted Distribution Matching Problem. Our insight is
that the problem of estimating the w(z) can be transformed into the weighted distribution
matching problem.

w(z) =
1

β(z)
=

pl(z)

pu(z)
⇒ w(z)pu(z) = pl(z) (39)

As shown in Eq. 39, after being weighted by w(z), the probability density pu(z) of the
unlabeled objects is equivalent to the probability density pl(z) of the labeled object. This
implies that we can directly estimate w(z) by identifying an appropriate weight for the
unlabeled objects such that the weighted distribution of unlabeled objects matches the
distribution of labeled objects.

48

PhD Dissertation Defense: Huayi Zhang 49

However, even learning w(z) by distribution matching is challenging. First, given
two distributions in a high dimensional space, we need a method to evaluate if these
two distributions match with each other. Second, even if we can correctly evaluate if
the weighted distribution of the unlabeled objects matches the distribution of the labeled
objects, we still need an effective yet efficient method to search for the weight w(z) to
match the distribution.

We propose to use a distribution matching network (DMN) to solve this problem. We
first introduce the concept of a DMN in Sec. 10.2 and then show how to efficiently learn
these weights through DMN in Sec. 10.3.

10.2 Distribution Matching Network (DMN)

Let ϕ(z, θd) denote a neural network model, where θd represents the parameters. We use
yd to denote the label of z, indicating which distribution z belongs to. The objective is to
assign each object to one distribution from which it is most likely sampled. Therefore,
we call this neural network the Distribution Matching Network (DMN). If two distributions
exactly match each other – meaning pl(z) = pu(z), DMN will fail to distinguish between
the labeled and unlabeled objects in the semantic feature space Z . As a result, its classi-
fication errors would be around 0.5 on average. Formally, a DMN ϕ(z, θd) minimizes the
weighted expected loss between the predicted label ŷd = eϕ(z,θd)∑2

i=0 e
ϕ(z,θd)i

and yd, as defined
below.

E(loss(ŷd, yd)) = −
∫
z

[w(z)pu(z)p(yd)logp(ŷd|zu)+

pl(z)p(yd)logp(ŷd|zl)]dz

=
1

(Nu +NL)
[
Nu∑
i=0

wiloss(ŷdi, yd) +

Nl∑
i=0

loss(ŷdi, yd)]

(40)

yd|zi =

{
0, if zi is unlabeled
1, if zi is labeled

(41)

In Eq. 40, wi denotes the weight corresponding to zi. wi is given beforehand and re-
mains fixed throughout the training process. The expected loss E(loss(z, yd)) corresponds
to the H divergence, a widely used metric to measure the difference between two distri-
butions [32, 11, 33]. DMN learns the parameter θd to minimize theH divergence.

If E(loss(z, yd)) is still large after the DMN converges, then the weighted distribu-
tion of the unlabeled objects matches the distribution of the labeled objects. In particu-
lar, when the two distributions are identical, the expected loss loss(z, yd, w(z)) should be
around 1.38 [91], which corresponds to the maximal value of cross-entropy loss in binary
classification. This offers us a criteria to verify if two given distributions match each other.

49

PhD Dissertation Defense: Huayi Zhang 50

q!
"

F
Weighted

Training Loss

𝑤"

Z q!
"#$

Update q!

F

Fo
rw
ar
d

Ba
ck
w
ar
d

Z

Update 𝑤

𝑤"#$

Figure 12: Training Process of Online Weight Approximation

10.3 Learning Weights Through DMN: Online Weight Approximation

Key Idea. DMN offers us a tool to effectively verify if the weighed distribution of the
unlabeled objects matches the distribution of the labeled objects, assuming the weights
wi were to be available beforehand. Next, we show how to use the DMN to learn these
weights. The key idea is to treat the weights {wi}Nu

i=0 as the hyper-parameters of the DMN
and learn them by maximizing the expected loss of θd(z, yd). The intuition is that the appro-
priate weights should best match the distribution of unlabeled objects to that of labeled
objects, while two matching distributions will lead to a large loss in DMN, as discussed
above. This objective is formalized in Eq. 42.

θ∗(w) = argminE(loss(ŷ, yd)|w)

w∗ = argmax
Nu∑
i=0

wiloss(ŷ, yd)|θ(w)

(42)

Here θ∗(w) indicates the learned parameter of DMN given the current weights.
Learning the optimal value of wi can be very expensive, because the re-weighting

process requires two loops of learning, namely, (1) learning the parameter θ∗ of DMN to
minimize the loss in Equation 42, and (2) learning the weights to maximize the loss of
DMN based on the newly learned parameter θ∗. The two loops iterate back and forth
until convergence – until the loss of DMN is around 1.38, because by [91] it indicates the
two distributions now match with each other [91].
Online Weight Approximation: an Efficient Method. We propose an online weight ap-
proximation (OWA) strategy to efficiently learn wi. OWA alternates updates of θ∗ with
updates of w∗, as shown in Fig. 12. Because the number of unlabeled object Nu can be

50

PhD Dissertation Defense: Huayi Zhang 51

large, training a DMN by iteratively learning the weights with respect to all objects is
very expensive. OWA employs a mini-batch based optimization strategy to address the
efficiency concern. During each training iteration, OWA randomly divides the data into
many mini-batches and concurrently learns the weights with respect to each mini-batch,
so called online weight approximation. Each mini-batch contains only n≪ Nu objects.

More specifically, given a DMN ϕ(z , θd), at the t-th iteration of the training, ϕ() is
trained to minimize the weighted loss of the current batch with size 2n, which includes n
labeled data objects and n unlabeled data objects, assuming each wt

i is fixed at the current
iteration t.

loss(ŷd, yd)t =
1

2n
[

n∑
i=0

wt
iloss(ŷdu , ydu) +

n∑
i=0

loss(ŷdl , ydl)]

θt+1
d = θtd − η▽

2n∑
i

loss(ŷd, yd)|θtd

(43)

where η is the descent step size of the optimizer.
Then OWA searches for the optimal w∗ of the unlabeled objects in the mini-batch that

maximizes the weighted loss loss(ŷd, yd) by Eq. 43.

w∗ = argmax
w

1

n

n∑
i=1

loss(ŷd, yd)|θt+1 (44)

Because OWA has to estimate the optimal w for every mini-batch, this estimation has
to be lightweight. Therefore, we adopt gradient descent to update the weight wt

i at each
iteration t. That is, OWA recalculates the loss based on the updated parameters, and then
updates the weight of the unlabeled objects according to the updated loss.

loss(ŷdu , yd)t+1 =
1

n

n∑
i=0

wt
iloss(ŷdu , yd)|θt+1

wt+1
i =

∂

∂wt
i

loss(ŷdu , yd)t+1

(45)

At the end of each iteration, the weights of all objects in each mini-batch have to be
normalized to make sure the total sample weights add up to 1. It is also necessary to
ensure wi ≥ 0 for all i, since minimizing the negative training loss can result in unstable
behavior. Therefore, we enforce these constraints:

(1)wt
i = max(0, wt

i); (2)w
t
i =

wt
i∑N

i=0 w
t
i

(46)

Eventually OWA trains the DMN based on Eq. 43 and Eq. 45∼ 46. It assigns a small
weight to an unlabeled object if it has a small loss as computed in Eq. 43, because a small
loss indicates this object is very different from any labeled objects and hence can be easily
recognized to be unlabeled by the DMN. An unlabeled object with a small weight is less

51

PhD Dissertation Defense: Huayi Zhang 52

likely to have a labeled neighbor and thus violates the Continuity condition defined in
Sec. 7. Accordingly, LANCET selects the b objects with the smallest weights for annotators
to label.

Algorithm 2 Online weight approximation(OWA)

Require: zu, zl, yd, ϕz,θd , η, T ▷ T: number of iterations.
1: ∀i = 1 · · ·Nu, wi ← 1 ▷ Initialize wi.
2: t← 0
3: while t < T do
4: ŷd ← eϕ(z,θd)∑2

i=0 e
ϕ(z,θd)i

5: l(ŷd, yd)← ydlog(ŷd)
6: L(ŷd, yd)←= 1

2n
[
∑n

i=0wil(ŷdu , yd) +
∑n

i=0 l(ŷdl , yd)]
7: θd ← θd − η▽L(ŷd, yd)|θd ▷ Update model.
8: ŷd ← ŷd =

eϕ(z,θd)∑2
i=0 e

ϕ(z,θd)i

9: l(ŷd, yd)← ydlog(ŷd) ▷ Calculate loss.
10: wi ← max(0, ∂

∂wi
l(ŷd, yd)) ▷ Update wi.

11: wi ← wi∑N
i=0 wi

▷ Normalize wi.
12: t← t+ 1

13: return wi

The process of online weight approximation is summarized in Algorithm 2. Given as
input the labeled objects zl and the unlabeled objects zu, and a maximal iteration threshold
T , it outputs the wi of each unlabeled object. First, the DMN ϕz,θd is optimized for one
gradient decent step using the current weights wi of the unlabeled objects (Lines 4 – 7).
It then recomputes the loss based on the updated parameter θd (Lines 8 – 9) and updates
the weight wi using gradient descent (Lines 10 to 11). The process iterates between these
two steps until the number of iterations exceeds T .

10.4 Termination Condition

To save the human annotator’s efforts, the label candidate selection process should ter-
minate when labeling more objects would not significantly reduce the errors of the auto-
matically produced labels.

In LANCET, the distribution matching network (DMN) used in our label candidate
selection method naturally offers an effective yet simplistic way to terminate the labeling
process. Specifically, LANCET will suggest the annotators to terminate the labeling pro-
cess when the following two conditions hold: (1) when the weighted distribution of the
unlabeled objects is similar to the distribution of the labeled objects; (2) when the Radon-
Nikodym derivative (RND) β(z) = pu (z)

pl (z)
is bounded by a small value βt and consequently

the Continuity condition holds.

52

PhD Dissertation Defense: Huayi Zhang 53

Verifying Condition (1) is straightforward. As discussed in Sec. 10.1, when the two
distributions are identical, the expected loss l(z, yd, w(z)) (Eq. 40) should be around 1.38
by [91]. Therefore, we can determine if Condition (1) holds simply by checking the value
of Eq. 40.

LANCET verifies Condition (2) based on the weight wi estimated by our online weight
approximation (OWA) method for each unlabeled object. By Eq. 39, the weight wi w.r.t.
each unlabeled data zi corresponds to an approximation of the reverse RND value at zi.
Therefore, if ∀ unlabeled object zi, wi > αt where αt =

1
βt

, then Condition (2) holds.
Intuitively, when αt is large (or βt is small), Condition (2) is hard to satisfy. In this case,

LANCET is guaranteed to produce a sufficient number of labels to train a robust machine
learning model, but potentially wasting some labeling efforts. Based on our experiments,
setting αt around 0.1 or βt around 10 balances the label sufficiency requirement and the la-
beling costs in all cases. Therefore, we can apply this same threshold to different datasets
without careful tuning.

53

PhD Dissertation Defense: Huayi Zhang 54

11 Related Works

Weak Supervision. In recent years, the database community is interested in developing
systems and techniques [76, 103, 24] to solve the labeling problem. They aim to use only
a small amount of manual labeling to learn good machine learning models. In particular,
Snorkel [76] and Snuba [103] use the concept of weak supervision. The goal is to produce
high quality labels from a set of labeling sources which produce a large amount of noisy
labels. They then produce the final labels by combining the noisy labels using ensemble-
based techniques.

Snorkel [76] provides interfaces for users to write labeling functions, which as the la-
beling sources, produce labels for subsets of data. However, in some scenarios, especially
in complex scenarios such as our medical application, designing these labeling functions
is hard even for domain experts. Our LANCET instead only requires users to provide
some examples for each class, and thus tends to be more user-friendly than Snorkel.

Snuba [103] uses some lightweight machine learning models as labeling sources, such
as decision tree or logistic regression, because they are less label thirsty than deep learn-
ing and potentially can be trained using a small number of manually supplied labels.
However, when applied on complex data such as images and time series, these simplistic
models tend to produce poor predictions, as confirmed in our experiments (Sec. 12.2 and
12.3). Therefore, ensemble cannot extract much useful information from them to produce
accurate labels. In contrast, because of its feature embedding strategy and the ability of
automatically modeling the data distribution in high dimensional space, our LANCET
effectively processes complex data.

GOGGLES [24] uses a transfer learning inspired method to label image data. Given
an input dataset, it first leverages the pre-trained deep learning model for the big Im-
ageNet [25] data to extract features for all instances in the given dataset and calculates
the affinity score between each pair of instances. Then, based on this affinity matrix, it
infers the labels of the unlabeled images given some manually labeled images. The intu-
ition is that if the instances in the input data resemble some instances of ImageNet, then a
fine tune using a small number of labels potentially is sufficient to adapt the pre-trained
model to the input data. Therefore, GOGGLES only targets image data. Our LANCET is
instead more general and can handle other types of complex data such as time series.
Active Learning. Similar to the label selection of our LANCET, active learning aims to
construct a small training set that can train a specific machine learning model with sat-
isfactory accuracy. In general, the active learning methods can be divided into two cat-
egories. The first category [30, 31, 28, 94] uses metrics to evaluate the importance of the
samples to the performance of the current model, such as uncertainty [30], entropy [31]
and expected loss [116, 28]. However, it has been shown that such metrics are often hard
to estimate in the cutting edge machine learning techniques for example Deep Neural
Networks [88]. The second category [88, 109, 94] seeks to form a compact set of unlabeled
instances that represents the overall distribution of the entire unlabeled dataset. How-
ever, for high dimensional data such as images, it requires a large number of samples to

54

PhD Dissertation Defense: Huayi Zhang 55

represent such a distribution. Driven by the Continuity condition, LANCET instead clev-
erly picks specific samples to label that ensure the unlabeled objects always have near-by
labeled neighbors. This maximizes the efficacy of automatic label propagation – a critical
feature not considered in active learning.
Semi-supervised Classification. Semi-supervised classification leverages the properties
of unlabeled data objects to improve the accuracy of machine learning models. Its goal
is to classify data as accurately as possible, assuming a small set of labels is available
beforehand. Although similar to our work in that it also solves problems caused by a
shortage of labeled objects, it tackles classification as a problem rather than the labeling
generation problem. Therefore, unlike LANCET, it does not cover the label selection
problem, that is, how to select the most informative objects to label.

