
Designing an Interactive Interface for FACET:

Personalized Explanations in XAI

A Major Qualifying Project
Submitted to the Faculty of

Worcester Polytechnic Institute
in partial fulfillment of the requirements for the

Degree in Bachelor of Science
in

Computer Science and Data Science

By:
Katharine Dion
Belisha Genin
Randy Huang

Alexander Pietrick
Jacob Reiss

Date:
3/1/2024

Project Advisors:
Dr. Elke Rundensteiner
Peter VanNostrand
Dennis Hofmann

Worcester Polytechnic Institute

This report represents work of one or more WPI undergraduate students submitted to the faculty
as evidence of a degree requirement. WPI routinely publishes these reports on the web without

editorial or peer review. For more information about the projects program at WPI, see
http://www.wpi.edu/Academics/Projects.

http://www.wpi.edu/Academics/Projects

Abstract

In response to the trend of integrating machine learning into critical decision-making

processes, explainable AI methods like counterfactual explanations have emerged. However,

existing approaches often neglect user preferences and lack actionable solutions. To address this,

a novel framework, FACET (Fast Actionable Counterfactuals for Ensembles of Trees), was

developed to offer personalized and robust counterfactual explanations for situations like bank

loan applications, ensuring explanation robustness and providing users with actionable solutions.

An interactive interface was developed for FACET, empowering users to adjust constraints and

prioritize preferences for enhanced user experience. The application was tested to ensure

usability across various scenarios and datasets.

2

Authorship Table

Section Author(s) Editor(s)

Abstract B.G. J.R.

1.0 Introduction B.G K.D.

2.0 Background

2.1 What is FACET R.H. K.D. J.R.

2.2 User Interface Research K.D. B.G., J.R., R.H.

2.3 Preliminary FACET User Interface Prototype A.P. K.D., J.R., R.H.

3.0 Methodology

3.1 Objectives J.R. R.H.

3.2 Application Workflow R.H., J.R. J.R.

3.3 User Interface K.D. B.G.

3.4 Frontend ALL ALL

3.4.1 Welcome Screen A.P., B.G. B.G., J.R.

3.4.2 My Application K.D. A.P., B.G.

3.4.3 Feature Controls B.G J.R.

3.4.4 Explanations R.H. B.G., J.R.

3.4.5 Suggestions A.P. B.G., R.H.

3.4.6 Scenarios R.H. B.G.,

3.4.7 Application Styling J.R. B.G., R.H.

3.5 Backend R.H., J.R.

3.5.1 Initialization R.H. B.G., J.R.

3.5.2 Integration with Frontend R.H. B.G., J.R.

3.5.3 RESTful API Endpoints R.H. J.R.

3

Section Author(s) Editor(s)

3.5.4 Explanation Generation Process R.H. J.R.

4.0 Results

4.1 Testing Plan J.R. B.G.

4.2 Testing Procedure J.R. B.G.

4.3 Testing Results J.R. B.G.

5.0 Conclusion

5.1 Future Work B.G., J.R., R.H. B.G., J.R.

5.1.1 Accessibility Styling J.R., K.D. B.G.

5.1.2 User Testing B.G. J.R.

5.1.3 Feature Filter R.H. J.R.

5.1.4 Scenario Comparison B.G. J.R.

5.1.5 Explaining App Functionality to Users B.G. J.R.

5.1.6 Loading Categorical Data B.G. J.R.

5.2 Conclusion J.R. B.G.

4

Table of Contents

Abstract...2
Authorship Table..3
Table of Contents... 5
1.0 Introduction..7
2.0 Background.. 9

2.1 What is FACET..9
2.2 User Interface Research... 10
2.3 Preliminary FACET User Interface Prototype... 11

3.0 Methodology... 14
3.1 Objectives.. 14
3.2 Application Workflow... 15
3.3 User Interface...18
3.4 Frontend... 20

3.4.1 Welcome Screen..20
3.4.2 My Application... 23
3.4.3 Feature Controls..23
3.4.4 Explanations..27
3.4.5 Suggestions... 28
3.4.6 Scenarios...30
3.4.7 Application Styling... 31

3.5 Backend..31
3.5.1 Initialization.. 31
3.5.2 Integration with Frontend... 33
3.5.3 RESTful API Endpoints..34
3.5.4 Explanation Generation Process... 34

4.0 Results... 35
4.1 Testing Plan..35
4.2 Testing Procedure...36
4.3 Testing Results... 37

5.0 Conclusion.. 39
5.1 Future Work... 39

5.1.1 Accessibility Styling... 39
5.1.2 User Testing.. 40
5.1.3 Feature Filter...40

5

5.1.4 Scenario Comparison.. 43
5.1.5 Explaining App Functionality to Users...44
5.1.6 Loading Categorical Data... 45

5.2 Conclusion... 46
Citations..47
Appendices..49

Appendix A..49
Appendix B.. 50
Appendix C.. 51
Appendix D..52
Appendix E.. 54
Appendix F...58

6

1.0 Introduction

The incorporation of machine learning into critical decision-making processes has seen a

significant rise in recent years, impacting various domains and industries, such as healthcare and

recruitment (Millard, 2023; White, 2024). From 2017 to 2022, the adoption of AI has more than

doubled, indicating a growing reliance on automated decision-making systems. As companies

continue to witness tangible returns on their investments, this trend is expected to continue its

upward trajectory (McKinsey, 2022). Consequently, explainable artificial intelligence (XAI)

methods have gained prominence, aiming to enhance transparency and fairness in

decision-making processes by elucidating the rationale behind AI-generated decisions (Forbes,

2021).

Counterfactual explanations represent one such xAI technique, addressing queries in the

form of hypothetical scenarios, exemplified by questions like “Why was my loan application

declined instead of approved?” (Molnar, 2023). These explanations explore the impact of

altering certain input features on the model's decision outcome. However, current approaches to

generating counterfactual explanations often overlook user preferences and fail to produce

actionable solutions. Notably, they neglect to consider which feature modifications users would

prioritize and may propose changes that are impractical or implausible to realize under

real-world conditions (Keane, 2021).

To address these shortcomings, the novel counterfactual region was devised. This

framework extends beyond individual point-based explanations, encompassing a broader space

of potential solutions. FACET (Fast Actionable Counterfactuals for Ensembles of Trees) offers

7

personalized and robust counterfactual explanations (VanNostrand, 2023). Through the use of

counterfactual regions, FACET ensures explanation robustness and provides users with a

multitude of actionable and relevant solutions tailored to their specific circumstances. FACET

efficiently navigates complex models and user queries, delivering real-time insights into

decision-making processes.

It is crucial to address user understandability and provide an intuitive method for

interacting with FACET and querying it. To overcome this hurdle, the team developed an

interactive user interface that empowers users to adjust constraints and prioritize features during

their interactions with FACET. This user-friendly interface facilitates seamless engagement with

FACET and allows users to save outputs for future reference. To ensure the interface worked as

intended, a comprehensive testing plan was devised, covering general functionality, flexibility,

and edge case testing across different scenarios, datasets, and parameters. The creation of an

interactive user interface, along with thorough testing across diverse scenarios, underscores the

importance of enhancing user experience and ensuring the effectiveness of FACET in diverse

contexts.

8

2.0 Background

2.1 What is FACET

In today's world of artificial intelligence, it is becoming more and more pivotal to

understand the reasoning behind the decisions made by machine learning models. This

understanding helps to build trust, ensure accountability, and comply with regulations. To meet

the increasing need for XAI, a new tool called FACET was developed by Peter VanNostrand.

