
Design Simplification by Analogical Reasoning

by
Marton E. Balazs

A Dissertation

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Doctor of Philosophy

in

Computer Science

by

December 1999

APPROVED:

Dr. David C. Brown, Major Advisor

Dr. Lee A. Becker, Committee Member

Dr. Ashok Goel, External Committee Member
Georgia Institute of Technology, College of Computing

Dr. Stanley S. Selkow, Committee Member

Dr. Micha Hofri, Head of Department

Abstract i

human

pro-

 cases,

s’ is a

uch as

educ-

our

f an

om-

e. Next,
 Abstract

Ever since artifacts have been produced, improving them has been a common

activity. Improving an artifact refers to modifying it such that it will be either easier to

duce, or easier to use, or easier to fix, or easier to maintain, and so on. In all of these

“easier” means fewer resources are required for those processes. While ‘resource

general measure, which can ultimately be expressed by some measure of cost (s

time or money), we believe that at the core of many improvements is the notion of r

tion of complexity, or in other words, simplification. This dissertation presents

research on performing design simplification using analogical reasoning.

We first define the simplification problem as the problem of reducing the complexity o

artifact from a given point of view. We propose that a point of view from which the c

plexity of an artifact can be measured consists of a context, an aspect and a measur
Design Simplification by Analogical Reasoning

Abstract ii

gical

mental

ber of

, func-
we describe an approach to solving simplification problems by goal-directed analo

reasoning, as our implementation of this approach. Finally, we present some experi

results obtained with the system.

The research presented is significant as it focuses on the intersection of a num

important, active research areas - analogical reasoning, functional representation

tional reasoning, simplification, and the general area of AI in Design.
Design Simplification by Analogical Reasoning

Acknowledgements iii

s

uid-

. Lee

ntrib-

oadened

is dis-

d and

ess in

 Dan

er. The

ced
 Acknowledgment

First, I would like to thank my advisor, Dr. David C. Brown, for all his support and g

ance during my tenure at WPI. The other members of my reading committee, Dr

Becker, Dr. Ashok Goel and Dr. Stanley Selkow, provided many useful ideas that co

uted to this research and raised several interesting issues that strengthened and br

my understanding of analogical reasoning, design and complexity and improved th

sertation. Thanks also to all the faculty who during grand school helped me to buil

broaden my knowledge of computer science.

Many people in the Computer Science Department at WPI contributed to my progr

the graduate school and to this dissertation in one way or another. My office mate

Grecu has been a great colleague and friend throughout my entire stay in Worcest

discussions with him often helped me a lot in my work and in difficulties I often had fa
Design Simplification by Analogical Reasoning

Acknowledgements iv

 past,

I in

 made

t. For-

nescu

 work

 Balazs

 learn

 and

 that
in my every day life, not to mention that the many things we share due to our similar

allowed us many fun minutes to unwrinkle our foreheads. Other people of the A

Design Group at WPI, especially Jon Kembel, Ming He, Peter Bastien, Janet Burge

the life in graduate school much more enjoyable.

Graduate school in general is stressful and the years I spent at WPI were not differen

tunately I found some great friends especially George and Nina Galica, Bogdan Ver

and Florin Frigioiu, who made me feel at home in Worcester.

My family has been always a great source of support in my life in general and in my

in particular. Most of my successes in school over the years are due to my parents,

Marton and Margit, who taught me the right priorities and always encouraged me to

and work hard.

Finally and most importantly, I want to thank my wife Aniko for her love and support,

for putting up with me and my life as a grad student (and not only). To her I promise

one day I’ll settle down and stop going to school.
Design Simplification by Analogical Reasoning

Table of Contents v

 . . iii

 . . .

 . 1

 . 2

. 7

 . 7

8

1

. 11
 Table of Contents

Abstract . i

Acknowledgments .

Table of Contents . v

CHAPTER 1 Introduction .

The Goal of the Research .

The Importance of and Motivation for the Research . 5

Expected Benefits of the Research.

The Simplification Problem .

Specifying a Simplification Problem .

Possible Approaches to Solve a Simplification Problem. 9

Simplification using Analogical Reasoning . 1

The Problems Raised .
Design Simplification by Analogical Reasoning

Table of Contents vi

13

. . 19

5

8

29

34

. 36

 . 37

. 37

. 38

. 56

7

69

71

 72

. 73

5

. 79

9

85
The Approach Proposed. .

Example .

Measuring the Complexity of Designs. 2

Simplifying Designs by Analogical Reasoning . 2

Methods and Expected Results.

Organization of the Dissertation.

CHAPTER 2 The Problem .

Simplification .

The Simpler Relation .

Measuring Complexity .

Complexity of Designs .

Why Count when Measuring Complexity? . 6

The Simplification Process .

Propagation of Simplification .

Performing Simplification .

Possible Approaches.

Simplification by Analogical Reasoning . 7

Difficulties Raised .

Retrieving Useful Simplification Examples. 7

Mapping Simplification Problems .
Design Simplification by Analogical Reasoning

Table of Contents vii

87

8

89

. 90

90

2

4

. 96

99

2

2

6

0

14

15

9

Transferring Simplifications .

Evaluating the Result of the Simplification . 8

Storing new Simplifications .

CHAPTER 3 Related Work .

Work on Analogical Reasoning .

Model-Based Analogical Reasoning . 9

Goal-Driven Analogical Reasoning . 9

Work on Abstraction .

Work on Reasoning about Designs.

Work on Design Optimization/Simplification . 10

Suh’s Information Content Reduction . 10

Bashire & Thomson’s Estimation of Design Effort . 104

Boothroyd & Dewhurst’s Complexity Factor. 10

Reasoning about Designs from different Points of View. 107

CHAPTER 4 The Approach:

Simplification by Goal-Directed Analogical Reasoning 109

Simplification as a Problem Solving Goal . 11

Representing Simplifications . 1

Explaining a Simplification . 1

Elements Relevant to a Simplification. 11
Design Simplification by Analogical Reasoning

Table of Contents viii

121

3

28

8

38

. 138

. 145

4

4

66

8

169

173

73

75

78
Relevance Calculation .

Collecting the Elements that are not Absolutely Irrelevant 122

Propagating Relevance inside Objects . 12

Organizing Simplifications . 1

Organizing Simplifications for Retrieval . 12

Organizing Simplifications for Knowledge Transfer. 134

The Analogical Reasoning Process. 1

Retrieving .

Mapping .

Transferring Simplification Knowledge . 15

Evaluating the Result of the Simplification . 16

Generalization and Storing. 1

CHAPTER 5 Application: Simplification of Designs . 16

The Door Lock Domain .

Representing Designs .

Representing Structure . 1

Representing Behavior . 1

Representing Function . 1

Connections and Dependencies between the Different Aspects 181

Contexts, Aspects and Measures for Design Complexity. 184
Design Simplification by Analogical Reasoning

Table of Contents ix

4

5

85

98

99

05

08

 208

0

12

12

17

3

 225

7

230

0

1

Contexts for Measuring Design Complexity . 18

Aspects for measuring Design Complexity . 18

Measures of Design Complexity . 1

Structural, Behavioral and Functional Design Simplification 196

A Structural Simplification . 1

A Behavioral Simplification . 1

A Functional Simplification . 2

CHAPTER 6 Implementation . 2

The System .

The Database of Known Simplifications . 21

The Interface Module . 2

The Data Management Module . 2

The Simplifier Module . 2

The Simplification Abstraction Module . 22

Representation .

Implementation of the Abstraction Mechanism . 22

Implementation of the Analogical Reasoning Mechanism229

CHAPTER 7 System Demonstration .

Simplification of an Arithmetic Expression . 23

The Sample Problem and Issued Raised . 23
Design Simplification by Analogical Reasoning

Table of Contents x

33

7

8

40

243

48

50

3

55

57

60

61

 263

 264

 264

 269
Operation of the System . 2

Simplification of the Personal Fax Design. 23

The Sample Problem and Issued Raised . 23

Operation of the System . 2

CHAPTER 8 Experiments .

Demonstrating that the Simplification System is Effective 245

Setting up the Experiments. 2

Results and Discussion. 2

Measuring the Effect of Using Relevance. 25

Setting up the Experiments. 2

Results and Discussion. 2

Measuring the Effect of Using Different Complexity Measures 259

Setting up the Experiments. 2

Results and Discussion. 2

Conclusions .

CHAPTER 9 Conclusion .

Contributions .

Future Work .

Performing Further Experiments with the System. 270

Improve the Usability of the System by Building a GUI. 270
Design Simplification by Analogical Reasoning

Table of Contents xi

1

.

 .

 .

 .

 .
Extending the System to other Types of Simplification. 271

Adding New Application Domains . 27

Studying the Simplification Propagation Problem. 271

Studying the Possibility of Generating Creative Simplifications. 272

Bibliography . 274

Appendix A .282

Appendix B .295

Appendix C .304

Appendix D .307
Design Simplification by Analogical Reasoning

Introduction 1

human

pro-

 cases,

en-

ct

ture. It

on the

s and

 char-
CHAPTER 1 Introduction

Ever since artifacts have been produced, improving them has been a common

activity. Improving an artifact refers to modifying it such that it will be either easier to

duce, or easier to use, or easier to fix, or easier to maintain, and so on. In all of these

“easier” means less resources are required for those processes. While ‘resources’ is a g

eral measure, which can ultimately be expressed by some measure of cost (such as time or

money), we believe that at the core of many improvements is the notion of reduction of

complexity, or in other words, simplification. For instance, the less complicated an artifa

is, as measured by the number of parts it consists of, the easier it will be to manufac

is clearly the case that the cost of the actual manufacturing process will depend

technological sophistication of the manufacturer, experience and skill of the worker

so on. However, as opposed to cost, the complexity of an artifact gives an objective

acterization of the difficulty of its manufacturing.
Design Simplification by Analogical Reasoning

Introduction 2

ctiv-

great

analo-

 often

it tar-

n lead

ther

a by-

ape,

riety of

In addi-
Simplification, as a very important method of artifact improvement, is a goal-driven a

ity. Such goal-driven activities have been the ‘motors’ of many creative acts. While

inventions and discoveries have often been made by noticing connections, drawing

gies or using metaphors, they almost always were driven by some goal, which quite

was to improve, or to simplify something.

Thus, studying simplification is a very important direction of research. On one hand,

gets the understanding and simulation of a basic human (cognitive) activity. This ca

to important results from both theoretical and applicative points of view. On the o

hand, the study of simplification, may set a context for studying human creativity as

product of goal-driven reasoning processes.

1.1 The Goal of the Research

This dissertation is concerned with the representations and reasoning required for Simplifi-

cation in general and Design Simplification in particular.

A design can be considered as simpler than another for a variety of reasons, such as sh

use, or ease of assembly. Simplification, as a consequence, can be done with a va

goals, such as to simplify the shape, the use, or the ease of assembly of a design.
Design Simplification by Analogical Reasoning

Introduction 3

t be

stored

cture.

 other

We call

ects is

d effi-

 ana-

llowing

ake the
tion, simplification can be done in a variety of ways. For example, simplifications migh

searched for (reasoned out) or retrieved.

The research presented in this dissertation studies simplification by analogy with

simplifications. The designs are represented as function, plus behavior, plus stru

Simplifications may occur for each of these aspects, with consequences for the

aspects. For example, changing the behavior may make a component redundant.

this propagation of simplification.

The two general hypotheses of our research are that simplification of designed obj

an important class of problems that is worth a special study, and that an effective an

cient approach to solving problems of this class is to reuse known simplifications by

logical reasoning. As a consequence of these hypotheses we proposed that the fo

problems need to be investigated:

• How to define and represent simplification problems.

• What special techniques are needed in the analogical reasoning process to m

design simplification problem solving effective and efficient.
Design Simplification by Analogical Reasoning

Introduction 4

at the

esign

es of

 the

 target

osed to

gnitive

mpli-

ween
The definitions we hypothesize as needed refer to a complexity measure for designs and a

simpler-than relation.

To use analogical reasoning to solve design simplification problems we propose th

following subproblems - raised by developing an analogical reasoning model for d

simplification - must be investigated and solved:

• use of the goal, as formulated in the simplification problem, to guide the phas

the analogical reasoning process;

• effective and efficient retrieval of source analogs (known simplifications) under

assumption that a simplification may refer to only some part of a design;

• effective and efficient evaluation of mappings between source analogs and the

under the assumption that those mappings are between deep structures as opp

the shallow structures used to demonstrate analogical reasoning models in co

science research;

• transfer of simplification knowledge to the target whether the source analog (si

fication) is described by the simplification process or just by the differences bet

the designs involved.
Design Simplification by Analogical Reasoning

Introduction 5

stiga-

ifica-

., from

rs to be

mber

senta-

tion of

resen-

ngi-

mbly

sign
In the concluding chapter of this dissertation we will present the results of our inve

tion with respect to the hypotheses and subproblems described above.

We have no knowledge of any ongoing research concerning simplification or simpl

tion of designs. The propagation of changes across levels of representation (e.g

structure to function) is, as far as we know, a new research area, and one that appea

very challenging. The design simplification problem area in general raises a large nu

of interesting research issues concerning functional reasoning and functional repre

tion schemes, and their interaction with analogical reasoning.

1.2 The Importance of and Motivation for the Research

The research presented in this dissertation is significant as it focuses on the intersec

a number of important, active research areas — analogical reasoning, functional rep

tation, functional reasoning, simplification, and the general area of AI in Design.

We investigate the process of design simplification at different levels (i.e., structural,

behavioral and functional). While there is some simplification-related work in the E

neering community, such as Design For Manufacturing (DFM) and Design For Asse

(DFA), their work is mainly concerned with the structural view. We believe that de
Design Simplification by Analogical Reasoning

Introduction 6

t our

. The

logical

ortant

paga-

esign

em. It

 results

pact

esign

 be fur-
simplification is a significant problem that hasn’t been addressed by AI, and tha

approach provides a fresh view.

Each of the levels at which a design may be simplified can set simplification goals

dissertation examines simplification as a goal-based activity and proposes an ana

reasoning model to perform it. Goal-based analogical reasoning is one of the imp

areas of the research presented.

Simplifying a design from one level may affect the other aspects. Studying the pro

tion of simplifications across levels is also a significant aspect of our research on d

simplification. This dissertation does not propose a solution to the propagation probl

presents, however, the problems raised by the propagation of simplifications.

The dissertation presents both theoretical and practical results. We hope that these

will have significant theoretical impact on the field, as well as a strong potential to im

design applications, and possibly other application areas.

The results from this work have the capability of influencing the next generation of d

systems. The techniques developed and implemented in our prototype system can
Design Simplification by Analogical Reasoning

Introduction 7

 able

.

 of the

ions and

er-

y of

 per-

 con-

their

re, that
ther developed and refined, and included in practical CAD tools, which then will be

to assist designers to produce simpler designs and analyze proposed simplifications

1.3 Expected Benefits of the Research

In addition to the obvious benefits of any new research results, better understanding

simplification of designs might eventually lead to cheaper, better designed products.

Design has been chosen as the domain because it is a rich source of representat

problem solving activity. It is a type of human activity that is still not very well und

stood, and, consequently, is a natural target for AI.

1.4 The Simplification Problem

Simplifying an object means to reduce its complexity. We view complexity as a wa

characterizing objects from a given point of view, that is context, aspect and measure. A

context for characterizing an object by its complexity refers to a process that can be

formed on the object (e.g., describing it, producing it, using it and so on). For a given

text, an aspect is the collection of those elements of the objects which play a role in

characterization in the context considered. For a design an aspect can be its structu
Design Simplification by Analogical Reasoning

Introduction 8

n con-

har-

ng the

manu-

ave to

ints on

at

red for

lified,

tion
is its components, relations between components and attributes. Finally, for a give

text and aspect, a measure is a function that assigns to an object a numeric value that c

acterizes the complexity of the object in the given context and aspect (e.g., counti

components of a design can be a measure of complexity defined for the context of

facturing, in the aspect of structure: it characterizes the number of components that h

be manufactured before the design can be completed).

Given an object, a point of view (context, aspect and measure), and a set of constra

the object, the simplification problem is the problem of transforming the object such th

the resulting object satisfies the constraints and such that its complexity, as measu

the given point of view, is less than that of the original object.

1.4.1 Specifying a Simplification Problem

A simplification problem is defined by three elements: the object that has to be simp

the point of view of the simplification and properties of the object that the simplifica

has to preserve. These three elements correspond respectively to the object, goal and con-

straint of the simplification problem.
Design Simplification by Analogical Reasoning

Introduction 9

pace in

t than

ptimi-

rove-

ation

esign

ssible

rob-

apply

bing

ed by

g two

uris-

rations
1.4.2 Possible Approaches to Solve a Simplification Problem

We view the simplification process as a search in some search space (e.g., design s

the case of design simplification). The goal of the search is to find a simpler objec

the one given as the starting point. Note that we do not define simplification as an o

zation problem (i.e., with the goal to find the least complex object), but rather an imp

ment problem. Also, simplification is a constrained search because all simplific

problems require the preservation of some properties of the object (for example, d

simplification is, or should be, a function-preserving process). There are several po

ways we could try to solve a simplification problem.

One possible approach to performing simplification is to view it as an optimization p

lem with a complexity measure as the objective function. For instance one could

local transformations known to reduce complexity and organize them into a hill-clim

type of process. Structural simplification of a mechanical design could be approach

applying basic simplification operators, such as removing redundancy (e.g., removin

gears from a line of connected gears).

Another possible approach to performing simplification would be to perform some he

tic search. Having some knowledge of what operations and what sequences of ope
Design Simplification by Analogical Reasoning

Introduction 10

es of

arch

 as we

many

s to

 the

fferent

roach

ion in

model

 the
may lead the search towards “good” simplifications, would overcome the deficienci

the local optimization approach, which is the major problem with uninformed se

methods. One general problem of this approach is the lack of good heuristics. As far

know there are no general (domain independent) heuristics for simplification and

specific domains also lack extensive simplification rules.

Finally, a third approach to performing simplification is reusing known simplification

produce new ones. This could be done either by reusing known simplifications from

same domain as the problem is in (i.e., by case based reasoning), or from a di

domain (i.e., by analogical reasoning). In this dissertation we propose this latter app

as the best one for solving simplification problems.

In our research we propose the study of using analogical reasoning for simplificat

general, and design simplification, in particular. Our approach extends the general

of analogical reasoning with mechanisms for using the simplification goal to guide

processing.
Design Simplification by Analogical Reasoning

Introduction 11

bene-

tion

 one,

tion

ning

ciples

 First

tation

 gen-

. The

nsists

ver-

iginal

 disser-
1.5 Simplification using Analogical Reasoning

Approaching the simplification problem by analogical reasoning would have several

fits. First, a known simplification can be reused over and over for identical simplifica

problems. Second, even if a new simplification problem is not identical to any known

if some (significant) similarity between the two can be discovered, the old simplifica

may be used as an “idea” for simplification. Finally, simplification by analogical reaso

also has the benefit that it may be capable of producing general simplification prin

by learning and abstracting over the simplifications produced.

1.5.1 The Problems Raised

Simplification by analogical reasoning requires the solving of a number of problems.

a way of representing the known simplifications must be defined. Such a represen

must contain all the elements that are needed for solving a simplification problem in

eral, as well as elements that would allow the application of analogical reasoning

minimal set of elements that the representation of a simplification has to contain, co

of: a) the objects involved in the simplification (the original object and its simplified

sion) and b) the simplification process that has been applied to transform the or

object. As we shall see, the second one is needed for the analogical transfer. In this
Design Simplification by Analogical Reasoning

Introduction 12

mplifi-

tually

en-

nizing

al rea-

g the

ral and

llowing
tation we propose, that in addition to these two elements, the representation of a si

cation also contains a description of those elements of the objects which were ac

involved in the simplification. This will allow our analogical reasoning model to conc

trate only on elements that are relevant to simplifications.

Another problem that needs to be solved is the design of the data structures for orga

known simplifications. These data structures must support all the phases of analogic

soning. Designing these data structures needs to be done in parallel with buildin

model for analogical reasoning, since they will be strongly interdependent.

Finally, a model of analogical reasoning needs to be defined. For this a set of gene

specific issues must be solved. To solve the general issues we need to answer the fo

questions:

• How might the retrieval of an analog occur?

• How will the retrieved analog be mapped onto the given problem?

• How will the mapping be used to transfer the problem solving knowledge?

• How can the solution to the problem be completed if needed?

• How will a solution to the problem be evaluated?
Design Simplification by Analogical Reasoning

Introduction 13

uilt?

 the

ld be

ality of

uld be

plifi-

tion

ed on

fica-

ess to

o take

ions
• How can a generalization over the analog and the solution to the problem be b

• Will the generalization and/or the solution of the target problem be stored into

database of problems for later use?

Specific issues refer to particular aspects of the simplification problem which cou

used by the analogical reasoning mechanism to improve performance and/or the qu

the result produced. Such issues are for example, whether the simplification goal co

used to improve retrieving, mapping and knowledge transfer, what role could the sim

cation goal play in producing and evaluating the solution, or how could the simplifica

goal be used to generate useful abstractions for generalizing over simplifications.

1.5.2 The Approach Proposed

The approach to solving simplification problems presented in this dissertation is bas

what we call “goal-driven” analogical reasoning. Goal-driven means that the simpli

tion goal stated in the problem will be used all through the analogical reasoning proc

improve the performance of the processing and/or the quality of the result. We had t

the simplification goal into account both in defining the representation of simplificat

and in designing the data structure for organizing known simplifications.
Design Simplification by Analogical Reasoning

Introduction 14

 of the

pler

een

 was

layed

ining

other

aniz-

nsfer

d/or
We propose that the representation of a simplification consists of the representations

following elements:

• the two objects involved in the simplification (the more complex and the sim

one);

• the explanation of the simplification, which specifies either the difference betw

the two objects involved, or the process by which the more complex object

transformed into the more simple one;

• the set of those elements of the objects, which according to the explanation, p

some role in the simplification (we call these elements relevant elements);

The explanation is used for two purposes. One one hand it is the basis for determ

which elements of the objects involved in the simplification are relevant. On the

hand it can be used to build abstractions over simplifications, with the purpose of org

ing simplifications into hierarchies. Such hierarchies are useful for the analogical tra

of simplification knowledge, as well as for generating general simplification rules an

principles.
Design Simplification by Analogical Reasoning

Introduction 15

the pro-

ions of

igned

 their

e goal.

. The

one

impli-

orre-

olved.

ese

e gen-

terme-
The relevant elements are central to this research because they are used to focus

cessing on all the phases of the analogical reasoning process to only those port

objects that are involved in some simplification.

The data structure we are proposing for organizing known simplifications was des

along three dimensions. First, the set of known simplifications is partitioned based on

goal (context, aspect and measure) into classes of simplifications having the sam

Second, simplifications are organized along their “more complex object” component

reason for this is that the retrieval of a known simplification similar to a problem is d

by matching the object specified in the problem to an object that has already been s

fied. Along this dimension, simplifications are organized into several hierarchies c

sponding to the types of elements used in the representation of the objects inv

Finally, the known simplifications are organized into simplification hierarchies. Th

hierarchies are based on abstractions over the explanations of the simplifications.

The reasoning process we propose to use for simplification was derived from a quit

eral model of analogical reasoning and proceeds as follows (Figure 1 presents the in

diate results of the different steps in the processing):
Design Simplification by Analogical Reasoning

Introduction 16
Known
Simplifications

Candidate
Source
Analogs

Source
Analog

Candidate
Simplifications

Resulting
Simplification

Retrieval:
- point of view based pruning
- content-based filtering
- indexing

Selection

Mapping and Transfer

Selecting Simplification

FIGURE 1. The process of producing a simplification. The ovals represent sets of simplifications,
with larger ones containing more simplifications, the rectangle represents one simplification.

- apply simplification
- select best simplification
Design Simplification by Analogical Reasoning

Introduction 17

m-

h are

d of

ith it

 used

l

nt ele-

e

 (e.g.,

dences

spon-

ighest
• Retrieval of candidate source analogs: this phase selects from the set of known si

plifications those that have the same point of view as the problem, and whic

“similar” to the problem. Similarity is measured in terms of the number and kin

elements (e.g., components, relations and attributes) they share.

• Selection of the source analog: each candidate analog retrieved has associated w

a score which measures its similarity to the object to be simplified. This score is

to select the simplification that is closest to the problem.

• Mapping of the source analog onto the problem: this phase will produce severa

“global mappings” that are consistent sets of correspondences between releva

ments in the source analog, and elements in the problem.

• Selection of the best global mapping: each of the global mappings obtained will b

evaluated for quality by combining the scores of the member correspondences

correspondences between relations will assigned higher scores than correspon

between attributes for analogical reasoning). The scores of the member corre

dences are assigned at the time of retrieval. The global mapping with the h

score will be selected to be used for transferring the simplification knowledge.
Design Simplification by Analogical Reasoning

Introduction 18

o-

 in the

jects

ation

 than

se

ill be

y

 data-

lifi-

base.
• Transfer of simplification knowledge: the best global mapping will be used to pr

duce several candidate simplifications by associating the unmapped elements

source analog with elements in the problem.

• Application and evaluation of candidate simplifications: all of the candidate simplifi-

cations are applied to the simplification problem, producing new objects. The ob

produced will be evaluated against the problem constraints and for the simplific

condition. If an object produced does not satisfy the constraint or is not simpler

the object specified in the object, it is dropped.

• Selecting the solution: the object that has the minimal complexity from among tho

which satisfy the constraint and are simpler than the object to be simplified, w

reported as solution to the simplification problem.

• Generalization and learning: if the simplification that was applied is significantl

different than the source analog it has been derived from, it will be added to the

base of known simplifications. Also, if a useful generalization over the new simp

cation and the source simplification can be built, it will also be added to the data
Design Simplification by Analogical Reasoning

Introduction 19

ation

in of

ng of a

 com-

open
1.6 Example

In this section we will use a simple example to illustrate our ideas about the simplific

of designs by analogical reasoning. The example will be drawn from the doma

designing simple door locks [Chakrabarti & Tang 1996].

We consider a door lock (Figure 2) to be a device that allows and prevents the openi

closed door (or gate or window). It is composed of a box, and a bolt that can be fully

retracted into the box as a consequence of some input applied. When the bolt is

pletely retracted it allows the door (together with the whole lock) to move into the

FIGURE 2. A schematic door lock
Design Simplification by Analogical Reasoning

Introduction 20

cted

he ini-

lt and a

 a shut

apply-

d by a
position. When the input is no longer applied the bolt returns to its initial (unretra

position).

For our purposes, the opening of the door lock is a three state process (Figure 3). T

tial state corresponds to the closed door and is characterized by an unretracted bo

shut door. The second (intermediate) state is characterized by a retracted bolt and

door. The door lock may get into this state from the initial state as a consequence of

ing some input. The final state corresponds to the open door and is characterize

FIGURE 3. Behavior of a door lock

Initial State Intermediate State Final State
Design Simplification by Analogical Reasoning

Introduction 21

tate by

ed in

mpo-

ll also

 their

s that

of the

thick,

ent

placed

hap-
retracted bolt and an open door. This state can be reached from the intermediate s

applying a second input to the door lock. The closing of the door lock can be describ

a similar way.

In our examples we shall limit ourselves to door locks implemented using simple co

nents with distinct functional roles (such as levers, cams, shafts, etc.). We sha

assume that the inputs to a door lock will be forces characterized by their directions.

Figure 4 (a) illustrates a design for the door lock device. We represent designs by

structure, behavior and function. Note that in this dissertation we do not study design

achieve their function without a behavior. Figure 4 (b) is a graphical representation

structure of the a door lock, consisting of components, relations (represented by

two-directional arrows) and attributes. Every device has at least one (intended) function.

A function of a device is defined in terms of its interaction with a given environm

[Chandrasekaran & Josephson 1996] “We say that an object achieves its function if

into the environment for which the function is defined, if it causes the interaction to

pen, by virtue of certain of the properties of the device”.
Design Simplification by Analogical Reasoning

Introduction 22
I1

O1

I2

O2

SpringCamHandle Bolt

DoorLock1

FIGURE 4. Door lock implementing using a cam: (a) schematic and (b)
structural representation

(a)

(b)

welded to
hooked to

connected

shape restoring
force
Design Simplification by Analogical Reasoning

Introduction 23

ure 4.

havior

sition is
Figure 5 gives a description of the Open function of the door lock represented in Fig

Figure 6 represents the behavior implementing the Open function. We view the be

of a device as a process described by a sequence of state transitions. A state tran

specified by two (partial) state descriptions, the initial state and the final state, a condition

and a specification of how the state transitions are achieved. A state transition may be

achieved by a function or another behavior.