Some semi-supervised classification techniques [85, 22, 95, 106, 47, 53, 96, 58, 69] use
unlabeled data to learn the low dimensional manifold of the dataset. They then train a
machine learning model on this low dimensional feature embedding and thus are un-
likely to overfit the small labeled dataset. As discussed in Sec. 8.1, our conditional feature
matching strategy naturally leverages these techniques to produce feature embeddings
that best fit label propagation.
Deep Learning-based Feature Extraction. Deep learning models have been proposed to
extract features from complex datasets such as images. In particular, Generative Adver-
sarial Net (GAN) [22, 85, 75] extracts features by forcing a neural network to learn a high
density manifold distribution to resist the adversarial attacks from another co-trained
neural network. Auto-Encoder [47, 53, 106] methods extract features that are most infor-
mative for reconstructing the data objects. Some other works instead design customized
heuristics for a certain type of datasets, such as data-augmentation [95, 19], rotation pre-
diction [35], relative patch prediction [72] and colorization [125]. Although all these deep
learning-based methods can be used by our LANCET to extract features, these methods
do not guarantee that the objects belonging to the same class fall into a small region in the
learned feature space – essential to LANCET.

55

PhD Dissertation Defense: Huayi Zhang 56

12 Experiments

We have conducted an experimental study to evaluate the effectiveness of LANCET.
Specifically, we focussed on the following three questions:

1. Quality of Generated Labels: How does LANCET compare with existing labeling
approaches in term of the quality of the generated labels?

2. Accuracy of Trained Machine Learning Models: How does the performance of the
machine learning models trained with labels generated by LANCET compare with the
models trained with the labels generated by existing labeling approach?

3. Ablation Study: How effective are the the key techniques of LANCET work relative
to each other?

12.1 Experiment Setup

Datasets. We evaluate our methods on classification tasks using in total four benchmark
datasets including two classic image datasets and two popular time series datasets de-
scribed below.
• SVHN Street View House Numbers dataset [71] is a widely used real-world image dataset
obtained from house numbers in Google Street View images. Each image contains a digit
ranging from 0 to 9; thus it has 10 classes. SVHN consists of 73257 training images and
26032 images for testing. The resolution of each image is 3×32×32.
• CIFAR-10 benchmark dataset [56] is a popular image dataset composed of 10 classes
of natural scenes with 50000 training images and 10000 testing images. Each is an RGB
image of size 32×32.
• HAR Human Activity Recognition dataset [8] is a popular multivariate time series dataset
built from the recordings of 30 subjects performing activities throughout their day while
carrying a waist-mounted smartphone with embedded inertial sensors. The activities cor-
respond to 6 classes including Sitting, Standing, Walking, etc. The continuous recordings
are broken into 10,299 none-overlapping time segments. Each segment is composed of
128 readings over time with each reading a 9-tuple produced by 9 sensors – thus a 9×128
time series.
• SpeechCommands [110] is a public time series dataset used for speech recognition. It
has 65,000 utterances of 30 short words by 2,618 speakers. Each utterance is stored as a
one-second (or less) WAVE format file encoding the sample data as linear 16-bit single-
channel PCM values at a 16 KHz rate. To preprocess the utterances, we first extract nor-
malized spectrograms from the original waveforms and then resize the spectrograms to
equalize their sizes at 160×101, as in [110].
Alternative Methods. We compare LANCET against the core state-of-the-art labeling
approaches including Snuba [103], GOGGLES [24], and Core-Set [88]. We also compare
LANCET against SemiGAN [22] and AutoEncodoer [106] as additional baselines.
• Snuba [103] is the state-of-art of weak supervised label generation system. As the
successor of Snorkel [76], Snuba uses a small set of manually labeled examples as seeds

56

PhD Dissertation Defense: Huayi Zhang 57

(a) SVHN (Image) (b) CIFAR-10 (Image)

(c) HAR (Time Series) (d) Speechcommands (Time Series)

Figure 13: Accuracy of Generated Labels: Varying the Number of Manually Supplied
Labels.

to produce labels.
• GOGGLES [24] is the most recent labeling approach targeting on image data. Since
GOGGLES does not support time series data, we compare against GOGGLES using the
two image datasets, namely SVHN and CIFAR-10. We use the code made available by the
authors.
• Core-Set [88] corresponds to the state-of-art of active learning designed for deep neural
nets which are used in our experiments.
• SemiGAN [22] is the state-of-the-art of semi-supervised feature embedding. It is also
able to produce a prediction with respect to each unlabeled object in the given dataset.
• AutoEncoder [106]. AutoEncoder is a popular feature embedding method. we de-
velop this baseline by replacing the feature embedding component of LANCET with a

57

PhD Dissertation Defense: Huayi Zhang 58

(a) SVHN (Image) (b) CIFAR-10 (Image)

(c) HAR (Time Series) (d) Speechcommands (Time Series)

Figure 14: The Accuracy of the Trained Machine Learning Models: Varying the Num-
ber of Manually supplied Labels.

pre-trained AutoEncoder model. This new baseline then uses LANCET’s label propaga-
tion method to produce labels.
• Ground Truth. The machine learning models trained with the ground truth labels using
the deep neural networks are also evaluated. They represent the best case upper bound on
the prediction accuracy w.r.t each dataset, as they are given apriori all the correct labels
instead of first having to infer these labels.
Methodology. We measure the quality of the produced labels and the testing accuracy of
the machine learning models trained on these labels. Following the state-of-the-art [24], in
most cases we evaluate LANCET on CNN-based classification problems, because CNNs
are known to perform better than other models on complex data such as images or time
series.

58

PhD Dissertation Defense: Huayi Zhang 59

We also run additional experiments to evaluate the performance of LANCET on other
model architectures. In particular, we use Support Vector Machines (SVM) as the down-
stream machine learning model. We run the experiments on the HAR dataset, because
SVMs are known to work well on it.

We measure the quality of the produced labels following the experimental method-
ology of Snuba and GOGGLES. That is, given a small set of human supplied labels, we
use one label generation approach to propagate labels to all unlabeled objects and then
evaluate the accuracy of the automatically produced labels. Here accuracy is measured as
the ratio of the correctly generated labels over all generated labels.

When evaluating the accuracy of the trained machine learning models, in addition to
comparing to Snuba, GOGGLES, SemiGAN, and AutoEncoder, we also compare LANCET
against the models trained on the labels supplied by the active learning method Core-Set,
as well as the models trained using the ground truth labels.

In our ablation study, we evaluate the accuracy of the models trained on the labels
produced by different LANCET-based variants to verify the effectiveness of our condi-
tion feature mapping (CFM) strategy and the label candidate selection method, which
correspond to the key techniques of LANCET. In addition, we also evaluate how active
learning works when used together with weak supervision (Snuba + AL).

Finally, we evaluate the termination condition by varying the termination threshold αt

and measuring how the label propagation efficiency of the full-fledged LANCET changes,
where propagation efficiency represents the number of correct labels automatically in-
ferred per human label.

12.2 The Accuracy of Generated Labels

In this set of experiments, we evaluate LANCET, Snuba, SemiGAN, and AutoEncoder
on all four image and time series datasets, while GOGGLES was only run on the image
datasets, because GOGGLES is specific to image data. When running Snuba on the im-
age datasets, we first use the pre-trained VGG16 model on ImageNet to extract features
from the raw image data. We then use principal component analysis (PCA) to project
the extracted features into a lower dimensional space with densely rich features, as in the
GOGGLES [24] paper. For the time series datasets, Snuba directly uses the raw data as
input features to train the models.

All experiments start with a small initial pool of labeled examples randomly sampled
from the dataset, corresponding to about 0.5% of the total dataset. The pool of unla-
beled data corresponds to the remaining data, from which candidates are selected for the
human labelers to annotate. Because all datasets have ground truth available, in our ex-
periments an oracle who already knows the ground truth beforehand simulates human
labeler (that is, the oracle will always provide a perfect label when asked). We gradually
increase the number of human supplied labels and evaluate the accuracy of the gener-
ated labels. We use the same number of human supplied labels for all methods in all
experiments.

59

PhD Dissertation Defense: Huayi Zhang 60

As shown in Fig. 13, LANCET consistently outperforms other methods on all datasets
with a large margin. Next, we explain where the superiority of LANCET comes.

First, our conditional feature matching (CFM) strategy presented in Sec. 8.1 produces
a feature embedding satisfying the Covariate-shift condition (Def. 7.1). That is, in the
embedding space, the objects belonging to different classes are well separated; while the
unlabeled objects tend to share their label with that of their near-by labeled neighbors.
We confirm this by visually examining the plot of objects from each dataset by plotting
the feature embedding produced by LANCET using t-SNE, a widely used visualization
technique that perceives proximity when mapping to 2-dim space to support visual in-
spection. Because the feature embedding satisfies the Covariate-shift condition, LANCET
is able to effectively propagate labels from labeled objects to their unlabeled neighbors us-
ing a lightweight linear model, as analyzed in Sec. 9.

Although SemiGAN also produces a feature embedding that separates objects belong-
ing to different classes, it tends to push the labeled objects far from any unlabeled objects.
Thus, it violates the Covariate-shift condition, as depicted in Fig. 10 (a). It is thus inef-
fective in helping the system to predict the labels of the unlabeled objects, because many
of them do not have near-by labeled neighbors to utilize. Therefore, although SemiGAN
has been shown to perform better than other baseline methods, especially when handling
image datasets, LANCET still consistently outperforms SemiGAN by up to 20 percentage
points.

Second, driven by the Continuity condition (Def. 7.2), our distribution matching
network-based (DMN) method presented in Sec. 10.3 successfully discovers the areas in
the high dimensional embedding space that do not contain enough labeled objects. By
selecting objects in these areas for the human domain expert to manually label, LANCET
discovers the labeling seeds that are most effective at automatically producing new labels.
Therefore, LANCET quickly reaches a high accuracy using very few labels and is able to
consistently improve the accuracy of the generated labels as the number of human labels
increases, as shown in Fig. 13.

12.3 The Accuracy of Trained Models

As was done in Snuba and GOGGLES, we evaluate the accuracy of the machine learn-
ing models trained on the automatically generated labels. For all datasets, we use the
standard train/test split from the original source.

For the image classification task, all methods use the popular Preact-ResNet [45] as the
downstream machine learning architecture, as was done in GOGGLES [24]. For the time-
series dataset Speechcommands, we designed CNN-based deep neural net to classify them
by treating them as image data. Our experimental results in 14(d) show it works well.
For the timeseries dataset HAR, we use Support Vector Machine (SVM) as the down-
stream machine learning model, because SVM is known to work well on it. We gradually
increase the number of human supplied labels until we meet the termination condition of
LANCET, where the termination threshold αt is set to 0.1.

60

PhD Dissertation Defense: Huayi Zhang 61

(a) Speechcommands (Time Series) (b) SVHN (Image)

Figure 15: Ablation Study

As shown in Fig. 14, the accuracy of LANCET is at least 40 percentage points higher
than that of Snuba and GOGGLES. LANCET also significantly outperforms SemiGAN
and AutoEncoder by up to 25 percentage points. This is because the labels produced by
LANCET are much more accurate, for the reasons described above in Sec. 12.2.

Although the active learning method Core-Set is able to improve the model accuracy
as the number of manual labels increases, LANCET still outperforms active learning in
all scenarios. This is because LANCET automatically produces a large number of labels
with high accuracy, while a much larger training set tends to produce a more accurate
machine learning model when the error rate on the labels is low.

In comparison to the fully supervised model trained on the full set of ground truth
data, the accuracy of LANCET is only slightly less than the ideal model by 0.05 to 0.1,
while using at most 11% of the ground truth labels as human supplied labels.

In particular, in the case of the SVHN dataset (Fig. 14(a)), LANCET performs almost
identically to a model trained on the fully labeled dataset, while it only uses 1% of the
manually supplied labels. We believe the superior performance of LANCET on SVHN
comes from the high quality feature embedding LANCET produces. To confirm this, we
use t-SNE to visualize the feature embedding produced by LANCET and by SemiGAN.
We find that LANCET’s feature embedding component, that effectively enhances Semi-
GAN with our conditional feature matching (CFM) strategy, is able to produce a high
quality feature embedding where objects from different classes are well isolated from one
another and the labeled objects share the same label with their near-by labeled neighbors.
Thus it satisfies the Covariate-shift condition (Def. 7.1).

The feature embedding produced by SemiGAN also successfully separates the objects
belonging to different classes. Therefore, similar to our LANCET, using a small num-
ber of manual labels, SemiGAN achieves high accuracy and significantly outperforms
other baselines. This indicates that the SemiGAN structure effectively captures the dis-
tinct properties of different classes in SVHN and in turn explains the extraordinary per-
formance of LANCET in this case.

61

PhD Dissertation Defense: Huayi Zhang 62

(a) Speechcommands (Time Series) (b) SVHN (Image)

Figure 16: The Accuracy of Snuba with/without Active Learning

12.4 Ablation Study

We conduct an ablation study on SpeechCommand and SVHN datasets. We evaluate
the effectiveness of our key techniques including the conditional feature matching (CFM)
for feature embedding and label candidate selection (LCS) strategies, subject to different
types of datasets (image data and time series data). LANCET-CFM uses our CFM strategy
for feature embedding, but randomly samples objects for the humans to label (no label
candidate selection). LANCET-LCS uses our label candidate selection method to select
labeling candidates, but employs SemiGAN [22] to learn feature embedding model (no
CFM). We compare the LANCET-based methods against SemiGAN and Snuba.

As shown in Fig. 15, LANCET-LCS outperforms SemiGAN by up to 17 percentage
points. Because LANCET-LCS uses the same feature embedding model to SemiGAN, this
confirms that the label candidate selection strategy of LANCET is clearly more effective
than randomly picking objects for humans to label.

LANCET-CFM significantly outperforms SemiGAN by up to 26 percentage points.
Because LANCET-CFM and SemiGAN both randomly picking labeling candidates, this
confirms that our CFM strategy effectively improves the quality of feature embedding.

Moreover, LANCET-FULL outperforms LANCET-CFM and LANCET-LCS. This shows
that our CFM strategy and label candidate selection strategy are compatible with each
other, because they are developed based on one unified theoretical foundation in an inte-
grated fashion.
Weak Supervision + Active Learning. This set of experiments also compares Snuba + AL
against the original Snuba. The original Snuba uses randomly sampled manual labels as
the labeling seeds, while Snuba + AL uses active learning (Core-Set method) to select the
manual labels. The results in Fig. 16 show that Snuba + AL performs even worse than the
original Snuba, confirming that the active learning methods do not necessarily work well
when used together with weak supervision, as noted in the introduction.

62

PhD Dissertation Defense: Huayi Zhang 63

(a) Speechcommands (Time Series) (b) CIFAR-10 (Image)

Figure 17: Termination Condition: Varying Threshold αt

12.5 Evaluation of Termination Condition

We evaluate the effectiveness of the termination condition in LANCET. We report the
results on CIFAR-10 and Speechcommands datasets. The results on SVHN and HAR
datasets show the similar trend.