This tool generates counterfactual explanations for complex machine learning systems, which

answer questions based on hypothetical scenarios. By providing multiple counterfactual

explanations and organizing them by region, FACET illustrates how the output of a model may

change under different conditions. The tool accomplishes this feat by precomputing and indexing

counterfactual regions in the feature space, which enables users to interactively query and

explore these regions.

FACET distinguishes itself from other counterfactual models by prioritizing

user-friendliness and actionability. It allows users to incorporate personalized constraints and

priorities, ensuring the explanations are directly applicable to their unique real-world scenario.

Unlike other models that focus solely on generating counterfactual instances, FACET's approach

to region-based explanations provides a more holistic and interpretable view of the model's

behavior. The Counterfactual Region Explanation Index (COREX) is a critical component of

FACET. It is a bit vector-based index that efficiently encodes high-dimensional spatial data used

9

to represent counterfactual regions. It plays a crucial role in quickly retrieving relevant regions

from the input space, even for complex models and large explanation spaces.

FACET's effectiveness was determined through empirical evaluations and experiments

conducted in the associated paper (VanNostrand, 2023), where it performed better than several

other standard algorithms. These experiments typically involve using real-world or synthetic

datasets and assessing FACET's performance in generating actionable counterfactual

explanations.

2.2 User Interface Research

When designing FACET's user interface (UI), the team considered the many elements

that contribute to an effective UI. Primarily, the UI should provide information about its

functionality and features without overwhelming the user with clutter (Henry, n.d.). Achieving

the right balance between these two factors is critical to creating a user-friendly and visually

appealing UI.

In order to create a robust UI, it is vital to understand the user's objectives, skills,

preferences, and tendencies. This understanding sets the foundation for designing an interface

that meets users' needs and expectations. To achieve this, designers must follow the core

principles of design, such as keeping the interface simple and eliminating unnecessary elements.

They must also maintain consistency in colors, text fonts, and other design elements,

strategically placing items to draw attention to information and providing clear explanations for

permitted or prohibited actions (Chamorro, 2023).

10

By following these principles, designers can create an intuitive and engaging UI that

enables users to achieve their goals seamlessly. Ultimately, a well-designed UI can enhance user

experience, increase engagement and satisfaction, and foster a positive perception of the product

or service. When designing a user interface, it is essential to avoid incorporating elements that

could negatively impact the user experience. These could range from excessively bright or

high-contrast color schemes, typography that impedes readability, unresponsive interactions,

inconsistent design styles, and a lack of adaptability to different screen sizes. All of these factors

can hinder users from reading content, navigating the UI, and comprehending presented data,

ultimately leading to a suboptimal user experience.

Incorporating accessibility features within a user interface is an integral aspect of UI

design. Accessibility is critical in creating user interfaces that accommodate a wide range of

individuals, particularly those with disabilities. By offering an accessibility option, users can

optimize user interfaces' effectiveness, efficiency, and satisfaction.

To create a consistent and user-friendly UI design, it is necessary to adhere to best

practices and avoid these harmful elements. By doing so, the UI can ensure a user experience

that meets expectations. This attention to detail creates a polished appearance that resonates with

our audience and promotes user engagement.

2.3 Preliminary FACET User Interface Prototype

Peter VanNostrand designed a preliminary prototype for the user interface for FACET.

This prototype, displayed in Figure 1, was created with the purpose of visualizing FACET and

experimenting with ways in which a user could interact with it as a system. It serves as a

11

conceptual model for the user interface, allowing for testing and refinement of the system's

design.

Figure 1. Peter VanNostrand’s User Interface for FACET.

The prototype features four main components:

1) Feature Controls: On the left side of the screen, you will find a list of features and their

range of values that FACET uses to generate counterfactual explanations. You can lock

the range of values or lock the value as a constant using a switch. A locking icon is

displayed in the top right corner of each feature to signify which features cannot be

changed.

2) My Application: In the top-middle section of the screen, you will see My Application,

which provides insight into the current application that FACET uses for generating

counterfactual explanations. All feature values are displayed here, along with the overall

status of the application, whether it is rejected or accepted.

3) Explanations: Under My Application, you will find Explanations, which lists feasible

counterfactual explanations that align with the critique of feature control and change the

12

application status to accepted. The features related to the application's status change are

depicted as number lines on the right side of each explanation, and the applicant's current

value is marked with a red dot.

4) Detailed Explanation: On the right side of the screen, you will find Detailed

Explanation, which provides a more detailed explanation compared to the Explanations

section. This section includes number lines and a detailed explanation of which values

need to change for the application to be accepted. Additionally, this explanation offers

two buttons to find more explanations, which can be either similar or different from the

given one, and these buttons are located at the bottom of the section.

This prototype presents a compelling visual representation of FACET, but there are some

limitations and design elements that could be improved for better usability. One of the key

considerations is to make the display more user-friendly for individuals with little prior

knowledge of FACET. Currently, VanNostrand’s visualization heavily relies on having an

existing understanding of the FACET system, which may not be true of all users. In addition,

there are numerous interactive elements that could be more intuitive, making it challenging for

the average user to fully grasp the relationships between the feature control, detailed explanation,

and explanations sections. The information conveyed by these elements may also be considered

inscrutable, which poses a challenge for users trying to make sense of the data.

13

3.0 Methodology

3.1 Objectives

In order to meet the design goals set early on in the project’s development, the team set

out to accomplish the following objectives:

1) Preliminary research: The team held weekly code interviews with the developer of

FACET to ensure a shared understanding of the project and the tasks to be performed.

Further research was conducted into various web development tools and HCI practices to

aid in development of a high-quality user interface.

2) Designed preliminary UI prototypes: The team created and iterated on many UI

prototypes, each improving on the previous with feedback from the team and the project

advisors. Key UI prototype iterations can be found in Appendices A-D.

3) Initializing the backend: The team worked quickly and efficiently to link the FACET

model to a Python backend that could successfully communicate with a Javascript/React

frontend, allowing for initial testing and feature implementation.

4) Integration of a fully functional UI: The team worked together to create and integrate

each individual component into a central user interface, with frequent refinements made

to both the system and visuals.

14

3.2 Application Workflow

Before implementing the details of the application, the team modeled application

workflows anticipated users may experience and outlined which intermediate processes would

need to be included when creating the application. The rough flow of communication between

the user and FACET was initially captured with UML diagrams, which can be seen in figures 2

and 3 below. Although the naming of various functions has been simplified in these figures for

readability, the general workflow is still accurate. The two primary workflows that occur are

when (1) the application is initialized and (2) the user modifies constraints to generate new

explanations that reflect the changes.

The first workflow occurs when the application is initialized and before the user can view

the interface. When the application is opened, the backend is initialized, which loads in and

instantiates the dataset that will be used to train the FACET core. The dataset is split into a

training and testing set. After FACET is done training on the first data subset it is ready to

provide a counterfactual explanation region. The application’s user interface opens and

welcomes the user by displaying a dropdown populated with instances from the testing dataset.

After a specific instance is selected the user continues past the selection screen to the home

screen. The instance, along with other initial parameters, are used to query FACET, in order to

retrieve explanations. These explanations are showcased within the 'Explanations' section, where

for every feature in the dataset the set of counterfactual regions are displayed, accompanied by

relevant suggestions.

15

The second workflow is captured by the ‘Feature Controls’ section, which contain panels

that allow the user to constrain the ranges of the counterfactual regions received from FACET.

Similar to the initialization workflow, the constraints are passed along with the instance to

FACET to generate a new explanation set, replacing the old explanations.

