


Abstract

Structures that demonstrate nonclassicality are of foundational interest in

quantum mechanics, and can also be seen as resources for numerous applica-

tions in quantum information processing - particularly in the Hilbert space of

N qubits. The theory of entanglement, quantum contextuality, and quantum

nonlocality within the N -qubit Pauli group is further developed in this the-

sis. The Strong Kochen-Specker theorem and the structures that prove it are

introduced and explored in detail. The pattern of connections between struc-

tures that show entanglement, contextuality, and nonlocality is explained.

Computational search algorithms and related tools were developed and used

to perform complete searches for minimal nonclassical structures within the

N -qubit Pauli group up to values of N limited by our computational re-

sources. Our results are surveyed and prescriptions are given for using the

elementary nonclassical structures we have found to construct more complex

types of such structures. Families of nonclassical structures are presented for

all values of N , including the most compact family of projector-based parity

proofs of the Kochen-Specker theorem yet discovered in all dimensions of the

form 2N , where N ≥ 2. The applications of our results and their connection

with other work is also discussed.
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This thesis explores the issue of minimal nonclassical structures within the N -qubit

Pauli Group and was prepared as a doctoral dissertation by Mordecai Waegell. This
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1 Introduction

The purpose of this thesis is to present and classify structures that can be used, ac-

cording to the laws of quantum physics, to demonstrate phenomena that are entirely

nonclassical in nature. What we mean by nonclassical is that these phenomena have

the ability to violate some laws of classical physics, where classical physics refers

generally to a collection of physical theories that make exact predictions, and which

also tend to conform to the notion of reality as perceived through human experience.

One might say they are the ‘common sense’ theories.

Realism is perhaps the most fundamental of the assumptions in classical theories,

and is the notion that for any object, all observable physical properties of that object

have a definite value, and that a measurement on that object simply reveals some of

those values. As a corollary we also assume that the values revealed by measurement

of one physical property should be independent of what other physical properties are

being measured simultaneously - we refer to this assumption as noncontextuality,

where a complete set of simultaneously observable properties is called a context.

Relativity is a less intuitive realist theory than classical or statistical mechanics,

but it also makes exact predictions, and among these is that causality must be

obeyed.

Quantum mechanics is our most precise physical theory and no flaws have yet

been discovered that threaten its internal consistency or veracity. Throughout this

text, we will introduce many structures that demonstrate how quantum mechanics

can violate the laws and assumptions of classical theories. Only by demanding that

our naive classical intuition about how the universe works must be satisfied do we
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arrive at interpretational conflicts. If we simply accept what nature tells us, then

what is called for is an entirely different way to see the universe.

In his seminal work of 1964-67 [1, 2], John S. Bell sounded the death knell of

the local hidden variable theories proposed much earlier by Einstein, Podolsky, and

Rosen [3]. He showed that one could construct systems of measurements whose

outcomes could not be satisfactorily explained by any theory that required local

causality. His original demonstration depended on an inequality distinguishing the

probabilities of measurement outcomes as predicted by any local theory from the

probabilities as predicted by quantum mechanics. In 1967 Kochen and Specker

proved one of Bell’s results without using an inequality [4]. This theorem, which

has become known as the Bell-Kochen-Specker (BKS) theorem, shows that par-

ticular systems of measurements cannot be simultaneously assigned noncontextual

hidden variables such that one and only one outcome is predicted for each measure-

ment. This theorem makes no direct claims about locality, but instead presents us

with another type of nonclassical phenomenon, now referred to by most as simply

quantum contextuality. In some ways quantum contextuality is already familiar

to those versed in quantum physics, in that it is well understood that the list of

possible outcomes for a measurement will depend explicitly on the choice of context

for that measurement. Classically we would expect that for any context we choose,

the measurement simply reveals the pre-existing value of the measured observable,

but the BKS theorem shows us that pre-existing values of this sort are internally

inconsistent, and simply cannot be fixed for all contexts at once. Hence, not just

the list of possible outcomes, but the specific outcome that obtains must depend in

some way on the choice of context.

The BKS theorem can be proved by finding a particular geometry of measure-

ment contexts to which noncontexual hidden variables cannot be assigned. The
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proof originally given by Kochen and Specker involved 117 projectors in a Hilbert

space of dimension 3. Since then, many other proofs have been given in various

dimensions, and using far fewer projectors, and indeed a sort of competition devel-

oped to find the most compact system of projectors and contexts that prove the

BKS theorem. The current title-holder, obtained by Cabello and others [5], is a

set of 18 projectors which form 9 orthogonal bases, or measurement contexts, in a

Hilbert space of 4 dimensions. In a Hilbert space of 3 dimensions, the smallest proof,

given by Kochen and Conway, requires just 31 projectors [6]. It is likely that the

18 projectors of Cabello constitute the smallest proof of the BKS theorem possible

in any dimension. Any of these particular geometries can also be extended into a

proof of Bell’s nonlocality theorem, by constructing an experimental setup where

parts of an entangled state are shared by two spacelike separated observers [7, 8].

This method also has the virtue of proving Bell’s original theorem without the use

of inequalities, and proofs of this type have also come to be called proofs of the

Greenberger, Horne, and Zeilinger (GHZ) theorem [9]. It is worth noting that not

all proofs of Bell’s theorem without inequalities follow from BKS proofs, and that

more compact structures like the ones first given by GHZ and Shimony in 1990 [10]

can suffice.

These minimal structures highlight what we consider to be the central issue of

this thesis: proofs of the BKS and GHZ theorems depend entirely on geometry

in Hilbert spaces, and constitute a family of nonclassical geometric objects. Since

any of these geometric objects might find a use in quantum information processing,

it is natural to ask how many distinct nonclassical structures there are in Hilbert

space. Do the stringent geometric requirements only allow a small class of these

structures, or do they exist in many and varied forms? As we have shown in previous

publications [11, 12, 13, 14], the latter answer is the correct one. Even if we restrict
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ourselves to critical structures (by critical we mean that the proof would fail if

any context were removed from the set), we find that the number and variety of

nonclassical geometries is staggering. Just within the family of 60 projectors and

105 contexts that are generated from the 2-qubit Pauli group, we estimate that there

could be as many as 1012 distinct critical proofs of the BKS theorem. So we can

say with confidence, that rather than being rare freaks of geometry, Hilbert space

abounds with these nonclassical structures. Unfortunately, their sheer plentitude

also foils any hope we might have of classifying and counting all of them, even

within this finite system of 2-qubits.

There is, however, an alternate type of structure that can be used to prove the

BKS theorem without making any explicit use of projectors. In these proofs, we

only make use of the observables of the N -qubit Pauli group, in which each set of

mutually commuting observables is a context. The two well-known cases [15] are

the Mermin Square (related to the 24 projectors of Peres [16]), and the Mermin Star

(related to GHZ’s proof of Bell’s theorem without inequalities). As we will examine

in detail throughout this text, these structures can be decomposed into different

types of constituent pieces, the most important being sets of mutually commuting

observables whose overall product is ±I in the space of all N qubits. We call these

sets Identity Products (IDs), and we have developed the general theory of how all

BKS proofs of this alternate type can be built from sets of IDs in the space of N

qubits.

Furthermore, we will show that the number of distinct IDs that we need to

consider is much more manageable, at least for relatively small numbers of qubits,

and so in these cases we are able to count and classify all of the IDs of the N -

qubit Pauli group. Using these IDs in conjunction with several procedures we have

developed, we obtain many distinct BKS proofs of this alternate projector-free form.
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This is the main result of our research: there exists a fairly small family of minimal

nonclassical structures from which a vast class of BKS proofs can be assembled

according to fairly simple prescriptions. This text is designed to introduce the

readers to the relevant details of these structures and prescriptions, such that they

will be enabled to build their own proofs of this type, as needed for any given

application in quantum information processing.

As we will see, the structure of an ID is related to the type of entanglement in

the joint eigenstates of all of the observables in the ID. IDs are then the elementary

nonclassical structures of the N -qubit Pauli group, in the sense that entanglement is

a nonclassical phenomenon. Furthermore, entangled IDs are the necessary ingredient

for all Observable-based BKS proofs, and so they are also the elementary nonclassical

structures used to rule out local and/or noncontextual hidden variables theories. We

also see that entanglement itself is the necessary ingredient for all such proofs with

N ≥ 2 qubits.

We focus on the nonclassical nature of these structures because this is precisely

the criterion by which we qualify a quantum phenomenon as being a useful resource

for quantum information processing. After reviewing the elementary structures

that were introduced by other researchers, we will present an enormous variety of

genuinely new structures that can be used to prove the BKS and GHZ theorems,

some of which we have discussed in previous publications [17, 18, 19, 20]. and we

will show how different types nonclassical structures are related to one another. We

provide here the theoretical tools to construct an enormous variety of these resources

for computations involving N qubits, using only the observables of the N -qubit Pauli

group.

The remainder of this text is organized as follows. In Chapter 2, we examine

structures for 2 qubits, beginning with the Peres-Mermin set. We then move on
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to examine the full 2-qubit Pauli group, as well as the 600-cell, a regular polytope

from R4 which can be projected into the Hilbert space of 2 qubits. In Chapter 3,

we examine a number of minimal structures within the 3-qubit Pauli group, and in

Chapter 4, structures within the 4-qubit Pauli group. Throughout the preceding

Chapters, we will use a number of examples to gradually introduce the important

features of the structures we are developing. In Chapter 5, we will review and

formalize the definitions and details of these structures, which include IDs, Kernels,

Composite Kernel Structures, and the Observable-based KS proofs discussed above.

In Chapter 6, we will introduce several important families of Observable-based KS

proofs for all numbers of qubits N ≥ 2. Within one of these families we also

introduce what we believe to be the most compact projector-based proofs of the BKS

theorem in the Hilbert space of N -qubits, beginning with the 18 rays of Cabello for 2

qubits. At the end of this Chapter, we will also discuss a number of other particularly

interesting structures. In Chapter 7 we will discuss the computational algorithms

we used to obtain and verify many of our results. Finally, in Chapter 8 we will

review our results and discuss some of the interesting questions for which we do not

yet have answers. We will also discuss how the huge class of nonclassical resources

we have developed here may be useful in many quantum information processing

applications.

As a final note, we should point out that while this text contains what we believe

is a fairly comprehensive set of examples, the full results of our computational

searches are simply too large to be included here. We have made this additional

data freely available to any interested parties on a website [21] hosted by WPI. We

also leave some details not central to the topics at hand to papers we have already

published.
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2 Two qubits

In this chapter, we discuss several interesting structures in the d = 4 Hilbert space

of two qubits. We will begin by discussing the 24 rays of Peres and the Mermin

Square, and how they are related to various proofs of the Bell-Kochen-Specker (BKS)

Theorem. We use this case as a guide to introduce various new concepts that will

be discussed in other chapters. Next we discuss a proof we call the 2-qubit Whorl,

and the associated set of 40 rays. Subsequently we will discuss the 60 ray system

that arises from the complete 2-qubit Pauli Group, which contains the 24 rays of

Peres as a subset, as well as the 40 rays of the 2-qubit Whorl. We will then discuss

the 60 real rays that arise from the 600-cell, a well known regular polytope in R4,

and show how it gives BKS proofs that are quite different from those yielded by the

60 complex rays of the 2-qubit Pauli group. Finally, we will discuss the Pentagon

Inequalities that can be obtained using the various ray-sets of this chapter.

2.1 The 24 Rays of Peres and the Mermin Square; Observable-

based KS proofs and Kernels

In 1991 [16] Asher Peres gave a set of 24 real rays in Hilbert space of d = 4 dimensions

(the space of two qubits) that prove the KS theorem [4]. These rays are actually

generated by a proof of the KS theorem that uses only the observables of the 2-

qubit Pauli Group - the familiar Mermin Square [15] shown in Table 1. Each row

and column of the Mermin Square is a set of 3 mutually commuting observables

from the 2-qubit Pauli group (G2) whose joint eigenbasis consists of 4 rays. All 6

eigenbases taken together give all 24 rays, and this is the sense in which these rays

are generated by the Mermin Square. Here and throughout this text we will omit

the implicit tensor product symbols for N qubit observables of the Pauli group (for
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example ZZX ≡ Z ⊗ Z ⊗X).

ZI IX ZX
IZ XI XZ
ZZ XX Y Y

Table 1: The Mermin Square. Each row and column is a set of 3 mutually commuting
2-qubit Pauli observables, where the Z,X, Y, and I denote the single-qubit Pauli
matrices and identity. The product of the 3 observables in any row or column is +I
(the 2-qubit identity), except for the last row, whose product is -I.

The Mermin square rules out Noncontextual Hidden Variables Theories (NCHVTs)

in the following way: Each of the observables in the Mermin Square has eigenvalues

±1. We define the quantity A to be the product of all 3 rows and all 3 columns of the

Mermin Square. In an NCHVT theory, we must assign one of these eigenvalues as a

preexisting truth value to each of the 9 observables, which gives us a noncontextual

value for A,

ANC ≡ λ21λ
2
2λ

2
3λ

2
4λ

2
5λ

2
6λ

2
7λ

2
8λ

2
9 = 1, (1)

where the subscripts indicate the 9 observables, and each eigenvalue is squared

because each observable appears in one row and one column. However, the quantum

prediction is AQ = −1, since there are 5 mutually commuting sets with product

+I and 1 with product −I. The quantum prediction has been borne out by many

experiments [22, 23, 24, 25], which seems to convincingly rule out NCHVTs, proving

the KS theorem.

This geometric structure is of pivotal importance because it is the smallest and

simplest in a family of structures that prove the KS theorem for N qubits. This

family contains a large but finite number of geometric structures which can be used

to prove the KS and GHZ theorems for N qubits, and which may have many other

interesting applications in quantum information processing. Just as there are a finite
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number of regular polyhedra in R3, there are a finite number of these KS structures

in GN . It is one of the main purposes of this text to characterize these structures,

which we will return to in later chapters.

We will take a detour here to deconstruct the Mermin Square into its fundamental

components and to introduce several new structures that we will be using throughout

this text. In this case the components are the 3 rows and 3 columns, or 6 sets of

3 mutually commuting observables, each with overall product ±I. We call each of

these sets an Identity Product (or ID for short), and we say that the Mermin Square

is composed of 6 IDs.

Let us consider what properties must be satisfied by this set of IDs in order to

guarantee that it proves the KS theorem. First, the IDs themselves are essential

components for the success of the KS proof because the product of the observed

eigenvalues in an ID is state-independent. Furthermore, an odd number of the IDs

in the proof need to have product −I in order to guarantee AQ = −1. Finally,

each of the 2-qubit observables must appear in an even number of the IDs in order

to guarantee ANC = 1. Any set of IDs with these properties gives a proof of the

KS theorem, and as we will see the Mermin Square is just one of many such sets.

We will refer to sets of this type as Observable-based KS proofs. We introduce the

compact symbol O−I to describe sets containing O Observables and I IDs, and the

expanded symbol Ox − Iy to indicate that each observable appears in x IDs, while

each ID contains y observables. The Mermin Square then has compact symbol 9−6

and expanded symbol 92 − 63. We will say that an Observable-based KS proof is

critical if no subset of qubits and/or IDs can be deleted such that the remaining set

is still an Observable-based KS proof.

We have discovered a method for generating Observable-based KS proofs from
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GN from more compact sets of IDs that we call Kernels. A given Kernel can be

used to generate many distinct Observable-based KS proofs. We further conjecture

that all possible Observable-based KS proofs in GN are generated by at least one

Kernel, since we have never found a counterexample.

A Kernel is any set of IDs that satisfies two conditions: First, an odd number

of the IDs must be negative (product −I). Second, for each individual qubit, all

single-qubit Pauli observables must appear an even number of times throughout the

entire Kernel. The Kernel that generates the Mermin square is given in Table 2.

ZZ
XX
Y Y
ZX
XZ
Y Y

Table 2: The 2-qubit Kernel. The top block is a negative ID, while the bottom
block is a positive ID. Each column represents a distinct qubit, and for each qubit
the single-qubit Pauli observables each appear twice.

These conditions guarantee that all Kernels can be used to generate a complete

Observable-based KS proof, but the Kernel alone also has physical significance.

The usual formulation of the KS theorem, and of N -qubit Observable-based KS

proofs, requires that noncontextual truth-values ±1 be assigned to every N -qubit

Observable, as in the case of the Mermin Square. If we choose to demand that things

be even more ‘classical’ we can instead require that noncontextual truth-values ±1

be assigned to every single-qubit observable (Zi, Xi, Yi - i denotes the qubit index)

in a collection of N qubits. Any Kernel gives a proof that quantum mechanics

rules out the existence of these truth-values, which can be seen from the following

contradiction: on the one hand, because every single-qubit observable occurs an

even number of times, in any noncontextual theory the overall product of the IDs

10



in the Kernel must be +1 , while on the other hand, because an odd number of the

IDs are negative, the quantum prediction (and experimental result) will always be

-1.

We will refer to this as the Strong KS theorem. The simplest proof of this

theorem is given in Table 2 and requires an experimental setup with only 2 qubits

and 2 measurement settings. The Strong KS theorem essentially proves that the

N qubits are entangled, and rules out NCHVTS without entanglement. To see the

distinction here, note that the same experiment fails to prove the usual KS theorem

(in which only 2-qubit observables are assigned truth-values) - the Kernel alone is

not an Observable-based KS proof, but it is an Observable-based Strong KS proof.

In the special case of single-ID Kernels (which exist only for N ≥ 3 qubits), an

experiment can be set up that uses locality to require noncontextual truth-values

be assigned to the single-qubit observables [9, 10] in order to prove Bell’s theorem

without inequalities (also called the GHZ theorem). The simplest example of such

an ID is shown in Table 7a.

Now we return to the assertion that each Kernel can generate Observable-based

KS proofs. In general a given Kernel can be used in many different ways to build

such proofs by adding more IDs to the set, but there is one trivial procedure by

which any Kernel can be extended into an Observables-based KS proof. To do it

we take each observable in the Kernel that appears an odd number of times and

supplement it with its own single-qubit decomposition to form a new positive ID.

For example, we take ZZ, and supplement it with ZI and IZ to form a new ID. It

should be easy to see that applying this procedure to the Kernel of Table 2 leads to

the Mermin Square of Table 1. Because of how Kernels are defined, this procedure

always results in a set of IDs that satisfy the requirements to be an Observable-based

KS proof. For the Kernel in Table 2 there is actually only one other type of 2-qubit
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Observable-based KS proof that can be constructed, as shown in Figure 2.

That concludes the detour. We now transition from discussion of the Mermin

Square to discussion of the 24 rays of Peres that are generated by it. The 24 rays are

the eigenbases of the 6 IDs of the Mermin square, but orthogonality between some of

these rays also causes them to form 18 additional bases, which we call hybrid bases.

Each pair of IDs in the Mermin Square that share an observable in common generate

one complementary pair of hybrid bases in addition to their pair of eigenbases. One

of the hybrid bases will have 2 rays from one eigenbases and 2 from other eigenbases.

The complementary hybrid basis has the other 2 rays from each eigenbasis. This

can be seen in Figure 1, where the 6 inner bases are the eigenbases of the Mermin

Square, and the 18 outer bases are the hybrid bases they form, with complementary

pairs joined to their generating eigenbases by lines.

So altogether, the 24 rays of Peres form 24 bases. We now introduce a system of

symbols that we will use to describe sets of rays and bases of this type. The most

compact symbol we will use is simply R−B, where R and B are the number of rays

and bases respectively. Thus, the Peres set has the compact symbol 24 − 24. The

simplest expanded symbol is of the form Rm − Bd where the multiplicity m is the

number of bases each ray occurs in, and d is the number of rays in each basis. The

expanded symbol for this set is 244− 244. If a set has rays of different multiplicities

then they will be separated in the number before the dash. For example, the set

18224 − 114 has 11 bases and 20 rays, with 18 rays appearing in 2 of the bases, and

2 rays appearing in 4 of the bases.

Now, this 24−24 set is a proof of KS theorem because the 24 individual projectors

cannot be assigned simultaneous (noncontextual) truth-values 0 and 1 such that each

basis has exactly one ray valued 1 and all other rays valued 0. The direct proof of
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Figure 1: This figure shows the 24 bases of the Peres set, with the rays indexed 1
through 24. The 6 inner bases are the eigenbases of the Mermin Square, and the
triples of these bases joined by the thick triangles are mutually unbiased. The 18
outer bases are hybrid bases which appear in 9 complementary pairs. Each hybrid
basis is formed of two rays from each of two different non-unbiased eigenbases, while
the complementary basis is composed of the other two rays from each eigenbasis, as
shown by the thin lines. The 9 bases shown in thick circles are one example of an
18− 9 parity proof, while the 15 bases shown in thin circles are the complementary
24− 15 parity proof.
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this is slightly cumbersome, though it does follow directly from the Mermin Square.

This set is not critical, however we can obtain critical KS sets by discarding some of

the bases in this set. By critical here we mean that if any complete basis were to be

discarded from the set, it would no longer prove the KS theorem. Our exhaustive

computer searches have found that there are in fact 29 = 512 critical KS sets within

the 24− 24 [17, 26]. The most compact proof, first discovered by Cabello et al, has

the symbol 182 − 94, and is almost certainly the most compact KS proof possible

in any dimension. Table 3 shows the symbols for the different types of KS sets

among these 512. Each of these sets has an odd number of bases, but all rays

have even multiplicity. We call KS sets with this property parity proofs, because

they make the proof of the KS theorem transparently obvious. Because the rays

all have even multiplicities, a noncontextual truth-value assignment must have an

even number of 1s. However according to QM each of the (odd) number of bases

will have exactly one ray with truth value 1, so the truth-value assignment would

require an odd number of 1s. The incompatibility of these two conditions shows

that such an assignment is impossible and proves the KS theorem.

