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Abstract 

The Massachusetts Department of Energy Resources is committed to assessing new forms of 

renewable energy. This project determined the feasibility of rooftop wind turbines in Boston. We 

interviewed and consulted major stakeholders, and considered siting factors, turbine technology, 

economic feasibility and social reactions. Currently, rooftop wind turbines are not economically 

viable in Boston due to long payback periods resulting from siting challenges and 

underdeveloped technology. We recommend research into urban siting methods as well as 

vertical axis wind turbines. 
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Executive Summary 

Currently, our main energy sources are fossil fuels. Fossil fuels are a finite resource and a 

leading cause of pollution and environmental degradation. Therefore, it is vital that society 

switch to cleaner and more sustainable sources of energy, such as solar, wind, hydroelectric and 

geothermal. To help in developing and utilizing renewable sources of energy in Massachusetts, 

plans such as the Green Communities Act (GCA) have been put into action. The GCA requires 

that the state must increase its use of renewable energy by 1% each year. By 2020, the state must 

be using renewable energy to generate at least 20% of its electricity needs. The Massachusetts 

Department of Energy Resources (DOER) has taken on the task of finding and implementing 

possible renewable energy solutions in the state. We were asked by the DOER to determine the 

feasibility of rooftop wind turbines in Boston. 

 

Methodology 

To determine the feasibility of rooftop wind turbines, we developed the following objectives: 

 

 Determine the siting factors involved with the installation of rooftop wind turbines 

and determine how these factors affect the feasibility. 

 Find the most important wind turbine attributes for urban environments and 

determine if any models currently on the market meet these attributes. 

 Perform an economic analysis of the top turbine models currently on the market. 

 Investigate the social concerns and motivations towards rooftop wind turbines in 

Boston. 

 

We read through numerous feasibility studies of urban wind turbines to gain a better focus of 

what our project would entail. These studies helped us establish the siting criteria and 

performance analyses of small wind turbines by providing us with information on urban wind 

resources. We also investigated existing rooftop wind turbine installations, such as those at the 

Boston Museum of Science (MOS), Harvard University, and Boston City Hall. We investigated 

four siting factors: wind resources, zoning laws, structural integrity of roofs, and grid connection. 

We consulted a zoning specialist and a structural engineer to get information related to the 

restrictions on installing a rooftop wind turbine due to zoning laws and structural concerns. We 

also spoke with engineers from NSTAR, the electric utility company for Boston, to determine 

any limitations or complications that may come up with connecting to the electrical grid. 

In order to compare available wind turbines to each other, we found several databases and 

came up with about 480 different models. We organized our comprehensive list into three 

categories of interest: vertical axis wind turbines (VAWTs), horizontal axis wind turbines 

(HAWTs) with 7-25 foot diameters, and HAWTs with 26-50 foot diameters. The list was 

narrowed down under the following criteria: 

 

 Blade diameter: less than 50 feet (only for HAWTs) 

 Power rating: 5-50 kW 

 Cut in speed: less than 7 mph (3.1 m/s) 

 Weight: less than 10,000 pounds 
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 Noise: less than 55 dB 

Once this was done, we compared the remaining models based on their projected power 

production and rating as well as cut-in and production wind speeds.  

In addition to the performance analysis, we created an economic analysis tool to determine 

the payback period of each model. This calculator takes into account the inflation rate of money 

over time and applicable incentives. It also provides a comparison to alternative investments 

such as a high yield savings account. 

We also asked project managers what complaints they were receiving from the public and in 

the process discovered the social concerns and what motivations people had for installing rooftop 

wind turbines. We also interviewed three different real estate corporations: Hines, Massachusetts 

Convention Center Authorities, and Boston Housing Authorities. This allowed us to draw 

conclusions on motives for installing wind turbines as well as the requirements needed for real 

estate owners to consider installing rooftop wind turbines, such as payback period. 

 

Findings and Conclusions 

Based on information from previous feasibility studies, our own analyses, and responses 

from interviews with key stakeholders, we developed the following findings and conclusions: 

 

 Siting is of great importance, since it can limit the performance of urban wind 

turbines by causing a low capacity factor.  

In many studies we found, the average capacity factor for rooftop wind turbines was 5%. 

This poor performance is currently a major factor limiting the feasibility of small urban 

wind turbines and is primarily due to inappropriate siting of the wind turbines. An urban 

environment contains turbulence caused by buildings and obstructions, and careful siting 

is required to avoid these less efficient winds. With proper siting, higher capacity factors 

can be achieved, making urban wind turbines more feasible. Capacity factors as high as 

14% have been achieved in urban settings. Greater capacity factors are also possible 

considering that rural wind turbines see percentages in the 20-35% range and higher. 

These reasonable capacity factors provide a more assuring outlook for rooftop wind 

turbines.   

 

 Increases in capacity factor, price of electricity, and/or value of Renewable Energy 

Credits could make rooftop wind turbines more economically feasible in the future. 

The low capacity factor achieved in an urban environment is the main hindrance in 

rooftop wind turbine feasibility; however, it is not the only factor affecting it. The price 

of electricity and value of RECs also affect how much income is generated from energy 

produced with a wind turbine. These three factors have a significant impact on the 

economic feasibility of rooftop wind turbines. Using future projections for these factors, 

we determined that small increases in each of them could significantly reduce the 

payback period of rooftop wind turbines, making them more economically feasible. 
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 Certain areas and building types are more promising for rooftop wind turbines.  
We came to several conclusions regarding the most suitable locations for installing 

rooftop wind turbines. Buildings that meet the following criteria would be easier and 

more effective to install rooftop wind turbines: 

 

 Above 150 feet tall, and taller than buildings upwind 

 Roof area of at least 5,000 square feet 

 Supported by columns to which the turbine can be mounted 

 Not close to historic districts, residential areas, or avian habitats 

 In a commercial, waterfront, or industrial area 

 Connected to either a spot or radial network 

 

 A variety of existing wind turbines could produce a substantial amount of energy in 

an urban environment. 

Although many small wind turbines suffer poor performance in an urban environment, 

there are several which are suitable for power production on a rooftop, shown in Table 1.  

 

 

Type Manufacturer 
Rating 

(kW) 

Calculated 

Annual 

Production 

(kWh) 

Cut-in 

Speed 

(mph) 

Production 

Speed 

(mph) 

VAWT 

Venco Power GmbH 50 N/A 5.6 26.8 

Windports 20 N/A 5.6 32.44 

UrbanGreenEnergy 10 N/A 4 12 

HAWT 

(7-25 ft 

diameter) 

A&C Green Energy 10 5,562 6.7 24.6 

Altem Power 10 5,386 5.6 24.6 

Aeolos Wind Energy 10 5,386 6.7 22.3 

HAWT 

(26-50 ft 

diameter) 

Hannevind 22 15,454 4.4 20 

Nanjing Supermnn Industrial 50 15,454 6.7 26.8 

Aventa Ltd 6.5 14,443 4.47 13.4 

Table 1 - Top turbine models 

 There does not seem to be a strong public attitude for or against rooftop wind 

turbines, and there are multiple motivations for installing rooftop wind turbines. 
The social opposition against large-scale wind turbines has not been seen towards rooftop 

wind turbines, probably because they are so rare. However, this is likely to change if 

more installations are built. We believe that the most significant future social concerns 

would be linked to aesthetics, noise and visual flicker. The main motivation for 

alternative energy is for power production, yet most current rooftop wind turbines are 

intended to demonstrate the use of renewable energy and educate the public about wind 

power.  
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Recommendations 

We believe that rooftop wind turbines have the potential to become feasible in the future, and 

that the Department of Energy Resources can play a role in promoting their development. We 

present the following recommendations: 

 

 Perform testing on small wind turbines, especially VAWTs, to determine their 

performance in urban environments. 

Vertical axis wind turbines are theoretically better in the turbulent conditions that are 

common in urban locations. More urban testing will provide more information needed to 

gain a better understanding of this technology and improve their development. Further 

testing would also bring upon more accurate wind data and improved siting methods. 

 

 Maintain a database of all available small wind turbines. 

The database we have compiled can serve as a basis for a list that should prove valuable 

in selecting wind turbines for potential projects. This database provides vital information 

regarding what makes a wind turbine most suitable for a specific site such as datasheets 

and testing results. 

 

 Work with the Small Wind Certification Council and other organizations to develop 

a standardized method of establishing and verifying power ratings and curves. 

Many manufacturers‟ data is inaccurate and/or optimistic. Standardizing power ratings, 

power curves, and other data will help provide a reliable method of measuring wind 

turbine power output accurately and comparing this output with those of other wind 

turbines. 

 

 Provide assistance to individuals or organizations interested in installing rooftop 

wind turbines by helping them locate and assess potential sites. 

Our report contains siting advice that could help improve the success rate of wind turbine 

installations in Boston. By providing assistance, people would be more likely to invest 

into wind turbines and feel more confident about it. This could lead to an increased 

number of rooftop wind turbine installations that are more effective. 

 

 Offer information to the public on what incentives are available. 
This will likely help make the public more aware of the financial help available to them 

and is likely to increase the number of installations, along with helping people cover the 

costs of buying and installing rooftop wind turbines. 
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1 Introduction 

Currently global energy use is at a record high and continues to increase. In the US, more 

than 85% of energy is obtained from fossil fuels (US DOE, 2010). Given their very slow 

production rate and the rapid consumption, fossil fuels are essentially finite in quantity. 

Predictions on the amount of time they will last for range from 42 to 102 years (Shafiee & Topal, 

2009). Most scientists also agree that fossil fuels cause pollution and have a harmful impact on 

the environment (Lvovsky, Hughes, Maddison, Ostro, & Pearce, 2000). To avoid problems in the 

future, we must turn to energy sources such as solar panels and wind turbines that are renewable 

and environmentally friendly sources. 

Massachusetts is making an effort to promote the use of renewable energy with acts such as 

the Green Communities Act (GCA) which aims to have 20% of the state‟s electric energy load 

produced through renewable sources by 2025. Massachusetts currently has several renewable 

energy installations throughout the state, including wind, hydro, and solar installations, but it 

must continue to increase its renewable capacity to fulfill the GCA requirement. One 

organization within Massachusetts that is working to maximize development of all renewable 

energy sources is the Department of Energy Resources (DOER). Among other sources, the 

DOER is currently interested in the possibility of rooftop wind turbines in Boston, due to the 

city‟s abundant coastal wind resources and large electrical loads. Rooftop wind turbines may be 

a solution for a dense, urban area where the open land required for larger wind turbines is 

nonexistent. 

All around the world, large wind farms in rural areas and off ocean shores are producing 

large amounts of energy. These areas are prime locations for wind turbines due to the high wind 

speeds and distance from populated areas. There is a considerable amount of documentation on 

the importance, benefits, and challenges concerning large-scale wind turbines. Currently, the 

wind industry is exploring the use of small-scale wind turbines. However, since this is a new 

development, little research has been done on their performance. Rooftop wind turbines in urban 

environments present unique challenges. The quality of wind in an urban environment is 

complex due to many obstructions in the wind‟s path. Additionally, connecting rooftop wind 

turbines to varying types of electrical grid networks is challenging. There is also limited 

information on the social views towards rooftop wind turbines since they are not yet common 

enough for any opinions to have been formed. The limited information on rooftop wind turbines 

in urban environments makes it difficult to assess their value within the renewable energy 

market.  

The goal of this project was to determine the feasibility of rooftop wind turbines on buildings 

in Boston. We accomplished this by taking into account the siting, economic, technical, and 

social factors of rooftop wind turbines.  The siting factors included aspects such as wind 

resources, zoning regulations, structural integrity of roofs, and connection to the grid. Our 

technology investigation explored the performance of wind turbines and which types of turbines 

would be most suitable for an urban environment. An economic analysis was performed to 

determine whether or not rooftop wind turbines would be a worthy investment. Finally, we 

explored reactions that exist towards wind turbines and reasons for installing rooftop wind 

turbines. After examining these factors, we performed an integrative analysis to develop 

conclusions regarding the overall feasibility of rooftop wind turbines. It is our sincere hope that 

this work will assist the DOER in determining if rooftop wind turbines in Boston are currently a 

viable source of renewable energy, or if not, what could make them more practical in the future. 
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2 Background 

We begin this chapter with an overview of why wind power is a viable source of renewable 

energy. Then we discuss the technology used for wind turbines and present the social factors 

related to this project. Following this, we explain the siting factors involved in installing wind 

turbines, such as wind resources, zoning laws, structural integrity, and network interconnection. 

 

2.1 Renewable Energy 

There is a current shift towards the use of renewable energy that has started in response to the 

high global energy use and harmful environmental impact of current energy sources. The most 

common renewable energy sources currently used are solar, wind, and geothermal. 

During the second half of the 20
th

 century, the global population more than doubled. In 

response, economic activity has more than quintupled and energy use had quadrupled (Kates & 

Parris, 2003). The use of energy continues to rapidly increase as well as the population. The 

Energy Information Administration (EIA) predicts that the world energy use will increase 44% 

from the 2006 energy use by 2030 (US EIA, 2009). This steady increase of use is difficult to 

sustain and current energy use relies heavily on the use of fossil fuels. 

Today‟s world makes heavy use of electronics, combustion engines, and climate control 

systems, which depend on the use of fossil fuels. As seen in Figure 1, the U.S. produced 84.7% 

of its energy from fossil fuels in 2008, with petroleum producing 37.8% of the total energy and 

renewable sources producing only 7% (US EIA, 2008). 

 

 
Figure 1 - US energy use by source, 2008 (US EIA, 2008) 

 

One problem with using fossil fuels and nuclear power for energy production is that they are 

finite sources. One study estimates that petroleum, natural gas, and coal will be exhausted in 
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approximately 35, 37, and 107 years respectively (Shafiee & Topal, 2008). In order to meet 

increasing energy needs in the future, the use of renewable energy needs to be increased. If 

renewable energy sources are not incorporated into the overall energy use, there will likely be an 

energy crisis during which the needed energy is not available due to exhausted fossil fuels and 

lack of other energy sources. 

A second problem with the use of fossil fuels is their harmful impact on the environment. 

When fossil fuels are burned, they release greenhouse gases, such as carbon dioxide and toxins 

that are harmful to humans, plants, and animals. Natural elements, such as trees and the ocean, 

absorb only about half the amount of carbon dioxide produced by burning fossil fuels, which the 

Global Carbon Project estimates to be about 8,700 million tons of carbon dioxide per year as of 

2008 (GCP, 2009). This excess amount of carbon dioxide and greenhouse gases continues to 

increase and has a major influence on the global climate. Increases in carbon dioxide and 

greenhouse gases cause the average surface temperature of the earth to increase, intensified 

storms, sea levels to rise, and other climatic changes to occur (Houghton et al., 2001). These 

climate changes have the potential to drastically alter ecosystems and cause species to become 

extinct. 

Due to the steady increase in global energy consumption, depletion of fossil fuels, and 

concerns for the environment, there has been an increased interest in the development of 

renewable energy sources. The main sources of renewable energy are biomass, hydro electrical, 

solar, wind and geothermal, which supplied 14% of the total global energy use in 2001 

(Demirbas, 2005). The use of renewable energy continues to increase and must do so to provide 

for the overall energy demand in the future. Wind power has seen a significant increase since it 

was originally used for power production. In 1990, the global energy capacity from wind power 

was 2,000MW, and by 2000 it had increased to 20,000MW (Demirbas, 2005). This shows that 

wind power has the potential to be a large source of renewable energy, and so is worth pursuing. 

 

2.2 Renewable Energy in Massachusetts 

Currently, most of Massachusetts‟ power is produced by fossil fuel burning plants. However, 

state and local authorities such as the Massachusetts Department of Energy Resources (DOER) 

have made it their goal to promote the use of renewable and sustainable forms of energy. This 

goal has led to the installation of renewable energy based power producing units throughout the 

City of Boston and across Massachusetts. These projects range from the installation of two 

600kW wind turbines at Deer Island, to smaller rated solar energy panels installed on rooftops 

throughout Boston (EES, 2008).   

The DOER plans to implement the Energy Efficiency Investment Plan that could potentially 

save $6 billion and up to 30,000GWh in lifetime energy (MA DOER, 2010a). The DOER hopes 

this plan will meet all the increased demand while providing a constant supply of electricity to 

the residents of the state.  

There are other plans that have been implemented to help increase and diversify renewable 

energy use in the state. One such plan is the Green Communities Act (GCA) that was passed by 

the Massachusetts legislature and signed in by Governor Deval Patrick in July 2008. The GCA 

was enacted into law, to lay guidelines to help Massachusetts meet its renewable energy and 

energy efficiency targets. Under the Green Communities Act, municipalities are able to develop 

renewable energy resources and facilities, create employment from the development of these 
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facilities and reduce energy consumption and pollution (Massachusetts, 2008). Some of the 

energy targets of the GCA include:  

 

 Produce at least 20% the state‟s electricity using renewable energy by 2020, 

 Reduce energy consumption in the state by 10% by 2017, and 

 Decrease the fossil fuel use by 10% from 2007 levels by 2020 (Massachusetts, 2008).  

 

To help achieve these energy targets, the Renewable Portfolio Standard (RPS) was 

established. The RPS is designed to augment the state‟s use of renewable energy and helps 

promote the use of clean energy sources (RET, 2010b). To help fulfill the requirements of the 

RPS, Renewable Energy Certificates (RECs) are awarded based on power produced. One credit 

is given per megawatt-hour of electricity generated, and can be sold at market value, which 

changes with demand (RET, 2010a). To calculate the RECs, the New England information 

system (NE-GIS) has been adopted (RET, 2010a). The NE-GIS keeps track of information on 

New England‟s power system including its operations and capacity and is used to determine the 

power output of renewable energy in Massachusetts. 