In addition to these workflows, there are other features that are offered in the application.

If a user views a certain explanation that they like, they can save the explanation as a scenario,

which may be opened in the future. Additionally, as the counterfactual explanations may be

difficult to understand — especially for non-technical users — there is also a section that

provides a textual interpretation of the counterfactual explanations, giving the user a suggestion

of actionable steps to take in order for their instance to be “accepted.” A more detailed

explanation of how the backend, scenarios, and constraints, and explanations are implemented

will be described in their respective sections later.

Figure 2. Initializing the application.

16

Figure 3. Generating explanations with constraints.

17

3.3 User Interface

Figure 4. Layout of the final application

The current UI of the application can be found in Figure 4. Its layout can be broken down into

five key components:

1) Feature Controls: These controls consist of a list of features and their corresponding

range of values. Each component in the list contains a locking icon at the top right corner,

which indicates that the feature value cannot be changed. The feature control elements

also include arrows that allow users to change the priority of each value as desired and

18

pick which values they are more willing to change than others. Users are additionally

able to pin a feature at its current priority by clicking the pin icon which prevents a

feature’s priority from being reordered by the other features.

2) Scenarios: Users can save multiple instances for different application explanations, or

scenarios. Each scenario represents a specific counterfactual region. Users can create a

new application, in addition to the default one, that enables them to apply any desired

changes using the 'Feature Controls' feature or by accepting suggestions generated by the

'Suggestion' component. This allows users to personalize and customize their experience

based on their preferences and needs.

3) My Application:My Application provides valuable information about FACET’s current

application for generating counterfactual explanations. It displays all the feature values

and shows the overall status of the application. The only changes made to this component

were adding a user-friendly option to switch between different applicants and a detailed

tutorial on correctly using the component. This component is a vital application feature

that helps users understand its performance and stay informed. "My Application" also

includes an expand option that allows users to view all values within the application

without having to scroll.

4) Explanations: Provides a more comprehensive list of possible counterfactual

explanations under the 'Explanations' tab, making the information more user-friendly and

easier to understand. This feature allows users to better understand why the system

approved or denied their application and use the information to improve future

applications

19

5) Suggestions: To better understand the visuals from the explanations, suggestions are

created to provide helpful recommendations for users to improve the current application.

These suggestions are aimed to synthesize the key points of the explanations and

communicate them to the user in text form that is much easier to interpret.

The user interface (UI) underwent a series of design updates throughout the project, with

each iteration building upon the previous one. Each section of the interface was meticulously

refined to present the necessary information only without causing any disruptions to the user

experience. An example of this can be seen by contrasting the first prototype (Appendix B) with

the second iteration (Appendix C). By adding whitespace around the components, the team

ensured that each component within the UI was not cluttered together, thus making the UI more

visually appearing and user friendly. These design changes were implemented to create a more

streamlined and intuitive user interface, ultimately resulting in a more seamless and user-friendly

experience for all users.

3.4 Frontend

3.4.1 Welcome Screen

The Welcome Screen serves as the user’s first interaction with FACET’s user interface

and allows the user to select the starting applicant values for FACET to generate explanations. It

is pivotal that this screen is easily interpretable and eases the user into understanding the

common design language within FACET’s UI. Functionally, the Welcome Screen allows the user

20

to either pick from a list of preloaded applicants (Figure 5) or manually input values for each of

the variables (Figure 6).

Figure 5. Welcome Screen: Applicant Dropdown

Figure 6. Welcome Screen Custom Applicant

21

The Welcome Screen has two unique tabs for the user: the pre-loaded applicant tab and

the custom applicant tab. The pre-loaded applicant tab allows the user to pick from a dropdown

with applicants loaded into the program before continuing to the FACET system. The custom

applicant tab allows the user to enter custom values for each of the scenario’s features. These text

input boxes are validated to make sure that the user is entering valid numeric values prior to

being sent to the application.

To streamline the codebase and reduce reliance on custom subcomponents, the team

opted to integrate components from the Material UI (MUI) library. The ToggleButtonGroup

('Toggle Button Group Material UI', 2024), Autocomplete ('Autocomplete Material UI', 2024),

and TextField ('Text Field Material UI', 2024) components were utilized to facilitate the

switching between custom and dropdown tabs, dropdown menus, and text boxes. To differentiate

tabs, the text fields are disabled when a preset applicant is selected and the dropdown is disabled

when the custom applicant is being created. This adoption of new components led to a more

refined overall design, enhancing user experience and functionality.

After selecting or providing details for an application, the user can then confirm by

pressing the button, triggering FACET to populate with the new applicant values and generate

explanations based on them. The user can return to the Welcome Screen at any point and select

another application through clicking the Welcome Screen button on the main page (Figure 7).

22

Figure 7. Return to Welcome Screen button

3.4.2 My Application

The 'My Application' section is a vital aspect of our application platform, providing users

with relevant and up-to-date information on the values present within their applications (Figure

8). This tab presents all values in an organized manner without the need to read through the

Feature Controls and Explanation sections on the user interface.

Figure 8. The ‘My Application’ section

3.4.3 Feature Controls

The Feature Controls section serves as the primary tool for end-users to interact with the

FACET system. By setting and adjusting the constraint values within the Feature Controls, users

define the accepted range. This range, determined by the user, signifies the spectrum of values

they are willing to adapt to. For instance, in our loan application dataset, if a user's current rent is

23

$2,800 per month and they set their accepted range between $2,000 and $3,400, it indicates their

flexibility in adjusting their rent within that range to secure loan approval.

Figure 9. Feature Controls break down

As FACET can be trained on a dataset containing any number of features that affect the

outcome of the model, a corresponding feature control (Figure 9.2) exists to allow users to

explore how different values can affect the model’s outcome. A feature control comprises the

following elements: the range slider [7], which includes the minimum and maximum values [8,

12], the set range [9], [11], and the current value of the feature [10], the priority value [6] along

with pins [5], and the lock [13].

24

1) Range Slider: The range slider [2] allows users to define a range of values to be

transmitted to FACET, indicating the spectrum of values considered in explanations.

2) Priority Value: The priority value corresponds to a feature's weight, representing the

user's preference or ability to modify a selected feature, with '1' indicating the highest

difficulty in making changes. Users can adjust the priority value by inputting a value in

the input box [6] or by using the arrows [4] to increment or decrement the priority.

3) Priority Pinning: By pinning a priority [5], users can lock a feature to the specified

priority, preventing it from being altered by adjustments to other features' priorities.

4) Prioritize Features: Should users prefer to assign equal weight to each feature, they can

toggle off the priorities using the switch located at the top of the controls [1].

5) Feature Locking: The lock [13] allows users to fix a feature at its current value,

indicating their preference for keeping that feature's value unchanged.

The Feature Controls section interfaces primarily with three other components. Firstly,

the applicant information, as selected or entered in the Welcome Screen, is displayed as the

current value in the slider. Secondly, when users make changes to the constraints, the adjusted

constraints are related to FACET, which subsequently updates the Explanation section in

real-time. Lastly, when users load a saved scenario from the Scenario tab, the constraints update

to reflect the constraint values saved within that scenario, and any edits made to an open scenario

are saved accordingly.