Compact Symbol Expanded Symbol # of Proofs
18− 9 182 − 94 16
20− 11 18224 − 114 240
22− 13 18244 − 134 240
24− 15 18264 − 154 16

Table 3: The 512 Critical Parity Proofs of the KS Theorem within the 24− 24 set
of Peres. These occur in 256 complementary pairs, in the sense that if the bases of
one proof are removed from the full set of 24 bases, then the remaining bases form
the complementary proof. Each 18− 9 proof is complementary to a 24− 15 proof,
and each 20− 11 proof to a 22− 13 proof.

We have further discovered a particularly simple way to construct all 29 proofs

in this set, which also in some sense explains why there are this number of KS sets.
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Recall that the 18 hybrid bases can be divided into 9 complementary pairs. There

are exactly 29 ways to choose one member of each pair, and it turns out that each

of these choices leads to one of the KS sets. Once these 9 hybrid bases are chosen,

some of the eigenbases may need to be added to complete the set. Eigenbases are

added for all rays that have odd multiplicity among the 9 hybrid bases, until all rays

have even multiplicity. The result of this process gives all 512 critical parity proofs,

and also makes the complementary pairs of proofs quite obvious. It also explains

why all 512 proofs contain exactly 9 hybrid bases.

To see how a proof is built explicitly, consider Figure 1. For each of the 9 thin

lines, choose one of the two hybrid bases at the ends of the line - there are 29 ways

to make this choice. Now, among the 9 bases you have chosen, find all rays that

appear once or thrice, and add all eigenbases containing those rays to the set. This

process always results in a complete parity proof.

Finally let us turn to a discussion of the geometry of the Peres set. Each of the

24 rays is a real-valued vector in a projective Hilbert space of d = 4. As such, each

ray corresponds to a pair of antiparallel vectors in R4, and so the full set contains

48 real vectors. We can divide the rays into two groups of 12, taking each group

to be the set of rays belonging to each of the triple of mutually unbiased bases in

Figure 1. Each of these sets of 12 rays corresponds to 24 vectors in R4, and each

of these sets of vectors corresponds to a well known regular polytope called the

24-cell. The 24-cell is a self-dual polytope (The dual of a 4-polytope is obtained

by placing a vertex at the center of each cell), meaning that the dual polytope of a

24-cell is another 24-cell. The two groups of 24 vectors are exactly such a dual-pair

of polytopes. It is worth noting that each 24-cell is a vertex-transitive figure (a

property of all regular polytopes), as is the full 24 − 24 set, which implies in some

sense that this is a maximally symmetric set. The symmetry group of the 24-24
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has 1152 elements, and many of the proofs in this set are simply replicas of a few

distinct types under the symmetry of the set.

The 12 rays of each 24-cell can also be associated with the well known Reyes

Configuration, by defining lines as sets of 3 linearly dependent rays. For detailed

discussion of how the Reyes Configuration is related to the geometry of the KS

parity proofs found within this 24− 24 set, refer to the paper [17].
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2.2 The 40 Rays of the 2-qubit Whorl

ZZ

ZY

XX

YZ

IY

YI IX

XI

IZ ZI

YY

XZ
ZX

XY

YX

Figure 2: The 2-qubit Whorl is a 152 − 103 Observable-based KS proof. In this
diagram, the straight lines are positive IDs and the circle is a negative ID. If A is
defined as the product of all IDs in the set, then QM predicts AQ = −1 because
only one ID is negative, while an NCHVT predicts ANC = 1 because each observable
appears in two IDs, which proves the KS theorem.

Next we will discuss the only other type of Observable-based KS proof that exists

within the 2-qubit Pauli Group. This set contains all 15 observables of the 2-qubit

Pauli Group, and 10 IDs, and has symbol 152 − 103. We call this set the 2-qubit

Whorl because of the structure of its diagram, as seen in Figure 2. It is worth noting

that both the Mermin square and 2-qubit Whorl can be generated from the same

Kernel (Table 2). As we will show, the Whorl is essentially a less compact sibling

of the Mermin square, with a striking number of identical features.

We will take a moment here to generally introduce the diagrams that we will

use throughout this text to depict Observable-based KS proofs. The rules for the
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Figure 3: This figure shows the 40 bases of the 40− 40 set, with the rays indexed 1
through 40. The 10 inner bases are the eigenbases of the 2-qubit Whorl, and the 4
bases joined by each thick line are mutually unbiased. The 30 outer bases are hybrid
bases which appear in 15 complementary pairs. Each hybrid basis is formed of two
rays from each of two different non-unbiased eigenbases, while the complementary
basis is composed of the other two rays from each eigenbasis, as shown by the thin
lines.

diagrams are simple, and guarantee that the observables they contain prove the KS

theorem: Each ID is represented by a line, arc, or circle that connects all of the

observables in the ID. Thin lines denote a positive ID, while thick lines denote a

negative ID. An odd number of lines must be thick, and each observable must appear

on an even number of lines. The diagram of Figure 2 is the first of many diagrams

in this thesis that conforms to these rules and so provides a proof of the KS theorem.

Next we consider the set of 40 rays that are generated by the 2-qubit Whorl [11].

To begin we will examine all of the hybrid bases that are formed by this set of 10

18



eigenbases. For each pair of IDs in the set that share an observable in common,

we will obtain a single complementary pair of hybrid bases, just as before. Each

of the 15 observables appears in just one such pair of IDs, and so there are 15

complementary pairs of hybrid bases. So this set of 40 rays form 40 bases, with

symbol 404 − 404, as shown in Figure 3. Again, direct proof that this is a KS set

is somewhat cumbersome, though it does follow from the 2-qubit Whorl. Again,

the set is not critical, but we can obtain critical KS sets by discarding some of

the bases from the set. An exhaustive computer search shows there are exactly

215 = 32, 768 KS sets within the 404 − 404, and that all of them are parity proofs.

Furthermore, these proofs break down into 214 complementary pairs, in the same

sense as the proofs of the 24− 24 set. Table 4 shows the symbols of the proofs and

their complements.

Parity Proof Complementary Proof # of Proofs
30− 15 (302 − 154) 40− 25 (302104 − 254) 64

32− 17 (30224 − 174) 38− 23 (30284 − 234) 2,880
34− 19 (30244 − 194) 36− 21 (30264 − 214) 13,440

Table 4: The 32,768 Critical Parity Proofs of the KS Theorem within the 40 − 40
set. Each set of proofs is shown alongside the set of complementary proofs, with the
expanded symbols in parentheses.

Again, all 215 parity proofs can be constructed by the same simple method we

used for the 29 proofs of the 24− 24 set: There are 215 ways to choose one member

of each of the 15 complementary pairs of hybrid bases in this set, and each of these

choices leads to a parity proof. Once these 15 hybrid bases are chosen, some of the

eigenbases may need to be added to complete the set. Eigenbases are added for all

rays that have odd multiplicity among the 15 hybrid bases, until all rays have even

multiplicity. The result of this process gives all 32,768 critical parity proofs, and

again makes the complementary pairs of proofs quite obvious. It also explains why
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all 32,768 proofs have exactly 15 hybrid bases.

Finally, the 40 − 40 set has a symmetry group with 1,920 elements, and many

of the proofs are simply replicas of a relatively small number of types, under the

symmetry of the set.
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2.3 The 60 Rays of the 2-qubit Pauli Group

The complete 2-qubit Pauli Group contains 15 observables, which form 15 mutually

commuting triplets - all of which are IDs. In the previous sections, we discussed the

Mermin square, an Observable-based KS proof composed of 6 of these 15 IDs, as

well as the 2-qubit Whorl, which is composed of 10 of the 15 IDs. In this section we

will discuss the complete 153− 153 set, and the 60 rays that it generates. To begin,

we will examine all of the hybrid bases that are formed by this set of 15 eigenbases.

Again each pair of IDs in the set that share an observable in common give us a

complementary pair of hybrid bases. Each observable appears in 3 of the 15 IDs,

and so belongs to 3 such pairs of IDs, giving us a total of 45 complementary pairs of

hybrid bases. So the set of 60 rays form a total of 105 bases. This set has expanded

symbol 607−1054, and is clearly a (noncritical) KS set because it contains the 18−9

proof as a subset.

The 60 − 105 set is also vertex-transitive, and has a symmetry group of 11,520

elements. It is worth noting that this set contains 10 symmetric replicas of the

24−24 set as subsets, as well as 6 symmetric replicas of the 40−40. Likewise, there

are 10 distinct ways to build a symmetric version of the Mermin Square using the

2-qubit Pauli Operators, and 6 distinct ways to build the 2-qubit Whorl. Refer to

our paper [11] for a more detailed account of other geometric structures and related

subsets within the 60− 105 set.

We conducted a large, but nowhere near exhaustive, computer search of parity

proofs within this set, and we found critical parity proofs ranging from the 18 − 9

all the way up to 60− 41. An alternate approach was used to find some additional

KS sets that are not parity proofs, but none with less than 9 bases or more than
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41 bases. We enumerated roughly 1.5 × 108 distinct parity proofs in our search,

and estimate that there are at least 109 in total. Files containing this data and

additional details about this set can be obtained from this website [21].
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2.4 The 600-cell

The 600-cell is a well known regular polytope in R4. It is composed of 120 vertices

which come in 60 antipodal pairs. Taking the set of vectors that point from the

center of the 600-cell to its vertices, we obtain 60 pairs of antiparallel vectors, which

correspond to 60 real rays in a projective Hilbert space of d = 4. This set is vertex

transitive, and has a symmetry group with 7200 elements. The 60 rays and their

components are given in Table 5.

1 = 2000 2 = 0200 3 = 0020 4 = 0002
5 = 1111 6 = 1111 7 = 1111 8 = 1111
9 = 1111 10 = 1111 11 = 1111 12 = 1111

13 = κ0τ1 14 = 0κ1τ 15 = τ1κ0 16 = 1τ0κ
17 = τκ01 18 = 10κτ 19 = κτ10 20 = 01τκ
21 = 1κτ0 22 = τ01κ 23 = 0τκ1 24 = κ10τ
25 = τ01κ 26 = 0τκ1 27 = 1κτ0 28 = κ10τ
29 = 0κ1τ 30 = τ1κ0 31 = κ0τ1 32 = 1τ0κ
33 = τκ01 34 = 01τκ 35 = 10κτ 36 = κτ10
37 = τ01κ 38 = 0τκ1 39 = 1κτ0 40 = κ10τ
41 = τ1κ0 42 = 0κ1τ 43 = 1τ0κ 44 = κ0τ1
45 = 01τκ 46 = τκ01 47 = κτ10 48 = 10κτ
49 = κ0τ1 50 = 0κ1τ 51 = τ1κ0 52 = 1τ0κ
53 = 10κτ 54 = τκ01 55 = 01τκ 56 = κτ10
57 = τ01κ 58 = 1κτ0 59 = κ10τ 60 = 0τκ1

Table 5: The components of 60 Rays of the 600-cell. τ = (1 +
√

5)/2 is the Golden
Ratio, and κ its inverse. Commas are omitted between components, and the overbar
on a number denotes its negative.

The 600-cell is not directly related to the 2-qubit Pauli Group, but its 60 rays

still form 75 orthogonal bases in total, and the set has symbol 605 − 754. This set

is also geometrically related to the 24 − 24 set. Recall that those 24 rays can be

divided into two groups of 12 that each correspond to a 24-cell, another regular

4-polytope. In a similar fashion, the 60 rays can be divided into 25 groups of 12

that each correspond to a 24-cell, but no 2 of these 25 are a dual-pair. Instead, it
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is possible to form 10 different tilings of the 60 rays, each composed of 5 mutually

disjoint 24-cells. Table 6 shows the 75 basis broken down into 25 blocks of 3, with

each block corresponding to a 24-cell. The rows and columns of blocks show the 10

tilings.

1 2 3 4 31 42 51 16 22 60 39 28 57 23 27 40 44 29 15 52
5 6 7 8 38 24 58 25 18 47 33 55 36 53 20 46 59 26 37 21
9 10 11 12 56 45 17 35 13 32 50 41 43 49 30 14 34 19 48 54
13 14 15 16 43 54 3 28 34 12 51 40 9 35 39 52 56 41 27 4
17 18 19 20 50 36 10 37 30 59 45 7 48 5 32 58 11 38 49 33
21 22 23 24 8 57 29 47 25 44 2 53 55 1 42 26 46 31 60 6
25 26 27 28 55 6 15 40 46 24 3 52 21 47 51 4 8 53 39 16
29 30 31 32 2 48 22 49 42 11 57 19 60 17 44 10 23 50 1 45
33 34 35 36 20 9 41 59 37 56 14 5 7 13 54 38 58 43 12 18
37 38 39 40 7 18 27 52 58 36 15 4 33 59 3 16 20 5 51 28
41 42 43 44 14 60 34 1 54 23 9 31 12 29 56 22 35 2 13 57
45 46 47 48 32 21 53 11 49 8 26 17 19 25 6 50 10 55 24 30
49 50 51 52 19 30 39 4 10 48 27 16 45 11 15 28 32 17 3 40
53 54 55 56 26 12 46 13 6 35 21 43 24 41 8 34 47 14 25 9
57 58 59 60 44 33 5 23 1 20 38 29 31 37 18 2 22 7 36 42

Table 6: The 75 Bases of the 600-cell, using the ray-indexes of Table 5. Each group
of 4 rays in a row is a basis. Each group of 3 bases in a block is a 24-cell. Each row
and column of blocks is a decomposition of the 60 rays into 5 disjoint sets of 12 (the
24-cells). The bases are organized so that a single period-5 rotation generates all of
the blocks in each row, while another period-5 rotation generates the blocks in each
column.

We conducted a large, but not exhaustive, computer search for parity proofs

within this 60− 75 set [12], and found proofs ranging from 26− 13 all the way up to

60−41. Based on the number of proofs we were able to enumerate, we estimate that

there are roughly 108 critical KS parity proofs within this set. Another algorithm

was also used to explore this system which finds critical KS sets of all types, not

only parity proofs [13]. Based on the results of this search we estimate that the

total number of critical KS sets within the 60− 75 could be as large as 1012. To see
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examples of every type of parity set that we have enumerated, and also how they

are related to various geometric aspects of this figure, visit our Quantum Coloring

website [14].

While the 26− 13 parity proof is the most compact proof within this set, the 26

rays are not vertex transitive. There are two other types of proofs contained here

which are of particular interest because they are vertex transitive and have other

interesting geometric properties. Both of these proofs have symbol 302 − 154, and

the 60 rays can be divided into one proof of each type in 120 different ways (which

is to say that the proofs come in 120 complementary pairs). Coxeter [27] gave a

particularly nice decomposition of the 120 vertices of the 600-cell into 4 disjoint

groups of 30 vertices, with each group generated by a different period-30 rotation.

He called this the triacontagonal projection of the 600-cell. It turns out that 2 of

these triacontagons taken together correspond to one type of 30 − 15 proof, while

the other 2 triacontagons correspond to the complementary 30 − 15 proof. These

sets can also be derived using arguments that follow from the Reyes Configuration

of the 25 24-cells in this set, which is shown in our paper [28] and on the website.

Finally, and somewhat tangentially, let us discuss the geometric solids corre-

sponding to these 30 − 15 proofs when they are projected back into R4. Each ray

gives rise to a pair of antiparallel vectors, so that each set of 30 rays corresponds

to 60 vectors. If we define Edges between the nearest neighbors in such a set of

60 vertices, we find that each set contains 180 Edges. Here is where the differences

between the two 30-15 sets will become obvious, and we will refer to them as sets

A and B respectively.

For set A, the Edges can be used to form 180 equilateral triangle Faces, which

break up into 2 disconnected sets of 90 Faces each. The 90 Faces in each set form 30
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tetrahedral Cells, which form a single closed ring of shared Faces. That is, each of

the 30 Cells shares one face with each of its two neighbor Cells in the ring, and its

other two faces are external. Taken together then, the 30 tetrahedra actually form

a closed Torus with 90 Edges, and 60 external Faces. The other 90 Faces in this set

form an identical but disjoint Torus. It it noteworthy that these Tori meet most of

the criteria to be closed regular polyhedra in R3, though they live in R4. In some

sense, the set can be seen as composed of these 2 identical Toric Cells, but these

cells are rank-4 facets instead of rank 3-facets.

For the set B, the Edges form 120 equilateral triangle Faces, which do not form

any tetrahedral cells. Taken together these Faces form a single closed Torus, which

again meets most criteria to be a regular polyhedral Cell in R3, excepting that it is

a rank-4 facet.

As a last note on Tori, the 18−9 proof from within the Peres 24−24 set also has

a sort of toric structure when projected back into R4. This set of 36 real vertices

form 72 Edges with nearest neighbors, and these in turn form 36 square Faces. The

Faces in turn form a single closed Torus in analogy to the 30 − 15B set, with one

important distinction. Here, the ‘square’ Faces are actually rank-4 objects, and so

this set is even less like a regular polytope than the others.

The Kochen-Specker Diagram of a set is a graph with a vertex for each ray, and

a line connecting pairs of orthogonal rays. This tangent on geometric structures

illustrates the subtle point that two sets with the same Kochen-Specker Diagram, like

the 30−15A and 30−15B, may still be geometrically distinct (unitarily inequivalent),

and require different experimental setups to examine.
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2.5 Pentagon Inequalities

Klyachko et al [29] introduced a novel state-dependent proof that rules out NCHVTs

in a Hilbert Space of d = 3, and makes use of only pairwise correlations between

projectors. The proof uses a set of 5 rays which form an orthogonal ring, in which

each ray is orthogonal to its 2 neighbors. We define the observable Σ as the sum of

all 5 projectors in the set:

Σ = |0〉〈0|+ |1〉〈1|+ |2〉〈2|+ |3〉〈3|+ |4〉〈4| (2)

And we can express the orthogonality relations within this set as

〈i|i± 1〉 = 0 (3)

for i = 0, 1, 2, 3, 4, with addition modulo 5. It is trivial to see that in any NCHVT,

no more than 2 of the 5 projectors can be assigned the truth-value 1, because of the

rule that no two orthogonal rays can both be assigned the truth-value 1. This gives

us what we call the Pentagon Inequality

〈ΣNC〉 ≤ 2 (4)

For the set of real rays chosen by Klyachko we obtain a Σ whose largest eigenvalue

is
√

(5) = 2.236, and thus by preparing the corresponding eigenstate, we can obtain

〈ΣQ〉 = 2.236, (5)

which clearly violates the Pentagon Inequality of Eq. 4, ruling out NCHVTs.

Sets of rays that form orthogonal pentagons of this type can exist in any dimen-
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sion d ≥ 3, though it can be shown [30] that no Σ in any dimension can have an

eigenvalue greater than
√

(5). Nevertheless, the sets of rays we have discussed in

this chapter do contain pentagons in d = 4 which allow for violation of the Pentagon

Inequality. We will review them briefly here.

Using the 60 rays of the 2-qubit Pauli group one can build 17,280 distinct ob-

servables Σ with largest eigenvalue greater than 2, which break down into two types.

We call sets of 5 rays that form pentagons of this type Conflict Pentagons. In this

set, there are 5,760 Conflict Pentagons with largest eigenvalue 2.172, and 11,520

weaker Conflict Pentagons with largest eigenvalue 2.085.

Using the 60 rays of the 600-cell one can build 18,000 distinct Conflict Pentagons

which break down into 3 successively weaker types: 3,600 with largest eigenvalue

2.178, 7,200 with largest eigenvalue 2.114, and 3,600 with largest eigenvalue 2.0850.

Each Conflict Pentagon Inequality is maximally violated by the eigenstate cor-

responding to its largest eigenvalue. It is also violated, though not maximally, by

all states in a continuous region of Hilbert space surrounding that eigenstate, which

we call a Conflict Cap. The boundary of the Conflict Cap for a given Pentagon is

the set of states for which 〈Σ〉 = 2. A natural question arises: does the union of all

of the Conflict Caps of all of the Pentagons in one of our KS sets cover all of Hilbert

Space? If so, this yields a state-independent proof that rules out NCHVTs, while

making use of only pairwise measurements of projectors.

For the 60 rays of the 2-qubit Pauli group, the answer is no, which can be seen

because the Max(〈ΣS〉) = 2 for all 60 of the rays in this set, with S the set of all

17,280 Conflict Pentagons.

For the 60 Rays of the 600-cell, the Conflict Caps appear to cover the entire real

portion of Hilbert space. We find that V = Max(〈~r|ΣS|~r〉) ≥ 2.059 for all real states

~r, and with S the set of all 18,000 Conflict Pentagons. This result was obtained
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numerically by parameterizing ~r as,

~r = (cosφ sin θ1 sin θ2, sinφ sin θ1 sin θ2, cos θ1 sin θ2, cos θ2) (6)

with 0 ≤ φ < 2π, 0 ≤ θ1, θ2 < π, and calculating V over a very fine mesh of these

parameters.