For this, we vary the termination threshold αt from 0.001 to 0.1. As analyzed in
Sec. 10.4, the larger the αt is, the more human labels will be collected.

To quantify the effectiveness of the acquired human labels in improving the quality
of the automatically produced labels, we define a metric, Propagation Efficiency (PE),
which measures the number of correct labels automatically inferred per human label. For
example, if 500 human labels correctly result in the production of 5,000 labels, then the
propagation efficiency (PE) is 5000

500
= 10.

When evaluating the termination condition, after reaching each αt and where the al-
gorithm would normally terminate, we instead conduct one additional round of labeling
and measure the PE based on the new acquired human labels. As shown in Fig. 17, the
PE decreases as αt gets higher. In particular, in both cases when αt is higher than 0.03,
the PE gets stable and drops to below 0.5, indicating two human labels only produce one
additional label. This confirms the effectiveness of using αt as the termination condition.
Based on the experiments, we recommend the users to set αt around 0.03 - 0.1.

12.6 Evaluation of Large Proportion of Manual Labels

In this set of experiments, we evaluate how LANCET performs when a large proportion
of manually labeled objects are supplied. In particular, we run experiments that use 20%,
50%, and 80% of the objects as manually supplied labels on the CIFAR10 and Speechcom-
mand datasets.

As shown in Fig. 18, all methods perform well when more than 50% of the objects are
augmented with manually supplied labels. This is expected, because in these cases, the
manually supplied labels often are already sufficient to train a good model. However,
LANCET still consistently outperforms other methods even in this case because of its
effective feature embedding and label candidate selection strategies, although the perfor-

63

PhD Dissertation Defense: Huayi Zhang 64

(a) CIFAR-10 (Image) (b) Speechcommands (TS)

(c) CIFAR-10 (Image) (d) Speechcommands (TS)

Figure 18: Large Proportion of Manual Labels: (a) Accuracy of generated labels
(CIFAR-10). (b) Accuracy of generated labels (Speechcommand). (c) Accuracy of
trained models (CIFAR-10). (d) Accuracy of trained models (Speechcommand).

mance gain is not as large compared to the cases where only a small number of manual
labels are available.

It is worth noting that LANCET targets automatically producing sufficient labels with
minimal human labeling efforts. Therefore, we put forth that how LANCET performs
under the circumstances with only a small number of manual labels available is much
more critical than such scenarios with a large number of manual labels.

64

PhD Dissertation Defense: Huayi Zhang 65

(a) Accuracy of Produced Labels (b) Accuracy of Trained Models

Figure 19: Binary classification on Chest dataset: Varying the Number of Manually
supplied Labels.

12.7 Evaluation of Binary Classification Task

Because Snuba and GOGGLES report evaluation results for binary classification prob-
lems, we conduct experiments to evaluate LANCET on binary classification. To ensure a
fair comparison, we run experiments on the Chest-XRay [52] dataset used in GOGGLES.
This pneumonia chest X-ray dataset contains of 5856 X-ray images labeled by radiologists
as being normal or showing different types of pneumonia.

Same as GOGGLES, Snuba, we compare LANCET against all other methods on the
accuracy of the produced labels and the downstream classification models. The results
show that LANCET consistently outperforms the state-of-the-art methods and other base-
lines, including GOGGLES, Snuba, SemiGAN, and AutoEncoder, up to 18 percentage
points and achieves an accuracy close to 0.9. This shows that LANCET works well in
both multi-class classification and in binary classification settings. In this set of binary
classification experiments, all methods achieve a relatively high accuracy. A reason for
this may be that in binary classification settings, random guess corresponds to an accu-
racy of 0.5.

65

PhD Dissertation Defense: Huayi Zhang 66

Part III

MetaStore: Meta Data Analytics for
Training Data Curation
12.7.1 Proposed Task III: MetaStore: Meta Data Analytics for Training Data Curation

By exploiting the properties of popular DNN models and their gradient computation
methodology MetaStore is able to offer an effective solution to these challenges.

MetaStore Compact Data Storage. First, our careful analysis of the back-propagation
process of DNN training reveals that the huge gradient of a training sample can be decom-
posed into 2 small gradients, namely, prefix and suffix gradients, from which the gradient
can be exactly re-constructed via a matrix product operation. These two partial-gradients
are typically several orders of magnitude smaller than the original gradient especially
when produced in layers with a huge number of parameters. Therefore, they are ex-
tremely compact, cutting the storage costs from terabytes to gigabytes.

MetaStore Lightweight Data Collection. Instead of first computing the full gradi-
ent and then manually decomposing it, we observe that both the small prefix and suffix
gradients correspond to intermediate data that could naturally be produced during the
back-propagation step when computing the gradient. Their collection can thus be done
almost for free, i.e., via a very lightweight process. Better yet, this process is backwards
compatible with existing learning processes. For this reason, it can be easily integrated
into standard deep learning frameworks, such as PyTorch or Tensorflow, without requir-
ing any system modification. This in turn will improve MetaStore’s ease of adoption in
practice.

MetaStore Efficient Analytics. MetaStore is the first system to provide a rich set of
operators that allow users to conduct many gradient-based analytics on the stored meta-
data from discovering erroneous training samples to interpreting model behavior. These
operators often involve computing the inner product similarity of two gradients. This
inner product operation tends to impose a significant computational bottleneck [114, 127].
Worst yet, if we were to store two separate prefix and suffix gradients in place of the actual
gradient, this would further slow down the inner product operation because MetaStore
would have to reconstruct the original gradients each time, before proceeding to execute
the specific analytics operations.

In this work, we design an efficient strategy that is able to exactly compute the gradient
inner product without first reconstructing the gradients. It leverages our observation that
given two gradients in a linear layer, we can directly use their respective prefix and suffix
gradients to compute their inner product via a lightweight linear algebra transformation.
With the prefix and suffix gradients much smaller than the gradient itself, this speeds up
the inner product operation by several orders of magnitude.

Generality of the MetaStore Approach. The efficient collection, storage, and analytics

66

PhD Dissertation Defense: Huayi Zhang 67

services of MetaStore are applicable to all common types of layers (beyond just linear lay-
ers) found in popular DNN models such as ResNet [44], VGG [93], and BERT [26]. This
holds because all the commonly used layers in these models (each potentially with many
trainable parameters and thus producing large gradients), such as the convolutional lay-
ers and the self-attention layers, can be decomposed into a set of linear layers.

67

PhD Dissertation Defense: Huayi Zhang 68

(a) Forward Propagation Process (b) Backward Propagation Process

Figure 20: The forward and backward propagation process in Deep Neural Networks.

13 Preliminaries

Here, we review the forward and backward propagation processes used for training DNN
models as prerequisite to understanding MetaStore’s methodology (Fig. 20). A DNN
model ϕ(x; θ) is formed by a stack of layers, with x being the input data sample, and
θ being the parameters of the model.

Forward Propagation Process. During the inference time, also called forward prop-
agation, the data samples are fed into the first layer. Then each layer takes the previous
layer’s outputs as its input and transforms the input features into new representations.
Finally, the output of the last layer is considered the DNN model’s output. The transfor-
mation process inside each layer typically is to multiply the input features with a set of
parameters, called neurons. Each layer thus can be regarded as a function of the input
features and its parameters, i.e.,z l+1 = f l(z l , θl), where zl denotes the inputs (output) of
the lth (l − 1th) layer, and θl the parameters of the lth layer. The overall DNN model
corresponds to a function composition:

ŷ = ϕ(x; θ) = fL(fL−1 · · · (f 1(x; θ1) · · ·), θL). (47)

Backward Propagation Process. Deep learning uses backpropagation to train a DNN
model. For this, the machine learning practitioners provide the expected outputs of each
data sample, such as a label. They also define a loss function that produces a loss value
based on the difference between the expected and actual outputs of the DNN model.
Then, the gradients of each parameter with respect to the loss value are calculated to up-
date the parameters in the DNN model. More specifically, the gradients of the parameters
in each layer are calculated with the chain rule below:

∇θlC =
dC

dθl
=

dC

dzl+1
· dz

l+1

dθl
=

dC

dzL
· dzL

dzL−1
· · · dz

l+1

dzl
· dz

l

dθl
(48)

where C is the loss value, C = Loss(ŷ , y). An optimization method, typically Stochas-
tic Gradient Descent (SGD), updates the parameters θl by taking one step of gradient
descent:

θl = θl − α · ∇θlC (49)

where α is a predefined learning rate that controls the learning speed of the DNN
model.

68

PhD Dissertation Defense: Huayi Zhang 69

14 Gradient-based DNN Analytics

In this section, we first discuss the foundational principles that most gradient-based DNN
analytics techniques are built upon, and then introduce our core operators for gradient-
based analytics.

14.1 Meta Gradient: The Foundation of Gradient-based Analytics in
MetaStore

In deep learning, optimization methods such as SGD directly use gradients to update
the parameters of the DNN models. This way, the gradient correlates the training data
to the model parameters, and because of this, gradients can be leveraged to measure
the contribution of a given training sample to the model performance. This is critical
for a range of machine learning tasks, including identifying mis-labeled or dirty training
samples, explaining the model’s prediction errors, valuating the training samples, and
more.

Observation. The meta gradient – the inner product between the gradients of a train-
ing sample and a set of validation samples – effectively estimates how a training sample
contributes to the model performance. Below, we theoretically show why this important
observation is true.

Intuitively, the contribution of a training sample can be measured by how differently
the model would perform if the target sample was not in the training set [77]. Let’s con-
sider a standard classification task. The DNN model ϕ(x; θ) is evaluated on a set of val-
idation samples {(xv

j , y
v
j)}N

v

j=1 that are not in the training set with yvj the label of xv
j . We

denote the validation loss as Lv(θ) = 1
Nv

∑Nv

j=1 l(x
v
j , y

v
j ; θ). Let θt be the parameters of the

model that was trained with the target training sample xt and θ be the parameters trained
without using the target training sample xt. Then the contribution of the training sample
xt corresponds to the difference between the validation losses of ϕ(xv; θ) and ϕ(xv; θt), i.e.,
Lv(θt)− Lv(θ). With Taylor Expansion, this becomes:

Lv(θt)− Lv(θ) = ∇θL
v(θ)(θt − θ) (50)

By Eq. 49, θt − θ = α · ∇θL(θ). Substituting this in, we get:

Lv(θt)− Lv(θ) ∝ ∇θL
v(θ) · ∇θL(θ) (51)

In Eq. 51, ∇θL
v(θ) · ∇θL(θ) represents the inner product between the training exam-

ple’s gradient and the average gradient of the validation samples. This is the meta gradient.
Therefore, Eq. 51 substantiates our claim that the meta gradient effectively estimates

to what degree a training sample contributes to the model’s performance. A positive meta
gradient indicates that the training sample impacts the model in a positive way.

69

PhD Dissertation Defense: Huayi Zhang 70

14.2 MetaStore Gradient-based Analytics

Leveraging the principles of meta gradients, MetaStore provides 4 core operators for
gradient-based analytics:
• Point-to-point (P2P): given a training sample and a validation (or, testing) example,
estimate the contribution of the training sample to the prediction result of the validation
(testing) example.
• Point-to-batch (P2B): given a training sample and a batch of validation (testing) exam-
ples, estimate the contribution of the training sample to the prediction results of the batch
of validation (testing) examples.
• Batch-to-point (B2P): given a batch of training samples and a validation (testing) exam-
ple, estimate the contribution of the batch of training samples to the prediction result of
the validation (testing) example.
• Batch-to-batch (B2B): given a batch of training samples and a batch of validation (test-
ing) examples, estimate the contribution of the batch of training samples to the prediction
results of the batch of validation (testing) examples.

Using these operators as building blocks, for the first time users could easily develop
gradient-based analytics techniques to interpret the model prediction by examples [112,
43], debug data issues [14, 74], or valuate the training samples [117, 49], etc. These tasks
are critical for deep learning to achieve superior performance. Below are some intuitive
examples.
Interpreting Model Prediction By Examples. Users could use the P2P operator to first
compute the contribution of each training sample to the prediction of one testing sample
and then select the top k training samples shown to have the most significant contribution
to explain why the model predicts the given testing sample in the identified manner.
Data Debugging. Users could use P2B operator to determine how each specific train-
ing sample contributes to the prediction of a set of testing samples. If the P2B operator
returns a negative value, it indicates this training sample could jeopardize the overall per-
formance of the model. The users thus could identify this sample as a potential outlier or
as mislabeled.
Data Valuation. Accordingly, using the P2B operator, the users could valuate the train-
ing samples based on their contribution to the model. The more the training samples
contribute, the more valuable they are. Potentially, the valuation results could guide the
users to determine what new training samples they should collect to best improve the
model performance.

Similarly, the B2P and B2B operators allow the users to evaluate how a batch of train-
ing samples as a whole impacts either the prediction of one testing sample or the overall
performance of the model, thus interpreting model prediction or debugging data issues.
As deep learning typically updates the model batch by batch using the average gradi-
ent of a batch of training samples, these operators mimic the training process of deep
learning, thus meaningful.

As input to these operators, the training samples would have already been seen by

70

PhD Dissertation Defense: Huayi Zhang 71

MetaStore when training the DNN model. However, MetaStore does not make any as-
sumptions about the testing examples. Instead, it allows the users to specify them at will.
Because the gradients produced in a big DNN model tend to be ultra-high dimensional, it
is challenging to implement these operators in a way that is both storage and computation
efficient.

71

PhD Dissertation Defense: Huayi Zhang 72

System

Meta-data Storage

Disk Memory

Meta-data Collector Meta-data
Analytics EngineModel Checkpoints

Memory

AutoGrad Framework
(e.g., Pytorch)

Training
Samples

Testing
Samples

Results
Data Flow:

Pre-compute

Data Flow:
Online Compute

Pre-computed
Metadata

Online Collected
Metadata

Figure 21: System Overview
15 System Overview

Given this background in gradients, in this section we overview MetaStore (Fig. 21),
which consists of three key components: (1) a Meta-data Collector, (2) Meta-data Stor-
age, and (3) a Meta-data Analytics Engine.

Meta-data Collector: This component continuously collects the meta-data produced
in the DNN training process using a non-intrusive process. Because the popular Auto-
Grad framework (e.g., PyTorch) recently has started to offer interfaces to gain access and
materialize the meta-data, MetaStore directly leverages them to collect meta-data. These
collected meta-data along with other meta information about the model architectures are
then stored.