There are numerous incentives offered for renewable energy projects in Massachusetts. One 

of the most prominent is the abovementioned Renewable Energy Credits, which help fulfill the 

requirements of the Renewable Portfolio Standard. Other incentives in Massachusetts offer 100% 

deductions on excise tax, sales tax, and property tax for investing in renewable energy (DSIRE, 

2009). There are also several major incentives offered on the federal level. The largest of these is 

the Federal Investment Tax Credit, which offers tax credit equal to 30% of all initial costs for the 

project. The other large federal incentive offered is the Production Tax Credit, which rewards 

renewable energy production with 2.1¢/kWh of energy generated (DSIRE, 2009).   

Amid all the renewable sources of energy, wind energy has emerged as an efficient 

alternative in Massachusetts that has led to the distribution of numerous grants to various wind 

projects around the state (MA CEC, 2010). The reason for this emergence is because of 

favorable wind conditions as well as a drive to find alternative energy sources to the currently 

conventional fossil fuels. Consequently, Massachusetts hopes that wind energy will play a 

significant role in a promoting clean energy future. To this end, one of the goals set for the 

development of wind energy in the state is the installation of 2000 megawatts of wind capacity, 

by 2020 (MA DOER, 2010b).   
  

2.3 Wind Turbine Technology 

The wind turbine industry has seen drastic alterations in the technology used since its first 

use for electrical production in the 1980s. The airfoil types, generators, and power electronics 

used in wind turbines have all seen major improvements. These improvements on the larger wind 

systems have been passed down to small-scale wind turbine technology.  

 

2.3.1 HAWT vs. VAWT 

There are two main types of wind turbines, with the difference being in the orientation of the 

blades. Horizontal axis wind turbines (HAWT) are the more common type shown in Figure 2. 
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Figure 2 - Two bladed HAWT (used with permission from Menet, 2000) 

 

 Vertical axis wind turbines (VAWT) are less common and come in many different varieties. The 

three most popular VAWT designs, H-rotor, Savonius, and Darrieus, are depicted in Figure 3 

(Eriksson, Bernhoff, & Leijon, 2006). 

 

 
Figure 3 - VAWT designs from left to right: H-rotor, Savonius, and Darrieus turbine 

 

HAWTs are more conventional since they are currently more efficient in converting wind 

flow into electricity (Howell, Qin, Edwards & Durrani, 2009). However, HAWTs require that the 

wind be laminar. In laminar flow, the layers of wind are steady and parallel to each other with no 

disruption between them. In turbulent wind flow, the layers of wind are chaotic and change 

direction and pressure suddenly. VAWTs are theoretically superior to HAWTs because VAWTs 

can harness the wind flow coming from any direction and do not need to yaw into the direction 

of the wind.  
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There are three costs involved that vary between the two types of turbines: the cost of 

manufacturing the blades, the cost of a mast, and the cost of the foundation. HAWTs generally 

have the lowest cost in terms of blade production, while VAWTs have generally higher blade 

manufacturing costs, due to the complexity in design and material use. In addition, VAWTs 

usually require more elaborate foundations because the dynamic loads are more challenging to 

counter. Due to all these factors, VAWTs tend to have a higher cost (Eriksson et al., 2006). 

Table 2 gives an overview of the differences between HAWTs and VAWTs. It is important 

to take into consideration that HAWTs have had many years of development and VAWTs have 

only seen recent development.  There are claims that if VAWTs were to see more development, 

their efficiency and cost would match and possibly surpass HAWTs in the urban environment 

(Eriksson et al., 2006). 

 

Type Pros Cons 

HAWT 

 Efficient 

 Low cut in speed 

 Low manufacturing cost 

 Requires laminar wind 

flow 

 Requires yawing 

mechanism 

VAWT 

 Works in turbulent wind 

flow 

 Potential for improvements 

 Less efficient 

 High cut in speed 

 High manufacturing cost 

Table 2 - HAWT vs. VAWT comparison 

 

2.3.2 Theoretical Power Production 

The power produced by wind turbines is largely dependent on the area swept by the blades 

and the power coefficient of the blade design. The power coefficient is limited to a maximum of 

0.593, which is commonly known as the Betz limit (Polinder, van der Pijl, de Vilder, & Tavner, 

2005). This means the turbine cannot capture more than 59.3% of the kinetic energy from the 

wind swept by the area of the blades can be converted into energy. This is because if all the 

energy were taken from the wind, it would no longer be moving, so it could not exit the wind 

turbine‟s blade area to allow more wind to enter. The power coefficient, or aerodynamic 

efficiency, is the ratio between the wind speed and the speed of the tip of the blade. For HAWTs, 

the power increases with the square of the blade radius, and altering pitch and using the nominal 

amount of blades increases the power coefficient. For HAWT designs, the aerodynamic 

efficiency increases only minimally after three blades. A three blade HAWT design produces a 

power coefficient 5% higher than that of a two-blade design (Patel, 2006). 

VAWTs vary greatly in design. Increasing the blade height and the amount of blades does 

increase the power produced, but the correlation is far more complicated than for HAWTs. An 

article that describes the power equations used for both the Savonius and Darrieus turbines 

explains that they have far more variables than the HAWT designs, such as the angle of the blade 

to the axle (Menet, Valdès, & Ménart, 2000). Various articles present the aerodynamic 

characteristics of VAWTs through the use of calculations and theoretical models. One such 

article presents three Darrieus designs that are compared using numerous complex equations 

(Islam, Ting, & Fartaj, 2006). Another article looks at the airflow of an H-rotor turbine using 2D 

and 3D modeling and the physics involved (Howell et al., 2009). However, these articles were 
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very technical and did not provide a substantial amount of information that was relevant to our 

project. 

We were able to find only one actual test of a VAWT versus a HAWT. In Ashendon, UK, a 

6kW HAWT and a 6.2kW VAWT were installed on the same roof and tested for a year. The 

results indicated the HAWT outperformed the VAWT; the VAWT had issues at low wind speeds 

during which it used electricity, instead of producing it. The trial conclusion stated the specific 

VAWT would no longer be used; however, it is still not conclusive if VAWTs could potentially 

outperform HAWTs with proper technology improvements (Ashenden Wind Trials, 2009). 

 

2.3.3 Power Conversion Methods: Generators and Power Electronics 

In order to export energy to a grid from a wind turbine, the mechanical energy is first 

converted to electrical energy via a generator. The output of the generator must then be 

converted to match the power grid the wind turbine is connected to, with power electronics.  

Power electronics consist of solid-state electronics, which are used to control and convert electric 

power. 

Power grids handle alternating current (AC), which means the current changes direction. 

Direct current (DC) flows in one direction and is used in electronic devices. AC is used for 

power grids since it can travel farther distance with fewer losses than DC and the magnitude of 

its voltage can easily be modulated. Within the US, AC power reaches people‟s homes at a 

frequency of 60 Hz. Power electronics are commonly used to connect generators to the grid‟s 

power; either a DC-to-AC inverter or an AC-to-AC transformer is used depending on the 

generator used. Power electronics are also used to monitor the power output and quickly 

disconnect the wind turbine from the grid, if the power is inadequate or of poor quality. 

There are three main types of generators that are potential candidates for a wind turbine: DC 

generators, synchronous generators, and induction generators. Commercial small wind turbines 

use DC generators due to their low cost (Patel, 2006). Table 3 summarizes the common 

differences between the generators, which are further explained in Appendix A. 

 

 

Type Pros Cons 

DC 

 Low manufacturing cost 

(under 100kW) 

 Suited for variable wind 

speeds 

 High maintenance cost 

 Poor efficiency 

 Requires inverter 

Synchronous 

(AC) 

 Easily connected to 

electrical grid 

 Functions at low wind 

speeds 

 Not suited for variable wind 

speeds 

 High maintenance cost and use 

cost 

 Requires external excitation 

Induction 

(AC) 

 Suited for variable wind 

speeds 

 Low maintenance and use 

cost 

 Often requires gearbox 

 Requires converter 

Table 3 - Comparison of generators 
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2.4 Economic Aspects of Turbines 

Using alternative energy, especially wind power, may not seem like it is cost-effective due to 

its high initial cost, so an economic assessment must be done to establish the commercial 

viability of a project (Ozerdem, Ozer, & Tosun, 2006). Developers of the technology as well as 

potential installers would all be interested in knowing the breakdown of the money being spent – 

what it‟s going towards and what kind of return is expected. 

The cost of generating electricity in a wind farm has three main components: capital cost, 

operation and maintenance costs, and financing cost (Ozerdem et al., 2006). Capital cost consists 

of all initial investments made in purchasing the wind turbine and installing it. Operation and 

maintenance covers any routine expenses required to keep the turbine functioning properly. 

Financing cost is the money required to pay back all loans used to finance the project. Other 

important values to consider are the payback period and the net present value. Payback period is 

the amount of time for profits or benefits granted by the project to equal the initial investment. 

Net present value is simply the present value of the benefits minus the costs. In the case of wind 

turbines, benefits would be the money saved by producing energy. This makes net present value 

a good indicator of how profitable a particular investment is at any particular point in time. 

Stakeholders are also likely to be interested in renewable energy sources that promise 

effectiveness, direct benefits, reduced risk, and are simple (Farhar & Houston, 1996). Potential 

customers would want the system to be effective so that it actually produces a sufficient amount 

of energy and be worth their money. They also like to know that they are making a difference 

and a smart investment by using renewable energy sources (Wiser, 1998). An economic analysis 

can provide these figures to determine the results of an investment in a rooftop wind turbine 

installation. 

 

2.5 Siting Factors 

Siting is an important aspect of wind turbine installation since it plays a major role in 

performance. In order to determine the feasibility of rooftop wind turbines, the issues concerning 

placement in an urban environment must be considered. In this section, we first discuss the role 

of wind resources, followed by a description of Boston‟s zoning laws. We then present the 

rooftop structural integrity considerations that need to be taken into account regarding wind 

turbine installation. Finally, we describe the grid connection challenges that are posed by the 

current utility grid networks and the regulations that protect them. 

 

2.5.1 Wind Resources 

The available wind resource plays a major role in finding locations to place wind turbines 

because without proper wind conditions, wind turbines cannot function effectively (Ozerdem et 

al., 2006). The cut-in speed, or the minimum wind speed for a wind turbine to produce power, 

ranges from 1.8 m/s (4 mph) to 4 m/s (9 mph) for small wind turbines. If the average wind speed 

in a particular location falls below this cut-in speed, a wind turbine in this location is likely to not 

generate useful amounts of energy.  

Large-scale rural wind farms are able to harness the most useful and strongest winds at high 

elevations in large open areas, but urban wind resources are not as effective. Compared to rural 

locations, suburban areas have wind speeds that are 13-20% lower, and urban areas 29-40% 
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lower (Dutton, Halliday, & Blanch, 2005). The power produced by a wind turbine is proportional 

to the cube of the wind speed; therefore, these reductions could cause significantly lower power 

production. The equation used to calculate power from the wind can be found in Section 4.2. 

It should be taken into account that wind speeds increase as altitude increases (Dutton et al., 

2005). Wind speed at a specific altitude can be calculated using standard equations with a 

reference speed at a specific height. These equations can be found in Appendix D. 

The capacity factor of a wind turbine is the ratio of its power produced compared to its 

output if it had been produced its rated power. In rural environments, the capacity factor ranges 

between 20-40% (RERL, 2005). A main cause for the capacity factor to decrease in an urban 

environment is turbulent wind conditions, which are less effective for wind turbines. Turbulence 

occurs when there are obstructions in the wind path, such as nearby buildings. The wind must 

flow around the obstructions, causing erratic changes in direction and wind speed. To avoid this 

problem, one study suggests that the roof where the turbine is to be located should be 

approximately 50% higher than any surrounding objects (Cace et al., 2007). 

 

2.5.2 City Regulations and Zoning 

Zoning laws are put in place to protect the wellbeing of the public by regulating the use of 

land. These regulations can restrict or impose specifications on construction, including what can 

be added to roofs, including rooftop wind turbines. 

In Massachusetts, on-shore wind turbine installations are governed in part by the zoning laws 

developed by the Boston Redevelopment Authority (BRA). These regulations restrict both the 

height and the noise that can be produced by a wind turbine. Height may prove to be a concern in 

regards to installing wind turbines, especially on a rooftop. Noise limits must also be followed in 

order to not disturb nearby areas, although noise limitations often vary with location. The Federal 

Aviation Administration (FAA) is also concerned with the height of objects and has set height 

restrictions. The FAA is specifically concerned with structures that may affect airspace, 

especially near airports, such as Logan International Airport in Boston. The FAA is also 

concerned with electromagnetic interference (EMI) that may cause interference with radio and 

communication equipment that rooftop wind turbines may be in close proximity to. The 

movement of the turbine blades can cause EMI, which could interfere with transmitted signals 

(Patel, 2006). 

 

2.5.3 Structural Integrity of Roofs 

The structure of a rooftop should be looked at to ensure that a wind turbine installation would 

not compromise the integrity of a rooftop or building in any way. There are a number of roof top 

attributes that should be considered when installing wind turbines such as roof material, roof 

support and durability.  

First it is important to acknowledge the different loads caused by a rooftop wind turbine: 

static and dynamic loading. Static loading is the dead weight of the turbine, tower and 

foundation. Dynamic loading is the force created by the wind pushing the turbine, which adds 

stress to the foundation. The varying torque caused by the moving blades also causes vibration, 

which needs to be considered when forming the foundation (Shaw, McClelland, & Rosen, 2009). 

There are many materials that are used to construct roofs. These can include materials such 

as shingles, sheet metal and concrete. Each of these materials can support different loads and 
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require different kinds of supports. Concrete roofs, which are usually reinforced with steel fibers, 

can handle the heaviest loads. The material used in rooftop construction can influence the size, 

number and weight of the wind turbines that can be installed on the roof. 

Different structural support techniques and mechanisms can be employed to bear the weight 

of the roof as well as the structure installed. The choice in support normally depends on the size 

and weight of the roof in addition to the building in question. The most common types of 

supports employ columns and trusses, and different methods are used for mounting a wind 

turbine to each type of support.  

Also, as a roof and the building that it‟s on ages this can pose additional challenges in 

installing a wind turbine. These challenges normally arise from the gradual degeneration of 

rooftops over time. This problem is generally encountered in older houses and buildings whose 

roofs cannot handle heavy additional structures. 

 

2.5.4 Interconnection to Electrical Grid 

Another challenge for rooftop wind turbines is connecting them to the grid. Distributed 

generation (DG), having multiple small energy sources supplying power to the grid, is desirable. 

However, DG faces several problems, especially in urban environments. 

There are three types of networks: radial, spot, and area, as shown in Figure 4. Each network 

has varying accessibility regarding connection of DG with radial networks being the most 

accessible and area networks the least accessible. 

 

 
Figure 4 - Distributed system designs (used with permission from NSTAR, 2010) 

 

Radial distribution consists of a substation and loads connected directly to the substation. 

This allows wind turbines to be easily connected to a radial distribution system without any 

consequences. Spot networks consist of a substation and numerous network protectors, which 

require power to flow in only one direction, and are mostly used in buildings with high electrical 
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loads (NSTAR, 2010). Finally, area networks consist of a substation that connects to multiple 

network protectors which powers interconnected network transformer vaults. These 

interconnected transformer vaults are used in case one breaks down, so back-up power can be 

provided. 

Network protectors are currently the biggest hurdle in connecting DG to a spot or area 

network since they “are not designed to connect [DG] and will result in equipment failure” 

(NSTAR, p. 7, 2010). Found in spot and area networks, they only allow power to flow from the 

network to the load, and will be tripped open if any power is sensed flowing the other way. 

Because of this, there are restrictions to be followed when connecting a source of energy, such as 

a wind turbine, to avoid tripping the network protectors and causing problems on the electrical 

network. 

 

2.6 Social Concerns 

Studies have shown that groups opposing wind turbines cite aesthetics, noise pollution, and 

disruption of local wildlife as the most important issues (Kempton, Firestone, Lilley, & 

Whitaker, 2005). In this section, we discuss these concerns as well as additional concerns that are 

present towards wind turbines. 

 

2.6.1 Aesthetics 

 Wind turbines are often visible from a long distance off because the poles that hold the 

turbine hub can be up to 100 meters in height. Some people dislike the appearance of wind 

turbines since they believe they spoil the scenery. Currently, the majority of the wind turbine 

projects in Massachusetts have been constructed in open regions or coastlines away from 

residential and commercial areas, meaning that there is little aesthetic detriment (AWEA, 2009).  

However, rooftop wind turbines present a challenge concerning aesthetics because the urban 

environment means the turbines are often going to be near residential or commercial areas.  Even 

though the wind turbines under consideration for rooftops in Boston only have heights ranging 

from 5 to 35 meters, it is very likely that they will be seen either from the street or from 

neighboring buildings.  This will prove to be a problem if enough people oppose placement of a 

wind turbine due to aesthetic reasons, because then the turbine will have to be sited at an entirely 

new location.  

 

2.6.2 Noise Pollution 

 Wind turbines can generate a large amount of noise, depending on the model and wind 

speeds they are operating in. This noise generated can become a larger problem when the wind 

turbine is sited near residential areas. At night, the ambient noise at specific site is often lower 

than during the day when the ambient noise is higher and noise created by a wind turbine is not 

as noticeable. In rural areas, the public is more likely to complain about the noise created from 

wind turbines since the ambient noise is low. In an urban area such as Boston, rooftop wind 

turbines may not be as much of a concern for noise pollution since they are typically small in 

size and high up on rooftops, putting them further away from any people that may be able to hear 

the noise. 
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2.6.3 Disruption of Local Wildlife 

Wind turbines can obstruct the flight path of birds and bats, potentially injuring or killing 

these animals. This unnatural obstruction in the ecosystem of birds and bats is generally frowned 

upon (Krohn & Damborg, 1999). Additionally, bat populations tend to be more affected by wind 

turbines, because the high-pressure zones created by the wind turbines can kill bats that fly 

within a couple feet of an operating wind turbine (Risser, Burke, Clark, English, & Gauthreaux, 

2007). However, in an urban environment where the bird and bat populations may not be all that 

substantial, wind turbines may have a much less pronounced effect.  