For further details about the pentagons and other n-gons within the 600-cell, and

information about more compact subsets of rays that provide a conflict-covering of

real Hilbert space, refer to our unpublished note [31].

Now we move on to make a subtle, but in some sense obvious, new point about

Pentagons using two qubits, and this is simply that in order for the Pentagon In-

equality to be violated, there must be entanglement between the two qubits. This is

noteworthy simply because an identical Pentagon Inequality in the space of a single

4-level particle could be violated without any type of entanglement, just as in the

case of the 3-level system discussed by Klyachko. If we want this 4-dimensional

Hilbert space to be the space of 2 qubits, we can only prove contextuality if the

qubits are entangled, as we now demonstrate.

(a) (b) (c)

Figure 4: The 3 possible Product Pentagons. The 5 outer states are assigned to
qubit 1 and the 5 inner states are assigned to qubit 2. The two states at each
corner of the Pentagon form a product state of the two qubits. Orthogonal states
are connected by lines.
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In order to show that entanglement is required for a violation of a Pentagon

Inequality, we construct the most general Pentagon using the product states of 2

individual qubits. With no loss of generality, we will look to see if any Product

Pentagon Inequality can be violated by the state |Ψ0〉 = |0〉 ⊗ |0〉. For a Pentagon

Operator of the form,

Σ =
4∑
i=0

|ψi〉〈ψi|, (7)

The expectation value in the above state is then simply

〈Σ〉 =
4∑
i=0

|〈ψi|Ψ0〉|2. (8)

From here we can see that the phases of the |ψi〉 do not appear in the expectation

value, and so with no loss of generality we can parameterize an arbitrary pair of

orthogonal single-qubit states as |aj〉 = cos θj|0〉 + sin θj|1〉 and |bj〉 = sin θj|0〉 −

cos θj|1〉. We will build the three possible Product Pentagons using orthogonal pairs

like this. Since our goal is to find the maximum of the expectation value, we will

simply assign |0〉 to any single-qubit state in the Pentagon that does not belong to

one of the orthogonal pairings. The three Pentagons and the states we assign to

them are shown in Figure 4.

For the Pentagons in Figures 4a and 4b, the expectation value does not depend

on the values of the parameters, and is always exactly 2. This is no surprise,

since the extra orthogonality on the diagonals of these Pentagon graphs causes their

Independence numbers and Lovász numbers to be equal, meaning their Pentagon

Inequalities cannot be violated [32].

The Pentagon in Figure 4c does have a higher Lovász number than its Indepen-

dence number, and the expectation value does depend on the 4 parameters, but a

simple calculation shows that its maximum is 2, and so as we expected, none of the
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2-qubit Product Pentagon Inequalities can be violated, Q.E.D.
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3 3 qubits

In this chapter we discuss a number of interesting structures within the d = 8

Hilbert space of 3 qubits. To begin we will discuss additional features of IDs, and

introduce the complete family of IDs that exist in the 3-qubit Pauli group. Next we

will discuss how these IDs can be used to form Kernels and discuss the structure of

Kernels. We will then discuss the Mermin Star and the set of 40 rays it generates.

After this we will introduce the 3-qubit Kite, which is part of a family of Kite proofs

that extends from 2 to N qubits. Finally we will discuss the 3-qubit Wheel, which

has a structure isomorphic to the Mermin Square, and the related families of Wheel

and Whorl proofs which also extend from 3 to N qubits.

3.1 The IDs of the 3-qubit Pauli Group

An Identity Product (ID) is a set of mutually commuting observables of the N -qubit

Pauli group whose overall product is ±I. We will represent an ID as an array of

Pauli observables (Z,X, Y ), with each row showing a different observable, and each

column showing a different qubit.

There are just 3 unique types of IDs that exist within the 3-qubit Pauli group.

Two of them are new for 3 qubits, and the other is a trivial extension of the 2-

qubit ID. At this point, it is important to stress what we mean here by a unique

type. Since an ID is a mutually commuting set, the ordering of the observables is

irrelevant. Furthermore, the order we choose to index the qubits is arbitrary, and

so the reordering of both the rows (observables) and columns (qubits) in an ID does

not alter its underlying structure.

The next issue concerns the columns of an ID, which we call Single-Qubit-

Products (SQPs). The SQPs in an ID can come in only two varieties: those contain-
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ing each of the single-qubit Pauli observables (Z,X, Y ) an even number of times,

whose product is ±I (the single-qubit Identity), and those containing each of the

single-qubit Pauli observables an odd number of times, whose product is ±iI. We

call these Even and Odd SQPs respectively, and it should be clear that all IDs

contain an even number of Odd SQPs, since their overall product must be real.

Furthermore, if a Negative ID contains no Odd SQPs, then it is automatically a

single-ID Kernel. If a Positive ID contains no Odd SQPs, it cannot be used in any

Kernel, and so we call it Null and exclude it from our definition of IDs. Among the

even SQPs, there are a subset we will also call Trivial because they contain either

none, or only one of the single-qubit Pauli Operators (which appears an even num-

ber of times), meaning that they have product +I and all of their elements mutually

commute.

Now, each of the nontrivial SQPs in an ID actually has 6 possible permutations:

For Even SQPs with only 2 different single-qubit Pauli observables, the 6 permu-

tations are the assignments (ZX, XZ, ZY , Y Z, XY , Y X) to those observables.

For SQPs with all 3 different single-qubit Pauli observables, the 6 permutations are

the assignments (ZXY , XY Z, Y ZX, ZY X, Y XZ, XZY ). Permutations of this

second type may also change the overall sign of an Odd SQP. Each SQP in an ID can

be permuted independently in this way without altering the underlying structure,

since (Z,X, Y ) all mutually anticommute.

Finally, in looking for unique ID structures, we can ignore the order of rows and

columns, and we need only consider SQPs with their observables in the orders ZX

or ZXY . With all of that understood, we can now see that the only unique ID

structure for 2 qubits is the upper one in Table 2. Table 7 shows the 2 unique types

of 3-qubit IDs.

We can also obtain 3-qubit IDs by taking the 2-qubit ID and adding to it a trivial
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Z Z Z
Z X X
X Z X
X X Z

(a) This ID has no
Odd SQPs, and is
therefore also a single-
ID Kernel. This Ker-
nel generates the Mer-
min Star.

Z I Z
I Z Z
X X X
Y Y X

(b) This ID has two
Odd SQPs, and can
be combined with
other IDs to form
numerous Kernels.

Table 7: The two types of unique IDs for 3 qubits. These IDs are critical, in the sense
that none of the qubits and/or observables can be deleted such that the remaining
set is still an ID.

SQP. Again, trivial SQPs can contain either all Is, or they contain some mix of Is

with an even number of one of the three single-qubit Pauli observables (Z,X, Y ).

When choosing a trivial SQP, we can choose any even number of any one of the

three Pauli observables, and any order, since all of its elements mutually commute.

Table 8 shows some 3-qubit IDs of this type.

Z Z I
X X I
Y Y I

(a) Here the most
trivial SQP is added
to the 2-qubit ID in
order to form a 3-
qubit ID.

Z Z Z
X X Z
Y Y I

(b) Here another of
10 possible 3-element
trivial SQPs is added
to the 2-qubit ID in
order to form a 3-
qubit ID.

Table 8: The 3-qubit IDs shown here are not critical, in the sense that we could
simply delete the trivial SQP and the remaining set would still be an ID. However,
these noncritical IDs can be combined to build Kernels that are critical, in the sense
that no combination of qubits and/or IDs can be deleted such that the remaining
set is still a Kernel.

As a last detail, we say that an ID is critical if none of the qubits and/or ob-

servables can be deleted such that the remaining set is still an ID. Uniqueness and

criticality of these sets have been verified by exhaustive computer searches.
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As we consider more qubits, the number of IDs in the N -qubit Pauli Group

grows quite rapidly. In the N -qubit Pauli group, one can always find sets of 2N − 1

mutually commuting observables - stabilizer group for joint eigenbasis of the ID,

and these complete sets are always IDs (many including numerous trivial SQPs),

but only for N = 2 are these IDs critical. For N = 3, we obtain sets of 7 mutually

commuting observables, but these sets can always be separated (in 7 ways) into the

product of a 3-observable ID and 4-observable ID. To help handle the proliferation

of different types of IDs, we now introduce the expanded symbol IDMN for an N -

qubit ID containing M observables. We may omit the M and/or N depending on

the context. The symbols for some of the sets we have been considering are, ID43

(Table 7), ID33 (Table 8), and ID32 (both IDs in Table 2). We can also describe the

sets of 7 mutually commuting observables as noncritical ID73s, which can always be

separated into the product of an ID33 and ID43.

Furthermore, the ID33 introduces a new wrinkle regarding eigenbases that was

not present for N = 2, but persists for all larger N . For a given IDMN , there are

2M−1 different ways to choose the eigenvalues of the M observables, meaning that

its joint eigenbasis will contain 2M−1 rays. For some values of N and M , the rays

actually describe projectors with rank higher than one, meaning that each ray spans

more than one dimension of Hilbert space, and contains internal degrees of freedom.

In general, the rank of the projectors in the eigenbasis of an IDMN is 2N−M+1. So

for our ID33s we will have eigenbases with 4 rank-2 rays, and for the ID43s we will

have eigenbases with 8 of the usual rank-1 rays.

As we will see later, this remarkable feature of IDs will allow for surprisingly

compact proofs of the KS theorem for larger numbers of qubits.
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3.2 3-qubit Kernels

Now that we have introduced the available ID3s, let us consider how they form

Kernels. Recall that a Kernel is defined as a set of IDs, an odd number of which are

Negative IDs, with each single-qubit Pauli observable appearing an even number of

times. We will say that a Kernel is critical if no combination of qubits and/or IDs

can be deleted such that the remaining set is still a Kernel.

The structure of a Kernel depends almost entirely on the Odd SQPs within its

IDs. A negative ID with no Odd SQPs is also automatically a single-ID Kernel,

as can be seen from the above definition of Kernels. In general, we will call IDs

without any Odd SQPs Whole IDs, and those with Odd SQPs Partial IDs.

The single-ID43s Kernel of Table 7a can be used to prove the GHZ theorem

using only 3 qubits. A source repeatedly produces a particular joint eigenstate of

the ID, and sends one particle to Alice, another to Bob, and the last to Charlie.

Alice, Bob, and Charlie each randomly choose one of the two measurement bases,

Z or X, and measure their qubit, such that the random choice and measurement

for all 3 qubits are spacelike separated. In any run where Alice, Bob, and Charlie

randomly measure one of the 3-qubit observables of the ID, the product of their

three individual results is correlated, and must equal the eigenvalue of that 3-qubit

observable in the prepared state. The product of all 4 such eigenvalues is -1 in

any prepared eigenstate, because the ID is negative. Because the measurements

are chosen randomly, a local hidden variables theory requires that a truth-value be

preassigned to all single-qubit observables that might be measured. Furthermore,

locality also guarantees that Alice’s measurement result cannot be affected by Bob’s

or Charlie’s choice of measurement basis, meaning the single-qubit observables in

the ID must be assigned noncontextual truth-values. If we define B as the product

of the IDs, then because each single-qubit observable appears twice in the ID, the
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truth-values assigned to each one will be squared, and so the overall product will

always be BL = +1. But we know already that the experimental value is BQ = −1

for any prepared eigenstate, which rules out local hidden variable theories, and

proves the GHZ theorem. All single-IDN Kernels can be used to give an analogous

proof using N qubits and N spacelike separated parties.

Table 7a is only one unique Whole ID43 (single-ID Kernel) that exists. This

Kernel generates the Mermin Star of Figure 5 following the method described in

Chapter 2.1. We will return to this in Chapter 3.3. It is noteworthy that single-ID

Kernels only exist for N ≥ 3.

Now we move on to the subject of Kernels composed of more than one different

ID, which we call Composite Kernels. Composite Kernels are always formed using

some set of Partial IDs. To do this, we must simply choose the order of the SQPs

within each ID so that every Odd SQP in a given ID is paired with an Odd SQP in

another ID in the set. With the Odd SQPs paired off in this way, each single-qubit

Pauli Observable now appears an even number of times for each qubit, which is one

of the requirements of a Kernel. The other requirement is very easy to satisfy, since

we can change the sign of any Partial ID by permuting (Z,X, Y ) within one of its

Odd SQPs. We fix the orders such that an odd number of the IDs are negative, and

then we have a complete Composite Kernel.

Before continuing, we will add one final feature to complete our ID symbol. We

will denote an N -qubit ID with M observables, and O Odd SQPs as an IDMN
O . For

example the ID of Table 7a has symbol ID43
0, while the ID of Table 7b has symbol

ID43
2. In constructing Composite Kernels we really only need to concern ourselves

with the value of O, and as we will see, once a Composite Kernel Structure (CKS)

has been selected, we can actually assign to each of its elements any ID with the

appropriate value of O.
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To build the aforementioned Composite Kernel Structures, we will first introduce

a compact notation for IDs that we call an Oddness Profile, in which we collapse

each Odd SQP to an ‘O’, each Even SQP to an ‘E’ and each trivial SQP to an ‘I’.

To be clear, the Oddness Profile of the ID in Table 7a is simply ‘EEE’, for Table 7b

it is ‘OOE’, while for the two IDs of Table 8 it is ‘OOI’. We say that a Composite

Kernel is critical if no deletion of IDs and/or qubits can result in a smaller Kernel.

For 2 qubits, there is only one critical CKS, as shown in Table 9. The 6 critical

Composite Kernels for 3 qubits are shown in Table 10. In both cases, these are

unique up to the overall order of the qubits.

O O
O O

Table 9: This is the only critical Composite Kernel Structure for 2 qubits. Each
row of the structure represents a different ID, and each column represents a different
qubit.

O O E
O O I

(a) A 2-ID Kernel

O O E
O O E

(b) A 2-ID Kernel

O O I
I O O
O I O

(c) A 3-ID Kernel

O O E
I O O
O I O

(d) A 3-ID Kernel

O O E
E O O
O I O

(e) A 3-ID Kernel

O O E
E O O
O E O

(f) A 3-ID Kernel

Table 10: The 6 critical Composite Kernels for 3 qubits. Each row of the structure
is the Oddness Profile of a different ID, and each column is a different qubit. Any set
of IDs with the correct Oddness Profiles can be assigned to the rows of a Composite
Kernel Structure to give a Kernel.

To build a Composite Kernel from one of the elements of Table 10, we can assign

any Partial ID with the correct Oddness Profile to each of its rows. Note that the

qubits in a given ID may need to be reordered to match the Oddness Profile. Using

the IDs from Tables 7 and 8, and allowing all permutations of the individual SQPs,
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as well as all 10 choices for the trivial qubit in Table 8, we can see the number of

possible Composite Kernels for 3-qubits is quite large. We will consider only the

two simplest cases here.

For the first case, we will take the Composite Kernel Structure of Table 10b, and

assign to it two different permutations of the ID in Table 7b. As shown specifically

in Table 11, we will use the given Negative ID, and also the Positive ID obtained

by transposing the Z and X in the second SQP of the original.

Z I Z
I Z Z
X X X
Y Y X
Z I Z
I X Z
X Z X
Y Y X

Table 11: This is the Kernel of the 3-qubit Kite, an Observable-based KS proof
which is examined in further detail in Chapter 3.4. Note that by permuting just one
Odd SQP within a Partial ID, we are able to form a 2-ID Kernel. It should also be
easy to see that this will work for any Partial ID of any size, and in fact the Kernel
of Figure 2 is obtained in just the same way.

For the second case, we will take the Composite Kernel Structure of Table 10c,

and assign to it three different permutations of the ID of Table 8a. As shown

specifically in Table 12, we use the given Negative ID, and also two more Negative

IDs obtained by permuting the qubits of the original.

It should be easy to see how mixing and matching the various 3-qubit IDs

can create many distinct Kernels. For more examples of 3-qubit Kernels and the

Observable-based KS proofs that they generate, refer to our paper [18].
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Z Z I
X X I
Y Y I
I Z Z
I X X
I Y Y
Z I Z
X I X
Y I Y

Table 12: This is the Kernel of the 3-qubit Wheel, an Observable-based KS proof
which is examined in further detail in Chapter 3.5. Note that by permuting the
qubits of a Partial ID with two Odd SQPs, we are able to create a closed loop of
three pairs of Odd SQPs, forming a 3-ID Kernel. It should also be easy to see that
this will work for any Partial ID with two Odd SQPs, regardless of its size, and that
the size of the loop is only limited by the number of qubits. It should also be noted
that while none of the three IDs of this Kernel are individually critical (as defined
for IDs), the Kernel they form is critical (as defined for Kernels).

3.3 The Mermin Star

The Mermin Star [15], shown in Figure 5, is an Observable-based KS proof intro-

duced by David Mermin and related to the work of Greenberger, Horne, Shimony,

and Zeilinger [10].

The Mermin Star can be generated directly from the 3-qubit Kernel of Table 7a,

using the method described in Chapter 2.1. To be explicit, we will show the full

process for this case here. For each observable of this ID43
0, we will generate a new

Positive ID by supplementing that observable with its own single-qubit decomposi-

tion. For example, for the first observable of Table 7a, ZZZ, we supplement with

ZII, IZI, and IIZ. This process guarantees that all of the IDs taken together will

then form an Observable-based KS proof. Table 13 shows the same 5 IDs of Figure

5, and how they are generated from the Kernel.

Let us now consider the set of rays that are generated by the Mermin Star. Each

ID43 has an eigenbasis composed of 8 rank-1 rays, yielding a total of 40 rays, which
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IIX

ZZZ ZXX XZX XXZ

ZII XII

IIZ

IXI IZI

Figure 5: The Mermin Star, a 102−54 Observable-based KS proof for 3 qubits. Each
straight line connects the 4 observables of an ID. The thin lines denote Positive IDs,
while the thick line denotes a Negative ID (which in this case is also the Kernel).

was first examined in detail by Peres and Kernaghan [33]. Since each of the 10

observables is shared by two IDs, there will be 10 complementary pairs of hybrid

bases, for a total of 25 bases in the set, which we now see has symbol 405 − 258.

This set contains a total of 210 = 1, 024 parity proofs, which can be obtained using

the 10 complementary pairs of hybrid bases, just as in Chapter 2.1 and 2.2. The

breakdown of the different types of parity proofs is shown in Table 14. It should be

noted that this set does not contain complementary pairs of proofs, as did those of

Chapter 2.1 and 2.2.

For more details about the proofs in this set, refer to our paper [18].
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Z Z Z
Z X X
X Z X
X X Z

(a)

Z Z Z
Z I I
I Z I
I I Z

(b)

Z X X
Z I I
I X I
I I X

(c)

X Z X
X I I
I Z I
I I X

(d)

X X Z
X I I
I X I
I I Z

(e)

Table 13: The 5 IDs of the Mermin Star (Figure 5). The Kernel is shown in (a).
The other 4 Positive IDs show how the Kernel generates the set. In each one, the
top observable comes from the Kernel, and the observables below are its single-qubit
decomposition.

Compact Symbol Expanded Symbol # of Proofs
36− 11 28284 − 118 320
38− 13 242144 − 138 640
40− 15 202204 − 158 64

Table 14: The 1024 Critical Parity Proofs of the KS Theorem within the 404 − 258

set of Peres and Kernaghan, generated by the Mermin Star.

3.4 The 3-qubit Kite

Here we consider the 3-qubit Kite [18], as shown in Figure 6, an Observable-based

KS proofs that can be generated from the Kernel of Table 11.

To get this proof, we will make a slight modification to the process we have

used to generate an Observable-based KS proof from a Kernel. Again, we take each

observable that appears an odd number of times in the Kernel, and supplement it

with its own decomposition in order to form a new positive ID. In this case however,

we need not necessarily go all the way down to the single-qubit decomposition. Any

portion of the observable that is shared by another observable can be kept together

in the decomposition. As an example of this consider that this Kernel contains

the observables XXX and XZX, which means that the decomposition of the first
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is XIX and IXI, while the decomposition of the second is XIX and IZI. This

simplification still guarantees that the generated set of IDs contain each observable

an even number of times, resulting in the generation of a more compact Observable-

based KS proof. Again, the specific process is shown in Table 15.

XIX

IXI

IZI

IIZ

XZX

IXZ

XXX

IZZ

YYX ZIZ

Figure 6: The 3-qubit Kite, a 102 − 2443 Observable-based KS proof for 3 qubits.
Each line or arc connects the observables of an ID. The thin lines denote Positive
IDs, while the thick line denotes a Negative ID. The 2-IDs of the Kernel form the
‘tail’ of the Kite. Most any Partial IDMN can be used to form a Kernel like the one
in Table 11, which can in turn be used to form a Kite proof in just the same way,
with the length of the tail determined by M .

Now let us consider the set of rays generated by the 3-qubit Kite. The structure

of this proof introduces some new features that we have not seen before. If two IDs

share exactly one observable in common, then the rays of their two eigenbases mix

to form two complementary hybrid bases. However, it can be shown more generally

that if two IDs share s observables in common, then the rays of their two eigenbases

mix to form h = 22s − 2 hybrid bases, which still break down into complementary

pairs (see Chapter 5.4 for more details).

