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ABSTRACT 

 

 Runx2, a transcription factor essential for osteoblast maturation, is also expressed in em-
bryonic pre-cartilaginous mesenchymal condensations.  However, regulatory controls for ex-
pression of Runx2 during skeletal formation are unknown.  We hypothesize that Runx2 is regu-
lated by both activators and repressors during the transition from mesenchyme to cartilage and 
bone.  Our results demonstrate that Runx2 is a transcriptional target of Nkx3.2, a homeodomain 
regulatory factor for chondrogenesis.  Runx2 repression by Nkx3.2 is necessary for activation 
of a chondrocyte-specific program of gene expression.  Gene regulation in relation to several 
Homeodomain (HD) proteins during chondrocyte/osteoblast differentiation using Chromatin 
Immunoprecipitation assays was characterized in these studies.  We find that multiple HD pro-
teins constitute a regulatory network that mediates development through sequential association 
of HD proteins with promoter regulatory elements.  
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1.  INTRODUCTION 

1.1 Skeletogenesis 

 Skeletogenesis is the complex developmental process by which the embryo of an or-

ganism organizes skeleton formation.  The process requires coordinated differentiation of a 

variety of cell types, each of which play a crucial role in terms of the skeletal elements and 

their development.  The axial skeleton is prefigured via somatic mesenchymal condensations 

that migrate to specific spatial locations within the embryo.  The direction of migration is de-

termined through soluble factors that are secreted by the notochord.  Some of the cells commit 

to the osteoblast lineage and begin forming bone through a process known as intramembrane-

ous ossification, which can be seen in the calvarium of developing embryos.  Other compo-

nents of the mesenchymal condensations take a longer route to bone formation by undergoing 

chondrogenesis and creating a cartilaginous framework for future bone.  This cartilaginous 

tissue is often invaded by vasculature and replaced by bone in a process known as endo-

chondral ossification.  The activity of the chondrocytes in this process is found to be operat-

ing around embryonic day 13 and the osteogenic component around day 15. 

1.2 Chondrogenesis 

The process of chondrogenesis is initiated in unsegmented presomitic mesoderm.  

These cells receive soluble chemical signals that originate in the notochord and are bound to 

surface receptors.  These receptors initiate a signal transduction cascade that activate and re-

press transcription of genes that are related to skeletogenesis.  It has been shown that one of 

the notochord-derived factors, sonic hedgehog (Shh), induces the expression of a variety of 

transcription factors including Sox9 (a master regulator of chondrogenesis) and Nkx3.2 (Zeng 

et al., 2002; Lettice et al., 2001) (see figure 1.1).  Nkx3.2 is a homeotic protein that belongs to 
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the NK gene family.  The homolog of Nkx3.2 

in Drosophila, bagpipe also acts on mesoder-

mal tissue by controlling its differentiation.  

Shh signaling has been shown to be crucial in 

chondrogenesis by rendering exposed meso-

derm cells competent for becoming chondro-

cytes.  The chondrocytes require further signal-

ing from bone morphogenetic proteins 

(BMPs), which belong to the transforming growth factor β (TGF- β) superfamily.  The TGF-β 

superfamily consists of multifunctional paracrine factors that regulate cell proliferation, differ-

entiation and death in a variety of tissues (Katagiri and Takhashi, 2002). 

 TGF-β and BMPs are homologous in amino acid 

sequence and are functionally similar since they both acti-

vate heterodimeric kinase receptors.  They are secreted 

into the extracellular matrix (ECM) by osteoblast cells 

and initiate signaling by binding dimeric receptor com-

plexes comprised of type I and type II serine/threonine 

kinase receptor combinations (Koenig et al., 1994; Liu et 

al., 1995).  When there is binding of BMPs, the activated 

receptors initiate phosphorylation of the intracellular 

Smad proteins.  Once phosphorylated, the Smads form 

dimers with Smad4 in the cytoplasm.  This dimer can 

then transport the BMP signal to the nucleus where tran-Figure 1.2 A schematic model for BMP 
signal transduction (Karlin 2004)  

Figure 1.1 Stages of chondrogenesis and the charactiis-
tic up regulation of phenotypic marker genese 
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scriptional complexes can be formed (see figure 1.2).  These transcriptional complexes have a 

variety of functions and operate by activating or repressing transcription of a number of target 

genes (Derynck et al., 1998).  BMPs are the only growth factors that can induce ectopic bone 

formation in vertebrates (Katagiri and Takahashi, 2002). 

 According to Zeng et al., 2002, Sox-9 and Nkx3.2 are in a positive autoregulatory loop 

that is maintained through BMP signaling (see figure 1.3).  The maintenance of this loop is nec-

essary for constitutive expression of Sox-9, which in turn acti-

vate transcription of a number of phenotypically chondrogenic 

genes such as collagen type II, aggrecan, etc.  In addition, 

Nkx3.2 knockout mice show reduced Sox9 expression and loss 

of Runx2 in the axial skeleton (Tribioli et al., 1997).  During 

endochondral ossification, the chondrocytes undergo further 

transformation to allow ossification to occur.  The mesenchy-

mal tissue enters hypertrophy where the cells expand and begin 

producing collagen type X; this is also believed to signal vas-

cular invasion.  Finally the ECM is mineralized and absorbed by osteoclasts and replaced with 

bone matrix by osteoblasts. 