Human constructions and activities are responsible for the death of many animals. It has been 

recorded that annually at least 97 million birds die due to colliding into buildings, cars are 

responsible for close to 60 million birds per year, and it is estimated that wind turbines kill 

200,000 to 370,000 birds per year (Risser et al., 2007). Based on these numbers, one might 

assume that wind turbines have little impact on total bird casualties compared to other causes. 

However, there are three important factors to consider. First, there is little information on bird 

and bat casualties from small wind. Second, the numbers do not take into consideration 

endangered or rare species deaths. If half the population of an endangered species is being killed 

versus a small fraction of a common species, the impact is far more significant. Finally, if there 

is an increase in wind turbine installations, there is the possibility that there will be far more bird 

and bat deaths (Risser et al., 2007). 

Certain precautions can be taken to reduce bird and bat deaths. The key suggested alterations 

include slower rotational rates of the blades, tubular towers, and fewer places where birds can 

perch. Slowing down the rate of blade rotation will make the blades more visible to flying birds 

while the tubular towers provide less of an area for birds to perch on unlike lattice towers. 

Additionally, it is suggested that wind turbines be sited away from bird habitats and bird 

migration paths. (Risser et al., 2007) Avoiding avian habitats would decrease deaths by siting 

wind turbines in areas with low avian populations, meaning there are less birds to be affected by 

any wind turbine installations. 

 

2.6.4 Other Social Concerns 

While appearance, noise pollution, and disruption of wildlife are major issues, other 

problems with wind turbines are sometimes brought up to oppose their construction. For 

example, the flicker effect created by the spinning blades of wind turbines may annoy some 

people. The AWEA claims that flicker is not a problem for small wind turbines because the high 

rotation speeds of the blades make the shadow essentially invisible (AWEA, 2008). Lightning 

strikes are another concern, but rooftop wind turbines are grounded and there are numerous 

systems in place to prevent electrical surges and damage; therefore, it is not a major concern 

(AWEA, 2008). Specifically in colder regions that see sub-freezing temperatures and snowfall, 

ice buildup might prove to be a problem and safety hazard for wind turbines. The added weight 

of ice can decrease the efficiency of a wind turbine or even cause malfunctions. If the blades 

continue to spin while covered in ice, the ice could be thrown off the blades, posing a major 

safety hazard to anything or anyone nearby, especially on a rooftop at a high elevation. However, 

the AWEA states, “the risk of damage from ice falling from a (large) turbine is lower than the 

risk of being struck by lightning” (AWEA, 2008). 
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3 Research Methods 

The goal of this project was to determine the feasibility of rooftop wind turbines in Boston. 

We looked at the different factors that could make rooftop wind turbines feasible now or in the 

future. Our overall goal was broken down into several research objectives, including the analysis 

of: 

 

1. Siting factors, 

2. Attributes of available wind turbines,  

3. Economic analysis of available wind turbines, and 

4. Motivations to install rooftop wind turbines. 

 

The results of these different objectives were combined to get an overall picture of the 

feasibility of rooftop wind turbines using an integrative analysis. With this, we were able to 

determine the necessary criteria for rooftop wind turbines in Boston and identify how well 

current technology meets these criteria. In this chapter, we explain each of our objectives and 

how we came to conclusions for each. 

 

3.1 Siting of Rooftop Wind Turbines in Boston 

From our background research we identified several important siting factors, which were: 

wind characteristics, zoning regulations, structural integrity of roofs, and grid connection access. 

With these factors we formulated the following research questions to guide us in determining 

siting criteria: 

 

 What general wind environment is present in Boston? 

 How does the rooftop environment affect the available wind resource? 

 What zoning laws need to be considered concerning rooftop wind turbines? 

 What are the structural criteria that allow rooftop wind turbine installation? 

 What are the requirements for rooftop wind turbines to connect to the electric grid? 

 What buildings and/or locations in the city have grid connections that are easily 

accessible to connect wind turbines to? 

 

To determine the factors involved with siting rooftop wind turbines in Boston, we read 

feasibility studies on small-scale wind turbines done in different types of sites. Several of these 

studies suggest criteria for siting urban wind turbines and also give some data regarding the 

performance of the wind turbines. We also interviewed project managers that have installed 

rooftop wind turbines within Boston including the Museum of Science and Harvard University. 

We used the feasibility studies and information from interviews with project managers to learn 

the siting factors that other studies and projects looked at. 

In terms of wind characteristics at a location, we determined the obstacles on roofs and 

surrounding areas that cause turbulence, the elevation of the installation, and the wind speeds 

available based on the location within the city. We did this partially by referring to several wind 

speed maps of Massachusetts and wind speed data. Additionally, we found two studies on the 

subject; both gave the same explanation for the effect of buildings and other obstacles on the 

prevailing wind.  
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Zoning regulations can limit some features of rooftop wind turbines, which could rule out 

some of the more cost effective designs. We consulted a zoning specialist from the City of 

Boston to obtain bylaws of the restrictions specific to rooftop wind turbines. Zoning laws may 

restrict the height and noise produced from rooftop wind turbines. Different sites will have to 

abide to different laws, so this was considered later in the integrative analysis. 

Roofs have many different designs and thus some are more capable of supporting an 

additional load such as a wind turbine. By consulting a structural engineer, we determined the 

types of roofs that could support rooftop wind turbines as well as the range of static and dynamic 

loads that a wind turbine will exert on a roof and how much a roof can handle. 

Finally, grid interconnectivity issues were considered. Utility companies restrict where and 

how rooftop wind turbines can be connected to the electric grid, so we determined the network 

types that are the easiest to connect rooftop wind turbines to, as well as the areas with those types 

of networks. We interviewed engineers at NSTAR to figure out what the restrictions are to 

interconnectivity and what types of locations would be most suitable. 

Once the details for wind characteristics, zoning regulations, structural integrity, and grid 

connection access were determined; we were able to figure out the criteria needed by a location 

to be feasible for installing rooftop wind turbines. We also formed a siting map using Google 

Earth based on these siting factors. We created layers for wind speeds at an altitude of 70 meters, 

grid types, historical locations, approved zoning districts, and avian habitats. We also included 

the locations of current wind turbine installations. 

 

3.2 Analysis of Rooftop Wind Turbine Attributes 

We examined the criteria for rooftop wind turbines that would make them more feasible, and 

then applied these criteria to current small wind turbine models to find several of the most 

feasible models. This was done to examine which, if any, of the small wind turbine models on 

the market would meet these criteria for feasibility. In order to accomplish this, we based our 

research on the following research questions: 

 

1. What are the theoretical performance limits for various types of wind turbines? 

2. Which turbine characteristics are likely to provide better power conversion in an urban 

rooftop environment? 

3. What are some examples of small wind turbines currently on the market or in 

development that meet these criteria? 

 

There are hundreds of wind turbine designs, and knowing how each design fares in and urban 

environment is important. A large majority of the wind turbines currently on the market are 

horizontal axis wind turbines (HAWTs), and their performance is well documented. Information 

on the performance of HAWTs was found in numerous studies, as well as interviews with 

engineers who worked on rooftop wind turbine projects in Boston. Vertical axis wind turbines 

(VAWTs) on the other hand vary widely in design. Unfortunately, the performance of different 

types of VAWTs is not documented well, even less so in urban environments.  However, we 

were able to find several studies that loosely addressed the issue of the theoretical performance 

of VAWTs. 

There are many technical criteria for wind turbines, such as dimensions of the blades, 

performance in turbulent wind, and startup wind speed. However, some of these criteria are more 
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critical to the feasibility of the turbine than others. We examined previous studies‟ work in 

classifying technical criteria for wind turbines in urban environments. This gave us a broad 

initial list of criteria to examine more closely. Even though their experience was chiefly with 

rural wind turbines, several employees at the DOER helped us start off our list with criteria that 

apply no matter where the wind turbine is located, such as blade diameter. 

Additionally, we interviewed several project managers and engineers from local urban wind 

projects about what technical criteria they looked at when choosing wind turbines and why. 

These projects were in different types of sites, as described in Section 3.1 This gave us 

information on how desired technical attributes may also change with location. This, combined 

with the fact that there weren‟t many installations, made us skeptical about any conclusions 

drawn from these interviews. Similar to our search of performance data the main challenge we 

ran into while researching preferred characteristics of rooftop wind turbines was the lack of 

information on VAWTs. Despite this, our research into other urban wind projects allowed us to 

get a rough idea of the preferred characteristics of HAWTs. 

In order for rooftop wind turbines to be feasible, the wind turbines must meet the criteria that 

are applicable to the specific site in mind. We first established general criteria that we could use 

to find the most suitable models. The DOER requested in the initial project goal that models 

should produce between 5 to 50kW. As we interviewed various stakeholders and our research 

progressed we established our remaining criteria, such as using models with a cut-in speed below 

7 mph. With these criteria in hand, we scoured online wind turbine databases, such as 

allsmallwindturbines.com, awea.org, and ecobusinesslinks.com, and compiled a list of all wind 

turbine models that met our criteria along with their technical specifications. This method had 

some flaws, since we could not locate all the models due to the vast amount of models available 

online. From the models that met our criteria we identified the most promising models based on 

their estimated power output, which we calculated using a standard method for calculating the 

energy harnessed by a wind turbine (SEW, 2009). The equation takes into account factors such 

as wind density and aerodynamic efficiency. The details of this equation can be found in Section 

4.2. This calculation gave us a consistent measure of the output for our wind turbine models. 

With the predicted power, we were able to sort our list of turbines to find the top candidates. 

From the top candidates we compared turbines against one another using the following 

attributes: 

 

1. Highest predicted power output 

2. Lowest start-up speed 

3. Lowest operating speed 

 

These attributes were chosen because our research had shown that these are the most important 

areas to consider when assessing a wind turbine.  The power output is of course essential if the 

turbine is to be used for power production, and lower start-up and operating speeds help 

guarantee that the turbine is producing power consistently. With the top turbines selected, we 

were able to perform an economic analysis on the models, as described in the next section, to 

determine if any of these models are economically feasible for rooftops. 

 

http://www.allsmallwindturbines.com/
http://www.awea.com/
http://www.ecobusinesslinks.com/
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3.3 Analysis of Rooftop Wind Turbine Economics 

The economics are another important attribute in determining whether a wind turbine is 

feasible, because even if a wind turbine meets the requirements of the technical criteria, it may 

be too expensive to realistically consider. Economic analysis is a well-established area, and so 

we examined several basic economic analysis methods from economic articles and books in 

order to gain an initial understanding of the process. After this initial research, we decided to use 

payback period as our sole metric for economic feasibility due to the nature of our study as well 

as time constraints. With this in mind, we developed several research questions concerning 

payback period. 

 

1. What payback periods are currently achievable by urban rooftop wind turbines? 

2. What range of payback periods do building owners require from a wind turbine 

investment? 

3. What can be done to reduce the payback period? 

 

We reviewed economic analysis methods in several wind turbine feasibility studies, such as 

the “Microgeneration in New Zealand” (Mithraratne, 2009) and “Micro Wind Turbines in the 

UK” (Peacock, Jenkins, Ahadzi, Berry, & Turan, 2007). In addition to this, we examined the 

methods used in several economic calculators such as the “Bergey Cash Flow Model” (Bergey, 

2009) and the “Danish Wind Energy Calculator” (DWIA, 2003). We learned from these sources 

that payback period requires the following information: 

 

 Power produced by the turbine 

 Cost of the turbine 

 Expected lifetime of the turbine 

 Cost of electricity 

 Rate of inflation of US currency 

 Amount provided by federal and financial incentives 

 Cost of installation (including transportation, mounting, etc) 

 Cost of yearly maintenance 

 

The cost of the turbine and expected lifetime were obtained on a turbine-to-turbine basis 

from the manufacturer. The cost of electricity in Massachusetts was obtained from the U.S. 

Energy Information Administration (US EIA, 2010) and the inflation rate was set according to 

data from the Bureau of Labor Statistics (BLS, 2010). Information on the incentives available for 

wind projects were attained through several interviews with several individuals at the DOER 

who had knowledge of state and federal incentives as well as from the “Database of State 

Incentives for Renewables and Efficiency” (DSIRE, 2009). Even with this information, we still 

had to make some assumptions, which are listed below and can be found in Appendix E. 

 

 Custom equation for calculating power 

 Installation is 80% of the cost of the turbine 

 Turbine produces 0.20% less energy each year 

 Electricity costs 16¢/kWh 
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 Yearly maintenance is $100:  We assumed a yearly cost of maintenance and loss in 

energy produced based on interviews with wind turbine manufacturers and installers. 

 Inflation is fixed at 2% 

 RECs are fixed at $30/REC 

 Arrays of turbines only add a small installation discount (depending on the size of the 

array) 

 

We assumed a value for the cost of installation at 80% of the cost of the turbine based on 

interviews with wind turbine installers and manufacturers, as well as an interview with a 

structural engineer. We had to assume a value because the installation cost depends on the effort 

required to get the turbine on top of the building as well as constructing a proper mounting 

system that must be integrated into that building. We also assumed a yearly cost of maintenance 

and loss in energy produced based off of interviews with wind turbine manufacturers and 

installers. A very small value was used for loss in energy production because while yearly 

maintenance should theoretically keep the turbine working at peak efficiency, interviews with 

various wind turbine owners reveals that this is not always true, so we decided it would be more 

accurate to assume a very small loss in production. Another major assumption is that with 

multiple turbines there is only a small discount on the installation cost of each turbine, based on 

how large the array is.  This assumption was based off very limited information from installers, 

as we found no studies discussing the economic benefits of arrays and so our calculation 

methods for arrays may not accurately reflect the cost of an actual array installation. As 

mentioned in Section 3.2 we calculated the power each turbine would produce. The equation 

used for this is explained in Section 4.2. Lastly, we assumed fixed values for the cost of 

electricity, inflation, and the cost at which renewable energy credits can be sold, which is simply 

unrealistic. However, it is very difficult to predict the changes in these values over time and this 

was out of the scope of our project.  

It is not enough to simply know the payback period of a wind turbine, but also what the 

acceptable payback period is for the people who may be installing them. Of course any wind 

turbine that has a payback period beyond its expected lifetime should not be considered, as it will 

never make enough money to justify its purchase. However, for the wind turbines that pay for 

themselves within their lifetime, we needed to know if their payback period was short enough to 

be considered for use on buildings. To accomplish this, we interviewed managers from real 

estate corporations including Hines, Massachusetts Convention Center Authorities and Boston 

Housing Authorities to find a range of acceptable payback periods, keeping in mind that wind 

turbines are a renewable source of energy and might have benefits beyond pure energy 

production. The only problem with these interviews was that they gave only the viewpoints of 

corporate building owners, and not any individual building owners, although corporations are 

more likely to have the initial capital required for such an expensive endeavor as a wind turbine. 

 

3.4 Social Concerns and Motivations to Rooftop Wind Turbine 

Installations 

Public support or opposition to any project is important because it has an impact on a 

project‟s approval and success. Therefore, we focused on determining any problems that current 

rooftop wind turbine installations in Boston have encountered. We also explored what would 
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motivate building owners to install rooftop wind turbines. In order to accomplish this, we based 

our research on the following important questions: 

 

 What sorts of building owners might be inclined towards rooftop wind turbine 

installations? 

 What reasons exist for installing rooftop wind turbines? 

 What complaints do people have against rooftop wind turbines? 

There are several social concerns of wind turbines that we identified both in our background 

research and our analysis of feasibility studies from other wind projects. These include: 

 

 Aesthetics, 

 Shadow flicker, 

 Noise, and 

 Disruption of wildlife. 

Different areas and buildings in a city have different social factors specific to them. For 

example, aesthetic and noise concerns may not be as problematic in an industrial area as in a 

residential neighborhood. Nearby residents may be concerned with the sights or noise created by 

a wind turbine. Some may also think about how wind turbines could affect the surrounding bird 

population. To ascertain these site specific social concerns, we asked the project managers 

mentioned in Section 3.1 what reactions they received from people concerning the rooftop wind 

turbine installations. 

Building owners are crucial in a rooftop wind turbine project‟s implementation. Any 

information and views that they may have about rooftop wind turbines affects their acceptance 

towards turbine installations. They may also have reasons besides energy production to install 

wind turbines such as publicity or education. As mentioned in Section 3.3 we interviewed three 

real estate corporations. This allowed us to draw conclusions on reasons for installing wind 

turbines as well as the types of building owners that may be more or less inclined to install 

rooftop wind turbines for varying reasons. 

 

3.5 Integrative Analysis 

After every objective had been explored, we brought together the results of each into an 

integrated analysis of the feasibility of urban rooftop wind turbines in Boston. In order to 

determine the essential criteria for rooftop wind turbines, we addressed the following research 

questions: 
 

 What are the most promising types of locations for rooftop wind turbines, taking into 

account the available technology, economics, and siting constraints? 

 What social barriers may hinder rooftop wind turbines either currently or in the future? 

 What factors make rooftop wind turbines more feasible either currently or in the future? 

 What information is unknown about rooftop wind turbines, and of these, which would be 

most beneficial? 
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By bringing all factors together, we were able to determine which types of locations in 

Boston are most desirable for rooftop wind turbines based on wind speeds, building types, and 

electrical networks and loads. With the results of this analysis, we were able to come to an 

overall conclusion of what conditions need to be met in order for rooftop wind turbines to be 

feasible in Boston. By considering possible changes in the future, we were able to compare and 

contrast how feasible wind turbines are now and how this feasibility would be altered in the 

future if certain factors change. This can allow the DOER to take the next steps leading to their 

objective of using wind power as an alternative energy source in Boston, and working towards 

the ultimate goal of reducing fossil fuel based energy use. 
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4 Feasibility Findings 

In this chapter we present the findings for our feasibility study of rooftop wind turbines in 

Boston. The general conclusion of our research was that rooftop wind turbines are not currently a 

viable source of power production in Boston, but changes in the future could have a significant 

impact on their feasibility. We begin with a siting study and argue that the largest problems are 

turbulent wind flow and NSTAR restrictions. We then provide a list of the turbines, which we 

believe are most suitable for rooftop installations in Boston. We also present an economic 

analysis which indicates that the payback periods for nominal cases are 14 to 48 years, which is 

not favorable, but that more favorable results can be envisioned for the future. Finally, we 

present views from real estate firms, project managers of existing rooftop wind turbines in 

Boston, urban wind turbine studies, and small wind turbine manufacturers on the social concerns 

and motivations regarding rooftop wind turbine installations. 