The Meta-data collector also stores the model ϕ(x; θ) learned at each checkpoint dur-
ing DNN training. This way, MetaStore is able to collect meta-data for the data samples
not seen in the training process, e.g., testing samples. MetaStore achieves this by model
replay. Given a data sample xi and a model ϕ(x; θ), model replay first performs a for-
ward propagation process to get the prediction ŷi of xi by ϕ(.), where ŷi = ϕ(xi , θ). It then
calculates the loss value Ci = L(ŷi, y) and performs backward propagation as described
in Sec. 13 to obtain the gradient related meta-data. But it does not update the model pa-
rameters themselves. By replaying models, MetaStore is able to extract meta-data on the
fly at query time. The MetaStore meta-data collector is lightweight and compatible with
existing deep learning frameworks with little modification. Thus, we do not discuss it
further.

Meta-data Storage: The meta-data is maintained on disk (Sec. 16). With a DNN model
composed of a series of layers (Sec. 13), a DNN model’s gradient equals the concatenation

72

PhD Dissertation Defense: Huayi Zhang 73

of each layer’s gradient. Thus, in MetaStore, the minimal unit of storage encapsulates the
meta data of a specific layer in the DNN, which then is typically stored in a file. If the
training set is large, MetaStore may further divide the entire data set into small batches.
In this case, each file only contains the meta data corresponding to a small batch of data
samples. MetaStore also maintains a directory index that indicates what data samples are
stored in which file.

By decomposing the gradient into two partial gradients, namely the prefix and suffix
gradients, MetaStore’s storage strategies eliminate the storage bottleneck caused by the
size of the gradients. The details are discussed in Sec. 16.

Meta-data Analytics Engine: This component provides efficient execution strategies
for the 4 core operators discussed in Sec. 14.2. The input to each operator is the training
and testing samples specified by the users. Because MetaStore already collects the meta-
data of all training samples and maintains them in storage, the engine directly loads the
requested gradients of the training samples from storage into GPU memory. However,
unlike the training samples, MetaStore had not seen the testing samples in the train-
ing process. Therefore, it will compute their gradients on the fly by calling the model
replay function. The engine then efficiently executes these operators using the optimized
strategies discussed in Sec. 17 and Sec. 18. In addition, the engine uses caching to main-
tain the meta-data in GPU memory whenever possible and thus reduces I/O costs. It
uses the standard LRU cache replacement policy to evict meta-data when memory over-
flows [104, 43].

73

PhD Dissertation Defense: Huayi Zhang 74

16 Space-Efficient Gradient Storage

MetaStore leverages our prefix/suffix observation to compactly store the gradients meta-
data. Specifically we show that storing two small prefix and suffix matrices produced
during backpropagation is sufficient to reconstruct the exact original gradient of any data
sample. In Sec. 16.1, we introduce the key idea using linear layers as an example layer
type. Thereafter, we illustrate that these principles extend to other types of DNN layers,
including convolution and self-attention.

16.1 Gradient Storage: Linear Layers

Given a DNN model, assume its lth layer is a linear layer that applies a linear transfor-
mation to the input feature vector x.

y = θ · x+B (52)

Suppose the input feature vector x and the output feature vector y have Din and Dout

dimensions, respectively. Then θ contains Din × Dout parameters. Let dC
dθ

or ∇θC denote
the gradient of this layer. By Eq. 48, dC

dθ
= dC

dy
· dy
dθ

.
Prefix Gradient. The first matrix dC

dy
corresponds to the gradient of the output feature

vector with respect to the loss value, called prefix gradient. Intuitively, it indicates how
to update the output features to reduce the loss of the DNN model. Since the loss value
C is calculated based on the output of the final layer, calculating the matrix dC

dy
requires

backpropagation from previous layers. Because the linear layer is the lth layer, then dC
dy

=
dC
dzL
· dzL

dzL−1 · · · dz
l+1

dzl
. Although calculating the prefix gradient through backpropagation is

expensive, its size is only Dout. That is, it is identical to the size of the output feature
vector y, being much smaller than the size (Din × Dout) of the final gradient dC

dθ
we are

interested in.
Suffix Gradient. The other matrix dy

dθ
, also called Jacobian matrix, corresponds to the

suffix gradient. It indicates the expected update on parameters θ that will produce a better
output feature embedding. Even though its general formulation is very complex and
large, the Jacobian Matrix in a linear layer is simple:

dy

dθ
=

d(θ · x+B)

dθ
= x (53)

By Eq. 53, the suffix gradient in the linear layers is in fact identical to its input feature
vector x. The size, Din, is much smaller than the size of the parameters θ.
Prefix/Suffix Observation. Naturally, extracting out and maintaining the pair of small
prefix and suffix gradients is sufficient to reconstruct the original gradient of a linear
layer as follows:

(∇θC)r,s = (
dC

dy
)r · xs (54)

where∇θCr,s represents the rth row and sth column of θ.

74

PhD Dissertation Defense: Huayi Zhang 75

Space Complexity. The space complexity of storing the prefix and suffix gradients is
O(Dout+Din), while storing the full gradient takes Dout×Din space. Thus leveraging this
prefix/suffix observation, MetaStore drives down the storage costs by Dout×Din

Dout+Din . As an
example, given a 4096× 4096 linear layer commonly used in RestNet or VGG, the savings
are 2048-fold.
Collecting for Free. Instead of having to first obtain a full gradient and then decompose
it into two matrices, the small prefix and suffix gradients correspond to the intermediate
data produced during back-propagation when computing the gradient. Collecting them
is thus almost free. Better yet, it requires no modification to the standard deep learning
frameworks such as PyTorch or Tensorflow.
General Outlook. Next, we show that the principle of decomposing gradients into pre-
fix and suffix gradients is also applicable to other typical DNN layers, including those
that tend to have a large number of parameters and thus produce huge gradients. This is
because: (1) all these layers use the chain rule to compute gradients during backpropaga-
tion, and (2) they can each be decomposed into a set of linear layers.

In this paper, we use the convolutional (Sec. 16.2) and self-attention layers (Sec. 16.2) as
examples. The convolutional layer is widely used in DNN for computer vision tasks and
more recently has been drawing more attention from natural language processing (NLP)
and time-series analytics, while self-attention is the core component in any transformer-
based architecture. Other similar layers include normalization layers [48], embedding
layers, long short term memory (LSTM) layers [34], and gated recurrent units (GRU) [20],
to just name a few.

16.2 Gradient Storage: Convolutional Layers

For the ease of understanding, we use the standard 1D convolutional layer as an example
to illustrate the idea. Same as with the linear layer, we denote the parameters of the
convolutional layer as θ. The input data sample x corresponds to a tensor in the shape
(Cin, S), where Cin represents the number of input channels and S the number of features
in each channel. For example, if the input data is an RGB image with 32× 32 resolutions,
Cin is equal to 3 and S equal to 32 × 32. Similarly, its output is a tensor with a shape of
(Cout, S − K), where Cout represents the number of output channels and K the number
of the dimensions of one kernel. As a 1D matrix, a kernel K performs the convolution
operation on the features of an input channel as follows:

ys =
K∑
i

Ki · xs+i (55)

The convolution operation produces the output features with S − K dimensions for
each individual input channel. Aggregating these output features produces the final fea-
tures of one output channel m:

ym,s =

Cin∑
i

K∑
j

θm,i,j · xCin,s+j (56)

75

PhD Dissertation Defense: Huayi Zhang 76

Repeating this process Cout times produces an output with Cout channels. Thus, there
are Cout × Cin kernels in a convolutional layer. In the training process, DNN learns these
kernels to produce good output features. Thus, in the convolutional layer, parameters θ
is a tensor with the shape of (Cout, Cin, K). The final output y is a tensor that contains Cout

channels, with each channel composed of S −K features.
Similar as with linear layers, the gradients dC

dθ
of the convolutional layer can be de-

composed into the prefix gradient dC
dy

and suffix gradient dy
dθ

, i.e., dC
dθ

= dC
dy
· dy

dθ
. This is

because all layers in DNN use the same chain rule (Eq. 48) to compute gradients during
back-propagation.
The Storage Strategy. However, whether decomposing the gradient reduces storage costs
or not depends on the sizes of the prefix and suffix gradients. Because C is a scalar, the
size of the prefix gradient dC

dy
is equal to the number of output features. Next, we analyze

the suffix gradient dy
dθ

. For this, we establish the connection between the convolutional layer
and the linear layer, so that MetaStore will be able to adapt the storage strategy for the
linear layer to the convolutional layer.

Recall that θ is a tensor in the shape of (Cout ,Cin ,K). It can thus be regarded as an
aggregation of K linear sub-layers, with the shape of each sub-layer being (Cout, Cin). For
the ease of presentation, we denote the ith linear sub-layer θ(·,·,i) as θi, and similarly x(·,s)
as xs, and y(·,s) as ys. Then, we have:

dC

dθi
= [

dC

dy0
. . .

dC

dys−K

] · [dy0
dθi

. . .
dys−K

dθi
]T =

s−K∑
s=0

dC

dys
· dys
dθi

(57)

From Eq. 56, we have:

dys
dθi

=
d(
∑K

ĩ θĩ · xs+ĩ)

dθi
(58)

Since d(θĩ·xs+ĩ)

dθi
= 0 if ĩ ̸= i, while d(θĩ·xs+ĩ)

dθi
= xs+i if ĩ = i. Finally, we have:

dC

dθi
=

S−K∑
s

[
dC

dys
· xs+i] (59)

Eq. 59 shows that MetaStore is able to reconstruct the gradients of the convolutional
layers in a similar way to those of the linear layers. Therefore, MetaStore only needs to
store the prefix gradient and the features of the input samples, where the size of the prefix
gradient is the same as that of the output features.
Space Complexity. Storing the gradients as described above, the space complexity of
MetaStore is determined by the size of the input samples and the size of the gradient of
the output samples, that is, S× (Cin+Cout). Storing the original gradient takes K×Cout×

76

PhD Dissertation Defense: Huayi Zhang 77

Cin space, which is identical to the number of parameters in the convolution kernels.
Therefore, when S × (Cin + Cout) < K × Cout × Cin, MetaStore saves space. This is often
true. For example, the last layer of the VGG16 model contains 9 × 512 × 512 parameters,
while its input and output features are only 512 × 1 × 1 when training a VGG16 model
on CIFAR-10 dataset. In this case, the saving is 4068x. In Sec. 19.2, we verify this with
experiments.

But when the number of parameters is not large in the convolutional layer, the gradi-
ent is small. In this case directly storing the gradient will not constitute a space bottleneck.
Given a convolutional layer, MetaStore uses the above space complexity as cost model to
determine when to store the prefix and suffix gradients versus storing the original gradi-
ents directly.

16.3 Gradient Storage: Self-Attention Layers

Here, we use the sentence classification task as an example to show our gradient storage
strategy on the self-attention layers (SAL). The input sample x of a SAL is a tensor with the
shape of (S,H), where S denotes the length of the sentence and H the number of hidden
features of each word. SAL uses Key-Query-Value to produce attention scores and update
feature embeddings, accordingly. More specifically, SAL consists of three sub-layers, the
key sub-layer θk, the query sub-layer θq, and the value sub-layer θv. Each sub-layer is a
linear layer. Given an input sample, each sub-layer performs a linear transformation on all
word representations in the sentence and generates three representations for each word,
namely zk, zq, zv, as shown in Eq. 60 below.

zks = θk · xs, zqs = θq · xs, zvs = θv · xs (60)

Then the final output is ys = softmax (zks · zqs/
√
H) · zvs .

Storage Strategy. The three sub-layers perform the linear transformation on each word
in the sentence. The shape of x is (S,H), while the shapes of θk, θq, and θv are all (H,H).
Therefore, the shapes of zk, zq and zv are (S,H). This is equivalent to performing a linear
transformation on a batch of S samples, where S is the length of the sentence.

Because in a SAL only the three sub-layers contain parameters, MetaStore handles
each sub-layers separately. It then simply concatenates the gradients of each sub-layer to
obtain the final gradient of the SAL.

Each input sequence can be modeled as a batch of words. Then given a sub-layer, its
gradient is equivalent to the sum of the gradients with respect to a batch of data samples,
where a sample corresponds to one word. Then given one data sample xs, because the
sub-layer is linear, its gradient with respect to this sub-layer can be decomposed the same
way as done by the linear layer (Eq. 54), that is, decomposed to a prefix gradient and input
features xs. Finally, the gradient of each sub-layer can be computed with Eq 61:

77

PhD Dissertation Defense: Huayi Zhang 78

dC

dθk
=

S∑
s

dC

dzkl
· xs,

dC

dθq
=

S∑
s

dC

dzql
· xs,

dC

dθv

=
S∑
s

dC

dzvl
· xs

(61)

Handling each sub-layer separately, MetaStore only needs to store the prefix gradient
per layer and the input features, where the size of the prefix gradient corresponds to
the size of output features. MetaStore then is able to restore the original gradients using
Eq. 61.
Space Complexity. The space complexity of MetaStore is (3H +H) × S. Storing the full
gradients takes 3 × H × H × S space. So MetaStore drives down the storage costs by
O(3×H

4
)x. Given a SAL which produces 128 dimensional feature embeddings (H = 128),

the saving would be 96 fold.

78

PhD Dissertation Defense: Huayi Zhang 79

17 Meta-data Analytics Engine: P2P

Next, we describe MetaStore’s strategies that efficiently realize the gradient-based ana-
lytics operators described in Sec. 14. We introduce the execution strategy for the P2P
operator below, while the P2B operator is covered in Sec. 18. Due to space limitation, we
only briefly sketch the B2P and B2B operators in Sec. 18.2.

17.1 P2P Operator: Linear Layers

We start with the linear layer as an example, and generalize to other layers thereafter.
As shown in Sec. 14.1, MetaStore uses the inner product similarity between the gradients
of two data samples to estimate the contribution of a training sample to the prediction
result of a testing sample. Because MetaStore stores the compact prefix and suffix gra-
dients instead of the original (often huge) gradients, a straightforward solution would
be to restore the gradients first and then to compute the inner product. Obviously, this
introduces extra overhead due to having to perform the restore operation.

MetaStore succeeds to compute the inner product of two gradients exactly without
having to restore them first. More specifically, MetaStore could compute the exact inner
product of two gradients by first in parallel computing the inner product on the prefix
gradient dC

dy
and on the suffix gradient x, and thereafter multiplying these two results.

Because it directly operates on the small prefix and suffix gradients, it is orders of mag-
nitude faster than storing the original gradients before and then directly computing the
inner product. Lemma 5 proves the correctness of this optimized method.

Lemma 5. Let’s denote two data samples as x1 and x2 and their corresponding outputs
of a linear layer θ as y1 and y2. We denote their loss values as C1 and C2, and thus the
gradients as∇θC1 and ·∇θC2. Then Eq. 62 holds.