1.3 Osteogenesis 

Osteoblasts, unlike chondrocytes, arrive at the site of differentiation via vascular inva-

sion of the mesenchymal tissue.  The osteoprogenitor cells undergo differentiation after receiv-

ing a BMP signal.  While mesenchymal cells require Shh to become competent for chondro-

genesis, osteoprogenitor cells do not.  Osteoblast differentiation can be divided into three 

stages, proliferation, maturation and mineralization (Lian et al., 2004, see figure 1.4).  The 

Figure 1.3 Positive autoregula-
tory loop between Nkx3.2 and 
Sox-9 that is maintained through 
the presence of BMP-2 (Zeng et 
al., 2002) 
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course of the process begins with an osteoprogeni-

tor cell and ends with a mature osteocyte during 

which phenotypic genes are temporally expressed 

or repressed due to signaling from regulatory pro-

teins (i.e. BMPs) and transcription factors. 

Once a BMP signal is present, the transcript levels 

of the transcription factor Runx2 sharply increase.  

Runx2 has been shown to be a master regulator of 

osteoblast differentiation.  Runx2 belongs to the 

Runx transcription factor family that plays dra-

matically critical roles in cell fate determination in 

the developing embryo.  The Runx family share a DNA binding domain, called the Runt homol-

ogy domain, which is highly conserved across species.  This domain was characterized in Dro-

sophila and found to be involved in developmental body patterning and segmentation 

(Nusslein-Volhard and Wieschaus, 1980). 

The three Runx family members provide a variety of roles within the developing mam-

mal.  Runx1 is also called AML-1 for Acute Myeloid Leukemia as well as CBFα-2 for Core 

Binding Factor.  Runx2 is also known as AML-3 and CBFα-1 and Runx3 is AML-2 and CBFα-

3.  According to Levanon et al., 1994, there is a very high degree of homology within the runt 

domain, as one would expect; however there is also similarity within the non-DNA binding 

residues (around 50%). 

1.4 Runx2 

 Runx2 knockout mice die perinatally with a complete absence of mineralized bone 

Figure 1.4 Schematic model of the major stages 
of osteoblast differentiation recognizable in in 
vitro and in vivo models beginning with the 
morphologically distinct osteoprogenitor near 
the bone-forming surface.  Frequently used phe-
notypic markers for these osteoblast stages are 
indicated (Lian et al., 2004) 

Osteogenesis 
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(Ducy et al., 1997, Komori et al. 1997, Otto 

et al. 1997).  Therefore Runx2 is necessary 

for osteoblast differentiation and skeleto-

genesis (see figure 1.5).  Studies have dem-

onstrated that Runx2 is expressed within os-

teoprogenitor cells and the amount increases 

throughout osteoblast differentiation (Lian 

and Stein, 2003).  As one can see from the 

prior references, there was a great deal of 

novel findings in 1997.  A brief summary of 

these results is necessary for understanding 

the current research on Runx2.  Runx2 was identified as a key transcription factor within the 

context of osteoblasts isolated from rat primary cells as well as in osteoblastic cell lines 

(Banerjee et al., 1997).  A number of phenotypic genes are up regulated by the transcription fac-

tor Runx2 including osteocalcin, α1-collagen, osteopontin and bone sialoprotein (Ducy et al., 

1997).  Taken together this indicates that Runx2 is a master regulator of osteoblast differentia-

tion. 

 Within the context of in vivo studies, Komori et al. and Otto et al. demonstrated the ne-

cessity of Runx2 for development and bone formation.  The homozygous knockout died shortly 

after birth and lacked mature osteoblasts to mineralize the tissue.  Interestingly, the heterozy-

gous mice displayed a phenotype similar to cleidocranial dysplasia an autosomal dominant dis-

ease that is typified by absence of a clavicle and defects in cranial fontanelles closure (Komori 

et al., 1997, Otto et al., 1997) 

Figure 1.5 Diagram of the bone-related Runx2 promoter 
construct used to generate transgenic mice. A Lac Z/
Poly-A cassette was cloned into the PstI site in the 5�Œ 
untranslated region of a Runx2 Type II genomic clone 
(Drissi et al., 2000). (A). (B–D) Whole-mount X-gal 
staining was performed on transgenic embryos from 9.5 
(B), 11.5 (C), and 12.5 dpc (D) with fixation times in-
creasing with age. Three-kilobase Runx2 promoter activ-
ity progresses from the caudal somites (B) into develop-
ing sclerotomal mesenchyme (C,D) prior to the onset of 
chondrogenesis. (Lengner et al., 2002) 
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 Runx2’s role in chondrogenic differentiation is apparent in the homozygous knockout 

mice, which displayed a lack hypertrophic chondrocytes (Kim et al., 1999).  Additionally 

Runx2 RNA transcript was detected in prehypertrophic and hypertrophic chondrocytes by Eno-

moto et al. suggesting that it does in fact play a role in the maturation of the ECM and subse-

quent steps in osteogenesis (Enomoto et al., 2000).  In the same manuscript it was shown that 

Runx2 antisense RNA prevented ATCD5 cells, a mouse chondrogenic cell line, from becoming 

hypertrophic while over expression of Runx2 increased hypertrophy. 

 In vitro the regulation of Runx proteins is complex due to compensatory effects between 

family members.  Meyers et al. determined that the Runx proteins bind the same DNA motif 

leading one to believe that their role transcriptionally is a function of what other proteins are 

present (Meyers et al. 1996).  The context of the cellular environment plays a significant role in 

the transcriptional properties of the Runx promoter and its regulation. 