25

Figure 10. Feature with different constraints changed

For the second iteration of the Feature Controls section, the appearance was refined and

code was streamlined through the incorporation Slider ("Slide Material UI,” 2024), Icon Buttons

("IconButton API," 2024), and toggle Switch ("Switch Material UI," 2024) components from the

MUI library. To seamlessly integrate with the existing interface, the styles of the components

were overridden. The layout of the Feature Controls was further revised and the pinning button

was relocated to the left of the priority value to improve clarity regarding its function. Visual

cues were implemented to denote the changes made when pinning a feature (Figure 10.2),

locking a feature (Figure 10.3), and toggling the weights off or deprioritizing a feature (Figure

10.4). By providing clearer functionality cues and improving usability, these enhancements

ensure that users can effectively manage constraints, thereby enhancing their experience with the

system.

26

3.4.4 Explanations

Figure 11. Explanation Section

Figure 12. Explanation Section: no explanations generated

The Explanations section (Figure 11) provides users with a visual display of the

generated counterfactual explanations for the user selected instance. Explanations offers

functionalities for navigating through multiple explanations and saving scenarios based on the

provided explanations. An overview of its key functionalities is as follows:

1) Explanation Display: Explanations [1] are presented in a user-friendly format, with each

feature's explanation visualized using a custom number line, which was partially built

27

using existing code from VanNostrand’s previous user study using the D3.js library. This

allows users to interpret and analyze the impact of individual features on the model's

predictions.

2) Navigation Controls: Users can navigate through multiple explanations using next and

previous buttons [2]. The component dynamically updates the displayed explanation

based on the current explanation index.

3) Scenario Saving: Users have the option to save scenarios based on the current

explanation. By clicking the "Save Scenario" button [3], users capture the current

instance, feature constraints, and generated explanations to cache for future reference and

analysis.

4) Error Handling: If no explanations are available or if constraints prevent explanation

generation, the component displays a message to guide users to relax the constraints to

provide FACET a larger space to generate explanations (Figure 12).

3.4.5 Suggestions

The suggestion section is designed to distill the main points of the current explanation

and communicate them to the user in text form. This is achieved by crafting a sentence outlining

the actionable steps the user needs to take for their instance to be accepted. An example of the

suggestion section is shown below in Figure 13.

28

Figure 13. Suggestion Box

The suggestion is dynamically generated, building each sentence component to address

necessary changes to each feature value. Each suggestion adheres to a consistent template,

including static introductory and concluding text. For feature values, the suggestion employs the

following format: "your FEATURE_NAME was between LOWER_BOUND and

UPPER_BOUND rather than CURRENT_VALUE." The presented suggestion reflects the

currently loaded explanation and updates accordingly when a new explanation is selected, as

demonstrated in Figures 14 and 15.

Figure 14. Suggestion generated for
the 1st explanation

Figure 15. Suggestion generated for
the 4th explanation

29

3.4.6 Scenarios

Figure 16. Scenario Section with Scenario 1 selected

The Scenarios tab allows users to manage and interact with saved scenarios based on

generated explanations (Figure 16). Users can effectively manage and explore different scenarios

based on generated explanations, facilitating a deeper understanding of model behavior and

predictions. When a scenario is saved, it is assigned a unique ID for convenient reference, and

the scenario’s explanation, constraints, and values are serialized to a JSON object and stored for

later viewing. In regards to managing scenarios, the following features are provided:

1) Scenario Selection: Users can select a scenario by clicking on its corresponding tab in

the scenario list. Upon selection, the component updates the application state to reflect

the selected scenario's instance, explanations, and constraints.

2) Scenario Deletion: Users have the option to delete individual scenarios by clicking the

close button (x) on each scenario tab. This action removes the selected scenario from the

list of saved scenarios and updates the application state accordingly.

3) Scenario Clearing: The "Clear All" button allows users to clear all saved scenarios at

once. Clicking this button resets the saved scenarios list and clears any selected scenario,

providing users with a clean slate for creating new scenarios.

30

4) Instructions Text: When no scenarios are saved, the component displays an instructional

text prompting users to save an explanation to create a scenario. This helps guide users on

how to interact with the scenarios feature.

3.4.7 Application Styling

To style the application a general grid layout was implemented, where each component’s

code could be injected into its respective section. A CSS file was then made for each component

and filled out to replicate the design created in Figma. As development progressed, in-line

styling was abstracted out into a CSS file for easier manipulation and better sustainability of the

project. The final styling reflected a relatively more modern look compared to the initial Figma

prototype.

3.5 Backend

The backend of the FACET system primarily serves as a middle piece connecting the

frontend to the FACET core system for explanation generation while also providing access to the

dataset and its metadata for analysis. The backend server, implemented using Python and

Flask—a lightweight and flexible web framework—provides a robust infrastructure for handling

API requests and conveniently integrates with the FACET core system, which is also written in

Python.

3.5.1 Initialization

When the application starts, the backend is first initialized in order to set up the

environment and prepare the system for operation. This involves several key steps:

31

1) Loading Configuration Parameters: The backend loads configuration parameters from

a JSON file (config.json). These parameters include the port for the RESTful explanation

API and the name of the dataset. This ensures that the backend is configured according to

the specified settings.

2) Setting up File Paths: Paths to the dataset details and human-readable information files

are established. These files contain essential information about the dataset, such as

column names and formatting details, which are necessary for preprocessing data and

converting raw explanation data–which is not interpretable by humans–into information

lay users can understand without advanced technical experience.

3) Configuring Flask Application: The Flask application is configured to handle incoming

requests and provide responses accordingly. This involves setting up routes, middleware,

and other necessary components to ensure smooth operation of the backend.

4) Enabling CORS: Cross-Origin Resource Sharing (CORS) is enabled to allow the

frontend to make requests to the backend from a different origin. This ensures that the

frontend can communicate with the backend without encountering security restrictions.

5) Initializing FACET Core: The FACET core system is initialized, which involves loading

data, training models, and indexing explanations. This step is essential for generating

explanations based on user queries and dataset characteristics.

6) Loading Sample Data: Sample data is loaded into memory, providing a set of instances

for testing and demonstration purposes. This allows users to interact with the system and

explore its capabilities before using their own datasets.

32

3.5.2 Integration with Frontend

The backend integration of the FACET system involves seamless communication with

both the frontend user interface and the FACET core system. It serves as the central component

that facilitates data flow between the frontend and the core system, ensuring efficient generation

of explanations and access to dataset files.

The backend integrates closely with the frontend user interface to provide a cohesive user

experience. This integration involves:

1) Handling API Requests: The backend serves as the middleware that handles API

requests from the frontend. It receives requests for generating explanations, accessing

dataset files, and other functionalities, and processes them accordingly.

2) Processing User Inputs: User inputs from the frontend such as the selected instances,

feature values, and constraints, are processed by the backend to prepare them for input

into the FACET core system. This involves scaling data, formatting requests, and

ensuring compatibility with the core system's requirements.

3) Generating Explanations: Upon receiving a request for explanation generation the

backend communicates with the FACET core system to generate explanations based on

the provided inputs. It passes the processed data to the core system, receives the

generated explanations, and returns them to the frontend for display.

4) Providing Feedback: The backend provides feedback to the frontend based on the

results of API requests. This includes success messages, error handling, and status

33

updates to inform users of the system's status and any issues encountered during

operation.

3.5.3 RESTful API Endpoints

The backend provides several RESTful API endpoints to serve various functionalities

required by the FACET system:

1) Fetching Test Instances (GET /instances): This endpoint returns sample instances for

testing purposes.

2) Fetching Human Format Information (GET /human_format): Returns

human-readable formatting information for display purposes.

3) Serving Data Files (GET /data/{dataset_name}): Provides access to data files required

by the application, such as datasets and formatting files.

