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Abstract

Various Image Based Rendering (IBR) techniques have been proposed to reconstruct

scenes from its images. Voxel-based IBR algorithms reconstruct Lambertian scenes

well, but fail for specular objects due to limitations of their consistency checks. We

show that the conventional consistency techniques fail due to the large variation

in reflected color of the surface for different viewing positions. We present a new

consistency approach that can predict this variation in color and reconstruct specular

objects present in the scene. We also present an evaluation of our technique by

comparing it with three other consistency methods.
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Chapter 1

Introduction

Computer Graphics has come a long way from rendering three dimensional polygons

using perspective to high quality rendering using advanced techniques such as ray

tracing and radiosity. Many complex tools have been developed to create models and

render images using Computer Graphics, but modeling complex scenes is a hard task

and rendering them is computationally demanding. As a result, producing photo-

realistic images is a difficult task. Moreover, the triangle primitive seems to be

insufficient to support the increasing complexity of the models.

Imagine how difficult it could be to model and render an image of a huge complex

structure such as the Statue of Liberty using Computer Graphics. One would start

from studying the blueprints of the structure to understand the geometry, then figure

out the appropriate lighting model for illumination and still it may not look photo-

realistic because the rendering will be too synthetic looking. Such rendered images

cannot account for the natural coarse appearance or the dirt on the structure.

What if one could model and render images of a structure just by taking pictures

of it with a camera. Image Based Rendering (IBR) provides such a methodology.

IBR describes a set of techniques that allow three dimensional graphical interaction
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with objects and scenes whose original specification began as images or photographs.

1.1 Context and Motivation

Image Based Rendering is the fusion of Computer Graphics and Computer Vision.

Computer Graphics generates images from a model using its mathematical descrip-

tion such as dimension, camera parameters, lighting, etc. Computer Vision does the

opposite; it infers the shape and surface properties of the object from its images.

Given a set of views of a scene, Image Based Rendering reconstructs the three di-

mensional data structure of the scene and uses it to render views of the scene from

new viewpoints.

Image Based Rendering offers a vast range of techniques to model and render

scenes using images. IBR has grown enormously over the past six years, trying to

overcome the various issues with different techniques. One remaining problem is the

reconstruction of specular objects.

Specular objects are those that are made of reflective surfaces, such as polished

wood, and hence show a large variation in color under different viewing orientations.

This implies that the same object can project different colors in images taken from

different viewpoints. The color of the pixel in the image is the central source of

information to many IBR algorithms. Specular highlights mislead this information

and cause the IBR algorithms to fail.

In this work, we study the behavior of specular objects and designed a new

approach that predicts such variations in the color of specular objects and hence

prevents the IBR algorithm from failing.
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1.2 Problem Overview

IBR techniques such as Generalized Voxel Coloring (GVC) [1] take a set of images

of a scene along with their camera parameters as input to the system. There is

no information about the lighting, surface properties or 3D configuration of the

scene. Using the input, GVC generates a 3D model of the scene and renders images

from new viewpoints. The consistency between the surface color projected in all

the images of the scene is used to generate the 3D model. Specular highlights in

the input images lead to false information about the surface and hence cause the

algorithm to fail. Figure 1.1 shows a torus that has a specular highlight which

causes GVC to fail. The GVC reconstruction is shown in Figure 1.2. This failure is

due to the large variation of surface color in different images and making the surface

inconsistent among the different input views. For this thesis we have developed

a new approach that can predict this variation in surface color and reconstruct

specular objects.

Figure 1.1: A torus with bright specular
highlight

Figure 1.2: GVC fails to reconstruct the
specular highlighted area of the torus
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1.3 Thesis Structure

An overview of the context of this work is presented in Chapter One. Chapter Two

talks about various related techniques used to reconstruct scenes from images, with

their advantages and limitations. Chapter Three defines the problem by presenting

our study of specular objects and reasons why IBR algorithms fail to reconstruct

specular objects. Chapter Four presents our approach to deal with specularity.

Chapter Five contains the results and evaluation. Chapter Six summarize the con-

clusions.
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Chapter 2

Previous Work

2.1 Techniques proposed

Various techniques have been proposed for volumetric scene reconstruction. These

vary from full 3D representations to 2D interpolations. Attempts have also been

made to work with weakly calibrated cameras, since calibrating cameras, or finding

the extrinsic and the intrinsic parameters, can be a difficult task to handle. The

following subsections discuss some of these techniques. For a complete literature

survey see [7].

2.1.1 Voxel Coloring

Seitz and Dyer have presented the problem of scene reconstruction as, given a set of

input images and a 3D space V, determine the subset S ⊂ V which is color consistent

with the input images [6]. The Voxel Coloring algorithm works by discretizing scene

space into a set of voxels that is traversed and colored in a special order. Only those

voxels that are consistent are retained. A voxel is consistent if it projects to the

same color (within a permissible error, which is defined by threshold,) on all the
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images from where it is visible.

To avoid multiple passes through the voxel space, this technique introduces a

constraint known as the ordinal visibility constraint [6]. According to this constraint,

the voxel space is partitioned into a series of layers of increasing distance from

the camera. Then each layer is traversed one by one, passing a plane through

a volume. This helps to determine the occlusions between voxels and hence their

visibility information. Only those voxels that are visible are colored. The algorithm’s

complexity is relaxed so that only a single pass of the volume is required. This places

a restriction on the camera locations, which is a significant limitation. The algorithm

pseudo code is shown in Figure 2.1.

for each layer in the voxel space {

for each voxel in that layer {

project the voxel to each image

collect the set of pixels to which this voxel projects

evaluate this voxel’s consistency

if (consistency < threshold) {

color this voxel

}

}

}

Figure 2.1: Pseudo code for Voxel Coloring

Voxel consistency is defined as the standard deviation in the color of the set of

pixels in all images, on which a voxel projects. So a voxel will be colored only if the

consistency is less than the threshold value.

The algorithm has a linear time and space complexity with respect to number of

images. It traverses each voxel exactly once, hence it is of the order 0(N), where N

is the number of voxels. It was tested on both real and synthetic images. Holes in

the reconstruction were only visible from non-basis viewpoints. Another important

fact that must be stated about this technique is that the cameras need a very high
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precision of calibration, which is problematic.

2.1.2 Space Carving

The space carving theory [3] reconstructs arbitrary shaped scenes from a set of

photographs with no constraints on the camera placement. It finds a set of all

photo-consistent shapes from the given set of input photographs and tries to com-

pute a shape from this set, known as the photo hull, a maximal shape. The only

requirements are that the viewpoint of each photograph is known in a common 3D

world reference frame and the scene radiance follows a known locally computable

radiance function (locally computable radiance function is defined as a special class

of scenes for which global illumination effects such as shadows, transparency and

inter-reflections can be ignored).

A concrete characterization is provided for the family of scenes that are photo-

consistent with the set of input photographs. This characterization is defined by

a background and a radiance constraint. The background constraint states that

if V is the 3D scene being constructed and viewed under perspective projection,

then no point on V projects to a background pixel. If a photograph taken from a

position c contains identifiable background pixels, this constraint restricts V to a

cone defined by c and the non-background pixels in the photograph. Given N such

photographs, the scene is restricted to a visual hull, which is a volume intersection

of their corresponding cones. Though this constraint is good enough to reconstruct

the visual hull, it fails when there are no background pixels or the background pixels

are difficult to identify. The radiance constraint takes advantage of the fact that the

scene belongs to the class of locally computable radiance models. Hence given an

a priori computable radiance model for the scene, it can be determined whether or

not the given shape V is photo-consistent with the given set of input photographs.
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The reconstruction is done by carving an arbitrary volume such that it converges

to the photo hull. The algorithm makes two assumptions, first that the initial volume

contains the true scene and second that the surface of the true scene conforms to

a radiance model defined by the consistency check algorithm. The space carving

algorithm pseudo code is shown in Figure 2.2.