 The Runx2 promoter contains two N-terminal isoforms, PEBP2αA1 (Type I) and til-1 

(Type II) (Geoffroy et al. 1998; Ogawa et al., 1993; Stewart et al., 1997, see figure 1.6).  Type I 

is a 513-residue protein that initiates at exon 2 and has a downstream P2 promoter.  The Type II 

isoform is 528 amino acid protein that is initiated at exon 1.  The Type II isoform is regulated 

through an upstream P1 pro-

moter and there appears to be 

no difference between the iso-

forms except their regulation 

through their respective pro-

moters.  It has been shown 

that both isoforms are capable 
Figure 1.6 Genomic Organization of Runt-related Genes (Karlin, 2005) 
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of inducing osteoblast differentiation (Harada et al., 1999).  There is constitutive expression of 

the Type I isoform in osteoprogenitor cells and nonosseous mesenchymal tissue (Banerjee et al., 

2001).  The Type II isoform is highly regulated and interacts with a variety of signaling mole-

cules and proteins.  BMPs and Shh have both been shown to regulate the Type II isoform dur-

ing development (Banerjee et al., 2001; Yamaguchi et al., 2000). 

 The expression of Runx2 is tightly regulated during development, in regards to os-

teoblast differentiation and chondrocytes 

maturation.  At day 12.5 in embryonic 

development Runx2 levels have been 

shown to peak which correlates with the 

Runx2 deficient phenotype being dis-

played 

around day 14.5 post coitum (unpublished data, Stein lab, see 

figure 1.7).  The Type II isoform’s expression during develop-

ment was studied when a lac-Z reporter gene was fused to the 

Runx2-P1 promoter in a transgenic mouse (see figure 1.8).  

There was expression in the claudal somatic tissue as early as 

day 8.5.  During days 9.5 through 11.5 Runx2 was present in the 

developing sclerotome.  By day 12.5 the expression was present 

in the mesenchymal tissue and the prechondrocytic sclerotome 

(Lengner et al., 2002). 

 The characterization of protein-protein interactions is not 

novel in terms of Runx2 transcriptional and post-translational 

Figure 1.7 Expression of the Runx2 Type II isoform during 
mouse embryonic development (RT-PCR). (Stein lab, un-
published) 

Figure 1.8 The bone-related 
Runx2 promoter is active in ma-
ture chondrocytes of newborn 
transgenic mice. The Runx2 pro-
moter transgene is highly ex-
pressed in the cartilaginous por-
tion of the rib at birth 
(arrowheads), but not expressed 
in the osseous portion of the rib 
(arrow). (A) Transverse section 
through the cartilaginous portion 
of the rib cage. (B) (Lengner et 
al., 2002) 
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regulation (see figure 1.9), for in-

stance Runx2-Smad heterodimers 

enhance Runx2 transcriptional regu-

lation (Zaidi et al., 2002).  In addi-

tion, Runx2 recruits Smads to nuclear 

domains in order to regulate Runx2 

dependent genes that are osteogenic.  

Therefore the BMP-Smad signal is 

intrinsically integrated into the con-

trol of osteogenic gene expression. 

 It is not likely that there is a small set of factors that control differentiation, history has 

shown there to be many transcription factors for many stages, hinting at the complexity of life.  

Runx2 and Smads are only two small pieces in a myriad of osteoblastic events that are interact-

ing with an indefinite amount of unspecified proteins. 

1.5 Homeodomain Proteins 

 Homeodomain (HD) proteins contain a highly conserved region of amino acids in a se-

quence that 

binds DNA.  A 

homeotic protein 

is one that has 

approximately 

60 amino acid 

residues (see fig-

Figure 1.9 Some known Runx2 coregulatory proteins illustrated 
by labeled black bars positioned above the corresponding region 
of the Runx2 amino acid sequence with which they interact.  The 
Runx2 protein is pictured here from N-terminus to C-terminus 
fashion with labeled domains referring to Glutamic Acid/Alanine 
(QA), Runt homology domain (RHD), Nuclear localization signal 
(NLS), Nuclear matrix targeting signal (NMTS), Valine/
Tryptophan/Arginine/Proline?Tyrosine (VWRPY) (Lian et 
al.,2004) 

Figure 1.10 Msx and Dlx genes encode closely related homeodomains.  Comparison  of 
the murine Msx and Dlx homeodomains showing residues shared between all members 
(green), Msx-specific residues (blue), and Dlx-specific residues (yellow).  The ho-
meodomain consensus sequence is shown.  (Bendall and Abate-Shen, 2000) 
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ure 1.10) that are commonly conserved between species as diverse as fruit flies and humans.  

The homeotic domain of these proteins binds DNA at precise sites in the promoter region.  At 

these sites, the protein may recruit other proteins that perform transcriptional activation or re-

pression events.  These other proteins are called response elements and are part of the transcrip-

tional complex.  HD proteins are often tissue-specific and highly regulated during development 

and differentiation. 

 The conserved region of the protein takes on a characteristic structure that is directly 

related to its function.  The HD usually has three helixes with flexible turns in between.  The 

third helix is the primary DNA binding component that fits in the major groove of the DNA and 

contacts the phosphate backbone and the bases that lie within the groove.  The N-terminal helix 

fits in the minor groove and makes other additional contacts.  Transcription factors are com-

posed of several components or modules and each has a particular role in gene regulation.  The 

HD is just one of these elements and other examples include zinc fingers and leucine zippers. 

The purpose of homeotic proteins is to bind DNA and form a protein complex in the 

proximity of the transcriptional start site.  In this way, the transcription of the target gene is in-

directly regulated by the interactions of proteins with the DNA and between recruited proteins.  

The genes that are controlled by HD proteins often code for other transcription factors that be-

gin a cascade of events leading to cell differentiation.  The loading and unloading of these com-

plexes is a subject of interest in cell differentiation since the transformation of one cell type into 

another has many applications and implications.  The growth of tissues for the replacement of 

damaged ones is the basis of tissue engineering and the deregulation of the cell cycle is the 

cause of cancer. 