Function: Open
Environment:

- input I1 applied to the handle
- input I2 applied to the handle

Interaction:
- force_I1_applied > restoring_force ➔

retract_bolt
- bolt_retracted ➔ apply_I2

By (deployment):
- Open_Behavior

FIGURE 5. The Open function of DoorLock1
Design Simplification by Analogical Reasoning

Introduction 24
State: force_on_Spring <= restoring_force
Cond: force_I1_applied > restoring_force

State: bolt_position = out
Cond: force_on_spring > restoring_force

State: lock_position = open

State: bolt_position = retracted
lock_position = closed

Cond: force_I2_applied

By: Behavior Lever_Cam_transmit_force

By: Knowledge Newton’s_2nd_Law

By: Knowledge Newton’s_3rd_Law

FIGURE 6. State transition graph for the top level behavior of DoorLock1
Design Simplification by Analogical Reasoning

Introduction 25

ve, can

ve to

gns.

e

and so

door

 the

lexity

What

ct con-

, in the
1.6.1 Measuring the Complexity of Designs

Let us now see how the complexity of a design, such as the door lock described abo

be measured. Since the definition of complexity is relative to a point of view, we ha

start with defining contexts, aspects and measures for measuring complexity of desi

The contexts for measuring the complexity of designs must be processes that can b

applied to a design such as designing, manufacturing, using, repairing, maintaining

on. Thus we may want to answer questions like “How complex is it to design the

lock?”, “How complex is it to manufacture the door lock?”, “How complex is it to use

door lock?” or “How complex is it to describe the door lock?” and so on.

For each of the contexts above there may be aspects of a design with respect to which

complexity may be measured. In our research we will only be concerned with comp

for the aspects of structure, behavior and function of designs.

For each context-aspect combination that makes sense, we can define several measures.

We will consider measures based on counting different elements of the design.

exactly needs to be counted will depend on those elements of the design in the aspe

sidered, on which the process corresponding to the context depends. For example
Design Simplification by Analogical Reasoning

Introduction 26

ure of

exam-

d in

mpo-

lt and a

 and a
context of manufacturing the door lock, for the aspect of structure, a possible meas

complexity would be the count of components.

Let us illustrate some complexity measures that could be applied to our door lock

ple. Here we will restrict these examples to the context of using the door lock. A door lock

that is structurally more complex than the door lock in Figure 4 is the one illustrate

Figure 7. This is true if we measure the complexity of the design by the count of co

nents. The door lock in Figure 7 has 5 components (a handle, a lever, a wedge, a bo

spring), while the one in Figure 4 has only 4 components (a handle, a cam, a bolt

I1

O1

I2

O2

FIGURE 7. Door lock using a combination of two levers, a wedge and an L-
shaped bolt

(a)
Design Simplification by Analogical Reasoning

Introduction 27

fer to

 of the

usly a

senta-

s (or

at the
spring). In addition to the number of components, structural complexity may also re

the number of relations between components as well as to the number of attributes

design and/or its components. The door lock in Figure 4 is also behaviorally simpler than

the one in Figure 7 because the state descriptions involved are simpler (this is obvio

consequence of having fewer components, but it is reflected in the behavioral repre

tion as well). This behavioral complexity may refer, for example, to the count of state

states transitions) in the behavioral description. Finally a door lock that is functionally

simpler than the door lock in Figure 4 is shown in Figure 8. This is due to the fact th

I1

O1

I2

O2

FIGURE 8. Door lock using a combination of a wedge and an L-shaped bolt
Design Simplification by Analogical Reasoning

Introduction 28

 bolt

plifi-

ding

 done

t diffi-

tion

esult-

m a

 is to

evalu-

cause

paga-

aga-
interaction with its environment contains fewer inputs (the same force will retract the

and push the door open).

1.7 Simplifying Designs by Analogical Reasoning

Simplification of designs by analogical reasoning relies on a collection of known sim

cations. This collection is partitioned into three classes of simplifications, correspon

to the three aspects of designs, structure, behavior and function. This partitioning is

by marking (labeling) each simplification with the aspect to which it corresponds.

The analogical reasoning process is performed as described in Section 2. The mos

cult problems raised by the simplification of designs are the transfer of simplifica

knowledge, the application of the candidate simplification and the evaluation of the r

ing design. The first two problems occur when retrieving simplification knowledge fro

different domain than the domain of the problem. The most straightforward solution

use a hierarchy (or several hierarchies) of object classes and of simplifications. The

ation of the object generated as the result of the selected simplification is difficult be

the modification of one aspect of the design will propagate to other aspects. This pro

tion may lead to violation of the original requirements for the design. Thus the prop
Design Simplification by Analogical Reasoning

Introduction 29

 no

are not

l, and

ques-

jects

t pop-

ain of

 are

any

sical
tion has to be performed explicitly. The difficulty of propagation may range from

modifications needed to a complete redesign of the object. As a consequence we

addressing it to any detail.

1.8 Methods and Expected Results

In this research we are proposing a way to solve simplification problems, in genera

design simplification problems, in particular. For this purpose we address two major

tions: a) What is simplification? and b) How can simplification be performed?

To answer the first question, we are proposing a definition for the complexity of ob

modeled by their structure, behavior, and function. We chose to use structure-behavior-

function models as a basis for our definition of complexity because they are the mos

ular means of modeling physical systems, in general, and designs, our main dom

application, in particular. The criteria which we need to keep in mind for our definition

the following:

• Our definition of complexity must be operational, that is, the complexity of

object modeled by its structure, behavior and function must be effectively and effi-

ciently computable. The requirement for efficiency is necessary because phy
Design Simplification by Analogical Reasoning

Introduction 30

uding

ty to

van-

 mea-

n to

xplain

well as

: a)

reti-

experi-

son-

plifi-

odel-

 model
systems may be very complicated and any process of evaluating them, incl

complexity, has to be performed efficiently, in order to be useful.

• We need to be able to explain the relation of our definition of object complexi

other definitions used in the literature and in practice, and clearly point out its ad

tages, and (possibly) disadvantages. For this we need to compare complexity

sure, and relations between complexity measures obtained with our definitio

complexity measures obtained with other known methods. We then need to e

the differences between the results of those measures (if there are any) as

why those differences are useful for solving a simplification problem.

To answer the question “How can simplification be performed?” we did two things

built a model of our approach to solving simplification problems and analyzed it theo

cally, and b) implemented a system based on that model and performed a set of

ments to demonstrate our approach.

We propose to solve simplification problems by using “goal-directed analogical rea

ing”, that is, analogical reasoning in which the reasoning process is guided by the sim

cation goal. We base our problem solving model on an almost universally accepted m

based analogical reasoning process model [Bhatta et al. 1994]. The specifics of our
Design Simplification by Analogical Reasoning

Introduction 31

ased on

cond,

sed to

g to it

(i.e.,

evance

ically.

ased

puta-

ogical

mong

ed pro-

uery
consist in two aspects: First, the matching and mapping phases of the process are b

Falkenheiner’s Structure Mapping Engine (SME) [Falkenheiner et al. 1993], and se

in each phase of the process, the relevance of object parts to simplifications is u

restrict the processing. We perform the theoretical analysis of our model by applyin

the known theoretical analysis results for the models from which it was derived

model-based analogical reasoning and SME) and estimating the impact on using rel

to restrict processing. We also perform experiments to measure this influence empir

We expect that the complexity of our model is not worse than that of known model-b

analogical reasoning models and that using relevance significantly reduces the com

tion in the retrieving, matching and mapping phases.

Based on the model proposed we implemented a system for simplification by anal

reasoning. For the implementation we used the CLIPS language [CLIPS 1993]. A

other reasons, we chose CLIPS for our implementation because it supports rule-bas

gramming, it supports object-oriented programming, it implements a set of powerful q

operations, and it allows easy interfacing with other programming languages.
Design Simplification by Analogical Reasoning

Introduction 32

ach to

xperi-

nown

impli-

nt of

avily

roblem

ropose

 data-

o test it

ed an

plifi-
To use our system for demonstrating the goal-directed analogical reasoning appro

simplification we designed and performed a set of experiments. The goals of our e

ments were the following:

• to demonstrate that the system is capable to produce simplifications using k

simplifications from either within the application domain, or across domains;

• to measure how using relevance influences the resources required by solving s

fication problems;

• to study how using different ways of measuring complexity from the same poi

view (e.g. structural complexity) affects the results produced.

We present the results of these experiments in Chapter 8.

It should be clear that the effectiveness of any similarity-based problem solver he

depends on the knowledge it can rely on. We wanted to make sure that for each p

presented to the system the simplification database contains enough knowledge to p

a solution. For this reason, in our experiments we used hand-coded simplification

bases. This way we were able to demonstrate different aspects of the system and t

for problems that we considered interesting or hard. Never the less, we also perform

experiment in which the simplification generated by the system was added to the sim
Design Simplification by Analogical Reasoning

Introduction 33

exper-

rieve

ation

rob-

s. This

 is rep-

ntation

on is

c-
cation data base and then reused in solving another simplification problem. For this

iment we have specially built the second simplification problem such that it would ret

the newly added simplification as a good source analog.

We must note here that our implementation was only tested for structural simplific

problems. However, the approach works for behavioral and functional simplification p

lems as well. We can argue for this based on our way of representing designs:

• A behavior of a given design is represented by a sequence of state transition

can be viewed as a decomposition of the behavior into steps which are connected by

a followed-by relation. Each of these steps may be either an elementary step (in the

case when the transition is achieved by a function), or may be a composed step (in

the case when the transition is achieved by another behavior). Thus a behavior

resented by a tree structure with relations between sibling nodes. This represe

of a behavior is similar to the structural representation of a design.

• A function of a given design is represented by the environment in which the design

has to be placed into in order to achieve its function, the interaction of the design

with the environment required to achieve the function, and the way the functi

deployed. Functional simplification refers to either the simplification of its intera
Design Simplification by Analogical Reasoning

Introduction 34

 an

y simi-

f state

r that

vious

 those

urrent

l sim-

riven

ss by

e sub-

logical

4 and 5
tion with the environment, or to the simplification of how it is deployed. We view

interaction as a sequence of input and output pairs and we represent it in a wa

lar to representing behaviors (i.e., using a structure similar to a sequence o

transitions). The mode of deployment of a function is represented by a behavio

implements that function. Consequently, based on the discussion in the pre

paragraph, the representation of function of a design uses structures similar to

used in the behavioral and structural representation of designs.

In the concluding chapter we will describe what changes need to be made to the c

implementation of our system in order to be able to solve behavioral and functiona

plification problems as well.

1.9 Organization of the Dissertation

The remainder of this dissertation presents our approach to simplification by goal-d

analogical reasoning in more detail. Chapter 2 presents the simplification proce

breaking it down into subproblems, as well as possible approaches to solving thos

problems. Chapters 3 relates the work presented to work in other fields, such as ana

reasoning, abstraction, reasoning about designs and design optimization. Chapters
Design Simplification by Analogical Reasoning

Introduction 35

sal to

 of

apters

l anal-

sing.

roach.

trating

oals for
describe our approach in detail. While Chapter 4 is a general description of our propo

solve simplification problems, Chapter 5 specifically refers to the simplification

designs, the additional problems raised by it and our solutions to those problems. Ch

6 through 8 present the validation of the approach. Chapter 6 gives a short theoretica

ysis of the simplification process with emphasis on time complexity of the proces

Chapter 7 describes the implementation of a simplification system based on our app

Chapter 8 presents the experiments performed with the implementation for demons

the approach. Chapter 9 summarizes the contributions of the research and sets g

future work.
Design Simplification by Analogical Reasoning

The Problem 36

plifi-

 and

resent

trate

ith a

 pre-

olving

asoning

prob-
CHAPTER 2 The Problem

The problem addressed in this dissertation is: What is simplification and how can sim

cation in general, and design simplification in particular, be performed in an effective

efficient manner? This chapter gives a detailed description of the problem. First we p

our views on what simplification is. We use examples from different domains to illus

the issues raised when trying to define simplification. We conclude the first section w

definition of simplification. The rest of the chapter defines the simplification process,

sents ways simplification could be performed, describes the general approach to s

problems by analogical reasoning, presents the issues raised by using analogical re

in general and for design simplification in particular. These issues constitute the sub

lems our research proposes to solve.
Design Simplification by Analogical Reasoning

The Problem 37

ject.

n by

ea-

other

g-

t we

eans

tance
2.1 Simplification

Simplification is a process by which an object is transformed into another, simpler ob

Intuitively we say that an object A is simpler than another object B, if B is more compli-

cated than A. Thus, to define what simplification is we need to define what we mea

“simple” (or equivalently “complicated”) and how “degrees” of simplicity can be me m

sured.

2.1.1 The Simpler Relation

Using a more precise term for our definition we say that object A is simpler than an

object B, if the complexity of A is smaller than the complexity of B. This definition su

gests that to study the nature of the “simpler” relation we first need to define wha

mean by the complexity of an object. As we shall see in the followings this is by no m

a trivial problem.

Following the view adopted in Mathematics and Computer Science (see for ins

[Brassard & Bratley 1996]), we define the complexity of an object to be a measure of cer-

tain resource requirements for a given process performed on the object.
Design Simplification by Analogical Reasoning

The Problem 38

solute

ding on

ns to

t.

 a set

at can

er for

 non-

 be to

 decide

not, or

 shall
2.1.2 Measuring Complexity

Our definition given in the previous subsection suggests that complexity is not an ab

measure. We may define several complexity measures for the same object, depen

different factors. In the followings we will use several examples, from different domai

illustrate what factors might be considered when defining the complexity of an objec

2.1.2.1 Measuring the Complexity of Mathematical Expressions

The purpose of a mathematical expression (or “expression” for short) is to describe

of numbers. If the expression contains variables it describes the set of all numbers th

be obtained by substituting (legal) values for each of those variables and evaluating the

resulting arithmetic expressions. Two expression which evaluate to the same numb

all the possible substitutions of the variables are said to be equivalent. For simplicity, in

this subsection we will only consider expressions built using constants, one single

negative integer variable, the four arithmetic operation signs and parentheses.

One reason for the importance of measuring the complexity of an expression would

estimate the effort needed to evaluate it. Based on such a measure one could

whether a given expression can be evaluated in a reasonable amount of time or

which of two equivalent expressions to evaluate for a faster result. However, as we
Design Simplification by Analogical Reasoning

The Problem 39

ll show

ssion.

ea-

xity?

g we

and 3

of ele-
see, evaluation is not the only process that can be applied to an expression. We wi

that those other processes may require a different view on the complexity of an expre

The following example will illustrate the problems raised by defining a complexity m

sure for expressions.

Consider the following three equivalent arithmetic expressions:

(EQ 1)

(EQ 2)

(EQ 3)

How do these three expressions compare from the point of view of their comple

Unfortunately there may be several different answers to this question. In the followin

will refer to the structures of the three expressions represented in Figures 1, 2

respectively.

First, we could measure the complexity of each of the expressions by the number

ments (i.e., constants, variables, operators and parentheses) needed to write them. Such a

A n() n 1+() n 2+()
n 1–() n 2–() n 4+()

---=

B n() n2 3n 2+ +

n3 n2 10n– 8+ +
---=

C n()

1
n

3

n2

2

n3
------+ +

1
1
n

10

n2
------–

8

n3
------+ +

--------------------------------------=
Design Simplification by Analogical Reasoning

The Problem 40

writing

xpres-

use it
measure would be a good basis for estimating the effort needed for the process of

expressions. If we chose this count as the measure of complexity of an arithmetic e

sion, then we would say that expression is the simplest (least complex) beca

FIGURE 1. Structure of expression A(n)

n nn nn

+ + +

/

* *

- -

1 2 1 2 4

B n()

FIGURE 2. Structure of expression B(n)

n n n n n

+ +

/

^ ^ ^* *

2 3

2

3 2 -10

8

Design Simplification by Analogical Reasoning

The Problem 41

 and

n. We

thm

en if

 using

 obvi-
only uses 18 elements, compared to 26 and 29 elements used by expressions

, respectively.

Let us relate this measure of complexity to the structure of an arithmetic expressio

can describe the process of writing an expression based on its structure by the algori

presented in Figure 4. Note that this algorithm will print out all the parentheses, ev

they are not needed. To count the elements used to write an arithmetic expression

this algorithm we only have to count the elementary write operations performed by it.

While this could be done using standard algorithm analysis techniques, it should be

A n()

FIGURE 3. Structure of expression C(n)

/

/ / / / / /

+ ++

1 n 3

1

2 1 -10

22 3 3

8

n n n n

n^ ^ ^ ^

C n()
Design Simplification by Analogical Reasoning

The Problem 42

 by its

s,

ture

r rep-

repre-

 node

 if we
ous that the number of elements used for writing a given expression, represented

structure can be found based on the counting of terminal nodes and nonterminal node

plus their branching factors (i.e., the number of descendants for a node in the struc

tree) in the structural representation. Note that if we only use binary operations in ou

resentation our measure of complexity would reduce to the counting of nodes in the

sentation tree and the consideration of the fact that the writing of each internal

requires three elements, the operator sign and two parentheses.

Another situation in which we may want to measure the complexity of expressions is

WriteExpression (E)
begin

switch type(E)
case NUMBER:

write E;
case VARIABLE:

write E;
case EXPRESSION:

O:= operator(E);
A[1..n]:= arguments(E);
write ‘(’;
WriteExpression(A[1]);
for i:= 2 to n do

write O;
WriteExpression(A(i));

end for
write ‘)’;

end switch
end.

FIGURE 4. Algorithm for writing a fully parenthesized expression based on its
structural representation
Design Simplification by Analogical Reasoning

The Problem 43

sion

n pro-

d to

red to

iption

tion).

pres-

tion we

r

de at

expres-

er of

senta-
want to evaluate them. In this case the goal of measuring the complexity of an expres

with respect to evaluation is to estimate the resources required during the evaluatio

cess. One such resource, time could be estimated by counting the operations that nee

be performed during evaluation.

Just by looking at our expressions we can tell that from this point of view expression

would be the simplest because it only requires 9 operations to be performed, compa

11 operations for and 13 for . However, let us again give a precise descr

of the process with respect to which we want to measure complexity (i.e. of evalua

The algorithm in Figure 5 specifies this process. To calculate the complexity of an ex

sion measured as the number of operations that need to be performed during evalua

have to count the number of times the step of applying an operator, that is

result: = O(result,EvalExpresion(A[i]);

will be performed. Again, this can be easily done by counting the internal nodes and thei

branching factors in the structural representation. Also, a note similar to the one ma

the end of the previous paragraph can be made, that is if the representation of the

sion only uses binary operators the complexity from the point of view of the numb

operations performed could be computed by counting the internal nodes in the repre

A n()

B n() C n()
Design Simplification by Analogical Reasoning

The Problem 44

pres-

of

ization

closer

rent

f them
tion tree.

Finally, let us consider another process with respect to which the complexity of an ex

sion may be of interest: understanding the “behavior” of an expression for large values

the variable it depends on. This process is important because it allows a character

of an expression without actually evaluating it.

It should be clear that all of the expressions we have considered will have values

and closer to 0 as the value substituted in for is bigger and bigger. What is diffe

however about the three expressions with respect to this process is that some o

EvalExpression (E): NUMBER
begin

switch type(E)
case NUMBER:

return E;
case VARIABLE:

return value(E);
case EXPRESSION:

O:= operator(E);
A[1..n]:= arguments(E);
result:= A(1);
for i:= 2 to n do

result:=O(result,EvalExpresion(A[i]));
end (for)
return result;

end (switch)
end.

FIGURE 5. Algorithm for evaluating an expression based on its structural
representation

n

n

Design Simplification by Analogical Reasoning

The Problem 45

effort

 with

 from

 fixed

evious

sion

les of

very

when

ute

d into

lt.
require more effort for obtaining the same characterization. This difference in the

required has its explanation in the different complexity of the three expressions

respect to the process considered. By applying simple limit calculation rules known

calculus we would decide that is the simplest because we only need to apply a

number of limit calculation rules to see that

,

while both A(n) and B(n) need first to be transformed into expression C(n) to produce the

same answer.

Since this latter statement may sound more vague than the ones given for the pr

examples let us once again give a precise description of the process involved.

Figure 6 gives an outline of an algorithm which computes the limit of an expres

(depending on a variable, when the variable goes to infinity) using a limited set of ru

limit calculation and of expression transformation. The structure of the algorithm is

similar to the evaluation algorithm. Essentially the difference consists in the case

limit calculation of a subexpression returns ‘UNDEFINED’ (e.g., when trying to comp

). To compute the limit in this case the expression needs to be transforme

another (equivalent) expression, for which the limit calculation rules may yield a resu

C n()

C n()
n ∞→

lim 0=

0
0

n ∞→
lim
Design Simplification by Analogical Reasoning

The Problem 46
This (significant) part of the algorithm is “hidden” in the statements

rule:= SelectTransformationRule(E);
TransformExpression(rule,E);

LimitExpression (E): NUMBER
begin

switch type(E)
case NUMBER:

return E;
case VARIABLE:

return value(E);
case EXPRESSION:

O:= operator(E);
A[1..n]:= arguments(E);
i:= 1;
repeat

limit[i]:=LimitExpression(A[i]);
until (i > n) or (limit[i] = UNDEFINED)
if i>n then

result:=ApplyLimitRule (O,limit);
if result = UNDEFINED then

rule:= SelectTransformationRule(E);
TransformExpression(rule,E);
return LimitExpression(E)

else
return result;

end (if)
else

return UNDEFINED;
end (if)

end (switch)
end.

FIGURE 6. Algorithm for calculating the limit of an expression based on its
structural representation
Design Simplification by Analogical Reasoning

The Problem 47

-

s on

n the

eded,

lcu-

n the

lexity

e con-

evalu-

n be
The procedure SelectTransformationRule will perform a search to find an appli

cable transformation rule that will lead to a useful form of the expression. Trans-

formExpression will then apply the transformation rule to calculate the limit.

Obviously the effort required for performing the (process of) limit calculation depend

the number of limit calculation rules that have to be applied. For a given expressio

maximum number of limit calculation rules that will be applied is given by the number of

nonterminal nodes of the structural representation (i.e., there will be one limit calculation

rule for each elementary operation). However if expression transformations are ne

additional limit calculation rules will be performed. Thus the total number of limit ca

lation rules performed by the algorithm will depend on the number of nonterminals i

structural representation and the performance of the transformation selection.

We can conclude that if we want to compare two arithmetic expressions for comp

(simplicity) we may consider at least three different contexts: description, evaluation and

understanding (its behavior for large values of the variable). Note that each of thes

texts is essentially a process applied to the object for which the complexity is being

ated. For each of these contexts in which the complexity of an expression ca

measured, different views on what complexity is are needed.
Design Simplification by Analogical Reasoning

The Problem 48

iffer-

ty is to

tly on

fin-

thms,

se a

ell

e com-

ds of

ce code

o of

gineer-

 con-
One intuition resulting from these examples is that different processes will refer to d

ent elements of the structure. Also, some processes with respect to which complexi

be measured may introduce new elements into the complexity which depend indirec

the structure of the expression.

2.1.2.2 Measuring the Complexity of Algorithms

We will use the domain of algorithms to illustrate two further “problems” raised by de

ing complexity of objects. As examples we will use comparison-based sorting algori

for which complexity results are very well known. For describing the algorithms we u

Pascal-like pseudcode language.

The study of algorithm complexity (known as Analysis of Algorithms) is a very w

researched area of computer science. Analysis of algorithms takes the view that th

plexity of an algorithm is a measure of the resources it uses. Several different kin

resources may be considered, such as time, storage, number of statements (sour

lines for programs) and so on. Algorithm analysis typically addresses only the first tw

these resources, the others being studied mainly as part of the field of software en

ing.

There are several different contexts in which the complexity of an algorithm could be
Design Simplification by Analogical Reasoning

The Problem 49

riting

could

 stor-

even
sidered. For instance one could define an algorithm’s complexity in the context of w

the algorithms (e.g., counting the number of statements used). Alternatively, one

define algorithm complexity in the context of execution (e.g., measuring the time or

age required for performing the algorithm).

We will restrict our discussion of the complexity of an algorithm to the context of execu-

tion (Figure 7 gives the description of a simple execution algorithm). Unfortunately,

Execute (A)
step[1..n]:= Steps(A);
for i:=1 to n do

switch type(step[i])
case ASSIGNMENT:

arg(1,step[i]) := eval(arg(2,step[i]))
case CALL:

call (step[i])
case FOR_LOOP:

for k:=arg(1,step[i]) to arg(2,step[i])
Execute(arg(3,step[i](k)));

end for
case .. other loop constructs ...
case IF:

if arg(1,step[i]) then
Execute(arg(2,step[i]))

else
Execute(arg(3,step[i]));

end switch
end for

end.

FIGURE 7. Algorithm for executing an algorithm based on its structural
description
Design Simplification by Analogical Reasoning

The Problem 50

ity”

unt of

and 9

raphi-

at for

tion

ect of

xity of

struc-

 into

These

. They

her or
within this single context for algorithm complexity, the question “what is the complex

of a given algorithm may have more than one answer, depending on which aspect of the

algorithm we want to measure. We could for instance be interested either in the amo

time or in the amount of memory required by the execution of the algorithms.

Consider for example the Selection Sort and Merge Sort algorithms. Figures 8

respectively present algorithmic descriptions of these algorithms, together with a g

cal representation of their structures. Well known algorithm analysis results show th

sorting an array of n objects Merge Sort requires comparisons, while Selec

Sort requires comparisons. That is, in the context of execution, under the asp

“time required”, as measured by the number of comparisons performed, the comple

Selection Sort is higher than that the complexity of Merge Sort.

Intuitively this complexity measure can be done again by counting elements in the

tural description of the algorithms. However during the counting we need to take

account that certain elements in this structure of an algorithm play special roles.

elements are the so-called control structures (if-then-else, while, calls and so on)

allow for a short description of groups of operations that are alternatives to each ot

are repeated several times.

O n nlog()

O n2()
Design Simplification by Analogical Reasoning

The Problem 51

would

his is
On the other hand, if we were interested in the aspect of “storage requirement”, we

conclude that the complexity of Merge Sort is higher than that of Selection sort. T

SelectionSort (A[1..n])
for i:= 1 to n-1 do

minIndex:= i;
for j:= i+1 to n do

if A[j] < A[minIndex]
then minIndex:= j;

end (for)
temp:= A[minIndex];
A[minIndex]:= A[i];
A[i]:= temp

end (for)
end. (a)

FIGURE 8. Selection Sort Algorithm (a) and its structure (b)

(b)

Selection-Sort()

:=

for

for := := :=

if

:=
Design Simplification by Analogical Reasoning

The Problem 52

nSort

 algo-
because each recursive call of MergeSort will allocate two new arrays, while Selectio

sorts the array in place, without using any extra memory.

Again, the counting of memory allocations can be performed on the structure of the

MergeSort (A[1..n])
if n=1

then return;
else

new ALeft[]:= A[1..n mod 2];
new ARight[]:= A[n mod 2+1..n];
MergeSort(ALeft);
MergeSort(ARight);
Merge(A,ALeft,ARight);
return;

end (if)
end.

(a)

FIGURE 9. Merge Sort Algorithm (a) and its structure (b)

MergeSort

MergeSort
MergeSort

(b)

Merge

if

new new

return
elsethen
Design Simplification by Analogical Reasoning

The Problem 53

ide on

dimen-

speci-

g here

sibili-

ple-

hich

n likely

f an
rithm, but taking into account the control structure elements.

Measures of Complexity

So far we have seen that to measure the complexity of an algorithm we have to dec

the context and the aspect of this measurement. Let us concentrate now on a third

sion of measuring the complexity of an algorithm.

Consider the problem of measuring the time complexity of an algorithm - that is, measur-

ing the time aspect of the algorithm in the context of execution. As before our question is

whether it is possible to measure the complexity with only the context and aspect

fied. Unfortunately the answer is once again negative. The new problem we are facin

is deciding how exactly complexity will be measured. There are clearly several pos

ties.

We could measure the physical time required for executing the algorithm. That is im

ment the algorithm in the form of a computer program, run it for the problem for w

the time requirement has to be measured and measure the time of the run (more tha

with the computer’s internal clock). This way of measuring the time requirement o

algorithm has several major disadvantages:
Design Simplification by Analogical Reasoning

The Problem 54

nted

 pro-

antage

tion),

 pro-

cution

man-

iate for

 appro-

ld be
• The running time of a program will depend on how the algorithm was impleme

(implementation dependence).

• Implementations in different programming languages may produce executable

grams with different performances (language dependence).

• Even two implementation using the same programming language can take adv

of different features of that language (e.g. iterative versus recursive implementa

resulting in different time requirements (coding dependence).

• Different computers may have different execution speeds.The running time of a

gram will depend on the machine on which it will be executed (machine depen-

dence).

• Even if the same program is run on the same computer several times, the exe

times for different runs may be different due to the way the operating system

ages the computer’s resources (operating system dependence).

These disadvantages suggest that physically measuring running time is not appropr

characterizing the time requirement of an algorithm, and, as a consequence it is not

priate for comparing algorithm performances.

An apparently more precise way of measuring time complexity of an algorithm wou
Design Simplification by Analogical Reasoning

The Problem 55

of the

recise

 over-

sis to

n

f the

rtance

ed to

great

quire

 fre-

pera-

en if
to sum up the times (as given in the technical specifications) required by each

machine statements in its implementation. While one could argue that this is a p

measure of the time required for running the program, the only disadvantage that it

comes (of the ones listed above) is machine dependency.

Observations like the ones above led researchers in the field of algorithm analy

approaches based on the following principles:

• Measure time complexity of algorithms by counting the number of times certai

operations will be performed. We call these operations significant operations, sug-

gesting that they significantly influence the time required by the execution o

algorithm.

An operation may be considered significant for several reasons, such as impo

to solving the problem addressed by the algorithm (e.g., comparison is requir

sort an array of objects in place), amount of time required by the operation is

compared to other operations (e.g., input/output in external sorting methods re

much more time than any CPU operation), the operation is performed with high

quency compared to other operations used by the algorithm (e.g., loop control o

tion performed a great number of times will contribute to the execution time ev
Design Simplification by Analogical Reasoning

The Problem 56

nifi-

iden-

 how-

ifferent

nt

he

e used

 of

 for-

spin),

 was

matic
they are neither specific to the problem, nor do they require individually a sig

cantly greater amount of time than other operations in the algorithm).