∇θC1 · ∇θC2 = [(
dC1

dy1
) · (dC2

dy2
)] · [x1 · x2]. (62)

Proof. From Eq. 54, we have,

∇θC1 · ∇θC2 =
Dout∑
r=0

Din∑
s=0

(∇θC1)r,s · (∇θC2)r,s

=
Dout∑
r=0

Din∑
s=0

(
dC

dy1
)r · (x1)s · (

dC

dy2
)r · (x2)s

= [
Dout∑
r=0

(
dC

dy
)r · (

dC

dy
)r] · [

Din∑
s=0

(x1)s · (x2)s]

= [
dC1

dy1
· dC2

dy2
] · [x1 · x2]

(63)

79

PhD Dissertation Defense: Huayi Zhang 80

Figure 22: Comparison between naive method and MetaStore.
Therefore, Eq. 62 holds. 2

Time Complexity. As discussed in Sec. 16.1, a prefix gradient has Dout dimensions,
while a suffix gradient has Din dimensions. Therefore, the time complexity of MetaStore is
O(Din+Dout). Because the size of the original gradients is Dout ×Din, the time complexity
of computing the inner product directly on the gradients is O(Dout × Din). Theoretically,
MetaStore speeds up the P2P operation by O(D

out×Din

Din+Dout). Given a linear layer in VGG with
4096 × 4096 parameters, the speed up can be up to 2048 fold.

17.2 P2P Operator: Convolutional Layers

As discussed in Sec. 16.2, a convolutional layer can be decomposed into a set of linear
layers. Given a convolutional layer whose parameters form a tensor θ with a shape of
(Cin, Cout, K), because the K is often very small (e.g., K=9 in the VGG16 model), we could
decompose θ into K linear sub-layers θi.

Therefore, when computing the inner product of two gradients produced in a con-
volutional layer, intuitively we could leverage the P2P operator designed for the linear
layers to compute the inner product between the gradients with respect to θi and then
sum up all the results.

Let’s denote two data samples as x1 and x2 and the corresponding outputs of a con-
volutional layer θ as y1 and y2. We denote their loss values as C1 and C2 and thus the

80

PhD Dissertation Defense: Huayi Zhang 81

(a) Convolutional Layer (b) Self-attention Layer

Figure 23: Extension to convolutional and self-attention layers: (a) For convolu-
tional layer, MetaStore decomposes it into a series of linear layers; (b) For self-
attention layer, MetaStore handles each of its linear sub-layers separately.

gradients as ∇θC1 and ∇θC2. Lemma 6 shows how to use the prefix and suffix gradients
to directly compute∇θC1 · ∇θC2 in a convolutional layer.

Lemma 6. ∇θkC1 · ∇θkC2 =
∑S−K

s

∑S−K
s̃ [dC1

dys−K
1

· dC2

dy s̃−K
2

] · [x s
1 · x s̃

2]

Proof. From Lemma 59, we have,

∇θkC1 · ∇θkC2 = [
S−K∑

s

dC1

dys−K
1

· xs
1] · [

S−K∑
s̃

dC2

dys̃−K
2

· xs̃
2]

=
S−K∑

s

S−K∑
s̃

[
dC1

dys−K
1

· xs
1] · [

dC2

dys̃−K
2

· xs̃
2]

=
S−K∑

s

S−K∑
s̃

[
dC1

dys−K
1

· dC2

dys̃−K
2

] · [xs
1 · xs̃

2]

(64)

2

By Lemma 6 MetaStore could use Eq. 64 to compute∇θkC1 · ∇θkC2.
Time Complexity. By Eq. 64 the time complexity of computing ∇θkC1 · ∇θkC2 is (S −

K)2× (Cout +Cin). Because∇θC1 · ∇θC2 =
∑

k∇θkC1 · ∇θkC2, the total time complexity of
MetaStore calculating the gradient inner product on a CNN layer is K× (S−K)2× (Cin+
Cout).

The time complexity of directly using the original gradients to compute the inner
product would be K × Cin × Cout – which is identical to the number of the parameters.
The potential speedup is thus Cin×Cout

(S−K)2×(Cin+Cout)
. Therefore, whether MetaStore will win

or not depends on the number of features (S) of the input samples and the number of
input and output channels (Cin and Cout). For most of the popular models, S decreases
with the number of layers due to the convolution operation, while Cin and Cout increase.

81

PhD Dissertation Defense: Huayi Zhang 82

Therefore, the number of parameters in the later convolutional layers of a DNN model is
often much larger than its early layers.

For example, the first convolutional layer of the VGG16 model only contains 9×3×64
parameters, where 9 is the kernel size, while its last layer contains 9×512×512 parameters.
When training a VGG16 model on CIFAR-10 dataset, the number of input features in each
channel is 32 × 32 in the first convolutional layer, while it is only 1 × 1 in the last CNN
layer. Thus, MetaStore tends to significantly outperform the naive method on the later
convolutional layers, while it can be slower on the early layers.

In practice, MetaStore could leverage the above time complexity as a cost model to
select a low cost execution strategy.

17.3 P2P Operator: Self-Attention Layers

As discussed in Sec. 16.3, a self-attention layer is formed by three linear sub-layer θk, θq

and θv. Therefore, MetaStore can directly leverage the strategy designed for the linear
layer to compute the inner product between the gradients with respect to each sub-layer
and then at the end multiply the results.

Time Complexity. Let’s denote two data samples as x1 and x2, the corresponding
output of a CNN layer θ is y1 and y2. The time complexity of MetaStore is S2 × (H +
H), where S is the length of the input sequence and H represents the number of the
dimensions of the hidden vector for each word. The time complexity of the naive solution
that pre-computes and stores the original gradients is H ×H . So the potential speedup of
MetaStore is H

2×S2 .
In a standard BERT model, H = 768. Therefore, as long as the length of each sequence S

is smaller than
√
384, MetaStore will win. We find this often holds on most of the popular

benchmark NLP datasets [130].

82

PhD Dissertation Defense: Huayi Zhang 83

18 Meta-data Analytics: Batch Operators

Next, we discuss our strategy to efficiently support the P2B operator in Sec. 18.1. Then
in Sec. 18.2 we show how to leverage the efficient P2B execution strategy to support B2P
and B2B operators.

18.1 P2B Operator: No Gradient Restore

The point-to-batch (P2B) operator estimates the contribution of one training sample xi on
the prediction results of a batch of testing samples Bj . By the concept of the meta-gradient
introduced in Sec. 14.1, MetaStore measures this as the average inner product similarity
between the gradients of the training sample and any testing sample in the batch. We
denote this as Iavg(x,B).

By Sec. 16, MetaStore has already preprocessed and stored the gradient of each train-
ing sample beforehand as a < prefix , suffix > pair. Thus, the pair can be directly fetched.
However, MetaStore has to obtain on the fly the gradient of the testing samples unseen
before using model replay, as described in Sec. 15. Given a batch of testing samples, Meta-
Store can get their gradients in two ways: (1) for each sample, we get its gradient in the
format of < prefix , suffix > pair as described in Sec.15; or, (2) we directly get the average
gradient of this batch. The existing deep learning infrastructures such as Pytorch read-
ily provide this interface, because deep learning typically updates the model parameters
based on the average gradient of a batch of training samples.

The advantage of the first approach is that MetaStore can directly call the efficient
P2P operators introduced in Sec. 17 to compute Iavg(x,B). However, it has to iteratively
compute the inner product for each pair of training and testing samples. When the testing
batch is large, this will become expensive.

On the other hand, Iavg(x,B) is equivalent to the inner product between the gradient
of xi and the average gradient of the testing batch. Therefore, if MetaStore restores the full
gradient of the training sample from the < prefix , suffix > pair and extracts the average
gradient of the testing batch using the second approach, then it would be able to compute
Iavg(x,B) with one single inner product operation. However, restoring the training sample
from the < prefix , suffix > pair tends to be expensive – often much more expensive than
the inner product itself.

We design an efficient P2P execution strategy which uses one single inner product op-
eration to compute Iavg(x,B), while not restoring the full gradient of the training sample.
This strategy is built on Lemma 7.

Lemma 7. Let ∇θC denote the gradient of training sample x and Ḡt the average gradient
of the testing batch, given a linear layer with the shape of (Din, Dout), Eq 65 holds.

Iavg(x,B) = ∇θC · Ḡt = xT · Ḡt · dC
dy

(65)

83

PhD Dissertation Defense: Huayi Zhang 84

Proof.

Iavg(x,B) = ∇θC · Ḡt =
Din∑
i=0

Dout∑
j=0

[(∇θC)(i,j) · Ḡt
(i,j)] (66)

From Eq. 54, we have (∇θC)i,j = xi · (dCdy)j . Then:

Iavg(x,B) =
Din∑
i=0

Dout∑
j=0

[xi · Ḡt
(i,j) · (

dC

dy
)j] = x ·

Dout∑
j=0

[Ḡt
(i,j) · (

dC

dy
)j]

= xT ·
Dout∑
j=0

[Ḡt
(i,j) · (

dC

dy
)j] = xT · Ḡt · dC

dy

(67)

where x and dC
dy

correspond to the ¡prefix, suffix¿ pair of the training sample. This
concludes the proof of Lemma 7. 2

Eq. 67 shows that we could directly execute the P2B operator using the prefix gradient
dC
dy

and the suffix gradient x.
Time Complexity. The time complexity is Din ×Dout, which does not rely on the size of
the batch. Therefore, this strategy scales to large testing batches.

Extending this method to the convolutional and self-attention layers is straightfor-
ward. MetaStore decomposes their parameters into a set of linear sub-layers. Using the
average gradient of the testing batch w.r.t. each linear sub-layer and the pre-stored ¡pre-
fix,suffix¿ pair, it first calculates the partial inner product as described above and then
aggregates up the partial results.

18.2 Other Operators: B2P and B2B

Unlike the P2P and P2B operators, the B2P and B2B operators involve a batch of training
samples which have their prefix and suffix gradients already maintained in MetaStore
storage. An intuitive method to execute these two types of operators would thus be to
first restore the original gradient from the prefix and suffix gradients for each training
sample, compute the average gradient for this batch, then use model replay to extract the
gradient or the average gradient for the testing samples, and finally compute the inner
product. This method only needs to compute the inner product once. However, as we
have discussed in Sec. 18.1 and confirmed in the experiments (Sec. 19.4), restoring the
original gradient from the prefix and suffix gradient typically is even more expensive
than the inner product operation itself, thus not acceptable.

After ruling out restoring the gradients as an option, the only way left is to iterate
over each training sample in the batch, then to call the P2P or P2B operator to compute
the inner product, and lastly, to take the average.

84

PhD Dissertation Defense: Huayi Zhang 85

More specifically, for the B2P operator, MetaStore could extract the gradient in the
format of ¡prefix, suffix¿ pair for the single testing sample via model replay and call the
P2P operator. Another option would be to extract the original full gradient and call the
P2B operator instead using our strategy presented in Sec. 18.1. For the B2B operator,
directly calling the P2B operators is the obvious choice. Because users tend to form a
batch of training samples mimic the DNN training process, the size of the training batch
usually is set according to the batch size hyper-parameter (typically 64 or 128). Thus, the
cost of iterating over each training sample in a batch is acceptable.

85

PhD Dissertation Defense: Huayi Zhang 86

19 Experiments

Our experimental study focuses on the following questions:
• Storage: Does MetaStore reduce the storage footprint of gradient meta-data and thereby
offer practical feasibility?
• Execution Time: To what degree does MetaStore speed up the execution of gradient-
based analytics queries compared to unoptimized methods?
• Preprocessing: How efficiently can we collect the meta-data in MetaStore?
• How useful are our analytics interfaces in applications?

19.1 Experiment Setup

Settings. All the experiments are implemented in Python3.7 on Pytorch. We conduct all
experiments on a virtual cloud instance with Intel Xeron G6248 CPU, 0.5 TB Memory, a
SSD storage disk with 2TB space, and one V100 GPU with 32G memory.
Datasets. We evaluate our method with two benchmark datasets, namely, CIFAR10 im-
age and AGNews [126] text dataset. CIFAR10 dataset contains 50,000 images from 10
classes. Each image has the dimension of 3 × 32 × 32. AGNews dataset contains 30,000
sentences from four classes, where each sentence contains 6 to 89 words.
Baseline Methods. In the experiments we only measure the efficiency of the point-to-
point (P2P) operators and the point-to-batch (P2B) operators, because the B2P and B2B
operators simply leverage the P2P and P2B operators, as discussed in Sec. 18.2.

For the P2P operators, we compare MetaStore with the following baseline methods:
1) Pre-compute: We pre-compute the full gradient for all training samples and store

them in disk. Once an analytics query is submitted, we retrieve the gradient of the in-
dicated training sample from the disk into GPU memory, extract the gradient for the
indicated testing sample in the ¡prefix,suffix¿ pair format, and run the corresponding an-
alytics operators.

2) Re-compute: After an analytics query is submitted, it computes the gradient of the
training sample on the fly through model replay using the model maintained in GPU.

For the point-to-batch (P2B) operators, we evaluate the Iterate and Reconstruction meth-
ods discussed in Sec. 18. Both methods leverage our compact ¡prefix, suffix¿ storage struc-
ture to reduce the I/O costs when collecting the gradients of training samples.

1) Iterate: This method extracts the gradients for each indicated testing sample in the
¡prefix,suffix¿ pair format as described in Sec.15, and then calls our optimized P2P operator
to compute the inner product between the training samples and each testing sample in
the query batch and then compute the average.

2) Reconstruction: This method extracts the average gradient for the testing batch
through model replay, and then reconstructs the gradients of training samples from the
¡prefix, suffix¿ pair. Finally, it directly calculates the similarity between the gradient of a
training sample and the average gradient of the testing batch. Therefore, Reconstruction
only computes the inner product once.

86

PhD Dissertation Defense: Huayi Zhang 87

Unlike the P2P operators experiments, in the P2B experiments we don’t compare
against Pre-compute and Re-compute baselines, because Iterate and Reconstruction leverage
our compact ¡prefix,suffix¿ storage structure and optimized P2P operator. Thus, they are
clearly more efficient than Pre-compute and Re-compute. Similarly, although Reconstruc-
tion could work for P2B operator, we don’t compare against it in the P2P experiments.
This is because for the P2P operator, Reconstruction does not reduce the number of inner
product computations, while introducing extra computation costs to reconstruct the orig-
inal gradient from the ¡prefix, suffix¿ structure. It is thus guaranteed to be worse than
Pre-compute.
Deep Neural Network Architectural Models. We evaluate our method on two popular
deep neural network architectures, namely VGG16 [93] and BERT [26]. As a well known
model for computer vision tasks, VGG16 consists of 13 Convolutional layers and three
linear layers. The BERT Model, popular in natural language processing, contains 12 At-
tention layers and one linear layer. We trained a VGG16 model on CIFAR10 dataset and
a BERT model on the AGNews dataset through finetuning. We trained each model for 5
epochs and saved the model checkpoints.