HD proteins have played a role in evolution and remained conserved over thousands of 
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years.  Due to slight mutations in the sequence and structure, families of these proteins exist and 

redundancy in function is apparent in some cases.  A particular family usually shares the same 

HD sequence but the functions and target tissues differ.  Controlling the differentiation of cells 

and analyzing the chromatin is useful for characterizing the sequence of events necessary for 

development of particular cells and tissues. 

 Recent microarray studies has shown that an assortment of HD proteins are regulated by 

BMPs which suggests that the BMP signaling that affects Runx2 transcription may also be 

regulated through HD proteins.   There are two classes of 

homeotic genes, distaless (Dlx) and meshless (Msx) that is 

expressed to a significant degree in mesenchymal stem 

cells. They have been found to be essential during cranio-

facial, tooth, limb, and brain development (see figure 

1.11) due to mutation and phenotype analysis in trans-

genic mice.  Through regulating the activity of bone 

morphogenetic genes, Msx and Dlx play a critical role in 

osteoblast differentiation and embryogenesis.  The bind-

ing motif of HD proteins is redundant leading one to be-

lieve that protein-protein interactions with transcription 

factors are responsible for their regulatory activity.  (Beanan and Sargent, 2000; Bendall and 

Abate-Shen, 2000). 

 Mutational analysis of Msx2, Dlx3 and Dlx5 has indicated that they lead opposing roles 

in embryogenesis.  A mutation from proline to histidine at residue 148 in Msx2 enhances its 

DNA binding affinity.  This causes Boston-type craniosynostosis by inducing apoptosis of the 

Figure 1.11 Adult Msx2 mutants exhibit 
defective frontal bone ossification, re-
sulting in a large foramen (arrow). At 
E18.5, an enlarged frontal foramen 
(anterior dotted line) is present in the 
mutant, indicating that frontal bone ossi-
fication is already delayed at this stage. 
In contrast, the parietal foramen 
(posterior dotted line) is similarly sized 
in wild type and mutant. (Satokata et al., 
2000) 
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neural crest.  These cells would normally form the craniofacial features of the organism 

(Alappat et al., 2003).  A separate mutation within Msx2 (505_508dupATTG) induces the phe-

notype of parietal foramina with cleidocranial dysplasia (PFMCCD), a condition similar but 

separate from the CCD caused by haplo-insufficiency of Runx2 (Garcia-Minaur et al., 2003).  

In addition, a four base pair deletion within the 

Dlx3 gene has resulted in the autosomal domi-

nant condition tricho-dento-osseous (TDO) 

syndrome (see figure 1.12).  According to 

Price et al., TDO is the consequence of the in-

ability to transcribe bone specific genes and 

results in craniofacial abnormalities (Price et 

al., 1998).  Dlx5 null mice exhibit a mild delay 

in ossification of long bones, but there is no 

effect on expression of Runx2.  However, there 

is a severe phenotype with Dlx5/Dlx6 double null mice (Depew et al., 2002).  Msx genes are 

transcriptional repressors that prevent osteoblast maturation in skull and tooth osteoblasts.  Con-

versely, Dlx genes are transcriptional activators that are required for normal osteoblast matura-

tion. 

 HD proteins are comprised of multiple protein and/or DNA binding modules that can 

bind mutually exclusively.  HD motifs have been found in a variety of gene’s promoters includ-

ing osteogenic and chondrogenic canonical markers such as Runx2 and collagen type I (Ryoo et 

al., 1997).  In addition heterodimers between Msx2 and Runx2 as well as Dlx3 and Runx2 have 

recently been discovered (Hassan et al., 2004). 

Figure 1.12 Phenotype of wild type (left) and re-
gressed Dlx3  /  (right) E12.5 embryos genotyped by 
Southern blotting. (Morasso et al., 1999) 

        Dlx 3+/+                                   Dlx3 -/- 



12 

 

2.  MATERIALS AND METHODS 

Cell Culture and Transient Transfection 
C3H10T1/2 cells were maintained in Dulbecco’s Modified Medium (DMEM, Gibco) 

supplemented with 10% Fetal Bovine Serum (FBS, Atlanta Biologicals, GA).  Transient 

transfections were performed in 6-well plates at 75% confluence using 5 µl of FuGENE6 

transfection reagent (Roche, Indianapolis, IN) and 4 µg total DNA per well in accordance 

with the manufacturers protocol.  For Nkx3.2 expression, 100 ng of an Nkx3.2 expression 

vector in a PCS2 plasmid backbone (a kind gift from Dr. Andrew Lassar at Harvard Medical 

School) was transfected into each well unless otherwise noted.  As a control, 100 ng PCS2 

expression vector (empty vector) was transfected into each well.  In order to observe repres-

sion of endogenous Runx2 protein in the presence of Nkx3.2, C3H10T1/2 cells were co-

transfected with either Nkx3.2 with CMV driven enhanced green fluorescence protein 

(EGFP), or empty vector (PCS2) and EGFP.  After 24 hours, cells were trypsinized and FACs 

sorted to collect cells positive for EGFP fluorescence.  EGFP positive cells were replated and 

harvested 12 hours later for western analysis.  To monitor transfection efficiency, transfec-

tions included 0.5 µg of a CMV driven LacZ expression vector per well. 