 

4.1 Site Study of Boston 

This section focuses on the major aspects that determine how suitable a specific site is for 

rooftop wind turbines: wind resources, zoning regulations, roof structure, and grid connection. 

Boston, being a coastal city, has sufficient wind speeds, but the density and variety of structures 

has a negative effect on the wind quality. Zoning laws restrict the size and noise of wind turbine 

installations. Also, the roof support needs to be strong enough to handle the static and dynamic 

loading caused by the operation of wind turbines. Interconnection to the electrical grid is another 

important challenge, especially in an urban area with complex networks that require special care 

to allow distributed generation. 

 

4.1.1 Wind Characteristics in Boston 

Adequate wind resources exist in Boston, but obstructions cause turbulent wind conditions, 

which can be avoided with increased elevation and proper siting. Based on the National Climatic 

Data Center the average annual wind speed for Boston at an elevation of 30 meters (98 feet) is 

5.54 m/s (12.4 mph) (NCDC, 2008). This meets the average wind speeds of 5.5 m/s (12.3 mph) 

or higher, which is recommended for wind turbines by Mithraratne (2009) and Cace et al. (2007). 

It should be kept in mind that this is only an average and varies with location, such as at the 

Museum of Science, where the Boreal Renewable Energy Development estimated an average 

wind speed of 5.09 m/s (11.4 mph) at 43 meters (141 feet) (Gross, Phelan, & AeroVironment, 

2006). It should also be noted that wind speeds increase as elevation rises and there are several 

equations that can be used to calculate this increase, a few of which can be seen in Appendix D. 

While averages are helpful, maps that show location-specific wind speeds provide data that is 

more useful for siting, such as the map in Figure 5 from the Geographic Information Survey, 

showing wind speeds in Boston at an elevation of 70 meters (230 feet) (MA GIS, 2007). The 

darker pink area to the right represents wind speeds of 6.5 to 7 m/s (14.5 to 15.7 mph), while the 

lighter pink area represents wind speeds of 6 to 6.5 m/s (13.4 to 14.5 mph). The purple outlines 

represent boundaries between higher wind speed area in pink and very low wind speed area in 

grey.  
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Figure 5 - Boston Annual Wind Speeds at 70 meters (used with permission from MA GIS, 2007) 

 

To fully understand the wind resources available in Boston, the effect buildings have on the 

wind flow must be assessed. Figure 6 shows how wind is affected while flowing over a building. 

The arrows represent the wind coming from the left side; long and bright arrows represent faster 

and more consistent laminar winds, while short and dark arrows represent slower and more 

irregular turbulent winds.  

 

 
Figure 6 - Wind flow over a building (used with permission from Mertens & de Vries, 2008) 
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The wind directly on the top of a building is weak and turbulent, but higher up the wind 

speed becomes stronger and laminar. In fact, this wind can be 20% faster than the wind in an 

open space in front of the building due to the compression of winds coming from several 

directions above the rooftop, equating to a 70% increase in potential energy (Mertens & de 

Vries, 2008). A rule of thumb also suggested by Mertens and de Vries (2008) states that the hub 

height of a wind turbine placed in the middle of a building‟s roof should be approximately half 

the width of the roof to capture this faster wind. In addition to this, several feasibility studies 

suggest that it is best to place the turbine away from obstructions upwind that are higher than the 

surface that the wind turbine is mounted on, such as other buildings. Although the exact distance 

is not widely agreed upon, conservative estimates state the distance from the obstruction should 

be about twenty times the height of the obstruction (Dutton et al., 2005). For example, a turbine 

on a 100 foot building would need to be 200 feet away from a 110 foot building that is upwind. 

Wake effect, the effect one wind turbine has on the wind supplying another turbine behind it, 

can be a significant challenge in creating arrays of wind turbines. When several wind turbines are 

installed in an array, they should be placed beside one another facing the prevailing wind 

direction, with at least three blade diameters in between each other. If one wind turbine must be 

placed directly behind another wind turbine, it should be at least five to nine blade diameters 

behind the front turbine, and even then there is about a 5% loss in efficiency for the rear turbine 

(DWIA, 2003). These requirements limit the number of wind turbines that can reasonably fit 

onto a roof, due to the limited area on a rooftop. 

Another issue, and perhaps the most important, is the capacity factor of a wind turbine at a 

given site. The capacity factor is the ratio of the actual power output in a real-world environment 

to the power output specified by the manufacturer. After examining reports and production from 

existing rooftop wind turbine sites in Boston, we found that their capacity factor was close to the 

5% average urban capacity factor suggested in several of the studies by Syngellakis, Robinson, 

& Carroll (2006) and Mithraratne (2009). The capacity factors for some of the wind turbine 

installations in Boston are as follows: 

 

 Harvard Soldiers Field Parking Garage: 6.2% 

 MOS Skystream: 9.55% 

 MOS Proven: 4.91% 

 MOS Windspire: 1.66% 

 MOS Swift: 0.66% 

 MOS AeroVironment: 0.49% 

 

It should be noted that the AeroVironment and Swift turbines at the MOS have been determined 

to be either faulty or sited poorly, so they are experiencing peculiarly low capacity factors. This 

also demonstrates that poor siting can severely impact a wind turbine‟s performance. Even 

though these seem to suggest a low overall capacity factor, a study in the UK by Syngellakis, 

Robinson, and Carroll (2006) has recorded capacity factors of up to 13.6%, indicating that better 

siting can result in superior performance. While the difference in capacity factor is discussed in 

the studies, the possible differences in siting that could have caused it are often not. It is clear 

that siting has the largest effect on the capacity factor of urban wind turbines, but a lack of 

information makes urban siting difficult and suggests that more research needs to be done in the 

area. With improved guidelines for siting wind turbines in urban areas, it may be possible to 
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increase the capacity factor to 15% or even higher, especially given the fact that many of the 

urban wind turbines in studies do not follow the siting guidelines we have determined. 

 

4.1.2 Regulations and Zoning Laws in Boston 

The zoning regulations in Boston have a relatively large impact on the installation process of 

wind turbines. These laws mainly affect the height and noise levels produced by a rooftop wind 

turbine in operation. They also list the areas in which rooftop wind turbines are allowed as well 

as other areas that have a conditional pre-approval.  

The specific laws regarding rooftop wind turbines in the Boston area are found in Article 88 

of the Boston Zoning Code and Enabling Act (BRA, 2009). As mentioned in Section 4.1.1, the 

height at which a rooftop wind turbine is placed can significantly impact the capability of the 

rooftop wind turbine. Regarding height, zoning laws within Boston places a height restriction on 

rooftop wind turbines of “forty-five (45) feet or twenty-five percent of the height of the building” 

(BRA, 2009). These height restrictions don‟t result in a considerable reduction in wind turbine 

performance since the height restrictions allow the wind turbine hub to utilize the favorable wind 

zones above the rooftop of most buildings. Federal Aviation Administration (FAA) regulations 

require “that a Notice of Proposed Construction be filed for any object that would extend more 

than 200 feet above ground level” (MTC, p. 1, 2007). This will likely include many wind 

turbines on buildings, which means that most potential installations will be subject to an 

aeronautical study by the FAA. The Massachusetts Technology Collaborative (MTC) describes 

this process as “daunting and highly complex” and suggests one “enlist the services of 

professional aviation consultants, and bring them into the process early in order to advise on the 

technicalities of FAA regulations” (MTC, pg. 4, 2007). While this raises another potential cost, 

the MTC states it is approximately $500, which is not significant considering the installations 

cost several thousands. 

Zoning regulations also restrict the noise created by a rooftop wind turbine, depending on the 

location it is placed in. The specific noise limits for different areas can be seen in Table 4. Based 

on these limits, the loudest noise a rooftop wind turbine would be able to produce is 50dB in 

order to be considered for all parts of the city. However, a wind turbine can have a noise limit of 

55dB if installed in a mixed-use residential/ industrial area or 65dB if installed in a business 

district. This only removes a few small wind turbines from consideration, as most small turbines 

produce less than 55dB of noise at their rated wind speed. 

 

 

Districts Residential Residential/Industrial Business Industrial 

Time of Day Daytime Other Times Daytime Other Times Anytime Anytime 

Sound Limit (dB) 60 50 65 55 65 70 

Table 4 - Noise regulations in Boston 

 

Prior to installing a rooftop wind turbine an installer or owner must take some additional 

steps to insure that he/she abides with the zoning laws. One such example is, “the applicant shall 

provide a copy of the project summary, electrical schematic, and site plan to the Boston Fire 

Department.” These additional considerations also take into account the impact of the turbine on 

nearby property, as indicated by the provision “wind energy facilities shall be sited in a manner 

that minimizes shadowing or flicker impacts.” While these additional considerations are an 
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important part of the siting process, they are too numerous to list here, and the reader should 

consult Article 88 for further information. 

Lastly, the zoning laws state several districts in Boston that specifically allow rooftop wind 

turbines:  

 

 General Industrial 

 Maritime Economy Reserve 

 Waterfront Industrial 

 Waterfront Manufacturing 

 

They also specify districts, which have a conditional pre-approval and thus require extra 

documentation in order to get a final installation approval. This list can be found in Appendix F. 

It should be noted that wind turbines could be placed on any building with a height of over 300ft 

in all districts in Boston, as long as the turbine is rated at or below 6kW (BRA, 2009) 

 

4.1.3 Structural Integrity of Roofs 

For a building to fully support the static weight of rooftop wind turbines, the turbine pole 

should be secured to the column supports of a building. After consulting a structural engineer 

from Parsons Brinckerhoff, we found that these column supports can easily support loads up to 

10,000 lbs, which is not exceeded by any turbine rated from 5 to 50kW. However, some roofs 

are not supported with columns, such as that of Boston Convention Center, which is supported 

by trusses. It is difficult to secure the wind turbines to roofs that have trusses, due to the fact that 

trusses often cannot sustain the same weight loads as roofs supported with columns. Therefore, 

these types of roofs should only be considered for lightweight rooftop wind turbines. However, 

columns support most high-rise buildings and buildings over four stories, which include most of 

the buildings within the center of Boston. 

There are a few obstacles that can make mounting rooftop wind turbines a challenge. For 

some buildings, the overturn force can be too severe to keep the rooftop wind turbines from 

falling over. This overturn force is caused by wind hitting the wind turbine, which creates a 

bending motion along the pole. Thus, guy wires should be used to secure the wind turbines to the 

roof; these wires are cheaper than a self-supported pole, but take up more space. Guy wires help 

counteract the overturn force, and also require less support at the base of the turbine pole when 

compared to self-supported poles. 

Vibration can be another challenge with rooftop wind turbine installations. The wind turbines 

need to be directly connected to the main frame of the structural support of the roof in order for it 

to be completely secured and to minimize the risk of the turbine falling over. It is required that 

the turbine pole penetrate 20-60 cm below the roof and have rubber buffers or other types of 

vibration insulation to ensure that the vibration caused by the turbine‟s operation does not 

compromise the structure of the building it is on (Shaw et al., 2009).  

Historical buildings present another type of challenge for mounting rooftop wind turbines. 

According to the Boston Landmarks Commission, which preserves historic sites throughout 

Boston, there are a few things that need to be done prior to installing a wind turbine to the roof of 

a historical building. If a proposed building is over than 50 years old, then a permit from the 

Boston Landmarks Commission is required. The site must meet the following criteria in order to 

be granted this permit: 
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 The rooftop wind turbine must be visually compatible with the historical property 

 The wind turbine should not damage the roof via vibration or weight 

 It should be possible to remove the turbine without leaving any former presence on 

the roof. 

 

4.1.4 Grid Interconnectivity 

The supplier of Boston‟s electrical energy, NSTAR, has numerous restrictions regarding the 

interconnection of distributed generation (DG) sources, presenting challenges for rooftop wind 

turbines to be connected to the electrical grid. The three types of electrical networks in Boston 

are radial, area, and spot networks, as explained in Section 2.5.4. Radial networks are common in 

suburban and rural areas and present very few challenges when connecting a DG source. 

Therefore, we saw no need to address connection to radial networks, as this is straightforward 

with few restrictions. Area networks are used in many urban areas and present nearly 

insurmountable challenges for DG. Because of these complications, there is currently no way to 

connect a wind turbine to an area network – an attribute of these types of networks that NSTAR 

would have to address. This leaves spot networks, which are found among area networks in 

urban environments, often connected to high-rise buildings, hospitals, and in general, most 

buildings above four stories in height. Spot networks present more challenges than radial 

networks, but can still be connected to, unlike area networks.  

The main challenge for spot networks is that NSTAR will typically not allow a DG source to 

produce more than 1/15
th

 of the building‟s minimum load. This limit is set in place to provide a 

safety factor to ensure that network protectors remain closed. The main concern for NSTAR is 

providing reliable and safe energy, because as an electric utility provider, they have an obligation 

to provide dependable service to their customers. Network protectors can be activated with 1-2 

kW of reverse power, potentially leading to a power outage in the building and unsafe conditions 

for utility workers. 

 Despite this low allowance, 1/15
th

 of a typical office building‟s electrical load is a sizeable 

amount to be generated due to the extremely high loads of these buildings. However, in times of 

low electricity consumption such as late at night or on weekends, the 1/15
th

 limit could become a 

problem. On top of this, the load demand can be measured in 15-minute intervals. The 

fluctuation in power produced at different time intervals can further compound the 1/15
th

 limit. 

Additionally, NSTAR requires that any DG source must be connected to an IEEE and UL 

certified inverter prior to being connected to the grid. This is also done to prevent unreliable and 

unsafe conditions within the network. Since most manufacturers provide an inverter with their 

model, the only concern is to make sure the supplied inverter is IEEE and UL certified.  

Utility companies across the country have looser regulations on DG and several allow DG to 

produce 30% to 50% of the building‟s minimum annual load (NSTAR, 2010). Currently 

NSTAR, IEEE and other stakeholders are in the process of changing the restrictions on DG. This 

could potentially lead to a higher limit on the power production of DG in Boston. NSTAR 

believes these restrictions will be finalized sometime within 2010. 
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4.1.5 Integrative Siting Map 

Wind turbine siting conditions vary throughout Boston, so to aid us in determining suitable 

sites, we developed an interactive map using Google Earth that contains layers with information 

on different siting aspects including: 

 

 Wind speeds at 70 meters, 

 Electrical networks, 

 Historical areas, 

 Approved zoning districts, and 

 Avian active areas. 

 

Figure 7 shows a map with all the overlapping layers. This map can be useful to determine if a 

specific site is favorable for wind turbines. By considering each layer, which represents a 

different siting factor of rooftop wind turbines, it is possible to determine what is good about a 

site and what needs consideration.  

 

  

 
Figure 7 - Integrative Map of Boston Siting Factors 

 

In Figure 7, the dark purple area to the right indicates higher average wind speeds than the 

lighter area to the left, due to its proximity to the ocean. These wind speeds can indicate sites 

with particularly good wind resources that are more favorable for wind turbines. The red shaded 

area is where area networks are located. There are many spot networks within this region, but 

due to security reasons, NSTAR was unable to provide us with their specific locations; these can 

be explored on a case-by-case basis. The avian habitats were located with maps provided by the 
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Massachusetts Audubon Society and show areas where wind turbines might disrupt local 

wildlife. However, none of these areas are present in the figure. The blue shaded regions picture 

historical areas, and zoning districts approved by Article 88 are the dark brown regions along the 

waterfront. This information was found with the help of the Boston Landmarks Commission and 

marks areas that are subject to stricter restrictions on such sites, as discussed in Section 4.1.3. 

Individual layers of the map can be seen in Appendix B. 

 

4.2 Comparison of Rooftop Wind Turbine Models 

In this section we explain how we determined a list of promising turbine models based on a 

comparison of their characteristics. We also explain how we used a performance analysis tool to 

come up with the list of promising turbine models within three distinct divisions.  

Theoretically, vertical axis wind turbines (VAWTs) are more suited for turbulent areas, but 

in practice current models of horizontal axis wind turbines (HAWTs) tend to be more efficient. 

During our interview with the project managers at the Boston Museum of Science they provided 

data of the different rooftop wind turbines they have installed. Based on the data the Skystream 

wind turbine, a HAWT, proved to be most efficient, while the Windspire wind turbine, a VAWT, 

performed poorly. Both turbines were installed on the same roof, although the difference might 

be due to siting. We also talked to an associate from the CADMUS group, who confirmed that 

VAWTs do not currently perform better than HAWTs on roofs even in a turbulent environment. 

This warrants more research and development into the efficiency of VAWTs in urban 

environments, since it appears their actual performance doesn‟t currently hold up to their 

theoretical performance.  

We examined the small wind turbines currently available and classified which types would 

be best suited in the urban environment of Boston. We compiled data from multiple online 

databases and listings to obtain a listing of about 480 small wind turbines, of which 400 were 

HAWTs and 80 were VAWTs. We understand that there are more turbines available; however, 

we concentrated on the models, whose information was readily available online. The major 

manufactures of small wind turbines existed in the Netherlands, the United Kingdom, the United 

States, Canada, and China. These countries each had about five to ten manufacturers; other 

countries also produced turbines, but tended to only have one manufacturer. It was important to 

note the country in which the turbines were manufactured, since shipping could add a significant 

cost to the initial cost. We also observed that the manufacturers in the Netherlands and the 

United Kingdom have been in the industry for the longest time and have had more time to 

perfect their designs. For example Proven Energy, which is based in the United Kingdom, has 

been in the industry for almost 30 years. Proven has utilized this time to improve all aspects of 

their designs, such as their blades on HAWTs, which have hinges that allow for better 

performance in turbulent and high wind conditions. 