So, to begin with, we have 2 ID43 each of which have an eigenbasis of 8 rank-1

rays, and 4 ID33s, each of which have an eigenbasis of 4 rank-2 rays, for a total of
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Z I Z
I Z Z
X X X
Y Y X

(a)

Z I Z
I X Z
X Z X
Y Y X

(b)

I Z Z
I Z I
I I Z

(c)

X X X
X I X
I X I

(d)

I X Z
I X I
I I Z

(e)

X Z X
X I X
I Z I

(f)

Table 15: The 6 IDs of the 3-qubit Kite (Figure 6). The 2 ID4s of the Kernel are
shown in (a) and (b). The other 4 Positive ID3s show how the Kernel generates the
set. In each one, the top observable comes from the Kernel, and the observables
below are its decomposition.

32 rays. To find all of the hybrid bases, we consider every pairing of intersecting

IDs. We see that there are 4 pairs of ID3s that share one observable in common,

giving us 8 hybrid bases with rays of rank 2, 4 pairings of an ID4 with an ID3,

giving us 8 hybrid bases with rays of mixed rank, and 1 pair of ID4s which share

two observables in common, giving us h = 222 − 2 = 14 hybrid bases with rays of

rank 1, giving us 32 bases in total.

Before giving the expanded symbol for this 32 − 36 set, we will add one final

feature to our symbols for sets of projectors and bases. We will now use the symbol

Rr
m − Bn for a set of R projectors of rank r that appear in m of the B bases, each

of which has n elements. Again, if a set contains projectors of differing r and/or

m, or bases with differing n, the symbol on either side of the dash can be repeated.

We can use the expanded symbol for this set to illustrate this. This set has symbol

161
10162

4−16886124, meaning it has 16 rank-1 projectors that each appear in 10 bases,

16 rank-2 projectors that each appear in 4 bases, 16 8-element bases, 8 6-element

bases, and 12 4-element bases. We will still refer generally to projectors of all ranks

as rays.

The presence of a pair of IDs with s > 1 in the Observable-based KS proof
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also seems to break the simple pattern we have used in other cases to obtain 2H

parity proofs from a set with H complementary pairs of hybrid bases. An exhaus-

tive computer search reveals that there are 33,152 distinct parity proofs of the KS

theorem within this set, with the smallest being a 24− 9 set with expanded symbol

121
2122

2−184644, and the largest a 32−17, with expanded symbol 81
24

1
44

1
6122

24
2
4−584684.

The Kite family of Observable-based KS proofs has members for all number of

qubits N ≥ 2, which we will discuss in Chapter 6.3.
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3.5 The 3-qubit Wheel

Now we move on to discuss the 3-qubit Wheel [18] of Figure 7, an Observable-based

KS proof generated from the Kernel of Table 12.

In this remarkable case, we do not need to introduce any additional observables

in order to form the new IDs of an Observable-based KS proof. Instead we will form

3 new Positive ID3s simply by regrouping the observables of the 3 original Negative

ID3s in different ways. The specific process is shown in Table 16. It is important

to note that this diagram is isomorphic to the Mermin square, and we could just

as easily draw it as a square. The wheel form is used instead because it is more

convenient for the complete family of N -qubit Wheels (N odd), and the related

family of N -qubit Whorls (N even), which we will discuss in Chapter 6.1.

ZZI

XXI

YYI

YIY
XIX

ZIZ

IYY
IXX

IZZ

Figure 7: The 3-qubit Wheel, a 92 − 63 Observable-based KS proof for 3 qubits,
isomorphic to the Mermin Square. Each line or large circle connects the observables
of an ID. The thin lines denote Positive IDs, while the thick lines denote Negative
IDs. The 3 ID33

2 of the Kernel form the ‘spokes’ of the Wheel.

This proof reveals another important feature of Observable-based KS proofs hav-
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Z Z I
X X I
Y Y I

(a)

I Z Z
I X X
I Y Y

(b)

Z I Z
X I X
Y I Y

(c)

Z Z I
I Z Z
Z I Z

(d)

X X I
I X X
X I X

(e)

Y Y I
I Y Y
Y I Y

(f)

Table 16: The 6 IDs of the 3-qubit Wheel (Figure 7). The 3 Negative ID3s of the
Kernel are shown in (a), (b), and (c). The other 3 Positive ID3s show how the
Kernel generates the set. In each case, the one observable from each of the 3 Kernel
IDs is used to form a new ID.

ing to do with the fact that it is isomorphic to the Mermin Square. By isomorphic,

we mean that the observables and IDs of the two proofs fit together in exactly the

same way, and thus that their diagrams have exactly the same structure. Remark-

ably, if two Observable-based KS proofs have isomorphic diagrams, then they also

generate isomorphic sets of rays, meaning that the rays and bases of both sets also

fit together in exactly the same way. The ranks of the associated rays may be dif-

ferent, since the IDMNs in two isomorphic Observable-based KS proofs need only

have the same set of M values, but need not have the same number of qubits N .

This is exactly the case for the 3-qubit Wheel and Mermin Square, and so we can

simply refer back to the 241
4−244 of Chapter 2.1 to see the structure of the 242

4−244

set generated by the 3-qubit Wheel. As the symbols indicate, the only difference

between the two sets is that the 24 rays generated by the 3-qubit Wheel are of rank

2 and occupy a Hilbert space of d = 8. Another important thing to note here is

that two Observable-based KS proofs (and their corresponding R−B sets) can still

be isomorphic if the numbers of negative IDs they each contain are not the same,

provided they are both odd - because the sign of the IDs does not affect the overall

orthogonality relations between the eigenbases.
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It is worth noting that the 182
2 − 94 parity proof contained within this set is the

most compact proof of the KS theorem yet discovered in d = 8, and we doubt that

a smaller proof exists. This proof also encompasses a continuum of 361
2 − 98 proofs

that can be obtained by choosing particular values for the internal degrees of the

freedom of the 18 rank-2 projectors. A proof like this was given by Ruuge [34],[35].

The 121
2122

2−184644 proof from Chapter 3.4 is also a case like this, with the internal

degrees of freedom fixed for 6 of the rays to give 12 rank-1 projectors. This issue is

examined in more detail in Chapter 5.5.

The Wheel family of proofs has members for all odd N ≥ 3, and is closely related

to the Whorl family which has members for all even N ≥ 2. We will discuss both

of these families in Chapter 6.1. For now, let us consider some alternate proofs

that can be generated from the same Kernel. Each circular ID3 in Figure 7 can

be independently replaced by a triangle of 3 new ID3s, with 3 new observables at

the corners. The case where all 3 circles are replaced in this way is the 182 − 123

proof shown in Figure 8, and discussed by Saniga et al [36]. Because each of the 18

observables is shared by exactly two IDs, there are exactly 18 complementary pairs of

hybrid bases. This proof then generates a 482
4− 484 set that contains 218 = 262, 144

critical parity proofs, which can be obtained using the complementary pairs of hybrid

bases as described in Chapter 2.1. These proofs also come in complementary pairs,

where the two proofs in a pair together use all 48 bases.

There is one final proof that we will discuss in this section, because it also

introduces a new structural feature of the Observable-based KS proofs within the N -

qubit Pauli group. Figure 9 shows another 3-qubit proof isomorphic to the Mermin

Square and 3-qubit Wheel. What is unique about this 3-qubit Observable-based KS

proof, is that it is critical in the sense that no subset of qubits and/or IDs can be

deleted such that the remaining set is still an Observable-based KS proof, but it is
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IZI ZZI ZII

XXI

YYI

YIY
XIX

ZIZ

IIZ

IYY
IXX

IZZ

IXI XII

IIX

IYI YII

IIY

Figure 8: This is the expanded version of the Wheel diagram of Figure 7, obtained
by replacing each circular ID3 with a triangle of 3 new ID3s with 3 new observables
at the corners.

YZZ

IYX

YXY

IYY

XZZ

XXX

YXX

XXY

ZIZ

Figure 9: This critical 3-qubit Observable-based KS proof is isomorphic to both the
Mermin Square and the 3-qubit Wheel. Each line connects the observables of an
ID. The thin lines denote Positive IDs, while the thick lines denotes Negative IDs.
The 2-qubit Kernel that generates this set is composed of the first vertical ID, and
the middle horizontal ID. The Kernel is comprised of the second and third qubits,
while the first qubit is trivial in both IDs.

generated from a 2-qubit critical Kernel (a permutation of the Kernel in Figure 2).

So the relationship between the criticality of IDs, Kernels, and Observable-based

KS proofs is quite intricate. Noncritical IDs can generate critical Kernels and/or

49



Observable-based KS sets, and noncritical Kernels can generate critical Observable-

based KS sets. Criticality is still a very useful idea, because it allows us to find

and catalog the minimal elemental structures that exist within the N -qubit Pauli

group, but we will have to carefully catalog each of these three structures separately.

In reality, the number of possible Kernels and Observable-based KS proofs grows

so prolifically as N increases that we will make no attempt to catalog all of them.

However, the number of unique critical IDs, at least for some small values of N

can actually be explored in complete detail, as we will see in Chapter 5.1. It turns

out that we can also build the complete set of possible critical Composite Kernel

Structures for small values of N , which we discuss in Chapter 5.2.
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4 4 qubits

In this chapter we will discuss several interesting structures within the d = 16 Hilbert

space of 4 qubits. The situation for 5 qubits becomes much more involved, and so

this is the largest number of qubits we will devote a full chapter to. To begin we

will introduce the complete set of critical ID4s of the 4-qubit Pauli group. Next we

will introduce the complete set of critical Composite Kernel structures for 4 qubits.

Then we will move on to discuss a few specific proofs, beginning with the 4-qubit

Star, which is the first member of a family of Observable-based KS proofs that exist

for all even N ≥ 4. Finally, we will examine the 4-qubit Whorl, and another new

proof we call the 4-qubit Windmill.

4.1 The IDs of the 4-qubit Pauli Group

In this section we will introduce the complete set of critical ID4s. Unlike the previous

chapter, we will show only the critical IDs, but clearly we can form additional

IDs by adding trivial qubits to the IDNs for N < 4, just as was done to obtain

the IDs of Table 8. The complete families have been obtained by an exhaustive

computer search. The full search actually returns 4 different critical ID44s, and

68 different critical ID54s, but it appears that just 2 of the ID44s and 7 of the

ID54s are unique. We say ‘appears’ here, because it is possible that we have missed

some subtle distinction between two of the 68 ID54s that actually makes them both

unique. The full search results are undoubtedly complete, but it is possible they

contain additional unique IDs beyond the 9 we list in Table 17.

Again, the permutations of the Partial IDs given here can be assigned to Com-

posite Kernel Structures in an enormous variety of combinations to form Kernels

and Observable-based KS proofs. We will examine only a few interesting cases in
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detail, later in this chapter.

Z Z Z Z
X X X X
Y I Z X
I Y X Z

(a) ID442

Z Z Z I
X X I Z
Y I X X
I Y Y Y

(b) ID444

Z Z Z Z
Z Z X X
X X I I
X I Z X
I X X Z

(c) ID540
Z Z Z Z
X X Z Z
Y I X I
I Y I X
I I X X

(d) ID542

Z Z Z Z
X I X I
Y I Z X
I X X Z
I Y I X

(e) ID542

Z Z Z I
X X I Z
Y I X X
I Y X X
I I Z Z

(f) ID542
Z Z Z I
X X Z Z
Y Z X X
I Z I X
I Y X Z

(g) ID542

Z Z Z I
X X I Z
Y Z X Z
I Z Z X
I Y X X

(h) ID542

Z Z Z I
Z X X Z
Z Y X X
X X Z Z
Y X I X

(i) ID542

Table 17: The 9 critical ID4s of the 4-qubit Pauli group. The Whole ID of (c) is
definitely unique, and is the only single-ID Kernel for 4 qubits.
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4.2 Composite Kernel Structures for 4 qubits

In this section we will expand on the definition and description of the Critical

Kernel Structures (CKSs) introduced in Chapter 3.2. Table 10 shows the list of

Composite Kernels that can be built using the IDs available for 3 qubits. Note that

the Composite Kernels of Tables 10a and 10b are actually built using the 2-qubit

CKS of Table 9, but these 3-qubit Kernels are still critical because the ID43
2 of Table

7b is critical. The other 4 Composite Kernels of Table 10 are actually built on the

CKS of Table 18b, as we will explain.

O O
O O

(a)

O O I
I O O
O I O

(b)

O O O O
O O O O

(c)

O O O O
O O I I
I I O O

(d)

O O O O
O O I I
O I O I
O I I O

(e)

O O I I
I O O I
I I O O
O I I O

(f)

Table 18: The 6 Critical Composite Kernel Structures for N = 2, 3, 4 qubits.

The only relevant property of an ID where CKSs are concerned is its Oddness.

In fact, we no longer need to distinguish between ‘E’ and ‘I’ in our Oddness Profiles

either, since these can be arbitrarily determined by the choice of IDs we assign to

the structure, as seen in Table 10. In constructing CKSs for a given number N of

qubits, we will only consider cases where the Odd SQPs of all IDs in the set are

assigned to all N qubits. A Composite Kernel Structure for N qubits can then be

composed of any mix of Partial IDs with Oddnesses from the set of even integers

from 2 to N. Finally, we will say that a CKS is critical if no subset of IDs and/or

Odd qubits can be deleted such that the remaining set is a CKS - where an Odd

SQP in any ID in the set means the corresponding qubit is Odd.
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The critical CKSs for 2, 3, and 4 Odd qubits are shown in Table 18, where again

each row is a different ID, and each column a different qubit. It is important to note

that these are only the Odd qubits, since as we have seen in Tables 10a and 10b,

such a structure can easily be used to generate a critical Kernel with more qubits.

Likewise, the ‘I’s can be trivially replaced with ‘E’s when assigning IDs to a CKS.

These complete listings of CKSs were generated by an exhaustive computer search.

We explain a few specific cases to make certain the meaning of these tables is

clear. In Table 18c, we assign any two different IDs of Oddness 4. In Table 18d, we

assign an ID of Oddness 4, and 2 IDs of Oddness 2. Finally, in Table 18f, we assign

any 4 different IDs of Oddness 2. The number of observables and/or qubits in each

ID plays no role in these assignments, so long as their Odd SQPs are matched up

as shown. We will discuss several interesting consequences of this in Chapter 5.2.

We already knew that the number of permutations of IDs within the 4-qubit

Pauli group is quite large, meaning that the number of ways that they can be

assigned to these Composite Kernel Structures is truly astounding, never mind how

many Observable-based KS proofs they might lead to. Again, we will only consider

a few special cases in this Chapter.
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4.3 The 4-qubit Star

In this section we discuss the 4-qubit Star shown in Figure 10, an Observable-based

KS proof generated by a permutation of the single-ID54
0 Kernel of Table 17c. This

proof is generated from the Kernel by the same process we used in 3.4, as should be

clear from the diagram.

ZZZZ

ZZXX

XIZX

IXXZ

IIZI

IIIZ

IIXI

ZZII

IIIXXIII

IXII

XXII

Figure 10: The 4-qubit Star, a 122 − 154413 Observable-based KS proof. Each line
connects all of the observables in an ID. Thin lines denote Positive IDs, while the
thick line denotes the Negative ID54

0 of the Kernel.

Like the Kernel that generates the Mermin Star of Chapter 3.3, the ID54
0 that

generates this proof can be used to prove the GHZ theorem using its own eigenstates

[19]. The same is true of all single-ID Kernels.

For this set, each of the 12 observables is shared by exactly two IDs, and thus the

rays of the 6 eigenbases mix to form 12 complementary pairs of hybrid bases. The

complete 52− 30 set has expanded symbol 161
6322

54
4
4− 1168122101484614. In the same

way we did for the other sets in which no two IDs share more than one observable in
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common (see Chapter 2.1), we can use the 12 pairs of complementary hybrid bases

to generate the 212 = 4, 096 critical parity proofs of this set. The smallest critical

parity proof in this set is a 47− 13, and the largest 51− 17.

There is one more interesting detail of the particular ID54
0 Kernel used in Figure

10, which is the type of entanglement possessed by the states of its eigenbasis.

As discussed in our paper [19], these states exhibit a remarkable type of robust

entanglement that might have many interesting applications. They belong to a

family of fully entangled states that we call Web States, that spans all numbers of

qubits N ≥ 2. The property of these states that earns them their name is that if any

qubit from an N -qubit Web State is measured in the product basis, the remaining

qubits are always left in an (N − 1)-qubit Web State. This entanglement persists

in this way as successive qubits are measured, regardless of order, until the last two

that remain are in a Bell state. We will discuss the two distinct families of Web

States within the N -qubit Pauli group elsewhere.
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4.4 The 4-qubit Whorl and the 4-qubit Windmill

IZII

IIZI ZIII

IIIZ IIIX

IIXX

IIYY YIIY

XIIZ

XIIIIIXI

IYYI YYII

IXXI

IXII

XXII

ZIIX

ZZIIIZZI

IIZZ

Figure 11: The 4-qubit Whorl, a 202− 14123 Observable-based KS proof. Each line
and large circle connects all of the observables in an ID. Thin lines denote Positive
IDs, while thick lines denote Negative IDs. The 4 ID34

2s of the Kernel form the
‘spokes’ of the Whorl.

In this section we introduce the 4-qubit Whorl [19] shown in Figure 11. The

Kernel for this 202−14123 proof is constructed using the Composite Kernel Structure

of Table 18f, and involves 4 permutations of the noncritical ID34
2 composed of the

critical ID32
2 paired with two trivial SQPs, chosen such that an odd number of

IDs (in this case three) are negative. The Kernel shows up as the four “spokes”

surrounding the central wheel in Figure 11. To generate the full Observable-based

KS proof, we first add one ID composed of one observable from each of the IDs in

the Kernel, which shows up as the central wheel in Figure 11, and then generate

all the remaining IDs using the usual qubit-decomposition method. The Whorl is

never as compact as its cousin the Wheel, because the even number of ‘spokes’ in

the Kernel requires the introduction of new observables to form the needed IDs. We
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ZZZZ

IIIZ

ZZII

IIZI

IXII

IIXI

XXII

YYII

IXXZ

IIIX

XIII

YYXX
XIZX

Figure 12: The 4-qubit Windmill, a 132 − 5423 Observable-based KS proof. The
Kernel is composed of the Negative ID34

2 at the center and the circular ID44
2.

will discuss these two related families of proofs in Chapter 6.1.

As in similar cases, since each of the 20 observables is shared by exactly two IDs,

there are 20 complementary pairs of hybrid bases. So the 4-qubit Whorl generates a

56− 53 set with expanded symbol 82
5484

4 − 1886444, which contains 220 = 1, 048, 576

critical parity proofs that can be obtained in the usual way (see Chapter 2.1). The

smallest critical parity proof in this set is a 40− 21, and the largest a 52− 33.

We can obtain an alternate proof by choosing to use the qubit decomposition

method for the entire Kernel, rather than forming the central ID4 of Figure 11. This

simply replaces the circular ID4 by a square composed of 4 ID3s, introducing 4 new

observables for the corners. This alternate 242 − 163 proof has a simpler but less

compact form. This proof generates a 644
4−644 set, which contains 224 = 16, 777, 216

critical parity proof that can be obtained in the usual way. This is another case where

the proofs break up into complementary pairs that together use all 64 bases.

In general, the family of R4 − B4 sets with R = B that are generated by the
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families of expanded Whorl and Wheel proofs seem always to contain critical parity

proofs that come in complementary pairs.

Now we move on to describe the 4-qubit Windmill of Figure 12, a 132 − 5423

Observable-based KS proof based on the 2-qubit Composite Kernel Structure, and

using the ID32
2 with two trivial qubits and the ID44

2 of Table 17a. For reasons that

should now be familiar, this set generates 13 complementary pairs of hybrid bases

that can be used to obtain the 213 = 8, 192 critical parity proofs in the usual way.

The smallest proof is a 41 − 13, and the largest a 47 − 19. The full 48 − 33 has

expanded symbol 84
4402

5 − 2188644.
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5 Structures of the N-qubit Pauli Group

Throughout the preceding Chapters of this text, we have introduced a number of

important types of structures of the N -qubit Pauli group. In this chapter we will

review them and formalize their definitions, and importantly the definition of what

makes each structure critical. To begin, we will review IDs and the SQPs that form

them. Next we will review Kernels and Composite Kernel Structures. After this,

we will discuss Observable-based KS proofs. We will next consider the sets of rays

generated by Observable-based KS proofs, and the critical KS sets they contain.

Finally we will discuss the continuous classes of entangled states that are generated

by critical IDs.

All of these structures are related in that the simpler structures are used to build

or generate the successively more elaborate ones. Figure 13 shows the general flow

of how the structures lead into one another, and how they are related to proofs of

the GHZ and KS theorems.

Kernels
(Strong KS Proofs)

Observable-based
KS Proofs

GHZ Proofs for 2 Parties
using 2N qubits (N>1)

Saturated R-B Sets

Parity Proofs of KSSingle-ID Kernels
(GHZ Proofs for N>2 Parties)

IDs

Figure 13: This flow chart shows conceptually how each type of nonclassical struc-
ture is constructed from more elementary components.

5.1 Identity Products (IDs) and Single-Qubit Products (SQPs)

In this section we will formalize the definition of an Identity Product (ID) of observ-

ables. An IDMN
O is a set of M mutually commuting observables from the N -qubit

Pauli group, whose combined product is ±I (the N -qubit Identity), and Oddness
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O (any portion of this symbol can be omitted depending on context). We will refer

to an ID as Positive or Negative, depending on the sign of its product. An ID is

depicted as an M ×N table containing elements from the set (Z,X, Y, I). Each row

of the ID shows a different N -qubit Pauli observable, and each column shows the

SQP of a different qubit.