4) Generating Explanations (POST /facet/explanations): The main API endpoint for

explaining instances. It receives input data in JSON format, processes it, and returns

explanations for the provided instance.

3.5.4 Explanation Generation Process

The backend's core functionality lies in the explanation generation process. When a

request is received at the /facet/explanations endpoint, the backend preprocesses the input data,

scales it if necessary, and passes it to the FACET core system for explanation generation. Upon

receiving the explanations, the backend processes them, formats them into a JSON-compatible

structure, and returns them to the client for display.

34

4.0 Results

Due to the nature and size of the project, extensive testing was essential to ensure users a

high quality application using FACET’s algorithms. Consequently, a comprehensive testing plan

was devised to test all features of the application.

4.1 Testing Plan

The testing plan was broken into three main testing phases:

1) General Functionality: Each component of the application was tested with realistic

situations to ensure that the app functioned as intended. This included, but was not

limited to, ensuring that constraints properly update explanations and suggestions, saved

scenarios retain all important information and load correctly, and explanations are both

accurate and reasonable.

2) Flexibility: One of FACET’s key features is the ability to work with any dataset, given

the necessary files are provided. To ensure this functionality, another dataset was loaded

into FACET with different features, units, and metrics to determine if the application met

this standard.

3) Edge Case Testing: Each component was tested with extreme situations to ensure that

robustness under rare circumstances, such as when no explanation can be found or when

relatively large numbers were inputted.

The planning document that contains more details can be found in Appendix E.

35

4.2 Testing Procedure

Testing initially began in the general functionality phase, where each component of the

app was rigorously tested to weed out any bugs and unintended features. In the Feature Controls

section, it was crucial to ensure proper implementation of functions such as pinning, locking,

priority switching, toggling, and range adjustment. Various combinations of different ranges,

values, and permutations of pinning, locking, and priority switching were tested, both

individually and in combination with each other. Validation of these functions was conducted

using generated explanations and backend code to confirm their intended functionality.

For the saved scenarios component, different constraints, explanations, and applications

were saved as individual scenarios and compared to one another to ensure each one reflected

their original states. Throughout all of testing, the explanations and suggestions components

were checked to ensure they properly depicted the changes made by the feature controls and the

saved scenarios.

The next phase involved testing the flexibility of the app. A human_readable.json file

was created for another dataset with different units, semantic values, and other parameters. This

dataset was then loaded into FACET and the app was checked over to ensure that valid ranges

were presented and general functionality persisted. Additionally, the original dataset was tested

with different parameters in its respective human_readable.json file to ensure hard coded values

no longer existed within the application.

The final phase of the testing plan involved edge case testing. Edge cases are rare

circumstances that do not normally show up during regular usage of the application but still have

36

a small chance of occurring. These cases are often extreme and involve unexpected behaviors.

Edge cases that were investigated included, but were not limited to, cenarios where negative

values or values greater than 1E6 were input, cases with no valid explanations, and instances

with more than 100 saved scenarios, and situations with unreasonable constraints.

This procedure was repeated twice. In the first wave of testing any unintended behaviors

were documented and classified as either high or low priority. High priority issues were patched

whereas low priority issues were left for future development. After the initial bugs were found a

second wave of testing was conducted to ensure the bugs were fixed.

4.3 Testing Results

The results of the testing were promising; All formatting and styling bugs tracked

throughout the duration of the project were addressed and resolved, resulting in a UX friendly

appearance. No single section took up overwhelming space on the screen and the UI maintains

an aesthetically pleasing symmetrical layout that flows from section to section in a logical way.

The testing process did, however, reveal critical issues within the application, including

performance bottlenecks, unintended feature exploration limitations, and occasionally invalid

explanations.

Generating explanations dynamically takes an unacceptably long time depending on the

constraints, causing noticeable lag in displaying new explanations and various issues with the

rest of the application. Furthermore, the application cannot handle just one explorable feature,

incorrectly loading NaNs into the feature ranges and failing to load a single instance of the

37

dataset. Conversely, loading more than four explorable features results in the explanations having

undefined values and ranges. Lastly, under certain constraints, the application provides

unreasonable explanations, such as only accepting a loan if you drop your income to the

thousands from the tens of thousands.

The results of the tests and the steps to recreate them can be found in greater detail in

Appendix F.

38

5.0 Conclusion

5.1 Future Work

5.1.1 Accessibility Styling

By providing accessibility options, the application can better accommodate users with

various disabilities and enhance user experience. Through research, the team recognized the

significance of inclusivity and accessibility in UI design and is committed to ensuring the

platform is accessible and user-friendly for everyone. However, due to time constraints, the team

was unable to meet all of the set accessibility goals.

The team had planned to address accessibility issues faced by users with motor skills

difficulties, visual impairments, age-related limitations, anxiety concerns, language barriers, and

other mental/physical impairments. To achieve these goals, elements and interactive components

of the UI can be reevaluated to be sensitive to people with motor control difficulties and

resizable for visual impairments. Additionally, the color palette for the application can be redone

to accommodate other visual impairments and improve contrast. Although not implemented,

alternative style sheets were designed to meet the Web Content Accessibility Guidelines

(WCAG), a set of principles intended to accommodate various disabilities that impair access to

websites (W3C, 2020). These style sheets provided alternative color palettes for different forms

of color blindness, meeting the WCAG AAA color contrast standard.

39

Furthermore, the language choice used by the application can be improved upon. While

the team wanted to ensure that all communication within the UI was polite and informative

without appearing patronizing, changes can be made to make the application more friendly to

those who may face language barriers and to improve understandability of advanced technical

terminology.

To further accommodate visual impairments, the application can benefit from features

such as text-to-speech, image descriptions, and the ability to highlight content.

5.1.2 User Testing

Although the application underwent testing for general functionality, handling of edge

cases, and adaptability to various datasets, it notably lacked user testing. User testing is highly

significant due to its ability to provide insights into user experience, preferences, and potential

usability issues that might not be apparent through other testing methods. For future iterations of

the app it is imperative to conduct user testing to refine the layout, uncover latent bugs, and

enhance the overall user experience. Through involving users in the testing process, developers

can gain valuable feedback and identify areas for improvement for the FACET application.

5.1.3 Feature Filter

The feature filter component was initially planned as a significant enhancement to the

existing prototype, offering users more detailed and refined controls for managing and navigating

feature controls within FACET. While the preliminary implementation includes a toggle for each

40

filter to show or hide it in the Feature Control and the option to remove all applied filters entirely

there are several areas for further development to fully realize the potential of this feature.

Current Implementation

The current implementation of the Feature Filter component, which is shown in Figure

17, includes the following functionalities:

a. Individual Filter Toggles: Users can toggle individual filters to show or hide

specific features in the feature control. This functionality provides users with

granular control over the visibility of features based on their preferences and

requirements.

b. Toggle All Filters: Users have the option to toggle all filters on or off

simultaneously, enabling them to quickly adjust the visibility of multiple features

at once. This feature enhances user efficiency by streamlining the process of

managing feature visibility.

Figure 17. Preliminary implementation of feature filters

41

Next Steps

Building upon the preliminary implementation, the following enhancements and

additions can be incorporated into the Feature Filter component to further improve usability and

functionality:

1) Search Bar: Integrate a search bar within the Feature Filter component to allow users to

quickly search for specific filter options. This feature enhances user accessibility and

efficiency by enabling rapid navigation and retrieval of desired filter options.

2) Submenus and Categorization: Implement submenus within the Feature Filter

component to categorize and organize filter options into logical groupings. This

organizational structure enhances user navigation and comprehension, facilitating easier

identification and selection of relevant filters.