Initialize V to the volume containing the true scene.

for all voxels on the surface of the volume {

project each surface voxel on to the photographs

determine the photo-consistency(pixels color,

optical rays to the corresponding optical center)

if (voxel is non-photo-consistent) {

carve it

}

loop until no more voxels are carved.

}

Figure 2.2: Pseudo code for Space Carving

The total number of consistency checks is bounded by N x M, where N is the

number of input photographs and M is the number of voxels in the initial volume.

Multiple passes are swept through the volume to make sure that voxels are photo-

consistent with all the images. During each pass a plane is swept in increasing or

decreasing direction of x,y or z, hence making a total of six passes. A threshold is

used on the standard deviation of the pixel to decide whether or not to carve the

voxel. This is the same consistency test used in Voxel Coloring [6]. The advantage

of this technique over the Voxel Coloring [6] is that it does not place any constraint

on the camera position.
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2.1.3 Generalized Voxel Coloring

Generalized Voxel Coloring (GVC) [1] is an extension of the Voxel Coloring [6] and

Space Carving [3] algorithms. Unlike voxel coloring, GVC removes any constraint

on the position of the cameras. On the other hand, it uses all the images to evaluate

the consistency of a voxel unlike space carving which uses only a subset of them. The

key difference is the way visibility of a voxel is determined. Voxel coloring places a

constraint on the camera position and sweeps the volume in one direction so that a

visibility of the voxels that might occlude a voxel are already known. Space carving

uses multiple scans to remove the constraint on the camera position. Though Space

Carving never carves a voxel it should not but its conservative approach may leave

some voxels that should have been carved.

GVC has two variants, one is computationally expensive and other consumes

lot of memory. The basic version of GVC maintains a list of all surface voxels and

after every carving iteration, this list is computed again as the visibility information

changes. This makes it computationally expensive. The second version called GVC-

LDI avoids the computation by storing the volume information in advance, but this

requires a large amount of memory.

The basic GVC algorithm assigns a unique id to each voxel. A list of all visible

voxels is created and defined as Surface Voxel List (SVL). Each voxel on this list

is tested for consistency and every time a voxel is carved the SVL is re-evaluated.

The algorithm pseudo code is shown in Figure 2.3.

Observe that the algorithm is very similar to Voxel Coloring [6] and Space Carv-

ing [3], only the visibility computation is different.

The second version maintains a two dimensional SVL, which means that each

voxel in the SVL has a sub-list that keeps track of the next visible voxel if this one

was carved. The advantage is clear that the SVL now need not be reevaluated. But
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initialize SVL

for every voxel V on SVL {

compute V’s consistency

if (V is inconsistent) {

carve V

reevaluate SVL

}

loop until no more voxels are carved

}

Figure 2.3: Pseudo code for Generalized Voxel Coloring

this requires a large amount of memory.

The performance of this technique was compared to the space carving approach

using two scenes. The basic GVC takes about double the memory as compared to

the Space Carving. The LDI takes about five times more memory than the original

GVC. The number of consistency checks are lower for GVCs as compared to the

Space Carving.

2.1.4 Volumetric Warping

Slabaugh et al. have presented a technique to reconstruct large-scale scenes using

Volumetric Warping [7]. This approach is an extension of the voxel based tech-

niques such as Generalized Voxel Coloring [1] with spatially adaptive voxel size that

increases away from the cameras. Warping the voxel space allows an infinitely large

scene space to be modeled with finite number of voxels. A warping function is

defined such that no voxels overlap and no gaps are left between the voxels.

The voxel space is divided into two regions: the interior region to model fore-

ground objects and the exterior region to model background surfaces. The volu-

metric warp does not affect the volume in the interior space, providing backward

compatibility with other voxel based techniques. A frustum warping function is de-
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fined which warps the exterior voxels in proportion to the distance of the voxel from

the interior space. The frustum warp assumes the both the interior and exterior

space have rectangular shaped outer boundaries. The outer regions that are to be

warped are labeled as ±x,±y and ±z. For each region a warping function is defined

as:

xw = x
xe − xi
xe − |x|

(2.1)

where xe is the distance along the x-axis from the center of the interior space to the

outer boundary of the exterior space, xi is the distance along the x-axis from the

center of the interior space to the outer boundary of the interior space, x is the pre-

warped x-coordinate and xw is the x-coordinate after warping, as shown in Figure

2.4. Thus, a point on the boundary of the inner volume does not move, whereas

the point on the boundary of exterior space is warped to infinity. The equivalent

y-coordinate for this xw is found using the equation of the line:

yw = y +m(xw − x) (2.2)

where m is the slope of the line connecting the point (x, y) with the point a, as

shown in Figure 2.4.

Reconstructing the scene using warped reconstruction volume is a difficult task.

The cameras are embedded in the volume due to which no voxel is visible in more

than one camera. To avoid this situation, the authors pre-carve a section of the

volume initially so that each surface voxel is visible by at least two cameras.
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Figure 2.4: Finding the warped point

2.1.5 Shape reconstruction in Projective Grid Space

Saito et al. have focused more on the problem of camera calibration rather than

scene reconstruction [5]. Camera calibration is a very difficult task. This technique

reconstructs scenes using weakly calibrated cameras. This is achieved by defining a

projective grid space, which uses two basis views and a fundamental matrix relating

these views. Once the projective grid space is formed, a projective shape can be

reconstructed from all images of the weakly calibrated camera [5].

The projective grid space is constructed by selecting two images as the basis of

the projective grid space. Each pixel in the first image defines a grid line in space.

The rays coming out of image two intersect the grid line and define the grid node

points in the space. These node points are recorded by the horizontal displacement

or vertical displacement on the second image. This is possible since the fundamental

matrix limits the position on the epipolar line in the second image. The epipolar

line, on the second image, is the projection of the grid line in space formed by

the first image. This way the projective grid space is defined where each node is

represented by (p,q,r) where (p,q) is the pixel position of the grid line in the first

image and r is the horizontal (or vertical) displacement on the second image of the

intersecting grid line, passing through the epipolar line.
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Now, the relationship between the projective grid space and any arbitrary image

is determined by the two fundamental matrices of the image with the two basis

images. Hence, every grid point can be projected onto every image by using only

the fundamental matrices between the image and the two base images.

The concept of projective grid space is used to avoid the heavy calibration re-

quired in the Voxel Coloring [6]. Voxel Coloring requires that the geometric rela-

tionship between every voxel and image pixel be known. By applying the projective

grid concept, the Euclidean calibration can be replaced by the projective calibration,

which is sufficient for scene reconstruction since every grid point’s relation to each

image is now known.

Experiments were performed using this approach on a basketball scene taken

by a 3D Video Dome System. Out of the 51 images, two, whose optical axes were

nearly perpendicular, were chosen as the base images. The calibration was done

by placing LED point lights in a straight line, since the LEDs will be visible from

all images. About 500 correspondence points are obtained using the LEDs and the

fundamental matrices are estimated using Zhang’s method [13]. About 320x240

epipolar lines are projected from base image one onto base image two for generating

the projective grid space. And 320 grid points are defined for each epipolar line

by the horizontal position in base image two. This makes a total of 320x240x320

grid points in the space. In any reconstructing technique, occlusions cannot be

interpolated using an image-based method until the 3D structure is known. The

reconstructed projective shape provides a dense correspondence map between any

two images and this can be used to synthesize new intermediate image viewpoints

taking occlusions into account.
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2.1.6 Silhouettes

Silhouettes are one of the most basic cues to 3D structure, and despite their simplic-

ity they have been useful in a wide variety of image-based modeling and rendering

research. Szeliski has used object silhouettes from a video stream of a rotating

object to reconstruct its geometry [9].