We will also refer to these columns as Single-Qubit Products (SQPs), and note

that they only occur in two distinct types. The first type, that we will call an

Even SQP, contains an even number of each element of the set (Z,X, Y ), and has

combined product ±I (the single-qubit Identity). The second type, that we will call

an Odd SQP, contains an odd number of each element of the set (Z,X, Y ), and has

combined product ±iI. We define the Oddness, O, of an ID, as the number of Odd

SQPs in that ID. We call IDs with O = 0 Whole IDs, and those with Oddness > 0

Partial IDs. It should be clear that since the product of all the observables of any

ID is always real, the Oddness of all IDs is even.

We call Negative ID0s Whole IDs, because they are also single-ID Kernels. We

call Positive ID0s Null IDs, and exclude them from our enumeration of IDs. This is

done because these IDs are never needed to form critical Kernels, though they can

be used in the process of generating an Observable-based KS proof from a critical

Kernel. They can also be used as a set of Trivial SQPs to form noncritical IDs for

a Composite Kernel. We call an IDO with O > 0 a Partial ID. The sign of a Partial

ID is flexible because it can be changed by permutations of any of its Odd SQPs, a

fact we will make use of when using Partial IDs to build Composite Kernels.

We will say that an ID is critical iff no subset of observables and/or qubits can

be deleted such that the remaining set is still an ID. This definition guarantees

that we are working with the minimal elemental ID types, and also guarantees that

the states in the joint eigenbasis of the M observables of a critical IDMN are fully
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entangled over all N qubits. There are no critical IDs with M > N + 1, since at

most N commuting observables can have independent eigenvalues in a Hilbert space

of d = 2N .

We can also say that a Null ID is critical, iff no subset of observables and/or

qubits can be deleted such that the remaining set is still an ID (Null or not). Critical

Null IDs still guarantee the entanglement of the N qubits, and so while we exclude

them from listings throughout this text, they may be worth examining elsewhere.

Furthermore, to facilitate cataloging of the different types of IDs that exist within

the N -qubit Pauli group, we will treat all trivial permutations of an ID as belonging

to the same unique ID structure. So, when we show a unique ID, we actually mean

a complete class of IDs that can be obtained from all permutations of the given

structure. Since an ID is a mutually commuting set of observables, the order of the

rows is arbitrary, and cannot change anything about the set. We can also freely

permute the order of the qubits, which can result in an ID that is different than

the original. Furthermore, we can freely permute the choice of single-qubit Pauli

observables within each SQP to obtain additional variation on the original ID. This

latter point is a bit more subtle, but it works because the set (Z,X, Y ) mutually

anticommutes. For SQPs with just 2 different members of the set (Z,X, Y ), the 6

permutations are (ZX,XZ,ZY, Y Z,XY, Y X), as shown using the example SQP in

Table 19. For SQPs with all 3 members of the set (Z,X, Y ), the 6 permutations are

(ZXY,XY Z, Y ZX,ZY X, Y XZ,XZY ), as shown using the example SQP in Table

20. All Odd SQPs are of the latter type, and these permutations may change their

sign. Permutation of Even SQPs cannot change their sign. It should be clear that

these permutations are just the cyclic rotations of the coordinate system for each

individual qubit, along with the reflection.

It should now be clear that in searching for and listing unique IDs, we need only
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Z
Z
X
X

(a)

X
X
Z
Z

(b)

Z
Z
Y
Y

(c)

Y
Y
Z
Z

(d)

X
X
Y
Y

(e)

Y
Y
X
X

(f)

Table 19: The 6 permutations of an SQP with only two different members of the set
(Z,X, Y ). The pattern of commutation and anticommutation for all 6 permutations
is identical, so they can be freely exchanged within a unique ID to form a wide variety
of IDs.

Z
X
Y

(a)

X
Y
Z

(b)

Y
Z
X

(c)

Z
Y
X

(d)

Y
X
Z

(e)

X
Z
Y

(f)

Table 20: The 6 permutations of an SQP with all 3 members of the set (Z,X, Y ).
The pattern of commutation and anticommutation for all 6 permutations is identical,
so they can be freely exchanged within a unique ID to form a wide variety of IDs.
The first three permutations of these Odd SQPs have product +iI, while the last
three have product −iI. The same 6 permutations would work for an Even SQP,
but would all have the same sign.

ever use SQPs with the first permutations in Tables 19 and 20. Once we have a

unique critical ID, we can obtain any member of the general class of critical IDs

it describes by permuting the order of the qubits, and by independently permuting

(Z,X, Y ) within each SQP. It should be noted that the latter set of permutations

do not always generate 6N distinct IDs, since some choices of these permutations

simply put the original observables into a different order, which actually changes

nothing. The same thing can happen when permuting the order of the qubits.

For most, if not all critical IDs, it is possible to permute the SQPs such that every

observable includes Y for an even number of qubits. When this is done, all of the

observables in the ID are fully real-valued (in the standard basis used for the Pauli

Observables), as are the rays of their eigenbasis. If Kernels and Observable-based

KS proofs are built using only real IDs, then they too will of course be real. To
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see a clear contrast on this issue, consider that the Mermin Square we examined in

Chapter 2.1 was chosen to be real-valued, though other permutations of the qubits

would have resulted in its being complex. For the 2-qubit Whorl of Chapter 2.2

however, even though it is built from the same real Kernel, there is no choice of

permutations that will make this entire Observable-based KS proof real. Thus sets

of IDs can be irreducibly complex. There may also exist individual IDs like this as

well, though all of the cases we have examined in detail can be made fully real by a

suitable choice of permutations.

There is only one unique 2-qubit ID, as shown in the upper half of Table 2.

There are two unique 3-qubit IDs, shown in Table 7. The 9 unique 4-qubit IDs are

shown in Table 17.

As a final note on the usefulness of critical IDs to characterize entanglement,

consider that we know with certainty that the eigenstates of a critical IDMN are

fully entangled simply because the ID cannot be factored into the direct product of

two IDs. We do not need to examine the full set of 2N − 1 mutually commuting

observables that share this eigenstate (the stabilizer group) to see this, since a well

chosen subset of just M ≤ N + 1 of them can suffice. A critical ID is then a sort

of minimal stamp of entanglement for an eigenbasis of the N -qubit Pauli group.

A given stabilizer group for an entangled N -qubit state must contain at least one

critical IDN , and may contain IDs of several different unique types. This issue is

explored further in Chapter 5.5.
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5.2 Kernels and Composite Kernel Structures (CKSs)

In this section we will formalize the definitions of Kernels and Composite Kernel

Structures (CKS), and what makes each critical.

A Kernel is any set of one or more IDs that satisfy two properties. First, the set

contains an odd number of Negative IDs. Second, for each qubit, the observables

(Z,X, Y ) each appear an even number of times throughout all of the IDs in the

set. These properties guarantee that the Kernel proves the Strong KS theorem, and

generates (usually many) Observable-based KS proofs. Kernels divide into two dis-

tinct classes: A Single-ID Kernel contains just one Negative Whole ID. A Composite

Kernel contains multiple Partial IDs, such that an odd number are Negative.

The Strong KS theorem is an extension of the usual KS theorem, wherein we

require noncontextual truth-values ±1 to be assigned to every single-qubit observ-

able (Z,X, Y ) in every ID. Any Kernel gives a proof that quantum mechanics rules

out the existence of these truth-values, which can be seen from the fact that on the

one hand, because every single-qubit observable occurs an even number of times,

the overall product of the IDs in the Kernel must be +1, while on the other hand,

because an odd number of the IDs are negative, the quantum prediction (and exper-

imental result) will always be -1. Positive Whole (Null) IDs fail to prove the Strong

KS theorem, since the quantum prediction will always be +1, in full agreement with

the noncontextual truth-values.

Critical Single-IDMN Kernels can also be used to prove the GHZ theorem using

more than two spacelike separated parties. A source repeatedly produces a partic-

ular joint eigenstate of the ID, and sends one particle to each of N parties. Each

party randomly chooses one of the four measurement bases, Z, X, Y , or I (I means

they do nothing), and measures their qubit, such that the choice and measurement

for all N qubits are spacelike separated. In any run where the N parties randomly
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measure one of the M different N -qubit observables of the ID, the product of their

individual results is correlated, and must equal the eigenvalue of that N -qubit ob-

servable in the prepared state. The product of all M such eigenvalues is -1 in any

prepared eigenstate, because the ID is negative. Because the measurements are

chosen randomly, a local hidden variables theory requires that a truth-value ±1 be

preassigned to all single-qubit observables that might be measured. Furthermore,

locality also guarantees that no party’s measurement result cannot be affected by

any other party’s choice of measurement basis, meaning the single-qubit observables

in the ID must be assigned noncontextual truth-values. If we define B as the prod-

uct of the IDs, then because each single-qubit observable appears an even number

of times in the ID, the truth-values assigned to each one will be raised to an even

value, and so the overall product will always be BL = +1. But we know already

that the experimental value is BQ = −1 for any prepared eigenstate, which rules

out local hidden variable theories without using probabilities, and proves the GHZ

theorem for N parties.

It is also possible to prove the GHZ theorem for N parties using a noncritical

Single-ID Kernel by making use of an appropriate N -qubit entangled state, as in the

GHZ experiment of Walther et al.[37] using a Cluster State. As in that experiment,

the stabilizer group of the state contains other IDs that are critical, guaranteeing

the needed entanglement.

Kernels can also be used to generate complete Observable-based KS proofs. The

process always involves adding new IDs to the set, and there are typically many

ways that this can be done such that the result satisfies the requirements to be an

Observable-based KS proof. Numerous examples have been given throughout this

text.

Single-ID Kernels are just Negative Whole IDs, as can be seen in Tables 7a and
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17c, and so the complete process for finding them and establishing their criticality

is encompassed by the process of finding critical IDs.

The set of Partial IDs in a Composite Kernel must be chosen such that every

Odd SQP in one ID is paired with an Odd SQP in another ID, and such that an

odd number are Negative IDs. This then guarantees that the combined set has

the properties of a Kernel. Explicit examples of Composite Kernels can be seen in

Tables 2, 11, and 12.

We will say that a Composite Kernel is critical iff no subset of IDs and/or

qubits can be deleted to result in a smaller Kernel. As we will see, verifying that a

Composite Kernel is critical is a subtle business that we will have to consider very

carefully. It can also be checked computationally by a direct brute force approach.

A Composite Kernel is built by assigning an appropriate set of Partial IDs to a

Composite Kernel Structure (CKS). The Composite Kernel Structure only dictates

how the Odd SQPs within the set of IDs must fit together, and so the only qubits

listed in a CKS are Odd qubits - where any qubit for which some IDs have an Odd

SQP is an Odd qubit. A CKS is shown as a table of ‘O’s and ‘I’s, where each column

shows the Odd qubits of a different ID, and each column is a different qubit in the

set. Each column of a CKS must contain an even number of ‘O’s. We say that

a CKS is critical iff no subset of IDs and/or qubits can be deleted such that the

remaining set is a smaller CKS. The complete list of critical CKSs for N = 2, 3, 4

is given in Table 18. We have used a computer to exhaustively generate all unique

critical CKSs for up to N = 7 Odd qubits, where by unique we mean unique up

to permutations of the qubits. For N = 5 there are 10 critical CKSs, as shown in

Table 21. For N = 6 there are 109 critical CKSs, and for N = 7 there are 1,521

critical CKSs. A complete listing of these can be found on our website [21].

Any set of IDs with correct Oddnesses can be assigned to a CKS. The IDs are
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O O O O I
O O O I O
I I I O O

(a)

O O O O I
O O O I O
O O I O O
O O I I I

(b)

O O O O I
O O O I O
O I I O I
O I I I O

(c)

O O O O I
O O I I I
I I O I O
I I I O O

(d)

O O O O I
O O O I O
O O I O O
O I O O O
I O O O O

(e)

O O O O I
O O O I O
O O I O O
O I O I I
I O O I I

(f)

O O O O I
O O O I O
O O I I I
O I I O I
I O I I O

(g)

O O O O I
O O I I I
O I O I I
O I I I O
I I I O O

(h)

O O O O I
O I I I O
I O I I O
I I O I O
I I I O O

(i)

O O I I I
I O O I I
I I O O I
I I I O O
O I I I O

(j)

Table 21: The 10 Critical Composite Kernel Structures for N = 5 qubits.

permuted so that their Odd qubits are assigned to the ‘O’s, and their Even or Trivial

qubits are assigned to the ‘I’s. The result of this process is always a Composite

Kernel, though it will not necessarily be critical.

As the final piece of this section we will examine the issue of critical Composite

Kernels, and show some interesting examples of how to build them. The main issue

in guaranteeing that a Composite Kernel is critical has to do with the criticality of

the IDs we assign to the CKS. As we have seen, the IDs assigned to a CKS need

not be critical in order for the resulting Composite Kernel to be critical, but they

nevertheless link certain qubits together in an important way.

The general procedure for establishing whether a Composite Kernel is critical
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requires that we construct what we call the Criticality Network of the proof.

Before attempting to state rules for constructing the Criticality Network of a

proof, we need to take a closer look at the properties of noncritical IDs. We can

always form noncritical IDs by combining critical IDs side by side and/or by adding

in Trivial SQPs (direct products), though we will not bother with IDs made up

entirely of Trivial SQPs. Even within such an ID, the SQPs of a critical sub-ID can

still be linked together in the sense that they can only be removed as a complete

unit such that the remaining set forms a smaller ID. For IDs composed of a single

critical ID combined with some number (possibly zero) of Trivial SQPs, this is

always the case. For noncritical IDs composed of multiple critical IDs side by side,

determining if these fixed units exist is much more subtle and is usually best checked

by a computer program. Either way, if two qubits in an ID belong to such a unit,

then we say that they are Critically Linked together (which also incidentally means

that those qubits are entangled in the eigenstates of the ID). So a noncritical ID

may contain multiple separate groups of Critically Linked qubits.

The Criticality Network is built by starting at an arbitrary SQP ‘O’ of the

Composite Kernel, and connecting other SQPs throughout the Kernel according to

a particular set of rules. There are two rules for connecting one SQP in the Kernel

to another: First, if an SQP is an ‘O’, it can be connected to any one other ‘O’

in the same column. Second, all Critically Linked SQPs in the same row can be

connected. Either or both of these rules are applied as many times as needed until

the complete Criticality Network has been formed. Finally, if all of the qubits and

IDs are connected by the Criticality Network, then the Composite Kernel is critical.

This process may sound enigmatic, but the explicit examples of the Tables 22

and 23, which both use the same CKS, should help to clarify it.
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O O O O
O O I I
I I O O

(a)

O O O O
O O I I
I I O O

(b)

O O O O
O O I I
I I O O

(c)

O O O O
O O I I
I I O O

(d)

Table 22: This sequence of tables shows the steps of building the Criticality Network
(shown in bold font) for a Composite Kernel, with a critical ID4

4 assigned to the first
row, and critical ID2

2s with Trivial SQPs assigned to the other two rows. Because
the Criticality Network reaches all IDs and qubits of the Composite Kernel, it is
critical.

O O O O E
O O I I I
I I O O I

(a)

O O O O E
O O I I I
I I O O I

(b)

O O O O E
O O I I I
I I O O I

(c)

Table 23: This sequence of tables shows the steps of building the Criticality Network
(shown in bold font) for a Composite Kernel with the following properties. The first
row is assigned a noncritical ID composed of a critical ID2

2 for the first two qubits
and a critical ID3

2 for the last three qubit, such that the first two qubits are Critically
Linked together, as are the last three qubits. The other two rows are assigned critical
ID2

2s combined with Trivial SQPs. Because the Criticality Network fails to reach all
IDs and qubits of the Composite Kernel, it is noncritical.

5.3 Observable-Based KS Proofs

In this section, we formalize the definition of an Observable-based KS proof, first

described in Chapter 2.1. The symbol Ox − Iy denotes a set of I IDs containing O

different observables. Each observable appears in x of the IDs, and each ID contains

y observables. If a set contains IDs of differing sizes, or Observables that appear in

differing numbers of IDs, the symbol on either side of the dash may be repeated. If

all values of x are even, and the number of Negative IDs in the set is odd, then it is

also an Observable-based KS proof.

To see that this is true, consider that any noncontextual hidden variables theory
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(NCHVT) must preassign truth-values ±1 to the O observables in the set. If we

define A to be the product of all IDs in the proof, then because each observable

appears in an even number of IDs, all of these truth-values are raised to some even

power, meaning that ANC = +1. However, because an odd number of the IDs are

negative, we have AQ = −1, which is consistent with experimental results. This

contradiction rules out NCHVTs, regardless of locality, and proves the Kochen-

Specker theorem.

Any N -qubit Observable-based KS proof can also be extended into a proof of the

GHZ theorem. To do this, a source prepares N pairs of qubits in the correlated Bell

State, and then sends one member of each pair to Alice, and the other to Bob. Both

Alice and Bob choose randomly among the IDs in the Observable-based KS proof,

and then perform that measurement on their N qubits, such that the two random

choices and the two measurements are spacelike separated. Because of the correlated

Bell states, whenever Alice and Bob both measure the same observable as part of

the ID they choose, the results always agree. In any local hidden variables theory,

we must then preassign-truth values to all of the N -qubit observables that might be

measured. Because each observable occurs an even number of times throughout the

Observable-based KS proof, the product of all of its IDs must be +1. But an odd

number of the IDs are Negative, which means their product must be -1 in order to

agree with all of the experimental results. This contradiction rules out local hidden

variable theories without using probabilities, proving the GHZ theorem.

As a final simplification of this experiment, we note that Alice and Bob need

not both choose between all of the IDs in the proof in order for the proof to obtain.

The IDs in the proof can be loosely divided into two groups, such that Alice chooses

randomly from one group, and Bob from the other. Some IDs may need to appear

in both groups, such that Alice’s IDs contain all of the observables in the proof,
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as do Bob’s. Provided they can each individually measure every observable, and

together measure all of the IDs, locality still requires a noncontextual truth-value

assignment to the entire set.

We will further say that an Observable-based KS proof is critical if no subset of

IDs and/or qubits can be deleted such that the remaining set is still an Observable-

based KS proof. There is one important subtlety to this statement regarding proofs

containing noncritical IDs like the ID7s discussed in Chapter 3.1, that can be broken

up into the product of an ID3 and an ID4 in 7 different ways. In cases like this, we

must consider the deletion of any of these sub-IDs, since another sub-ID would still

remain. This complication has been entirely avoided in the cases we have considered

by using only IDs that are critical in the specific sense that they cannot be broken

into the product of two IDs. Note that these are different than the noncritical IDs

we obtain by placing two critical IDs side by side, or by adding Trivial SQPs. All

of the Observable-based KS proofs we have introduced are critical.

We have developed a general format for diagrams of Observable-based KS proofs,

which allow the structure of how the IDs and observables fit together to be seen. In

these diagrams each observable appears inside a small circle, and all of the observ-

ables in an ID are connected by a continuous line, arc, or circle. Thin lines indicate

that the ID is Positive, while thick lines indicate that it is negative. These diagrams

transparently show how the set proves the KS theorem, since one can see that each

observable appears on an even number of lines, and that an odd number of lines are

thick. Examples of such diagrams can be seen in Figures 2, 5, 6, 7, 8, 9, 10, 11, and

12.

As we discussed in Chapter 2, the 2-qubit Pauli group contains only two unique

Observable-based KS proofs, the Mermin Square and the 2-qubit Whorl. There are

several possible versions of each, obtained by permutations of qubits and/or SQPs,
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but only these two have unique diagrams - in the specific sense of isomorphism

discussed in Chapter 3.5. For more qubits, the number of Observable-based KS

proofs grows beyond being easily counted, and so we are only able to construct and

consider particular cases, as we have done throughout this text.

We have conjectured that all Observable-based KS proofs must contain, and in

some sense be generated by, a Kernel. We have never found any counterexample of

this in our extensive searches. It follows that the best way to obtain some idea of the

many unique structures of proofs is by considering the Kernels that generate them.

Furthermore, all Kernels can be obtained using IDs in conjunction with CKSs, both

of which we have fully enumerated for up to 5 qubits (and partially enumerated

for more qubits, as can be seen on our website [21]). This means we have building

blocks with which to construct the vast variety of Observable-based KS proofs. It

might even be possible to count them all for 3 qubits, though we have made no

concerted effort to do this.

Let us return to and review the notion that Observable-based KS proofs are

generated by Kernels. A Kernel is a set of one of more IDs, with each single-qubit

observable appearing an even number of times, and an odd number of IDs negative.

An Observable-based KS proof is also a set of IDNs with an odd number of the IDs

negative, but now it is each N -qubit observable that must appear an even number

of times. To obtain an Observable-based KS proof from a Kernel, one adds some

set of IDs, an even number of which must be negative, in such a way that each N -

qubit observable that appeared an odd number of times in the Kernel is paired with

another ID containing that observable. In general, there are many ways to obtain

an Observable-based KS proof from the same Kernel, as we have seen throughout

this text.