• It may happen that for a given algorithm more than one significant operation is

tified. It is always possible to concentrate on one of those operations at a time,

ever such an approach will disregard the possible dependencies between the d

significant operations. A better idea is to combine the numbers of different significa

operations into a single expression. For instance the average time complexity of t

Selection Sort algorithm in Figure 8. can be given as , where C and

S stand for Comparisons and Swaps, respectively. Such a formula can then b

to compare the complexity of two algorithm either from the point of view of one

the measures, or from the point of view of some derived measure built from the

mula.

2.1.3 Complexity of Designs

In this subsection we will use a simple example of mechanical design (a clothe

meant only to illustrate our views on measuring complexity of designs. This example

taken from [Sticklen & al. 1989] and is shown in Figure 10. Figure 10 (a) is a sche

O n2()C O n()S+
Design Simplification by Analogical Reasoning

The Problem 57
pressure point

pressure point

spring

pivot point

teeth

Lever 1
length

Arm 2Pivot Spring

Clothespin

Arm 1

Teeth 1
length

Lever 2
length

Teeth 2
length

FIGURE 10. Simple Device - A Clothespin: (a) a schematic and (b) a structural
representation

(a)

(b)

welded to welded to

glued to glued to

assembled

restoring
force
Design Simplification by Analogical Reasoning

The Problem 58

 pivot

con-

othes-

nded

nd rela-

6]. We

func-

ies of

cified:
representation of a clothespin. It consists of two arms, each of them having teeth, a

connecting the two arms (and providing them with lever functionality) and a spring,

nected to both of the arms and which provides a restoring force that will keep the cl

pin in a “closed” state (that is, with the two sets of teeth touching). There are two inte

functions of the device: to maintain [Keneuke 1991] the “closed” position, and to achieve

(move to) and then temporarily maintain the open position.

Figure 10 (b) is a graphical representation of the structure of the device, consisting of

components (the elementary components are represented by thin framed boxes) a

tions (represented by thick, two-directional arrows).

Every device has (at least) one (intended) function. A function of a device is defined in

terms of its interaction with a given environment [Chandrasekaran & Josephson 199

say that an object achieves its function if placed into the environment for which the

tion is defined, it causes the interaction to happen, by virtue of certain of the propert

the device. To describe a function of a device the following elements need to be spe

• the environment;

• the interaction of the device with the environment;
Design Simplification by Analogical Reasoning

The Problem 59

, and

ctions

ign we

h

static

ense of

 it. In

ction

nd pro-

sitions.

ws a

 of its
• the mode of deployment, that is, what properties and relations of the device

relations between the device and the environment determine the causal intera

between the device and the environment.

If the mode of deployment assumes a sequence of state transformations of the des

say that the device achieves its function by a behavior. Obviously there are devices whic

achieve their functions without a behavior, or as it is (maybe improperly) said, by

behavior (i.e., not via state change). For instance, a chair doesn’t behave, in the s

changing its state, while achieving its function, that is to support a person sitting on

this dissertation we will be only concerned with devices that achieve their fun

through some behavior. In this case we also need to present our view on behavior a

vide a way of describing behaviors.

We view the behavior of a device as a process described by a sequence of state tran

A state transition is specified by two (partial) state descriptions, the initial state and the

final state, a condition and a specification of how the state transitions are achieved. A state

transition may be achieved by a function or another behavior. This approach allo

decomposition of the function of a device into a hierachy of behaviors and functions

components.
Design Simplification by Analogical Reasoning

The Problem 60

avior

e

repre-

above,

 intu-

g com-
Note, that in Chapter 5 we will give more precise definitions for the structure, beh

and function of a device as well as of the representations we use in our research.

For the clothespin a description of the Open function is shown in Figure 12, while Figur

11 represents the behavior implementing this function. In the literature on design

sentation behavior is usually described by graphs, similar to the one in Figure 11.

Let us now see how the complexity of a device, such as the clothespin described

can be measured. In our proposal for measuring design complexity we build on the

ition presented in the previous examples from other domains.

Thus we have to start with defining contexts, aspects and measures for measurin

plexity.

Function: Open
Environment:

- force_applied to the pressure_points
Interaction:

- force_applied > restoring_force causes teeth_more_open
By (deployment):

- Open_Behavior

FIGURE 11. The Open function of the clothespin
Design Simplification by Analogical Reasoning

The Problem 61

such

 want

ow

lexity

of con-

e sense
The contexts for measuring designs must be processes that can be applied to a design

as designing, manufacturing, using, repairing, maintaining and so on. Thus we may

to answer questions like “How complex is it to manufacture the clothespin?”, or “H

complex is it to use the clothespin?” and so on.

For each of the contexts above there may be aspects of a design with respect to which

complexity may be measured. In our research we will only be concerned with comp

for the aspects of structure, behavior and function of designs. Note here that some

text-aspect combinations may not make sense. For instance it doesn’t seem to mak

State: force_on_Spring <= restoring_force
Cond: force_applied > restoring_force

State: teeth_open: false
Cond: force_on_Spring > restoring_force

State: teeth_open: true

FIGURE 12. Open behavior of the clothespin

Using: Function Arm_Pivot_Transmit_Force

By: Knowledge Newton’s_2nd_Law
Design Simplification by Analogical Reasoning

The Problem 62

rocess

ection

ropri-

d will

ess cor-

espin

n be

e fol-

he

or the
to talk about functional complexity in the process of assembly. This is because the p

of manufacturing doesn’t refer at all to the function of the design.

For each context-aspect combination that makes sense, we can define several measures.

We will consider measures based on counting different elements of the design. (In S

2.1.4 we will explain why we believe that counting-based measures are the most app

ate for measuring the complexity of designs.) What exactly needs to be counte

depend on those elements of the design in the aspect considered, on which the proc

responding to the context depends.

Let us illustrate our ideas about measuring the complexity of designs using our cloth

example.

When designing the clothespin all the aspects (structure, behavior and function) ca

considered for measuring complexity. Consider function first. To measure functional com-

plexity of the clothespin when designing it we may take into account some or all of th

lowing elements:

• the complexity of the environment, that is how many elements in the environment t

design must interact with and how complex those elements are. (e.g., in order f
Design Simplification by Analogical Reasoning

The Problem 63

here

-

 func-

s of

of the

puts

y-

d

 which

s the
clothespin to achieve its function, it must be placed into an environment w

mechanical forces can be applied to its arms),

• the complexity of the interaction with the environment, that is the number and com

plexity of inputs and outputs that have to be applied to the design to achieve its

tion (e.g., in order for the clothespin to achieve its function, two linear force

opposite directions must be applied to its arms and one output, the opening

teeth, will be generated: the number of inputs is 2 and the complexity of both in

is that of a linear movement),

• the complexity of deployment, that is how complex the decomposition of the deplo

ment into behaviors and functions is (e.g., the Open function of the of the clothespin

is deployed by the behavior Open_Behavior , which is implemented, decompose

into the function Arm_Pivot_Transmit_Force and the physical principle

Newton’s_2nd_Law) .

Let us note here that other designs may have more than one intended function, in

case another way to look at functional complexity is to count the different function

design is intended to achieve.
Design Simplification by Analogical Reasoning

The Problem 64

asure

aviors

ts: the

plexity

n cir-

plex-

t the

n the

re is a

pplied

om-

iors,

f this

com-
We can conclude that when measuring functional complexity we can count (or me

the complexity of) objects in the environment, inputs and outputs, functions and beh

and possible relations between these (e.g., synchronization relations between inpu

two forces have to be applied at the same time to the arms of the clothespin).

The statement above seems to be circular because it explains the measuring of com

in terms of itself. However, it is meant to be interpreted in a recursive way, rather tha

cular one. By this we mean that the complexity of a function may depend on the com

ity of other elements it is in relation with. For instance, we stated above tha

complexity of the interaction of the clothespin with its environment depends both o

number of inputs and on the complexity of those inputs. The latter requires that the

way to measure the complexity of inputs. In this case the inputs are forces that are a

linearly. We view such a linear input as simpler (less complex) than a rotational one, that

is one applied by winding, rotating, etc. Obviously this recursive way of defining c

plexity will only be correct if there is a well defined set of elementary objects, behav

functions, inputs and outputs for which the complexity is postulated. In the rest o

subsection we will use similar recursive definitions for the behavioral and structural

plexity of designs.
Design Simplification by Analogical Reasoning

The Problem 65

g, we

m-

 the

he

xity of

., the

 state

traint

asure

he

and

bute,
To measure the behavioral complexity of the clothespin in the context of designin

may take into account the following:

• the complexity of implementation of the behavior, that is, how the behavior is deco

posed into other behaviors and functions (e.g., the decomposition of

Open_Behavior of the clothespin),

• the complexity of the behavior process, that is how many steps (state transitions) t

behavior consists of and how complex those steps are, in terms of the comple

the partial states and conditions involved in the description of those steps (e.g

Open_Behavior of the clothespin is described as a process consisting of two

transitions and the initial state of the first transition is specified as a value cons

of a single attribute of the clothespin - Figure 11 (b)).

Thus, when measuring the behavioral complexity of a design we may count (or me

the complexity) of functions, behaviors, states and conditions (i.e., of processes).

Consider finally the structural complexity of the clothespin when it is being designed. T

elements that contribute to this aspect are:

• the attribute complexity of the design (or of its components), that is the number

complexity of attributes (e.g., both the arms of the clothespin have one attri
Design Simplification by Analogical Reasoning

The Problem 66

s one

nds on

ts,

posed

en

ted in

plexity

 then

ctional

uctural

ount
length, that can be expressed by a single numerical value, while the spring ha

attribute, the restoring force, which can be represented as a formula that depe

several values),

• the compositional complexity, that is, the number and complexity of the componen

subcomponents, sub-subcomponents and so on into which the design is decom

(this decomposition of the clothespin is illustrated in Figure 11 (b)),

• the relational complexity, that is the number and complexity of the relations betwe

the components of the design. These relations for the clothespin are illustra

Figure 11 (b) by the thick, two-way arrows.

To measure the structural complexity of a design we may count or measure the com

of attributes, component objects and relations.

When manufacturing the clothespin all its components need to be manufactured and

they have to be assembled. It should be clear that in this context measuring the fun

or behavioral complexity of the design does not make sense. To measure the str

complexity of the clothespin, with respect to manufacturing, we may take into acc

some or all of the following:
Design Simplification by Analogical Reasoning

The Problem 67

 be

ext of

ed, of

the

tions

rocess

ext of

esses.

 that

nting

 on the

asis for

mson
• the compositional complexity, that is, the number of components that have to

manufactured and the (structural) complexity of those components in the cont

manufacturing (e.g., for the clothespin six components have to be manufactur

which the spring may require a more complex manufacturing process),

• the relational complexity, that is the number and complexity of relations between

components which have to be physically realized (e.g., for the clothespin rela

between components are realized by gluing, welding, assembling, and each p

may have different complexities).

We can conclude that for measuring the structural complexity of a design in the cont

manufacturing we may count (or measure the complexity) objects, relations and proc

2.1.4 Why Count when Measuring Complexity?

We will conclude this section on measuring complexity by explaining why we believe

counting is the appropriate way to measure complexity in general. Our motivation is simi-

lar to the one given for the analysis of algorithms: measuring complexity by cou

allows the estimation of resource requirement in terms of elements that only depend

intrinsic characteristics of the design. Such measures can be used further as the b

estimating costs in different, concrete environments (see for instance [Bashir & Tho
Design Simplification by Analogical Reasoning

The Problem 68

ity of

rding

eth, a

vot and

embly)

 of com-

sures

pro-

so on.

hir &

bene-

pects
1999]).

To illustrate this let us consider once again the problem of measuring the complex

our clothespin in the context of manufacturing. To manufacture the clothespin acco

to the design description in Figure 11 one will have to manufacture two levers, two te

pivot and a spring, weld the teeth onto the levers, assemble the two arms and the pi

glue the spring to the two arms. Counting these steps (of manufacturing and ass

gives an exact measure of what needs to be done. We can then use this measure

plexity to estimate the cost of manufacturing the clothespin by combining it with mea

for the technological sophistication of the manufacturer, technical difficulty of the

cesses in the manufacturing environment, experience and skill of the workers and

Similar arguments can be made for measuring complexity in other contexts ([Bas

Thomson 1999 express similar ideas)

This two-step approach to estimating the cost of a design would have the following

fits:

• it provides an objective measure of complexity, depending only on intrinsic as

of the design;
Design Simplification by Analogical Reasoning

The Problem 69

ferent

iron-

(e.g.,

 on).

rent

it in

ication,

pects

 struc-

-

se of
• it provides an absolute basis for comparing the resource requirements of dif

designs;

• it provides a common basis for computing the costs of a design in different env

ments;

• it provides a better ground for certain kinds of decisions concerning designs

whether it is feasible, in what environment is it less expensive to realize, and so

2.1.5 The Simplification Process

By simplification of an object we mean a transformation of the object into a diffe

object, such that the complexity of the result is lower than the complexity of original.

The complexity of an object can be evaluated by computing (or physically testing)

some context, relative to some aspect and according to some measure. Contexts refer to

processes that can be applied to the object considered. In the case of design simplif

contexts include assembly, manufacturing, use, aesthetics, etc. Aspects refer to different

points of view on the object. For instance, in the case of design simplification, as

include structure, behavior and function. Corresponding to this we can speak about

tural, behavioral and functional simplification. Measures involve counting, or some mea

sure of complexity or information content. In our research we argue for the primary u
Design Simplification by Analogical Reasoning

The Problem 70

stance

t is

onents,

ber of

s.

 have

-free to

 manu-

at lead

g eval-

ifica-

hich

en be

c rea-

ture,

re the
counting, however other complexity measures have also proven useful (see for in

[Suh 1990]). Lower counts, complexity or information content imply ‘simpler’. Wha

counted depends on the context: for example, it may be assembly operations, comp

surfaces, the potential for manufacturing mistakes, internal states, inputs, or the num

terms in an equation that describes a surface.

There is a tendency for people to assume that certain types of changes are simplification

An example of this is the belief that ‘simpler = fewer components’. Such examples

been compiled into peoples’ knowledge by repeated use, and appear to be context

those individuals. However, we feel that they can be traced back to contexts such as

facturing or use. We suspect that the common ‘assumed’ simplifications are those th

to being evaluated as simpler in common contexts and measures, or that lead to bein

uated as simpler in the important majority of contexts and measures.

One primary goal of our research is to give an operational definition of design simpl

tion. For this purpose we will consider a fixed set of the most important contexts in w

complexity of designs may be measured. We expect that our definitions can th

extended to other contexts. We select only a fixed number of contexts for pragmati

sons. The only aspects of designs for which we will study simplification will be struc

behavior and function. There are two major reasons for this. On one hand these a
Design Simplification by Analogical Reasoning

The Problem 71

 area of

g struc-

 com-

 will

rdepen-

 flow

cation

plifica-

ce, if

iron-

ructure

lex.

tion of

te the
most important aspects of designs considered in the process of designing (our main

research). On the other hand these three aspects address the problems of simplifyin

tured objects, relations and processes. We believe that any design simplification is a

bination of these three types of simplification (i.e., structure simplification, relation

simplification and process simplification).

2.1.6 Propagation of Simplification

Simplification of an object for a given combination of context, aspect and measure

need to propagate to the other aspects, as different aspects of an object may be inte

dent. For example, removing redundant links in a causal chain of motion or force

might cause two gears in a three gear train to be removed, i.e. a behavioral simplifi

propagates to the structural aspect. Unfortunately it is not always the case that sim

tion in one aspect will propagate to a simplification in all the other aspects. For instan

a design is simplified in the context of its use by making its interaction with the env

ment less complex (e.g., less inputs, or less complex interaction process), the st

may need to be modified by adding new components to it, thus making it more comp

In our current research we are not addressing to any depth the problem of propaga

simplification across aspects. We merely acknowledge its importance and illustra
Design Simplification by Analogical Reasoning

The Problem 72

mplifi-

e sim-

our

ld be

gn

mpler

 as an

r an

lifica-

ance,
problems it raises by some examples.

2.2 Performing Simplification

Once we have defined how to evaluate whether a transformation of an object is a si

cation or not, we need to study what kind of transformations can be used to produc

plifications, and compare them for effectiveness and efficiency. We will start

discussion on this topic by presenting possible ways a simplification process cou

achieved.

We must view the simplification process as a search in some search space (e.g., desi

space in the case of design simplification). The goal of the search is to find a si

object than the one given as starting point. Note that we do not define simplification

optimization problem (i.e., with the goal to find the least complex object), but rathe

improvement problem. Also, simplification is a constrained search because all simp

tion problems require the preservation of some properties of the object (for inst

design simplification is, or should be, a function-preserving process).
Design Simplification by Analogical Reasoning

The Problem 73

or

anize

sign

edun-

kind

 can

local

been

mall

com-

 some

y lead

local
2.2.1 Possible Approaches

One possible approach to performing simplification is to view the simplification problem

as an optimization problem with a complexity measure as the objective function. F

instance one could apply local transformations known to reduce complexity and org

them into a hill-climbing type process. Structural simplification of a mechanical de

could be approached by applying simple simplification operators, such as removing r

dancy (e.g., removing two gears from a chain).

While we do not view simplification as a (global) optimization, an approach of this

would have all the draw-backs of global optimization methods. The simplification

quickly “get stuck” at a point where no more improvements can be obtained (

optima). Although we can say that even in this case some simplification has

achieved, in general the “big picture” will be missed. For instance removing two s

gears from a very complex device may have very little or possibly no impact on its

plexity. Those two gears may however be parts of a more complex context in which

higher level, more conceptual simplification could have been performed.

Having some knowledge of what operations and what sequences of operations ma

the search towards “good” simplifications, would overcome the deficiencies of the
Design Simplification by Analogical Reasoning

The Problem 74

tima.

se of

ddi-

hole

 know

mains

. For

etical

o such

arch

 to

r for

 not

cov-

itua-
optimization approach. Such heuristic knowledge would in general avoid local op

Also, and more importantly, the heuristic search approach to simplification will allow for

simplification processes that temporarily create more complex objects with the purpo

setting the context for a more significant (higher level?) simplification (e.g., adding a

tional, but redundant structural components may trigger a simplification where the w

object can be made from a single molding).

One general problem of this approach is the lack of good heuristics. As far as we

there are no general (domain independent) heuristics for simplification. In some do

there are certain principles of what kinds of transformations lead to simplifications

instance there are some good heuristics on how to perform simplification on arithm

expressions. Some other domains, such as design for instance, have very few or n

heuristics (e.g., principles for DFM [Stoll 1991]). For such domains the heuristic se

approach for simplification is not appropriate.

We believe that reusing known simplifications to produce new ones is the best approach

the simplification problem. First, a known simplification can be reused over and ove

identical simplification problems. Second, even if a new simplification problem is

identical to any known one, if some (significant) similarity between the two can be dis

ered, the old simplification may be used as an “idea” for simplification. These two s
Design Simplification by Analogical Reasoning

The Problem 75

o

ains.

 prob-

, and

ug-

lifi-

lem.

f pro-

fica-

ion in

 fol-

 situ-

alled
tions suggest the use of case based reasoning as a possibly good approach t

simplification. Finally, reusing known simplifications can also be done across dom

This assumes discovering some abstract similarities between a given simplification

lem in a domain (target) and a known simplification in some other domain (source)

using that similarity to transfer the “simplification idea” to the target domain. This s

gests that analogical reasoning could be used as a good approach for performing simp

cations, especially in domains where simplification is not a well understood prob

Simplification by analogical reasoning also has the benefit that it may be capable o

ducing general simplification principles by learning and abstracting over the simpli

tions produced.

In our research we propose the study of using analogical reasoning for simplificat

general, and design simplification, in particular.

2.2.2 Simplification by Analogical Reasoning

In this section we give a brief description of what analogical reasoning is. In this we

low the definitions in Bhatta & Goel [1994].

Analogical reasoning is the process of retrieving knowledge of a familiar problem or

ation (called the source analog) that is similar to the current problem or situation (c
Design Simplification by Analogical Reasoning

The Problem 76

ain

prob-

lem.

er in

 prob-

e can

alog,

source

r the

eneral-

al rea-
the target) and transferring that knowledge to solve the current problem.

Analogies can be of different types: within-problem, within-domain and cross-dom

analogies. Within-problem analogies involve the transfer of knowledge from one sub

lem to another subproblem within the context of solving the same overall prob

Within-domain analogy involves the transfer of knowledge from one problem to anoth

the same domain. Cross-domain analogies involve the transfer of knowledge from a

lem in a domain to another problem in a different domain.

Although several different models of analogical reasoning have been proposed, on

identify in most of them the following stages [Gentner 1983]: retrieval of source an

mapping of the source analog to the target, transfer of relevant knowledge from the

to the target, evaluation of the solution to the target problem, generalization ove

source and the target, and storage of the solution to the target problem, and of the g

ization (Figure 13).

Bhatta and Goel [1994] list a set of important issues raised when applying analogic

soning to problem solving:

• What should be the content and representation of source analogs?

• How is the target problem specified?
Design Simplification by Analogical Reasoning

The Problem 77
Memory of AnalogsRetrieval of
Source Analog

Source
Analog

Analogy Engine

Mapping

Transfer

Candidate
Simplifications

Evaluation

Solution

New
Simplification

Generalization over

Storage of
New Simplification
and Generalization

Source Analog and
New Simplification

Problem

FIGURE 13. A process model of analogical problem solving

Generalized
Simplification
Design Simplification by Analogical Reasoning

The Problem 78

 This

ep) of

ther

 some

t prob-

ge?

y the

arget

m and

erent

ase of
• Given a target problem, how might the retrieval of the source analog occur?

question gives rise to several sub-questions: What features (superficial or de

the target problem will determine the retrieval? How will it be determined whe

source analogs will be retrieved from the same problem, the same domain or

different domain?

• Once a source analog has been retrieved, how can it be mapped onto the targe

lem and how will this mapping be used to transfer the problem solving knowled

• Since the transfer of knowledge from the source to the target may not satisf

requirements of the target problem completely, how can the solution to the t

problem be completed?

• How will a solution to the target problem be evaluated?

• How can it be decided whether a useful generalization over the source proble

the target problem can be built. How can such a generalization be built?

• How can it be decided whether the target problem and its solution are diff

(novel) enough to be worth storing for later use?

• How can the generalization and/or the target problem be stored into the datab

problems for later use?
Design Simplification by Analogical Reasoning

The Problem 79

mpu-

mpu-

sfer is

ource

olves

in the

using

e con-

in gen-

more
Most of the models of analogical reasoning are based on one of the following two co

tational frameworks: transformational analogy and derivational analogy. The two co

tational models are distinguished from each other by the way the knowledge tran

performed. Transformational analogy involves the transfer by direct mapping of the s

problem’s solution to the target problem. Derivational analogy, on the other hand, inv

taking the problem solving process of solving the source problem and replaying it

target domain.

In the previous section we argued for approaching the problem of simplification by

analogical reasoning. To do so we will have to answer to the questions above in th

text of the simplification problem. This will be done in the next chapter.

2.3 Difficulties Raised

In this section we describe how the issues raised by applying analogical reasoning

eral translate to the application of analogical reasoning to simplification.

2.3.1 Retrieving Useful Simplification Examples

A simplification consists of a relation connecting two objects, a simpler one and a

complex one (called the simpler relation) and an explanation of the simplification (that is
Design Simplification by Analogical Reasoning

The Problem 80

ation

ion of

ess of

 the

s by

lifica-

etween

at is

 orga-

ation

the

 and

there

into

shal-

rali-
of how the simpler object can be obtained from the more complex one). The explan

may be given as a description of the simplification process, or simply as a descript

the difference between the two objects. The latter case may occur when the proc

simplification is not known (e.g., the simpler relation was discovered by evaluating

complexity of the two objects, but there is no evidence of a simplification proces

which one of the objects was transformed into the other). Thus to represent a simp

tion we need to represent a relation, a process and possibly a set of differences b

objects.

As discussed earlier simplification can be performed from different points of view (th

with respect to different combinations of context, aspect and measure). One primary

nization of simplification has to be made along these dimensions because simplific

problems are specified with respect to some point of view.

An important problem is organizing simplifications for fast retrieval. Theoretically

most appropriate way to do this would be by building a hierarchy of simplifications

using it for fast indexing. The problem with this approach is that since at this point

are no general principles of simplification and no classifications of simplifications

types, building such a hierarchy would be either impossible or would result in very

low hierarchies. As, hopefully, the system will produce new simplifications and gene
Design Simplification by Analogical Reasoning

The Problem 81

d on it

lved.

ct in

tions

ation

on of

e will

om-

ecting

fferent

bjects

lems:

 this
zations over them, the building of such a hierarchy and of indexing schemes base

will become possible.

An alternative solution would be to organize simplifications around the objects invo

Since a new simplification problem will be checked against the more complex obje

the source simplifications, it would seem appropriate to organize known simplifica

around hierarchies of these objects.

There are at least two problems with this approach. On one hand, while a simplific

refers to two objects, the actual simplification process may only involve a small porti

those objects (for instance replacing three gears by two gears in a complex devic

only affect the set of gears). Thus building a design hierarchy based on the entire objects

involved in the simplification may not be useful and will definitely be unnecessarily c

plicated. On the other hand there may be several independent simplifications conn

the same two objects. This might require that the same object occurs in several di

places in the hierarchy.

We are proposing the organization of simplifications around those portions of the o

involved which are relevant to those simplifications. This approach poses other prob

we need to define how is it decided what is relevant to a given simplification, when
Design Simplification by Analogical Reasoning

The Problem 82

impli-

tion

ion

 por-

lifi-

e col-

ed in

en-

that is

rele-

ism.

ms of

has to

s of the
decision will be computed and how these relevant portions will be used to organize s

fications. Rather than computing which portions of an object involved in a simplifica

are relevant, we will compute the portions which are not absolutely irrelevant. A portion

of an object involved in a simplification is ‘not absolutely irrelevant’ to that simplificat

if it is referred to in the simplification process. We call the process of deciding which

tions of an object involved in a simplification are not absolutely irrelevant to that simp

cation relevance calculation.

Fortunately relevance calculation is quite straight-forward in this case. It assumes th

lection of all the elements (e.g., components, relations, attributes) of an object involv

a simplification, which are directly or indirectly (i.e., through a function or relation) m

tioned in the explanation of that simplification.

We acknowledge here that if, as a result of generalizations, abstract simplifications (

simplification principles or rules) will be added to the database of simplifications, the

vance calculation for those simplifications may require a more sophisticated mechan

It is commonly accepted that, in analogical reasoning, higher level relations, or syste

relations are more useful for solving problems. However retrieving source analogs

be a fast process and as a consequence it must rely on simple, surface aspect
Design Simplification by Analogical Reasoning

The Problem 83

ses not

cross-

ibutes.

al of

ed in

ly rele-

riev-

en if

ed is

 of an

ure

le by

oposing

orbus
objects inspected (such as attributes). Such surface similarities are in most of the ca

very useful and are sometimes even misleading. Even more, when performing

domain analogical reasoning the domains involve may not even share common attr

Consequently we are faced with two apparently conflicting requirements: fast retriev

simplifications, based on simple criteria, and retrieval of useful simplifications.

We are proposing to use for this our hierarchy of relevant portions of objects describ

the previous section. This approach will reduce the search for source analogs to on

vant portions of objects involved in some simplification.

We must note here that, even with this two-level organization of simplifications for ret

ing source analogs, the process of retrieving may be quite complex. This will happ

either there is a great number of known simplifications, or if the object to be simplifi

complex. The second part of this statement is true because the relevant portions

object involved in a simplification may be similar to different portions of the target (Fig

14). This suggests that the retrieval process should be further improved, if possib

pruning as much as possible from the space of possible source analogs. We are pr

to use a counting scheme similar to the feature-vector described in [Gentner & F

1991].
Design Simplification by Analogical Reasoning

The Problem 84

nalogs,

ifica-

didate

e best
The process of retrieving source analogs may produce several candidate source a

each of them having different degrees of similarity to the object specified in the simpl

tion problem. This degree of similarity needs to be measured for each of the can

source analogs retrieved. The resulting measures will then be used for selecting th

Simplification

Target

FIGURE 14. The relevant portion of an object may be similar to many portions of the target

Simpler More Complex
ObjectObject

“Simpler than”

Relation
Design Simplification by Analogical Reasoning

The Problem 85

soning.

other

ount

candi-

ir role

imilar

h the

 same

fication

use

t al.,

func-

se ele-
candidate source analog to be considered in the next phases of the analogical rea

Defining a measure of similarity between a relevant portion of an object and an

object (the one to be simplified), in the context of simplification has to take into acc

two main factors. On one hand the relevant portions which are parts of the retrieved

date source analogs, may have different degrees of relevance, resulting from the

played in the corresponding simplification process. On the other hand, they may be s

to portions of the new problem with different degrees. For instance two relations wit

same name (that is identical) are “more similar” that two relations that only have the

signature (that is, the same number and types of arguments, but different names).