The 3D volumetric description is recovered from the binary silhouettes of the

object against its background from multiple views. Each image is converted into

a binary silhouette by differencing the image with an empty background. Then

each cube in an octree volumetric 3D model is projected (using the known camera

position) into the silhouette and those cubes that fall outside the silhouette are

removed. If a cube falls partially on the silhouette, it is marked for later subdivision,

and the process is repeated until a minimum resolution is achieved.

By using more views of the object, this technique can recover the visual hull of

the object. For many objects the visual hull is same as the shape itself, although

for shapes with a complicated concave structure, some of the volume will remain.

2.1.7 Real-Time Voxel Coloring

Prock and Dyer have proposed three methods for speeding up the original Voxel

Coloring algorithm [6] so that it runs in real-time. The first one uses hardware

texture mapping, the second implements a multi-resolution approach and the third

utilizes the fact that dynamic scenes are temporally coherent [4].

Voxel Coloring [6] places constraints on the camera position and scans the volume

layer by layer. Then in every layer, the voxels are projected onto the images. Prock

and Dyer suggest that instead of projecting the voxels onto the images, project the

images on the plane of voxels [4]. This can be achieved using “hardware texture
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prewarp all images

for each voxel layer x {

for each image y {

texture map layer x with image y

for each voxel in layer x {

store its color value

}

}

for each voxel V in layer x {

if (V’s colors are correlated) {

color voxel V

update image pixels to reflect occlusions

}

}

}

Figure 2.5: Pseudo code for Real-Time Voxel Coloring

mapping”. The images must be pre-warped for the transformation from the world

to image coordinates to correctly follow the pinhole camera model. The pseudo code

for this algorithm is shown in Figure 2.5.

An interesting change in this algorithm, as compared to the original Voxel Col-

oring algorithm [6], is that the computation is now measured on a per-image basis

and not on a per-voxel basis. The occlusion information is stored in the images and

this information is updated for every layer traversed.

The second approach proposed is a multi-resolution approach - moving from

“coarse to fine coloring” [4]. In this technique, the coloring of the scene is started

at a low resolution, so as to speed up the process. Voxels are then added to the

original low resolution voxel set. These new voxels are divided into smaller units

and colored according to the standard algorithm. The problem with this approach

is that while coloring at low resolution, those voxels which are partially colored are

rejected. This can lead to the formation of holes in the reconstruction. To fix this

problem, the authors suggest a nearest neighbor search strategy to find the missing
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voxels. This strategy utilizes the fact that the surfaces are spatially coherent.

The final method suggested is “dynamic voxel coloring” [4]. Dynamic scenes,

like a video clip, are temporally coherent. So a scene-space that was found to be

empty in a previous frame, need not be processed in the current frame. Though this

optimization will speed up the coloring process, but it fails in the case when the

scene changes suddenly, such as the appearance of new objects. A search strategy

is implemented to restore the missing voxels. It is similar to the one used for the

coarse to fine approach, but needs a threshold to be set, which would define how

fast the scene changes. This will help to determine how fast the surface completely

moves out of the view window. Every time a frame is colored, a seed color is updated

to reflect any changes due to the motion. Once the seed color is augmented, the

voxels are subdivided into smaller units. If changes are made to the new subdivided

voxels, their seed colors are accordingly updated.

The experimental results for this approach show improvement in the performance

of the original algorithm. The pre warp images help to speed up the process, as com-

pared to Tsai’s camera calibration [10], which is computationally expensive. The

pre-warping of the images can be done before the actual coloring of the scene. The

texture mapping method gave modest performance for scene resolutions up to 160

voxels. The reconstruction obtained from texture map optimization had the object

colors mixed with the background. This is because of the interpolation of colors be-

tween the foreground and background pixels. The multi-resolution approach shows

a good improvement in performance with a speedup of 1.2 times with low resolution

and 41.1 times for higher resolution. The dynamic approach was tried on a 3 frame

scene. The original coloring took 3.70 seconds, whereas with dynamic coloring, this

figure dropped down to 2.74 seconds.
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2.1.8 Building Models from Range Images

All the techniques discussed until now have used regular camera images. Levoy et

al. [2] proposed a method for reconstruction from range images. Range images are

images that have depth information for the scene. These images are taken using

range scanners. The depths values are stored on a regular sampling lattice. A range

surface is created by connecting the near neighbor points in a triangular fashion.

Levoy et al. [2] have defined a continuous implicit function, D(x), represented by

samples. This function defines the weighted signed distance of each point x to the

nearest range surface along the line of sight of the sensor. A number of range images

are taken and the signed distance function and the corresponding weights are com-

puted for each. These are then used to compute the cumulative function D(x) and

cumulative weightW(x). Finally, a zero crossing iso-surface is extracted from these

cumulative functions corresponding to D(x) = 0. The weights are computed using

the dot product between each vertex normal and the viewing direction [8, 11]. To

avoid the surfaces of the opposite side of the object, the weight function is tapered off

behind the surface. The algorithm begins by setting all voxels to zero weight. Then

range surfaces are formed for each image by constructing triangles. The weight at

each vertex is computed and the signed distance function is determined by casting a

ray from the sensor through each voxel near the range surface and then intersecting

it with the triangle mesh. The weight inbetween the triangles is computed by inter-

polating the weights at the vertices. By substituting the weights in the computation

equations [2], the zero crossing iso-surface is extracted from the volumetric grid.

Like some other reconstruction algorithms, this one too leads to formation of

holes for the unseen regions. An extension to the above discussed algorithm is given

by the authors for filling these holes. The points in the volume are classified as

either unseen, empty or near the surface. Holes are the frontiers between unseen
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and empty regions. So surfaces placed at these frontiers can plug the holes. The

modified algorithm initializes all voxels as unseen and update the voxels as discussed

above. Then from the observed surface, following the line of sight backwards, each

voxel is marked as empty. The iso-surface is extracted at zero-crossings and an

additional surface is inferred between the empty and unseen regions.

This volumetric integration [2] approach was used to reconstruct a drill bit. The

Zippering method [11] fails to reconstruct the object, but the volumetric approach

generated a good watertight model. Like the voxel-based techniques, this method

is not sensitive to color variations since it uses the 3D data from the range images

for reconstruction instead of depending on color consistencies. A limitation of this

algorithm is its inability to reconstruct sharp corners. Though the hole filling exten-

sion does fix this, the original algorithm needs to be improved to work without any

hole filling mechanism. Thin surfaces also create a problem for this algorithm, since

the distance function of the scans generated from opposite sides of a thin surface

interfere with the front side.

2.2 Camera Calibration

Most volumetric reconstruction algorithms require camera calibration parameters.

The work in this thesis too requires these parameters to project the 3D voxel onto

the 2D camera image. In this section we explain how these camera calibration

parameters are computed.

Camera calibration is the process of determining the intrinsic and extrinsic pa-

rameters of the camera. The intrinsic parameters include the internal camera geo-

metric and optical parameters such as the focal length, lens distortion coefficient,

uncertainty scale factor for x (due to TV camera scanning and acquisition timing
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error) and the computer image coordinate for the origin in the image plane. The

extrinsic parameters refers to the positional orientation of the camera with respect

to the world coordinate system. These can include the three Euler angles and three

translation parameters.