Here we will describe a general method (the same as in Chapter 3.4) by which
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any critical Kernel can be used to generate at least one Observable-based KS proof,

in such a way that no two IDs in the set will share more than one N -qubit ob-

servable in common. For each observable that appears an odd number of times

in the Kernel, we will generate a new Whole Positive (Null) ID by supplementing

that observable with its own qubit-decomposition. In many cases, this is the single-

qubit-decomposition, so for example, we would multiply a Kernel observable ZZIX

by the new observables ZIII, IZII, and IIIX to form a new ID44. If however two

of the observables that appeared an odd number of times in the Kernel share more

than one element in common, then those common elements need not be decom-

posed in the two new Positive IDs they generate. For example, if we have Kernel

IDs containing observables ZZZIX, and ZZZIY , the portion ZZZII is common

to both, and so the two new ID35s will be (ZZZIX, ZZZII, IIIIX) and (ZZZIY ,

ZZZII, IIIIY ). This generation process always works as desired by exploiting the

even number of single-qubit observables in a Kernel to obtain an even number of

N -qubit observables in an Observable-based KS proof. The fact that we started

with a critical Kernel also guarantees that this Observable-based KS proof will be

critical.

The final benefit of this method is that if we start with a Kernel in which no

observable appears more than twice, we always obtain an Observable-based KS proof

of the form O2 − I in which no two IDs share more than one common observable.

Proofs of this type generate a particularly simple R − B set that contains exactly

2O critical parity proofs, as we will discuss in Chapter 5.4.

Next we give a prescription for using any Observable-based KS proof in an ex-

perimental test of quantum contextuality, which is a simple generalization of the one

given in [38]. We begin with an Observable-based KS proof A with symbol O − I,
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and define for it the quantity

α =
∑

+Ii∈A

(
∏

Oj∈+Ii

Oj)−
∑
−Ii∈A

(
∏

Oj∈−Ii

Oj), (9)

where the summations are taken over the Positive and Negative IDs in the set

respectively. Each term in α is a product of mutually commuting observables, and

so its expectation value is given by

〈α〉 =
∑

+Ii∈A

〈
∏

Oj∈+Ii

Oj〉 −
∑
−Ii∈A

〈
∏

Oj∈−Ii

Oj〉. (10)

Because each ID has a fixed sign, quantum mechanics predicts this expectation in

any state will be 〈αQM〉 = I. However, a simple counting argument shows that

if noncontextual truth-values ±1 are assigned to all O observables in the set, then

〈αNC〉 ≤ I−2. The experimental violation of this inequality is then a demonstration

of quantum contextuality. It is worth noting that that Kite family of proofs discussed

in Chapter 6.3 always have I = 6, regardless of the number of qubits, and thus give

the strongest violation of this inequality.
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5.4 The Rays Generated by Observable-Based KS Proofs

In this section, we will explore the sets of rays and bases that are generated by

individual IDs, as well as entire Observable-based KS proofs. We say that rays in

the joint eigenbasis of all of the observables in an ID are the rays that ID generates.

Because a given IDMN has a fixed sign, onlyM−1 of its eigenvalues are independent,

meaning that there are only 2M−1 rays in the eigenbasis, each of rank 2N−M+1.

Rays span a dimension equal to their rank, and contain internal degrees of freedom

if that rank is greater than one. In this way, critical IDMNs with M < N + 1

generate continuous classes of entangled rank-1 projectors which are guaranteed to

be entangled N -qubit states for any choice of values for these internal parameters.

For the sake of simplicity, we can express each ray simply as a list of the eigenval-

ues of its M observables. For example, an eigenstate of a Positive ID3 with the com-

muting observables {A,B,C} could be expressed as |ψ〉 = {A(−1), B(+1), C(−1)}.

Two rays are orthogonal iff they share a common observable for which they each have

a different eigenvalue. This makes it very easy to see if two rays expressed in this

form are orthogonal, but there is one very important detail that must be addressed.

Any additional observable that can be obtained as a product of the observables in

the ID also has a fixed eigenvalue for each eigenstate. Suppose that D = AB is

another observable not in the original ID of our example. We would then need to

expand our expression for the eigenstate to include D, whose eigenvalue is the prod-

uct of the eigenvalues of A and B, giving us |ψ〉 = {A(−1), B(+1), C(−1), D(−1)}.

The complete expression for an eigenstate must include all observables that can

be obtained as products of the observables in the ID. For any critical IDMN with

M = N + 1, the full set of products is always a maximal commuting set of 2N − 1

observables - the stabilizer group.

This is essential because, without it, we would not see that the rays |ψ〉 =
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{A(−1), B(+1), C(−1), D(−1)} and |φ〉 = {D(+1), E(−1), F (−1)} are orthogonal,

which is one of the most important issues as far as the Kochen-Specker theorem is

concerned.

Finally, it should be noted that rays with rank greater than one may be ‘option-

ally’ orthogonal to other rays. This is because there may be additional observables

that commute with those in the ID, but are not obtained as their products. These

observables represent the internal degrees of freedom of the ray, since their eigen-

values are not fixed. If we chose to fix them, we would reduce the rank of the ray,

but the ray also becomes orthogonal to any other ray with different eigenvalue for

a new observable. This is because another ray may not be orthogonal to the entire

subspace spanned by a rank-r ray, but it might still be orthogonal to particular rays

within that subspace. We do not make use of any of these extra orthogonalities in

the proofs we present, so nothing further need be said on this point.

Now that we have a good way to express the eigenstates of a given ID, we can

start to consider the sets of rays and bases that are formed by a set of multiple IDs.

To begin, we consider the case of two IDs that share just one observable in common.

Let the observables of some IDKN be {A,B, . . .}, and the observables of an IDLN

be {A,C, . . .} such that A is the only observable they share (even with products

taken into account). The eigenbasis of the IDKN is shown in Table 24a, where

state shown actually represents a group of 2K−3 mutually orthogonal eigenstates.

Likewise, the eigenbasis of the IDLN is shown in Table 24b, where each state shown

actually represents a group of 2L−3 mutually orthogonal eigenstates. It is easy to see

that these groups mix to form only the two hybrid bases shown in Tables 24c and

24d. It can also be verified that regardless of the number rays in each group, or of

their relative ranks, these hybrid bases always span the space. To make this clearer,

work out the case where both IDs are ID32s. It is also worth noting that this set
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|ψ1〉 = {A(+1), B(+1), . . .},
|ψ2〉 = {A(+1), B(−1), . . .},
|ψ3〉 = {A(−1), B(+1), . . .},
|ψ4〉 = {A(−1), B(−1), . . .},

(a)

|φ1〉 = {A(+1), C(+1), . . .},
|φ2〉 = {A(+1), C(−1), . . .},
|φ3〉 = {A(−1), C(+1), . . .},
|φ4〉 = {A(−1), C(−1), . . .},

(b)

|ψ1〉 = {A(+1), B(+1), . . .},
|ψ2〉 = {A(+1), B(−1), . . .},
|φ3〉 = {A(−1), C(+1), . . .},
|φ4〉 = {A(−1), C(−1), . . .},

(c)

|φ1〉 = {A(+1), C(+1), . . .},
|φ2〉 = {A(+1), C(−1), . . .},
|ψ3〉 = {A(−1), B(+1), . . .},
|ψ4〉 = {A(−1), B(−1), . . .},

(d)

Table 24: The 4 bases generated by a pair of IDs with exactly one common observable
A. The eigenbases are shown in (a) and (b), and the hybrid bases are shown in (c)
and (d).

of 4 bases and 8 rays is ‘saturated,’ in the sense that every orthogonal pair of rays

appears within one of these bases. It should be easy to see that this saturation will

then extend to the entire set of rays and bases generated by any set of IDs. This

means that the complete table of bases is equivalent to the Kochen-Specker diagram

of the rays - a type of diagram in which every ray is a vertex, and lines join pairs of

orthogonal rays.

Here we have obtained a very important rule that we have made use of through-

out this text: If two IDs share exactly one observable in common, then the rays of

their two eigenbases mix to form two complementary hybrid bases - complementary

in the sense that the two hybrids have no rays in common, and together include all

of the rays of both eigenbases. This rule is especially important because the general-

ized method we have introduced in Chapter 5.3 for generating an Observable-based

KS proof from a critical Kernel always generates a set in which no two IDs share

more than one observable in common.

A more elaborate general calculation can be performed for the case of two IDs

that share s observables in common. In this case, the rays of their two eigenbases

mix to form h = 22s − 2 hybrid bases. These still occur in complementary pairs,
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but the hybrid bases need no longer be equally spanned by the rays of the two

eigenbases. This will be essential in understanding the family of Kites, though most

of the other families we consider only involve s ≤ 1. The saturation rule is of course

still satisfied in these cases.

Hybrid bases formed by rays from the eigenstates of two IDs are not the only

types of hybrid bases that can exist. Of course we can also have hybrid bases

composed of rays from more than two IDs, as in the case of Ruuge’s Observable-

based KS proof [34, 35]. None of the cases we are considering contain any hybrid

bases of this sort, and so we have not explored the issue of how many are generated

by an arbitrary group of IDs that are joined by common observables, nor have we

fully explored the issue of saturation for these cases.

The full set of rays and bases generated by a set of IDs will be denoted R − B,

for a set of R rays which form B bases. We will also use the expanded symbol

Rr
m − Bn for a set of R rays of rank r, each of which occurs in m bases, and

B bases each containing n rays. If the set contains rays of differing r or m, or

bases of differing n, the symbol on either side of the dash can be repeated. These

parameters all follow directly from the characteristics of the hybrid bases, which can

be determined directly from the diagram (though this becomes more elaborate for

sets with s > 1). In general, the total number of rays (ignoring rank) is

R =
∑
Iy

2y−1, (11)

where the sum is taken over all IDs in the O − I set.

We now see that the structure of the R − B set is entirely determined by the

structure of the diagram for the Observable-based KS proof that generates it, and

this has one very important consequence: If two different Observable-based KS
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proofs have the same diagram structure, which is to say that they are isomorphic,

then they also generate isomorphic R − B sets. The two sets will have the same

structure of orthogonality between rays, since this depends only on how the observ-

ables and IDs fit together. The only possible difference between two such sets is

an overall rank factor for all R rays. As we will see, it is particularly easy to con-

struct Observable-based KS proofs with certain diagrams, and so we will actually

find many isomorphic sets of rays.

Finally, if an R−B set is generated by an Observable-based KS proof, then the

R − B set also proves the KS theorem, which can be seen most easily by finding

parity proofs within the set. A parity proof is any Rm − B set for which all values

of m are even, and B is odd. This proves the KS theorem, because any NCHVT

must assign truth-value 1 to one of the rays in each bases and 0 to all other rays

in that basis, but each ray appears in an even number of bases and there are an

odd number of bases, so this assignment is impossible. Every R − B set generated

by an Observable-based KS proof from the N -qubit Pauli group appears to contain

parity proofs of the KS theorem. We cannot prove this, but we have never found a

counterexample.

In particular, we have identified, though not derived, a pattern that seems to

generate all 2O parity proofs that are present within the R−B set generated by an

O2− I Observable-based KS proof with s ≤ 1. Such sets contain O complementary

pairs of hybrid bases along with their I eigenbases, for a total of B = I + 2O bases.

To obtain all of the proofs, we begin by choosing one hybrid basis from each of the

O complementary pairs, which can be done in 2O different ways. For a given choice

of O bases, find all of the rays that occur in an odd number of them, and then add

the eigenbases that generated those rays to the set. This process of beginning with

O hybrid bases and adding in the missing eigenbases results in all 2O parity proofs
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that exist within the set. A clear example of this process is described for the 24−24

set of Peres in Chapter 2.1. It should be noted that smallest parity proof within

the set always has B = O or B = O + 1, whichever makes B odd. Numerous other

examples of sets like this can be found on our website [21].

We do not know conclusively that other parity proofs are impossible within these

sets, but exhaustive computer searches of many of them have never revealed any.

Next we give a prescription for using any parity proof in an experimental test

of quantum contextuality, which is again a simple generalization of the one given

in [38]. We begin with a parity proof A with symbol R − B, and define for it the

quantity

α =
∑
Bi∈A

(
∏
Rj∈Bi

χj), (12)

with expectation value

〈α〉 =
∑
Bi∈A

〈
∏
Rj∈Bi

χj〉, (13)

where an observable χj = 2|ψj〉〈ψj| − 1 is defined for each of the R rays in A.

Quantum mechanics predicts this expectation in any state will be 〈αQM〉 = B.

However, a simple counting argument shows that if noncontextual truth-values ±1

are assigned to all observables χj in the set, then 〈αNC〉 ≤ B− 2. The experimental

violation of this inequality is then a demonstration of quantum contextuality. It is

worth noting that that Kite family of proofs discussed in Chapter 6.3 always contain

a critical parity proofs with B = 9, regardless of the number of qubits, and thus

give the strongest violation of this inequality as well.
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5.5 Continuous Classes of Entanglement from Critical IDs

In this section we discuss the continuous classes of entangled states generated by

critical IDMNs with M < N + 1. These classes only exist for N ≥ 4 qubits, but

the number of degrees of freedom grows with N at a stupendous rate. This section

should also help to elucidate the nature of projectors with rank greater than 1

associated with these IDMNs.

First let us consider the simplest case: ID44s like the ones in Table 17. We label

the 4 observables of the ID as {A,B,C,D}. Since the ID is critical, it must be

true that we can find one more observable that commutes with those in the ID,

but is independent of them in the sense that it cannot be obtained as a product of

the other observables in the set. For the 4-qubit case, we will call this independent

observable E. Using the compact notation of the previous section, we can then write

the eigenstates of the ID44 as

|ψ〉 = a+1|A(λA), B(λB), C(λC), D(λD), E(+1)〉+a−1|A(λA), B(λB), C(λC), D(λD), E(−1)〉,

(14)

where the product λAλBλCλD is fixed by the sign of the ID, and with a+1 and a−1

any pair of complex numbers such that |a+1|2 + |a−1|2 = 1.

For the general case of an IDMN with M < N + 1, let {O} be the set of M

observables in the ID, and {P} be the set of η = N+1−M independent observables,

such that all of the observables in {O}∪{P} mutually commute. We can then write

the eigenstates as

|ψ〉 =
∑
µ1=±1

· · ·
∑
µη=±1

aµ1···µη |O1(λ1), · · · , OM(λM), P1(µ1), · · · , Pη(µη)〉, (15)

where the product λ1 · · ·λM is fixed by the sign of the ID, and with aµ1···µη any
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complex coefficients such that

∑
µ1=±1

· · ·
∑
µη=±1

|aµ1···µη |2 = 1. (16)

In all of these cases, it is the criticality of the IDs that certifies N -qubit entangle-

ment for the entire continuous class of states. We can also think of the entire class

of states as a single entangled rank-r projector, where r = 2N−M+1 is the number

of free coefficients aµ1···µη .

For critical IDMNs, the maximum value of N grows much more rapidly than M .

Table 31 shows examples of a critical ID57, a critical ID611, and a critical ID716,

with the rank of the projectors growing at an accelerating rate.

Clearly the possibility of using critical IDs as a way of characterizing multipar-

ticle entanglement warrants further exploration.
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6 Structure Families

In this Chapter we introduce and examine several remarkable families of structures

that give proofs of the KS theorem and/or the GHZ theorem for all numbers of

qubits. To begin we will introduce the related families of Wheel and Whorl proofs

for N (odd and even respectively) qubits, and discuss some of the R − B sets they

generate. Next we will move on to discuss the families of Star proofs for odd and

even N , which prove both the KS and GHZ theorems. Finally, we will introduce

the more general family of Kite proofs and discuss the smallest known proofs of the

KS theorem in the Hilbert Space of N qubits.

6.1 The Wheel and Whorl Structure

ZZIII

XXIII

YYIII IZZII
IXXII

IYYII

IIZZI

IIXXI

IIYYIIIIYY

IIIXX

IIIZZ

YIIIY
XIIIX

ZIIIZ

Figure 14: The 5-qubit Wheel, a 152−3553 Observable-based KS proof for 5 qubits.
Each line or large circle connects the observables of an ID. The thin lines denote
Positive IDs, while the thick lines denote Negative IDs. The 5 ID35

2 of the Kernel
form the ‘spokes’ of the Wheel.

In this section, we will review the properties of a general family of N -qubit CKSs

for N ≥ 3, and the simplest Kernels they generate, which are somewhat different

for odd and even N . We refer to these as the Wheel (odd N) and Whorl (even N)
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IIIIIZ IIIIIX

ZIIIIX

XIIIIZ

YIIIIY

YYIIII

IYYIIIIIYYII

IIIIYY

IIIYYI XXIIIIIIIXXIIIIZZI ZZIIII

IIIIXX

IIIIZZ

IIXXII

IIZZII

IXXIII

IZZIII

XIIIII

ZIIIII

IZIIII

IXIIII

IIZIII

IIXIII

IIIXII

IIIZII

IIIIXI

IIIIZI

Figure 15: The 6-qubit Whorl, a 302−16183 Observable-based KS proof for 6 qubits.
Each line or large circle connects the observables of an ID. The thin lines denote
Positive IDs, while the thick lines denote Negative IDs. The 6 ID36

2 of the Kernel
form the ‘spokes’ of the Whorl.

because of the structure of the Observable-based KS proof diagrams that show them.

The family of CKSs is shown in Table 25. In order to form the composite Kernels

from these CKSs, we assign the simplest noncritical ID32, which is composed of

the critical ID32
2 with additional trivial SQPs (containing only I). For odd N , we

can choose our permutations so that all N critical ID32
2s are identical and Negative.

For even N , we must permute some odd number of the IDs to be positive in order

to obtain a Kernel, meaning that not all of the IDs can be identical. This is the

crucial difference between the Wheel and Whorl families, which ultimately makes

the Whorl family somewhat more constrained, as we will see.

The IDs of the Kernel form the ‘spokes’ of the Wheel or Whorl. In the Wheel

cases, where the IDs are all Negative, we see that we can always form 3 more Positive

IDNNs around the spokes to form a complete Wheel diagram. The 3-qubit Wheel

is shown in Figure 7, and the 5-qubit Wheel is shown in Figure 14. In the Whorl

case, because some of the IDs are of opposite sign, we will only be able to form one
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O O I
I O O
O I O

(a)

O O I I
I O O I
I I O O
O I I O

(b)

O O I I I
I O O I I
I I O O I
I I I O O
O I I I O

(c)

O O I I I I
I O O I I I
I I O O I I
I I I O O I
I I I I O O
O I I I I O

(d)

Table 25: The first 4 critical CKSs of the Wheel/Whorl family. The critical Com-
posite Kernels are formed by assigning the critical ID32

2 combined with trivial (I
only) SQPs to each row of the CKS.

positive IDNNs around the spokes. To complete the diagram, we must instead form

2N ID3Ns using 2N new single-qubit observables. These ID3s connect the spokes

in a sort of möbius ring, that circles the spokes twice to return to where it begins.

The 4-qubit Whorl is shown in Figure 11, and the 6-qubit Whorl in Figure 15.

It is worth noting that the 2-qubit Whorl, while technically not a member of

this family, because it has 3 spokes, still has the same möbius pattern as the family

of Whorls, which is why we give it this name. The Mermin Square can also be seen

as a sort of 2-qubit Wheel with 3 spokes.

It should now be easy to see how this family generalizes to all N ≥ 3, and that

it is critical in each case. Furthermore, for each N , there are actually several related

diagrams that we can build trivially from the same Kernel, where we have focused

so far on the most compact member in each case. The general rule is that for each

IDNN circle in the diagram, we can replace that ID by a new ring of N ID3Ns

by introducing N new single-qubit observables. The case where all three circles of

the 3-qubit Wheel in Figure 7 have been replaced in this way is shown in Figure
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8. Because each Wheel contains three IDNN circles, which can be replaced in any

combination, this gives a total of 8 different diagrams from a given Wheel Kernel.

Because each Whorl contains just one IDNN , this gives just 2 different diagrams for

a given Whorl Kernel. There are of course many other diagrams that can be built

from these Kernels - these are just a particularly trivial set.

The fully expanded Observable-based KS proofs in this family also have one other

nice feature, which is that they only contain 2-qubit measurement bases. Once all

of the circle IDNNs have been replaced, every ID3 in the proof contains I for all

but 2 of its qubits, so in any given run of an experiment using these proofs, only 2

qubits would need to be measured.

Because all of the diagrams we are discussing are of the form O2 − I, with no

two IDs sharing more than one common observable, we can easily construct the

complete R − B set for each of these diagrams. Of particular interest are the fully

expanded forms of each Wheel and Whorl, because they are composed entirely of

ID3s. We examine them here in detail. For N qubits, the fully expanded Wheel

or Whorl has I3 = 4N ID3s, each of which generates 4 rays, giving a total of

Rr = 16N rays of rank r = 2N − 2. It also has O2 = 6N observables, and so there

are B = I + 2O = 16N bases in the set, each with 4 elements. Because each ID

in this (6N)2 − (4N)3 set shares a common observable with 3 other IDs, each ray

occurs in 3 hybrid bases as well as one eigenbasis, giving us finally an R−B set with

expanded symbol (16N)2
N−2

4 −(16N)4. Furthermore, these sets all contain 2O = 26N

distinct critical parity proofs, with the smallest containing 6N + 1 bases, and the

largest containing 10N − 1 bases. These proofs divide up into complementary pairs

in the sense that the two proofs in a pair have no bases in common, and together

contain all 16N bases.
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6.2 The Star Structure

ZZZZZ

XIIXZ

ZXIIX

IXZXI

IIXZX IIIZI

IIIIZ

IZIII

IIZII

IIIXI

IXIII XIIII

IIXIIIIIIX

ZIIIIXZXII

Figure 16: The 5-qubit Star, a 112 − 2654 Observable-based KS proof. Each line or
arc connects the observables of an ID. The thin lines denote Positive IDs, while the
thick line denotes a Negative ID, which in this case is also the Kernel.