3) Applied Filters Menu: Introduce a menu or display area that shows the filters currently

applied to the feature controls. This feature provides users with visibility into the active

filters, allowing them to track and manage applied filters effectively.

4) Filter Removal Options: Enable users to remove individual filters that are no longer

needed or relevant to their analysis. Additionally, incorporate functionality to clear all

applied filters with a single action, providing users with flexibility and control over filter

management.

42

5.1.4 Scenario Comparison

Figure 18. Scenario comparison layout and sample walkthrough

Scenario Comparison is a component added late in the development of the application. It

enables users to compare the explanations of two saved scenarios. The user selects two scenarios

for comparison from the dropdowns (Figure 18.1) and the explanation index (Figure 18.2) to

compare explanations. Users can choose to compare the explanations of the same scenario by

selecting the same scenario for each dropdown.

Once two scenarios and explanations are selected, Scenario Comparison groups each

explanation by feature and displays them one beneath the other (Figure 18.3-5). For each feature

within an explanation, the number line is displayed with the accepted range (Figure 18.5). The

ID of the associated scenario is displayed to the left of the number line (Figure 18.3). To the right

of each number line, the percent change between the application's current value and the closest

value in the explanation range (min or max range) is displayed (Figure 18.4). The lowest percent

change between the two features is highlighted in blue to emphasize that it requires the least

amount of change to be met. When the current applicant value falls within the explanation range,

43

the number line is grayed out (Figure 18.6), similarly to how it is implemented in the

Explanation Section.

Despite implementing the component, it was omitted from the final version of the app

due to the need to revise the app interface to accommodate it and for user testing. Additional user

testing of the Scenario Comparison feature may offer insights into how end-users would utilize

scenario comparison and how information could be presented more effectively to support them.

Incorporating these insights and adjustments may lead to the integration of a revised version of

the Scenario Comparison feature into the app in the future.

5.1.5 Explaining App Functionality to Users

In the course of the project, various methods for explaining the app's functionality to

users were considered. Initially, options such as embedding video explanations or incorporating

information buttons were explored during the development of the V1 prototype of the user

interface. Eventually, the decision was made to include information buttons that users could click

on for each significant component (Appendix B). However, due to time constraints, these

information buttons were never implemented. Furthermore, during the redesign of the app

layout, the information buttons were not refined and thus were excluded from the final version.

Moving forward, future iterations could explore the implementation of tooltip animations.

These animations would appear when users hover over specific components and would provide

brief explanations of their purpose. These tooltips could be programmed to activate at the start of

each new session of the web app and could also be accessible by hovering over relevant areas of

the screen. The exact development approach for this aspect of the app remains undetermined, but

44

it presents an opportunity for enhancing user understanding and interaction in subsequent

versions.

5.1.6 Loading Categorical Data

The current iteration of the web app exclusively handles numerical data, yet alternative

versions of the FACET system exist that are designed to accommodate categorical data. To

enhance the app's capabilities, future iterations could be adapted to incorporate support for

categorical data. This could involve implementing a slider with a restricted number of choices as

illustrated in Figure 19, allowing users to only select predefined categorical values.

Figure 19. Example of slider with predefined values of size

Incorporating support for categorical data into future iterations of the app is essential for

various reasons. Firstly, it would significantly enhance versatility by expanding the utility of the

app, enabling users to analyze a broader range of datasets effectively. Additionally, this

enhancement would improve user accessibility and satisfaction, meeting their evolving needs for

a more comprehensive data analysis tool. Furthermore, integrating categorical data support

would streamline the FACET system, consolidating multiple functionalities into one cohesive

and user-friendly experience. These enhancements are crucial to ensure the app stays relevant

and caters to the evolving needs of its users.

45

5.2 Conclusion

With the continued adoption of artificial intelligence across industries the demand for

Explainable AI only grows. Using a novel method to generate counterfactual regions, FACET

provides a number of flexible and actionable solutions explaining how users can obtain their

desired outcome. To allow for users to set their own requirements and query FACET, the team

developed an interactive user interface and application. The application then underwent

extensive testing to ensure proper functionality in a number of scenarios and proved to meet the

set goals for functionality.

While the application may achieve all the foundational goals FACET was designed for,

the application can still be improved. The UI can be made more accessible to people with various

disabilities that would otherwise hinder their experience. This process can be better aided

through user testing, allowing a wide range of audiences to experience the application in its

current state and provide much needed feedback and critique to improve the overall experience.

Furthermore, the application itself has a few remaining issues that need to be resolved. Alongside

styling and other improvements, FACET itself can be expanded further to be able to process

non-numerical data, allowing for more accurate explanations and a wider range of features for

users to explore. The creation of the FACET interface presents a promising first step into

creating an application users can use to understand and use AI, ending the ‘black-box’ era of the

AI.

46

Citations

Abiola, M. (2023). Node.js vs. Flask: Key Advantages, Disadvantages, and Differences. HostAdvice,
https://hostadvice.com/blog/web-hosting/node-js/node-js-vs-flask/.

Chamorro, P. (2023). 5 simple ways to increase UI/UX accessibility. BairesDev Blog,
https://www.bairesdev.com/blog/increase-ui-accessibility/.

Chui, Michael, et al. “The State of AI in 2022-and a Half Decade in Review.”McKinsey & Company, McKinsey &
Company, 6 Dec. 2022,
www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2022-and-a-half-decade-in-re
view.

Dandl, S., Molnar, C. (2023). Interpretable machine learning, ch. 9.3. Github,
https://christophm.github.io/interpretable-ml-book/counterfactual.html

Henry, S.L. (n.d.). Accessibility in User-Centered design. Just ask: Integrating accessibility throughout design,
http://www.uiaccess.com/accessucd/background.html.

Hod, Dr. Adi. “Council Post: Explainable AI: The Importance of Adding Interpretability into Machine Learning.”
Forbes, Forbes Magazine, 5 Oct. 2023,
www.forbes.com/sites/forbestechcouncil/2023/01/13/explainable-ai-the-importance-of-adding-interpretabili
ty-into-machine-learning/?sh=475fdaf2a9e4.

Keane, Mark T. et al. “If Only We Had Better Counterfactual Explanations: Five Key Deficits to Rectify in the
Evaluation of Counterfactual XAI Techniques.” International Joint Conference on Artificial Intelligence
(2021).

Laing, Keith. “Tesla (TSLA) Ordered by NHTSA to Address New Issue over Autopilot Feature.” Bloomberg.Com,
Bloomberg, 29 Aug. 2023,
www.bloomberg.com/news/articles/2023-08-29/tesla-ordered-by-regulators-to-address-new-issue-over-auto
pilot.

Ludlow, Edward. “Paid Driverless Taxis Are Slowly Becoming a Reality.” Bloomberg.Com, Bloomberg, 16 Aug.
2023,
www.bloomberg.com/news/newsletters/2023-08-16/paid-driverless-taxis-are-slowly-becoming-a-reality.

Miliard, Mike. “One Early Adopter’s Tips for AI Deployment Success.” Healthcare IT News, 7 Dec. 2023,
www.healthcareitnews.com/news/one-early-adopters-tips-ai-deployment-success.

Molnar, Christoph. “Interpretable Machine Learning.” 9.3 Counterfactual Explanations, 21 Aug. 2023,
https://christophm.github.io/interpretable-ml-book/counterfactual.html

React Autocomplete Component - Material UI.” React Autocomplete Component - Material UI,
mui.com/material-ui/react-autocomplete/. Accessed 1 Mar. 2024.