Since there are many variations in the designs of rooftop wind turbines, we decided to 

separate the overall list into three distinct divisions:  

 

 VAWT 

 HAWT with a diameter between 7-25 feet 

 HAWT with a diameter between 26-50 feet 
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These divisions were formed due to the fundamental differences between VAWTs and HAWTs 

as well as the difference in performance of HAWTs with varying blade diameters. This division 

also provides a variation of designs that may suit different sites. Following this division we 

created criteria to reduce the turbine model list to provide models best suited for Boston. The 

criteria we used are as follows: 

 

 Blade diameter: under 50 feet (only for HAWTs) 

 Power rating: 5-50 kW 

 Cut in speed: at or below 7 mph (3.1 m/s) 

 Weight: at or under 10,000 pounds 

 Noise: at or below 55 dB 

 

We chose the above criteria to allow for an array to be installed since it takes the available 

space limitations, zoning requirements, wind conditions and weight restrictions into 

consideration. The square of the radius of HAWTs is proportional to the amount of energy they 

can capture from the wind. However, blade diameter shouldn‟t get so large such that it wouldn‟t 

allow the turbine to fit on the rooftop or cause wake effect. This aspect of wind turbine design 

was important in guiding us to choose the appropriate blade diameters which would allow for 

maximum power production on the limited roof area.  

As mentioned in Section 4.1.3 wind turbines weighing 10,000 lbs or less will not damage a 

typical roof of a high-rise building. The DOER is interested in offsetting the energy loads of 

buildings in Boston, and since high-rise buildings have loads of several thousand megawatts, a 

wind turbines rate for 5-50kW could provide this offset if placed in an array. We did not add 

height to the criteria, since installers will install any height that the building owner asks for, 

provided it is reasonable. Since the average wind speed in Boston is 5.54 m/s (12mph), we chose 

3.1 m/s (7 mph) as a limitation for cut-in wind speeds.  

From these criteria we were able to reduce the list to 93 turbine models; 15 of these models 

were VAWTs and the rest were HAWTs. This list is provided in Appendix C. The rated power 

and cut in speed ended up being the criteria that eliminated most of the models. The noise and 

blade diameter only eliminated about four models each. The weight criteria did not eliminate any 

of the models. Another major reason that models were eliminated was due to missing 

information and discontinued models. Additionally, some manufacturers did not provide 

adequate information for us to use them in our comparison. We attempted to call these 

manufacturers; however, many were not reachable or there was no contact information on their 

websites. If we could not find the cut-in speed or the blade diameter of a wind turbine model, it 

was eliminated. We made sure to keep all the discarded models to inform future studies. 

To show the performance of a specific wind turbine manufacturers provide a power rating as 

well as a power curve for each model. The power rating represents the power the wind turbine 

produces at the nominal wind speed or the production wind speed. The power curve shows the 

various power outputs that are obtained at different wind speeds. We originally thought we 

would use the power curves of different models and compare the power production of each based 

on the average wind speed in Boston. However, during our research and interviews with the 

Boston project managers in Boston, we discovered that the power ratings and power curves do 

not always match the performance characteristics reached in testing. This can be seen in Figure 

8, which is from the Warwick trials in the United Kingdom (Warwick, 2009). The red line 

represents the manufacturer‟s power curve, and the blue dots represent wind speed and power 
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measurements taken at 10-minute intervals over approximately 270 days. Although the tested 

values almost agree with the power curve at lower wind speeds, at higher wind speeds this is not 

the case. In fact the turbine is rated at 600W, but the power only reaches about 300W. The MOS 

data also showed that the actual performance results for some of the wind turbines varied from 

the actual power curves. A few of their installed turbines matched the power curves almost 

exactly, but many didn‟t. Due to the inconsistency of the data provided by the manufacturer and 

real-world data, we decided to seek an alternative means to compare the power performance of 

the various models.  

 

 
Figure 8 - Warwick wind trial power curve (used with permission from Warwick Wind Trials, 

2009)  

 

To compare the performance of the remaining 93 turbine models we estimated the power 

produced by each model using the power equations. For HAWT models we used the following 

equation and incorporated the capacity factor to it (Menet et al., 2000): 

 

P
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where 

r is the wind turbine rotor radius, 

vw is the wind speed, 

ρair is the mass density of air, 

Cp (λ,θ) is the aerodynamic efficiency, a function of the blade,  

 pitch angle θ, and tip speed ratio λ, 

CF is the capacity factor, the actual power output over the rated power 

 

 

Using our wind speed calculator, which is presented in Appendix D, we were able to estimate an 

average wind speed at 145 meters, by using the average speed of 5.5 m/s at 70 meters from the 
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study conducted by Boreal for the Museum of Science. We found that the wind speed at 145 

meters is approximately 8.5 m/s. We added 20% to this, the percentage that is gained from 

proper siting on a roof, and got 10.2 m/s for our calculations. The air density at sea level is 1.23 

kg/m
2
 and the power coefficient can reach a max of 0.593, known as the Betz Limit, so we 

assumed these values for our calculations. We also assumed a capacity factor of 15% for 

HAWTs with adequate siting in an urban environment.  

Assuming the power coefficient at a fixed rate for all the turbines is a cause for error, since 

power coefficient varies for different airfoils. Another reason this calculation is not completely 

accurate is because it does not take into consideration the efficiency of the generator, 

gearbox/bearings, or power electronics of the different wind turbine models. This could be a 

problem, since the only variable that changes when using this equation is the swept area of each 

model, which is a function of the diameter. 

We were able to find power equations for VAWTs, including one for Darrieus models and 

one for Savonius models (Menet et al., 2000). However, we were unable to find the equations for 

all the different VAWT designs, such as H-rotor, and we did not have numbers for the different 

variables. Therefore, we compared the VAWT models based on the power ratings. 

To determine promising turbine models in each of the three categories we used a spreadsheet 

to sort the turbines by power produced (or rating for VAWTs), then by cut-in speed, and finally 

by production speed within each division. From this we chose the top five models within each 

division, which are shown in Table 5. 
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Type Manufacturer 

Rated 

Power 

(kW) 

Annual 

Power 

Production 

(kWH) 

Cut-in 

Speed 

(mph) 

Production 

Speed 

(mph) 

Diameter 

(ft) 

VAWT 

Venco Power GmbH 50 N/A 5.6 26.8 39.37 

Windports 20 N/A 5.6 32.44 14.44 

Ropatec AG 20 N/A 6.7 N/A 26.25 

WePower 12 N/A 6 29 20 

UrbanGreenEnergy 10 N/A 4 12 N/A 

HAWT 

(7-25) 

A&C Green Energy 10 5,562 6.7 24.6 25 

Altem Power 10 5,386 5.6 24.6 24.6 

Aeolos Wind Energy 10 5,386 6.7 22.3 24.6 

Abundant Renewable 

Energy 
10 4,957 6 23 23.6 

Century Wind Energy 12 4,753 4 22.4 23 

HAWT 

(26-50) 

Hannevind 30 15,454 4.4 20 42.7 

Hannevind 22 15,454 4.4 20 42.7 

Nanjing Supermnn 

Industrial 
50 15,454 6.7 26.8 42.7 

Aventa Ltd 6.5 14,443 4.47 13.4 41.28 

Aeolos Wind Energy 30 14,248 6.7 22.3 41 

Table 5 - Top turbine candidates based on theoretical performance 

 

We noticed from our calculations and the above table that some models, especially in the 26-

50 ft range, produced similar annual power productions despite the fact that their power ratings 

varied greatly. We already established that manufacturers do not always provide accurate power 

ratings, but we think that this does not fully explain why a 6.5kW and a 30kW rated wind turbine 

would have the same blade diameter and thus provide almost equivalent annual power 

production. This is just one of the more extreme cases, but this applies to many of the models we 

compared. Our calculations could be much more accurate if the manufacturers provided 

efficiency ratings for their airfoils, generator, gearbox/bearings, and power electronics. If these 

values were known, they could be incorporated into the power equation. With the revised power 

equation the models would likely agree more with the power ratings. 
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4.3 Economic Analysis of Rooftop Wind Turbines 

Currently, the biggest barrier to introducing rooftop wind turbines to Boston is the lengthy 

payback period. Like any investment, wind turbines need to be economically viable. However, 

small wind turbines have a high cost that is not adequately offset by their low power production, 

unlike larger scale wind turbines. While government incentive programs offset this cost a bit, 

currently available rooftop wind turbines will not generate enough energy to be considered 

economically sound based on their cost. Despite this, there are several changes that could make 

wind turbines economically feasible in the future, such as more efficient turbine designs or 

increased cost of electricity. 

To analyze the economic factors involved in installing a rooftop wind turbine, we created an 

economic analysis tool using Microsoft Excel that could be used in conjunction with our list of 

wind turbines. We did this because the economic calculators we found were either too 

complex/confusing or too simple to be of use to us. Additionally, creating our own calculator 

allowed us to integrate it into our database of small wind turbines. This calculator takes into 

account all the major factors, including the cost of the turbine, installation, maintenance, and loss 

in turbine productivity, all of which can be seen in Figure 9. The beige cells require input from 

the user, while the green inputs are automatically taken from the turbine list. We chose the 

Nanjing Superman LS-10kW horizontal wind turbine for the economic analysis presented in this 

section because it was one of the turbines with a relatively short payback period. The attributes 

of the LS-10kW can also be seen in Figure 9. Each input to the economic analysis tool is 

discussed in further detail in Appendix E. Measured against other economic calculators, as 

discussed in the methodology, our calculator gave results that differed only 2-5% from the 

results from similar economic calculators, and so we were confident in its accuracy. However, 

there were some areas where assumptions were required, the most important being a capacity 

factor of 15%, which is achievable according to several of the studies we found. Additionally, we 

assumed that an array of three wind turbines was being installed because it was more 

economically viable. The other assumptions are outlined in Section 3.3 and in Appendix E. 

 

 
Figure 9 - Factors taken into account when evaluating economic viability. 
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In addition to the inputs from the user, such as the turbine rating and estimated energy 

production, our calculator also factors in the numerous economic incentives available in 

Massachusetts, such as the Production Tax Credit. The list of incentives taken directly from the 

calculator is shown in Figure 10, with the column on the right displaying the value each 

particular incentive is providing the project. A detailed description of each incentive available for 

small wind projects can be found in Section 2.2. One major factor to note for the incentives is the 

“Price per Renewable Energy Credit” is subject to change as demand for Renewable Energy 

Credits (RECs) increases or decreases. 

 

 
Figure 10 - Government incentives taken into account in economic calculator 

 

Our calculator processes all the input and provides the user with a graph displaying the net 

present value of the investment for the lifetime of the turbine. Net present value is how much 

value the wind turbine has generated minus how much the wind turbine has cost up to a 

particular time. Additionally, the calculator also displays the net present value of an equivalent 

investment into a savings account with a user defined interest rate to see if the savings account 

might be a wiser investment than a wind turbine. This is then compiled into a graph similar to the 

one shown in Figure 11. The graph shows the net present value of the rooftop wind turbine in 

blue, alongside the net profit from the savings account investment in red, over the wind turbine‟s 

expected lifetime. This type of comparison to a savings account is done by many corporations to 

examine how a potential investment matches up to simply keeping the money in a bank, although 

fairly high interest rates are often used, in this case 6%. The point at which the wind turbine‟s net 

present value crosses the x-axis is the point at which the turbine has paid for itself, and therefore 

the time it took to reach that point is the payback period. Table 6 lists the payback period and key 

assumptions for this initial examination. 
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Figure 11 - Net present value of a wind turbine investment compared to a savings account 

investment 

 
Capacity Factor 15% 

Cost of Electricity 16¢/kWh 

Cost of RECs $30/REC 

Payback Period 14.1 years 

Table 6 - Payback periods and assumptions in the calculations for Figure 11 

 

With this calculator, we found that all of the eligible wind turbines we had in our list had 

payback periods ranging from 14 to 48 years. This was either beyond the expected lifetime of the 

wind turbine, or was simply too long for many building-owning corporations. Hines and the 

Boston Housing Authority, for example, are looking for investments with a maximum payback 

period of seven years and twelve years respectively. 

Rooftop wind turbines may not be economically feasible currently, but several factors could 

change in the future which might have a large impact on the average payback periods. The most 

obvious answer is more power output, which will lead to more electricity being sold, which is the 

largest yearly income factor for rooftop wind turbines. The low power output of current wind 

turbine models is primarily due to the low capacity factor discussed in Section 4.1.1, which we 

use to predict how much power a wind turbine would produce in an urban environment, as 

discussed in Section 4.2. However, the capacity factor in some studies has been as high as 15%, 

and can likely increase due to exceptional siting and improvements in small wind technology, 

leading to enhanced performance. The effect of increased capacity factor can be seen in Figure 

12, which shows the net present value of a wind turbine investment with a capacity factor of 

10%, 15%, 20%, and 25%. Table 7 shows the large effect even small changes in capacity factor 

can have on payback period. This large increase is due to the additional sale of electricity and 

RECs, which are proportional to the power produced. This is below the twelve-year threshold for 

many building-owning corporations, and shows that even a minor increase in capacity factor can 

produce a significant improvement for the payback period. This increased capacity factor might 

also be achieved in the near future, as opposed relying on large jumps in the prices of electricity 
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or RECs. As discussed in Section 4.1.1, capacity factor for some sites has reached around 14% 

currently, and this can be further increased by research into urban siting methods and technology. 

 

 
Figure 12 - Net present value given varying capacity factors 

 
 

Capacity Factor 10% 15% 20% 25% 

Cost of Electricity 16¢/kWh 16¢/kWh 16¢/kWh 16¢/kWh 

Cost of RECs $30/REC $30/REC $30/REC $30/REC 

Payback Period 23.5 years 14.1 years 10.1 years 8 years 

Table 7 - Payback periods and assumptions in the calculations for Figure 12 

 

Another possibility is that the price of electricity will increase, increasing the value of energy 

generated by a wind turbine. Currently, the price for electricity in Boston averages around 16 

cents/kWh (US EIA, 2010). If this were to increase, the annual income generated by a wind 

turbine would increase as well. Figure 13 below shows the net present value for a wind turbine 

installation with the cost of electricity at 16¢, 18¢, 20¢, and 25¢/kWh, although the U.S. Energy 

Information Administration‟s predictions deem the latter cost very unlikely in the near future 

(US EIA, 2010). It can be seen in Table 8 that while the price of electricity does have a 

substantial impact on the economic value of a wind turbine installation, the price per kWh would 

have to change drastically in order for the payback period to be significantly lessened. 
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Figure 13 - Net present value with varying electricity costs 

 
 

Capacity Factor 15% 15% 15% 15% 

Cost of Electricity 16¢/kWh 18¢/kWh 20¢/kWh 25¢/kWh 

Cost of RECs $30/REC $30/REC $30/REC $30/REC 

Payback Period 14.1 years 12.6 years 11.4 years 9.2 years 

Table 8 - Payback periods and assumptions in the calculations for Figure 13 

 

Another potential change that might make wind turbines more economically feasible would 

be in the number or amount of government incentives offered for small wind projects. After 

speaking with several individuals at the DOER, we found that we could not rely on new 

incentives being introduced at the time this report was written, and so we examined possible 

increases in current incentives. Currently, one of the larger incentives is the Federal Investment 

Tax Credit, which is equal to 30% of the initial cost of the project. This incentive covers a 

sizeable portion of a wind turbine investment, but is unlikely to increase in the near future, as it 

was instated in 2008 and is scheduled to last until 2016. This leaves the next largest incentive, 

the Renewable Portfolio Standard, which sets a demand for RECs. As stated earlier, the price of 

RECs is based on market demand, so if demand goes up, the increased price of RECs might help 

make rooftop wind turbines economically feasible. Figure 14 shows the effect of increases in the 

price of RECs, namely at $30, $35, $55, and $70/REC. Table 9 shows that while an increase of 

the price of RECs can help reduce the payback period of a wind turbine project, even large 

increases are not enough to make such a project economically feasible. Also, as mentioned 

earlier, the price of RECs changes with the market, and so can change drastically over the life of 

a project, meaning it is probably not a stable enough base to justify a rooftop wind turbine 

project. 
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Figure 14 - Net present value given varying REC prices 

 
 

Capacity Factor 15% 15% 15% 15% 

Cost of Electricity 16¢/kWh 16¢/kWh 16¢/kWh 16¢/kWh 

Cost of RECs $30/REC $35/REC $50/REC $70/REC 

Payback Period 14.1 years 13.7 years 12.5 years 11.3 years 

Table 9 - Payback periods and assumptions in the calculations for Figure 14 

 

Out of all the factors that could result in the biggest reduction in payback period, capacity 

factor is clearly the largest, although a combination of all the factors discussed would have a 

compound effect. Figure 15 shows the effect of a modest increase in capacity factor, cost of 

electricity, and price of RECs. These numbers were chosen because they are small enough 

changes from current real-world values that they could theoretically happen in the near future. 

Table 10 shows that small changes in urban wind turbine capacity factor, the cost of electricity, 

and the price of RECs can have an overall more substantial impact on the economic feasibility of 

rooftop wind turbine projects than a large change in only one of those factors. 
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Figure 15 - Net present given an increase in capacity factor, price of electricity, and price of 

RECs 

 
 

Capacity Factor 15% 25% 

Cost of Electricity 16¢/kWh 18¢/kWh 

Cost of RECs $30/REC $35/REC 

Payback Period 14.1 years 7 years 

Table 10 - Payback periods and assumptions in the calculations for Figure 15 

 

 

4.4 Social Opinions Regarding Rooftop Wind Turbines 

During our research, we asked project managers about the social concerns people expressed 

towards their rooftop wind turbines. We found that flicker was the only major social concern. 

Also in the process we learned that rooftop wind turbines are not installed for only power 

production but also for demonstration and educational purposes. 