Chromatin Immunoprecipitation Assays (ChIP) 

To cross-link proteins to DNA, C3H10T1/2 cells were incubated for 10 minutes at 

room temperature in 1X PBS (3 ml/plate) containing 1% formaldehyde, 25 uM MG-132 

(Calbiochem/Sigma), and 1X protease inhibitor (Roche Molecular Biochemicals, Indianapo-

lis, IN).  A final concentration of 0.125 M glycine was added to the 1% formaldehyde-PBS 

solution for neutralization.  Cells were collected in PBS after plates were washed twice with 

ice cold PBS.  The cells were then lysed in lysis buffer containing 25 mM HEPES/NaOH (pH 
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7.9), 1.5 mM MgCl2, 10 mM KCl, 0.1% NP-40, 1 mM DTT, 25 µM MG-132 and 1X complete 

protease inhibitor.  The cells were pelleted and resuspended in 300 µl (300 µl/100 mm plate) 

sonication buffer (50 µM HEPES/NaOH (pH 7.9), 140 mM NaCl, 1 mM EDTA, 1% Triton x-

100, 0.1% Na-deoxycholate, 0.1% SDS, 25 µM MG132, 1X complete protease inhibitor).  Sam-

ples were sonicated to shear the DNA into 0.2-0.6 kb fragments.  Cellular debris was removed 

by centrifugation at 14,000 rpm for 15 minutes at 4oC and resulting chromatin-containing solu-

tions were distributed into multiple 1 ml aliquots that were used as the starting material of all 

subsequent steps. 

Chromatin aliquots were precleared with 100 µl of a 25% (v/v) suspension of 2 µg sin-

gle stranded DNA coated protein A/G and 1 mg/ml BSA.  Samples were used directly for im-

munoprecipitation reaction with 2 µg of α-HA epitope, α-Dlx3 (affinity purified), α-Dlx5 (Y-

20) α-Msx2 (H-70) (Covance Inc.), α-Hox a10 (N-20), or α-Runx2 (M-70, Santa Cruz Biotech-

nology, Santa Cruz, CA) antibody and normal rabbit/mouse IgG as a control.  Chromatin im-

munoprecipitation reactions were allowed to proceed for 2-4 hours at 4oC on a rotating wheel.  

Immune-complexes were mixed with 100 µl of 25% (v/v) pre-coated protein A/G agarose sus-

pension followed by incubation for 1 h at 4oC on a rotating wheel.  Beads were collected by 

brief centrifugation and the immunocomplexes were eluted twice by adding 150 µl of freshly 

prepared elution buffer (100 mM NaHCO3, 1% SDS).  After reversal of crosslinks at 68oC over-

night, the eluate was treated with 100 µg/ml proteinase K followed by phenol-chloroform ex-

traction and ethanol precipitation using 5 µg glycogen as carrier.  An aliquot (2-3 µl) of each 

sample was assayed using quantitative PCR for the presence of specific DNA fragments using 

primers in the Runx2 P1 promoter.  The proximal region where the Nkx3.2binding motif and 

Runx2 autoregulatory motif is located the primers are: Forward 5’-ctc cag taa tag tgc ttg caa aaa 



14 

 

at-3’ and Reverse 5’-gcg aat gaa gca ttc aca caa-3’.  The middle region of the promoter where 

multiple Hox a10 sites and a Runx2 consensus site are located the primers are: Forward 5’-gca 

ttt gtg ttc tag cca aat cc-3’ and Reverse 5’-tgg cat tca gaa ggt tat agc ttt t-3’.  The distal region of 

the promoter where the overlapping homeodomain and Hox a10 sites are located the primers 

are: Forward 5’-ttg ctc aga acg cca cac a-3’ and Reverse 5’-cct tca tta tta tgt cta tgg aaa agt ga-

3’.  Quantitative real-time PCR was carried out using 2X SYBR Green mix (Eurogentec, Bel-

gium) and a 2-stage cycling protocol (60oC annealing and extension, 94oC denaturation, 40 cy-

cles).  Amplicon specificity was verified by analysis of melting temperature.  All data was col-

lected during the linear phase of amplification. 

Chondrogenic Induction of C3H10T1/2 Cells 
Induction of chondrogenesis was carried out by plating C3H10T1/2 cells (between passages 19 

and 25) in high-density micromass cultures (105 cells in a 10 µl drop of media) (Ahrens et al., 

1977, Mello and Tuan, 1999, Lengner et al., 2004); followed by a three-hour incubation period 

in which the cells were allowed to adhere.  Following adhesion, micromass cultures were fed 

with F12 media containing 5% Fetal Bovine Serum and 100 ng/mL recombinant hBMP-2 

(kindly provided by Dr. John Wozney at Wyeth-Ayerst, MA).  Cultures were harvested 24 hours 

after induction of chondrogenesis for analysis of gene expression. 

Osteogenic Induction of Primary Bone Marrow Stem Cells 

 Induction of osteogenesis in 1o bone marrow stem cells was carried out in MEM media 

containing 0.1% L-Glutamine, 0.1% Penicillin-Streptomycin, 10% Fetal Bovine Serum, and 

100 ng/mL recombinant hBMP-2.  At first confluency (day 3), cells were fed 250 µL ascorbic 

acid/100 mLs media.  The second feeding (day 5) of cultures contained 500 µL ascorbic 

acid/100 mLs media, while the last feeding (day 7) contained 1 mL/100 mLs (10 mM) media of 

Beta-glycero-phosphate (B-GPO4).  Cells were harvested 48 hours after osteogenesis was ob-
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served for gene expression analysis. 

RNA Isolation and Analysis 

RNA was isolated from cultures of C3H10T1/2 cells using Trizol Reagent (Invitrogen, Carls-

bad, CA) according to manufacturer’s protocol.  After purification, 5 µg of total RNA was 

DNAse treated using a DNA-free RNA column purification kit (Zymo Research, Orange, CA).  