These parameters are computed based on a number of points whose object coor-

dinates in the world coordinate system are known and whose image coordinates are

measured [10]. Once these parameters are determined, any point’s coordinate can

be transformed from the world coordinate system to the computer image coordinate

system. This transformation is a four-stage process:

1. The point is transformed from the world coordinate system to the 3D camera

coordinate, by a simple rotation and translation.

2. Then from the 3D-camera coordinate it is projected onto the ideal image

coordinates using perspective projection with the pinhole camera geometry.

3. This image coordinate point is adjusted by the radial lens distortion parame-

ters.

4. Finally, the real image coordinates are converted to computer image coordi-

nates.

The intrinsic parameters are used for the computations of step 2 to 4 and the

extrinsic for step 1.

2.3 Photo-Consistency Measure

All optical volumetric reconstruction techniques rely on a consistency test to deter-

mine when to remove a voxel from the volume. In this section, we discuss a common

consistency test used by many reconstruction techniques [6, 3, 1].
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Photo-Consistency means the same color is seen for the same surface in differ-

ent images taken from different viewpoints. Voxel-based IBR algorithms work by

matching the pixel color of the same object in the different images. Hence, the voxel

consistency measuring method is an important factor that affects the quality of the

reconstructed model.

Sietz and Dyer [6] state the problem of consistency as to determine the set of all

pixels, from the given n images, πi, onto which the same voxel, V, projects:

∪1 to n{πi} (2.3)

where πi is the set of pixels in image i which fall under the voxel V’s projection,

and compute the standard deviation, σV , of their pixel colors to evaluate the voxel

V’s consistency. If this σV is less than a specified threshold value, λ, then the voxel

is declared as consistent:

σV ≤ λ⇒ voxel is consistent (2.4)

σV > λ⇒ voxel is inconsistent (2.5)

Consistency evaluation must be monotonic test. A voxel that is once declared

as inconsistent cannot become consistent again. Kutulakos and Seitz [3] proposed a

property for color consistency as given two sets of pixels S and S ′ with S ⊆ S ′, if

S is inconsistent, then S ′ is inconsistent.

If a voxel is incorrectly carved, not only is a single voxel carved but all voxels

that are occluded along a ray from the image causing the inconsistency are carved

too. Hence, the consistency measure should be accurate to never carve a consis-

tent voxel. The following subsection discusses one such method that requires least

tunable parameters and can generate neat reconstructions.
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2.3.1 Histogram Consistency Measure

Slabaugh et al. have discussed the issues of the consistency test used in the voxel-

based methods such as GVC [1] and have presented a new approach based on His-

tograms that does not require any tunable parameters [7]. Instead of pooling the

pixels from all the views of a given voxel, this method uses a series of paired tests.

For any carving iteration, the set of pixels that project to a given voxel for a given

image is defined as:

V ti (2.6)

where V is the voxel, t is the iteration number and i is the image number from

which the pixels have been projected. Hence, the consistency of the voxel is defined

as a paired test:

consist(V ti , V
t
j ) where i �= j (2.7)

This paired test returns true if the voxel is consistent for the pair of images i, j.

The histogram approach divides the RGB color space into 512 (8 x 8 x 8) uniform

cubes or sub-spaces with each space 32 x 32 x 32 pixels wide. Each color value is

encoded by number ranging between 0 and 7. For instance, the red color values are

encoded as 0 for 0 to 31, 1 for 32 to 63 and so forth. Same is done for green and

blue color. So a sub-space, defined as bin, in the color space can be identified by a

triple number ranging between 0 and 7. For each voxel, a histogram is generated

that keeps the bin count for all the color values projected on the image. Once the

color values are encoded in the histogram, the voxel is tested for its consistency as

follows:

consist(V ) = ∀i∀jHist(Vi)
⋂

Hist(Vj) �= ∅ where i �= j (2.8)

21



where Hist(Vi) are the set of pixels projecting on the voxel from ith image. Similarly,

Hist(Vj) are the set of pixels for the jth image. A voxel is declared as consistent

if there is at least one none null intersection of bins among all mutually exhaustive

combinations of the images. To avoid inaccurate decisions due to pixel values falling

on boundaries on the bins, the boundaries are blurred, which means that a pixel

value which falls near a boundary is considered to be present in both color spaces.

Since the color space is in 3D, there can be case where a pixel falls under multiple

sub-spaces or just a single sub-space.

The leniency in the consistency check, of having only one match in the color

space to declare any two views consistent, does not limit the performance of the

algorithm. This consistency measure was used with the GVC [1] technique and

various scenes were carved using this technique [7].

2.4 Discussion

A number of techniques have been discussed in this chapter. These techniques vary

in the following ways:

1. The method by which the visibility of the voxel is determined, i.e., whether

the voxel is visible, carved or occluded.

2. The technique of how the images are calibrated. Some require accurate camera

calibration while others can work with weakly calibrated cameras.

3. The measure of consistency, i.e., whether a voxel should be carved or not.

Though work has been done on former two, i.e., the visibility problem and camera

calibration, not much work has been done on the issue of consistency measure.
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Conventional consistency checks fail to reconstruct specular or textured objects.

Voxel Coloring [6] uses the standard deviation in the pixel color value to determine

the consistency of the voxel. Hence, in the lamp shade scene with textured surfaces

as shown in Figure 2.6, the deviation would be low for the cream base with mostly

uniform color, where as the deviation would be high for the textured red, green

and blue leaves. But for both the regions a common threshold is used, so if the

threshold value is too low then an incomplete reconstruction will be obtained, and if

the threshold value is too high, then a noisy reconstruction will be obtained. Similar

is the case for specular objects. Specular objects show high variation in color when

viewed from different viewpoints as shown in Figure 2.7, and such high variation

in color leads to a large deviation that exceeds the threshold value and gets over-

carved. Hence more work is required to make these voxel-based techniques robust

so that they can handle all kinds of scenes.

Figure 2.6: The textured leaves have
high deviation as compared to cream
base of the lamp shade

Figure 2.7: High variation in color due
to different viewing angles accounts to
a large deviation

In the following chapters, we shall discuss how specular objects behave and what

are the problems associated with them. Then we present our consistency method

to reconstruct specular objects.
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Chapter 3

Problem Analysis

To understand the behavior of specular objects, it is important to study the lighting

model used to define the color of surfaces. In 1975, Phong Bui-Tuong introduced

the Phong shading and since then it has become the de facto standard for the

three dimensional computer graphics [12]. There are two separate considerations

for coloring a pixel. The first is the theoretical framework that calculates the light

reflected at any point on the surface and second uses this framework to find the

light intensity at a pixel onto which the polygon projects. The former is known as

the Local Reflection Model and the latter as the Shading Algorithm.

The local reflection model introduced by Phong evaluates the intensity of the

reflected light as a function of the orientation of the surface at the point of interest

with respect to the position of a point light source and surface properties. It con-

siders only direct illumination and behaves as if the object is floating in free space.

Hence, any interactions with other objects, which could have resulted in shadows

or inter-reflections, are not taken into account. This model simulates three types of

surface reflections:

• Perfect Diffuse Reflection: these are matte surfaces, which reflect light equally
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in all directions (as shown in Figure 3.1) [12].

• Perfect Specular Reflection: these surfaces follow the law of simple reflection

(i.e., the angle of incidence is same as the angle of reflection). So a thin

sharp light will be reflected perfectly back without any divergence (as shown

in Figure 3.2) [12].

• Imperfect Specular Reflection: most of the surfaces which exhibit highlights

are not perfect mirrors, hence they are treated as a huge number of microscopic

perfect mirrors with slightly different orientations. As a result, the reflection

is spread over an area of the surface and forms a lobe (as shown in Figure

3.3) [12].