Storage Cost (MB)
Layers Shape MetaStore Full Gradient Disk Space Sav-

ing
VGG16-Conv1 9× 3× 64 2744 69 0.025×
VGG16-Conv7 9× 128× 256 1310 23593 18.0×
VGG16-
Conv13

9× 512× 512 163 94371 578×

VGG16-
Linear1

512× 10 21 205 9.76×

BERT-SAL1 3× 768× 768 2949 70779 24.00×
BERT-SAL6 3× 768× 768 2949 70779 24.00×
BERT-SAL11 3× 768× 768 2949 70779 24.00×
BERT-Linear1 768× 4 31 122 3.93×

Table 1: The storage cost: MetaStore VS Full Gradient.
19.2 Storage Costs

In this set of experiments, we evaluate the storage costs and savings of the MetaStore’s
prefix/suffix gradient strategy of storing decomposed gradients. We evaluate the storage
cost for 10,000 training samples randomly sampled from the training set, because the
baseline cannot handle the whole training set. Following previous work [43], for the
VGG16 model, we report the storage costs of the first, mid and last convolutional layers
and the linear layer, while for the BERT model, we report the storage costs of the first,
mid and last self-attention layer and the last linear layer.

Table 1 shows these storage costs. We see that compared to storing the original gra-
dients, MetaStore reduces the storage costs by up to 578x for the VGG16 model solution.

87

PhD Dissertation Defense: Huayi Zhang 88

(a) VGG16-CIFAR10 (b) BERT-AGNews

Figure 24: The End-to-End Query Execution Time of P2P Operator for Different Layers
in VGG16 and BERT Model.

The only exception is the first convolutional layer that featuring only a few parameters,
has a small gradient and thus not much disk space is saved in this case. As an opti-
mization, MetaStore leverages the space complexities discussed in Sec. 16 as cost model
to determine when to store the full gradient versus the gradients in ¡prefix,suffix¿ pair
format.

Similarly, for the BERT model, MetaStore reduces the storage costs by 24x. However,
for this model, both methods need more disk space than the VGG16 model, because the
BERT-AGNews model contains many more parameters than the VGG16-CIFAR10 model.
Also, each layer in the BERT-AGNews model generates a larger number of input and
output features for each training sample compared to the VGG16-CIFAR10 model.

19.3 P2P Operator: End-to-End Execution Time

In this experiment, we evaluate the end-to-end execution time of the P2P operator which
computes the inner product between the gradients of two data samples. This execution
time includes the times for calculating the gradients of the testing samples by model re-
play, loading the gradients of the training samples into GPU memory, and running the
corresponding analytics operators.

19.3.1 Execution Times for Different DNN Layers

First, we compare MetaStore against the Pre-compute and Re-compute methods (Sec. 19.1)
on the VGG16-CIFAR10 and BERT-AGNews models. Similar as with the above storage
experiments, we evaluate the first, middle and the last convolutional layer of the VGG16
model and the first, middle and the last self-attention layer of the BERT Model. We ran-

88

PhD Dissertation Defense: Huayi Zhang 89

domly select one testing sample from the testing set. For each pair of training sample and
this chosen testing sample, we run the P2P operator. We use 10,000 training samples and
thus call the P2P operator 10,000 times. We repeat the experiment 10 times and report the
average execution time.

Fig. 24(a) (in log scale) shows that for the VGG16-CIFAR10 model, MetaStore is up
to 1,000 times faster than Pre-compute, and 7 orders of magnitude faster than Re-compute.
In particular, Pre-compute is slower on the later convolutional layers, while MetaStore im-
proves speed there. This is because that the complexity of Pre-compute increases linearly
with the number of parameters, and indeed the later convolutional layers have more pa-
rameters. On the other hand, the complexity of MetaStore increases linearly with the size
of the input features, while the size of the input feature is smaller in the later layers com-
pared to the early layers. This is common for CNN networks, since the convolution oper-
ation naturally shrinks the size of the features. Further, the execution time of Re-compute
does not vary much for different layers. This is because the performance bottleneck of
this method is performing forward and backward propagation on the entire network to
produce the gradients.

For the BERT model, MetaStore is about 10 to 100 times faster than Pre-compute and
100 to 1000 times faster than Re-compute. Because different self-attention layers in BERT
have the same architecture, their performance does not vary much across different layers.
The speed up of MetaStore for BERT is smaller than for the VGG16 model. This is because
on the BERT model MetaStore has a relatively speaking smaller advantage on storage
costs, as discussed in Sec. 19.2.

19.3.2 Varying Number of Dimensions of Layers

In this set of experiments, we evaluate MetaStore’s performance on DNN layers with
a varying number of dimensions. To achieve this, for the linear layer, we append one
additional linear layer before the last layer in VGG16. Similarly, for the convolutional
layer, we append one additional convolutional layer after the last convolutional layer in
VGG16. We refer to these two “extended” models as VGG16-Linear and VGG16-Conv,
respectively. We then vary the number of dimensions of these new layers. For the self-
attention layer, we directly vary the input and output dimension of each self-attention
layers. We name this model BERT-Att.

For the VGG16-Linear model, to ensure the appended layer is aligned with the pre-
vious layers, we keep the input dimensions fixed and only vary the output dimensions
from 32 to 512. Similarly, for the VGG16-Conv model, we fix the number of input chan-
nels and vary the output channels from 32 to 512. Thereafter, we focus on comparing
the end-to-end execution time on the new layer of each model. For the BERT-Attention
model, we vary the input and output dimensions of each Self-Attention layers from 96 to
768. We report the execution time of the last self-attention layer.

As depicted in Fig. 25, MetaStore is up to 1000 times faster than both baseline methods

89

PhD Dissertation Defense: Huayi Zhang 90

in all experiments. For the VGG16-Conv and the VGG16-Linear models, as shown in
Fig. 25(b) and Fig. 25(a), respectively, we observe that for all three types of layers, the
execution time of the Pre-compute method increases quickly as the output dimensions
get larger, while the query time of MetaStore does not increase significantly. This can
be explained by the time complexity of Pre-compute which equals the input dimensions
multiplied by the output dimensions, while the time complexity of MetaStore equals the
input dimensions plus the output dimensions, as discussed in Sec. 16. For the BERT-
Attention model, MetaStore is up to 1,000 times faster than both baseline methods. In all
experiments, the execution time of Re-compute method does not change significantly and
is much slower than the other two methods in most cases. This is because calculating the
gradient of a single layer on the fly is expensive, which dominants the execution time in
this case.

(a) VGG16-Linear (b) VGG16-Conv (c) BERT-Att

Figure 25: The End-to-End Query Execution Time of P2P Operator: Varying the Dimen-
sion of Different Type of Layers.

19.3.3 Vary the Number of Training Samples

We vary the number of training samples for each query from 500 to 8,000 and compare
MetaStore against the Pre-Compute and Re-Compute methods. We measure the cumula-
tive total time of running 100 queries on the last convolutional and the last linear layer in
the VGG16-CIFAR10 model and the last self-attention layer in the BERT-AGNews model.
We cache the gradients in the memory, when possible, using LRU as cache replacement
policy. As shown in Fig. 26, the cumulative time of MetaStore increases much slower than
for the baseline methods. Specifically, MetaStore only gets about 5 times slower when
increasing the number of training samples from 500 to 8000 on the VGG16-CIFAR10 and
BERT-AGNews models, while the execution time of Pre-Compute and Re-Compute increase
12-15 times in both cases. This is because MetaStore can cache more data samples in mem-
ory due to its efficient storage strategy, therefore significantly reducing the I/O costs.

19.4 P2B Operator: Execution Time

We evaluate the performance of our optimized method (Sec. 18.1) for the P2B operator. In
this experiment, we compare Iterate and Reconstruction as baseline methods. The recon-

90

PhD Dissertation Defense: Huayi Zhang 91

(a) VGG16-CIFAR10 (b) BERT-AGNews

Figure 26: The End-to-End Query Execution Time of P2P Operator: Varying the Number
of Training Samples.

struction method leverages our prefix/suffix gradients insights, thus significantly reduc-
ing its I/O costs.

As shown in Fig. 27, our method is at least 2 times faster than the baseline methods
in all experiments. Compared with the reconstruction method, our method speeds up
the execution by up to 10x, because it directly computes the results on the ¡prefix, suffix¿
pairs of training samples, and thus avoids reconstructing large gradients for the training
samples.

(a) VGG16-CIFAR10 (b) BERT-AGNews

Figure 27: The End-to-End Query Execution Time of P2B Operator: Varying the Number
of Training Samples.

19.5 Meta-data Collection and Storage Times

We evaluate the time of extracting and storing the gradient of 10,000 training samples. We
compare MetaStore against computing and storing the full gradients. Again, we measure

91

PhD Dissertation Defense: Huayi Zhang 92

(a) VGG-16-CIFAR10 (b) BERT-AGNews

Figure 28: Pre-processing Time for Different Layers in VGG16 and BERT Model.

(a) VGG16-Linear (b) VGG16-Conv (c) BERT-Attention (d) Detect Noisy Labels

Figure 29: Fig.(a)-(c):The Meta-data Collection Time: Varying the # of Dimensions of
Different Types of Layers. Fig.(d): The precision of detecting mislabeled training samples
using MetaStore.

the collection time on the first, mid, and last convolutional layers and the linear layer in
the VGG16-CIFAR10 model and the first, mid, and last self-attention layers and the last
linear layer in the BERT-AGNews model. Fig. 28 shows that MetaStore is up to 1,000 times
faster than the baseline. This is because although both methods use the same forward and
backward propagation process to extract meta-data, MetaStore only needs to log the small
prefix and suffix matrices into the storage.

Similar to the trend in the storage cost experiments, the baseline takes more time to
collect meta-data on the later convolutional layer in the VGG16 model in comparison to
MetaStore. Again, this is because the later convolutional layers in the VGG16 model have
more parameters than the earlier convolutional layers.

We also evaluate the meta-data collection time by varying the number of dimensions
of the target layers. As shown in Fig. 29, MetaStore consistently outperforms the baseline.
As the number of dimensions increases, the collection time of the baseline increases lin-
early, while MetaStore only becomes slightly slower. This is because the size of gradient
equals the input dimension cardinality multiplied by the output dimension cardinality,
and the size of prefix and suffix matrix equals the input dimension cardinality plus the
output dimension cardinality. The latter is much smaller.

92

PhD Dissertation Defense: Huayi Zhang 93

19.6 The Usefulness of Gradient-based Analytics

Finally, we use data debugging as an example to showcase the gradient-based analytics
enabled by MetaStore is indeed useful.

As discussed in Sec. 14.2, users can use the P2B operator to discover mislabeled objects
(data debugging). That is, the users first specify a batch of testing samples, invoke the
P2B operator on each training sample, and then rank the training samples based on the
gradient inner product produced by the P2B operator. The k training samples (where k is
a user defined input parameter) with the smallest values are the least influential samples,
and therefore the most likely to be mislabeled. MetaStore also allows the users to specify
the layers of the DNN model to be involved in the analysis.

In this study, we train a VGG16 model using the CIFAR10 dataset. We inject 1% (500)
mislabeled samples into the training set by randomly flipping their original labels. We
randomly select 100 testing samples to form the batch. We gradually add the layers of the
DNN model, starting with only the last linear layer and then adding the last, middle, and
first convolutional layers step by step. Fig. 29(d) shows the precision of the 500 (k = 500)
mis-labeled objects that MetaStore identifies. The precision increases from 0.75 to 0.85 as
more DNN layers are considered.

93

PhD Dissertation Defense: Huayi Zhang 94

20 Related Works

DNN Diagnosis Tools. A plethora of developed tools have been researched for diagnos-
ing DNN models, some of which involve meta-data. Among them, MISTIQUE [105, 104]
supports compactly storing the meta-data, namely, feature embeddings and losses using
data compression techniques like quantization. DeepEverest [43] speeds up the model
diagnosis queries on storage. However, none of them support gradient-based diagnostic
queries due to the lack of techniques to compactly store and efficiently analyze gradients
– possibly due to their size.

To speed up DNN training, some works [38, 78, 23] proposed techniques to quickly
compute the gradients. Although these techniques could be used by our MetaStore to
collect gradients, they do not solve the problem of efficiently storing and analyzing gra-
dients. Lastly, several works [6, 51, 51, 118, 87, 92, 68] target the visualization of meta-data,
which could potentially be used for human-driven model examination. However, none
of them use gradients.
Robust Deep Learning. Researchers have used meta-data in the training process to make
DNN models robust to noisy data and adversarial attack. For example, in [89, 15, 98, 74,
104], the authors use training losses and feature embeddings to detect erroneous training
data samples. Some works [77, 114, 127] overcome the problem caused by mislabeled
training samples by weighting them according to the inner product between the gradients
of training data and the gradients of validation data. Others [60, 80] use the gradients of
data samples as a metric to evaluate the confidence of model prediction and improve
model robustness to adversarial attacks.

In contrast, people have used gradients as a signal to perform adversarial attacks on
DNN models [79, 120]. Some methods [15, 1] leverage statistics of gradients to identify
potential data leakage of DNN models. Some other methods use the gradients to modify
the training process and search for hyper-parameters [115, 64, 13, 50] to improve DNN
models’ performance. All of these prior works potentially could benefit from our solution
to speed up their training and this way scale to large datasets.

Gradient Compression. Federated learning may need to transfer gradients from the
clients to the servers. To reduce the communication costs, researchers have proposed
techniques [62, 17, 5, 111, 12, 9] to compress the gradients by approximation. Some
works [5, 111, 3, 9, 12] use quantization and sparsification techniques to compress the
gradients by preserving the large gradient values while discarding the small ones. Some
other works [55, 108, 107] use matrix factorization to decompose big gradients. But none
of them are able to recover the exact gradients.

Our MetaStore instead re-uses the intermediate results produced in the back propaga-
tion process to compactly store and efficiently analyze the gradients, without conducting
extraneous operations such as compression and matrix factorization. Thus, they are over-
head free. MetaStore could exactly restore a gradient from this compact storage, rather
than an approximation. Therefore, our techniques could be of benefit to federated learn-
ing research.

94

PhD Dissertation Defense: Huayi Zhang 95

Part IV

Conclusion and Future Directions

21 Conlusions

21.1 ELITE: Outlier Removal From Training Data

In this work, we propose ELITE that addresses a fundamental problem in semi-supervised
and unsupervised deep anomaly detection, namely requiring a clean training data not
polluted by anomalies. LANCET solves above problems by proposing a novel opti-
mization methodology. Unlike the classical semi-supervised classification methodology,
ELITE uses labeled examples as validation set and continuously discovers the anomalies
in the polluted training data and learns a better deep anomaly model based on the cleaned
training data. Our experiments in rich variety of scenarios confirm ELITE’s superiority to
the state-of-the-art and its robustness to polluted training data.