2.3.2 Mapping Simplification Problems

Once a source analog has been retrieved, it has to be mapped onto the new simpli

problem. Due to its clarity and efficiency from a computational point of view we will

an adaptation of Falkenheiner’s Structure Mapping Engine (SME) [Falkenheiner e

1986] for performing this mapping. The SME gets as its input a set of elementary match

hypotheses. A match hypothesis is a pair of elements (i.e., objects, attributes and

tions), one from the source analog and the other one from the target. Based on the

mentary match hypotheses, the SME builds consistent systems of mappings (or simply
Design Simplification by Analogical Reasoning

The Problem 86

orking

dged

 goal,

d to

bjects

ns of

ppings

f the

 target

knowl-

roduce
mappings) between attributes, functions and relations of the source and the target, w

“upwards” in the hierarchy of relations in the source and target.

The SME builds these systems of mappings quite efficiently. However, as acknowle

by Forbus and Oblinger [1990] it has two significant draw-backs:

• it constructs all structurally consistent interpretations of an analogy,

• it contains no mechanism for focusing on interpretations relevant to the goals of the

reasoner.

At this stage of our research we are primarily interested in using our problem solving

that is ‘simplification’, to guide the building of mappings. The way we have propose

do the retrieval of candidate source analogs already focuses on portions of the o

involved in simplifications, which are relevant to our goal. The same relevant portio

objects can be used when building the mappings. We can restrict the building of ma

to portions of objects relevant to simplifications. This emphasizes the importance o

relevance calculation in our approach.

During the mapping phase, several mappings between the source analog and the

may be generated. Some of these mappings will be better than others. Transferring

edge from the source analog to the target using a better mapping is more likely to p
Design Simplification by Analogical Reasoning

The Problem 87

of map-

 quality

within

tch in

om the

f these

ll pro-

mulat-

ctures

ding on

own or

ation

ing to

lifica-
a solution to the target problem. To select the best mapping generated, a measure

ping quality has to be defined. Such a measure needs to take into account both the

of the component matches and the structure of the mapping. The quality of a match

a mapping expresses the level of confidence of placing the two members of the ma

correspondence. The structure of the mapping refers to the systems of relations fr

source analog and the target that are placed in correspondence by the mapping.

There are several possible ways to define a measure for mapping quality. Each o

definitions is essentially a computation process that, when applied to a mapping, wi

duce a measure of the mapping quality. These computation processes work by accu

ing the measures of quality of the matches constituting the mapping along the stru

connecting those matches. The measures can be classified into two classes, depen

how the processes defining them accumulate the measures of the matches: top-d

bottom-up.

2.3.3 Transferring Simplifications

Once a mapping is selected, it will be used to produce a solution to the new simplific

problem. This is achieved by adapting the simplification corresponding to the mapp

the new problem. How this adaptation will be performed depends on how the simp
Design Simplification by Analogical Reasoning

The Problem 88

lved

 dif-

tion is

he new

 prob-

rans-

ces-

erve

plifi-

e solu-

 the

tation,

sign

ct that
tion is described, more precisely how the explanation of the simplification is given.

If the simplification is explained in terms the difference between the two objects invo

in the simplification, then a similar difference must be built for the new problem. This

ference can then be applied to the new problem. On the other hand, if the simplifica

explained in terms of the simplification process, that process has to be adapted to t

problem by abstraction and instantiating, and then replayed in the context of the new

lem. Thus, the way a simplification is given, naturally selects the type of analogy (t

formational or derivational) to be used.

2.3.4 Evaluating the Result of the Simplification

After a new simplified object is produced it must be evaluated. This evaluation will ne

sarily refer to at least two aspects of the simplification. As simplification must pres

some properties of the object being simplified (e.g., function in the case of design sim

cation), the first thing that needs to be verified is whether the object generated as th

tion to the simplification problem satisfies this constraint. Depending on how

constraint is specified, this part of the evaluation can be performed either by compu

or by simulation. For instance simulation may be used to verify that a simplified de

satisfies the functional requirements imposed on the original one. The other aspe
Design Simplification by Analogical Reasoning

The Problem 89

fication

ity of

mplifi-

plifica-

t the

. The

to be

tions

is that
needs to be evaluated is whether the object generated as a solution to the simpli

problem is indeed simpler than the original. This is done by measuring the complex

both the object that had to be simplified and the one produced as the result of the si

cation, and comparing the two measures. It may happen that the adaptation of sim

tion required some modifications of the object which rendered it more complex tha

original one. If either of these evaluations fail, the result has to be discarded.

2.3.5 Storing new Simplifications

Any new simplification produced can be added to the database of simplifications

question is whether it is new enough (different enough) from existing simplifications

worth storing it. What may produce new simplifications are the adaptations of solu

obtained by analogical transfer. The more adaptation is needed, the more likely it

the result will be different from the source simplification used.
Design Simplification by Analogical Reasoning

Related Work 90

al rea-

arch

irected

optimi-

 in the

 In the
CHAPTER 3 Related Work

We have no knowledge of any ongoing research in the area of “goal-based analogic

soning for design simplification”. However, there is certainly a rich body of rese

results in the relevant domains — analogical reasoning in general, and purpose-d

analogical reasoning in particular, abstraction, reasoning about designs and design

zation. This chapter relates our research to those domains.

3.1 Work on Analogical Reasoning

Our broader area of interest is creativity in Artificial Intelligence (AI) with emphasis on

technical creativity in AI [Dasgupta 1994, 1996]. Many of the case studies presented

literature revealed that creative acts had been results of some goal-driven activities.
Design Simplification by Analogical Reasoning

Related Work 91

rm of

nse-

nts of

oden

f the

eral

y to

fica-

lifica-

edge,

tion

 and

s to
case of technical creativity, quite often, the goal driven creative acts come in the fo

improving, in general, and simplifying, in particular, some artifact or process. As a co

quence we think of design simplification as a potentially creative activity.

Many researchers studying creativity agree that one of the most important ingredie

creative acts is using (new, surprising) analogies [Dasgupta 1994], [Perkins 1997], [B

1994], [Holyoak and Thagard 1995], [Finke et al. 1992]. To our knowledge most o

domains in which simplification is a common activity or a desirable goal, lack gen

simplification rules and principles. This is why we believe that a reasonable wa

approach simplification problems is by reusing previously produced similar simpli

tions. These suggest the possibility of using analogical reasoning for solving simp

tion problems both as a way to reuse previously accumulated simplification knowl

and potentially to generate creative solutions.

Using analogical reasoning for simplification would allow the reuse of simplifica

knowledge from the same problem (within problem analogy), the same domain (within

domain analogy) or from a different domain (cross-domain analogy) [Bhatta & Goel

1994]. Simplification by analogical reasoning can be done either by transferring

adapting the result of a known simplification to the new simplification problem (transfor-

mational analogy), or by transferring, adapting and applying the simplification proces
Design Simplification by Analogical Reasoning

Related Work 92

r

ation

oning

rbus &

gical

omain

zed by

tional

eory,

els. By

al rea-

exam-

cifies

tain and
the new simplification problem (derivational analogy). The generalization phase [Gentne

1988] of the analogical reasoning process may result in the generation of simplific

rules and principles. The simplification goal can be used to guide the analogical reas

and as a consequence improve its performance and/or the result it produces [Fo

Oblinger 1994].

In the following subsections we will take a more detailed look at some work on analo

reasoning relevant to our research.

3.1.1 Model-Based Analogical Reasoning

Model-based analogical reasoning refers to using mental models of the underlying d

in the analogical reasoning process. Mental models [Gentner 1983] are characteri

the types of knowledge they capture, that is, structural, behavioral (causal) and func

knowledge of a physical situation or a physical device. The Structure Mapping Th

used by many analogical reasoning approaches is based on this idea of mental mod

using mental models in analogical reasoning, many of the issues (raised by analogic

soning) listed in Chapter 2 are answered through the definition of those models. For

ple, defining a mental model of a physical device or physical situation clearly spe

what may be the contents of source analogs, what their representations need to con
Design Simplification by Analogical Reasoning

Related Work 93

he ana-

oel

o two

atta et

soning

-

odels

ith the

junction

t al.

e.g.,

e-inde-
how these representations should be designed to allow the processing required by t

logical reasoning process, and so on.

Most of the work on analogical design [Qian & Gero 1992] [Bhatta & Goel 1994] [G

1997] relies on mental models of designs. These mental models of designs fall int

categories: case-specific models and case-independent models (e.g., models of prototypi-

cal devices, physical principles, physical processes and generic mechanisms) [Bh

al.1994].

Probably the most popular case-specific models used in model-based analogical rea

are the structure-behavior-function (SBF) models. This kind of model explicitly repre

sents the structure of a design in some object(-substance)-attribute-relation ontology, rep-

resenting its internal causal behavior as well as its function. Case-independent m

used in model-based analogical reasoning are built such that they are compatible w

case-specific ones. For example, a case-independent model of designs used in con

with an SBF model could be defined in terms of behavior and function [Bhatta e

1994]. Such compatibility allows the “application” of case-independent situations (

physical principles) to specific cases, as well the abstraction of specific cases to cas

pendent models.
Design Simplification by Analogical Reasoning

Related Work 94

mmu-

 For-

oth to

s flex-

f dis-

an be

roach

 by

eeded

in or

 that for

atched

 of the

ctural,
Model-based analogical reasoning has been strongly criticized by part of research co

nity (e.g., [Hoftsadter 1995]), due to the rigidity of predefined models for analogues.

bus [Forbus et al. 1997] defends the SME approach by arguments referring b

psychological soundness and experiments.

We believe that model-based analogical reasoning indeed has strong limitations in it

ibility and, as a consequence, limitations on the possibility of creating certain kinds o

tant (and interesting) analogies. This is due to the predefined structure of what c

inferred. We believe however that the kinds of analogies that a model-based app

would most likely fail to find fall into the category of ‘discovery’. The results produced

work on model-based analogical design show that (many of) the kinds of analogies n

for transferring design knowledge from one design case to another (within doma

across domains) can be produced using this approach. For this reason we consider

our purposes the model-based approach to analogical reasoning is appropriate.

3.1.2 Goal-Driven Analogical Reasoning

Standard structure-mapping postulates that goals help determine both what gets m

and how the match gets evaluated [Gentner 1993]. This idea is incorporated in some

research on analogical reasoning. Holyoak and Thagard [1989] use a blend of stru
Design Simplification by Analogical Reasoning

Related Work 95

y con-

lken-

ggests

pping

linger

al

 local

elevant

Sim-

h the

 parts

nce as

at of

plifi-

simpli-
semantic and pragmatic consideration in their approach of finding a best mapping b

straint satisfaction. Forbus & Oblinger [1990] refer to another approach used by Fa

heiner in what he calls “contextual structure mapping”. The idea described there su

the relaxation of the relation identicality and one-to-one constraints of structure ma

according to the goals of the analogical reasoning. In the same paper Forbus & Ob

propose a new approach, called “ pragmatic marking”, for incorporating the analogic

reasoning goal into the operation of the SME. Their idea is to filter what subsets of

matches are considered, by whether or not they can support candidate inferences r

to the analogizer’s stated goal.

Our approach is related to both Holyoak & Thagard’s and Forbus & Oblinger’s work.

ilar to Forbus & Oblinger, we propose goal-based filtering. However, in our approac

filtering doesn’t only refer to local matches considered, but to designs and design

based on relevance of their components, attributes and relations. Considering releva

driving criteria for guiding the analogical reasoning process relates our work to th

Holyoak and Thagard’s. However, we discuss relevance in the context of design sim

cation problems. As a consequence we define precisely what is relevant to a design

fication and how relevance will be computed. We call our approach goal-directed

analogical reasoning.
Design Simplification by Analogical Reasoning

Related Work 96

sing

 hand

e pur-

struc-

loped

rarchi-

 more

 goal-

nsider

what
Goal-directed analogical reasoning is not to be mistaken for purpose-directed analogical

reasoning [Kedar-Cabelli 1988]. The goal-directed analogical reasoning refers to u

the problem-solving goal to guide the analogical reasoning process. On the other

purpose-directed analogical reasoning, as used by Kedar-Cabelli refers to using th

pose of using (the function of) an artifact to guide the analogical reasoning about its

ture.

3.2 Work on Abstraction

Abstraction is a very important ingredient of analogical reasoning, but it has deve

into an area of research of its own, because of many other applications, such as hie

cal problem solving, planning or model-based reasoning. In this dissertation we are

interested in the role abstraction can play in analogical reasoning in general and in

directed analogical reasoning in particular.

In general we can think of abstraction as the “process which allows people to co

what is relevant and to forget a lot of irrelevant details which would get in the way of

they are trying to do” [Giunchiglia &.Walsh 1992].

There are two major problems raised by abstraction: what to abstract from (i.e., what to
Design Simplification by Analogical Reasoning

Related Work 97

g

at is

et of

levant

 this

dant).

s, for

, some

re not

fining

ments

er ele-

ne and
forget) and how to build an abstraction. What to abstract from has to do with determinin

what is relevant or, equivalently, what is irrelevant with respect to the problem th

being solved.

Levy [1994] proposes a way to compute the “absolutely irrelevant”’ elements of a s

queries. It essentially builds a set of elements that are referred to in the queries (re

elements) and considers everything else absolutely irrelevant. The problem with

approach is that the so called “relevant elements” are only syntactically relevant, that is

they may not be actually needed for solving the problem (e.g. they may be redun

While this is not a problem for well formed representations such as query language

other domains, such as reasoning about designs, it may introduce limitations (e.g.

actually relevant elements, that are in relation with other relevant elements, but a

actually referred to, will not be considered). The approach we are proposing for de

(and computing) relevance to a simplification of designs also takes into account ele

of designs that may be relevant due to some relations which connect them to oth

ments already determined as being relevant.

There are two general approaches to performing abstractions: a purely syntactic o

one based on a domain model.
Design Simplification by Analogical Reasoning

Related Work 98

2] as

us &

 to be

, if the

lied to

built in

a man-

 by the

oal-

ext of

ne pro-

 on the

 per-
The purely syntactic approach has a nice theory developed [Giunchiglia &.Walsh 199

well as several applications especially to theorem proving [Knoblock 1994] [Bacch

Yang 1994]. The other general approach is based on the idea that what needs

abstracted from has a semantic (and not just a syntactic) value. As a consequence

application domain is described in terms of a model, the abstraction needs to be app

the model first to produce an abstracted domain model, and then the abstraction is

this abstracted domain model [Levy 1994].

We are interested in using abstraction in the analogical reasoning process, in such

ner that what is abstracted from and how the abstraction is performed is determined

problem solving goal, that is, simplification. To our knowledge there is no work on g

driven abstraction in analogical reasoning. Since we use abstraction in the cont

model-based analogical reasoning, we decided to use an approach similar to the o

posed by Levy. That is, we first perform abstraction on the model of a design, based

relevance corresponding to a simplification the design is involved in and only then

form abstract reasoning over the abstracted model.
Design Simplification by Analogical Reasoning

Related Work 99

ut how

 Some

physi-

some

urpose.

se sim-

enting

nting

 about

refer to

 some

havior-

seka-
3.3 Work on Reasoning about Designs

Another relevant area to our research is reasoning about designs. Reasoning abo

physical systems work has for some time been an important area of research in AI.

of the major problems that arise in this domain are understanding how a particular

cal system “works”, diagnosing why a given system doesn’t perform according to

expectations, and designing a physical system that would be usable for a certain p

From among these problems the last one is the most relevant to our research becau

plification can be viewed as a redesign problem, in which the complexity reduction is

added to the original design requirements. Within the (re)design problem, repres

designs and reasoning about designs are central for us.

Although the literature shows some variety in approaching the problem of represe

and reasoning about devices, it is usually discussed in the framework of reasoning

physical systems in general. As a consequence, the majority of these approaches

some or all of the notions of structure, behavior and function of an object and use

function-behavior-structure model to represent designed objects.

Our approach to representing designs follows the ideas concerning the structure-be

function representation scheme initially introduced by Sembugamoorthy & Chandra
Design Simplification by Analogical Reasoning

Related Work 100

998],

y their

ssed in

es and

ences of

 by the

 trans-

ed by

ieves”

senting

nction

cified

 was

viron-

ning

struc-

ned
ran [1986] and further developed in work by Chandrasekaran [1994], Goel [1992] [1

Bhatta [Bhatta et al. 1994] and others. In this approach, designs are represented b

structure, behavior and function and the relations between these. Structure is expre

terms of components (sometimes substances as well [Bhatta et al. 1994]), attribut

relations between components. The behaviors of a device are represented as sequ

state transitions between behavioral states. Each state transition is characterized

structural and causal context in which it can occur and the state variables that will be

formed. Finally, function is represented as a “top level behavior”, and is characteriz

an initial (input) state, a final (output) state and an internal causal behavior that “ach

the function. Chandrasekaran and Josephson [1996] proposed an extension to repre

function, by considering objects embedded in an environment. In their approach a fu

is defined in terms of the effects on its environment. This allows function to be spe

without reference to the behavior it is implemented by. This idea of defining functions

used by Prabhakar & Goel [1998] to define an extension of the SBF model called En

mentally-bound Structure-Behavior-Function (ESBF). This new model allows reaso

about function without reference to the underlying behavior or, consequently to the

ture.

Umeda & Tomiyama [1994] propose a slightly different way of modeling desig
Design Simplification by Analogical Reasoning

Related Work 101

deled

esign-

from

 from

ion of

ehav-

llected

hysics

avior

s. A

ms of

 a few

upport

 from

ceptual

ent
objects. Their proposal is based on the observation that “function cannot be mo

objectively because functions are intuitive concepts depending on the intentions of d

ers and users” and as a consequence “it is difficult to distinguish clearly function

behavior and it is not meaningful to represent function independent of the behavior

which it is abstracted”. As a consequence they propose a two-level representat

designed objects consisting of two connected levels: the functional level and the b

ioral level. Functions are represented in a knowledge base of function prototypes co

from existing designs. Behavior and state are represented in terms of Qualitative P

Theory as a network of individuals, individual views and processes. A function-beh

relationship describes behaviors that can perform a given function in the form of view

behavior-structure relationship describes the possible behaviors of an entity in ter

physical laws.

While at a first glance the FBS model used elements similar to the SBF model, it has

disadvantages that make it unsuitable for our problem. For example, it does not s

multiple levels of abstraction in describing behavior, and it does not allow reasoning

structure to behavior and from behavior to function.

There are several applications of functional reasoning about designs, such as con

design [Umeda & Tomiyama 1994], diagnosis [Chittaro 1995], blame assignm
Design Simplification by Analogical Reasoning

Related Work 102

less

 spoken

r con-

pplied

of a

e, to

life-

nsively

 clear

oll’s

999]
[Stroulia & Goel 1995].

3.4 Work on Design Optimization/Simplification

Design simplification, and simplification (as a cognitive activity) in general, is a

researched area. Most designers and design researchers, including those we have

to about this topic, see simplification as reducing the number of components and/o

nections between components. This view characterizes simplification as a process a

to the structural level of designs.

We find it reasonable to also think about the possibility of simplifying the behavior

design (for instance, to involve less friction) or the function of a design (for instanc

need less input). Also, simplification of designs from the points of view of different

cycle phases (manufacturing, maintenance, recycling and so on) has been exte

studied but not in the context of the general simplification problem. One of the most

formulations of (what we may interpret as) design simplification principles are St

[1991] design rules for efficient design for manufacture.

3.4.1 Suh’s Information Content Reduction

The only general approach to design simplification we know of is Suh’s [1990][1
Design Simplification by Analogical Reasoning

Related Work 103

tion

lex-

sition

dge

. The

tion

nfor-

esign

reduc-

plex-

ear in

t also
“Reduction of the Information Content of a Product”. This work gives a formal defini

of the information content of a design, which we may interpret as a ‘measure of comp

ity’.

The definition of information content of a design is based on the functional decompo

of the design and the following definition: “Information is the measure of knowle

required to satisfy a given FR (functional requirement) at a level of the FR hierarchy”

quality of a design is then formulated in terms of its information content (The Informa

Axiom): “The best design is a functionally uncoupled design that has the minimum i

mation content”. This together with the Independence Axiom, form the basis of the d

principles formulated by Suh. We can interpret some of these principles as rules for

ing the complexity of designs, such as:

• Minimize the number of functional requirements;

• Integrate design features in a single physical part;

• Use symmetrical shapes and/or arrangements.

Suh’s axiomatic way of measuring design quality, and within that context design com

ity, is a nice theoretical approach. The problem with it is on one hand that it is not cl

what context the complexity or cost is being measured (most likely manufacturing). I
Design Simplification by Analogical Reasoning

Related Work 104

ifferent

son

esign

ccord-

how

ecause

ity of

. The

 on a

f the

r. The
has the draw-back of all universal measure approaches in that it does not focus on d

aspects in response to the primary goal of the designer.

3.4.2 Bashire & Thomson’s Estimation of Design Effort

In their work on methodologies for estimation of design projects Bashir and Thom

[1999a][1999b], suggest that the accuracy of estimating the time required by a d

project depends on the accuracy of effort estimation. They refer to a general view a

ing to which the effort required by a design project depends on three factors: the size of the

project (the number of components), the complexity of the task (the relative difficulty of

the task in a particular environment) and the productivity (the rate at which the task

progresses). According to them, the problem with this view is that it is not clear

project size should be defined. Measures such as counting may not be appropriate b

the reduction of the number of components of a device may increase the complex

other parts.

They are proposing to measure the size of a project in terms of its functionality

method they propose for computing the complexity of a design project is based

canonical decomposition of the top level function of the design and summation o

number of subfunctions at each level weighted with the corresponding level numbe
Design Simplification by Analogical Reasoning

Related Work 105

 with

atti-

igning

d the

xt of

ing up

ber.

ing a

 quite

ele-

erent

rent
design effort is then computed by combining the complexity of the design project

factors that influence the productivity (e.g., technical difficulty; experience, skill and

tude of the team members, and so on).

In conclusion, Bashir and Thomson, proposed a way of measuring the cost of des

which clearly distinguishes between the complexity of the design on one hand, an

productivity factors on the other.

Essentially they propose a way to measure complexity of a project in the conte

designing it and from the aspect of its function. The measure used is based on summ

the number of subfunctions at each level weighted with the corresponding level num

While the idea of measuring functional complexity is a very interesting idea, consider

set of canonical functional decompositions will render the (conceptual) design phase

inflexible (routine). Also, the functional decomposition will have to rely on a set of

mentary functions. Those elementary functions may in theory be implemented by diff

structural elements, the design of which will also have possibly significantly diffe

complexities. This will not be reflected in the model proposed.
Design Simplification by Analogical Reasoning

Related Work 106

ctur-

ufac-

, for

id the

mizing

ake

ct

ss

ating

easure

e

 num-
3.4.3 Boothroyd & Dewhurst’s Complexity Factor

Bothroyd and Dewhurst [1991] developed a set of principles for reducing the manufa

ing and assembly cost of a product. Their work is in the domain of Design for Man

ture (DFM) and Design for Assembly (DFA).

According to them DFM may mean different things to different people. For example

individuals, whose task is to design of a single component, DFM may mean to avo

use of features that are unnecessary expensive to produce, or it may mean mini

material costs. The important point for us in their work is the distinction they m

between part (components) DFM and product DFM. They suggest that the “key to produ

DFM” is product simplification through DFA. Part DFM is only the fine-tuning proce

undertaken once the final form has been decided upon”.

For DFA they propose a quantitative method, known as the Boothroyd and Dewhurst

method. This method consists of two steps: a) minimizing the part count, and b) estim

the handling and assembly costs for each part. Based on this method they define a m

of complexity of products, called complexity factor, computed as the cube root of th

result of multiplying together the number of parts, the number of part types and the

ber of relations between parts.
Design Simplification by Analogical Reasoning

Related Work 107

plex-

f view

 goal

fica-

 study

To our

ew

 points

ask of

xploits

 only a

cted.
In conclusion, Boothroyd and Dewhurst view simplification as the reduction of a com

ity measure in the context of manufacturing. They argue based on a practical point o

that simplification is a major components of cost and that in fact simplification is the

of product DFM, and reduction of cost is the result. As a general principle for simpli

tion they propose the reduction of the number of parts.

3.4.4 Reasoning about Designs from different Points of View

Simplification at one level may cause modifications of the design at other levels. The

of causal reasoning about the effects of a simplification is a new area of research.

knowledge, considering simplifications from different points of view is also a n

research area. Some relevant work refers to reasoning about designs from different

of view.

Chittaro, Tasso and Toppano [Chittaro et al. 1994] introduced multimodelling in represent-

ing and reasoning about physical systems. The key idea in their work is that the t

reasoning about physical systems can be viewed as a cooperative activity, which e

the contribution of several separate models of the system, each one encompassing

specific type of knowledge. The different models of a physical system are interconne

The task of problem solving is based on two fundamental mechanisms: reasoning inside
Design Simplification by Analogical Reasoning

Related Work 108

ent

owl-

ledge

ologi-

r) and

oper-

re and

ell as

ew is

tion.

trac-

h the

depen-
the model and reasoning across models. The models they are proposing can repres

structural knowledge (knowledge about the topology of the system), behavioral kn

edge (knowledge about the potential behavior of the components), functional know

(roles components may play in the physical processes in which they take part), tele

cal knowledge (knowledge about the goals assigned to the system by its designe

empirical knowledge (knowledge concerning the explicit representation of system pr

ties). The different models are integrated by using associations between structu

behavior, and links between function and behavior implementing the function, as w

between function and teleology.

Another piece of work relevant to reasoning about designs from multiple points of vi

Manfaat’s [Manfaat et al. 1996], [Manfaat 1997] work on viewpoint-based abstrac

This work proposes building multiple models of a physical system by building abs

tions from different points of view. These abstractions are interconnected throug

model of the whole system. These interconnections are used for managing the inter

dencies between the different models.
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 109

prob-

impli-

e call

988].

r to the

 in the

using
CHAPTER 4 The Approach:
Simplification by Goal-Directed

Analogical Reasoning

In this chapter we describe the approach we are proposing for solving simplification

lems. It is based on using analogical reasoning to transfer knowledge from known s

fications to the new problem. Since the goal of the reasoning, (i.e., “to simplify”), is

known it will be used to guide all the phases of the analogical reasoning process. W

this kind of analogical reasoning process goal-directed analogical reasoning. Note that

this is different from the purpose directed analogy proposed by Kedar-Cabelli [1

There “purpose” does not refer to the purpose of the analogical reasoning, but rathe

purpose of the physical device that is being reasoned about. We will see later that

application of our approach to the simplification of designs, this corresponds to

device function to guide analogical reasoning.
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 110

pres-

r basic

s, and

 com-

e ade-

sing to

ec-

 can
To illustrate our method we will use examples from the domain of mathematical ex

sions. The expressions we will be using consist of constants, variables and the fou

arithmetic operators. It is true that arithmetic expressions have well-formed structure

that the same problems we will be addressing in this chapter will become much more

plicated when applying our approach to designs. However, we believe that they ar

quate to present the most important problems raised and the solutions we are propo

them.

4.1 Simplification as a Problem Solving Goal

A simplification problem is defined by three elements: the object that has to be simplified,

the point of view (context, aspect and measure) of the simplification and properties of the

object that the simplification has to preserve. These three elements correspond resp

tively to the object, goal and constraint of the simplification problem.

Under certain circumstances the goal and the constraints of a simplification problem

be implicit. As an example consider the following problem:
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 111

 E in

by the

i.e., it

and the

 will

s of

valua-

w

Problem 1: Reduce the number of multiplications in the following expression:

The object of this problem is the expression E. The goal is to simplify the expression

the context of evaluation, with respect to the aspect of its structure, as measured

number of multiplications. The constraint is that the result has to be equivalent to E (

has to represent the same set of numbers). Note that part of the goal (the context

aspect) and the constraint are implicit.

In the rest of this chapter, for all the examples using arithmetic expressions, we

assume that the simplifications they are involved in, or the simplification problem

which object they are, all have the same point of view as the problem above (i.e., e

tion as context, structure as aspect and count of multiplications as measure).

We can conclude that a simplification problem can be specified by the followings:

• a specification of the object of the simplification.

• a specification of the goal of the simplification. This has to be given a point of vie

of the simplification, consisting of a context, an aspect and a measure.

E u v,() uv()2
16–() 2u+

u 1 v+()
---=
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 112

lifica-

of the

apter

int of

ture”
• a specification on the constraint of the simplification. This can be given for instance

as a set of logical propositions that has to be satisfied by the result of the simp

tion.

For our example the object of simplification can be specified as a representation

structure of expression E (Figure 1.). Note, that for the sake of simplicity, in this ch

we will only use binary trees for structural representation of expressions. The po

view can be specified by the names of its components, that is, “evaluation”, “struc

FIGURE 1. Structural representation of expression E(u,v)

/

+

*

-

*

*

*

u u

u

v v

v2 u 1

+

16

*

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 113

ing

t the

 2.1.3

).

e

ation
and “number of multiplications”. Finally, the constraint can be specified by the follow

condition:

If is a solution of the problem, than

A simplification problem should be validated for consistency. This will involve at leas

verification of whether the point of view specified as goal makes sense (see Section

for an example of a context, aspect, measure combination that does not make sense

A simplification problem has to, explicitly or implicitly, specify how its solution(s) will b

evaluated. Evaluating the result of a simplification problem means verifying whether the

result satisfies the simplification constraints and comparing its measure of complexity to

the corresponding measure of the original object. Evaluating the result of a simplific

can be performed by either evaluation of formulae or by simulation, or by a combination

of the two.