Figure 3.1: Perfect Diffuse
Reflection

Figure 3.2: Perfect Specu-
lar Reflection

Figure 3.3: Imperfect
Specular Reflection

The Phong Reflection model describes the color of a surface as a combination

of three components. These are the ambient, diffuse and specular component. The

ambient component is used to account for all the immeasurable indirect illumination

in a scene. Consider a surface that is in between an object and the light. The object

is not directly illuminated but is still visible. In such case, the ambient term makes

sure that the object is still visible and not rendered as black. The diffuse component

creates the uniform reflection in the direction from the surface but depending on the

direction of light. Hence, this component is not a constant term like the ambience
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term. Finally, the specular component is responsible for the highlights seen on

the surface. It is a view dependent term, which means that the specular highlight

is visible only for certain viewpoints. This term can be tuned to reflect the light

sharply or dispersed and hence can render almost all real life sceneries. The equation

of light is:

ReflectedLight = IaKa + IdKd + IsKs (3.1)

where Ia, Id and Is define the ambient, diffuse and specular component of the light

source respectively and Ka, Kd and Ks define the ambient, diffuse and specular

material properties respectively, such that:

Ka +Kd +Ks = 1 (3.2)

The diffuse component of light, Id, can be expanded to:

Id = Ii cos(θ) (3.3)

where θ is the angle between the surface normal N at the point of interest and

the direction of light L and Ii is the intensity of the incident light. Similarly, the

specular component can be expanded to:

Is = Ii cos
n(ω) (3.4)

where ω is the angle between the viewing direction V and the mirror direction R

(as shown in Figure 3.4) [12]. Hence, the equation of light is expressed as:

I = IaKa + Ii(Kd cos(θ) +Ks cos
n(ω)) (3.5)
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I = IaKa + Ii(Kd(L ·N) +Ks(R ·V)
n) (3.6)

R = 2(N · L)N− L (3.7)

where

L : Vector pointing to the direction of light

N : Surface normal at the point of consideration

R : Mirror direction of the surface

V : The viewing direction

LL

NN

RR

VV

Figure 3.4: The Phong Model

3.1 Analyzing the Equation of Light

The voxel-based IBR techniques take images and camera parameters as input to the

system. There is no information about the light source or the surface properties for

the scene. Voxel-based IBR methods rely on color variation of the same surface in

27



different images to reconstruct scenes. The color reflected by a surface depends on

the viewing direction, surface normal, surface reflectance properties and the direction

of light (Equation 3.6). Hence there can be a large variation in color of the surface

when viewed from different viewing directions, even when the other parameters

are kept constant. Such variation in color can cause the voxel-based IBR methods

to fail. This variation can be computed if the surface properties and the light

parameters are known. But most of the terms in the equation of light are unknown

during reconstruction. The only known term is the viewing direction, V. Though

it is possible to provide the lighting information, it is difficult to provide surface

properties in the scene by only using camera images of the scene. Hence, to make

the voxel-based IBR techniques more robust, there is a need for a mechanism that

can predict variation in surface color due to different viewing orientations without

any knowledge of surface properties.

3.2 The Color Cube Analysis

The Voxel Coloring [6] and the Generalized Voxel Coloring [1] algorithms are very

much dependent on the color of the pixels in the images. So a specular highlight

in any of the images can mislead the consistency evaluation test and hence cause

the algorithm to fail. To understand how specular objects behave under varying

illumination, we performed a Color Cube Analysis on synthetic and real datasets.

3.2.1 Synthetic Datasets

We used the OpenGL API to render a sphere with four different surface properties.

These surface properties were defined in such a manner that it covered a range of

real life scenarios:
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• Low Diffuse (e.g., dull cloth)

• High Diffuse (e.g., bright painted walls)

• Low Specular (e.g., a white board or polished wood)

• High Specular (e.g., polished metallic surfaces)

Figure 3.5: Sphere with low diffuse sur-
face properties

Figure 3.6: Sphere with bright specular
highlight

Figure 3.5 shows a low diffuse sphere and Figure 3.6 shows a high specu-

lar sphere. Each surface property was rendered three times with red, green and

blue color. Hence, we had twelve different spheres in all. Now for each one of

these spheres, white light was flashed on the surface from 100 different uniformly

distributed lighting positions. The color and intensity of light was kept constant

throughout the experiment. For each lighting position, the color of each pixel of the

surface was recorded. Finally, these observed colors were rendered onto the color

cube.

Figure 3.7 shows low diffuse objects having a linear change in color from dark to

bright, which is expected from the diffuse term in the equation of light (see Equation

3.6). As the angle between the source of light and the surface normal is decreased,

the cosine term of the diffuse component adds more to the light reflection from the
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Figure 3.7: Pattern for low diffuse sur-
face

Figure 3.8: Pattern for high diffuse sur-
face

Figure 3.9: Pattern for low specular
surface

Figure 3.10: Pattern for high specular
surface

surface and hence the linear straight pattern. For the second case of high diffuse

objects, see Figure 3.8, we still observe a straight linear pattern. This is similar to

what is obtained by the low diffuse, but is spread over a wider range of colors, simply

because of a larger value of Kd. The pattern takes an interesting curve when we

move to the third case of low specularity, Figure 3.9. Now, the specular component

starts adding to the reflected color of light along with the diffuse component. The

specular component is dependent on the viewing direction and the mirror direction.

Hence, the light source adds color to the reflected light for certain viewing angles.

This curvature, which is due to the specular component, is not as evident in the
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low specular case as it is in the final case of high specularity. For high specular

surfaces, a complete banana shaped pattern is observed, see Figure 3.10, with the

color ranging from the ambient color for the object to the color of light.

One of the inferences that we can draw from the patterns obtained is that the

color of an object varies significantly depending on the orientation of the light source.

Note that this explains why the conventional consistency evaluation algorithms fail.

It can also be inferred that there exists a defined pattern for each of the material

properties.

Also observe that in all color cubes, the reflected light is bounded by the ambient

color of the surface and the color of light. For diffuse objects, the variation in

reflected color is small and linear, but for specular objects a large variation in color

is observed and these curves are not just straight lines, but they bend towards the

color of light.

3.2.2 Real Datasets

Besides synthetic data, we ran the experiment on real scene data. Real datasets

give a better picture of how the color varies under different lighting conditions.

To perform the experiment for real datasets, clips of images from different view-

points were taken which had specular surfaces. Then the color values form these

clips were rendered onto the color cube. Figure 3.13 shows the pattern obtained

for polished wood edge shown in Figure 3.11 and Figure 3.14 shows the pattern

for silver painted panel of a boom-box shown in Figure 3.12. The wooden material

shows the typical banana curve for specular objects. On the other hand, the silver

panel shows a very wide range of colors, but we do not see a bend in the curve

because the color has equal components of red, green and blue. Hence, both cases

show a substantial variation in color, which was expected from our observations
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about the synthetic data.

Figure 3.11: Polished wooden edge with
specular highlights

Figure 3.12: Silver painted panel of a
boom-box shows large variation in color

Figure 3.13: Pattern for polished
wooden surface

Figure 3.14: Pattern for silver painted
surface

3.3 Problem Definition

Conventional consistency techniques rely on the variation in pixel colors of the im-

ages taken from different camera positions. Voxel based methods [6, 3, 1] determine

consistency by putting an upperbound on the standard deviation in the pixel color

among different images. But from our color cube analysis, we have shown that the
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same surfaces can show a wide color variation under different light orientations, es-

pecially for specular objects. If we can determine these curves (such as Figure 3.13)

then our problem can be defined as: Given a priori curve, what is the probability

that the two colors belong to the same surface:

P (C1, C2 ∈ same surface | a priori curve)

Hence, to reconstruct objects that show a wide range of colors under different

light orientations, we have to design a consistency check that is capable of predicting

the possible range of colors the surface can reflect. At the same time, it should be

robust enough not to pick up noise, which is possible since two different surfaces

might be of different shades of the same color. In the next chapter, we present our

consistency check that can predict this variation in color and reconstruct specular

objects.
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Chapter 4

Methodology

In chapter two, we discussed the Generalized Voxel Coloring (GVC) [1] which is

an extension of the Voxel Coloring [6] but without any constraints on the camera

positions. In our approach, we extended the GVC to reconstruct specular objects.