In this section, we discuss two different families of single-ID Kernels, one for N

odd, and the other for N even. We call both of these Star families because of the

structure of their simplest diagrams - Figures 5 and 10, even though they both grow

much more elaborate as N increases, as can be seen in Figures 16 and 17. In both

cases, the Observable-based KS proof is generated from the Single-ID Kernel using

exactly the generalized method described in Chapter 5.3, and thus to show these

families, we will show how the single ID of the Kernel generalizes to all N . The case

for odd N , shown in Table 26, was first given by Aravind, and generalizes a result

of DiVincenzo and Peres [39] based on 5-qubit error correcting codes (Table 26b).

The case for even N , shown in Table 27 was introduced recently in our paper [19].

Because the ID is so symmetric it is fairly easy to see that each of the IDs

shown in Table 26 are critical, in the usual sense that no subset of qubits and/or

observables can be deleted such that the remaining set is a smaller ID. For the IDs
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ZZZZZZ

IIXIIX

ZIIIII IIXIII ZXXIII IXIIII

IIIIIX IIIIXX IIIIXI

IIIXXI

XXZZZZIZIIII

IIIXII

XIIIII

XZIXIIIIZZZZ

Figure 17: The 6-qubit Star, a 162 − 174433 Observable-based KS proof. Each line
connects the observables of an ID. The thin lines denote Positive IDs, while the
thick line denotes a Negative ID, which in this case is also the Kernel.

of Table 27, seeing the criticality is a bit more subtle. The best way to see it is

to first separate the ID of Table 27a into a ‘head’ and a ‘tail,’ where the head is

simply the first 4 observables, and the tail is the last. Then one can see that the

head structure is internally critical, and needs the tail to be an ID. If we consider

the general ID of Table 27c, we can see that the head generalizes in a very simple

way, and the tail also generalizes in a simple and symmetric way. It is then fairly

easy to see that both the tail and head are internally critical, and that both are

necessary to form the ID. Unfortunately this demonstration is cumbersome at best,

but we have verified it for up to the N = 10 case using a computer.

Between the two families given here, we can prescribe an experiment using N

qubits to prove the GHZ theorem with N spacelike separated parties (see Chapter

5.2) for any value of N , and without requiring the use of any ancillary qubits. To

our knowledge, the proofs of Table 27 are the only known family for even N , and

the 4 party experiment has never been conducted.
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Z Z Z
X Z X
X X Z
Z X X

(a) Mermin Star Kernel

Z Z Z Z Z
X Z X I I
I X Z X I
I I X Z X
X I I X Z
Z X I I X

(b) DiVincenzo-Peres Kernel

Z Z Z Z · · · Z
X Z X I · · · I

I X Z X
. . .

...
...

. . . . . . . . . . . . I
I · · · I X Z X
I I · · · I X Z
Z X I · · · I X

(c) Odd N Kernel

Table 26: The pattern of Star Kernels for odd N . The N = 3 (a), N = 5 (b) cases
are shown explicitly, while (c) shows how the pattern generalizes to arbitrary odd
N . The ellipses in (c) always indicate repetition of the observable found at either
end.

As a final note on this set, it is worth mentioning that the eigenstates of the Star

IDs belong to the family of fully entangled Web States, which we will discuss in more

detail elsewhere. There are two distinct families of Web States within the N -qubit

Pauli group, both of which possess a particularly robust type of entanglement, and

appear to be local-unitary-equivalent to GHZ states. If any one qubit is measured

in the product basis on an N -qubit Web state, the remaining N qubits are always

left in a (fully entangled) (N − 1)-qubit Web state. This entanglement persists as

successive qubits are measured, until the last 2 qubits are left in a Bell state.
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Z Z Z Z
X X Z Z
Z X X I
X Z I X
I I X X

(a) 4-qubit Star Kernel

Z Z Z Z Z Z
X X Z Z Z Z
Z X X I I I
X Z I X I I
I I I X X I
I I I I X X
I I X I I X

(b) 6-qubit Star Kernel

Z Z Z Z Z Z · · · Z
X X Z Z Z Z · · · Z
Z X X I I I · · · I
X Z I X I I · · · I
I I I X X I · · · I

I I I I X X
. . .

...
...

...
...

...
. . . . . . . . . I

I I I I · · · I X X
I I X I · · · I I X

(c) Even N Kernel

Table 27: The pattern of Star Kernels for even N . The N = 4 (a), N = 6 (b) cases
are shown explicitly, while (c) shows how the pattern generalizes to arbitrary even
N . The ellipses in (c) always indicate repetition of the observable found at either
end.

6.3 The Kite Family

A

G
B

C

D

F

E

H
I KJ

Figure 18: This is the general Kite diagram that we can use for Kites with tails of
all lengths. Each letter is an observable, while the lines and arcs represent IDs, with
thin lines for Positive IDs and thick lines for Negative IDs. The two IDs of the tail
are the usual Kernel of the Kite.

In this section we discuss Kites (for an alternate discussion, see our paper [20]),
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|ψ1〉 = {A(+1), B(+1), G(+1)} |ψ10〉 = {C(+1), D(−1), H(−1)}
|ψ2〉 = {A(+1), B(−1), G(−1)} |ψ11〉 = {C(−1), D(+1), H(−1)}
|ψ3〉 = {A(−1), B(+1), G(−1)} |ψ12〉 = {C(−1), D(−1), H(+1)}
|ψ4〉 = {A(+1), C(+1), F (+1)} |ψ13〉 = {E(+1), F (−1), I(−1)}
|ψ5〉 = {A(−1), C(+1), F (−1)} |ψ14〉 = {E(−1), F (+1), I(−1)}
|ψ6〉 = {A(−1), C(−1), F (+1)} |ψ15〉 = {E(−1), F (−1), I(+1)}
|ψ7〉 = {B(+1), D(+1), E(+1)} |ψ16〉 = {G(+1), H(+1), I(−1)}
|ψ8〉 = {B(−1), D(+1), E(−1)} |ψ17〉 = {G(+1), H(−1), I(+1)}
|ψ9〉 = {B(−1), D(−1), E(+1)} |ψ18〉 = {G(−1), H(+1), I(+1)}

Table 28: The rays of an 18 − 9 critical parity proof associated with the M = 3
Kite. Each time M increases by one, rays 1-12 are unchanged, but rays 13-18 split
into two orthogonal rays, as shown in Table 30. Each Kite contains 16 replicas of
this proof under symmetry, which remains true as M increases.

{|ψ1〉, |ψ2〉, |ψ5〉, |ψ6〉}
{|ψ1〉, |ψ3〉, |ψ8〉, |ψ9〉}
{|ψ4〉, |ψ5〉, |ψ11〉, |ψ12〉}
{|ψ7〉, |ψ8〉, |ψ10〉, |ψ12〉}
{|ψ2〉, |ψ3〉, |ψ16〉, |ψ17〉}
{|ψ4〉, |ψ6〉, |ψ13〉, |ψ15〉}
{|ψ7〉, |ψ9〉, |ψ14〉, |ψ15〉}
{|ψ10〉, |ψ11〉, |ψ16〉, |ψ18〉}
{|ψ13〉, |ψ14〉, |ψ17〉, |ψ18〉}

Table 29: The 9 bases of the 18− 9 critical parity proof. As M increases, rays 1-12
are unchanged, and rays 13-18 each represent the full group of rays which that ray
splits into. The 9 bases are always the ones shown here for all M .

the most general family of Observable-based KS proofs based on the simplest Com-

posite Kernel structure. As we will see, the Kites give rise to what are most likely

the smallest R−B parity proofs of the KS theorem that are possible in the Hilbert

space of N qubits.

A Kite is a Composite Kernel, based on a very simple class of CKSs - those with

just two IDs, and all ‘O’ entries. A Kite can be formed using any Partial IDMN

that contains at least one of a certain type of Odd SQP. The SQP must contain two

of the Pauli observables only once, and the third Pauli observable can appear any
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|ψ13〉 = {E(+1), F (−1), I(−1)}
|ψ14〉 = {E(−1), F (+1), I(−1)}
|ψ15〉 = {E(−1), F (−1), I(+1)}
|ψ16〉 = {G(+1), H(+1), I(−1)}
|ψ17〉 = {G(+1), H(−1), I(+1)}
|ψ18〉 = {G(−1), H(+1), I(+1)}

(a)

|ψ13a〉 = {E(+1), F (−1), I(+1), J(−1)}
|ψ13b〉 = {E(+1), F (−1), I(−1), J(+1)}
|ψ14a〉 = {E(−1), F (+1), I(+1), J(−1)}
|ψ14b〉 = {E(−1), F (+1), I(−1), J(+1)}
|ψ15a〉 = {E(−1), F (−1), I(+1), J(+1)}
|ψ15b〉 = {E(−1), F (−1), I(−1), J(−1)}
|ψ16a〉 = {G(+1), H(+1), I(+1), J(−1)}
|ψ16b〉 = {G(+1), H(+1), I(−1), J(+1)}
|ψ17a〉 = {G(+1), H(−1), I(+1), J(+1)}
|ψ17b〉 = {G(+1), H(−1), I(−1), J(−1)}
|ψ18a〉 = {G(−1), H(+1), I(+1), J(+1)}
|ψ18b〉 = {G(−1), H(+1), I(−1)J(−1)}

(b)

Table 30: This shows how rays 13-18 each split into two orthogonal rays every time
M is increased by one. The two new rays have opposite eigenvalues for the last
observable of the original ray, and the eigenvalue of the new observable is fixed
by the sign of the ID (negative for rays 16, 17, and 18). This splitting process is
applied to this entire set of rays each time M increases. For all values of M , rays
1-12 combined with this set of 6·2M−3 rays from the other group always form exactly
9 bases, and a critical parity proof.

number of times. Then this IDMN can be permuted to have a different sign, simply

by transposing those two observables within that SQP. Once this has been done, the

two Partial IDMNs - the original and permuted version - together form a Kernel.

Following the general method discussed in Chapter 5.3, we can extend this Kernel

into an Observable-based KS proof by adding 4 ID3Ns. This proof will always be

a Kite, with the length of the tail determined by M . The 2 unique observables in

each ID always combine with 4 new observables to form the head of the Kite. For

example, in Tables 31, 32, 33, and 34, the unique observables are the two with the
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Z Z Z Z Z I I
X X Z X X Z Z
Y I X Z Z X X
I Y I X I Z X
I I X I X X Z

(a) ID572
I I Z Z Z Z Z Z Z Z Z
Z I Z Z Z X X I X X I
I Z X X I Z Z Z I I I
X I X I X X I X Z X X
I X I X I I X I I Z Z
Y Y I I X I I X X I X

(b) ID6112
Z Z Z Z Z Z Z Z I I I I I I I I
X X X X I I I I Z Z Z Z I I I I
Y I I I X X X I X I I I Z Z I I
I Y I I Y I I I I X X X X I Z I
I I I I I Y I X Y Y I I I I X Z
I I Y I I I I Y I I Y I Y X I X
I I I Y I I Y I I I I Y I Y Y Y

(c) ID71616

Table 31: Examples of critical Partial IDs with the largest known N for a given
value of M . In each case, a Kite Kernel can be formed by taking the given ID along
with a second ID obtained by transposing the two bold observables.

Z I Z
I Z Z
X X X
Y Y X

(a) ID432

Z I I I Z
I Z I I Z
I I Z I Z
I I I Z Z
X X X X X
Y Y Y Y X

(b) ID544

Z I · · · I Z

I Z
. . .

...
...

...
. . . . . . I Z

I · · · I Z Z
X · · · X X X
Y · · · Y Y X

(c) ID(N + 1)NN

Table 32: A family of critical Partial IDs, with M = N + 1 for odd N . In each case,
a Kite Kernel can be formed by taking the given ID along with a second ID obtained
by transposing the two bold observables. The ellipses in (c) indicate repetition of
the observable found at either end.

bold elements, along with the two others obtained by swapping the bold elements.

There are a huge variety of unique Partial IDMNs that can be used to form Kites
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Z Z Z Z
Y Y Z Z
X I X I
I X I X
I I X X

(a) ID542

Z Z Z Z Z Z
Y Y Z Z Z Z
X I X I I I
I X I X I I
I I X I X I
I I I X I X
I I I I X X

(b) ID762
Z Z Z Z · · · Z
Y Y Z Z · · · Z
X I X I · · · I

I X I X
. . .

...
...

. . . . . . . . . . . . I
I · · · I X I X
I · · · I I X X

(c) ID(N + 1)N2

Table 33: A family of critical Partial IDs, with M = N+1 for even N . In each case,
a Kite Kernel can be formed by taking the given ID along with a second ID obtained
by transposing the two bold observables. The ellipses in (c) indicate repetition of
the observable found at either end.

Z Z Z I
Y Y I Z
X I Y Y
I X X X

(a) ID444

Z Z Z I I I
Y Y I Z Z I
X I Y Y I Z
I X X I Y Y
I I I X X X

(b) ID566
Z Z Z I I I
Y Y I Z Z I
X I Y Y I Z
I X X I Y Y
I I I X X X

(c) ID(N2 + 2)NN

Table 34: A family of critical Partial IDs, withM = N/2+2 for evenN . In each case,
a Kite Kernel can be formed by taking the given ID along with a second ID obtained
by transposing the two bold observables. The underlines in (c) indicate repetition
of those pairs of observables along the slant diagonal, such that N increases by 2
each time M increases by one.
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in this way, and since any two Kites of the same tail-length are isomorphic, so too

are the R − B sets they generate. As we will see, all of the relevant properties of

the structures found within a Kite depend only on M . Only the rank of the rays is

determined by N , and the Observable-based KS proof has symbol (6 +M)2− 2M43

To give some idea of the variety of unique critical Partial IDMNs, we will list the

ranges of N for the first few values of M . For M = 3, we get N = 2, 3, which are

actually the Mermin Square and 3-qubit Wheel. For M = 4, we get N = 3, 4. For

M = 5, N = 4, 5, 6, 7, for M = 6, N = 5, 6, . . . , 11, and for M = 7, N = 6, 7, . . . , 16.

An example of each of the largest cases is shown in Table 31.

We also specify a few families of critical Partial IDs for all values of N , which

do not have minimal M for the given N , but still show that the Kite family exists

throughout the N -qubit Pauli Group. These are shown in Tables 32, 33, and 34,

with the SQPs permuted such that each set is fully real.

Each Kite generates 16 rays of rank r = 2N−2, and 2M rays of rank r = 2N−M+1,

for a total of R = 16 + 2M rays. The two IDMNs that form the tail share M − 2

observables in common, and so they generate 22M−2 − 2 hybrid bases between them.

The other 8 observables are each common to just 2 observables, and so give us

another 16 hybrid bases. These together with the 6 eigenbases give us a total count

of B = 20 + 22M−2
bases in the set.

Because for M > 3 this set contains a pair of IDMNs that share more than one

common observable, the total number of parity proofs within the set is difficult to

determine. We have found all such proofs for M = 4, as discussed in Chapter 3.4

[18]. For M = 5, an exhaustive computational search of the 48−276 is a bit outside

our reach.

Nevertheless, we have discovered a pattern by which we can generate a group of

16 critical parity proofs from a Kite of any M , such that the proof always uses just
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9 bases. First we will introduce the general Kite in Figure 18, so that we can follow

the labeling of observables given there.

We begin explicitly with an 18 − 9 parity proof from within the M = 3 Kite

(The Mermin Square and 3-qubit Wheel are of this type). The 18 rays are shown

in Table 28, and the 9 bases in Table 29. As the tail grows longer, the first 12 rays

are unchanged. However, for every observable that is added to the tail, the last

6 rays each split into 2 orthogonal rays, as shown in Table 30. The bases remain

unchanged as M increases, containing all members of each split group according to

the given index. This process always results in R = 12+6 ·2M−3 rays, which form an

R2− 9 critical parity proof. There are 4 bases with 4 rays, 4 bases with 2 + 2 · 2M−3

rays, and 1 basis with 4 · 2M−3 rays. We expect these to be the most compact

proofs of the KS theorem within the N -qubit Pauli group, though we cannot prove

this conclusively. To be explicit, the ID716 shown in Table 31c can be used to

form a Kite which contains 16 1082 − 9 critical parity proof, with expanded symbol

1216384
2 961024

2 − 16443444, which we expect is the most compact critical parity proof

in a Hilbert space of d = 216 = 65, 536.

6.4 Miscellaneous Structures

In this section we will review a few other selected cases that we find exceptional.

To begin, we will introduce a few more Kernels and Observable-based KS proofs for

more than 4 qubits. Following this, we will discuss some of ways that CKSs can be

combined with IDs to create critical Composite Kernels for large numbers of qubits.

6.4.1 An Alternate 5-qubit Star

Here we introduce the only unique ID55
0 that exists in the 5-qubit Pauli group.

This is the smallest number of qubits for which there exists a single-ID Kernel
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XIXZZ

XXZIX

ZZZZI

IIIZI

IIXIZ

IIIXI

ZZIII

IIZII IXIIX

IXIXX

XIIII

Figure 19: The alternate 5-qubit Star, an Observable-based KS proof with symbol
122 − 154413. The negative ID is the Kernel. This diagram is isomorphic to the
4-qubit Star of Figure 10.

with M < N + 1, and we expect it to give the most compact proof of the GHZ

theorem possible for 5 qubits. The Observable-based KS proof this Kernel generates

is isomorphic to the 4-qubit Star of Chapter 4.3, as shown in Figure 19. It also

contains an isomorphic 52−30 set with expanded symbol 162
6324

54
4
8−1168122101484614

(All rays are double the rank of the 4-qubit case), which contains 212 critical parity

proofs.

6.4.2 The 6-qubit Arch and Arrow

Here we introduce the two unique ID56
0s that exist in the 6-qubit Pauli group.

Both of these single-ID Kernels give rise to remarkably compact proofs of the GHZ

theorem, given that they only generate rays of rank 4 and greater. In both cases,

an Observable-based KS proof can be generated that belongs to the special simple

class discussed in Chapter 5.4, as shown in Figures 20, 21.

The Arch generates a 44−28 set with expanded symbol 164
6168

51216
4 −1164126102812634,
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Figure 20: The 6-qubit Arch, a 112 − 152433 Observable-based KS proof. The
negative ID is the Kernel.

IIXZXZ

XXIXXX

IIIIXI

XZXIZX IIXIII

ZXZXIZ IIIIIZ

ZZZZZI
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ZIZIII

XIIIIX

IXIXII

Figure 21: The 6-qubit Arrow, a 132−2544 Observable-based KS proof. The negative
ID is the Kernel.

and contains 211 critical parity proofs.

The Arrow generates a 64 − 32 set with expanded symbol 324
6328

5 − 4161612128,

and contains 213 critical parity proofs.

6.4.3 Exploiting CKSs to Prove the KS Theorem for many qubits

Now we move on to discussion of ways that we can combine critical IDs and critical

CKSs for relatively small numbers of qubits to form critical Composite Kernels for

remarkably large numbers of qubits.
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O O E I
O O I E

(a) Saw Kernel

O O I E I I
I O O I E I
O I O I I E

(b) Pinwheel Kernel

Table 35: The critical Composite Kernels formed using permutations of the critical
ID43

2 of Table 7b combined with trivial SQPs.

The method we will employ was actually shown in a very rudimentary way in

Table 10a. The key is that a CKS only tells us how we assign the Odd SQPs in each

Partial ID to the qubits. The Even SQPs in a Partial ID can actually be assigned

in whatever way we like - in fact we can assign every Even SQP in every Partial ID

in the set its own qubit. This maximizes the number of qubits we can include using

the given CKS and Partial IDs. To all other qubits in these IDs we simply assign

‘I’; and then the combined facts that the CKS is critical, and each Partial ID is

Critically Linked over all of its Odd and Even SQPs, guarantees that the Composite

Kernel is critical as well.

To show a clear example of this process, consider the critical Partial ID43
2 of

Table 7b and the critical CKS of Table 18a. We can combine these two structures

to form a critical 4-qubit Composite Kernel, as shown in Table 35a. This Kernel

generates a 172−4463 Observable-based KS proof that we call the 4-qubit Saw. This

proof generates a 322
5244

4 − 108206144 set, which contains 217 critical parity proofs.

As another example, consider the same ID with the critical CKS of Table 18b. We

can combine both of these 3-qubit Structures to form a critical 6-qubit Composite

Kernel, as shown in Table 35b. This Kernel generates a 162−5443 Observable-based

KS proof that we call the 6-qubit Pinwheel (clearly we are running out of names).

This proof generates a 408
51616

4 − 198126104 set, which contains 216 critical parity

proofs.

As a more extreme example, take the ID611
2 of Table 31b. If we assign N ≥ 2
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permutations of this ID to the N -qubit Wheel CKS (see Table 25), and then assign

the 9 Even SQPs from each of the N IDs to its own qubit, we obtain a critical

Composite Kernel for a total of 10N qubits. It should be easy to see that given

10N qubits, the Observables-based KS proof and R − B set this Kernel generates

are extremely compact. This example in particular demonstrates the power of this

method for generating simple structures for even relatively large numbers of qubits,

using much more elementary cases as a resource.