F a b,()

a b,()F a b,()∀ E a b,()=
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 114

r) on

 how

 more
4.2 Representing Simplifications

To be able to perform analogical reasoning (or any kind of reasoning, for that matte

simplifications we need to define how simplifications will be represented as well as

those representations will be organized to support the reasoning process.

We will represent a simplification by what we call a “simpler-than relation” (Figure 2). A

simpler-then relation is a binary relation connecting two objects, a simpler one and a

Simpler Object
Complex Object

Simpler-than

Relevant

FIGURE 2. The structure of a simplification.

Explanation

- differences
- processes

Relation
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 115

: a)

r b)

nother

, but

on the

sented

be rep-

are part

 and a

d one

t very
complicated one. A simpler relation may have two attributes: an explanation of the simpli-

fication it represents and a description of the aspects of the two objects that are relevant to

the simplification.

4.2.1 Explaining a Simplification

The explanation of a simplification can be given in either of the following two ways

specifying the difference between the two objects involved in the simplification, o

specifying the process by which the simplification was achieved.

Specifying the difference is needed when the fact that an object is simpler than a

one was “discovered” (e.g., by comparing their complexity from some point of view)

no process for transforming is known. How the difference can be specified depends

ontology used for representing the objects. For instance if the objects are repre

using an objects, components, relations and attributes ontology, the difference can

resented by two sets: a set of elements (components, relations and attributes) that

of the more complicated object, but not part of the simpler one (elements removed),

set of elements that are part of the simpler object, but not of the more complicate

(elements added). In this dissertation we will assume that the differences are no

complicated and will represent both of these sets as lists.
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 116

.

nation.

rans-

d the

e pre-

resent

e

As an example let us consider the following simplification of expressions:

Simplification 1:

 is simpler than

The simplification can be explained by “ “ being removed and “ “ being added

When the process by which the simplification was achieved (simplification process) is

known, the description of this process can be added to the simpler relation as expla

A simplification process will be represented as a sequence of transformations. Each t

formation involves two objects (one being the object before the transformation, an

other the one after the transformation), the transformation operation applied, and th

condition which had to be satisfied in order for the operator to be applicable. To rep

such a transformation we need the following:

• a partial representation of the objects, containing only those elements to which th

operator refers and the ones involved in the precondition,

• a representation of the operator and the arguments it was applied to,

• a representation of the preconditions under which the operator was applied.

Let us consider the following simplification of expressions:

1 xy+
x 10+

1 xy+
x 2 5⋅+

2 5⋅ 10
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 117

graph,

 boxes

 in the

uces

e.
Simplification 2:

 is simpler than

The simplification process used in this simplification could be the following:

 is transformed into

 is transformed into

is transformed into

 is transformed into

 is transformed into .

The process explaining this simplification can be represented as a transformation

with the nodes representing intermediate forms of the expressions and the rounded

representing the transformations applied (see Figure 3). Note that not each transition

simplification process has to be a simplification. For instance, the first transition prod

a more complex expression. This sets the context for a simplification to be applicabl

x 1–
x x 3–() 2+

x 2–()

x x 3–() 2+
x 2–()

x x 3x–⋅ 2+

x 2–()

x x 3x–⋅ 2+
x 2–()

x x x– 2x–⋅ 2+

x 2–()

x x x– 2x–⋅ 2+
x 2–()

x x 1–() 2 x 1–()–

x 2–()

x x 1–() 2 x 1–()–
x 2–()

x 1–() x 2–()

x 2–()

x 1–() x 2–()
x 2–()

--------------------------------- x 1–
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 118
x x 3x–⋅ 2+
x 2–()

x x x– 2x–⋅ 2+
x 2–()

x 1–() x 2–()
x 2–()

x 1–

x x 3–() 2+
x 2–()

Multiply

Decompose

Factor out

Reduce

FIGURE 3. The transformation graph for the explanation of Simplification 2.

x x 1–() 2 x 1–()–
x 2–()---

Factor out
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 119

i-

cluding

ss of

speci-

one

e

plifi-

 index-

puted

and

t ele-

 the
Note that since the process explaining a simplification has been performed, the precond

tions are not absolutely required for representing the process. The reason we are in

them into the representation is that they will play a role of rationale during the proce

analogical transfer.

4.2.2 Elements Relevant to a Simplification

The second attribute (after explanation) that can be associated with a simplification,

fies the elements in the two objects involved, which are relevant to the simplification (we

will call them relevant elements). Relevant elements are useful for two purposes. On

hand, they allow building abstractions of the objects involved in simplifications. Thes

abstractions will not contain those portions of the objects that are irrelevant to the sim

cation. On the other hand, the relevant elements can be used as a basis for building

ing schemes over the set of objects involved in known simplifications.

The set of relevant elements corresponding to a given simplification can be com

automatically from the two objects involved in the explanation of the simplification

the explanation itself. In Section 2.3.1 we called the process of finding the relevan

ments relevance calculation. Relevant elements of a simplification can be computed at
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 120

as 2.

mation:

be

 them

sions

 con-

ication

levant
time the simplification is created and can be used thereafter whenever needed.

As an example let us consider the following simplification:

Simplification 3:

 is simpler than

The more complicated expression has 3 multiplications, while the simpler one only h

The explanation can be specified as a single step process consisting of the transfor

“replace by the (equivalent) expression “. It should

clear that, while the simpler relation holds between the two expressions, only part of

is referred to in the explanation of the simplification. For each of the two expres

involved in the simplification, the parts (subexpressions) referred in the explanation

stitute the relevant elements. Figure 4 presents a graphical representation of Simplif

3, with all its components. The shadowed portion of the structure represents the re

elements of the two objects.

In Section 4.5 we will describe our proposal for performing relevance calculation.

3 x y+() 1–
x y+() x y–()

3 x y+() 1–

x
2

y
2

–

x x y y⋅–⋅() x y+() x y–()
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 121

evant

ts of a
4.3 Relevance Calculation

For every simplification added to the database of known simplifications the set of rel

elements will be computed. We called the process of computing the relevant elemen

*

+ -

x y

-

x

yx

y

+

* 1

3

/

-

* *

x x

-

x

yy

y

+

* 1

3

/

Simpler-than

Relation

Relevant

Explanation

- processes

x2-y2 (x+y)(x-y)

FIGURE 4. The representation of Simplification 3. The shadowed portions of the two objects
involved in the simplification represent their relevant elements

Simper Object More Complex Object

replace
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 122

d into

n are

may

ms of

argu-

id to be

ot be

evant.

lved

 and

g in a

e set.

bjects

ximal
simplification relevance calculation. The relevance calculation can be decompose

two phases: a) collecting the elements that are not absolutely irrelevant (with respect to

the explanation) and b) propagating relevance along relations in the objects.

4.3.1 Collecting the Elements that are not Absolutely Irrelevant

Elements not absolutely irrelevant (see [Levy, 1994]) with respect to an explanatio

elements that are explicitly mentioned in the explanation of the simplification. They

occur in the description of differences, in the case that the explanation is given in ter

differences, or in partial descriptions of objects, specifications of preconditions and

ments of operators, if the explanation is given as a process. These elements are sa

not absolutely irrelevant because, while mentioned in the explanation, they may n

absolutely needed. However there may not be any basis for discarding them as irrel

The algorithm for computing the not absolutely irrelevant elements of an object invo

in a simplification works by iteratively building a set of elements (objects, relations

attributes). The set is first initialized to the empty set. Next all the elements occurrin

difference or in a partial object description part of a transformation are added to th

Finally, the relevance calculation is applied recursively to predicates, functions and o

in the preconditions and operators in the transformations. This algorithm builds a ma
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 123

olved

 the

l oper-

rsively

set of

 noted

lected

ated to

, but

 when

jects
set of not absolutely irrelevant elements.

Figure 5 illustrates how relevance is computed for the more complex expression inv

in Simplification 3. For better understanding the (functional) prefixed notation of

expression is used. The relevance calculation proceeds recursively: first, the top leve

ator (-) is added to the set of relevant element, and then the addition is repeated recu

for its arguments.

Note that only the elements explicitly present in the explanation will be added to the

relevant elements.

4.3.2 Propagating Relevance inside Objects

In the previous section we described the first phase of the relevance calculation. We

there that only the elements which were explicitly present in the explanation are col

in the set of relevant elements. However, the elements collected this way may be rel

other elements in the object which were not explicitly present in the explanation

which may bear some relevance to the simplification. This could happen for instance

the explanation of the simplification is given by the difference between the two ob
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 124
-

* *

x x

-

x

yy

y

+

* 1

3

/Explanation

- processes

x2-y2 (x+y)(x-y)

More Complex Object

replace

- (* (x , x) , * (y , y))

prefixed notation

FIGURE 5. Computing the relevant elements of the more complex object involved in
Simplification 3 the top level operator in the explanation is added first, than its arguments,
recursively
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 125

ny ref-

 3:

as 4

cess

n

. Fig-

g the

 in the

nt

ments.

-

ts (or
involved. In this case only the removed and added elements are specified, without a

erence to relations between them.

Consider for example the following simplification, very much similar to Simplification

Simplification 4:

 is simpler than ,

where A = x - y and B = 1 + xy. The more complicated expression has expression h

multiplications, while the second one only has 3. As there is no simplification pro

specified as explanation, the only assumption that can be made is that an expressio

A2 - B2 has been replaced by the expression (A+B)(A-B). Since x and y are not explic-

itly present in the explanation, they will not be added to the set of relevant elements

ure 16 illustrates the result of the first phase of the relevance calculation by placin

elements collected into a dark filled shape. The question is whether the elements

subexpressions involved in A and B, and possibly the operator ‘/’ (of which the releva

portion of the expression is an argument) should be added to the set of relevant ele

In other words, should relevance be propagated inside the object? For the example consid

ered, “downward propagation” - that is, propagating from relations to their argumen

3 x y+() 1–
A B+() A B–()

------------------------------------- 3 x y+() 1–

A
2

B
2

–

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 126

xpres-

tor ‘/’

it plays

r, the

 argu-

ant ele-

e can

hapes
components to their subcomponents) - is desired, because it is important that sube

sions are identical. For this example it may not be so obvious whether the opera

should be added to the set of relevant elements. On one hand we could argue that

no role in the simplification, and thus it should not be added. On the other, howeve

‘context’ of the ‘/’ operator sets some conditions on its arguments (e.g., the second

ment cannot evaluate to 0) which suggests that it should be added to the set of relev

ments. Thus relevance may need to be propagated ‘upwards’ inside an object. W

conclude that relevance propagation is a knowledge-based activity. In Figure 6 the s

FIGURE 6. Propagation of relevance inside the more complex object involved in
Simplification 4.

first phase result

upward propagation

downward propagation

/

-

+

*

*

*

x

x

y

y

-

1

3 +

-

* 1

+

*

x y

1x y

-

x y

A BA B
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 127

uring

agated

ions,

 com-

es), or

 rela-

 they

) How

n will

mem-

nly be

. In the

senta-
filled in lighter colors indicate the elements to which relevance can be propagated d

the second step of relevance calculation.

We conclude from the above discussion that relevance may also need to be prop

inside the more complex objects involved in the simplification, along the decomposit

relations and attributes. This propagation can be done either downwards (i.e., from

ponent to subcomponents, from relations to arguments, or components to attribut

upwards (i.e., from subcomponents to their “parent” component, from components to

tions they are arguments of, and from components to relations of which attributes

are).

This raises two further questions: a) Are both of the kinds of propagations needed? b

far does relevance need to be propagated inside the object?

We propose that downward propagation be always performed. Upward propagatio

only be performed if it is supported by several sources. For example, a relation not

ber of the set of relevant elements at the end of the first phase of propagation, will o

added to the set of relevant elements if all its arguments have already been added

next chapter we will describe propagation of relevance corresponding to our repre

tion of designs.
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 128

ere are

vance

t

ely to

n

 more

. We

son-

trieval

lem of
Answering the question of how far relevance needs to be propagated is harder. Th

two factors that should be taken into account when deciding whether or not rele

should be further propagated: the length of the propagation (because the farther we ge

from where the propagation inside the object started, the lower the relevance is lik

be), and the strength of the connection along which the propagation would happe

(because, for instance propagating relevance from a relation to its arguments is

important than propagating it from an element to the relations in which it is involved)

will propagate relevance both downwards and upwards as far as it is possible.

4.4 Organizing Simplifications

Simplifications will have to be organized mainly for two phases of the analogical rea

ing process: retrieving and (simplification) knowledge transfer. In the next two subsec-

tions we propose how these organizations should be done.

4.4.1 Organizing Simplifications for Retrieval

Simplifications have to be organized such that the resulting structure supports the re

of candidate source analogs. There are two important ways of approaching the prob
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 129

activa-

e for

ments

 ele-

ently

fore,

ently

their

mon

ca-

ts of

 the
the retrieval of candidate analogs: indexing and spreading activation. In our research we

use indexing rather than spreading activation because the application of spreading

tion requires the representation of knowledge by (complex) conceptual networks.

To build indexes over the set of simplifications we have to first decide what to us

indexing. Since the retrieval of a candidate analog can only be based on the ele

defining a given simplification problem, we propose to build indexing around these

ments. A simplification problem is defined by three elements: the object that has to be

simplified, the point of view (context, aspect and measure) of the simplification and con-

straint (properties of the object that the simplification has to preserve). We are curr

not considering the constraint part for organizing simplifications for retrieval. There

we have two dimensions along which simplifications will be organized, and consequ

two possible ways of indexing into the collection of known simplifications.

The first dimension along which simplifications can be organized for retrieval is

points of view, that is context, aspect and measure. While it is possible to exploit com

features of simplifications with different point of views (for instance looking at simplifi

tion of structures, or simplification of processes), in this research we only use poin

view for partitioning a given set of simplifications into classes of simplifications with
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 130

pli-

tional

 rela-

 the

andi-

omplex

pli-

bject

al pro-

nts of

d for

ed in

nents,

bjects,
same points of view. In the simplification of designs we partition the set of known sim

fications into three classes corresponding to the structural, behavioral and func

aspects of the designs.

The other dimension along which simplifications can be organized for retrieval is therele-

vant elements. Relevant elements of a simplification are elements (e.g., components,

tions, attributes, etc.) of the objects involved in the simplification, as obtained from

relevance calculation, based on the explanation of the simplification. For retrieving c

date source analogs we are only interested in the relevant elements of the more c

object involved in a simplification. The reason for this is that the object given to be sim

fied has to be matched with an object for which a simplification is known (that is, an o

which is the more complex member in a known simplification).

Using relevant elements for indexing has the advantage of concentrating the retriev

cess on elements that play some role in simplifications. What kinds of relevant eleme

objects will be used for building indexes for retrieval will depend on the ontology use

representing the objects in the domain. For example, for organizing designs involv

structural simplification, if design structure is represented in terms of objects, compo

relations and attributes, indexes can be build for some or all of the element types: o
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 131

. Rela-

ecific),

ber of

le we

sizes,

bject

nly 7

ments

here

nd the

erators,

 Figure

cause

 number
relations and attributes. Objects could be organized by their classes into a hierarchy

tions can be organized into hierarchies of relations and sub-relations (general to sp

or along features of relations such as signature (types of arguments), arity (num

arguments). Attributes can be organized into hierarchies of attributes. For examp

may have numeric and non-numeric attributes. Numeric attributes may refer to

intensities, etc.

Consider the example Simplification 3 shown in Figure 4. The more complex o

involved in that simplification, which is the one used in the retrieval process, has o

‘relevant’ elements out of a total 15 elements in its representation. Only those 7 ele

will be used to build the indexes for retrieval.

Arithmetic expressions are described in terms of elementary expressions (constants and

variables) and operators, which combine expressions into other expressions. Thus, t

are three types of elements for which indexes could be built. The set of constants a

set of variables cannot be decomposed into a hierarchy of classes. The set of op

however can be decomposed into a (very simple) hierarchy of classes as shown in

5. We acknowledge that, for this example, this indexing scheme is not very useful be

there are too few classes in the hierarchy and, as a consequence, a possibly large
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 132

uild-

simpli-

ferred

ed on

h as
of operators will go into every class. It is however useful to illustrate our proposal of b

ing indexes over the types of elements which are parts of the relevant elements of a

fication

Note that, in general, in analogical reasoning certain kinds of features may be pre

over others for retrieving similar analogs. As a consequence retrieving is done bas

either “surface similarities” (such as same attributes), or on “deep similarities” (suc

-

* *

x x

-

x

yy

y

+

* 1

3

/

Operators

Additive Multiplicative

+ - * /

FIGURE 7. Indexing into the relevant aspects of expressions involved in a simplification, using
a simple operator class hierarchy
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 133

irst, it

ical

impor-

se in

lations

ibute

nly in

l by

These

bjects,

eights

ant”

, using
same relations), or on “literal similarity” (both deep and surface features).

Due to the nature of simplification, it is hard to prefer any of these over the others. F

should be obvious that literal similarity is too strong because it will only find ident

objects to be similar. On the other hand both deep and surface similarities may be

tant for a given simplification. Deep (relation based) similarities are important becau

most of the cases simplifications can be performed because a certain system of re

hold. On the other hand a simplification may refer to only an attribute, or an attr

value. For instance a structural simplification of a cam mechanism may consist o

changing the shape of the cam to a simpler shape.

We propose that simplifications from a given point of view be organized for retrieva

the relevant elements of the objects involved, into several indexing hierarchies.

indexing hierarchies will be based on any of the types of relevant elements (e.g., o

relations and attributes). If more than one such indexing scheme is used, different w

(levels of importance) may be given to them, as relations my lead to “more signific

simplifications than attributes.

As we shall see later, the proposed two-stage retrieval of candidate source analogs

point of view based pruning first, and then indexing into the relevant elements of simplifi-
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 134

tions

tion

nces

along

 in the

o so

h pre-

ifica-

hus we

uced
cations, may still be quite inefficient. In Section 4.4 we will propose additional opera

for speeding up the retrieval.

4.4.2 Organizing Simplifications for Knowledge Transfer

Simplifications should also be organized into abstraction hierarchies based on their expla-

nations. This, as we shall see later, will allow the analogical transfer of simplifica

knowledge by abstraction. Depending on how the explanation is specified (by differe

or by simplification process), two kinds of abstraction hierarchies can be built: one

object abstractions, that is, along the classes of objects removed and added (as given

specification of a difference), and another one along process abstractions.

For simplicity, we prefer to take a unified view of the two abstraction hierarchies. To d

we view the difference between two objects as representing a “replace” operator wit

conditions that are not explicitly known. Figure 8 shows the representation of Simpl

tion 1 where the explanation as difference was replaced by a one step process. T

view a difference as a single step simplification process.

Abstraction over simplification processes can be defined and build by using a “red
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 135

these

ditions

transi-

 the

an be
model” or a “relaxed model” as described in [Knoblock, 1994]. The essence of

abstracting techniques is to remove some elements from the states and/or precon

involved in the process and replacing the transitions between states with abstract

tions obtained by dropping references to the removed elements.

To illustrate this by a very simple example, let us consider Simplification 2, for which

explanation was specified in the form of a process. The simplest abstraction that c

FIGURE 8. Representing the explanation by difference of Simplification 1 by a one step
process

/ /

+ + + +

x

x x

x1 110

yy

* * *

2 5

Relevant

Explanation

- processes

2*5 10
replace
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 136

ult in

trac-

ce all

ed.

lifica-

r this

at ‘2’

trac-

ctly

ure

re than

jects

h the

ction
applied to the process is to replace the constant ‘3’ by a variable, say ‘a’. This will res

a more abstract process, that will work for any value of ‘a’. The problem with this abs

tion is that there is more than one way to apply it. On one hand we could simply repla

the occurrences of ‘3’ by ‘a’ without considering the context in which this is perform

The consequence will be that the result of the abstracted process will not be a simp

tion. This happens because the decomposing and factoring steps will not work fo

abstraction (Figure 9(a)). On the other hand if, the abstraction is guided by the fact th

is less than ‘3’ by ‘1’ and that is why the decomposition and factoring work, the abs

tion of ‘3’ to ‘a’ should be accompanied by replacing ‘2’ by ‘a-1’. The resulting abstrac-

tion of the process will work for any value of ‘a’ (that is it abstracts from what exa

number is the coefficient of the ‘x-term’ and it will produce a simplification (see Fig

9(b).

The above example shows that even simple abstractions can be performed in mo

one ways. Performing formal abstraction, based only on the syntax of the ob

abstracted, may lead to abstractions that are not useful for the problem for whic

abstraction is being used.

In conclusion, we propose that the simplification relations be organized into abstra
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 137
FIGURE 9. Two simple abstraction over the simplification process explaining Simplification 2.

x x ax–⋅ 2+
x 2–()

------------------------------- x 1–
a 2– 1–()x

x 1–
----------------------------–x x a–() 2+

x 2–()-----------------------------

x x 3x–⋅ 2+
x 2–()

------------------------------- x 1–
x x 3–() 2+

x 2–()

(a)

x x ax–⋅ a 1–+
x 2–()--

x x a–() a 1–+
x a– 1+()

x x 3x–⋅ 2+
x 2–()

------------------------------- x 1–
x x 3–() 2+

x 2–()

x 1–

ABSTRACTED TO

ABSTRACTED TO

(b)
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 138

ill allow

 the

 build-

ether

ation

r solv-

epre-

 find a

mpli-
hierarchies based on their explanations viewed as processes. These abstractions w

the transfer of simplification knowledge from the source to the target. We will build

abstractions over the processes explaining the simplifications. In the mechanism of

ing abstraction we have to incorporate an evaluation mechanism which will check wh

the abstraction produced will satisfy the problem goal and constraints. This verific

will have to be done in the abstracted domain.

4.5 The Analogical Reasoning Process

In this subsection we describe the analogical reasoning process we are proposing fo

ing simplification problems. The process is illustrated in Figure 10. The rectangles r

sent phases of the process, while the rounded rectangles represent data.

4.5.1 Retrieving

Retrieving is the first phase of the analogical reasoning process. Its purpose is to

simplification that corresponds to an object “similar” to the object that needs to be si

fied.
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 139
Retrieval

Source Analog

Mapping

Transfer

Candidate
Simplifications

Evaluation

Solution

New
Simplification

Generalization

Storing

Simplification

Generalized
Simplification

Problem

Best Global
Mapping

(Simplified Object)

Known
Simplifications

FIGURE 10. The analogical reasoning process used for solving simplification problems
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 140

 orga-

d by

lifica-

int of

ome

nize

e may

levant

hierar-

rch the

). For

e hier-
As described earlier, we propose that, for the purpose of retrieval, simplifications are

nized first into classes of simplifications corresponding to points of view and, secon

an indexing scheme over the relevant elements of the objects involved in the simp

tion. Consequently retrieving similar simplifications will also work in two stages: a) prun-

ing, that is restricting the search to only the class of simplification with the same po

view as the one specified in the simplification problem, and b) indexing, that is search

using the indexing schemes.

The first stage is trivial and will be implemented by marking each object involved in s

simplification with the corresponding point of view. Note, that if we decide to orga

points of view into a hierarchy, a more efficient data structure should be used.

The second stage in retrieving a similar simplification is to use the indexes built over the

relevant elements of the simplifications, in the class under consideration. Since ther

be more than one such indexing hierarchy, corresponding to the different types of re

elements (e.g., object, relations, and attributes) we need to decide which of those

chies need to be searched and in what order. One way to organize this is to sea

indexes in decreasing order of their level of importance (see Subsection 4.3.2.

instance, search the hierarchy of relations first, the hierarchy of objects next, and th
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 141

 may

val).

ficient

ssoci-

n.

t the

ing,

al is

f the

ocia-

ation

hich

s of a

r the

cess.
archy of attributes last. Given that the objects specified in the simplification problem

be complex, searching each of these indexes may be expensive (at least for a retrie

Unfortunately, the two step retrieval process we have proposed so far may be inef

for retrieving. This will happen if the problem contains many elements that can be a

ated with elements in the relevant elements of the simplifications under consideratio

To illustrate this, let us consider that our simplification problem is Problem 1 and tha

collection of known simplifications that remained after the point of view based prun

consists of Simplification 1 through 3. We illustrate this in Figure 11 (since the retriev

only based on the more complex parts of the known simplification, we omit the rest o

representation for all the simplifications). In the figure we only show the possible ass

tions between all the ‘*’ operators in the target and the relevant element of Simplific

1. Although the relevant portion of Simplification 1 only contains three elements, of w

only one is a ‘*’ operator, there are five possible associations with the five occurrence

‘*’ operator in the target. Note that there will be a total of 20 possible associations fo

operator ‘*’ only!

This problem calls for further improvement of the performance of the retrieval pro
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 142
/

+ +

x

x1

y

* *

1 2

-

* *

x x

-

x

yy

y

+

* 1

3

/

/

+ -

*

-x

22

3

x

x

Simplification 1

Simplification 2

Simplification 3
Problem 1

FIGURE 11. Possible associations of the ‘*’ operators in the target with corresponding elements
in one of the source simplifications

/

+

*

-

*

*

*

u u

u

v v

v2 u 1

+

16

*

(target)
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 143

r the

e pro-

he rela-

sed to

ments

ita-

ions,

ssigned

cross

oblem

across

wever

n the

 are
Such an improvement could be achieved with a pruning scheme similar to the content-vec-

tor based filtering proposed by Gentner & Forbus [1991]. This approach would filte

set of candidates for retrieval, based on the number of their features considered in th

cess. Forbus and Gentner propose building the content-vectors using the counts of t

tions, functions and predicates in a structural description. These counts are then u

only select candidates for similarity which have the corresponding numbers of ele

close to the one in the problem.

The problem with applying that idea directly to our problem is that it has a major lim

tion: it only works within a domain where there is a fixed number of predefined relat

functions and predicates. In such a domain a fixed sized vector of counters can be a

to each candidate simplification. If, however, the analogical reasoning is used a

domains the method is not applicable. One possible solution to overcome this pr

would be to make a fixed association between relations, functions and predicates

the domain and build the content-vectors based on this association. This would ho

render the problem solving very inflexible.

In conclusion, for retrieving similar simplifications we propose a two-stage process. I

first stage the simplifications from other points of view than the one of the problem
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 144

didate

n as

likely

f a set

hesis

ements

atch

h

 having

e of the

didate

 analog
pruned from the search. In the second stage multiple indexing is used to retrieve can

simplifications. In addition, for simplifications retrieved which are in the same domai

the problem, we will use feature-vector filtering to prune the search space.

The result of retrieving is a set of candidate analogs: that is, simplifications that are

to be adaptable to the new simplification problem. Each candidate analog consists o

of match hypotheses on which its selection as a candidate was based. A match hypot

associates an element (e.g., relation, object or attribute) belonging to the relevant el

of the candidate analog, with an element of the object to be simplified. Each m

hypothesis has associated with it a score computed during the retrieval process, whic

expresses its quality (e.g., match hypotheses between relations are considered as

higher quality than the ones between attributes of objects).

The candidate analog with the highest score is selected to be used in the next phas

analogical reasoning process. In the rest of this section we will assume that a can

analog has already been selected. As usual, we will refer to the selected candidate

as the “source” and to the simplification problem as the “target”.
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 145

sets of

ele-

re

on of

short

 suits

un-

 1 and

xpres-

mber of

ion we

 in the

e letters
4.5.2 Mapping

Mapping is the second phase of the analogical reasoning process. It builds maximal

consistent correspondences (matches) between relevant elements of the source and

ments in the target, called global mappings (or gmaps, as the are called in the Structu

Mapping Engine (SME) literature). For mapping we propose to use a modified versi

Falkenheiner’s SME [Falkenheiner et al., 1986]. In the next section we give a

description of how SME works, emphasizing the modifications we suggest so that it

our purposes. In this description we will follow the explanation given by Forbus & B

gler [1990].

To illustrate our discussion, let us consider that the problem to be solved is Problem

that Simplification 4 is the source. Figure 12 represents the structures of these two e

sions. The dotted lines represent some of the match hypotheses. Because the nu

match hypotheses associated with this source analog is too high, for our explanat

will only use the ones marked. For easier reference we labeled the matches involved

match hypothesis. We used numbers to label elements in the source and lower cas

to label the elements in the target.
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 146

oduces

imal set
4.5.2.1 Structure Mapping

SME takes as input two descriptions, one of the source and one of the target, and pr

as output a set of gmaps of the source onto the target. Each gmap contains a max

FIGURE 12. An example of a set of match hypotheses between one element of Problem 1 and
similar relevant elements in Simplification 4, the selected candidate source analog.

/

-

+

*

*

*

x

x

y

y

-

1

3 +

-

* 1

+

*

x y

1x y

-

x y

A BA B

/

+

*

-

*

*

*

u u

u

v v

v2 u 1

+

16

*

Problem 1

Simplification 4

1

2 3

5 76

a

4

b

d e f

g h

i j

c

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 147

nsis-

pping

otential

rget. To

t kinds

triev-

dences

e corre-

espon-

match

s con-

 argu-

ration.
of matches. Here ‘maximal’ means that adding any match to it would violate the co

tency of the gmap. SME also attaches to each gmap a structural evaluation score which

provides an indication of the quality of the mapping.

The original version of SME, proposed by Falkenheiner et al. [1986], begins the ma

process by computing match hypotheses. Each match hypothesis represents a p

correspondence between relevant a element of the source and an element of the ta

construct these match hypotheses, SME relies on a set of rules which specify wha

of elements should be placed in correspondence.