This involved designing a new consistency technique which could predict the change

in color of specular surfaces due to variations in light orientations. Apart from the

consistency check mechanism, the core GVC algorithm was kept the same.

GVC begins with a volume, which bounds the scene. This volume is divided into

voxels. Each voxel is projected onto all images (the voxel may not be visible in all

the images) and the pixel colors are recorded. If the variation in the color of this set

of pixels is too high then it is discarded or carved from the volume. This changes

the visibility of voxels under the carved voxel. The decision whether to carve or not

is made by the consistency test of the algorithm. The process is repeated until no

more voxels are carved. When the algorithm is finished, all remaining surface voxels

are consistent with the set of input images, and a 3D model of the scene is obtained.

An essential role is played by the consistency test involved in this algorithm. A poor

test can cause:
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• Over-carving: unnecessary carving of voxels, which leads to a hollow or in-

complete structure.

• Under-carving: not carving all the inconsistent voxels, hence generating a

crude approximate volume.

In chapter three, we saw that specular surfaces show a wide range of colors. Also,

we discussed why this variation causes the conventional techniques to fail. Now we

present a new consistency check that deals better with specular objects.

4.1 Design

We designed a two-stage consistency check. The first stage reconstructs the Lam-

bertian surfaces in the scene but fails to reconstruct surfaces with large variation in

color. The second stage predicts the possible variation in the color of the surface due

to change in viewing orientation and hence prevents the voxel from being carved.

We call our technique Color Caching. Like the GVC, we take a volume large

enough to bound the scene. This volume is divided into voxels, whose size can be

varied. We keep this voxel size large enough so that it projects to enough pixels to

make a confident decision. All surface voxels are projected onto the images and the

pixel colors are recorded but in a different manner. Conventional techniques usually

maintain the sum for average or sum of squares for variance or a bin count in a

discrete color space for each voxel, but we record the actual color. For each voxel,

we maintain a cache for each view which is large enough to store all color values

which each view can see. Hence unlike other techniques, we have the actual color

values rather than some approximated representation. The cache size can be varied

according to the needs of the dataset. To avoid wasting memory, each color entry
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is checked for repetitions before it is added to the cache. The coloring algorithm is

shown in Figure 4.1.

for each voxel {

define ’n’ caches, where ’n’ is the number of images

for each view {

C = color projected on this image

if (colorExistsInCache(C) == false)

add color to its cache

}

}

Figure 4.1: Pseudo code for coloring the voxels

Once the coloring of the voxels is complete, each surface voxel is tested for

consistency. The first pass divides the color space into small spheres and tries to

find just one match in all possible combinations of views in which the voxel is visible.

So for each voxel, all pairs of caches are exhaustively and if there exists a combination

with at least one match then the voxel is consistent (as shown in Figure 4.2). If

there is any pair of views for which there is no match then the voxel declared as

inconsistent. A match for two colors is defined in terms of the thresholded Euclidian

distance between the two colors:

δri,j = redcachei − redcachej (4.1)

δgi,j = greencachei − greencachej (4.2)

δbi,j = bluecachei − bluecachej (4.3)

∆i,j =
√
δ2ri,j + δ2gi,j + δ2bi,j (4.4)

∀i ∀j if ∃ ∆i,j ≤ threshold, where i �= j, ⇒ voxel is consistent (4.5)

This stage is sensitive to color variation, since the threshold is not large enough
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Figure 4.2: Cache comparison: just one match between each cache is required to
declare a voxel as consistent

for each voxel {

for each cache {

if (there exist no match with any other cache) {

voxel is inconsistent

return

}

}

voxel is consistent

}

Figure 4.3: Pseudo code for stage one consistency check

to cover a wide range of colors the surface could reflect. If the threshold is made

large, then most of the voxels will be declared as consistent and we will obtain a

very noisy reconstruction with lots of unwanted voxels. Hence, stage one can handle

only Lambertian surfaces. The stage one consistency pseudo code is shown in Figure

4.3.

If stage one declares any pair of cache as inconsistent, the pair is tested by stage

two before the voxel carved. This pair of cache has been declared inconsistent be-

cause variation in color among different views is beyond the defined threshold. This

could either be due to the voxel really being inconsistent or there was a specular

highlight in some of its views. We have seen that the change in color due to different
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lighting conditions shows a stable pattern. If we could predict this curve for each

voxel, then we could prevent voxels from being carved due to specular highlight. But

there are a number of unknowns in the equation of light: surface material param-

eters, surface normal and lighting information. This prevents us from determining

the exact curve. However, for all practical purposes, this curve can be approximated

by a straight line and still accurately predict specular highlights. If the two colors

being compared lie on the same line within a permissible threshold, then we can

conclude that the voxel is consistent.

From the equation of light (Equation 4.6), we know that the color reflected from

the surface of an object depends on the surface properties and lighting parameters.

I = IaKa + Ii(Kd(L ·N) +Ks(R ·V)
n) (4.6)

R = 2(N · L)N− L (4.7)

where

L : Vector pointing to the direction of light

N : Surface normal at the point of consideration

R : Mirror direction of the surface

V : The viewing direction

Ia, Ii : Light properties

Ka, Kd, Ks : Surface properties

n : Shininess factor for the surface

The images used as input for the carving algorithms differ only in the viewing

orientation. Hence, the only term that varies in the equation of light for any surface

in the scene is the viewing vectorV. This suggests that only the specular component
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varies in different views for the surface region under consideration. We know that

the dot product in the specular term varies from 1 to 0 as the angle between R and

V varies from 0 to 90 degrees and bounded between the same range of 0 and 1 for

angles outside 0 and 90 degrees. Hence, the red, green and blue specular component

for any surface increases monotonically as the angle between R and V decreases

monotonically and vice-versa. Since the varying term, V, is same for all three color

components, the red, green and blue component for the surface vary by the same

proportion.

We approximate the color cube curve by a line whose coordinates vary by the

same proportion. A line that passes through the origin has zero intercept and is

of the form y = mx. So both x and y vary by the same proportion. For instance,

when x becomes two fold, y too becomes two fold. Hence, in three dimension, for a

line that passes through the origin, all the three color components vary by the same

proportion. Thus, while comparing two color values one point can be used to find

the equation of the line and the shortest distance from the other point to this line

can decide if the variation in color is due different lighting or not.

Instead of finding the equation of line and then computing the shortest distance

to that line, we can simplify the test by considering the fact that the ratio of each

coordinates remain the same. Hence, the ratio of the two reds should be same as

the ratio of the greens and the ratio of the blues:

γr =
r1

r2
(4.8)

γg =
g1

g2
(4.9)
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γb =
b1
b2

(4.10)

If the two colors belong to the same surface but are displaced on the color curve

due to lighting variation then the second point should lie on the line and the three

ratios (γr, γg, γb) should be the same or the difference between them should be small.