21.2 Lancet: Labeling Complex Data At Scale

In this work, we tackle the challenging problem of how to produce a sufficient number
of labels for data sets void of labels so to train label thirsty machine learning models with
minimal manual labeling effort.

Our proposed solution, LANCET, solves three critical interdependent subproblems
essential for an effective labeling solution, namely, what objects to label, how to automat-
ically produce labels, and when to terminate labeling. LANCET does so in a principled
way based on a solid theoretical foundation. Our experiments using multiple public data
sets demonstrate that LANCET significantly outperforms all alternative solutions in both
accuracy of labels generated and quality of the machine learning models, including weak
supervision and active learning based methods.

21.3 MetaStore: Meta Data Analytics for Training Data Curation

In this work, we propose MetaStore to efficiently collect, store, and analyze meta-data
produced in the DNN training process. The key techniques of MetaStore address the
challenges caused by the size of the gradients and thus for the first time enable the
gradient-based analytics for data debugging and model interpretation. The key idea is
that although in many DNN layers a gradient tends to be huge, its prefix and suffix gra-
dients produced in the backpropagation process are much more compact to store. From
these prefix and suffix gradients, collected almost for free, MetaStore succeeds to exactly
restore the original gradients. Moreover, MetaStore implements a rich set of operators
that support various gradient-based analytics tasks directly on top of compact gradient

95

PhD Dissertation Defense: Huayi Zhang 96

storage structures. Thus they are much more efficient than working on the original huge
gradients. Our experiments show that MetaStore significantly reduces storage costs and
query execution times by orders of magnitude compared to baseline solutions.

22 Future Directions

22.1 ELITE: Outlier Removal From Training Data

In the ELITE project, we propose a robust deep outlier detection method. The method
only requires a very small set of labeled data samples to significantly improve the robust
deep outlier detection models. More specifically, ELITE utilizes the labeled data samples
as the validation data instead of the training data. It iteratively identifies the outliers in
the raw dataset according to their influence on the validation loss. ELITE leverages the
meta-gradient to estimate the influence of each training sample on the validation loss.

However, the current system assumes the labeled data sample are randomly sampled
from the unlabeled dataset and contains various type of outliers. However, it is often
infeasible for the users to collect a rich set of outliers due to the rareness and variety of
outliers. Thus, it is natural to develop a human-in-the-loop deep outlier detection method
with meta-gradient as the next step. We need to solve two critical challenges to develop
such a method.

First, we should develop a novel algorithm that selects the data samples for users to
label. This problem is commonly addressed by the active learning problem. However,
the active learning algorithms are commonly designed for traditional supervised learn-
ing scenarios where the labeled samples are used as the training data. As a novel training
scheme, the meta-gradient utilizes the labeled samples as the validation samples. Design-
ing the corresponding active learning principles for meta-gradient based methods is not
only critical for the ELITE project but also serves as the foundation of other meta-gradient
based algorithms.

Second, the current ELITE methods need approximately three times computing time
compared with the standard supervised training scheme. The extra cost may be accept-
able in a one-shot learning scenario. However, iteratively training the model under such
a high computing cost could be infeasible. As a human-in-the-loop method, the newly
developed method should be able to adjust the model based on human feedback quickly.
Thus, exploring additional methods to accelerate ELITE’s training process is essential. An
important opportunity lies under the historical model predictions during ELITE’s train-
ing process. The current ELITE method iteratively calculates the meta-gradients of each
training sample and detects outliers in each training epoch. However, this is unnecessary.
A large set of training samples are always determined as inliers or outliers during the
entire model training process. The meta-gradient calculation of the corresponding train-
ing samples could be avoided if we carefully manage and leverage the signals during the
model training process.

96

PhD Dissertation Defense: Huayi Zhang 97

22.2 Lancet: Labeling Complex Data At Scale

In the LANCET project, we tackle the challenging problem of producing a sufficient num-
ber of labels for data sets for label-thirsty machine learning models, such as Deep Neural
Networks. Our proposed solution solves three critical interdependent subproblems es-
sential for an effective labeling solution in a principled way based on a solid theoretical
foundation. The current LANCET assumes there is a domain expert which could ac-
curately annotate data samples. LANCET also incorporates semi-supervised distribution
learning models, which could learn the intrinsic distribution of the dataset and accurately
propagate labels from labeled samples to unlabeled samples. As a future direction, it is
worth relaxing these assumptions and requirements to make LANCET more suitable for
real-world applications.

In many real applications, it is hard to obtain accurate labels. For example, training
machine learning models in recommendation systems often rely on the labels collected
by implicit user feedback, such as ads clicks. As another example, in medical applica-
tions, the data samples sometimes are annotated by users with different levels of medical
expertise, such as experienced doctors and new grad students from medical colleges. The
noisy labeling oracles that annotate data samples with inaccurate labels may cause new
problems in the current system.

First, most semi-supervised distribution learning approaches assume that all the la-
beled samples are correct. The mislabeled data samples potentially degrade the quality
of learned distribution. Consequently, the similar data samples in the learned feature em-
bedding may not belong to the same class, and it is not safe to propagate the labels. To
address this, a robust semi-supervised distribution learning algorithm is required.

Second, even if a high-quality distribution is obtained, propagating labels from labeled
samples to unlabeled samples is also dangerous. For example, when a group of unlabeled
samples is discovered. To avoid unnecessary labeling costs, the current system selects a
representative data sample from this group and sends it to the oracles for labeling. Then
the label of the selected sample will be propagated to the entire group of data samples.
However, the entire group of data samples will be propagated with incorrect labels when
the labeling oracles are noisy. One possible approach to tackle this challenge is to select
a few data samples for labeling, instead of a single one, to validate the provided labels
and estimate the accurate label. Furthermore, the developed approach should be able to
jointly incorporate label oracles with different levels of domain expertise and automati-
cally trade off between the label propagation accuracy and manual labeling cost.

Third, although many active learning algorithms have been proposed to select the
most informative data samples for manual labeling, most of them assume the labeling
oracles are error-free. It is an exciting direction to develop theories and algorithms for
active learning problems with noisy label oracles.

97

PhD Dissertation Defense: Huayi Zhang 98

22.3 MetaStore: Meta Data Analytics for Training Data Curation

We have established the foundational components of a metadata analytic system, MetaS-
tore. MetaStore currently includes a lightweight metadata collector, a compact metadata
storage, and an efficient metadata analytic engine that supports a set of analytic prim-
itives. There are significant opportunities to enable users to fully leverage metadata in
real applications. In this section, we will discuss three future directions for the MetaStore
project.

22.3.1 Cost Based Optimizers

The first direction is to design optimizers to minimize the query execution costs. Running
an analytic query with the MetaStore requires the users to define the following variables,

• Type of Meta Data, e.g., loss, feature embeddings, gradients, etc.

• Model Checkpoint, e.g., at the end of the fifth epoch during training.

• Model Layer, e.g., the last linear layer.

• Training Samples, e.g., the training samples collected in the last month.

• Query Samples, e.g., the testing samples that the model made incorrect predictions.

Even though MetaStore already significantly accelerates the query execution process,
running the analytic queries can still be time and storage-consuming. Furthermore, in-
stead of the precise analytic result, the users are often only interested in the top k% of
training samples that are most related to the target task. This motivates us to design
query optimizers to trade-off between the accuracy of analysis results and query execu-
tion efficiency.

22.3.2 Human-in-the-loop Analytic

Another future direction is supporting human-in-the-loop analytics to have MetaStore
easily incorporate domain-specific requirements. In this way, users can use their domain
knowledge to adapt this generic system to better serve their applications. Here arises
the question of how the system could leverage the feedback to dynamically adjust the
analytics approach so that it can capture the mislabeled samples more accurately in the
future. Toward this goal, we need to develop the following components.

First, we need to develop a visualization component for MetaStore, which allows the
users to visualize the analytic process. For example, a user should have access to how the
data valuation ranking is formed, including which model checkpoint, model layer, and
metadata are used in the optimized query executing process. Furthermore, the visualiza-
tion component should have an interface for users to directly define the query running

98

PhD Dissertation Defense: Huayi Zhang 99

heuristics, modify the query optimizers, and provide feedback on the results, such as if a
detected sample is mislabeled.

Second, we need a set of algorithms that could automatically utilize the ground truth
labels to update the optimizers. For example, users might provide feedback on some
detected mislabeled training samples, telling us which are indeed mislabeled and which
are not.

99

PhD Dissertation Defense: Huayi Zhang 100

References
[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang. Deep learning with differential privacy.

In Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, pages 308–318, 2016.

[2] D. Abati, A. Porrello, S. Calderara, and R. Cucchiara. Latent space autoregression for novelty detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 481–490, 2019.

[3] A. F. Aji and K. Heafield. Sparse communication for distributed gradient descent. arXiv preprint arXiv:1704.05021, 2017.

[4] S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon. Ganomaly: Semi-supervised anomaly detection via adversarial training.
In Asian conference on computer vision, pages 622–637. Springer, 2018.

[5] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. Qsgd: Communication-efficient sgd via gradient quantization and
encoding. Advances in neural information processing systems, 30, 2017.

[6] S. Amershi, M. Chickering, S. M. Drucker, B. Lee, P. Simard, and J. Suh. Modeltracker: Redesigning performance analysis tools
for machine learning. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pages 337–346,
2015.

[7] J. T. Andrews, E. J. Morton, and L. D. Griffin. Detecting anomalous data using auto-encoders. International Journal of Machine
Learning and Computing, 6(1):21, 2016.

[8] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz. A public domain dataset for human activity recognition using
smartphones. In Esann, volume 3, page 3, 2013.

[9] D. Basu, D. Data, C. Karakus, and S. Diggavi. Qsparse-local-sgd: Distributed sgd with quantization, sparsification and local
computations. Advances in Neural Information Processing Systems, 32, 2019.

[10] L. Beggel, M. Pfeiffer, and B. Bischl. Robust anomaly detection in images using adversarial autoencoders. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, pages 206–222. Springer, 2019.

[11] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan. A theory of learning from different domains.
Machine learning, 79(1-2):151–175, 2010.

[12] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar. signsgd: Compressed optimisation for non-convex problems.
In International Conference on Machine Learning, pages 560–569. PMLR, 2018.

[13] O. Bohdal, Y. Yang, and T. Hospedales. Evograd: Efficient gradient-based meta-learning and hyperparameter optimization.
Advances in Neural Information Processing Systems, 34:22234–22246, 2021.

[14] L. Cao, Y. Yan, Y. Wang, S. Madden, and E. A. Rundensteiner. Autood: Automatic outlier detection. In SIGMOD.

[15] N. Carlini, U. Erlingsson, and N. Papernot. Distribution density, tails, and outliers in machine learning: Metrics and applica-
tions. arXiv preprint arXiv:1910.13427, 2019.

[16] R. Chalapathy, A. K. Menon, and S. Chawla. Robust, deep and inductive anomaly detection. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 36–51. Springer, 2017.

[17] C.-Y. Chen, J. Choi, D. Brand, A. Agrawal, W. Zhang, and K. Gopalakrishnan. Adacomp: Adaptive residual gradient compres-
sion for data-parallel distributed training. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[18] J. Chen, S. Sathe, C. Aggarwal, and D. Turaga. Outlier detection with autoencoder ensembles. In Proceedings of the 2017 SIAM
international conference on data mining, pages 90–98. SIAM, 2017.

[19] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning of visual representations. arXiv
preprint arXiv:2002.05709, 2020.

[20] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio. On the properties of neural machine translation: Encoder-decoder
approaches. arXiv preprint arXiv:1409.1259, 2014.

[21] R. D. Cook and S. Weisberg. Residuals and influence in regression. New York: Chapman and Hall, 1982.

100

PhD Dissertation Defense: Huayi Zhang 101

[22] Z. Dai, Z. Yang, F. Yang, W. W. Cohen, and R. R. Salakhutdinov. Good semi-supervised learning that requires a bad gan. In
Advances in neural information processing systems, pages 6510–6520, 2017.

[23] F. Dangel, F. Kunstner, and P. Hennig. BackPACK: Packing more into backprop. In International Conference on Learning Represen-
tations, 2020.

[24] N. Das, S. Chaba, R. Wu, S. Gandhi, D. H. Chau, and X. Chu. Goggles: Automatic image labeling with affinity coding. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pages 1717–1732, 2020.

[25] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09,
2009.

[26] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training of deep bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–
4186, 2019.

[27] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real nvp. arXiv preprint arXiv:1605.08803, 2016.

[28] M. Ducoffe and F. Precioso. Adversarial active learning for deep networks: a margin based approach. arXiv preprint
arXiv:1802.09841, 2018.

[29] S. M. Erfani, S. Rajasegarar, S. Karunasekera, and C. Leckie. High-dimensional and large-scale anomaly detection using a linear
one-class svm with deep learning. Pattern Recognition, 58:121–134, 2016.

[30] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In inter-
national conference on machine learning, pages 1050–1059, 2016.

[31] Y. Gal, R. Islam, and Z. Ghahramani. Deep bayesian active learning with image data. arXiv preprint arXiv:1703.02910, 2017.

[32] Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropagation. In International conference on machine learning,
pages 1180–1189, 2015.

[33] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V. Lempitsky. Domain-adversarial
training of neural networks. The Journal of Machine Learning Research, 17(1):2096–2030, 2016.

[34] F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual prediction with lstm. Neural computation, 12(10):2451–
2471, 2000.

[35] S. Gidaris, P. Singh, and N. Komodakis. Unsupervised representation learning by predicting image rotations. arXiv preprint
arXiv:1803.07728, 2018.

[36] P. Giselsson. Improved fast dual gradient methods for embedded model predictive control. IFAC Proceedings Volumes,
47(3):2303–2309, 2014.

[37] I. Golan and R. El-Yaniv. Deep anomaly detection using geometric transformations. In NeurIPS, pages 9758–9769, 2018.

[38] I. Goodfellow. Efficient per-example gradient computations. arXiv preprint arXiv:1510.01799, 2015.

[39] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. The MIT Press, 2016.

[40] N. Görnitz, M. Kloft, K. Rieck, and U. Brefeld. Toward supervised anomaly detection. Journal of Artificial Intelligence Research,
46:235–262, 2013.

[41] L.-Z. Guo, Z.-Y. Zhang, Y. Jiang, Y.-F. Li, and Z.-H. Zhou. Safe deep semi-supervised learning for unseen-class unlabeled data.
ICML, 2020.

[42] S. Hawkins, H. He, G. Williams, and R. Baxter. Outlier detection using replicator neural networks. In International Conference on
Data Warehousing and Knowledge Discovery, pages 170–180. Springer, 2002.