 

4.4.1 Social Concerns of Rooftop Wind Turbines in Boston 

From the interviews with the project managers at Harvard and the Museum of Science, we 

found that pedestrians and people driving by gave positive reviews of the wind turbines, but 

residents in nearby buildings were not all pleased. MOS interviewed numerous residents from 

distant residential complexes prior to installation. They received no objection to the installation 

and still have not received any complaints. Harvard received mixed reviews from the public and 

residents in its vicinity regarding their two wind turbines at the Soldiers Field Parking Garage. 

The project managers mentioned that they received compliments and praise from numerous 

people who have seen the wind turbines, including drivers on the nearby Massachusetts 

Turnpike. However, they also received a few complaints from neighboring residents regarding 

the shadow flicker during the time of the day that the wind turbines were in between the sun and 
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their windows. Besides flicker, there were no complaints of the aesthetics, noise or vibration 

from the turbines. However, since none of the installations in Boston are installed on residential 

buildings, it is not certain if people would complain about these factors in the future. 

In speaking with the Massachusetts Audubon Society, we were informed that small urban 

wind turbines are not a major concern regarding avian activity. Rare and endangered species are 

uncommon in Boston, while there are a lot of non-native species. However, the Audubon is not 

concerned with non-native species so there is no concern for deaths. Wind turbines may also 

interrupt the routes of birds; therefore, a potential installer should avoid known avian nesting and 

breeding grounds as well as migration routes. Wind turbines provide more of a negative effect to 

bats. This is mainly due to the pressure difference caused by their rotating blades, and this 

difference in pressure can damage the lungs of bats. Despite danger posed by the spinning 

turbine blades on bats, there is currently very little information and research into this issue. 

 

4.4.2 Social Motivations for Installing Rooftop Wind Turbines 

During our research in Boston, we noticed that many rooftop wind turbines were not installed 

for power production purposes. In fact, the existing rooftop wind turbines have been installed 

mainly for educational purposes or to demonstrate a commitment to renewable energy. This is 

supported by an article from the United Kingdom, which illustrates the different motives people 

had for installing urban wind turbines. These motives are seen in Figure 16.  

 
Figure 16 - Reasons for installing urban wind turbines (used with permission from Syngellakis, 

Robinson, & Carroll, 2006) 

 

From this information it shows that education is currently the most prominent reason for 

installing urban wind turbines, followed by environmental reasons and improving the image of 

an organization. They were barely considered for financial gain. 

From our interviews with project managers in Boston, this information was confirmed to an 

extent. Only a few of the installed rooftop wind turbines are producing enough energy to make a 
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noticeable difference in the energy consumption of their corresponding building. Organizations 

have installed rooftop wind turbines for other reasons, including demonstration and education. 

The Holyoke Center at Harvard University in Cambridge is one example of this motive. We were 

told that this array of 1kW wind turbines is purely a demonstration of Harvard‟s commitment to 

renewable energy. This display of commitment may make a good impression for an organization, 

even if it involves taking a financial loss. Rooftop wind turbine installations can also provide a 

means to motivate others to pursue renewable energy. 

Another rooftop installation with a similar motivational purpose is a 1.9kW wind turbine on 

the roof of Boston City Hall. When we spoke with someone at City Hall, they told us that the 

turbine is not connected to the grid, but instead a light bulb. Since it is on a well-known 

government building in a socially active area, it is possible that it will have a large social impact 

by helping wind power become known as a renewable source and making a good name for the 

local government. 

With the current lack of knowledge about the performance of small urban and rooftop wind 

power, education is another purpose for rooftop wind turbines. The Boston Museum of Science 

is one such example, as they have five different types of wind turbines on their roof. This was 

done to gain further information about the rooftop potential of current wind turbine models. Each 

wind turbine has been monitored since they were installed and the collected data is available to 

the public. 

With improving research and technology in the small wind energy field, many improvements 

could be made to make rooftop wind more efficient. More efficient wind turbines could lead to 

more installations and an increased awareness and knowledge of small wind. This information is 

a key part of determining the current and future feasibility of rooftop wind turbines. However, 

social support or opposition can be the deciding factor, especially when it influences the opinion 

of the stakeholders that might install the wind turbines. 
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5 Conclusions and Recommendations 

This chapter summarizes our results and presents recommendations regarding rooftop wind 

turbines in Boston. First, we make the case that rooftop wind turbines are currently not feasible 

in Boston, primarily due to the low capacity factor typical in urban environments. Next, we argue 

that the capacity factor may change due to improved siting or use of VAWTs instead of HAWTs, 

and we suggest several siting criteria for rooftop wind turbines. Finally, we recommend areas of 

research and development that the DOER can look into in order to work towards a future where 

rooftop wind turbines are feasible in Boston. 

 

5.1 Conclusions 

The primary factor limiting the feasibility of small wind turbines is the low capacity factor 

in an urban environment. 

Out of the many studies we found, the average capacity factor for rooftop wind turbines was 5%, 

with the highest being 14%. This suggests that a good site can achieve at least 14%, and can 

likely achieve an even greater capacity factor considering that small rural wind turbines have an 

average of 20-35%. Additionally, improvements in technology could also increase this capacity 

factor even further, especially for VAWTs, which are currently behind HAWTs in terms of 

research. This poor performance is currently a major factor restraining the feasibility of small 

urban wind turbines and can be accounted for mostly in the siting of the wind turbines. An urban 

environment offers wind that is for the most part turbulent, and careful siting is required to avoid 

this turbulence. 

 

A combination of increased capacity factor, price of electricity, and/or value of RECs could 

make rooftop wind turbines more economically feasible in Boston in the future. 

The low capacity factor achieved in an urban environment is the main hindrance in rooftop wind 

turbine feasibility; however, it is not the only factor affecting it. The price of electricity and cost 

of RECs also affect how much income is generated from energy produced with a wind turbine. 

These three factors have the largest affect on the economic feasibility of rooftop wind turbines. 

Using realistic values for these factors in the present, we were able to conclude that small 

increases in each of them could significantly reduce the payback period of rooftop wind turbines, 

making them more economically feasible. The current scenario is shown below along with this 

optimistic future scenario. 

 

 Capacity 

factor 

Price of 

electricity 

Value of 

RECs 

Annual 

production 

Payback 

period 

Current 15% 16¢/kWh $30 17MWh 14.1 years 

Future 25% 18¢/kWh $35 29MWh 7 years 

Table 11 - Current and future economics overview 

 

Certain areas and buildings types are particularly promising for rooftop wind turbines. 

We came up with several criteria that can help narrow down potential wind turbine sites, and 

applying these to Boston we have found that the financial district and waterfront area are both 

sites with good potential. The criteria we developed suggest that a potential building should be: 
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 Above 150 feet tall 

 Have a roof at least 5,000 square feet 

 Supported by columns which the turbine can be attached to 

 Taller than buildings upwind 

 Not in a historic district 

 Not in or near an avian habitat 

 Connected to either a spot or radial network 

 Preferably commercial, waterfront, or industrial area 

 

Turbine power ratings and power curves provided by manufacturers do not always match 

real-world values due to a lack of standards for reporting such data. 

Many studies have shown that real-world data from small wind turbines does not always agree 

with the power curves and ratings provided by wind turbine manufacturers. This makes choosing 

turbines challenging, since it is difficult predict performance. This inconsistency is due in part to 

the lack of any standardization process or third party verification of the data provided by 

manufacturers. If standards were created, and an organization were to test the claims regarding 

small wind turbine power curves and ratings, choosing turbines and predicting potential energy 

output would become much easier and accurate. 

 

Current NSTAR regulations and practices pose a barrier to the installation of rooftop wind 

turbines. 

Connecting a wind turbine, or any form of distributed generation, to the electrical grid is 

currently somewhat complex. In an urban area, where spot and area networks are common, there 

are several difficulties encountered when connecting a wind turbine to the grid. NSTAR is more 

concerned with providing consistently reliable service to their customers than they are with 

accepting DG sources onto their network. Because of this, NSTAR sets limits that allows for 

easier permitting if the DG is under 25kW and produces no more than 15% of the building‟s 

minimum load. However, NSTAR is currently working to make their electrical networks less of 

a barrier to DG, so the problems that exist now may become less of an issue in the future.  

 

5.2 Recommendations 

We recommend that the DOER perform testing on small wind turbines, especially VAWTs, 

to determine their performance in urban environments. 

Currently, there is little information on the performance of wind turbines in urban environments, 

especially VAWTs. While some studies have addressed the issues of performance and capacity 

factor in urban settings, they don‟t discuss what causes the low capacity factors, or suggest ways 

to achieve a higher capacity factor. This is especially the case for VAWTs in urban 

environments, since they have far greater variation in design than HAWTs. If the DOER were to 

test the performance of small wind turbines in urban environments, they could determine the 

siting features that would provide a higher capacity factor and make rooftop wind turbines more 

feasible. We recommend that the DOER collaborate with the CADMUS group and renewable 

energy research agencies in Europe, such as the Swedish Centre for Renewable Electric Energy 

Conversion to further investigate the urban use of small wind turbines, and in particular VAWTs. 
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We recommend that the DOER provide assistance to individuals or organizations 

interested in installing rooftop wind turbines by helping them locate and assess potential 

sites. 

Proper siting for a wind turbine can be a daunting process to tackle, especially for individuals 

attempting it for the first time. The DOER can offer much to help find proper sites within 

Boston, with the help of the siting map we have provided with overlapping layers that pertain to 

various siting factors such as wind speeds, zoning, and network types. The siting criteria we 

provide in the findings can also used for siting of a rooftop wind turbine. This can lead to more 

successful wind turbine installations in Boston, increasing the number of turbines that can be 

studied as well as getting the public more acquainted to rooftop wind turbines. 

 

We recommend that the DOER maintain an international database of all the small wind 

turbines available. 

Such a list would prove valuable in selecting wind turbines for potential projects and research.  

Additionally, an updated list would help determine which manufacturers are out of business, 

which is important to know in an industry that changes as quickly as wind power. This list could 

be built from our database of small wind turbines, and start with the same sources we used, 

which can be found in our database. Unlike some of the databases and online listings, this 

database should provide international models, since many of these perform better than US 

models. It would also be helpful if this database is accessible online, so potential installers could 

easily locate a turbine that would adequately suite his or her needs. 

 

We recommend that the DOER work with the Small Wind Certification Council and other 

international organizations to develop a standardized method of establishing and verifying 

power ratings and power curves. 

Currently, power ratings and power curves do not have a standard method of being established, 

and there is no verification process by third parties. Since these are the most important indicators 

of how much energy a wind turbine can be expected to produce, a standard is needed to allow 

turbines from different manufacturers to be compared accurately. This could benefit alternative 

energy developers by providing a reliable way to measure wind turbines‟ potential output against 

one another, allowing them to be more accurately analyzed and sorted.  
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Appendix A: Generator Types and Efficiency 

DC generators were originally used in most small wind turbines since their speed can be 

easily controlled. However, most DC generators lose efficiency due to the use of brushes on the 

inside of the generator. Brushes are conductive and function as a means of outputting the energy 

that is induced in the windings of the generator‟s rotor. Brushless DC motors exist and are more 

ideal, but because of the limitations on the permanent magnet, they are only used for ratings 

under 100kW (Patel, 2006, pg.89). 

The synchronous generator is a type of AC generator and works at a constant speed based on 

the input frequency. Thus, this tends to be inefficient with variable wind speeds. The biggest 

advantage of the synchronous generator is the fact that they are highly efficient and can be 

directly connected to the grid since they do not require reactive power from the grid. Reactive 

power is essentially an unwanted element in power distribution and active power is preferred. 

Permanent magnet synchronous generators (PMSG) offer the highest efficiency and have a high 

torque at low speed and are therefore suitable for small-scale designs. While small-scale designs 

have a lower operating and maintenance cost, the cost of magnet material is an issue with large-

scale designs (Baroudi et al, 2006). 

Finally the induction generator is the most used AC generator for large wind turbines. This 

type of generator can be used in situations where wind velocity is constantly fluctuating. This 

system has a rugged brushless construction that has a low capital cost, low maintenance and 

better transient performance. Also the generator works well at varying speeds, which is perfect 

for small wind turbines. 
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Appendix B: Siting Map Layers 

Enclosed in this appendix are the different siting layer that are in our siting map: wind speeds 

at 70 meters, grid types, historical areas, avian habitats, preferred zoning areas, and current  wind 

turbine installations. These layers were formed using Google Earth. 

 

 
Wind Speeds at 70m 
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Area Network 

 



 50 

 
Historical Areas 
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Avian Habitats 
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Preferred Zoning Areas 

 

 
Wind Turbine Installations 
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Appendix C: Wind Turbine Models 

Manufacturer  Model Location 

Rated 

Power 

(kW) 

Cut-in 

Speed 

(mph) 

Rated 

Production 

Speed 

(mph) 

Survival 

Speed 

(mph) 

Blade 

Diameter 

(ft) 

Weight 

(lbs) 

Mast 

Height 

(ft) 

Noise 

(dB@

ms) 

Turbine and 

Tower Cost 

(USD) 

Product Life 

(years) 

VAWT             

Aeolos Wind 

Energy 

Aeolos-V 

5000w 
UK 5 6.7 24.5 111.5 13.1 814.0 12.5   20 

Aeolos Wind 

Energy 

Aeolos-V 

10kw 
UK 10 6.7 24.5 111.5 19.7 1,364.0 21.6   20 

Century Wind 

Energy 

CWE-V-

P5000 
US (KY) 5 6 24 111 13 2167.0 18  $24,600 15 

Enviro 

Energies 

5 kW 

MVAWT 
US 5 4 29 120 14 1,921.0 8 <20 $27,990 20 

Enviro 

Energies 

10 kW 

MVAWT 
US 10 4 31 120 20 305.0 10 <20 $51,990 20 

Gual Industrie 
Statoeolien 

GSE 8 
France 6 4.5 34 134 26.25 5,500.0 9.84    

Ropatec AG Big Star Italy 20 6.7   26.25 7,937.0 14.11    

Ropatec AG Maxi Italy 6 6.7   15.42 1,676.0 8.2    

UrbanGreenEn

ergy 
10kW US (NY) 10 4 12   6600  37@10   

Venco Power 

GmbH 
Vertikon H50 Germany 50 5.6 26.8 112 39.37  41.01    

WePower Falcon 5.5 US (CA) 5.5 6 29 111 15 2,167.0 18 
32@6.

7@9ft 
  

WePower Falcon 12 US (CA) 12 6 29 111 20 4,190.0 18 
32@6.

7 
  

Windports 
Windports 

5kW 
Canada 5 5.6 32.44 124 14.44 2,205.0 13.55   30 

Windports 
Windports 

10kW 
Canada 10 5.6 32.44 124 14.44 4,211.0 22.31   30 

Windports 
Windports 

20kW 
Canada 20 5.6 32.44 124 14.44 8,157.0 44.62   30 
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HAWT 

(7-25 ft 

diameter) 

            

A&C Green 

Energy 
Talon 5 US (TX) 5 6.7 23 112 18.37 750   $12,984 15 

A&C Green 

Energy 
Talon 10 US (TX) 10 6.7 24.6 112 25 1102   $27,041 15 

Abundant 

Renewable 

Energy 

ARE442 US (OR) 10 6 25  23.6 1,650.0 
43 - 

106 
   

Manufacturer  Model Location 

Rated 

Power 

(kW) 

Cut-in 

Speed 

(mph) 

Rated 

Production 

Speed 

(mph) 

Survival 

Speed 

(mph) 

Blade 

Diameter 

(ft) 

Weight 

(lbs) 

Mast 

Height 

(ft) 

Noise 

(dB@

ms) 

Turbine and 

Tower Cost 

(USD) 

Product Life 

(years) 

Aeolos Wind 

Energy 

Aeolos-H 

5000w 
UK 5 6.7 22.3 100.7 16.4 396.8  31@5  30 

Aeolos Wind 

Energy 

Aeolos-H 

10kw 
UK 10 6.7 22.3 100.7 24.6 925.9  

34.5@

5 
$26,760 30 

Aircon Aircon 10 Germany 9.8 5.6  116 22.72      

Altem Power APL10 India 10 5.6 24.6  24.6 1,543     

Aquitaine 

AeroGenerateu

rs 

WM-5000 France 5 6.7 24.6  16.4     20 

Aquitaine 

AeroGenerateu

rs 

WM-10000 France 10 6.7 24.6  23     20 

Braun 

Windturbinen 

GmbH 

Antaris 5.5 

kW 
Germany 5.5 4 15.7  14.4 110.2     

BroadStar* 
AeroCam 

Type I 
US (TX) 10 4 30 140 10  

80, 

100, or 

120 

 $30,000 20 

Century Wind 

Energy 

CWE-FRE-

5KW 
US (KY) 5 6 16 111 16.4 1980 39  $19,000 15 

Century Wind 

Energy 

CWE-FRE-

10KW 
US (KY) 10 4 23 111 23 6325 52.5  $37,000 15 
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Eagle 

Windpower 
Eaglepower 5 Finland 5 4.5 20 111.8 19.7 507 138    

Eagle 

Windpower 

Eaglepower 

10 
Finland 10 4.5 20 111.8 23 2204 138    

EC Industry 

Group 
5kW China 5 5.6 22.4 110.7 21 835.6 138    

ElectroSfera breeze 5000 Russia 5 6.71 26.8 112 16 506 44.8  $15,847 20 

EolPower EOL-H-5 Italy 5 5.6 20  19    $21,812 20 

First 

Renewable 

Energy Group 

Windworker-

5000H 
China 5 4.4 22.4  16.4  40   20 

First 

Renewable 

Energy Group 

Windworker-

10000H 
China 10 4.4 22.4  23  52   20 

Fortis Alize US (NY) 10 4.5 24.6  23 847.0 80  $31,100 20 

Fortis Montana US (NY) 5.8 6.7 24.6  16.4 440.0 80  $15,800 20 

Manufacturer  Model Location 

Rated 

Power 

(kW) 