47

React Slider Component - Material UI.” React Slider Component - Material UI, mui.com/material-ui/react-slider/.
Accessed 1 Mar. 2024.

React Switch Component - Material UI.” React Switch Component - Material UI, mui.com/material-ui/react-switch/.
Accessed 1 Mar. 2024.

React Text Field Component - Material UI.” React Text Field Component - Material UI,
mui.com/material-ui/react-text-field/. Accessed 1 Mar. 2024.

React Toggle Button Group Component - Joy Ui.” React Toggle Button Group Component - Joy UI,
mui.com/joy-ui/react-toggle-button-group/. Accessed 1 Mar. 2024.

Usability.gov. (n.d.). User Interface Design Basics. Usability.gov,
https://www.usability.gov/what-and-why/user-interface-design.html

VanNostrand, Peter M., et al. “Facet: Robust Counterfactual Explanation Analytics.” Proceedings of the ACM on
Management of Data, vol. 1, no. 4, 8 Dec. 2023, pp. 1–27, https://doi.org/10.1145/3626729.

W3C. (2020). Web Content Accessibility Guidelines (WCAG) 2 Level AAA Conformance.
https://www.w3.org/WAI/WCAG2AAA-Conformance

White, Tom. “Redrob CEO Felix Kim Explains It All: AI Is Transforming Global Recruitment.” Benzinga, 14 Feb.
2024,
www.benzinga.com/general/24/02/37126730/redrob-ceo-felix-kim-explains-it-all-ai-is-transforming-global
-recruitment.

Ye, S. (2017). 6 Bad UI Design Examples & Common Errors of UI Designers. MockPlus,
https://www.mockplus.com/blog/post/bad-ui-design-examples.

“IconButton API.”Material UI, mui.com/material-ui/api/icon-button/. Accessed 1 Mar. 2024.

48

https://doi.org/10.1145/3626729
https://www.w3.org/WAI/WCAG2AAA-Conformance
http://www.benzinga.com/general/24/02/37126730/redrob-ceo-felix-kim-explains-it-all-ai-is-transforming-global-recruitment
http://www.benzinga.com/general/24/02/37126730/redrob-ceo-felix-kim-explains-it-all-ai-is-transforming-global-recruitment
https://www.mockplus.com/blog/post/bad-ui-design-examples

Appendices

Appendix A

Initial FACET UI: FACET interface created by Peter VanNostrand

Section 1: Feature Controls, My Application, and Explanations

Section 2: Explanations (cont.), Suggestion, and Similar Explanations

49

Appendix B

Version 1: First Prototype of FACET Web App Layout Designed in Figma

Section 1: Feature Control Filter [1] Feature Control [2] My Application [3] Explanations [4]
Suggestion [5] Saved Scenarios [6] Navigation Bar: Accessibility, Settings, Profile [7]

Section 2: Welcome Screen with Applicant Dropdown tab selected

50

Appendix C

Version 1: Implemented Welcome Screen

Welcome Screen with Applicant Dropdown Selected

Welcome Screen with Custom Applicant Selected

51

Appendix D

Version 2: Implemented Layout of FACET Application

Feature Controls [1] Saved Scenarios [2] My Application [3] Explanations [4] Suggestion [5]
Return to Welcome Screen button [6]

52

Welcome Screen with Applicant Dropdown selected

Welcome Screen with Custom Applicant selected

53

Appendix E

Detailed Testing Criterias and Plan

1. Flexibility:

● App should work with other datasets

○ Cancer dataset

○ Alternate loan JSON

● App should properly read from json file

○ App should work with different feature amounts (less, more)

○ App should handle different units

○ App should handle non-existent units

○ App should handle different semantic mins and maxes

○ App should handle displaying different decimal places for feature values

○ App should handle exponential weighting

2. Edge Cases:

● App should work when no valid explanations are given

● App should be able to save extremely large amounts of scenarios (99+)

● App should handle arbitrary number of constraints (lock/pin/min/max changes)

3. Formatting:

● App should appear UX friendly with different zooms

4. General Functionality:

● Locking feature constraints should work as intended

54

○ Feature is considered unchangeable

○ Explanations should have same range as the original value

● Pinning feature constraints should work as intended

○ Priority should not change

○ Explanations should maintain same priority as if pin did not happen and

feature was in the same priority

● Saving a scenario should work as intended

○ Changing values in a saved scenario should be reflected and saved in said

scenario

○ Scenario should load with constraints and explanations saved with it

○ Scenario should be able to be closed

○ If there are n scenarios already that fill up the given space, the (n+1)th

scenario should have a scroll bar

● Feature controls should display features as intended

○ If there are n features already that fill up the given space, the (n+1)th

feature should have a scroll bar

○ Changing the ranges should change the explanations to reflect the

constraints

● Explanations section should properly display explanations

○ Each explanation should reflect the given constraints and their priority

○ Each explanation, when entered into the feature controls, should be

approved

55

○ If there are < k explanations, it should only display the unique

explanations found

○ If k’ > k explanations is given, then k’ explanations should be shown (if

they exist)

○ If a scenario is selected and the explanation cycle button is pressed, a

correct explanation should be provided

● My Application’s status section should properly reflect whether or not a loan is

approved

○ If a loan is rejected, it should announce it

● Suggestions section should provide a text summary of the explanation section

○ Changes to the constraints and explanations should be reflected here

○ Cycling through the explanations should cycle through the suggestions as

well

Procedure:

(1) Test functionality on loan dataset + default JSON

(a) Test some edge cases here:

(b) Saving large amounts of scenarios

(c) No valid explanations found

(2) Test flexibility here with different JSON load outs

(a) Ensure app works for all of them

(b) Fix issues that arise, and retest

(3) Test on cancer dataset + cancer JSON

56

(a) Test more edge cases here

(i) Giving many features in controls

(b) Test more of flexibility here

(4) Repeat testing if fixes arise

57

Appendix F

Testing Documentation

Round 1:

Test
Performed

Procedure Result Status

Cancer
Dataset

Edited config file to specify
“cancer” dataset

Errors (see dataset-swap.log)

Cause: Hard coded constraints obj

Alt Cause: dataset_details.json is
not generated correctly when data
file does not have header row

Need
fixing

Feature
Locking

Lock icons are clicked, multiple
explanations are viewed to
confirm they adhere to the
constraint, priority changed, pin
applied

Bugs:
- Layout on 4th feature

control is off. Card phases
over background

- Certain combinations of
locks do not generate
suggestions, but do
generate explanations (ex:
all locked except loan term
days)

Need
fixing
+
tracked
bug
fixing

Feature
Pinning

Pinned multiple permutations of
the feature controls, tried using
other buttons on the control to
ensure compatibility

Bugs:
Arrows are not grayed out under
and below pinned feature cards;
consider letting them “jump” over
or gray out the button

Need
fixing
(not
doing)

Feature
Priority
Swapping

Swap features around and ensure
that the explanations that get
generated appear to reflect a
change

Works as intended OK

“Prioritize Set various priorities to features, Works as intended OK

58

Features”
toggle

and toggled the switch. Repeated
a few times

Setting
Feature
constraints

Changed the ranges on the
feature controls to see if
explanations correctly get
updated to reflect the constraints

Bugs:
- Explanation range gets

grayed out when range
includes current value on
all but last feature (include
screenshot)

Need
fixing

Handle no
valid
explanations

Locked all feature controls to
signal facet that no changes can
be made

FACET reported that no
explanation could be found and to
relax the constraints in the
explanations section, and reported
that no suggestions could be
given.