In our approach to solving the simplification problem by analogical reasoning, the re

ing process associates with each candidate source analog a set of correspon

between relevant elements of the source and elements in the target. Each of thes

spondences has assigned to it a score that is an indication of the quality of that corr

dence. Our implementation of SME uses these correspondences as initial

hypotheses

The next step in the operation of SME is to filter and combine the match hypothese

structed. First, match hypotheses involving elements (functions and relations) whose

ments cannot be placed in correspondence are eliminated from further conside
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 148

ses to

theses

get, or

parated

istent

ypoth-

f match

ining

ample

con-

nt ele-

 maxi-
Next, SME checks local consistency constraints between pairs of match hypothe

detect violations of the one-to-one constraint. This means that pairs of match hypo

which would map two different elements in the source to the same element in the tar

would map the same element in the source to different elements in the target are se

as being inconsistent.

The third step in the operation of SME is the construction of maximal sets of cons

match hypotheses, i.e., gmaps. This is performed by combining systems of match h

eses generated in the previous step and testing them for consistency. A system o

hypotheses will be maximal if it cannot be consistently extended any further by comb

it with some match hypothesis.

Figure 13 shows the match hierarchies obtained after the filtering step for the ex

illustrated in Figure 12. The two way arrows indicate violations of the one-to-one

straint. The darker ones connect leaf matches that contradict each other directly, that is

matches which associate the same element in the source with two or more differe

ments in the target. The lighter arrows connect contradicting match hierarchies. The

mal sets of consistent matches obtained for our example are shown in Figure 14.
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 149

plifica-

 differ-

 be

at they
Note, that the process of building gmaps uses only the relevant elements of the sim

tion corresponding to the source.

4.5.2.2 Structural Evaluation of Mappings

The mapping process produces a set of global mappings which can be the basis for

ent simplifications that are likely to be applicable to the simplification problem to

solved. Some of these global mappings may be better than others, in the sense th

1 , c

2 , g 3 , h

4 , i 5 , j

3 , b

6 , a7 , f6 , e3 , d

FIGURE 13. The match hierarchies for the example in Figure 12. Two way arrows show
inconsistent pairs of matches (darker arrows) and hierarchies (lighter arrows).
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 150

 target

hances

asure

struc-

 map-

idual

ult of
represent better matches between the corresponding source simplification and the

problem. Our purpose is to select the best of these global mappings to increase the c

of generating a simplification in the target. For this purpose we need to define a me

for estimating the quality of global mappings.

Measuring the quality of a global mapping should take into account two factors: the

ture of the mapping and the quality of the correspondences (matches) involved in the

ping. This can be achieved by accumulating the measures of quality of the indiv

matches in the mapping over the structure of the global mapping. We call the res

applying such a measure to a global mapping the structural evaluation score of that map-

ping.

1 , c

2 , g

4 , i 5 , j

3 , b

7 , f6 , e

3 , d 6 , a

FIGURE 14. The gmaps built for the example in Figure 12. The labels represent scores assigned
to the match hypotheses.

4 , i

2 , g 3 , h

3 3

15

5

1 5

5

5 5
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 151

for the

ture of

atch to

us &

descen-

scores

cores

l or

 score

sively

agation

 accu-

s if the

m-up

a larger
There are two general approaches used in accumulating the measures of quality

matches involved, the top-down approach and the bottom-up approach.

The top-down approach for accumulating measures of match quality along the struc

a global mapping starts at the root and recursively propagates the quality of each m

all of its descendants. The rule of propagation has the following general form [Forb

Gentner, 1989]: a match hypotheses adds its score to the match hypotheses of its

dants. The score of the global mapping is then computed by adding together all the

accumulated in the leaf matches. The intuition behind this approach is that high s

will accumulate in the “leaf” matches expressing their role in supporting high leve

complex systems of relations.

The bottom-up approach to measuring the quality of a global mapping computes the

of a global mapping by starting at the root match and adding its score with the recur

computed scores of its descendant matches. This means essentially an upward prop

of scores from the leaves to the root. The score of the global match will be the score

mulated in the root match (or the sum of the scores accumulated in the root matche

global mapping consists of a set of tress of matches). The intuition behind botto

accumulating of scores is to increase the scores of matches that are supported by
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 152

ores to

necting

ecting

pothe-

 with it

that is

5. The

-down

d by the

he glo-

up) for

ing A

of glo-
system of relations.

To explain how the scores for global mappings are computed we need to assign sc

the different kinds of match hypotheses. Let us assume that a match hypothesis con

two identical operators has associated with it a score of 5, a match hypothesis conn

two constants or two variables has associated with it a score of 3, while a match hy

sis connection two different operators, or an operator and an operand has associated

a score of 1. We labeled the match hypotheses in Figure 14 with their initial score,

with the score associated to them at the time of retrieval.

The results of applying the two approaches to our example are presented in Figure 1

numbers below the ‘leaf’ matches represent the scores accumulated by the top

approach. The numbers above the ‘root’ matches represent the scores accumulate

bottom-up approach. The pairs of numbers below the rounded boxes representing t

bal mappings represent the finals scores for the two approaches (top-down/bottom-

the corresponding gmap. Both of the types of measures clearly indicate global mapp

as being the best one.

In this dissertation we propose to use the top-down approach to evaluate the quality
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 153

e top-

hich is

e top-

ely on

es, the

r struc-
bal mappings. The main reason for this decision is that the measure obtained by th

down approach contains structural information as opposed to the bottom-up one, w

rather a weighted count of the scores of the matches involved in the mapping. Th

down approach will assign higher scores to gmaps with more relation matches that r

more object matches. For global mappings consisting of the same number of match

measuring quality using the top-down approach to accumulate scores favors “deepe

tures”.

1 , c

2 , g

4 , i 5 , j

3 , b

7 , f6 , e

3 , d 6 , a

4 , i

2 , g 3 , h

13 13

6

6 10

5 5

17

11

5 5

32/17

16/11

10/10

FIGURE 15. The results of evaluating the global mappings for the example in Figure 12. The
pairs of numbers represent the structural evaluation score of the top-down approach versus
the ones of the bottom-up approach.

A

B

C

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 154

uation

nsfer, it

-

sult of

 con-

them.

ent as

 of the

the tar-

cation
At the end of the mapping phase the global mapping with the highest structural eval

score will be selected for further consideration in the analogical reasoning process.

4.5.3 Transferring Simplification Knowledge

Once a global mapping has been selected as the best candidate for analogical tra

will be used to compute candidate simplifications. A candidate simplifications is a simpli

fication in the source which can be hypothesized to be applicable in the target as a re

the correspondences of the global mapping.

A candidate simplification is computed by finding elements in the source which are

sistent with the global mapping’s correspondences, but are not in fact included in

We will call these elements unbound elements. An unbound element is consistent with a

given global mapping if there is no match in the global mapping which has that elem

its member. Unbound elements are searched for in the set of relevant elements

source since those are the only ones that play some role in that simplification.

Once the unbound elements are found the existence of corresponding elements in

get can be hypothesized. Building these hypotheses is performed by the simplifi

knowledge transfer process.
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 155

r the

ess.

 the

 two

e to

e first

tained

rence,

an ele-

d (tar-

ber of

a-

s been

to the
How exactly the simplification knowledge will be transferred depends on whethe

explanation for the simplification is given by a difference or by a simplification proc

The two different ways of transferring simplification knowledge will be presented in

next two subsections.

4.5.3.1 Transferring Differences

If the explanation of the source (simplification) is given by a difference (between the

objects involved), then the knowledge transfer will consist of applying the differenc

the target and, if needed, adapting the resulting simplification.

To apply the difference to the target, the difference explaining the source must b

transformed according to the global mapping. This means to view the matches con

in the global mapping as substitutions. These substitutions are applied to the diffe

i.e., in the representation of the difference, each occurrence of (the reference to)

ment which is the first (source) member of a match will be substituted by the secon

get) member of the match. Those elements in the difference which are not first mem

any matches will be replaced by variables. During the process of adapting the simplific

tion, these values will be assigned to variables. After the difference in the source ha

transformed according to the global mapping (viewed as a substitution), it is applied
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 156

ntain

 been

 are not

 will

lement

pply-

o the

 and

 This

f the

tches,

e target

global
target. This will result in a new object representation which may be incomplete (co

variables, or unspecified portions).

Let us assume that for our example problem global mapping A in Figure 15 has

selected as the best one. Of the relevant elements in the source there are two which

associated with any element by the global mapping A. Applying A as a substitution

result in a difference of the form: replace (uv)2 - T2 by (uv + T)(uv - T) , where T is a

variable that corresponds to the subexpression B, which is not associated with any e

in the target, according to the global mapping A. Figure 16 illustrates the result of a

ing the substitution to the example simplification problem (the ‘?’ sign corresponds t

place where adaptation needs to be performed).

After transforming the difference in the source according to the global mapping

applying it to the target problem, the representation of a new object is obtained.

object may be incomplete, and as a consequence it may need to be adapted. Adapting an

incomplete object is done by associating with the elements in the difference (o

source) which are not first member (i.e., the member from the source) of any ma

objects from the domain of the target. How these objects are selected depends on th

domain. The only requirement is that the new associations be consistent with the
Design Simplification by Analogical Reasoning

D
e

sig
n

 S
im

p
lifica

tio
n
 b

y A
n

a
log

ica
l R

e
a
so

n
in

g

T
he A

pproach: S
im

plification by G
oal-D

irected A
nalogical R

easoning
157

+

*

x y

1

B

*

v1

+

/

-

* *

x y

-3 +

-

* 1

+

*

x y

1x y

-

x y

A BA

/

-

+

*

*

x

x

y

y

-

1

3 +

* 1

+

*

x y

1x y

-

x y

A B A B

+ -

/

+

*

-

*

*

u u

u

v v

2 u16

*

/

+

+

* *

*

u

u

v

v2 u 1

+

-

*

u v

*

??

Source

Target

FIGURE 16. Applying global mapping A to Simplification 4.

simpler
than

simpler
than

Simplified Target

The Approach: Simplification by Goal-Directed Analogical Reasoning 158

anner

hese

ct, the

rget.

 the

he set

in spe-

 know

on this

 the

ct the
mapping. It is possible that there is more than one way to select those objects in a m

consistent with the global mapping. These will correspond to different new objects. T

objects need to be evaluated to check if they satisfy the requirements on the obje

constraints on the simplification, and if they are less complex (simpler) than the ta

The objects which satisfy all of the above will be ‘simplified objects’ corresponding to

target. Each of these simplified objects corresponds to a new simplification. We call t

of simplifications generated candidate simplifications.

For our example the variable T could be replaced with any expression. Some doma

cific knowledge needs to be used to actually select the right one, namely we need to

that “any positive number can be written as the square of a positive number’. Based

we can write , which will allow us to associate B with 4 and come up with

simpler expression .

From all the candidate simplifications we have to select one. Ideally we would sele

simplification corresponding to the least complex simplified target produced.

16 4 4⋅=

uv 4+() uv 4–()
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 159

lifi-

 pro-

g the

plifi-

ition,

rrence

ember

ocess

t it is
4.5.3.2 Transferring Simplification Processes

If the explanation of the source (simplification) is given by the description of the simp

cation process, then the knowledge transfer will consist of adapting the simplification

cess according to the global mapping and applying it to the target.

To adapt the simplification process according to the global mapping means viewin

global mapping as a substitution, and then applying it to the representation of the sim

cation. This is performed by substituting in each element (i.e., initial state, cond

transformation and final state) of each step of the simplification process, every occu

of an element which is the first (source) member of a match by the second (target) m

of that match. Those elements occurring in the representation of the simplification pr

which are not members of any matches of the global mapping will be replaced byvari-

ables. If the process description obtained this way contains variables, we say tha

incomplete.

To illustrate this, let us consider the following simplification problem:

Problem 2: Reduce the number of multiplications in the in the following expression:

3 3 u–() u 1–()+
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 160

ss, the

ashed

 match
Assume that after performing the retrieving phase of the analogical reasoning proce

best match source retrieved was Simplification 2 (Figure 17). Also assume that the d

arrows connecting elements in the source to elements in the problem represent the

FIGURE 17. The best match retrieved for Problem 2. The dashed arrows represent the match
hypotheses in the best gmap built.

/

+

*

x -

x 3

-

x 22

-

x 1

Simpler-than

+

*

3 -

3 u

-

u 1

Relation

Problem 2
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 161

 global

rce and

en in

ess to

given

 The

ocess

nce, is

ible: a)

ocess

 to the

et can

would

rocess

e pro-
hypotheses of which the best gmap built by the mapping phase is composed. This

mapping corresponds to a substitution (i.e. association between elements of the sou

elements of the target). Remember that the explanation for Simplification 2 was giv

the form of a simplification process (see page 114). To adapt that simplification proc

Problem 2 according to the global mapping built, we need to apply the substitution

by the gmap to the simplification process specified in explanation of Simplification 2.

process description resulting from this is shown in Figure 18. Note, that the pr

description contains unspecified elements (two operators) and, as a conseque

incomplete.

To apply an incomplete process description to the target two approaches are poss

bind the variables to (compatible) elements in the target and than apply the pr

obtained, or b) build an abstraction of the process and apply that abstract process

target. For the first approach there may be several different way elements in the targ

bound to the variables in the incomplete process description. Taking this approach

mean to consider all the possible ways this can be done, for each of them apply the p

ad then perform the evaluations of the results. Since this may be quite expensive, w

pose to use the second approach.
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 162
3 3 3u–⋅ u 1–()+() X⊗

3 3 3– 3 u 1–()–⋅ u 1–()+() X⊗

3 u 1–()–() 3 1–() X⊗

Multiply

Decompose

Factor out

Reduce

3 3 1–() u 1–() 3 1–()–() X⊗

Factor out

FIGURE 18. Adapted simplification process for Problem 2

3 3 u–() u 1–()+() X⊗

3 u 1–()–() 3 1–() X⊗
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 163

oving

s in the

n thus

of the

the

l

ating

ation

ation

t be a

plify

s, the

ns,
Building an abstraction of an incomplete simplification process can be done by rem

from the process description those elements which are not associated with element

target by the best global mapping found (i.e., the variables). The process descriptio

obtained will applicable to the target.

For our example the abstraction would consist of removing from each of the steps

“variable operator” ✇ and the variable X. Note that, applying this abstracted process to

target will yield the expression (3 - (u - 1))(3 - 1), which is not simpler then the origina

expression (i.e., Problem 2) from the point of view considered. This shows that evalu

the result of the transfer is absolutely necessary, and that transferring simplific

knowledge from the source to the target doesn’t necessarily result in a new simplific

and. Also, while the result of applying the abstracted process to the target may no

simpler object than the target itself, it may be possible that it will be easier to sim

within the domain of the target. For instance, using some basic arithmetic calculation

result produced for our example can be transformed into the equivalent expression

(which, by the way, is not simpler from the point of view of the number of multiplicatio

however is simpler from the point of view of the overall number of operations).

8 2u–
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 164

 and

implifi-

 either

target

eason-

the

view

f the

xpres-

quiv-

 of the

ple,

 com-
4.5.4 Evaluating the Result of the Simplification

Each of the simplified targets resulting from transferring the simplification knowledge

adapting the result has to be evaluated for the: a) requirements on the object, b) constraints

of the simplification and c) complexity.

The requirements on the objects (e.g., design requirements in the case of design s

cation problems) have to be checked by domain specific methods. These may be

simulation, reasoning or evaluation. The constraints (which refer to properties of the

that the simplification process has to preserve) can also be checked by simulation, r

ing or evaluation. Finally, the verification complexity condition is done by applying

complexity measure corresponding to the simplification problem (i.e., to the point of

specified in the simplification problem) and compare the result with the complexity o

target.

For our example, we need to check the expressions resulting by assigning different e

sions to the variable T, whether they are correct (well formed and legal), if they are e

alent to the target (i.e., they evaluate to the same value for every legal assignment

variables involved) and if their complexity is lower than that of the target. For exam

the object produced for this example satisfies the first two conditions and, since the
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 165

ity of

jects

 is per-

 time

th the

sult of

t sim-

This
plexity (as measured by the number of multiplications) is the same as the complex

the target (5), it does not satisfy the last one.

Evaluation of a new object may be expensive. In addition, if all the possible new ob

are generated first, and only than evaluation and the selection of the best (simplest)

formed, the simplification process will become very time consuming. To reduce the

of selecting the best simpler object we propose to perform evaluation interleaved wi

generation of new objects. Thus, after a new (partial) object was produced as a re

transferring the simplification process producing new objects and selecting the bes

plified object will be performed according to the algorithm presented in Figure 19.

BestSimplifiedObject
begin

best := NULL;
while new objects can be produced do

o := ProduceNewObject;
if SatisfiesRequirements(o) then

if SatisfiesConstraints(o) then
if Complexity(o) < best then

best := o;
end

end
end
return best;

end.

FIGURE 19. Algorithm for producing the best simplified object
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 166

 that

ity of

ener-

 ‘sim-

 the

ation

y add-

er the

cess.

as it

base.

iffer-

red.
way of organizing generation and evaluation will immediately discard any object

doesn’t satisfy the requirements and constraints and only evaluates the complex

those objects that do.

After the best simpler object was selected the corresponding simplification can be g

ated. The target and the new object will be respectively the ‘more complicated’ and

pler’ objects involved in the simplification. The explanation will be computed as

difference between the two objects, and the relevance calculation will be applied.

4.5.5 Generalization and Storing

The simplification corresponding to the target can be used to extend the simplific

database. This can be done by either adding the simplification to the database, or b

ing to the database a newly generated simplification which is a generalization ov

source simplification and the simplification produced by the analogical reasoning pro

Simply adding the simplification to the simplification database is straightforward,

only requires creating the appropriate links connecting it to the structure of the data

The question that is raised here is whether the simplification is “new” enough (i.e., d

ent enough from simplifications already on the database) so that it is worth being sto
Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 167

ation

n use

o sim-

s we

two

ions.

evant

of the

 are

rmed

riable

f each

 gen-

ap-

mon
To create a generalization over two simplifications (in our case the source simplific

and the simplification produced by the analogical reasoning mechanism) we ca

abstraction. This abstraction has to be applied both to the objects involved in the tw

plifications and to the explanations of those simplifications. The abstraction proces

are proposing for building a generalization over two simplifications consists of

phases:

• remove the elements that are not relevant from the objects involved, and

• build the generalizations from those elements that are shared by the simplificat

Abstracting from the irrelevant elements of a simplification is simple because the rel

elements are explicitly known. Removing the elements that are not relevant in both

simplifications result in two new simplifications in which all the elements represented

relevant. Abstracting from the elements not shared by the two simplification is perfo

by considering the global mapping produced by the structure mapping and the va

substitution used to produce the simplified object. These two represent a mapping o

element in the representation of the source simplification to an element of the newly

erated simplification. The abstraction then will consist of finding for each of these m

pings a common supertype of the types of the two elements involved. This com

supertype can be found by following the predefined object type hierarchy.
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 168

plifi-

main

). The

senta-

 three

nction.

cts of a

ntation.

n this

exity is
CHAPTER 5 Application:
Simplification of Designs

In this chapter we will apply the approach proposed in Chapter 4 for solving the sim

cations of designs. In our explanations we will refer to simple examples from the do

of door lock design (Chapter 1 has already introduced an example from this domain

first section of the chapter describes this domain. The next section defines the repre

tion we are proposing to use for designs. It first defines the representations for the

aspects of designs we are considering in our research: structure, behavior and fu

Then it discusses the connections and dependencies between the different aspe

design and how those connections and dependencies are reflected in the represe

The third section discusses the problem of defining the complexity of designs. As i

research we limit ourselves to the above mentioned three aspects of designs, compl
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 169

 what

ideas

ng of a

 com-
only defined with respect to structure, behavior and function. Section four describes

we mean by structural, behavioral and functional simplification in different contexts.

5.1 The Door Lock Domain

Simple door locks will be used throughout this chapter to explain and illustrate our

on design simplification by analogical reasoning.

We consider a door lock (Figure 1) to be a device that allows and prevents the openi

closed door (or gate or window). It is composed of a box and a bolt which can be fully

retracted into the box as a consequence of some input applied. When the bolt is

FIGURE 1. A schematic door lock
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 170

open

cted

he ini-

lt and a

 a shut

apply-
pletely retracted it allows the door (together with the whole lock) to move into the

position. When the input is no longer applied the bolt returns to its initial (unretra

position).

For our purposes, the opening of the door lock is a three state process (Figure 2). T

tial state corresponds to the closed door and is characterized by an unretracted bo

shut door. The second (intermediate) state is characterized by a retracted bolt and

door. The door lock may get into this state from the initial state as a consequence of

FIGURE 2. Behavior of a door lock

Initial State Intermediate State Final State
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 171

d by a

tate by

ed in

mpo-

 Tang

ed by

rst

dle.

le will

 trans-

cam.

 linear

olt is
ing some input. The final state corresponds to the open door and is characterize

retracted bolt and an open door. This state can be reached from the intermediate s

applying a second input to the door lock. The closing of the door lock can be describ

a similar way.

In our examples we shall limit ourselves to door locks implemented using simple co

nents with distinct functional roles (such as levers, cams, shafts, etc.) [Chakrabarti &

1996]. We shall also assume that the inputs to a door lock will be forces characteriz

their directions.

Figure 3 (a) illustrates a design for the door lock device. The door lock consists of ahan-

dle, a cam, a bolt and a spring. The Open function of the door lock is achieved by fi

applying input I1 (a vertical force with its direction pointing downwards) to the han

When this force becomes greater than the restoring force of the spring, the hand

rotate around its end opposite to where the input was applied. Thus, the handle will

form a linear movement (corresponding to input I1) to a rotational movement of the

The cam, which is hooked to the bolt, transforms this rotational movement back to a

one (but one with a horizontal direction), retracting the bolt into the box. When the b
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 172
I1

O1

I2

O2

FIGURE 3. Door lock implementing the cam mechanism using a cam: (a)
schematic and (b) structural representation

(a)

(b)

position restoring
forceposition position shape

welded to hooked to connected to

Door Lock 1

Handle Cam Bolt Spring

hook
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 173

zontal

onnec-

tations

-

everal

eristic

r of

t they

 door

ay be
retracted into the box, the second input, I2 is applied to the handle. This is a hori

input, perpendicular to the plane of the door onto which the door lock is mounted.

5.2 Representing Designs

We represent a design by representing its structure, behavior and function and the c

tions between these aspects. In the following subsections we describe the represen

we are proposing for each of these aspects.

5.2.1 Representing Structure

For representing the structure of a design we use an object, component, attribute and rela

tion ontology. A design is represented as an objects which may be composed of s

other objects, called the object’s components. Designs may have attributes attached to

them. An attribute is a function that may be applied to an object to obtain a charact

of the object. For instance the attribute “color” if applied to an object will give the colo

that object. Attributes are not object specific, or object class specific, in the sense tha

may be applied to many different objects of different object classes. For instance, a

lock may have a color, or a clothespin may have a color, and so on. However, there m
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 174

 com-

ot its

e

For a

s local

ple in

 of the

. The

ecting

on is a

cting

ttribute

o oval

tribute
objects for which a given attribute doesn’t make sense (is undefined). For example a

puter program doesn’t have a smell.

A design may be in relations with its environment, that is, with objects which are n

components, or its component’s components, and so on. We call such relations external

relations. For instance a door lock is mounted onto a door. This connection between th

door lock and the door it is mounted onto is an external relation of the door lock.

given design, there may be relations between its components. We call such relation

(internal) relations. For instance the components cam and bolt of our door lock exam

Figure 3 (a), are hooked to each other. This connection by hooking is a local relation

door lock.

Figure 3(b) gives a structural representation of the door lock illustrated in Figure 3(a)

rounded boxes represent objects, while the ovals represent attributes. A line conn

two rounded boxes means that the object corresponding to the box in a lower positi

components of the one corresponding to the box in a higher position. A line conne

rounded box and an oval means that the attribute corresponding to the oval is an a

of the object corresponding to the box. Note, that in our representation, if there is n

representing a given attribute connected to an object, it means that either the at
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 175

 (e.g.,

t both

le, the

cam

s. The

sitions.

s repre-

 of the

ns by

-value
doesn’t make sense for that object, or that the representation abstracts from it

because it is irrelevant to the problem for which the representation is used). We trea

cases identically, considering that the object “doesn’t have that attribute. For examp

object “cam” in Figure 3(b) has no attribute “shape” connected to it. Although a

clearly has a shape, we omitted it because we didn’t find it relevant for our purpose

thick gray arrows in Figure 3(b) represent relations local to the door lock.

5.2.2 Representing Behavior

We view the behavior of a device as a process described by a sequence of state tran

A state transition is specified by two (partial) state descriptions, the initial state and the

final state, a condition and a specification of how the state transitions is achieved. A state

transition may be achieved by a function, another behavior, or by a physical law.

We represent behaviors by a sequence of state transitions. Each state transition i

sented by four elements: the representation of the initial state, the representation

final state, the representation of the condition and the representation of the mea

which the transition is achieved. We represent a state by using a partial state representa-

tion. A partial state representation consists of a set consisting of attribute/attribute
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 176

s and

 by the

n that

other
pairs, and relations. Here “partial state” refers to the fact that only those attribute

relations of the design are represented which are affected (i.e., used or changed)

transition. The condition of a state transition is represented as a logical propositio

may evaluate to ‘true’ or ‘false’. Finally, the transformation is a reference to some
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 177

ure 4

own

 one

ted in
behavior of the design, or to a function of its components, or to a physical law. Fig

uses a transition graph to illustrate the representation of a behavior of the door lock sh

in Figure 3. Note that two of the transformations refer to physical laws, while the third

prefers to another behavior, Lever_Cam_Transmit_Force. This behavior (represen

State: force_on_Spring <= restoring_force
Cond: force_I1_applied > restoring_force

State: bolt_position = out
Cond: force_on_spring > restoring_force

State: lock_position = open

State: bolt_position = retracted
lock_position = closed

Cond: force_I2_applied

By: Behavior Lever_Cam_Transmit_Force

By: Knowledge Newton’s_2nd_Law

By: Knowledge Newton’s_3rd_Law

FIGURE 4. State transition graph for the top level Open behavior of the door
lock in Figure 3.

State O1 (Output 1)

State O2

State O3

State O4
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 178

s the

mely

t. To
Figure 5) describes how the lever-cam combination transmits force and transform

direction of the movement. Note that this time the transition refers to a function, na

the lever function played by the handle.

5.2.3 Representing Function

A function of a design is defined in terms of its interaction with a given environmen

represent a function of a design we will represent the environment in which the design has

State: handle_position: horizontal
cam_position: upright
bolt_position: out

Cond: force_I1_applied
rotating_force > restoring_force

State: handle_position: oblique
cam_position: rotated
bolt_position: retracted

Function: Lever_Function

FIGURE 5. State transition graph for the ‘Lever_Cam_Transmit_Force’ behavior referred to by
the ‘Open’ behavior represented in Figure 4.

State LC2

State LC1
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 179

nts

n with

to a

elation

 made

ce to

 view

ving a

n of
to be place into in order to achieve its function, the interaction of the design with the envi-

ronment required to achieve the function, and the way the function is deployed.

We represent the environment of a design by of a set of objects, which are not compone

of the design, but are either in some relation with the design, or get into some relatio

the design while it achieves its function.

The interaction of a design with its environment is a sequence of inputs applied to the

design and outputs produced by the design. We view both the application of an input

design, and the generation of an output by the design, as the instantiating of a r

between the design and its environment. The difference between the two is usually

based on the “direction” of the relation that is instantiated.

For example, we know that any force acting on an object will cause a reacting for

occur. This reacting force could be viewed as an output of the object. We however

this kind of interaction as “initiated” by the external force, and as a consequence ha

feel of “sequence” or direction (action to reaction). This is why we view the applicatio

a force to an object as an input.
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 180

es and

nt that

n we

ly con-

uence

ior by

. The

e door
The mode of deployment of a function is represented by representing those properti

relations of the design, and those relations between the design and the environme

determine the causal interactions between the design and the environment.

If the mode of deployment assumes a sequence of state transformations of the desig

say that the device achieves its function by a behavior. In this dissertation we are on

cerned with devices that achieve their function through some behavior. As a conseq

we will represent the mode of deployment of a function by a reference to the behav

which the function is achieved.

Figure 6 shows the representation of the Open function of the door lock in Figure 3

environment consists of two forces (I1 and I2) that can be applied to the handle of th

Function: Open
Environment:

- input I1 applied to the handle
- input I2 applied to the handle

Interaction:
- (force_I1_applied > restoring_force) ➔ retract_bolt
- bolt_retracted ➔ apply_I2

By (deployment):
- Open_Behavior

FIGURE 6. The Open function of the door lock in Figure 3.
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 181

or lock

reater

. Next,

 force

 The

avior

ribes a

on) of

v-

 refer-

 all the

rms of

fferent

ntation

 func-
lock as inputs. The interaction is described as a sequence of inputs applied to the do

and outputs generated by the door lock. The first force applied is I1. If this force is g

than the restoring force of the spring, than the output produces is the retracted bolt

if the bolt is retracted (that is the first output was generated), the second input, that is

I2, is applied. The output generated will be placing the door lock in ‘open’ status.

deployment of this function is represented by a reference to the beh

‘Open_Behavior’.