RNA (1 µg) was then reverse transcribed using Oligo-dT primers and the Superscript 1st Strand 

Synthesis kit (Invitrogen) according to the manufacturer’s protocol.  Gene expression was as-

sessed by quantitative real-time PCR (Runx2, Type II Collagen, Osteocalcin, Sox9, Alkaline 

Phosphatase, Msx2, Dlx3, Dlx5, and Hox a10).  Quantitative PCR was performed using Fam-

conjugated Taqman probes and Taqman 2x Master Mix (Applied Biosciences, Foster City, CA) 

and a 2 step cycling protocol (anneal and elongate at 60oC, denature at 94oC).  Specificity of 

primers was verified by dissociation of amplicons when using SYBR green as a detector.  Prim-

ers used for PCR reactions are found in Table 2.1. 

 
Western Blotting 

For the detection of Nkx3.2, Runx2, and Actin proteins, each well of a 6 well plate was 

lysed in 400 µl lysis buffer containing 2% SDS, 10 mM DTT, 10% glycerol, 12% urea, 10 mM 

   Table 2.1:  PCR Primers     
Primer Name/Gene Forward Primer (5'-3') Reverse Primer (5'-3') 

Runx2 cgg ccc tcc ctg aac tct tgc ctg cct ggg atc tgt a 
Nkx3.2 aga tgt cag cca gcg ttt c agg cgt aac gct atc ct 
Sox9 gag gcc acg gaa cag act ca cag cgc ctt gaa gat agc att 
Collagen II ctg gaa tgt cct ctg cga tga ggc agt ctg ggt ctt cac 
Alkaline Phosphatase ttg tgc cag aga aag aga gag a gtt tca ggg cat ttt tca agg t 
Osteocalcin ctg aca aag cct tca tgt cca a gcg ggc gag tct gtt cac ta 
Msx2 caa gag gcg gaa ctg gaa aa gaa gcc tga ggg cag cat ag 
Dlx3 tat agg cag tac gga gcg tac c tag atc gtt cgc ggc ttt c 
Dlx5 acc tcg ccc tgc cag aac ttt cac ctg tgt ttg cgt cag t 
Hox a10 ttc ttt tgc gca gaa cat caa cat ttg tcc gca gca tcg ta 

GAPDH 
Applied Biosystems 

#4308313 Applied Biosystems #4308313 
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Tris/HCl (pH 7.5), 1 mM PMSF, 1X Protease inhibitor cocktail (Roche), 25 uM MG132 pro-

teosome inhibitor, and boiled for 5 minutes.  Proteins were then quantified using Bradford re-

agent (Pierce, Rockford, IL) and taking spectrophotometric readings at 590 nm.  Concentrations 

were estimated against a standard curve generated against BSA. 

Total protein (20 µg) was subjected to electrophoreses in a denaturing 10% polyacryla-

mide gel containing 10% SDS.  Proteins were then transferred onto Immobilon-P membranes 

(Millipore, Billerica, MA) using a semi-dry transfer apparatus.  Membranes were blocked in 

PBS-0.01% Tween-20 containing 2% nonfat powdered milk (Biorad, Hercules, CA).  Proteins 

were detected by incubating with blocking solution.  Antibodies used in this study are as fol-

lows:  Nkx3.2, α -HA epitope mouse monoclonal antibody (Santa Cruz, Santa Cruz, CA); 

Runx2 mouse monoclonal antibody was a generous gift from Drs. Yoshi Ito and Kosei Ito, Na-

tional University, Singapore; α -Actin goat polyclonal antibody.  Primary antibodies were de-

tected with goat a-mouse secondary antibody conjugated to HRP.  Secondary antibodies were 

detected using Western Lightning Chemiluminescence Reagent (Perkin Elmer, Boston, MA). 



17 

 

3.RESULTS                         

 As can be seen in the Runx2 P1 promoter there are many DNA-protein interactions 

that are possible through a variety of consensus sequences found 600 kb upstream that play a 

role in regulating transcription (figure 3.1.).  These interactions are context dependent within 

the cellular environment and are 

mediated through complexes of 

proteins that interact with the 

transcription factors and signaling 

molecules to activate or repress 

transcription.  Competition be-

tween overlapping and nearby 

sites, and protein-protein recruit-

ment are features of regulation 

that are the determinant of 

what transcription factor binds 

when.  Chromatin immunopre-

cipitation is a powerful tech-

nique that allows one to ana-

lyze the temporal loading of 

proteins that interact with DNA 

(figure 3.2).  The DNA that is 

isolated is amplified and meas-

ured quantitatively using real 

Figure 3.1   Homeodomain Protein Regulatory Elements in the 
Bone-Related Runx2 0.6 kb P1 Promoter 

Figure 3.2  Schematic of Chromatin Immunoprecipitation 
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time-polymerase chain reaction.  The amount of DNA that is pulled down is dependent on the 

protein-DNA interactions present in the cell.  In this study we induced differentiation of murine 

primary bone marrow stem cells (BMSCs) and the murine mesenchymal cell line C3H10T1/2 to 

become osteoblasts and chondro-

cytes respectively.  The primers 

used targeted specific regions of the 

Runx2 P1 promoter that contain 

regulatory boxes with a number of 

overlapping consensus sites (figure 

3.3).   