We define this difference as:

δrg = |γr − γg| (4.11)

δgb = |γg − γb| (4.12)

δbr = |γb − γr| (4.13)

Since, we approximate the curve by a line, and there is always some noise in the

scene, so we define another threshold, known as tolerance that defines how much

can the point deviate from the line. The second stage check is defined as follows:

∆ =
√
δ2rg + δ2gb + δ2br (4.14)

∆ ≤ tolerance⇒ voxel is consistent (4.15)

∆ > tolerance⇒ voxel is inconsistent (4.16)

If the two colors are far apart on the color curve, they are considered to be

inconsistent by the first stage or other conventional consistency checks. But the
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second stage prevents the voxel from being carved because of variation in color due

to different lighting orientations. It predicts the possible range of colors a surface

can have based on the fact that the only term that varies in the equation of light is

the viewing direction, V and hence the change in the color of surface is monotonic

and proportional.

However, to avoid any noise or unwanted voxels due to the leniency in our second

stage test, another verification step is added. The caches which were being compared

across each other for a match in stage one are now compared within themselves to

find the intra-cache variance. This is an extension of the first stage as explained

in Equation 4.5 but with i = j for both caches such that each entry in a cache is

compared to all other entries in the same cache. This verifies that the distribution

is consistent within itself and adds to the confidence in the test.

Once the algorithm finishes and the volume is reconstructed, the volume is passed

through a filter to remove all floating voxels (noise) in the reconstruction to generate

an improved output.
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Chapter 5

Evaluation

In order to evaluate the performance of our Color Caching algorithm, we tested it on

both real and synthetic scenes. We developed an evaluation mechanism to determine

the degree of accuracy of reconstruction, which we discuss in the following section.

5.1 Evaluation Mechanism

Comparing the output for real datasets can be hard because there is no ground

truth model. One way to compare them is to render an image from a view that was

not used to reconstruct the volume and then see how well it matches the original

image [1]. But there are two disadvantages to this. First, it can provide evaluation

information only for certain part of the volume and second, this technique cannot

be used if there are a limited number of input views available.

We use both real and synthetic datasets to evaluate our algorithm. We compare

the reconstructed image to the actual images used during reconstruction for the

real datasets. We developed an evaluation framework that can generate synthetic

datasets with both the images and the ground truth model. The ground truth model

is the perfect 3D model that the carving algorithm should generate in an ideal case.
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We used this ground truth model to compare the reconstruction generated by our

algorithm.

5.1.1 Metrics

We defined three metrics to evaluate our algorithm. The first two metrics evaluate

the images rendered using the model generated by our GVC algorithm. The third

metric evaluates the 3D model itself but only for synthetic datasets, because we do

not have the ground truth model for real datasets. These metrics are as follows:

• The first metric compares the change in re-projection error with time as the

volume is carved. For each iteration of the carving algorithm, the images from

the input camera viewpoints are rendered from the current volume. Then

these reproduced images are compared to the original images and the average

color difference in the pixel values is calculated. This gives a measure of how

fast and how well each iteration carves the volume till the remaining volume

approaches its best shape.

• Amask image is created for each of the input images. The mask image contains

the information that identifies the foreground and the background pixels in

the actual image. The second metric finds the amount of noise in the rendered

image by comparing it to the scene’s mask. Noise is defined as the number

of pixels that fall outside the object boundaries. GVC carves the background

and reconstructs only the objects in the foreground. Hence any background

pixels seen in the rendered image are considered as unwanted noise. Once

the final volume is obtained, images from the original camera viewpoints are

rendered and are compared to the mask images. Then all the pixels that fall

outside on the background region are counted and this gives us a measure of
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the amount of noise in the reconstruction.

• Finally, the third metric compares the volume itself. The 3D data structure

that we use for defining the volume has four attributes, the three color com-

ponents of the voxel and its visibility information. A voxel can be in any

of three states: it can either be visible and on surface, it can be carved and

hence not visible, or it can be hidden by other voxels. Using this visibil-

ity information, the reconstructed volume is compared to the ground truth

model and the following numbers are recorded: the number of surface voxels

matched, the number of voxels that should have been carved but were not

(under-carved voxels), the number of voxels that should not have been carved

but were carved (over-carved voxels) and finally, the number of voxels that

were carved as expected (correctly carved). These four counts are then used

to compute the percentage of surface match and the percentage of noise and

evaluate the volume reconstruction.

5.2 Results

Our IBR pipeline has a component-based mechanism with which different consis-

tency check methods can be plugged in and used to carve the volume. We com-

pared the results of our Color Cache consistency check with three other methods:

the Original GVC statistical based approach [1], the bin-count based Histogram

approach [7] and the Silhouette approach [9] that uses mask images to reconstruct

models. Only the consistency check component was changed for comparing these

four methods and rest of the IBR pipeline was kept same. The Color Caching and

the Original GVC requires tuning of their respective threshold parameters. These

threshold values were tuned and set to obtain the best possible reconstruction for
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each approach.

5.2.1 Real Dataset

Our real dataset was a boom-box made up of shiny plastic material whose images

were taken from nine different viewpoints, covering views from all sides and the top.

Some of these views had broad specular highlights and some were extremely dull,

hence covering a wide range of colors. In particular, the right side of the boom-box,

Figure 5.1, shows a large variation in color when seen at an angle from the front

side, Figure 5.2.

Figure 5.1: Boom-box: right view Figure 5.2: Boom-box: front-right view

We reconstructed the boom-box dataset using the four algorithms by plugging-in

each one of the consistency checks at a time. The volumes obtained by these four

approaches were filtered to remove unwanted floating voxels (noise). The filtered

volumes for Color Cache, Histogram, Original GVC and Silhouette approach are

shown in Figure 5.3, 5.4, 5.5 & 5.6 respectively.

Evidently, our Color Caching and the Silhouette are the only two approaches

that are able to reconstruct the volume and do not fail for the specular highlighted

region on the right side of the boom-box. The Silhouette reconstruction looks clear

but it requires mask images as input, which identify the background pixels in the
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Figure 5.3: Color Cache Reconstruction

Figure 5.4: Histogram Reconstruction

Figure 5.5: Original Reconstruction

Figure 5.6: Silhouette Reconstruction

image. Creating mask images may not be easy for certain scenes, and moreover such

techniques will fail for concave objects.

The Original GVC algorithm fails to reconstruct the volume due to high variation

in color on the surface of the boom-box. The Histogram technique does a fairly good

job, but fails to reconstruct the right side of the volume and over carves it as shown

in Figure 5.7. Our Color Caching approach detects the variation in color due to

different viewing orientation and reconstructs the right side of the boom-box as

shown in Figure 5.8.

To show the working of our approach, we modified our algorithm to color all

voxels that are carved by stage one as red, color all voxels that are carved by stage
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Figure 5.7: Histogram fails to recon-
struct right side

Figure 5.8: Color Caching detects color
variation and reconstructs right side

two as green and color all voxels that were not carved due to insufficient input data

as blue. As expected from our algorithm, the specular plastic body and the front

panel of the boom-box are carved by stage two and the Lambertian black speakers

are carved by stage one (as shown in Figure 5.9).

Figure 5.9: Color Caching reconstruction : red voxels are carved by stage one and
green voxels are carved by stage two

To compare the performance of the four approaches for the boom-box dataset,

we used our first metric: the re-projection error. The re-projection error for the first

iteration is the same for Color Caching, Histogram and Original GVC, but is low for

the Silhouette approach. This difference is due to the mask information available

47



to the Silhouette approach with which it avoids the unwanted background voxels.

The error decreases as the volume is carved. The error value at the final itera-

tion eventually stabilizes with no significant difference between the four approaches.