[43] D. He, M. Daum, W. Cai, and M. Balazinska. Deepeverest: Accelerating declarative top-k queries for deep neural network
interpretation. Proc. VLDB Endow., 15(1):98–111, 2021.

101

PhD Dissertation Defense: Huayi Zhang 102

[44] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR, abs/1512.03385, 2015.

[45] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In European conference on computer vision,
pages 630–645. Springer, 2016.

[46] D. Hendrycks, M. Mazeika, and T. Dietterich. Deep anomaly detection with outlier exposure. arXiv preprint arXiv:1812.04606,
2018.

[47] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner. beta-vae: Learning basic
visual concepts with a constrained variational framework. 2016.

[48] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In
International conference on machine learning, pages 448–456. PMLR, 2015.

[49] R. Jia, D. Dao, B. Wang, F. A. Hubis, N. Hynes, N. M. Gürel, B. Li, C. Zhang, D. Song, and C. J. Spanos. Towards efficient data
valuation based on the shapley value. In K. Chaudhuri and M. Sugiyama, editors, The 22nd International Conference on Artificial
Intelligence and Statistics, AISTATS 2019, 16-18 April 2019, Naha, Okinawa, Japan, volume 89 of Proceedings of Machine Learning
Research, pages 1167–1176. PMLR, 2019.

[50] Y. Jin, T. Zhou, L. Zhao, Y. Zhu, C. Guo, M. Canini, and A. Krishnamurthy. Autolrs: Automatic learning-rate schedule by
bayesian optimization on the fly. arXiv preprint arXiv:2105.10762, 2021.

[51] M. Kahng, D. Fang, and D. H. Chau. Visual exploration of machine learning results using data cube analysis. In Proceedings of
the Workshop on Human-In-the-Loop Data Analytics, pages 1–6, 2016.

[52] D. S. Kermany, M. Goldbaum, W. Cai, C. C. Valentim, H. Liang, S. L. Baxter, A. McKeown, G. Yang, X. Wu, F. Yan, et al.
Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 172(5):1122–1131, 2018.

[53] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling. Semi-supervised learning with deep generative models. In Advances
in neural information processing systems, pages 3581–3589, 2014.

[54] P. W. Koh and P. Liang. Understanding black-box predictions via influence functions. In International Conference on Machine
Learning, pages 1885–1894. PMLR, 2017.

[55] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon. Federated learning: Strategies for improving
communication efficiency. arXiv preprint arXiv:1610.05492, 2016.

[56] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[57] C.-H. Lai, D. Zou, and G. Lerman. Robust subspace recovery layer for unsupervised anomaly detection. arXiv preprint
arXiv:1904.00152, 2019.

[58] S. Laine and T. Aila. Temporal ensembling for semi-supervised learning. arXiv preprint arXiv:1610.02242, 2016.

[59] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444, 2015.

[60] J. Lee and G. AlRegib. Gradients as a measure of uncertainty in neural networks. In 2020 IEEE International Conference on Image
Processing (ICIP), pages 2416–2420. IEEE, 2020.

[61] D. S. Lemons and P. Langevin. An introduction to stochastic processes in physics. JHU Press, 2002.

[62] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally. Deep gradient compression: Reducing the communication bandwidth for
distributed training. arXiv preprint arXiv:1712.01887, 2017.

[63] A. Liu, L. Reyzin, and B. D. Ziebart. Shift-pessimistic active learning using robust bias-aware prediction. In Twenty-Ninth AAAI
Conference on Artificial Intelligence, 2015.

[64] M. Liu, L. Chen, X. Du, L. Jin, and M. Shang. Activated gradients for deep neural networks. IEEE Transactions on Neural Networks
and Learning Systems, 2021.

[65] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov. Roberta: A robustly
optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

102

PhD Dissertation Defense: Huayi Zhang 103

[66] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley. Least squares generative adversarial networks. In Proceedings of
the IEEE International Conference on Computer Vision, pages 2794–2802, 2017.

[67] R. B. MARIMONT and M. B. SHAPIRO. Nearest neighbour searches and the curse of dimensionality. IMA Journal of Applied
Mathematics, 24(1):59–70, 08 1979.

[68] D. Matthew Zeiler and F. Rob. Visualizing and understanding convolutional neural networks. ECCV, 2014.

[69] T. Miyato, S.-i. Maeda, M. Koyama, and S. Ishii. Virtual adversarial training: a regularization method for supervised and
semi-supervised learning. IEEE transactions on pattern analysis and machine intelligence, 41(8):1979–1993, 2018.

[70] M. A. Munson. A study on the importance of and time spent on different modeling steps. ACM SIGKDD Explorations Newsletter,
13(2):65–71, 2012.

[71] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in natural images with unsupervised feature
learning. 2011.

[72] M. Noroozi and P. Favaro. Unsupervised learning of visual representations by solving jigsaw puzzles. In European Conference
on Computer Vision, pages 69–84. Springer, 2016.

[73] P. Perera, R. Nallapati, and B. Xiang. Ocgan: One-class novelty detection using gans with constrained latent representations. In
CVPR, pages 2898–2906, 2019.

[74] G. Pleiss, T. Zhang, E. R. Elenberg, and K. Q. Weinberger. Identifying mislabeled data using the area under the margin ranking.
arXiv preprint arXiv:2001.10528, 2020.

[75] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial
networks. arXiv preprint arXiv:1511.06434, 2015.

[76] A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, and C. Ré. Snorkel: Rapid training data creation with weak supervision. In
Proceedings of the VLDB Endowment. International Conference on Very Large Data Bases, volume 11, page 269. NIH Public Access,
2017.

[77] M. Ren, W. Zeng, B. Yang, and R. Urtasun. Learning to reweight examples for robust deep learning. arXiv preprint
arXiv:1803.09050, 2018.

[78] G. Rochette, A. Manoel, and E. W. Tramel. Efficient per-example gradient computations in convolutional neural networks. arXiv
preprint arXiv:1912.06015, 2019.

[79] J. Rony, L. G. Hafemann, L. S. Oliveira, I. B. Ayed, R. Sabourin, and E. Granger. Decoupling direction and norm for efficient
gradient-based l2 adversarial attacks and defenses. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4322–4330, 2019.

[80] A. Ross and F. Doshi-Velez. Improving the adversarial robustness and interpretability of deep neural networks by regularizing
their input gradients. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[81] L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui, A. Binder, E. Müller, and M. Kloft. Deep one-class classifica-
tion. In ICML, pages 4393–4402, 2018.

[82] L. Ruff, R. A. Vandermeulen, N. Görnitz, A. Binder, E. Müller, K.-R. Müller, and M. Kloft. Deep semi-supervised anomaly
detection. In International Conference on Learning Representations, 2020.

[83] M. Sabokrou, M. Khalooei, M. Fathy, and E. Adeli. Adversarially learned one-class classifier for novelty detection. In CVPR,
pages 3379–3388, 2018.

[84] M. Sakurada and T. Yairi. Anomaly detection using autoencoders with nonlinear dimensionality reduction. In Proceedings of the
MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, pages 4–11, 2014.

[85] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques for training gans. In
Advances in neural information processing systems, pages 2234–2242, 2016.

[86] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the support of a high-dimensional
distribution. Neural computation, 13(7):1443–1471, 2001.

103

PhD Dissertation Defense: Huayi Zhang 104

[87] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-cam: Visual explanations from deep networks
via gradient-based localization. In Proceedings of the IEEE international conference on computer vision, pages 618–626, 2017.

[88] O. Sener and S. Savarese. Active learning for convolutional neural networks: a core-set approach. arXiv preprint
arXiv:1708.00489, 2017.

[89] Y. Shen and S. Sanghavi. Learning with bad training data via iterative trimmed loss minimization. In International Conference on
Machine Learning, pages 5739–5748. PMLR, 2019.

[90] N. Shi, X. Yuan, and W. Nick. Semi-supervised random forest for intrusion detection network. In MAICS, pages 181–185, 2017.

[91] H. Shimodaira. Improving predictive inference under covariate shift by weighting the log-likelihood function. Journal of statis-
tical planning and inference, 90(2):227–244, 2000.

[92] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image classification models and
saliency maps. arXiv preprint arXiv:1312.6034, 2013.

[93] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[94] S. Sinha, S. Ebrahimi, and T. Darrell. Variational adversarial active learning. In Proceedings of the IEEE International Conference
on Computer Vision, pages 5972–5981, 2019.

[95] K. Sohn, D. Berthelot, C.-L. Li, Z. Zhang, N. Carlini, E. D. Cubuk, A. Kurakin, H. Zhang, and C. Raffel. Fixmatch: Simplifying
semi-supervised learning with consistency and confidence. arXiv preprint arXiv:2001.07685, 2020.

[96] C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther. Ladder variational autoencoders. In Advances in neural
information processing systems, pages 3738–3746, 2016.

[97] H. Song, Z. Jiang, A. Men, and B. Yang. A hybrid semi-supervised anomaly detection model for high-dimensional data. Com-
putational intelligence and neuroscience, 2017, 2017.

[98] S. Swayamdipta, R. Schwartz, N. Lourie, Y. Wang, H. Hajishirzi, N. A. Smith, and Y. Choi. Dataset cartography: Mapping and
diagnosing datasets with training dynamics. arXiv preprint arXiv:2009.10795, 2020.

[99] M. Tan and Q. Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In International Conference on
Machine Learning, pages 6105–6114. PMLR, 2019.

[100] D. M. Tax and R. P. Duin. Support vector data description. Machine learning, 54(1):45–66, 2004.

[101] S. Tong and D. Koller. Support vector machine active learning with applications to text classification. J. Mach. Learn. Res.,
2:45–66, Mar. 2002.

[102] R. J. Urbanowicz, M. Meeker, W. La Cava, R. S. Olson, and J. H. Moore. Relief-based feature selection: Introduction and review.
Journal of biomedical informatics, 85:189–203, 2018.

[103] P. Varma and C. Ré. Snuba: Automating weak supervision to label training data. In Proceedings of the VLDB Endowment.
International Conference on Very Large Data Bases, volume 12, page 223. NIH Public Access, 2018.

[104] M. Vartak, J. M. F. da Trindade, S. Madden, and M. Zaharia. Mistique: A system to store and query model intermediates for
model diagnosis. In Proceedings of the 2018 International Conference on Management of Data, pages 1285–1300, 2018.

[105] M. Vartak, H. Subramanyam, W.-E. Lee, S. Viswanathan, S. Husnoo, S. Madden, and M. Zaharia. Modeldb: a system for
machine learning model management. In Proceedings of the Workshop on Human-In-the-Loop Data Analytics, pages 1–3, 2016.

[106] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with denoising autoen-
coders. In Proceedings of the 25th international conference on Machine learning, pages 1096–1103, 2008.

[107] T. Vogels, S. P. Karimireddy, and M. Jaggi. Powersgd: Practical low-rank gradient compression for distributed optimization.
Advances in Neural Information Processing Systems, 32, 2019.

[108] H. Wang, S. Sievert, S. Liu, Z. Charles, D. Papailiopoulos, and S. Wright. Atomo: Communication-efficient learning via atomic
sparsification. Advances in Neural Information Processing Systems, 31, 2018.

104

PhD Dissertation Defense: Huayi Zhang 105

[109] K. Wang, D. Zhang, Y. Li, R. Zhang, and L. Lin. Cost-effective active learning for deep image classification. IEEE Transactions on
Circuits and Systems for Video Technology, 27(12):2591–2600, 2016.

[110] P. Warden. Speech commands: A public dataset for single-word speech recognition. 2017.

[111] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li. Terngrad: Ternary gradients to reduce communication in distributed
deep learning. Advances in neural information processing systems, 30, 2017.

[112] W. Wu, L. Flokas, E. Wu, and J. Wang. Complaint-driven training data debugging for query 2.0. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, pages 1317–1334, 2020.

[113] Y. Xia, X. Cao, F. Wen, G. Hua, and J. Sun. Learning discriminative reconstructions for unsupervised outlier removal. In
Proceedings of the IEEE International Conference on Computer Vision, pages 1511–1519, 2015.

[114] Y. Xu, L. Zhu, L. Jiang, and Y. Yang. Faster meta update strategy for noise-robust deep learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 144–153, 2021.

[115] H. Yong, J. Huang, X. Hua, and L. Zhang. Gradient centralization: A new optimization technique for deep neural networks. In
European Conference on Computer Vision, pages 635–652. Springer, 2020.

[116] D. Yoo and I. S. Kweon. Learning loss for active learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 93–102, 2019.

[117] J. Yoon, S. Arik, and T. Pfister. Data valuation using reinforcement learning. In International Conference on Machine Learning,
pages 10842–10851. PMLR, 2020.

[118] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. Understanding neural networks through deep visualization. arXiv
preprint arXiv:1506.06579, 2015.

[119] Y. Yu and C. Szepesvári. Analysis of kernel mean matching under covariate shift. arXiv preprint arXiv:1206.4650, 2012.

[120] Z. Yuan, J. Zhang, Y. Jia, C. Tan, T. Xue, and S. Shan. Meta gradient adversarial attack. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 7748–7757, 2021.

[121] H. Zenati, C. S. Foo, B. Lecouat, G. Manek, and V. R. Chandrasekhar. Efficient gan-based anomaly detection. arXiv preprint
arXiv:1802.06222, 2018.

[122] S. Zhai, Y. Cheng, W. Lu, and Z. Zhang. Deep structured energy based models for anomaly detection. arXiv preprint
arXiv:1605.07717, 2016.

[123] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires rethinking generalization. arXiv
preprint arXiv:1611.03530, 2016.

[124] H. Zhang, L. Cao, Y. Yan, S. Madden, and E. A. Rundensteiner. Continuously adaptive similarity search. In SIGMOD, pages
2601–2616, 2020.

[125] R. Zhang, P. Isola, and A. A. Efros. Colorful image colorization. In European conference on computer vision, pages 649–666.
Springer, 2016.

[126] X. Zhang, J. J. Zhao, and Y. LeCun. Character-level convolutional networks for text classification. In NIPS, 2015.

[127] Z. Zhang and T. Pfister. Learning fast sample re-weighting without reward data. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 725–734, 2021.

[128] C. Zhou and R. C. Paffenroth. Anomaly detection with robust deep autoencoders. In SIGKDD, pages 665–674, 2017.

[129] B. Zhu, W. Yang, H. Wang, and Y. Yuan. A hybrid deep learning model for consumer credit scoring. In 2018 International
Conference on Artificial Intelligence and Big Data (ICAIBD), pages 205–208. IEEE, 2018.

[130] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fidler. Aligning books and movies: Towards story-
like visual explanations by watching movies and reading books. In Proceedings of the IEEE international conference on computer
vision, pages 19–27, 2015.

105