5.2.4 Connections and Dependencies between the Different Aspects

The structure, behavior and function of a design are interdependent. Behavior desc

process of transformation of some structural element (component, attribute or relati

the design. As such, behavior is strongly dependent on structure. This dependence is go

erned by physical laws. In our representation this dependence is expressed by the

ences to structural elements used in the representation of behavior. For example,

partial state descriptions in the behavior represented in Figure 4 are expressed in te

attributes and relations of the door lock’s components. A design may have several di

behaviors, corresponding to different sequences of transformations. Our represe

maintains a list of all the behaviors of a design which are referred to by at least one
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 182

 struc-

havior

tion of

pend

 an

ple-

nnec-

ist of

ure 7

xample
tion of the design. Thus, the representation we are proposing explicitly connects the

ture of a design to its behaviors through explicit references, and connects every be

to the structure to which it corresponds to through the references used in the descrip

transformations.

The kinds of functions we are considering (i.e., functions achieved by behavior), de

on the behavior they are implemented (deployed) by. We represent this dependency by

explicit reference to the behavior (or function, or physical law). A behavior may im

ment more than one functions. Our representation does not explicitly maintain a co

tion from a behavior to each of the functions it implements. It maintains however, a l

all the intended functions of a design, linked to the representation of the design. Fig

illustrates the way the interdependencies explained above are represented for our e

door lock.
Design Simplification by Analogical Reasoning

D
e
sig

n
 S

im
p

lifica
tio

n
 b

y A
n

a
log

ica
l R

e
a
so

n
in

g

A
pplication: S

im
plification of D

esigns
183

C4
position restoring
forceposition position shape

welded to hooked to connected to

Door Lock 1

Handle Cam Bolt Spring

O1 O2 O3 O4

LC1 LC2

Open

Lever_Cam_Transmit_Force

C1 C2 C3

LC1 LC2

Close

Lever_Cam_Transmit_Force

Open
Function

Close
Function

implemented byimplemented by

FIGURE 7. Dependencies between structure, behavior and function for the door lock in Figure 3.

behaviors

functions

Application: Simplification of Designs 184

ect to

ection

 pro-

onse-

k about

onflict-

while

 does,
5.3 Contexts, Aspects and Measures for Design Complexity

As described in Chapter 2, the complexity of an object can only be defined with resp

a point of view, that is, a combination of context, aspect and measure. In this subs

we will present some possible points of view for defining the complexity of a design.

5.3.1 Contexts for Measuring Design Complexity

As stated earlier, a context, in which complexity of an object will be measured, is a

cess that is performed on that object (or in which that object is involved). As a c

quence, considering the processes that may be performed on designs, we can tal

complexity in the context of designing, manufacturing, using, repairing and so on. It

should be clear that each of these contexts may require different (sometimes even c

ing) views on complexity. For instance, when using a design, its function matters,

during the process of manufacturing it does not (or, at least it is less obvious that it

although during manufacturing it may be required that the function is not achieved).
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 185

on of

ruc-

s the

ll

s an

ms of

or the

nts of
5.3.2 Aspects for measuring Design Complexity

We relate the aspects for measuring design complexity to the levels of descripti

designs, that is structure, behavior and function. Thus, we will talk about structural,

behavioral and functional complexity of a design.

Structural complexity of a design means that measuring complexity will refer to the st

tural aspect of the design, that is, attributes, components and local relations. Behavioral

complexity means that measuring complexity will refer to the states and transition

behaviors consist of. Finally, functional complexity means that measuring complexity wi

refer to the interaction of the design with its environment, or to its multiple functions.

5.3.3 Measures of Design Complexity

For a given context and aspect, a measure of complexity of designs will be a function,

which applied to a design will result in a positive number, which will be interpreted a

estimation of the effort required to perform the process given by the context, in ter

the level given by the aspect. For example, a measure of complexity of a design f

context of manufacturing, in the aspect of structure could be the number of compone

the design. The complexity of the door lock in Figure 3, by this measure, will be 4.
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 186

easure

ty can

ining

e used

define
Note that not all the combinations of context and aspect make sense for defining a m

of complexity for designs. Table 1 gives a list based on which measures of complexi

be defined for different combinations of context and aspect. The table cells conta

‘NO’ correspond to combinations of context and aspect which don’t make sense to b

for defining a measure of complexity. The elements in the cells can be combined to

Structure Behavior Function

Designing - attribute nbr.
- component nbr.
- relation nbr.
- attribute complexity

- attributes referred nbr.
- components referred nbr.
- relation referred nbr.
- states nbr.
- transitions nbr.
- behaviors nbr.

- inputs nbr.
- outputs nbr.
- functions nbr.
- input complexity
- output complexity

Manufacturing - attribute nbr.
- component nbr.
- relation nbr.
- attribute complexity

NO NO

Using

NO

- attributes referred nbr
- components referred nbr.
- relation referred nbr.
- states nbr.
- transitions nbr.
- behaviors nbr.

- inputs nbr.
- outputs nbr.
- functions nbr.
- input complexity
- output complexity

Repairing - attribute nbr.
- component nbr.
- relation nbr.
- attribute complexity

NO NO

TABLE 1. Possible elements for defining complexity measures for different context/aspect
combinations.
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 187

How-

 that a

ursive

ure of

r the

f how

effort

 define

lemen-

xity of

uired

ity. We

 in the
measures of complexity. Most of those elements refer to counts (denoted by “nbr.”).

ever there are some referring to “complexity”. As discussed in Chapter 2, this means

measure of complexity can be defined recursively, along decompositions. Such a rec

definition requires a set of “base cases”, that is a set of designs for which the meas

complexity in question is postulated. For example, in the context of designing, fo

aspect of structure, the complexity of a design may need to include an estimate o

complicated its shape is. Such a measure of complexity may characterize the

required to describe the design (as the design itself is a description of a device). To

such a measure of complexity one must postulate a complexity measure for some e

tary shapes, such as triangle, rectangle, circle (e.g., complexity of circle = 3, comple

triangle = 6 and complexity of rectangle = 8, as given by how many numbers are req

to represent each of them).

To illustrate the above discussion, let us define some example measures of complex

will apply the measures defined to the door lock in Figure 3.

5.3.3.1 Measures of Structural Complexity

A measure of structural complexity could be the number of elementary components of the

design (elementary components are components that are not further decomposed
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 188

 mea-

s com-

ts and

ts

will

rela-

f the

nd the

pute

mpo-

f their

k is
representation of the design). The complexity of the door lock as measured with this

sure is 4. This measure would abstract away both the attributes of the design and it

ponents as well as the local relations connecting those components.

A measure of complexity that would take into account both the number of componen

the number of local relations could be defined as the number of elementary componen

plus the number of relations. The door lock as measured by its complexity measure

have complexity 4+3=7. While this measure of complexity includes the number of

tions into its definition, it gives them the same “weight” in the computation as that o

elementary components.

Another way to combine the two counts (i.e., the count of elementary components, a

count of local relations) is to follow Boothroyd and Dewhurst’s [1991] method to com

the complexity factor of a design. According to that, the complexity of the design would be

computed by multiplying the two counts and taking the square root of the result. Note that,

Boothroyd and Dewhurst, actually consider three counts (adding the number of ‘co

nent types’ to the ones we are considering) for their formula and take the cube root o

product. Using this square root measure, the complexity of the door loc

. 4 3⋅ 12 3.46= =
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 189

l rela-

oesn’t

ber of

repe-

rchy of

th of
Note that this measure is defined with the assumption that there are no higher leve

tions (i.e., relations between relations) in the structure. For this reason, while it does com-

bine the number of components and the number of relations in the structure, it d

distinguish between designs with the same number of components and same num

relations, but using higher level relations. For example, if the two trees in Figure 8

sented hierarchies of relations connecting components of two designs (e.g., a hiera

decompositions), then the measure of complexity defined above would yield for bo

(b)(a)

FIGURE 8. Two relation hierarchies which have the same complexity according to the measure
proposed by Boothroyd and Dewhurst (circles represent relations, squares represent
components)
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 190

 rela-

set of

path

 of its

lexity

o the

tems of

plex-

at is,

.g., the

mpo-

ments

e way
them . This is because both of them have the same number of

tions and the same number of elementary components.

To be able to distinguish between the complexty of hierarchies of relations over a

components, we propose that the complexity of such a hierarchy be measured by theexter-

nal path length corresponding to the tree representing the hierarchy. By external

length of a tree we mean the sum of path lengths from the root of the tree to each

leaves. Using this measure of complexity, the hierarchy (a) in Figure 8 has a comp

of 12, and the hierarchy (b) a complexity of 14. This difference in complexity is due t

fact that the measure defined assigns higher measure to hierarchies with higher sys

relations. If applied to the decompositional structure of a design, this measure of com

ity could be interpreted as assigning higher values to “more critical” components, th

components whose change would have a greater impact on the entire structure (e

more levels of decompositions a component has “underneath”, the more of its co

nents, sub-components, and so all may be affected by its change).

Other measures of structural complexity for designing could be defined using the ele

in Table 1. The actual elements that would go into defining such a measure and th

they would be combined depends on what is important for the purpose of the user.

4 5⋅ 20 4.47= =
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 191

 maxi-

 the

haviors

ximum

st one

for a

sitions.

ndition

plexity

ons it

e is 3.

t the
5.3.3.2 Measures of Behavioral Complexity

A design may have more than one behavior. A measure of behavioral complexity of a

design in the context of designing can be defined as a combination (e.g., sum, or

mum) of the complexity of its individual behaviors. Note here, that for our example, in

context of designing, the sum seems to be a better choice, because both of the be

have to be considered at design time. On the other hand, for use, taking the ma

complexity of the two behaviors (Open and Close) is a better choice, because at mo

of those behaviors will be exhibited at any time.

Thus, we are faced with the problem of defining sample measures of complexity

behavior. Let us recall that a behavior is represented as a sequence of state tran

Each state transition consists of a partial representation of a state of the design, a co

and a transformation. Elements of these may be used in defining a measure of com

for a behavior.

A simple measure of complexity for a behavior would be the number of state transiti

consists of. The behavioral complexity of the door lock as measured by this measur

Note that, an equivalent way to measure behavioral complexity would be to coun

number of states in a behavior, rather than the number of transitions.
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 192

 into

count

f the

efine

ior as

 defi-

ure of

ition

ansfor-

nother

ither

 sub-

zing a
Measuring complexity by counting the state transitions it consists of doesn’t take

account “how complicated” the individual state transitions are. To take these into ac

the definition of complexity has to refer to either the initial and final states in each o

transitions, or the complexity of the transformation (or, possibly, both). We can thus d

a complexity for each individual state transition and define the complexity of a behav

the sum of the complexities of the transitions it consists of (note, that the complexity

nition proposed in the previous paragraph would correspond to a complexity meas

one for considered for each transition).

Intuitively, the complexity of a transition depends on how much change the trans

causes (e.g., how many state variables are modified) and on how complicated the tr

mation process is. Note that, the transformation in a state transition refers to a

behavior, or to a function, or to some domain law. Thus, its complexity is defined by e

the complexity of another behavior (recursively), or the complexity of a function (see

section 5.3.3.3 below), or it can be defined (postulated) as a constant characteri

physical principle).
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 193

ign be

hese

ehav-

cted),

can be

exity

ans-

vior”

ure
Summing up the discussion, we propose that the behavioral complexity of a des

defined as the sum of the complexities of all its top level behaviors . With t

notations, the complexity of a behavior is defined by:

,

where the represents the sequence of state transitions in b

ior , µ(t) represents the number of changes (e.g., number of state variables affe

and C(θ(t)) represented the complexity of the transformation θ(t). Note again that, θ(t)

can be either a behavior, or a function, or a domain law.

Simpler behavioral measures, such as the state transition count defined above,

derived by choosing appropriate values for µ(t) and C(θ(t)) respectively.

Using the complete definition given above for , and assuming that the compl

of “Lever_Function” shown in Figure 5 is 1, and postulating that the complexity of tr

formations caused by a physical law is also 1, the complexity of the “Open_Beha

represented in Figure 4 will be . Note, that this meas

C Bn() Bn

C Bn() µ t() C θ t()()⋅

t Tn∈
∑=

Tn t1 t2 t3 … tk, , , ,〈 〉=

Bn

C Bn()

1 3 1⋅()⋅ 1 1⋅ 1 1⋅+ + 5=
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 194

nother

 that

n the

o how

s.

, for

lexi-

 sum

t design

t-

sign.

n may
takes into account that the first state transition in the behavior is implemented by a

behavior (“Lever_Cam_Transmit_Force”), which consists of a single state transition

affects three state variables and is implemented by the function “Lever_Function”.

5.3.3.3 Measures of Functional Complexity

A design may have more than one function. The functional complexity of a design i

context of designing may refer to either the number of functions the design has, or t

complicated its function(s) is (are). Thus, a general, measure of functional complexity of a

design can be defined as a combination of the complexities of its (top level) function

Similar to the definition of behavioral complexity, this combination can be defined

instance, as a sum of complexities of individual functions or as a maximum of comp

ties of individual functions. Again we can note that, in the context of designing, the

seems to be a better choice, because all of the functions have to be considered a

time. On the other hand, for use, taking the maximum complexity of the functions is a be

ter choice when at most one of the functions will be achieved at any time.

Thus, we need to give a sample definition for a the complexity of a function of a de

Remember that, we defined a function by an environment (a set of objects the desig
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 195

de of

 into

 well

 envi-

eract

 the

while

ity of

mbine

an be

In our

ave a

s. For

ibing)
interact with), a set of interactions (a sequence of inputs-outputs pairs) and a mo

deployment. Thus a definition of the complexity measure for a function should take

account the complexity of the environment, the complexity of inputs and outputs as

as the complexity of the mode of deployment of the function.

The complexity of the environment can be defined as the number of the objects in the

ronment. This will essentially correspond to the number of objects the design will int

with while delivering the function considered. The complexity of the environment for

“Open” function represented in Figure 6 is 2, as the design interacts with two forces

delivering this function.

To define the complexity measure of an interaction we first need to define a complex

each input-output pair of which the interaction consists, and then define a way to co

those complexities into a single measure. The complexity of an input-output pair c

defined as a combination of the complexity measures of the input and of the output.

application domain (simple, schematic mechanisms), inputs can be forces which h

trajectory (e.g., linear, or circular) and outputs can be either forces or (object) state

forces, a way to define the complexity measure may be by the complexity of (descr
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 196

of state

f the

ng on

 with

plifi-

isser-

l, by

 pre-

only.
the trajectory associated. For states the complexity may be defined as the number

variables needed to describe them.

Finally, the complexity of deployment could also be defined as the complexity o

behavior implementing the function.

In this stage of our research we define the complexity of a function as only dependi

the complexity of the environment, that is the number of objects the design interacts

while delivering that function.

5.4 Structural, Behavioral and Functional Design Simplification

In this section we describe what we mean by structural, behavioral and functional sim

cation, respectively. Before starting our discussion however, let us note that in this d

tation we discuss behavioral and functional simplifications only at a conceptual leve

defining them and pointing out what specific issues they raise. The working system

sented in the next chapter was built and tested on structural simplification problems
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 197

d a

 if

 two

or the

one.

ents in

hich

n the

unting

lations

ditions

tions

 been

s is a
A design simplification is a binary relation connecting two designs, a simpler one an

more complicated one. Every design simplification has assigned to it a point of view, that

is, a context, an aspect and a measure (of complexity), an explanation and a set of relevant

elements. A design simplification has to satisfy the “simplification condition”, that is,

the measure (corresponding to the point of view of the simplification) is applied to the

designs involved, for the corresponding context and aspect, the value obtained f

“simpler design” will be (strictly) less than the one obtained for the more complicated

The set of relevant elements associated with a design simplification consists of elem

the representation of the aspect corresponding to the point of view of simplification, w

were used or affected by the simplification. For example, for a design simplification, i

context of designing, for the aspect of structure and with the measure defined by co

the components of the design, the set of relevant elements may consist of objects, re

and attributes of the designs involved. These elements may be referred to in con

that needed to be satisfied for the simplification to be “realizable”, or in the opera

which were applied to transform the more complicated design into the simpler one.

The explanation of a design simplification is a description of the process that has

applied to the more complicated object to obtain the simpler one. Such a proces
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 198

of two

rmation

der for

tion.

f the

r lock

n, or

 may

struc-

nents,

ere by
sequence of transformations. Each transformation consists of a partial description

designs (one before the transformation has been applied, and one after the transfo

has been applied), a predicate describing the conditions that had to be satisfied in or

the transformation to be applicable, and the operation that describes the transforma

In the rest of this section we will give examples of design simplifications for each o

three aspects considered. The examples will again be drawn from the domain of doo

designs.

5.4.1 A Structural Simplification

A structural simplification of a design refers to either physical attributes of the desig

to its structural composition. For instance, an object with the shape attribute “circle”

be considered simpler than an object with the shape attribute “oval”. With respect to

tural composition, a design can be simpler than another design if it has fewer compo

fewer relations between components, or simpler relations between components. H

“simpler relations” we mean relations with fewer arguments.
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 199

k in

ber of

olt are

t need

above.

mposi-

plex-

 must

ted

tion,

y of a
Let us consider the door lock illustrated in Figure 9. Comparing it with the door loc

Figure 3, it appears to have a simpler structure, because (while it has the same num

components, the same number of relations) the shapes of the roller and the plain b

simpler that those of the cam and the bolt with a hooked shape.

To represent this relation between the two designs as a design simplification we firs

to consider a measure of complexity that is able to capture the difference described

The measure of structural complexity based on the external path length of the deco

tional structure, defined in section 5.3.3.1, would yield for both of the designs a com

ity of 4. To capture the complexity introduced by attributes and attribute values, we

extend this measure.

The structural simplification connecting “Door Lock 1” and “Door Lock 2” is represen

in Figure 10.

5.4.2 A Behavioral Simplification

A behavioral simplification refers to either the complexity of the partial state descrip

or the number of states, or the number of transitions in a behavior. By the complexit
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 200
I1

O1

I2

O2

(b)

(a)

FIGURE 9. Door lock implementing the cam mechanism using a roller: (a)
schematic and (b) structural representation

Door Lock 2

Handle Bolt Spring

position restoring
forceposition position shape

Roller

welded to
touching

connected

plain
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 201
position restoring
forceposition position shape

welded to hooked to connected to

Door Lock 1

Handle Cam Bolt Spring

hook

Door Lock 2

Handle Bolt Spring

position restoring
forceposition position shape

Roller

welded to
touching

connected

plain

Structurally

Relevant

Explanation

Simpler
Than

ho
ok

ed
_t

o(
C

am
,B

ol
t[s

ha
pe

=
ho

ok
])

to
uc

hi
ng

(R
ol

le
r,B

ol
t[s

ha
pe

=
pl

ai
n]

)
re

pl
ac

e

FIGURE 10. Simplification “Door Lock 1” to “Door Lock 2”
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 202

ments

igure

e door
partial state description we mean a measure depending on the number of ele

(attributes, objects and relations) in the partial state description.

To illustrate this with an example, let us consider the door lock design illustrated in F

11. This door lock uses two levers, a wedge and an L-shaped bolt to implement th

lock functions. Figures 12 and 13 represent the behavior of this door lock.

State: handle_position: horizontal
cam_position: upright
bolt_position: out

Cond: force_I1_applied
rotating_force > restoring_force

State: handle_position: oblique
cam_position: rotated
bolt_position: retracted

Function: Lever_Function

State LC2

State LC1

FIGURE 13. State transition graph for the ‘Lever_Lever_Wedge_Transmit_Force’ behavior
referred to by the ‘Open’ behavior represented in Figure 4.
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 203
I1

O1

I2

O2

FIGURE 11. Door lock using a combination of two levers, a wedge and an L-shaped bolt: (a)
schematic and (b) structural representation

(a)

(b)

Door Lock 3

Handle Bolt Spring

position restoring
forceposition position shape

welded to
touching

connected

L-shaped

Lever Wedge

position

welded to
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 204
State: force_on_Spring <= restoring_force
Cond: force_I1_applied > restoring_force

State: bolt_position = out
Cond: force_on_spring > restoring_force

State: lock_position = open

State: bolt_position = retracted
lock_position = closed

Cond: force_I2_applied

By: Behavior Lever_Lever_Wedge_Transmit_Force

By: Knowledge Newton’s_2nd_Law

By: Knowledge Newton’s_3rd_Law

FIGURE 12. State transition graph for the top level behavior of the Door Lock 2.
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 205

ed

han

pler

d, an

(i.e.,

 an L-

pre-

., the

nally
5.4.3 A Functional Simplification

A functional simplification may refer to either the “complexity” of using a design

object, or to its possible multiple functions. An object may be “functionally simpler” t

another object if it is easier to use. For example, if it requires fewer inputs or sim

inputs (e.g., force applied in a linear rather than curved motion). On the other han

object can also be “functionally simpler” than another object if it has fewer functions

it can be used for fewer purposes).

As an example, consider the door lock in Figure 14. This design uses a wedge and

shaped bolt to implement the door lock functions. The function of this door lock is re

sented in Figure 15. If we measure functional complexity by the number of inputs (i.e

complexity of the environment), we can say that the door lock in Figure 14 is functio

simpler than the door lock in Figure 11.
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 206
I1

O1

I2

O2

FIGURE 14. Door lock using a combination of a wedge and an L-shaped bolt: (a) schematic and
(b) structural representation

(b)

Door Lock 2

Handle Bolt Spring

position restoring
forceposition position shape

Wedge

welded to
touching

connected

L-shaped
Design Simplification by Analogical Reasoning

Application: Simplification of Designs 207
Function: Open
Environment:

- input I1 applied to the handle
Interaction:

- (force_I1_applied > restoring_force)
=> retract_bolt and open_door

By (deployment):
- Open_Behavior

FIGURE 15. The Open function of the door lock in Figure 14.
Design Simplification by Analogical Reasoning

Implementation 208

sed to

es a

LIPS

 repre-

m used,

anism

S for
CHAPTER 6 Implementation

In this chapter we present the implementation of the computer system that was u

demonstrate our approach to solving simplification problems. The first section giv

general description of the system architecture and provides an explanation of why C

was the language of choice for our implementation. The second section presents the

sentation used by the system. Section three describes the abstraction mechanis

while the last section describes the implementation of the analogical reasoning mech

for simplification.

6.1 The System

The system was implemented in the CLIPS language [CLIPS 1993]. We chose CLIP

the following reasons:
Design Simplification by Analogical Reasoning

Implementation 209

ithm,

d quick

e. Due

of lists

ple-

vail-

 was
• it supports rule-based programming, using a powerful pattern matching algor

called Rete (also used in the implementation of the OPS-5 language);

• it supports object-oriented programming;

• it supports procedural programming;

• it implements a set of powerful query operations;

• it allows easy interfacing with other programming languages (e.g., C);

• a great variety of additional tools are available (e.g., a GUI builder).

These features of the language allowed an object-oriented design of the system an

prototyping.

To us the major disadvantage of the language was the lack of a Lisp-like list data typ

to this, the manipulation of nested lists and symbolic processing, such as evaluation

as function calls, cannot be directly implemented in CLIPS. To overcome this we im

mented a ‘List’ class which provides the entire range of list manipulation methods a

able in most of the Lisp implementations, including evaluation of lists. This class

implemented in CLIPS.
Design Simplification by Analogical Reasoning

Implementation 210

ry we

era-

LIPS

 imple-

faces

GUI

enting

 data-

r part
The current implementation uses a text interface which is based on an interface libra

implemented. This library contains functions for various kinds of input and output op

tions as well as for menu definitions. The library was implemented completely in C

and can be used with any CLIPS program. We must note here that there is a CLIPS

mentation, called wxCLIPS, which allows the development of graphical user inter

(GUI’s) for CLIPS programs. We plan to extend our system in the future with a

implemented in wxCLIPS.

The architecture of the system is shown in Figure 1. The system consists of a database of

known simplifications, an interface module, a data management module, a simplifier and a

simplification abstraction module.

6.1.1 The Database of Known Simplifications

The database of known simplifications stores a collection of CLIPS instances repres

simplifications and the objects that are connected by those simplifications. The entire

base is stored on disk, possibly in several files. To solve simplification problems all o

of the data base has to be loaded into the memory.
Design Simplification by Analogical Reasoning

Implementation 211
FIGURE 1. Architecture of the simplification system

Known
Simplifications

Interface

Simplifier

Design

Simplification
Manager

Manager

Simplification
Editor

Explanation
Builder

Relevance
Calculator

Data
Management

Retrieving Rules

Modified SME

Simplification
Generator

EvaluatorAbstraction
Mechanism - evaluation

- new simplification

- transfer

- mapping

- retrieving

- generalizing
Design Simplification by Analogical Reasoning

Implementation 212

ystem

design.

men-

ana-

tion

stem

 com-

e runs

bjects
We currently partition the data base based on the different application domains our s

accepts. Those application domains are mathematics, programs and mechanical

Each partition is stored in a different file. We made this design decision for our imple

tation to be able to perform experiments with “within domain” and “across domain”

logical reasoning. Any number of partitions corresponding to different applica

domains can be loaded into memory at the same time.

6.1.2 The Interface Module

The interface module allows the user to interact with the system. It uses a combinedcom-

mand-line/menu interface. This means that the user may type in commands at the sy

prompter, but entering the empty command (just carriage return) or an erroneous

mand will cause a menu of the available commands to be displayed. The sampl

shown in Appendix B illustrate the use of the interface.

6.1.3 The Data Management Module

The data management module allows the creation, editing, saving and loading of o

and simplifications. It consists of two submodules: the design manager and the simplifica-

tion manager.
Design Simplification by Analogical Reasoning

Implementation 213

nted in

-

ternal

LIPS

ernal

r exter-

 func-

rd text

new

ns the

enting

 not be

ibutes,
6.1.3.1 The Design Manager

The design manager submodule allows the creation and editing of objects represe

external format as well as saving and loading them internal format. The external represen

tation of an object has the structure shown in Figure 2. Appendix A presents the ex

representation of several designs. The internal representation is in the form of C

instances. While CLIPS instance files are text files (just like the files containing ext

representations), they use a much more compact representation of objects than ou

nal representation and are saved and loaded efficiently by the corresponding CLIPS

tions.

In the current implementation, creating and editing of objects is done using a standa

editor (currently Emacs running on UNIX) which is called by the system. When a

object is created a template file is loaded into the text editor. This template file contai

syntactical structures of all the elements which may be needed for externally repres

an objects.

Note that for some domains, the general external representation defined by us may

natural. For instance, representing mathematical expressions as objects (with attr
Design Simplification by Analogical Reasoning

Implementation 214

r this

d and

n and
components and relations, plus behavior and function) is very counterintuitive. Fo

reason, if a domain which is to be included into the system, has a well establishe

widely used system of representation, a module for interpreting that representatio

FIGURE 2. The structure of the external representation of an object

(RootDesign <root-design-name>
(Attributes

(Attribute <attribute-name> <default-value>)
... more attributes

)
(Components

(Design <design-name> ... design description)
... more component designs

)
(Relations

(Relation <relation-name> <list-of-components>)
...

)
(Behaviors

(Process <process-name>
(ProcStep

(ObjectState <state-description >)
(Condition <condition-description>)
(Apply <action-description>)
(ObjectState <state-description >)

) ... more process steps
... more behaviors (process descriptions)

)
(Uses

(Process <process-description>)
... more process description

)
)

Design Simplification by Analogical Reasoning

Implementation 215

ur sys-

fixed

ation

LIPS

e all or

ons

e.

acs

the

tacti-

plana-
building the appropriate internal representations needs to be added to the system. O

tem currently has a module which is able to read in arithmetical expressions in pre

“Polish notation” and build the appropriate internal representations.

Besides creating and editing objects represented in external format, the simplific

manager module implements routines for saving and loading objects in internal (C

instance) format. Saving can be done selectively, that is, the user can select to sav

just some of the objects currently represented in the memory.

6.1.3.2 The Simplification Manager

The simplification manager allows for creating new simplifications, saving simplificati

to a simplification database and loading simplifications from a simplification databas

Creating a new simplification consists of editing the simplification, explaining the simplifi-

cation and performing the relevance calculation.

Editing a simplification can be done either by calling an external editor (currently Em

running under UNIX), or interactively. Using the editor for simplifications is similar to

way of editing objects, that is, initially the editor loads a template describing the syn

cal structures of the elements needed to represent simplifications (objects and ex
Design Simplification by Analogical Reasoning

Implementation 216

te file

er to

 sys-

)

tion). This template can then be edited (Figure 3 shows the structure of the templa

loaded into the editor when a new simplification is to be built).

During the interactive creation of a simplification the system first prompts the us

select the objects which will be involved in the simplification to be created. Next, the

tem asks the user to select the explanation type (by difference or by simplification process

FIGURE 3. The structure of the external representation of a simplification

(Simpler
<simpler-design-description>
<less-simple-design-description>
(Explain

(Difference (replaced <component-1> <component-2>))
... more difference descriptions

)
)

Or, if the explanation is by simplification process:

(Simpler
<simpler-design-description>
<less-simple-design-description>
(Explain

(Process <process-description>)
)

)

Design Simplification by Analogical Reasoning

Implementation 217

a-

com-

e two

eater

gen-

 per-

aving

 con-
and the corresponding explanation specification (differences or sequences of transform

tion).

When a new simplification is created, the complexity of the two objects involved are

pared, according to the complexity measure currently in use. If the complexities of th

objects are not in the correct relation (i.e., the complexity of the “simpler” object is gr

or equal than the complexity of the “more complicated” one) the simplification is not

erated.