3.1 Nkx3.2 Repression of Runx 2 
 RNA was isolated from 

C3H10T1/2 cells induced to un-

dergo chondrogenesis and reverse-transcribed.  Gene expression was monitored over four days 

and using quantitative real-time PCR (see figure 

3.4).  Primers targeting specific cDNA sequences 

were used to determine relative transcript levels of 

phenotypic genes such as collagen type II and 

Sox9.  Because we observed an inverse correlation 

between Runx2 and Nkx3.2 we hypothesized that 

Nkx3.2 was repressing Runx2 transcription.   As 

early as day 7 after plating in BMP-treated media, 

BMSCs exhibit osteogenic nodule formation 

within the cell population.  These nodules continue 

Figure 3.3  Schematic of Primer locations within the Runx2 P1 
promoter and the regulatory sites that are targeted. 

Figure 3.4 Gene expression was monitored over a 
4-day period after induction of chondrogenesis.  
Strong expression of Nkx3.2 was observed by day 
one and was closely followed by activation of 
Sox9 and the cartilage specific ECM protein col-
lagen type II.  In contrast Runx2 expression was 
strongly repressed by one day. (Lengner, Serra et 
al., 2005) 
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differentiation and expand 

in size and cell number dra-

matically 48 hours after β-

GP treatment (arrows in fig-

ure 3.5)  The osteoblast phe-

notypic expression of the 

osteoprogenitor cells indi-

cated an opportune time to 

harvest for ChIP analysis.  

This phenotype is exagger-

ated within C3H10T1/2 cell 

cultures that have been ade-

novirally Runx2 infected and displayed increased osteogenesis.  The osteogenic gene Alkaline 

Phosphatase (AP), when stained, shows prevalence in the Runx2 infected cultures.  Alcian blue 

staining targets mucopolysaccharides and 

glycoaminoglycans that are associated with 

cartilaginous tissue.  As can bee seen in fig-

ure 3.6 there is an abundance of staining in 

the lacZ infected culture while the Runx2 

infected cultures shows dramatic loss of 

chondrogenic gene expression.  Runx2 ac-

tivity under chondrogenic conditions pre-

vents the population from differentiating 

Figure 3.5  Osteogenic differentiation time course (A), Chondrogenic differ-
entiation time course (B) 

A 

B 

Figure 3.6   Histology of osteogenic and chondrogenic 
phenotypes as seen in C3H10T1/2 cell cultures with al-
cian blue and alkaline phosphatase staining.  Notice the 
enhanced expression of AP in the adenovirally Runx2 
infected cells that also almost completely lack a chondro-
genic phenotype. (Lengner, Serra et al., 2005) 
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into chondrocytes, yet can induce osteogenic differentiation. 

 Therefore Runx2 seems to be acting as a repressor of chondrogenic genes and this re-

pressive activity is absent during chondrogenesis.  Therefore a mechanism of inhibition and 

derepression is hypothesized where there is a repressor (Nkx3.2) of the repressor (Runx2).  

C3H10T1/2 cells, which have been tran-

siently co-transfected (figure 3.7) with 

Nkx3.2 and GFP, were FACS analyzed for 

GFP-marked plasmid incorporation.  The 

GFP positive cells were plated and grown for 

48 hours, at which time they were lysed for 

Western analysis.  As can be seen in figure 

3.7, there is a significant reduction in Runx2 

protein levels in the Nkx3.2 infected cells.  Therefore it is believed that Nkx3.2 is in fact re-

pressing transcription of Runx2.  The mRNA transcript levels of Runx2 must be evaluated in 

order to determine if transcription at the Runx2 promoter is happening and the transcript is de-

graded before translation or if transcription is repressed at the promoter. 

 As can be seen in 

figure 3.8 the Runx2 

mRNA levels are elevated 

during osteogenesis of 

BMSCs yet is repressed 

during chondrogenesis of 

C3H10T1/2 cells suggest-

Figure 3.7  Western Blot analysis of Runx2 repression 
from Nkx3.2 over expression. (Lengner, Serra et al., 
2005) 
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ing that Runx2 is in fact transcriptionally repressed during chondrogenesis.  This repression is 

hypothesized to be due to Nkx3.2 recruitment to the promoter.  When the 0.6 kb promoter se-

quence is examined for consensus sequences as can be found in figure 3.1, there is a highly con-

served regulatory box around 100 kb upstream.  Upon closer examination, one finds that there 

are binding sequences for a number of transcriptional regulators including HLH, ATF, Vitamin 

D, as well as Runx2 itself.  Nkx3.2 binds to this site in a sequence specific manner as deter-

mined by EMSAs with a 24 bp oligo containing the Nkx3.2 

site (data not shown).  Mutation of the Nkx3.2 site within the 

oligo completely eliminates binding demonstrating the re-

quirement for the intact Nkx3.2 sequence.   

 To confirm that Nkx3.2 is occupying the regulatory 

site in the promoter, we performed ChIP assays 24 hours after 

transfection with Nkx3.2 in C3H10T1/2 cells using antibodies 

against endogenous Runx2 or HA-tagged Nkx3.2 (see figure 3.9).  We found that the Runx2 

promoter was immunoprecipitated with the αHA antibody but not the αRunx2 or non-specific 

IgG antibody.  Therefore the transcription factor Nkx3.2 is occupying the Runx2 promoter and 

interacts with the consensus site that is approximately 100 bp upstream from the TATA box. 

Nkx3.2 associates and regulates chondrogenic genes as can be seen in the Sox9 tran-

scription factor promoter (data not shown.).  We have recently shown that Nkx3.2 negatively 

regulates the Runx 2 promoter in order for the mesenchymal progenitor cell to undergo osteo-

genesis.  During chondrogenisis, Nkx associates with the Sox9 promoter (data not shown).  In 

addition, Nkx associates with the distal end of its own promoter perhaps auto-regulating itself in 

a fashion similar to Runx2 (data not shown). 