Cut-in 

Speed 

(mph) 

Rated 

Production 

Speed 

(mph) 

Survival 

Speed 

(mph) 

Blade 

Diameter 

(ft) 

Weight 

(lbs) 

Mast 

Height 

(ft) 

Noise 

(dB@

ms) 

Turbine and 

Tower Cost 

(USD) 

Product Life 

(years) 

Franklin Wind 

Energy 
H-10 US (MI) 10 7 26  20 450 65.6    

Hannevind 
Hannevind 

5.5 kW 
Sweden 5.5 4.4 20  19.7 330 49   20 

Hummer Hummer 5 US (IN) 5 5.6 22  21 1,214.4 80 34@5 $11,393 20 

Jetpro 

Technology 
JPS-5KW Taiwan 5 6.7 26.8  9.8 661.4     

Proven Energy Proven 11 
United 

Kingdom 
6 5.6 26.8 156.6 18 1,322.0 

25.9 or 

49.2 

40@11

, 

65@44 

$30,013 20 

Qingdao 

ZiCheng Wind 

Generator 

5kW China 5 6.7 24.6  19.7  29.5    

Renewable 

Engineered 

Systems 

Air Wind 

Power 5000 
US (VA) 5 6.7 22.4  21      
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Solicity Inc. 
Eoltec 

Scirocco 
Canada 6 6 25 135 18.4 450.0     

Suneco Green 

Energy 
ECO-5kW China 5 6.7 24.6 111.8 16.4 771.6     

Suneco Green 

Energy 
ECO-10kW China 10 5.6 24.6 111.8 23 2,160.5     

Tairui 

Windpower 

Co.,Ltd 

TR6.4-

5000W 
China 5 4.47 22.4 101 20.48  38.4    

TechnoSpin TSW 4000 US (NY) 4 5.6 26.8 123 13.8 385.0     

TechnoSpin TSW 8000 US (NY) 8 5.6 26.8 123 22  40   30 

TechnoSpin TSW 13000 US (NY) 13 5.6 26.8 123 22  40   30 

Ventera Energy VT10-240 US (MN) 12 6 29 130 22 500.0     

Ventera energy 

corp 

Ventera VT-

10 
US(MN) 10 6 29 130 22 500 50-130  $12,000 20 

West wind 
5kW 

Westwind 
Ireland 5.5 6.71 31.3  16.32 440     

West wind 
10kW 

Westwind 
Ireland 10 6.71 31.3  19.54 836     

Wind 

Simplicity 
Windancer7 Canada 7 2.2   9.8 846.6     

Wind 

Simplicity 
Windancer23 Canada 22.8 4.5   12 1,735.0     

Windeco Vento 5000 Spain 8 4.47  93.2 16 440 38.4    

Zhuhai Hong 

Feng 
Airforce 4.1 China 5 7 27 134 13.4 209.4   $12,500 20 

Manufacturer  Model Location 

Rated 

Power 

(kW) 

Cut-in 

Speed 

(mph) 

Rated 

Production 

Speed 

(mph) 

Survival 

Speed 

(mph) 

Blade 

Diameter 

(ft) 

Weight 

(lbs) 

Mast 

Height 

(ft) 

Noise 

(dB@

ms) 

Turbine and 

Tower Cost 

(USD) 

Product Life 

(years) 

HAWT 

(26-50 ft 

diameter) 

(Category)      1    $10 1 

A&C Green 

Energy 

PowerMax+ 

20 
US (TX) 20 6.7 26.8 112 32.8 3911   $64,916 15 

A&C Green PowerMax+ US (TX) 25 6.7 26.8 112 32.8 4002   $80,186 15 



 57 

Energy 25 

Aeolos Wind 

Energy 

Aeolos-H 

20kw 

United 

Kingdom 
20 6.7 22.3 100.7 32.8 903.0  35@5 $51,230 30 

Aeolos Wind 

Energy 

Aeolos-H 

30kw 

United 

Kingdom 
30 6.7 22.3 100.7 41 3,042.3  

41.5@

5 
$70,820 30 

Aerofortis 

Energy 
AF-9500N Taiwan 9.5 5.6 28  29.5      

Aerostar 
Independence 

30 
US (MA) 30 8 30  41.3 3,850.0  44@15   

Aquitaine 

AeroGenerateu

rs 

WM-20000 France 20 6.7 24.6  32.8     20 

Aventa Ltd 
AV-7 

LoWind 

Switzerla

nd 
6.5 4.47 13.4  41.28 2831.4 57.6 

<30dB 

at 50m 
  

Century Wind 

Energy 

CWE-FRE-

20KW 
US (KY) 20 5 33 111 33 8932 59  $48,000 15 

Eagle 

Windpower 

Eaglepower 

20 
Finland 20 4.5 20 111.8 39.4 4,409   $62,000 20 

EC Industry 

Group 
10kW China 10 4.5 22.4 110.7 26.2 990   

16478-

21736 
 

EC Industry 

Group 
20kW China 20 4.5 26.8 110.7 32.8 2,769   

25184-

30882 
 

First 

Renewable 

Energy Group 

Windworker-

20000H 
China 20 4.4 24.6  32.8     20 

Hannevind 
Hannevind 

11 kW 
Sweden 11 4.4 20  32.8 771    20 

Hannevind 
Hannevind 

15 kW 
Sweden 15 4.4 20  32.8 881    20 

Hannevind 
Hannevind 

22 kW 
Sweden 22 4.4 20  42.7 1433    20 

Hannevind 
Hannevind 

30 kW 
Sweden 30 4.4 20  42.7 1543    20 

Hummer Hummer 10 US (IN) 10 6.7 22  26.5 2,149.4 80 34@5 $60,000 20 

Hummer Hummer 20 US (IN) 20 6.7 22  29.5 3,982.0 80 34@5 $80,000 
20 
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Manufacturer  Model Location 

Rated 

Power 

(kW) 

Cut-in 

Speed 

(mph) 

Rated 

Production 

Speed 

(mph) 

Survival 

Speed 

(mph) 

Blade 

Diameter 

(ft) 

Weight 

(lbs) 

Mast 

Height 

(ft) 

Noise 

(dB@

ms) 

Turbine and 

Tower Cost 

(USD) 

Product Life 

(years) 

Jetpro 

Technology 
JPS-50KW Taiwan 50 6.7 29  28.9 8,818.5     

Nanjing 

Supermnn 

Industrial 

LS-10kW China 10 6.7 22.4 111.8 26.2 1,322.8 39.36  $100,294 20 

Nanjing 

Supermnn 

Industrial 

LS-15kW China 15 6.7 22.4 111.8 36 1,499.1 49.2  $18,676  

Nanjing 

Supermnn 

Industrial 

LS-20kW China 20 6.7 26.8 111.8 39.4 1,543.2 59.04  $25,000  

Nanjing 

Supermnn 

Industrial 

LS-30kW China 30 6.7 26.8 111.8 41 2,094.4 59.04  $67,647 15 

Nanjing 

Supermnn 

Industrial 

LS-50kW China 50 6.7 26.8 111.8 42.7 2,160.5     

Qingdao Long 

Teng Energy 
LT10-20KW China 20 8.9 26.8 111.8 32.8 9,215.0     

Qingdao 

ZiCheng Wind 

Generator 

10kW China 10 6.7 22.3  26.2  39.4    

Qingdao 

ZiCheng Wind 

Generator 

20kW China 20 6.7 22.3  32.8  59    

Renewable 

Engineered 

Systems 

Air Wind 

Power 10000 
US (VA) 10 6.7 22.4  26.2  65-150  $22,500 20 

Renewable 

Engineered 

Systems 

Air Wind 

Power 20000 
US (VA) 20 6.7 26.8  40  65-150  $45,000 20 

Suneco Green ECO-20kW China 20 6.7 24.6 111.8 36 2,160.5     
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Energy 

Tairui 

Windpower 

Co.,Ltd 

TR8.0-10KW China 10 4.47 22.4 101 25.6  38.4  $11,350  

Tairui 

Windpower 

Co.,Ltd 

TR10.0-

20KW 
China 20 4.47 26.8 101 32  57.6  $18,670  

Tairui 

Windpower 

Co.,Ltd 

TR12.0-

30KW 
China 30 4.47 28 101 39.36 2,640.0 59.04    

Wind Turbine 

Industries 
Jacob 31-20 US(MN) 20 8 26 12i0 31 2500 80-120  $55,225 20 
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Appendix D: Wind Speed at Different Elevation Calculation 

Method 

To calculate the wind speed at a particular elevation, one must first have wind speeds at a 

lower elevation.  These lower wind speeds were attained from maps of average wind speeds in 

Boston, and we then used several equations to estimate the speed of the wind at a given 

elevation. The equations can be found at “http://en.wikipedia.org/wiki/Wind_gradient” and 

“http://www.sustainableenergyworld.eu/calculate-windturbine-annual-energy.” 

 

The first equation is: 

 
 

Where the Hellman exponent depends upon the costal location as well as the shape of the terrain 

on the ground. The value of the Hellman exponent can be found via a table taken from 

http://en.wikipedia.org/wiki/Wind_gradient 

 

Location α 

Unstable air above open water surface: 0.06 

Neutral air above open water surface: 0.10 

Neutral air above flat open coast: 0.16 

Unstable air above flat open coast: 0.11 

Stable air above open water surface: 0.27 

Unstable air above human inhabited areas: 0.27 

Neutral air above human inhabited areas: 0.34 

Stable air above flat open coast: 0.40 

Stable air above human inhabited areas: 0.60 

 

For our analysis, we used a Hellman exponent of 0.6. 

 

The second equation is: 

 
 

Where the roughness length can be found based on values from  

xw(h) v10 (
h

h10
)a

vw(h) velocity of the wind at height h

v10 velocity of the wind at height h10 10meters

a Hellman exponent

vh v10 log(h /z) / log(10/z)

vh windspeedat heighth

v10 windspeedat a heightof 10meters

z roughnesslengthof thesite

http://en.wikipedia.org/wiki/Wind_gradient
http://www.sustainableenergyworld.eu/calculate-windturbine-annual-energy
http://en.wikipedia.org/wiki/Wind_gradient
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“http://www.sustainableenergyworld.eu/calculate-windturbine-annual-energy.” 

 

Location Roughness Length 

Ice, water surface: 0.001 

Grass, airports: 0.03 

Trees, hedgerows, scattered buildings: 0.2 

Rough terrain: 0.25 

Villages, very rough terrain: 0.5 

Cities, forests: 1 

City center, skyscrapers: 2 

 

For our analysis, we used a roughness length of 2. 

http://www.sustainableenergyworld.eu/calculate-windturbine-annual-energy
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Appendix E: Economic Analysis Methods 

We have the initial data: 

1. Expected Lifetime, in years (L):  

a. An estimate of how long a wind turbine will last before it no longer produces 

energy. 

2. Turbine Cost ($USD): C 

a. The cost of the wind turbine and the pole it will be mounted on. 

3. Installation Cost ($USD): A 

a. All costs involved in securing the wind turbine and pole onto the roof. 

4. Cost of Electricity ($/kWh): E 

a. Cost the user pays to their electric utility provider for each kilowatt-hour. 

5. Cost of Maintenance ($USD/year): M 

a. All costs involved in any yearly maintenance or upkeep of the wind turbine. 

6. Rate of Inflation (%): I 

a. The amount by which US currency loses value against the cost of commodities. 

7. Electricity Produced (kWh/year): P (calculations can be found in section 4.2) 

a. The number of kilowatt-hours the wind turbine is estimated to product in the first 

year. 

8. Government Incentives 

a. Price Per REC: Ppr (1 REC is earned per MWh generated) 

b. Production Tax Credit: Ptc ($0.21/kWh) 

c. Federal Investment Tax Credit: Fitc (30% of initial costs) 

 

The assumptions we made were: 

1. Installation is 80% of the cost of the turbine 

o We assumed this after interviews with wind turbine installers and project 

managers of wind turbine installations in Boston.  It should be noted that 

installation costs vary largely with the specific building the turbine is being 

installed on. 

2. Turbine produces 0.20% less energy each year 

o Even though there is a yearly maintenance fee, wind turbines are physical devices, 

and not all wear can be repaired, so a very small percent decrease in production is 

assumed.  

3. Electricity costs 16¢/kWh 

o This was the average cost of electricity in Massachusetts at the time this report 

was written. 

4. Yearly maintenance is $100 

o This cost covers all yearly fees, which should be low, as nearly all manufacturers 

claim that their turbines only require a visual inspection once a year. 

5. Inflation is fixed at 2% 

o This value is fixed at a standard percent for economic calculations with a fixed 

inflation rate.  However, it should be noted that inflation is heavily dependent on 

the current state of the economy, and can see large changes over time. 

6. RECs are fixed at $30/REC 

o This was the cost per REC from wind at the time this report was written. 
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Unmodified initial costs = C + A 

 

Initial costs minus government incentives = (C + A) – Mwi – Fitc 

 

Initial net present value = Mwi + Fitc – C – A 

 

First year‟s net income = [(P * E) + (P * Ptc) + [(P / 1000) * Ppr] – M] * (100% - I) 

 

Net present value after first year = Initial minus government Incentives – First year‟s income 

 

Net income for each year after first = Net income from previous year + [(P * E) + (P * Ptc) + 

[(P / 1000) * Ppr] – M] * (100% - I) 

 

Net present value each year thereafter = Total net present value + Net income from previous 

year 
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Appendix F: Districts in Boston Allowing Rooftop Wind 

Turbines 

The following is taken directly from Article 88 of the Boston Zoning Code and Enabling Act: 

 

“Building integrated wind energy facilities are allowed in the following districts and subdistricts: 

 

I - General Industrial 

MER - Maritime Economy Reserve 

W - Waterfront Industrial 

WM - Waterfront Manufacturing 

 

ii. Building integrated wind energy facilities are Conditional in the following districts and 

subdistricts: 

 

H - Apartment 

MFR - Multifamily 

MFR/ 

LS - Multifamily/ Local Services 

B - General Business 

CC - Community Commercial 

M - Restricted Manufacturing 

IDA - Industrial Development Area 

LI - Local Industrial 

EDA - Economic Development Area 

IS - Institutional 

LIA - Logan International Airport 

WS - Waterfront Service 

EPS - Enterprise Protection Subdistrict 

OS - Open Space 

- Boston Harbor Islands 

CUF - Cultural Facilities (Fenway) 

 CF      - Community Facilities 

 NI       - Neighborhood Institutional 

 CPS   - Conservation Protection Subdistricts 

 Harborpark District, with the exception of those districts and subdistricts listed as 

Allowed in Section 88-5.3(a)i. 

Midtown Cultural District 

North Station Economic Development Area 

South Station Economic Development Area 

Huntington Avenue/Prudential Center    District 

Chinatown District 

Leather District 

Government Center/ Markets District 

 Bulfinch Triangle District 

Cambridge Street North District 
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North End Neighborhood District 

Audubon Circle Neighborhood District 

Bay Village Neighborhood District 

South End Neighborhood District 

  

Notwithstanding the above, building integrated wind energy facilities are Allowed in any 

district or subdistrict in the City if such facility is mounted on a building over three 

hundred (300) feet in height and has a rated nameplate capacity of not more than 6kW.” 
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Appendix G: Interview Questions 

Interview Questions for NSTAR Engineers 
1. What issues arise from having different types of generators on the same network? 

a. How is back-EMF prevented? 

b. Are there other problems? 

2. What are the criteria for distributed generation on spot networks?  

3. Why are network protectors a major concern? Poor construction? 

4. Is there anything NSTAR is working on that would allow for easier distributed 

generation? 

a. IEEE 1547.6 

5. Is it possible to find out where the spot or radial networks exist in Boston? 

6. What locations would be best for distributed generation? 

7. Would any of these locations be ideal for wind turbines? 

a. General industrial 

b. Maritime economy reserve 

c. Waterfront industrial 

d. Waterfront manufacturing 

8. Was there anything that the Museum of Science, Logan Airport, or Harvard University 

wind turbine projects considered, but wasn‟t allowed? 

 

 

Interview Questions for Audubon 
1. What are some of the concerns that you have regarding the effects of small wind turbines 

on local avian populations? 

2. Are there any avian sensitivity maps in the US similar to those in Europe that can guide 

the installations of these turbines? 

3. Do you believe wind turbines in urban areas, as opposed to rural areas, would have any 

significant impact on local avian populations? 

4. Do you have any general suggestions for wind turbine placement that might help 

minimize the impact on local wildlife? 
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Interview Questions for Boston Museum of Science and Harvard 
1. What alternative energy sources had you looked into before you decided on wind 

turbines? 

2. What are the technical criteria that you considered in choosing the wind turbines you 

used for this project? 

3. What sort of siting analysis did you choose, prior to installation? 

4. What are some problems you encountered during the project planning? For example: 

zoning restrictions, connection to the electrical grid, structural integrity issues, etc. 

5. What grid connection setup is being used for the rooftop wind turbines?  

6. How has the wind turbine performance been like since its installation? How has this 

compared to its expected performance? 

7. What were some of the incentives, if any, you received for this project (federal, state, 

other)? 

8. Was there any initial opposition to the project from any external or internal party? For 

example: neighbors, historical societies, groups concerned with bird fatalities, etc. 

 

Interview Questions for Hines Corporation and Boston Housing 

Authority 
1. What knowledge do you have, if any, about wind energy? (small scale wind turbines in 

particular) 

2. What kind of buildings do you own? What are some of the uses for these buildings? 

3. What types of other buildings are located in the immediate vicinity of the buildings you 

own? (Skyscrapers, convention center, apartment complexes, etc.) 

4. Are there any examples of green energy or wind turbines on or near your buildings? 

5. Have you ever thought of incorporating wind energy or other alternative forms of energy 

production in your buildings?  If so, why? 

6. How do you think your neighbors would react to the installation of rooftop wind turbines 

on some of your buildings?  