The Original GVC shows the least error, but it failed to reconstruct the boom-box

scene. This suggests that this metric is not good enough to compare the different

approaches. The metric works poorly because to compare the reconstructed image

we used one of the images that was used to construct the volume. Ideally, an image

that was not used in the input dataset should be used to compare the reconstruction

quality.

However, this metric presents a good comparison of the the time taken by each

approach to carve the volume. Figure 5.10 shows how the re-projection error drops

with time for the front view of the boom-box. Our Color Caching technique takes

the maximum amount of time, followed by the Original GVC, then the Histogram

and finally the Silhouette. These results remain consistent for almost all views.

Figure 5.11 shows the re-projection error for the front right side.

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600

R
ep

ro
je

ct
io

n 
E

rr
or

Time (seconds)

Cache
Histogram

Original
Silhouette

Figure 5.10: Convergence of the algo-
rithms : front view of boom-box
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Figure 5.11: Convergence of the algo-
rithms : front right view of boom-box

The amount of memory used by each algorithm also varies. Due to the large data

structure maintained by the Color Caching technique, it occupies the largest amount
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Algorithm Memory Usage

Color Caching 104 MB
Histogram 62 MB
Original 48 MB
Silhouette 44 MB

Table 5.1: Memory usage comparison for different algorithms for boom-box dataset

of memory, followed by the Histogram, the Original GVC and the Silhouette. Table

5.1 shows the memory used for the boom-box dataset.

The noise in the rendered image also counts to the quality of reconstruction.

A good reconstruction will have the least amount of noise. We used our second

metric to compute the noise in the reconstructions generated by the four approaches.

Figure 5.12 shows a comparison of noisy pixels count in the reconstruction for the

front and the right view of the boom-box. Evidently, the Silhouette has the least

amount of noise because it has the background information available from the mask,

but interestingly, the other three algorithms have the same amount of noise, which

shows that our Color Caching technique, despite of its leniency in color prediction,

does not add any extra noise.

5.2.2 Synthetic Dataset

Shape is the most important factor in determining the quality of reconstruction.

The re-projection error and the noise measure account only for the 2D perspective

of the reconstruction and evaluate reconstruction quality only for the viewpoints

that are visible in the set of input images. We used our third metric on a synthetic

dataset to do a shape analysis, since we could generate the ground truth model for

the synthetic dataset and compare it to the 3D data structure generated by the

algorithm.
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Figure 5.12: Noise in the rendered images for each algorithm for front and right
view of boom-box

We developed an evaluation framework that can generate synthetic data sets

and the equivalent ground truth model. The ground truth model is the perfect

3D shape of the object being constructed. This framework uses the OpenGL API

to render geometrical figures, such as a sphere, from 12 different views, keeping

lighting, surface properties and other parameters same. The viewpoints selected

comprehensively cover the surface of the object such that while reconstruction the

voxels are visible in more than one view. The ground truth model is generated using

the equation of the object. The framework also outputs the camera parameters

for each image, which is required as input along with the images to our carving

algorithm.

Using our framework, we generated images of a sphere with bright specular

highlight, Figure 5.13. We ran the carving algorithm with all four consistency

techniques on this synthetic dataset. We measured the percentage surface match

and the percentage noise for each reconstruction with respect to the ground truth

model as:
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Figure 5.13: The synthetic dataset : a sphere with bright specular highlight

% Surface Match =
Number of surface voxels matched

Total number of surface voxels
× 100 (5.1)

% Noise =
Number of undercarved voxels

Number of voxels correctly carved
× 100 (5.2)

Each voxel can be in either of the three states: visible, hidden or carved. All the

visible voxels in the ground truth model form the total number of surface voxels.

Out of this all the voxels that are visible in the reconstructed model account to the

surface match voxels and all the voxels that are carved in the reconstructed model

are counted as over-carved voxels. The voxels that are visible in the reconstructed

model but are carved in the ground truth model are considered as under-carved

voxels.

Table 5.2 shows the results obtained for all the four approaches. Our Color

Caching technique has the highest surface match with lowest amount of noise fol-

lowed by Histogram, Figure 5.14 & 5.15 respectively. The Original GVC could not

reconstruct the volume correctly, at high thresholds it left too much noise and at low
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Color Histogram Original Silhouette
Caching GVC

Good Match Voxels 4637 4604 4153 2479
Over Carved Voxels 339 372 823 2497
Total Surface Voxels 4976 4976 4976 4976
% Surface Match 93.19 % 92.54 % 83.46 % 49.82 %
Under Carved Voxels 1436 1478 2121 189
Correctly Carved Voxels 15924 15882 15239 17171
% Noise 9.02 % 9.31 % 13.92 % 1.1 %

Table 5.2: % Surface match and % noise for each reconstruction of sphere

threshold, it over-carved the volume near the specular highlighted region as shown

in Figure 5.16. The Silhouette created a conservative model which though had very

less noise but failed to meet the surface match criterion and carved a volume smaller

than the actual size, Figure 5.17. This conservative model is generated because the

Silhouette approach carves all the voxels with even a single pixel projecting onto

the background.

5.3 Discussion

Our Color Caching approach successfully reconstructed scenes with specular sur-

faces. Our approach worked for both real and synthetic dataset. It is the only ap-

proach that completely reconstructed the boom-box scene without any knowledge

of the surface properties or background pixels. We ran Color Caching algorithm a

couple of times for tuning the threshold and the tolerance parameter to obtain the

best possible reconstruction. The typical values for threshold vary between 25 to

35, and values for tolerance vary between 0.2 to 0.5. The Histogram performed as

well as Color Caching for the synthetic sphere dataset. The Silhouette generated a

conservative 3D model and the Original GVC failed to reconstruct specular objects.
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Figure 5.14: Sphere reconstructed by
Color Caching

Figure 5.15: Sphere reconstructed by
Histogram

Figure 5.16: Sphere reconstructed by
Original

Figure 5.17: Sphere reconstructed by
Silhouette

A comparison with other techniques shows that Color Caching takes the longest

time to reconstruct the scenes and maximum amount of memory.
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Chapter 6

Conclusions

Specular objects show a large variation in the color reflected from their surface

under different viewing orientations. This variation in color exhibits a stable pattern

both for real and synthetic datasets. The conventional consistency checks used in

volumetric IBR approaches are sensitive to such high variation in color and hence

fail to reconstruct specular scenes.

We have designed a new consistency evaluation mechanism that can predict the

change in color of a surface due to changes in viewing orientation, irrespective of

the surface material properties. We developed an evaluation mechanism and tested

our technique on both real and synthetic datasets. Our Color Caching technique

can reconstruct specular objects. It carves better volume structures, as compared

to the Original GVC technique, for scenes with specular surfaces. The statistical

deviation for surfaces with diffuse objects is lower than for surfaces with specularity.

Since Original GVC places a common threshold on the standard deviation for the

entire scene, Original GVC fails to reconstruct scenes with specular surfaces. The

Histogram technique manages to reconstruct some specular scenes but fails when

the variation in color is large. The Histogram fail for the extreme cases because if
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the bin size is small then the check fails to detect color variation and if the bin size

is made too large then the reconstructions become noisy. A limitation of our Color

Caching is that it requires two thresholds to be tuned for each scene, since it is a

two-stage algorithm.

Due to the leniency in color prediction, our reconstruction leaves some unwanted

voxels (noise) as compared to the Silhouette, which can be filtered after the volume is

generated. But our approach does not place any constraint such as the requirement

of mask images. The mask images required by the Silhouette approach can be

difficult to create, and more over the Silhouette approach will work only for convex

objects.

Color Caching uses the maximum amount of memory due to the large data struc-

ture maintained to store all colors for each view. The time taken by our technique

is the highest. This suggests that there is scope for code optimization to make it

run faster and use less memory.
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