Figure 3.9  Nkx3.2 recruitment to 
proximal Region of Runx2 Promoter 
in Transfected C3H10T1/2 cells 
(Lengner, Serra et al., 2005) 
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3.2 Homeodomain Protein Regulatory Analysis of the Runx 2 0.6 KB   P1 Promoter 

As mentioned before, there are several sites on the Runx2 promoter that may influence 

transcription (figure 3.1).  Much like the Nkx3.2 binding region approximately 100 bp upstream 

of transcriptional start site, there are two additional regulatory regions that have overlapping 

HDs.  ChIP analysis of these regions using antibodies for Runx2, Dlx3, Dlx5, Msx2, and Hox 

a10 enables one to determine if these regions are temporally loading with one or more of these 

transcription factors during mesenchymal differentiation. 

Runx 2 preferentially associates with its 

own distal promoter under osteogenic 

conditions and there may be a positive 

effect due to this association (figure 3.10).  

Auto- regulation is a common mechanism 

for maintaining protein levels of a gene 

product and this may or may not be the 

case in this instance.  The middle region 

of the promoter also shows some increase in the osteogenic time point; however this is believed 

to be an effect from the ChIP and the sonication of the chromatin fragments.  The fragments are 

in the range of 200 to 500 kb in length, therefore the primers may be picking up a piece of DNA 

that was pulled down with an antibody for a protein that is recruited to a nearby region in the 

promoter. 

Msx2 associates itself with the region near the transcriptional start site for a positive 

regulatory effect under osteogenic conditions.  Additionally, there is a loss in binding in the dis-

tal region of the promoter during osteogenic differentiation (figure 3.11).  However, Msx2 is 

Figure 3.10  Runx2 Chromatin immunoprecipitation 
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occupying the distal and middle region of the 

promoter under basal levels and is lost during 

chondrogenic differentiation.  Additionally, 

when Nkx3.2 is binding during Runx2 repres-

sion, Msx2 is displaced or prevented from bind-

ing at its preferential location on the proximal 

region of the promoter.  Therefore it appears 

that Msx2 is required in the distal region of the promoter in proliferating mesenchymal cells yet 

must leave that site and be recruited in the proximal promoter for osteogenesis.  Conversely, 

Msx2 is sitting on the proximal promoter re-

gion during proliferation of C3H10T1/2 cells 

but must leave and target the distal region for 

Runx2 repression and subsequent chondro-

genesis. 

Dlx3 associates and binds in the localized re-

gion near the transcriptional start during osteo-

genic differentiation.  There seems to be a dramatic recruitment to the proximal region that is 

necessary for osteogenesis (figure 3.12).  This 

contrasts with the slight reduction in recruit-

ment in the middle region of the promoter dur-

ing Runx2 repression. 

Dlx5 appears to occupy the distal pro-

moter under basal levels yet is lost during later 

Figure 3.12  Dlx3 Chromatin immunoprecipitation 

Figure 3.13  Dlx5 Chromatin immunopreciipitation 

Figure 3.11  Msx2 Chromatin immunoprecipitation 
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stages of osteoblast differentiation.  When 

Runx2 is repressed there is a dramatic loss of 

Dlx5 from the distal region of the promoter 

(figure 3.13).  Additionally, there is a reduc-

tion in Dlx5 binding in the central region of 

the promoter during chondrogenesis. 

There is a recruitment of Hox A10 

when the promoter is activated during os-

teoblast differentiation (figure 3.14).  Hox A10 has recently been implicated as pro-osteogenic 

factor (Lian and Balint, Gene Array; Hassan personal communication).  Taken together, Hox 

a10 may have an activating effect on the promoter through the distal region. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14  Hox a10 Chromatin immunoprecipitation 
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Figure 4.1  Schematic of Cell Culture and Differentiation 

 

4.  CONCLUSIONS 

This project accomplished the establishment that the Runx2 gene is repressed by the ho-

meodomain factor, Nkx3.2.  The identification of the Runx2 gene being regulated by Nkx3.2 is 

found through the Runx2 promoter that is sensitive to coordinated signaling molecules.  These 

findings support Runx2’s critical role in chondrogenesis and provides evidence that it is also 

involved with BMP-2 induced chondrogenesis in pluripotent mesenchymal cells (figure 4.1).  

While finding the Runx2 repression at the beginning of chondrogenesis is important, the role 

that Runx2 plays within the cellular environment remains to be found in mesenchymal cells. 

 

 

 

 

 

 

 

 

During osteogenic differentiation, Runx2 associates itself with the distal region of the 

Runx2 gene promoter.  In addition, there is an induction and recruitment of Msx2, Dlx3, and 

Hox a10 on the proximal region of the promoter for a positive transcriptional effect.  Interest-

ingly, Dlx5 is found to bind to the distal region of the promoter under chondrogenic differentia-

tion.  This may be for a negative effect on the Runx2 promoter.  Msx2 is found to increase it’s 

binding to the proximal promoter dramatically during osteogenesis while levels decreased from 
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Figure 4.2  Model of ChIP results displaying temporal loading of ho-
meodomain proteins 
 

basal levels during chondrogenesis (figure 4.2). 

However as differentiation progressed Dlx3, then Dlx5 displaced Msx2 and occupied 

the regulatory region.  Additionally, the displacement found in the distal promoter during osteo-

genesis supports these findings.  The displacement during chondrogenesis may be due to our 

findings of Nkx3.2 binding in the proximal regulatory element.   
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