7. If you were to install small wind turbines, what sort of financial assistance would you like 

to see to help with the costs? (discounts, tax breaks, limited liability, etc) 

8. What is the longest payback period you would settle for? 

9. Do you have any other concerns about the use of wind turbines as a viable energy source?  

 

Interview Questions for Structural Engineer 
Mention static load max per unit is 10,000lbs, and dynamic load range of up to 100-200lbs at 

100 mph winds. 

1. Can buildings in Boston support these loads? 

2. What types of roofs can‟t support these load? 

3. What kind of support is required? 

4. What would the rough cost of the support be and how much would it vary based on 

weight? 

5. What are some structural hurdles that should be avoided? (e.g. roofs which aren‟t flat) 
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Interview Questions for Massachusetts Convention Center 

Authority 
1. What knowledge do you have, if any, about wind energy? (small scale wind turbines in 

particular) 

2. What kind of buildings do you own? What are some of the uses for these buildings? 

3. What types of other buildings are located in the immediate vicinity of the buildings you 

own? (Skyscrapers, convention center, apartment complexes, etc.) 

4. Are there any examples of green energy or wind turbines near your buildings? 

5. Why did you want to use solar panels on the convention center? 

6. Have you ever thought of incorporating wind energy in your buildings?  If so, why? 

7. How do you think your neighbors would react to the installation of rooftop wind turbines 

on some of your buildings?  

8. If you were to install small wind turbines, what sort of financial assistance would you like 

to see to help with the costs? (discounts, tax breaks, limited liability, etc) 

9. What is the longest payback period you would settle for? 

10. Do you have any other concerns about the use of wind turbines as a viable energy source? 
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Appendix H: Interview Notes 

Within this Appendix are the interview notes that were taken for each interview. They are 

provided in chronological order. 

 

NSTAR Interview Notes 

April 1, 2010  

Interviewers: Mario Christiner & Ryan Dobbins 

 

Spot 

- Generator can only produce up to 1/15
 
of annual load of the building and must have a UL 

1741 & IEEE 1547 approved inverter 

- For systems which are 25kW or less NSTAR goes with a simplified approval method 

based on the NSTAR DG tariff 

 

Radial  

- Tends to be a more costly process to connect to this type of network 

- Problem with having a delta transformer and an ungrounded source, which leads itself to 

synchronous 

 

Network Protectors 

- Phase angle difference between central and distributed generator is a major issue 

- 1-2kW is enough to activate the reverse power relay of network protectors 

- Not rated for generator breakers 

 

IEEE 1547.6 

- Will be validated this year (2010) 

- Defines the “de minimis” technique of having a DG of no more than 1/15 of the annual 

load be connected to the network protector 

- Also states how to calculate the load 

 

NSTAR DG interconnection tariff 

- Gives restrictions on the harmonics and voltage flicker of the DG system 

- IEEE 519: Harmonic Specs 

 

Projects 

- Harvard 

o Not on network 

- Logan 

o Not on network – „customer stations‟ 

- Museum of Science 

o Connected to grid via inverters 
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Audubon Interview (Phone) 

April 2, 2010 

Interviewer: Arnold Ndegwa 

 

The Audubon society is one of the leading non-profit wildlife and habitat conservation 

organizations in America. 

 

Question 1: 

- 2 reactions to the question 

o Not overly concerned of wind turbines effect on birds except on endangered 

species and raptors 

o More concerned with utility scale turbines 

- There are a lot of non-native species in urban areas, which are not as much of a concern s 

local species. 

- Bats are actually more of a concern because; 

o Conservationists don‟t have a proper amount for the bat population in the area 

o There is a higher mortality rate in bat populations associated with wind turbines 

than in bird populations 

o Bats also have a lower reproductive rate than birds. They normally have one 

young per breeding bout unlike birds which can have multiple offspring at a time 

o There is research that suggest bats are attracted to turbines maybe due to  

 Sound 

 Insects attracted to the turbines 

 Not sure if sonar and echolocation used by bats attracts them to turbines 

o There is also a fungus infecting bats and this causes the white nose syndrome 

which has been killing bats at an unprecedented rate and thus this is more of a 

concern currently 

o There is an indication that mortality lowers with an increase in wind velocity 

 Perhaps because the winds blows the insects away 

o Tom Canz 

 Boston University ecologist 

 Has more info on bat populations. 

Questions 2 

- Not sure if we have any sensitivity maps in the US that are presently being used to guide 

on-shore turbine installations 

o There is more information on off-shore bird maps 

o There are however maps showing migrations routes, breeding and nesting 

grounds etc. that can be referred to 

Questions 3 

- Not sure due to lack of insufficient data 

- There may be no real difference between rural and urban wind turbine installations 

o Except on migrations routes, resting spots and stops etc. 

- Birds normally migrate higher than utility size turbines (i.e. > 450 ft) 

- Within the city of Boston, Mt. Auburn cemetery is one of the places wind turbine siting 

can‟t occur since birds frequently use it as a stopover. 
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Question 4 

- Avoid situations that may put avian populations at risk 

o Avoid migrations routes 

o Avoid nesting/ breeding areas 

o Avoid foraging areas - that may contain prey for raptors 

- May not be cost effective to generate specific sensitivity maps 

o Better to generate broader maps showing wide general areas of breeding grounds, 

nesting sites and migratory sites. 

- The Audubon society has also conducted their own studies on turbine effects on avian 

populations and they gave the green light to the installations in some small scale turbine 

installations 

 

 

Taber Allison was part of a group that drafted guidelines for the Fish and Wildlife Service 

- Provides general guidelines regarding all onshore installations 

- No plans to amending guidelines to building integrated turbines 

- There are however plans to adopt the guidelines to a more local level 

(Massachusetts level) 
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Boston Museum of Science 

April 6, 2010 

Interviewers: Mario Christiner & Ryan Dobbins 

 

Siting 

- For wind assessment they used three studies  

o They used 5 anemometers for one year and used AWS Truewind program to 

analyze results 

o Logan comparative study 

o ANSIS wind flow study 

 SWIFT located in eddy current 

- FAA regulations restrict height to 213 feet above sea level 

- Manufacturers/Installers sometimes decide they will not conduct installation if too 

turbulent or not good conditions 

- Ice formation was a concern, but not a “deal breaker” 

- Show Stoppers (obstacles that make project impossible) 

o Permitting 

o Amount of Turbulence 

- Other factors we should consider in siting 

o Public safety/sense of security 

o Want to be visible for educational purposes 

- Dynamic load is more important to consider than static load 

- Important siting action is to take anemometer measurement at exact location of turbine 

hub 

 

Rooftop Wind Turbine Attributes  

- Focused on models that were commercially available 

o Disregarded models with lacking information or that are unavailable 

- Looked at cut in speed and compared to wind speed availability 

o Turning at least 75% of the time 

- Disregarded models with diameters larger than 20 feet 

- For the Proven model the foundation cost was equivalent to the turbine cost 

 

Reason for Rooftop Wind Turbines 

- First wanted to reduce carbon footprint, but once they started the study phase they soon 

realized that it was not feasible based on the wind resources, location, and economics. 

- Originally thought about hydro and photovoltaic, but wind seemed most controversial, 

thus the reason they choose it for study 
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Harvard 

April 7, 2010 

Interviewers: Ryan Dobbins, Arnold Ndegwa, & John Sivak 

 

Why wind? 

 Harvard has committed to reducing their 2006 electricity needs by 30% by 2016 

 This goal has been mainly accomplished with energy efficiency measures, as opposed to 

energy production 

 AeroVironment turbines are purely for visual appeal, showing Harvard‟s commitment to 

renewable energy 

 Installed as roof was being redone, so that they would age at the same rate as the roof 

 Other turbines are Bergey, and are rated for 10kW - average wind speed of 4 to 8 m/s 

 

Why these turbines? 

 Bergey has been in business 30 years 

 Turbines are durable 

 Low noise 

 Collapsing tail for high wind speeds 

 

Why the location? 

 Zoning “The cars won‟t complain” 

 Cambridge side has a lot of historical areas 

 No FAA problems 

 Mounted the turbines by installing a pillar to hold the weight and dampen the vibration 

 

Grid connection? 

 Disconnect switches within sight of the towers 

 Harvard already has stringent electrical codes 

 Inverters need to be inside 

 Manual reset if a wind turbine shuts down too much 

 Real-time measurement system 

 

Problems? 

 No precedent zoning laws 

 Several hearings with local stakeholders (historical groups, etc) 

 Process took 4 months 

 Noise can be amplified by air ducts 

 Some complaints of flicker from nearby residents 

 

Other 

 No bat/bird/ice/vibration problems 

 Very positive feedback on visual appearance (especially from the Mass Pike) 

 Energy production is what was expected 

 PV is better -> no maintenance and easier to install 

 State Renewable Energy Credits can help cover costs 
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Hines Corporation 

April 7, 2010 

Interviewers: Arnold Ndegwa & John Sivak 

 

Hines sells space, so they‟re interested in what can be done to improve that. 

 Usually based purely on payback period 

o Want less than 5 year payback 

 They are however willing to look to the long term and may consider a 

longer payback period than the above 

 One current exception to the 5 year payback  is (heating/cooling plant in 

Hartford property) 

o Not focused on payback if it is for publicity 

 Would welcome the opportunity to put a demonstration installation to 

raise awareness 

 Tenants also help pay for part of construction fees, although they break even 

 Looking at green leases that have special provisions that use sustainability features to 

promote the building. 

 

Hines owns large high rise buildings, and acquires smaller buildings in suburban areas. Also 

offer engineering services to others. 

 Spend money to upgrade acquired buildings 

 Likely zero opposition for high rise buildings 

 Small opposition to suburban locations (such as Wellesley Gateway) 

 

Hines doesn‟t have much information on renewable energy sources, although they have a 

Conceptual Structural Department that handles that sort of thing. 

 If they‟re improved, wind turbines will definitely be considered by Hines 

 There are currently no Hines buildings with rooftop wind turbines but some have PV 

units installed 

o One property that currently has a PV installation is in times square NY 

o There is a PV/ Geothermal installation planned for Wellesley property 

 

Concerned with structure, vibration, noise, utility connection, and (not so much until it‟s proved) 

wildlife 
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Structural Engineer (Phone) 

April 9, 2010 

Interviewers: Mario Christiner & John Sivak 

 

General 

 10,000 lbs works fine 

 Trusses, such as in the convention center, can‟t support large loads 

 

Columns 

 Connecting to columns is recommended 

o Might not need as large a foundation 

 Can be mounted like a flagpole – exterior column 

 One turbine per column, minimum is 4, although you can guess the number of columns 

from looking at the building (30 feet each direction) 

 Large buildings that take up a whole city block (maybe 10 stories in height) 

 

Guides 

 Overturning moment can be handled with guy wires 

 Depends a lot on the original structure of the building, although guy wires help 

 This takes up much more room, although turbines would be placed apart due to wake 

effect anyway 

 

Roof types 

 Cement roofs would be easier for installation 

 For metal topped roofs, turbines need to be connected to main structure beneath 

 

Economics 

 20-30% of the cost can be used in mounting. Mainly depends on the weight 
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Massachusetts Convention Center Authority 

April 14, 2010 

Interviewers: Mario Christiner & John Sivak 

 

MCCA owns Boston convention center, Hynes convention center and convention center in 

Springfield. Also leases land to surrounding condos, hotels, and garages. 

 

Alternative Energy 

 They have three reasons for considering renewable energy 

o Reduce energy use 

o Goodwill of costumer, who prefer green build 

o Help state market renewable energy, who provides MCCA with funding 

 Considered solar thermal, solar electrical and wind 

 Solar 

o Conducted a feasibility study, technically feasible, but not financially 

 Wind 

o Has been considered, however due to surrounding buildings they believe it 

would not be feasible 

o Might consider adding to new buildings that will be constructed in the future 

 

Economics 

 Public facilities vs. private facilities, public facilities can‟t benefit from tax rebates 

and most incentives 

 Stimulus package was originally going to be used to fund solar project, however they 

restricted the aid to water treatment plants and facilities that are likely to be aided for 

the long run 

 Would allow payback period of 10-12 years, but prefer 5-7 years 

 

Structural 

 Roof is covered in standing steel metal by BEMOUS, but has been having many 

leakage issues 

o Required 10 million dollars worth of repair 

 Roof is supported by 6 main columns in the middle and tree columns on the side 

 Trusses also used to support roof 

o Can support 15,000 lbs every 5 feet  
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Boston Housing Authority 

April 14, 2010 

Interviewers: Ryan Dobbins and Arnold Ndegwa 

 

Question 1 

The BHA has looked into wind turbines.  

 They looked into the AeroVironment wind turbines even before Logan installed theirs 

 They looked into other models of HAWTs and VAWTs 

 They also took a look at utility scale wind turbines 

 From their investigations, they noticed the low power production of a lot of the wind 

turbine systems 

 They also found no documented proof of efficient power production 

Question 2 

 They mainly own federal and state public housing 

 Their portfolio includes 10% of the affordable housing units in Boston and are indeed the 

largest landlord in the city 

 Have 63 developments with 11-50+ thousand units (depending on how you look at it) 

 Their main building types are: 

o 3 story brick walkups (mainly built in the 30s) 

o Newer apartment blocks (built in the 60s and 70s). This are normally between 5-

18 floors high and incorporate steel construction 

 Their buildings are found all over the city 

 Their main use is for residential purposes 

Question 3 

 Mainly found in residential neighborhoods, therefore most of the surrounding buildings 

are mainly residential- usually low and mid rise buildings 

 However, since its low income housing, the buildings aren‟t in the best locations. Some 

are found right next to commercial and industrial areas  

Question 4 

 They have some LEED certified buildings that they operate 

 In their Maverick Development, there is a LEED certified building with a PV installation 

 Every redevelopment that they undertake is made energy efficient 

 A new development in Roslindale is being made solar ready 

 In their Old Colony project in South Boston, they have a goal of achieving the goal of net 

zero (total energy self-sufficiency) 

Question 5 

 They have thought about incorporating wind energy on some properties, but decided that 

due to siting issues, it won‟t work on their properties. 

 They are always looking to make their buildings greener and more energy efficient as 

soon as possible thorough PV installations and LEED certified buildings 

Question 6 

 Reaction depends mainly on the neighborhood and the visual impact due to the turbine 
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o There is a visibility issue for some of the taller models 

 There is also a zoning issue for historic areas 

o The BHA owns several properties in historic areas of Boston 

 The noise changes won‟t be too much a problem (now more conducive since they 

measure the decibel level from ¾ mile away instead of the ½ mile away that it used to be)  

Question 7 

 Main financing options that the BHA is looking into are the grants and rebates 

 They already received a grant from the MTC to help with their PV installation 

Question 8 

 The BHA doesn‟t have a structured payback period 

 They are looking toward more of a long time maintenance view 

 They also try to look for budget stability as opposed to a for profit organization 

o Hence they want a system to be set up which doesn‟t have too much maintenance 

requirements which would lead to lower overall operation cost (out of sight, out 

of mind) 

o An example of their long term outlook is from one of their contracts. It‟s a boiler 

contract that they are expecting to have a 20 year payback period 

Question 9 

 No big concerns about wind turbines 

 Waiting for better efficient turbines to come onto the market 

 Also acknowledges that proper siting can lower the payback period significantly 

 
Other Concerns 

It was costly to connect he Maverick PVs to the grid. They therefore use the PV for the 

buildings power production only and therefore can‟t sell any surplus back the grid. 

Co-generation units are more easily accepted by NSTAR for connection to the grid and 

the BHA is looking to install one though one of its performance contracts. 
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Appendix I: Team Assessment 

Overall our group saw great improvement as the project progressed. We became more open 

to each other and communicated our ideas in a useful fashion. We used various tools and 

guidelines to help us perform more proficiently as a whole. 

To keep our progress on track, we used schedules. At the start of each week and occasionally 

at the start of the day we established a schedule of the tasks that we needed to accomplish as a 

team and as individuals. This made sure that all the required tasks were completed; it also 

showed if certain individuals were not getting their work done. Along with this we created a list 

of tasks and distributed these tasks three weeks into the term. We noticed that we had a lot to do, 

but were all aware of our individual responsibilities. These tasks included the various research, 

writing and presentations that needed to be accomplished. During a team discussion we 

established who was responsible for what task. 

Mid way through the project, we noticed that people were tardy to work and occasionally 

handed in late individual work. These were proving to be a hindrance to group progress, so in 

response, we formed rules of conduct to discourage these actions. The rules worked in such a 

way to avoid these situations, such as requiring the person who was late to treat the group to 

lunch. Although it was certainly better to be avoided, when actions did need to be taken, they 

brought the group together and allowed us to get to know each other more and work better 

together as a whole. This proved to be an effective method as we only had a few instances of 

tardiness and late assignments. 

In terms of editing the written sections of the report, we were having difficulty revising large 

documents as a group in a time efficient manner. We set up a system of peer and overall reviews 

that allowed each person to focus on a smaller section at a time, and then the sections would be 

rotated. This allowed for closer revisions of each section and was much more time efficient than 

our previous methods. It also allowed each section to be revised several times by each group 

member to ensure that it was the best work from the group as a whole. Overall group revision 

sessions also allowed us to go through drafts and address any comments or concerns. 

One main improvement, which required improvement, was sharing work. To remedy this, we 

set up a meeting after every day of work to discuss what individuals discovered or accomplished 

that day. These meetings were to keep everyone focused and on track and to stay up to date with 

any findings that others had. Several of these meetings resulted in improved group 

communication and knowledge of other group members‟ progress. 

Additionally, we often consulted each other and the advisors when problems arose during the 

project. We attempted to make the most out of these meetings specifically by creating action 

items to be followed up on. For example, the advisors suggested that we look at nominal 

scenarios regarding the performance and economic analyses of wind turbines. Following this, we 

took their advice and redid all of the calculations based on this better outlook. We were also 

asked by our sponsor to create an interactive map showing wind speeds and electrical networks 

to assist with the siting of wind turbines. We completed this map and also went even further by 

including information on avian habitats, historical areas, and accepted zoning districts to the 

map. 