6.5 Graph States

Now we will take a moment to discuss the class of entangled quantum states known

as Graph States, which have generated interest as a promising resource for quantum

information processing [40], [41], and how they relate to the general eigenstates of

critical IDs. Simply put, the eigenstates of most, if not all, IDs are Graph States

(or are local-unitary-equivalent to Graph States).

To put this into familiar notation, we will recall how a connected N -vertex graph

generates an N -qubit Graph State. The Graph State is the simultaneous eigenstate

of a set of N observables from the N -qubit Pauli group with all positive eigenvalues.

Each observable is defined by a vertex i = 1, . . . , N of the graph as

Ai = Xi

∏
j∈N(i)

Zj, (17)

where N(i) is the neighborhood of vertex i, and the subscripts on Z and X denote

which qubit they belong to (each observable has I for all other qubits).

If we generate one more observable by multiplying all N of these together, we

obtain a complete IDMN with M = N + 1. For the graphs for N = 2, 3 qubits,

these IDs are particular permutations of the critical ID32
2, ID43

2, and ID43
0 shown in
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Tables 2 and 7.

For the 4-vertex graphs, there are 6 nonisomorphic graphs, as shown in Figure

22, and the situation is more subtle. The graph of Figure 22a gives a permutation

of the critical ID of Table 17e. If we generate the complete stabilizer group of

2N − 1 = 15 mutually commuting observables by taking the products of the ones

in this ID, we see that it also contains permutations of every critical Partial ID of

Table 17 except 17d. The ID54
2 generated by the graph is shown in Table 36a, and

a single-ID54
0 Kernel from the stabilizer group is shown in Table 36b.

(a) (b) (c) (d) (e) (f)

Figure 22

X Z I I
Z X Z I
I Z X Z
I I Z X
Y X X Y

(a)

Y X X Y
Y X Y Z
X Z I I
X I X Z
I Z Y Y

(b)

Table 36: The ID generated from the graph of Figure 22a is shown in (a). (b) shows
a single-ID Kernel obtained by taking products of the observables in (a), and which
thus belongs to the stabilizer group of the Graph State.

The graphs of Figures 22b and 22f give rise to noncritical IDs, but their complete

stabilizer groups contain permutations of the critical Partial ID of Table 17d.

The graphs of Figures 22c and 22e give rise to noncritical IDs, but their complete

stabilizer groups contain permutations of every critical Partial ID of Table 17 except

17d.

The graph of Figure 22d gives rise to a Null ID, but again the complete stabilizer

group contains permutations of every critical Partial ID of Table 17 except 17d.
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The fact that we can obtain critical IDs for each case verifies that the connected

N -vertex Graph states are fully entangled N -qubit states, and clearly shows two

distinct classes of entanglement, involving two mutually exclusive sets of IDs.

Thus, for every connected graph on N ≤ 4 vertices, we find critical IDs within

the stabilizer group of the Graph State. Furthermore, every unique type of ID is

present within the stabilizer for one or more graphs, and it seems very likely that this

property will hold for larger N . It should be possible to gain a significant speedup

for our existing ID search algorithm by using graph stabilizer groups as a constraint

on the search space, but this will have to be done at a later time.

On a related note, the observables of a graph stabilizer group are always real

valued, as are the IDs they contain. Therefore if all unique IDs can be generated

by graphs, then irreducibly complex unique IDs would not exist (IDs for which no

possible permutation is real valued).

The close connection between IDs and the study of Graph States should make

the implementation of the nonclassical structures presented throughout this text

much easier, since much of the groundwork has already been laid for the use of

Graph States. In particular, we see that the Graph State generated by Figure 22a

can be used to conduct the new 4-party GHZ experiment discussed in Chapter

6.2. This experiment is very similar to the one conducted by Walther et al. in

2005 [37], in which a noncritical Single-ID Kernel was measured using an eigenstate

whose stabilizer group also contains critical Single-ID Kernels. Preparations for

Graph States should also be easy to adapt to virtually all of the KS experiments

suggested by our Observable-based KS proofs. Obviously we hope to see many of

these experiments performed in the near future.
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7 Computer Algorithms

In this chapter, we will review the algorithms we used to obtain the various results of

this text and the accompanying website. We have actually constructed a fairly wide

library of algorithms that we can use for various quantum information processing

applications, but here we will focus on a few particularly relevant ones. First we

will introduce the general tree-search algorithm that we developed, and then we will

discuss how it was applied to build programs to check a set for possible truth-value

assignments, and to perform exhaustive searches for parity proofs, IDs, and CKSs.

After this, we will discuss the algorithms that are used to establish the criticality of

these structures. We conclude with a discussion of how sets of rays and bases have

been generated and examined.

7.1 The Tree-Search Algorithm

In this section we will describe the details of how our general tree-search algorithm

works, and then we will describe some of the problems we have applied it to.

The tree-search algorithm performs a complete and exhaustive search of the

phase space of some particular problem for solution sets that satisfy a particular

set of criteria. For certain problems, this algorithm can be set up to complete

in a remarkably small number of iterations, while for other problems it offers no

advantage over more direct search algorithms. The general procedure is to build

the desired result from elementary pieces one at a time. At each step, the set is

evaluated, and a set of legitimate choices are used to branch the search tree. This

search algorithm is exhaustive because it explores every possible branch of this tree.

The general algorithm can be broken into two distinct modular functions. One

of these manages the search tree and keeps track of all of the branchings. The other
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evaluates a given branch, and returns the list of subsequent legal branchings, based

on the logic of the problem at hand. If there is no practical reason to keep the

number of branches at each iteration somewhat small, then the number of compu-

tations quickly becomes untenable, so this is the criteria by which we can judge this

algorithm’s usefulness as applied to a particular problem.

7.1.1 Kochen-Specker Colorability Search

The first application we will discuss is the algorithm for determining if a given

set of rays and bases can be assigned noncontextual simultaneous truth-values (i.e.

colored, in the KS sense). In general, this problem is always solved most easily using

the tree-search algorithm.

For a given set of rays and bases, the question at hand is can the entire set

be simultaneously colored, such that each ray is assigned a noncontextual truth-

value 0 or 1, and within each basis, one ray is assigned a 1, and all other rays a 0.

Because the entire set must be colored, we can begin our tree on any basis in the

set, and so we just take the first one in the list. For each ray in the chosen basis

that could be assigned the value 1, we then have a branch. If we move down the

tree along one of these branches, we see that choosing the given ray to be assigned a

1, means that all of the other rays in bases containing that ray are assigned 0s. The

algorithm then chooses the basis with the most rays already assigned 0 (but none

yet assigned 1), and the new branches at this iteration are the remaining unvalued

rays that could still be assigned the value 1. If the algorithm finds that all of the

rays in any basis have been assigned 0, then that particular branch represents an

illegal assignment to the set. The branching process continues until every branch is

terminated, either by illegality, or by finishing a complete assignment of 0s and 1s

to every ray in the set. Once the full tree has been explored, the program returns it
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as a table (each row ends on a different branch), along with an accompanying table

that shows which branches resulted in illegal assignments. If every branch shows an

illegal assignment, then we have exhaustively shown that the complete set cannot

admit a noncontextual truth-value assignment. On the other hand, the branches

that are not illegal are then a complete list of the allowed truth-value assignments

to the set.

It should be noted that this algorithm treats two rays as orthogonal only if they

both appear in one of the bases in the set. This is because the bases represent

the only measurement contexts we are considering, and we would need additional

contexts in order to require additional orthogonality. We call sets that cannot be

assigned truth-values according to these rules basis-noncolorable KS sets.

We have also developed an alternate algorithm that checks the ray-colorability.

This algorithm works like the one described above, except that when a given ray

is assigned the value 1, all orthogonal rays are assigned 0, instead of only those

rays that share a basis with that ray. It should be clear that all sets that are

basis-noncolorable are also automatically ray-noncolorable.

7.1.2 Parity Proof Search

As we discussed in Chapter 2.1, there exist particular sets of rays and bases for

which it is trivial to see that no truth-value assignment can exist, without needing

anything so involved as a tree. These sets contain an odd number of bases, but

with each ray appearing in an even number of those bases. We can see that this set

cannot be assigned noncontextual truth-values because if it did, there would be an

even number of bases with rays assigned the value 1, but an odd number of bases

require this assignment. This simple odd-even parity not only makes the proof of

the Kochen-Specker theorem transparent, but it also makes these proofs particularly
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easy to find within a larger set using the tree-search algorithm.

In this case, we will start with some set of rays and bases, and search for subsets

that give parity proofs of the Kochen-Specker theorem. The program starts with

one of these bases, and builds the tree by adding one basis at a time, generating

new branches at each iteration. The first step includes a branch for each basis in the

set. In a parity proof, every ray must appear in an even number of bases, and we

exploit this fact in finding the allowed branches. The program takes the list of bases

for a given branch, and determines which rays appear in the largest odd number of

those bases. It then takes the first of these rays, and creates a new branch for each

of the remaining (unchosen) bases in the set that contains that ray. In this case,

some additional logic is used to ensure that identical sets of bases are not built in

multiple branches, which speeds up the search process considerably. If at any stage

in this process, there are an odd number of bases on a given branch, and every ray

appears in an even number of them, then the set is a parity proof, and it is saved.

Once the full tree has been explored, a complete list of all parity proofs contained

within the set is returned.

Even with the speedup of searching only for parity proofs, there are still many

sets for which running this algorithm becomes untenable, but we can still use it to

obtain some particular proofs, if not an exhaustive listing. The program can be set

to stop after finding some specified number of parity proofs within the set or after

running for some specified duration, so that it does not run indefinitely. We can

also speed up the way the program homes in on a given proof by modifying the

branch-selection algorithm, such that we choose in advance the number of rays in

the desired proof, and how many bases each will appear in.

Using this method, we can scan a given set for parity proofs of varying sizes,

which is how we found the many example proofs within the 60− 75 set of Chapter
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2.4, and the 60− 105 set of Chapter 2.3, as seen on the websites [14],[21]. These are

by no means complete searches, but they at least give a sense of the variety that

exists within the set.

7.1.3 ID Search

An ID, as we have discussed in detail in Chapter 5.1, is a set of M mutually com-

muting observables from the N -qubit Pauli group, whose overall product is ±I in

the space of all N qubits. All possible unique IDs can be built using the tree-search

algorithm, though only the smaller cases are computationally tenable.

In this case, we build the IDs one at a time from SQPs, adding additional

branches at each iteration. The branch-selection process is quite similar to the one

used for the Parity Proof Search, but here it is anticommutations that we pair off,

rather than rays. Just as before, a complete list of IDs will be returned by the

search.

The SQPs we use are ordered sets of single-qubit observables, whose order mat-

ters only with respect to the other SQPs in the set. Once a complete ID is formed,

the set mutually commutes, and so the order of the observables is irrelevant. The

key to building the ID is the mutual commutation, and since each nontrivial SQP

contains pairs of single-qubit Pauli observables that anticommute, we need to choose

our SQPs so that every anticommuting pair in one SQP is matched with an anti-

commuting pair in another SQP. If all anticommutations are paired in this way, then

the entire set mutually commutes, and we have an ID.

To search for IDMNs, we begin by generating all of the possible nontrivial SQPs

using M elements. The nontrivial SQPs for M = 3, 4 are shown in Table 37. Next

we construct a table which contains a listing of which pairs of elements in each SQP

anticommute, which we use to determine the legal branchings at each iteration of
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the algorithm.

Z
X
Y

(a)

Z
X
Y
I

(b)

Z
X
I
Y

(c)

Z
I
X
Y

(d)

I
Z
X
Y

(e)

Z
Z
X
X

(f)

Z
X
Z
X

(g)

Z
X
X
Z

(h)

Table 37: The 1 unique nontrivial SQP for M = 3, and 7 unique nontrivial SQPs
for M = 4. All IDs for given M must be built from the corresponding set of unique
SQPs. For M = 5 there are 35 unique SQPs, for M = 6 there are 155, for M = 7
there are 721, and for M = 8 there are 3,227. It should now be clear why the
exhaustive search becomes impossible as the number of unique SQPs grows larger.

We only need to use one permutation of each SQP for the search algorithm, since

all permutations will contain identical pairs of anticommuting elements. We also

need not bother with trivial SQPs, since these never belong to critical IDs. Finally,

as we will show, no critical ID except for the ID32
2 contains more than one copy of

any one SQP. The reason for this is different for Odd SQPs than it is for Even ones.

For Even SQPs, two copies would share all of the same anticommuting pairs, and

have product +I in the space of those two qubits. This means that both SQPs can

always be removed, and the remaining set will still be an ID with the same sign,

ergo the original ID was not critical. For Odd SQPs, two copies again share the

same anticommuting pairs. In this case, all other SQPs can always be discarded

along with some of the observables to reduce the set down to the ID32
2, ergo the

original ID was not critical.

With these simplifications, we have performed exhaustive searches for all values

of N up to M = 5, as well as the N = 5, 6, 7 cases for M = 6. We have also used the

scanning approach to find many IDs of M ≤ 8 and N ≤ 16, which can be reviewed

on our website [21]. With future access to a large cluster, we will be able to obtain

results like these for some larger cases.
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7.1.4 CKS Search

A Composite Kernel Structure (CKS), as we have discussed in detail in Chapter

5.2, is an assignment of the Odd SQPs within some set of Partial IDs to N qubits,

such that each Odd SQP in any ID is paired with an Odd SQP in another ID in the

set. We say the structure is critical if no subset of qubits and/or ID assignments

can be deleted such that the remaining set is still a CKS. As we have discussed,

the Composite Kernel formed by assigning IDs to a critical CKS may not itself be

critical, but that is a separate issue.

In this case, we build the CKS one Partial ID at a time, now choosing the

branches by pairing off Odd SQPs, rather than pairing off rays or anticommutations

as we have done above. To search for an N -qubit CKS, we first build the generalized

Partial IDs containing all permutations of the N elements ‘O’ and ‘I’, with all even

numbers of ‘O’s ≤ N . The complete listing of generalized Partial IDs for N = 4

is shown in Table 38 for clarity, and the complete listing of critical CKSs for up to

N = 5 is given in Tables 18 and 21.

O O O O
O O I I
O I O I
O I I O
I O O I
I O I O
I I O O

Table 38: The 7 generalized IDs for N = 4 qubits. These can be used to form the
unique critical CKSs for N = 4, as shown in Table 18.

The complete search results for up to N = 7 can be found on the website.
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7.2 Criticality Algorithms

Here we will describe the algorithms we use to verify the criticality of the various

structures we have discussed throughout this text. By critical, we mean that the

structure is minimal, in the sense that none of its constituent elements can be deleted

to obtain a smaller structure of that class. In each case, the constituent elements

are slightly different, as are the conditions that define the structure.

7.2.1 Basis-Criticality and Ray-Criticality

Where we have discussed critical sets of rays and bases throughout this text, we

have implicitly meant basis-criticality. We have algorithms for both cases, and so

we briefly define them here for clarity. When we consider an R − B KS set, we

show that the set of rays and bases cannot be assigned noncontextual truth values,

such that each basis contains exactly one ray assigned value 1, and all other rays

assigned value 0. If two rays are orthogonal, but the set contains no basis in which

they both appear, then their orthogonality is effectively ignored because it is not

a necessary part of the proof. By considering only rays within complete bases to

be effectively orthogonal, we are truly considering the set of complete measurement

contexts necessary for the proof. We then define a KS set to be basis-critical if none

of the complete bases can be deleted such that the remaining set is still a KS set. A

basis-critical KS set is then a minimal set of measurement contexts that prove the

KS theorem.

On the other hand, a ray-noncolorable set is said to be ray-critical if no rays can

be deleted such that the remaining set of rays, with all orthogonalities taken into

account, is ray-noncolorable.

In both cases, the algorithm is quite simple. For a set of B bases, the B dif-

ferent subsets obtained by deleting one basis from the set are passed to the Basis-
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Colorability program, and if all B cases are colorable, then the set is basis-critical.

For a set of R rays, the R different subsets obtained by deleting one ray from the set

are passed to the Ray-Colorability program, and if all R cases are colorable, then

the set is ray-critical.

7.2.2 ID Criticality

An ID is critical if no subset of qubits and/or observables can be deleted such that

the remaining set is a smaller ID. The algorithm to check this deletes all possible

combinations of the qubits and/or observables in the ID, and checks the set that

remains in each case. If none of these reduced sets is a smaller ID, then the original

ID is critical.

7.2.3 Kernel Criticality

A single-ID Kernel is critical if the ID is critical, and so we use the previous algorithm

to check these cases.

A Composite Kernel is critical if no combination of IDs and/or qubits can be

deleted such that the remaining set is a smaller Kernel. Technically, it is also possible

to delete subsets of observables in order to obtain a smaller Kernel, but we avoid

this complication by never building Composite Kernels with noncritical IDs that

can be divided into the product (not the direct product) of smaller IDs. On the

other hand, we often build critical Composite Kernels from noncritical IDs that are

the direct product of smaller IDs and/or trivial SQPs.

The algorithm to check for criticality deletes all possible combinations of qubits

and IDs from the Composite Kernel and checks the set that remains in each case. If

none of these reduced sets is a smaller Kernel, then the original Composite Kernel

is critical.
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It should be noted that criticality can also be established through the use of

Criticality Networks discussed in Chapter 5.2, but the above algorithm supersedes

this method using brute force.

7.2.4 Composite Kernel Structure Criticality

The Composite Kernel obtained by assigning a given set of IDs to a CKS may

not be critical, and has to be checked by the previous algorithm. The CKS only

determines how the Odd SQPs will be assigned within each ID such that the set

will be a Composite Kernel.

We say that a CKS is critical if no combination of qubits and/or generalized IDs

can be deleted such that the remaining set is a smaller CKS. The algorithm to check

this deletes every possible combination of generalized IDs and/or qubits from the

CKS and checks the remaining set. If none of these reduced sets is a CKS, then the

original CKS is critical.

7.3 Generation of Observable-based KS proofs, Rays, and

Bases

We have automated the general method described in Chapter 5.3 for generating an

Observable-based KS proof from a Kernel, though this can typically be done quite

easily by hand.

We have also automated the process of generating a set of rays from a set of

IDs. The rays are generated using the notation of Chapter 5.4, and all additional

observables obtained by multiplying those in the ID are generated and assigned an

eigenvalue. It is then easy to determine which pairs of rays are orthogonal, and from

there the complete set of bases can be built using another simple program. It should

be noted that for sets where two or more IDs share more than a few observables in
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common, direct enumeration of the bases becomes computationally untenable, but

otherwise it is quite straightforward.

These sets can then be searched for parity proofs using the algorithm described

above. In the special case where no observable appears in more than two IDs, and

no two IDs share more than one common observable, the complete set of bases and

parity proofs can be easily determined using the method described in Chapter 5.4,

which we have also automated.

We also have a program that calculates the rank-1 projectors for IDMN with

M = N +1 in their explicit product basis form, by simultaneously diagonalizing the

set of observables.

We have many other tools that we have developed for a variety of purposes, but

we have contented ourselves by describing only the most important ones here.
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8 Conclusions

Throughout this text, we have introduced many varieties of geometric structures in

the Hilbert space of N qubits that prove the BKS and GHZ theorems. We have also

introduced the simpler elements with which this zoo of nonclassical structures can

be constructed, and developed a method to identify all of these that exist within

the N -qubit Pauli group.

These results flesh out a family of nonclassical structures of which only the

simplest members were previously known. Each is a unique nonclassical structure

that requires only simple operations on N qubits, and which has many obvious and

potential applications in quantum information processing [42, 43, 44, 45, 46, 47, 48,

49, 50, 51]. Because the variety of these structures is so immense, we have presented

the results by first presenting the elementary structures of central importance (IDs),

and then showing how these can be used to build an enormous variety of different

nonclassical structures (Observable-based KS proofs). We hope that this text will

be a useful resource from which an interested reader can learn to find and use these

elements to construct any particular nonclassical structures they may need.

The structure of IDs is also intimately connected with the structure of entan-

glement, which we hope to explore in more detail in our future work. Of particular

interest are the eigenstates of critical IDMNs for which M < N +1, since these rays

contain internal degrees of freedom, meaning that they truly describe continuous

families of rank-1 projectors which seem to share some type of common entangle-

ment. We ignored Null IDs throughout this work, but it seems likely we will need

to include them for a full analysis of entanglement, since their eigenstates can be

entangled while still admitting classical correlations. Our hope is to identify some

useful measures of entanglement for the pure states of the N -qubit Pauli group, but
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more work will be needed to determine if this goal can be accomplished.

We would also like to examine how this class of nonclassical structures and

entangled states might be used in the design of new teleportation protocols and

quantum computation algorithms.

Finally, we hope that the scope of what we have presented here will be a useful

contribution towards a greater and more general understanding of nonclassical phe-

nomena in quantum physics.
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son, “Bounding the quantum dimension with contextuality,” arXiv preprint

arXiv:1302.2266, 2013.

[43] A. K. Ekert, “Quantum cryptography based on Bells theorem,” Physical review

letters, vol. 67, no. 6, pp. 661–663, 1991.

[44] P. W. Shor and J. Preskill, “Simple proof of security of the BB84 quantum

key distribution protocol,” Physical Review Letters, vol. 85, no. 2, pp. 441–444,

2000.
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