OK

Saving large
number of
explanations

Repeatedly spammed the “save
scenario” button 100 times

No noticeable lag, and each saved
scenario loads in a reasonable
amount of time

OK

Saving
explanations

Generated various explanations
from different constraints, saved
the scenario, and then swapped
between scenarios to ensure the
explanations lined up

Intended behavior observed OK

Saving a
specific
explanation
given
constraints

Generated various explanations,
chose one that wasn’t the first
and saved it; swapped between
scenarios

Intended behavior observed OK

Scenario
numbering

Saved 10 scenarios, closed
different permutations of them;
repeated 7 times

Intended behavior observed;
numbering continued based on the
total number of scenarios saved in
a session

OK

Scenario
saving
constraints

Set a bunch of constraints for the
features (includes locking and
pinning), saved scenarios, and
swapped between them

Different ranges specified
correctly get saved

Bugs:
- Priority order does not

save and remains constant
- Locking does not save and

remains constant

Need
fixing

59

- Pinning does not save and
remains constant

Swapping to
different
applicant
with saved
scenarios

Saved a bunch of scenarios with
constraints, went back to
application screen, chose
applicant 8, 12, and 7, saved
scenarios, and swapped between
them

Intended behavior observed
ONLY when a scenario was NOT
selected;

Bugs:
- When viewing a scenario,

you cannot load a new
applicant by going to
application screen and
selecting a new applicant;
it loads back to the
scenario. (includes custom
applicants)

Need
fixing

Application
Screen
loading
custom
applications

A custom explanation was
generated with all positive
values

Bugs:
- Entering absurdly large

values breaks the ranges
for all future custom
applications

- When entering values that
were reported to be
approved, the explanations
suggest lowering a feature,
including income

- When providing realistic
values, no explanation can
be generated unless you
lower ranges for a feature,
such as income (see
screenshots)

Need
fixing

Working
with 1
feature
control

In human_readable.json, delete
all features except for 1

(TEST WITH MODIFIED CSV)

Bugs:
- Feature controls still loads

in the other features
- Explanation section

contains ranges for these
ghost features, except all
values and ranges are
‘undefined’

Need
fixing

60

Working
with 2
feature
controls

In human_readable.json, delete
all but 2 features

Same as above Need
fixing

Round 2:

Test
Performed

Procedure Result Status

Cancer
Dataset

Edited config file to specify
“cancer” dataset

Bugs:
- Status section reads “Your

Diagnosis has been
Malignant”; hardcoded
“has been”

- Explanation section ranges
have hard coded units as
“$” and “days”

- Explanation section cannot
handle ranges for more
than the first 4 features

- Feature controls +
explanations orderings are
off; unsure if related to
frontend

Need
fixing

Feature
Locking

Lock icons are clicked, multiple
explanations are viewed to
confirm they adhere to the
constraint, priority changed, pin
applied

Works as Intended OK

Feature
Pinning

Pinned multiple permutations of
the feature controls, tried using
other buttons on the control to
ensure compatibility

Bugs:
Arrows are not grayed out under
and below pinned feature cards;
consider letting them “jump” over
or gray out the button

Need
fixing

Feature
Priority

Swap features around and ensure
that the explanations that get

Works as intended OK

61

Swapping generated appear to reflect a
change

“Prioritize
Features”
toggle

Set various priorities to features,
and toggled the switch. Repeated
a few times

Works as intended OK

Setting
Feature
constraints

Changed the ranges on the
feature controls to see if
explanations correctly get
updated to reflect the constraints

Bugs:
- Lag in generating explanations
causes constraints to reset to state
when the first constraint was set

Need
fixing

Handle no
valid
explanations

Locked all feature controls to
signal facet that no changes can
be made

FACET reported that no
explanation could be found and to
relax the constraints in the
explanations section, and reported
that no suggestions could be given.

OK

Saving large
number of
explanations

Repeatedly spammed the “save
scenario” button 100 times

No noticeable lag, and each saved
scenario loads in a reasonable
amount of time

OK

Saving
explanations

Generated various explanations
from different constraints, saved
the scenario, and then swapped
between scenarios to ensure the
explanations lined up

Intended behavior observed OK

Saving a
specific
explanation
given
constraints

Generated various explanations,
chose one that wasn’t the first
and saved it; swapped between
scenarios

Intended behavior observed OK

Scenario
numbering

Saved 10 scenarios, closed
different permutations of them;
repeated 7 times

Intended behavior observed;
numbering continued based on the
total number of scenarios saved in
a session

OK

Scenario
saving
constraints

Set a bunch of constraints for the
features (includes locking and
pinning), saved scenarios, and
swapped between them

Works as intended OK

Swapping to
different

Saved a bunch of scenarios with
constraints, went back to

Intended behavior observed ONLY
when a scenario was NOT selected

Need
fixing

62

applicant
with saved
scenarios

application screen, chose
applicant 8, 12, and 7, saved
scenarios, and swapped between
them

Bugs:
- When viewing a scenario,

you cannot load a new
applicant by going to
application screen and
selecting a new applicant;
it loads back to the
scenario. (includes custom
applicants)

Application
Screen
loading
custom
applications

A custom explanation was
generated with all positive
values

Bugs:
- Entering absurdly large

values breaks the ranges
for all future custom
applications

- When entering values that
were reported to be
approved, the explanations
suggest lowering a feature,
including income

- When providing realistic
values, no explanation can
be generated unless you
lower ranges for a feature,
such as income (see
screenshots)

- Values (0-9) are not
considered valid positive
integers

- Does not accept negative
values for ANY dataset

- When NaN is entered, it
cannot be deleted or
overwritten without
highlighting it and then
overwriting it

Need
fixing

Working
with 1
feature
control

In human_readable.json, delete
all features except for
ApplicantIncome, and modify
the CSV to only have this
parameter and the results

Bugs:
- Feature control loads in the

single feature control, but
the ranges are NaN

- No explanations are found
- No suggestions are found

Need
fixing

63

- Cannot explore different
instances

Errors (backend):
- Tuple index out of range in

dataset.py, line 162

Working
with 2
feature
controls

In human_readable.json for
loans, delete all features except
for ApplicantIncome and
CoapplicantIncome, and modify
the CSV to only have these
parameters and the results

Bugs:
- Initial load up has obscene

range values from -9E12 to
+1E9

Need
fixing

Changing
units,
semantic
ranges, and
decimal
places

In human_readable.json for the
loans dataset, set the following
values:

"feature_units": {
"ApplicantIncome": "",
"CoapplicantIncome":

"Gigatons",
"LoanAmount": "€",
"Loan_Amount_Term":

"Days"
},
"feature_decimals": {
"ApplicantIncome": 2,
"CoapplicantIncome": 3,
"LoanAmount": 0,
"Loan_Amount_Term": 4
},
"semantic_min": {
"ApplicantIncome":

7000,
"CoapplicantIncome": 0,
"LoanAmount": -4,
"Loan_Amount_Term": 0
},
"semantic_max": {
"ApplicantIncome":

99999,
"CoapplicantIncome":

null,
"LoanAmount": null,
"Loan_Amount_Term":

null};},

Bugs:
- Units for “€” in feature

controls and status section
are glitched, whereas the
explanation section is fine

- A minimum value for a
feature causes visual
overlapping of the
explanation’s minimum
range and the features
current value

- When ApplicantIncome’s
unit was set to “€”, it also
appeared glitched out

Semantic ranges, decimal places,
and units with standard ASCII
values work as intended

Need
fixing

64

65