After a new simplification is created the relevance calculation (see Chapter 4) is

formed automatically.

The simplification manager submodule also implements routines for loading and s

simplifications represented in internal format, that is, in form of CLIPS instances.

6.1.4 The Simplifier Module

The simplifier module is the part of the system that solves simplification problems. It

sists of four submodules: the set of Retrieving Rules, the Modified SME, the Simplification

Generator and the Evaluator.
Design Simplification by Analogical Reasoning

Implementation 218

g the

to two

t: are

lified.

 input

ypoth-

ifi-

ated by
6.1.4.1 The Retrieving Rules Submodule

The Retrieving Rules submodule consists of a set of CLIPS rules implementin

retrieval phase of the analogical reasoning process. These rules are divided in

groups: rules for selecting objects involved in simplifications (source objects) with the

same point of view (context, aspect and measure) as the simplification problem, andrules

for building match hypotheses.

The rules for building match hypotheses look for relations in the source objects tha

identical (same name) to some relation in the object to be simplified, or have a common

super-relation with some relation in the object to be simplified, or have the same signature

(same number and type of arguments) with some relation in the object to be simp

Each rule, when fired will create a match hypothesis object, that will be used as an

by the SME. Figure 4 shows the rules currently used by the system to build match h

eses.

6.1.4.2 The Modified Structure Mapping Engine

The Modified SME submodule is a CLIPS implementation of the SME with two sign

cant modifications: a) the match hypotheses are input to the SME as they are gener
Design Simplification by Analogical Reasoning

Implementation 219
FIGURE 4. CLIPS rules for building match hypotheses

; Building a match for relations with the same name

(defrule NameMatch
(retrieved match ?design ?oldDesign ?simRel)
?locRelNew <= (object (is-a Relation)

(Name?n)
(Root?design)

)
?locRelOld <= (object (is-a Relation)

(Name?n)
(Root?oldDesign)

)
(test (neq ?locRelNew ?locRelOld))
(test (IsRelevantp ?locRelOld ?simRel))

=>
(MatchHypothesis ?locRelNew ?locRelOld ?simRel)

)

; Building a match for relations with a common ancestor

(defrule CommonAncestorMatch
(retrieve match ?design ?oldDesign ?simRel)
?locRelNew <= (object (is-a Relation)

(Root ?design)
(Definition ?relDefNew)

)
?locRelOld <= (object (is-a Relation)

(Root ?oldDesign)
(Definition ?relDefOld)

)

(test (neq ?locRelNew ?locRelOld))
(test (IsRelevantp ?locRelOld ?simRel))
(test (neq (CommonSupRel ?relDefNew ?relDefOld) nil))

=>
(MatchHypothesis ?locRelNew ?locRelOld ?simRel)

)

Design Simplification by Analogical Reasoning

Implementation 220

ms of

tion of

83]. A

E is

 the
the retrieving rules, and b) building the global mappings (maximal consistent syste

matches) is restricted to the relevant elements of the source object. Our implementa

the SME consists of a set of CLIPS routines based on the description in [Gentner 19

high level description of the mapping phase as implemented my our modified SM

given in Figure 5.

The Modified SME will produce a best global mapping which then will be used by

Simplification Generator submodule to build candidate simplifications.

; Building a match for relations of the same arity

(defrule ArityMatch
(retrieve match ?design ?oldDesign ?simRel)
?locRelNew <= (object (is-a Relation)

(Arity?n)
(Root?design)

)
?locRelOld <= (object (is-a Relation)

(Arity?n)
(Root?oldDesign)

)
(test (neq ?locRelNew ?locRelOld))
(test (IsRelevantp ?locRelOld ?simRel))

=>
(MatchHypothesis ?locRelNew ?locRelOld ?simRel)

)

FIGURE 4 continued. CLIPS rules for building match hypotheses
Design Simplification by Analogical Reasoning

Implementation 221

tween

e sim-

 pair

6.1.4.3 The Simplification Generator

The Simplification Generator submodule takes as input the best global mapping be

the source and the target produced by the modified SME and will produce candidat

plifications. This global mapping takes the form of a list of matches. Each match is a

of elements, the first one being from the source and the second one from the target.

The operation of the simplification generator is described in Figure 6.

FIGURE 5. A description of the mapping phase as implemented by the modified SME

Mapping Algorithm
Input: M - a set of match hypotheses
Output: G - a set of global mappings

begin
- Build a partition L of M consisting of locally

consistent subsets of M 1.
- Propagate local inconsistencies up the arguments

structure of relevant match hypotheses (i.e., match
hypotheses which involve a relevant element) to rule
out match hypotheses that are inconsistent due to the
inconsistency of their arguments

- Combine consistent sets of match hypotheses to obtain
the set of global mappings

end

1. A set of match hypotheses is locally consistent if it represents an 1:1 association between elements.
Design Simplification by Analogical Reasoning

Implementation 222

 view.

n. It

 com-
6.1.4.4 The Evaluator

The Evaluator submodule evaluates the candidate simplifications from two points of

For a candidate simplification generated, it first checks if it is indeed a simplificatio

does this by computing the complexities of the two objects involved according to the

Simplification Knowledge Transfer
Input: g - global mapping
Output: O - an object resulting from transferring the

 simplification knowledge
begin

if source explained by difference then
- interpret g as a substitution and

apply it to the target to generate a new object O,
- complete O by assigning values to the elements

not bound by g 1

else (source explained by process)
- interpret g as a substitution
- create O as a copy of the target
- for each step in the explanation do

- assign values to the still unbound elements
- apply the step obtained to modify O

end (do)
end (if)

end

1. Note that this assignment may be done in more than one way

FIGURE 6. Generation of a candidate simplifications from a global mapping
Design Simplification by Analogical Reasoning

Implementation 223

tion,

n to

plifi-

f can-

idate

d in

se of

if it is

se of

 num-

trac-

 and

ntly
plexity measure currently in use. If the two complexities are not in the correct rela

then the candidate simplification is discarded.

The second evaluation refers to comparing the “quality” of the candidate simplificatio

that of the currently best simplification obtained. This is achieved by running the Sim

cation Generator and the Evaluator interleaved. At any time during the generation o

didate simplification a “best candidate simplification” is stored. The quality of a cand

simplification is measured by the complexity of the “more complicated object” involve

it. Whenever a new candidate simplification is generated, if it passes the first pha

evaluation, its quality is immediately compared to that of the currently best one and

better, it will become the new currently best simplification. Note, that this second pha

evaluation does not require any extra computation, except for the comparison of two

bers, since the complexities have already been computed in the first phase.

6.1.5 The Simplification Abstraction Module

The Simplification Abstraction Module implements a mechanism for building an abs

tion over two given simplifications. It is called when a new simplification is generated

it is sufficiently significant from the source simplification used for generating it. Curre

our system only performs a relevance-based abstraction. This means that it will create a
Design Simplification by Analogical Reasoning

Implementation 224

 from

in our

ns it

cts,

les.
new simplification in which the elements which are not relevant have been removed

the objects involved. The operation of the simplification abstraction as implemented

system is described in Figure 7. While this is a very simple way of building abstractio

is very useful for two reasons: a) it will create simplifications that involve simpler obje

which will be easier to match, and b) it allows the extraction of some simplification ru

Abstraction
Input: S(A,B) - simplification (A simpler than B)
Output: AS - simplification

begin
- Find the minimal part B that contains all the

relevant portions (by propagation up along the
structural representation)

- Build an object b which is a copy of this minimal part
- Build a from A by removing all the elements that

are not part of b
- Generate a simplification AS(a,b) with the an

explanation identical to that of S(A,B)
end

FIGURE 7. Performing relevance-based abstraction
Design Simplification by Analogical Reasoning

Implementation 225

ning a

nd pro-

ented

bjects.

rrows

black

 we

rchy

 of the

rly

nctions

 new
6.2 Representation

To represent designs and simplifications we took an object-oriented approach, defi

set of CLIPS classes. Besides the obvious advantages of object-oriented design a

gramming, this allowed us to use features offered by CLOOS, the CLIPS object ori

system [CLIPS, 1993], such as pattern matching on objects and queries on sets of o

Figure 8 presents the class hierarchy defined in our implementation. The thick gray a

represent the “subclass of” (or “is-a”) relations between classes, while the thin

arrows represent the “has part” (i.e., the inverse of “part-of”) relation. In Appendix C

give a complete printout of the class definitions in this hierarchy. The class hiera

should be extended every time a new application domain is added to the system.

To add a new application domain one needs to add a new class defining the objects

domain, by deriving it from the “Object ” class. In order for such a class to be prope

integrated into the system one needs to overload a set of message handlers and fu

for performing domain-specific input and output. We must note here that, for adding a
Design Simplification by Analogical Reasoning

Implementation 226

ons of

y edit-

 and
application domain, the language of the system has to be extended by the definiti

relations and attributes specific to that domain. This can be done by either manuall

ing the default language file (called “default.lng”), or by creating a new language file

loading it into the system.

FIGURE 8. The hierarchy of classes defined in the design simplification system

USER

Object

Relation
Definition

Relation

Expression

Simplification

Attribute

Attribute
List

Process

Object
State

is-a

is-a

is-a

is-a

is-a

is-a

part-of

part-of

part-of

part-of

part-of

part-of
Design Simplification by Analogical Reasoning

Implementation 227

tion by

ct (or

po-

lying

 com-

en sim-

vant

tation

soning

tions,

g to

oblem

e rel-
6.3 Implementation of the Abstraction Mechanism

The abstraction mechanism is used to produce a new object (or relation) representa

removing (abstracting from) some of the details in the representation of a given obje

relation). Our current implementation allows abstracting in objects by removing com

nents, relations, attributes or attribute values, or in simplification relations, by app

abstraction to the objects involved, or by removing elements in the explanation (e.g.,

ponents, explanation process steps). Note here that when an abstraction over a giv

plification is performed by removing elements in the explanation, the set of rele

elements needs to be recomputed for the abstract simplification. In our implemen

this is automatically performed every time a new simplification is created.

In our system abstraction can be applied to an object, to make the analogical rea

process more efficient by only considering the relevant elements of known simplifica

or to a set of simplifications to produce an abstract simplification (correspondin

generic simplification rule or to a simplification principle).

When applying abstraction to an object the abstraction process is guided by the pr

solving goal, that is, simplification. This is done by only considering elements that ar
Design Simplification by Analogical Reasoning

Implementation 228

ed to

, the

sting

ing of

ime of

sults

ion of

ove

o the

 new

levant

is per-

ifica-

LIPS
evant to some simplification (i.e., which are in the set of relevant elements attach

some simplification). We implemented this by including into the left hand side (i.e.

“if” side) of the CLIPS rules used for building the match hypotheses, conditions for te

relevance of the elements for which a match is trying to be hypothesized. The test

this condition is efficient because the relevance computation is always done at the t

creating a new simplification. The advantage of applying this abstraction is that it re

in pruning the from the database all the objects that are not relevant to a simplificat

the type (i.e., point of view) searched for.

The only way our system can currently apply abstraction to simplifications is to rem

irrelevant elements for a given simplification. This is done by applying abstraction t

two objects involved in the simplification. Note that there is no need to generate a

explanation because every element referred to in the old explanation in the set of re

elements and thus will not be removed by the abstraction process. This process

formed by performing a CLIPS query on all the relevant elements of the given simpl

tion. This process is efficient because it only uses value matching on two slots of C

instances representing objects.
Design Simplification by Analogical Reasoning

Implementation 229

cture

d an

riginal

theses

atch

y this
6.4 Implementation of the Analogical Reasoning Mechanism

Our analogical reasoning is essentially an implementation of Falkenheiner’s Stru

Mapping Engine (SME) [Falkenheiner et al. 1993]. in this implementation we use

object-oriented approach (as opposed to the purely procedural approach of the o

implementation). For this we defined CLIPS classes for representing match hypo

and mappings. The implementation of SME is by a set of CLIPS rules which use m

conditions formulated in terms of objects of class match hypothesis and mapping. B

the operation of SME is described more clearly.
Design Simplification by Analogical Reasoning

System Demonstration 230

n

system

and, to

adth of

 our

emon-
CHAPTER 7 System Demonstratio

In this chapter we present a set of sample problems we have solved using the

described in the previous chapter. The goal of presenting these problems is on one h

illustrate the operation of the system, and on the other hand to demonstrate the bre

the system. Each of the sections in this chapter presents one sample problem

7.1 Simplification of an Arithmetic Expression

Simplification of arithmetic expressions is one of the application domains on which

system was tested. Among others, our decision to use arithmetic expressions to d

strate the system was based on the following considerations:
Design Simplification by Analogical Reasoning

System Demonstration 231

pres-

f dif-

 the

ures

rmed

n:
1. Since there are a significant number of transformation rules for arithmetic ex

sions, it is easy to build large simplification databases that allow the testing o

ferent aspects of the system’s operation;

2. The rules for forming arithmetic expressions are flexible enough to allow

building of interesting simplification problems;

3. The experience gained by performing simplifications on well-formed struct

can be used in other domains, such as software or hardware.

In this section we will describe the simplification of an arithmetic expression as perfo

by our system.

7.1.1 The Sample Problem and Issued Raised

We presented the system with the following simplification problem:

Reduce the number of elements used to represent the following arithmetic expressio

x
xy x z uv+()+

Design Simplification by Analogical Reasoning

System Demonstration 232

xpres-

wing

ata-
The structure of this expression is shown in Figure 1.

For an expert in manipulating arithmetic expressions, it should be clear that this e

sion is equivalent with the following simpler expression:

By showing how our system solves this problem we will demonstrate how the follo

issues are addressed:

• how to retrieve the best matching source simplification in the simplification d

base,

/

x +

*

x y

*

x

z

u v

+

*

FIGURE 1. Structure of the arithmetic expression to be simplified. The shaded portion specifies
where factoring can be applied.

1
y z uv+()+

Design Simplification by Analogical Reasoning

System Demonstration 233

tion

impli-

ith

-

ompli-
• how to apply the retrieved simplification to the current problem (target),

• how to decide whether the result produced is a valid simplification, and

• how to decide whether further simplifications could be applied.

In the following subsection we will describe how our system solves the simplifica

problem proposed.

7.1.2 Operation of the System

To Solve the simplification problem proposed above the system was loaded with a s

fication database containing a set of sample simplifications. This set did not contain a sim-

plification corresponding to the general distributivity property of multiplication w

respect to addition (i.e.,). It contained, how

ever, examples of factoring out a term from a sum of subexpressions in a more c

cated expression. One such simplification example was the following:

SIMPLER THAN

for all x,y,z ℜ xy xz+,∈ x y z+()=

3 1 2a–() a 2b–() c d e+() z+[]{ }+

3 1 2a–() a 2b–() c d e+()⋅ a 2b–() z⋅+[]+
Design Simplification by Analogical Reasoning

System Demonstration 234

ded

at is by

or-

 what

hapter

ure 2
Figure 2 illustrates the structure of this simplification. When this simplification was ad

to the database, it was explained by the difference between the two expressions, th

the replacement of the subexpression (a - 2b)c(d + e) + (a - 2b)z by the subexpres-

sion (a - 2b)[c(d + e) + z]. Due to this, the database did not contain any explicit inf

mation about the conditions under which the simplification was performed, or about

was relevant in performing this simplification. As a consequence, as described in C

4, the relevance calculation will result in designating the shaded portion shown in Fig

FIGURE 2. Representation of a simplification of an arithmetic expression

-

a *

2 b

-

a *

2 b

3

* *

*

c +

d e

+

-

a *

2 b

-

a *

2 b

3

*

*

*

c +

d e

-

a *

2 b

*

z

+

+

+

z

Design Simplification by Analogical Reasoning

System Demonstration 235

 and

s to

 find it

ulty

ompli-

arith-

ciating

rtions

etic

d with

ators)

., both ‘-

per-
as relevant to the simplification. This relevant portion will be used in the retrieving

mapping phases of the analogical problem solving process.

The first difficulty raised by the simplification problem presented to the system i

retrieve the simplification shown in Figure 2 as the best source analog, or at least to

sufficiently similar to the problem to be used for building a global mapping. The diffic

of this is a consequence of the fact that an arithmetic expression may have a very c

cated structure which is built using only four operators, corresponding to the four

metic operations.

The first step in retrieving a source analog is to generate match hypotheses asso

relations (corresponding to operators) in the target with relations in the relevant po

of known simplifications (i.e., simplifications stored in the database). For arithm

expressions, it is the case that practically every relation in the target can be matche

any relevant relation in a simplification. This is true because any two relations (oper

have either have the same name or are descendants of the same super-relation (e.g

’ and ‘+’ are ‘additive operations’), and definitely have the same arity (number of o

ands).
Design Simplification by Analogical Reasoning

System Demonstration 236

names

 able

analo-

possi-

own

1 can

 of the

implifi-

ppings

n of

., con-

othe-

mbines

atch
Generating matches could be restricted to only considering relations with the same

(e.g., only match a ‘+’ to another ‘+’). In this case, however, the system would not be

to discover any analogies based solely on structural similarities, or cross-domain

gies. The problem of generating matches is further complicated by the fact that it is

ble that only a (small) part of the target can be simplified by analogy with some kn

simplification. For example, in our example only the shaded portion shown in Figure

be simplified by analogy with the simplification shown in Figure 2.

After generating the match hypotheses, the system builds a set of global mappings

target onto the source and then selects the best global mapping(s) to transfer the s

cation knowledge. Once the set of matches was generated the building of global ma

is not difficult (see [Falkenheiner et al., 1993]). The difficulty arises in the evaluatio

the quality of the global mappings generated. This is due to the fact that, a large (i.e

sisting of many match hypotheses) but weak (i.e., consisting of low score match hyp

ses) global mapping may score higher than a small but strong one.

To overcome these difficulties, our system uses a score evaluation scheme that co

structural complexity measurement (external path length) with type-dependent m
Design Simplification by Analogical Reasoning

System Demonstration 237

 this

plifi-

pres-

t and

 if the

lem

ed to

m han-

echani-

tion to
weighting (i.e., assigning different weights to different types of matches). Due to

scheme our system correctly selects the best global matching for our problem.

From the global mapping the system builds a substitution and then it transfers the sim

cation knowledge to the target using this substitution. This results in the simpler ex

sion presented above.

After the simpler expression was generated, a corresponding simplification is buil

added to the simplification data base for future use.

Note, that currently, our system does not implement any mechanism for evaluating

new simplification is worth to be stored. Thus, when a solution to a simplification prob

is found, the user is prompted to decide whether the new simplification will be add

the data base or not.

7.2 Simplification of the Personal Fax Design

The goal of the example presented in this section is to demonstrate how the syste

dles issues raised by cross-domain analogy. The target domain of the example is m

cal design, while the source domain is the domain of arithmetic expressions. In addi
Design Simplification by Analogical Reasoning

System Demonstration 238

show

ce of

 struc-

ica-

r the

usly

x. The

e two

o the
demonstrating how the simplification method works, the goal of this example is to

how a domain with many known simplification rules and principles can be a sour

inspiration for another domain that lacks them.

7.2.1 The Sample Problem and Issued Raised

The example presented was taken from [Petroski 1996], and it represents a two-step

tural simplification for the “Old Fax” presented in Figure 1. The first step of the simplif

tion is to remove the two pairs of rollers in the reader part. This is possible unde

condition that the platen roller could take over the role of the rollers. This is obvio

achievable because a similar mechanism is implemented in the printer part of the fa

second step of the simplification is to replace the two stepping motors used in th

parts of the fax by a single stepping motor used by both parts.

We were expecting the system to produce a known structural simplification, similar t

“New Fax” presented in the same figure.
Design Simplification by Analogical Reasoning

System Demonstration 239
FIGURE 3. Simplification example of a Personal Fax (adapted from [Petroski 1996])

“Old Fax”

“New Fax”

Reader Part Printer Part

stepping
motor

stepping
motor

platen
roller

platen
roller

rollerroller

image sensor

document

image sensor

thermal head

thermal head

recording
paper

platen
roller

platen
roller

stepping
motor

recording
paperdocument

S
im

pl
er

 T
ha

n

Reader Part Printer Part
Design Simplification by Analogical Reasoning

System Demonstration 240

is pre-

ration

and

rieve

tching

 the

d from

tually

ng to

mage

g, and

propri-

 point).
7.2.2 Operation of the System

When our system, loaded with a simplification database of arithmetic expressions,

sented with this example, it first retrieves sources containing chains of the same ope

connecting objects of the same type (similar to “roller_1 moves document

platen_roller_1 moves document and roller_2 moves document”). Ideally it would ret

a source of the form (where X is an arbitrary arithmetic

expression), which would obviously suggest the removing of the two rollers.

Note however that, even if such a simplification is not present in the database, a ma

chain of any length will be retrieved (if one exists). The mapping built between

retrieved source and the target will suggest that two elements of the three be remove

the chain consisting of the two rollers and the platen roller. Which of the two can ac

be removed has to be decided within the domain (of the fax machine). Accordi

Petroski [1996] the only function of the two rollers was to feed the document to the i

sensor. The platen roller however played a more central role in the process of readin

could not be removed. As a consequence, the two rollers could be removed with ap

ate propagation of this change (our system does not perform the propagation at this

X simpler than 0 X 0+ +
Design Simplification by Analogical Reasoning

System Demonstration 241

ication

out”

lation

r_2“.

drives

. In the

otors,

 trans-
The design generated by removing the two rollers is then proposed as a new simplif

problem. The system will retrieve simplifications that are instances of the “factoring

operation, that is sources of the form (where X, Y

and Z are arbitrary arithmetic expressions). Such a source maps well onto the re

“stepping_motor_1 drives platen_roller_1 and stepping_motor_2 drives platen_rolle

Such a mapping suggest that the structure be replaced by “stepping_motor

platen_roller_1 and platen_roller_2”.

The question that has to be addressed is whether this replacement is legal or not

explanation of the simplification mapped, the condition is that the two instances of X are

identical (not the same!). The same condition can be checked for the two stepping m

this time however in the domain of mechanical design. As this test succeeds, the

ferred simplification can be applied.

X Y Z+() simpler than XY XZ+⋅
Design Simplification by Analogical Reasoning

System Demonstration 242
Design Simplification by Analogical Reasoning

Experiments 243

hapter

emon-

lems

 some

main

 used

g spe-

 goals
CHAPTER 8 Experiments

In the previous section we described our implementation of a design simplification system.

We built the system to demonstrate our ideas presented in the dissertation. In this c

we describe the experiments we conducted with our design simplification system.

The general goal we pursued with the experiments described in this chapter was to d

strate that the method we proposed in the dissertation for solving simplification prob

works. For this we had to demonstrate that the system is capable of reproducing

known simplifications, both by using within-domain analogies and by using cross-do

analogies, as well as being capable of producing new simplifications. In addition, we

our experiments to demonstrate the benefits of the solutions we proposed for solvin

cific problems raised by the analogical reasoning approach. We can summarize the

of our experiments as follows:
Design Simplification by Analogical Reasoning

Experiments 244

lifica-

 or

mplifi-

nt of

nts we

 imple-

tabase of

exam-

cross-

e first

btained.
• to demonstrate that the system is effective, that is, capable of producing simp

tions using known simplifications from either within the application domain,

across domains;

• to measure how using relevance influences the resources required to solve si

cation problems;

• to study how using different ways of measuring complexity from the same poi

view (e.g., structural complexity) effects the results produced;

To achieve each of these goals we performed several experiments. For our experime

used two application domains: mathematical expressions and mechanical designs

mented by simple mechanisms. For each of these domains we used a separated da

simplifications in order to be able to use them both individually or in combination.

The results described in this chapter refer to a set of experiments consisting of 10

ples, of which 7 were solved using within-domain analogy and the other three using

domain analogy. The test examples used for within-domain analogy are listed in th

part of Appendix A.

The next sections describe the experiments we performed and discuss the results o

Each of the sections is organized around a specific goal.
Design Simplification by Analogical Reasoning

Experiments 245

lems,

 that:

alo-

nalo-

nalo-

ain for

which

cant
8.1 Demonstrating that the Simplification System is Effective

To demonstrate that the system is effective we presented it with different prob

selected to test various situations.

The two major categories of experiments we performed were meant to demonstrate

a) the system is capable of producing simplifications by using within-domain an

gies, and

b) the system is capable of producing simplifications by using cross-domain a

gies.

To test the capability of the system to produce simplifications using within-domain a

gies we used a simplification database of arithmetic expressions. We chose this dom

the following reasons:

• in mathematics there are many rules for equivalent transformations (some of

can actually be interpreted as simplifications), which allowed us to build a signifi

database of simplification examples;
Design Simplification by Analogical Reasoning

Experiments 246

 num-

oning

opera-

other

 capa-

ple-

nly

ected

iden-

lf. We

on-

xpres-

nalo-
• the fact that arithmetic expressions are well-formed representations (of sets of

bers) allowed us to concentrate in this phase on testing the analogical reas

mechanism without having to be concerned with representational issues;

• since arithmetic expressions are built from relations (represented here by the

tors connecting subexpressions) which are syntactically very similar to each

(in that they have the same signatures), they are good examples for testing the

bility of the system to discover of similarities between deep structures (see note

below).

Note, that in most of the applications of model-based analogical reasoning im

mented using the SME, the similarities found and exploited are between shallow

(typically three level) structures. We call those structures “shallow” because the o

consist of a set of “objects” connected by relations, with those relations conn

by “higher level relations” (such as causality). Such systems rely more on the

tity of the relation names in the structures matched, than on the structure itse

believe that this is a significant limitation, especially if the application domain c

tains structured objects with possibly deep structures (such as arithmetic e

sions, or designs).

To test the capability of the system to produce simplifications using cross-domain a
Design Simplification by Analogical Reasoning

Experiments 247

d pre-

ical

nd to

ation

other

ls were:

edge

a sim-

ness

g (if
gies we used the same database of simplifications of arithmetical expressions an

sented it with simplification problems drawn from the domain of simple mechan

designs. This choice is motivated by the following:

• design is our main application domain and the domain towards which we inte

further extend our research on simplification by analogical reasoning;

• most of the design domains lack good simplification rules or principles;

• mathematics, which (as stated earlier) has a significant number of simplific

rules and examples can be a good source of inspiration for simplifications in

domains.

In this set of experiments we also pursued a set of specific subgoals. These subgoa

1. to demonstrate that the system is capable of transferring simplification knowl

whether the explanation of the source analog is given as a difference, or as

plification process description;

2. to analyze the effect of the size of the simplification database on the effective

and efficiency of the system;

3. to determine what kinds of analogies the system will not be capable of buildin

any).
Design Simplification by Analogical Reasoning

Experiments 248

e the

ed to

tained.

base

d in a

pter 7)

ined

:

a sim-

 each

orrect

ica-

ations

e pre-
4. to analyze how the different rules of match hypothesis generation influenc

operation of the system.

In the following subsections we describe the setup of the experiments we perform

demonstrate the effectiveness of our system, and present and discuss the results ob

8.1.1 Setting up the Experiments

For using within-domain analogies the system was loaded with a simplification data

consisting of simplifications of arithmetic expressions. The database was generate

previous session, using the system’s simplification management capability (see Cha

and contained simplifications explained by difference, as well as simplifications expla

by a simplification process description. We then performed the following experiments

1. We presented the system with a set of expressions (one at a time) for which

plification was known (but not stored in the database used) and recorded for

of those expressions whether a simplification was produced, whether it was c

from the point of view of the domain and whether it was ‘the obvious simplif

tion’ an expert in mathematical expressions would perform.

2. We successively increased the size of the database by adding new simplific

and for each of the new versions we performed the same experiments as in th
Design Simplification by Analogical Reasoning

Experiments 249

pera-

.

othe-

ce a

 not

hem.

es that

m was

hether

ation

n of the

uence

red the
vious step. This time we measured and recorded the number of “specific o

tions” performed by the different phases of the analogical reasoning process.

The specific operations we counted for the different phases were:

• creating of a match hypotheses for the retrieving phase,

• generation of gmaps for the mapping phase,

• generation of candidate simplifications for the knowledge transfer phase

The measures were then summarized and analyzed.

3. Analyzing the results of the experiments described at points 1 and 2 we hyp

sized characterizations of the situations for which the system did not produ

simplification, as well as those for which it produced simplifications that were

the “obvious ones”. For these hypotheses we built further examples to verify t

For cross-domain analogies the system was loaded with the simplification databas

had been used for the within-domain analogies case. This time, however, the syste

presented with examples from the domain of simple mechanical designs. To test w

the system is capable of reproducing a know simplification we used the simplific

example presented in Section 7.2. The system was presented with the representatio

“Old Fax”, as given in Appendix A. The experiment was repeated for the same seq

of databases as used for within-domain analogy. Again, we measured and registe
Design Simplification by Analogical Reasoning

Experiments 250

soning

iffer-

 same

 match

system

 of the

 the
number of specific operations performed for each of the phases of the analogical rea

process.

Finally, we performed the complete set of experiments presented earlier turning off d

ent combinations of match hypothesis generating rules. We performed exactly the

measurements and compared the results to analyze the influence of the different

hypothesis generation rules on the operation of our system.

8.1.2 Results and Discussion

The results of the experiments performed to demonstrate the effectiveness of the

are summarized in Table 1.

The first column of the table characterizes the size of the database used in terms

number of simplifications scaled with (i.e., multiplied by) the average complexity of

Database
Size

Simplifications
Produced

Correct
Simplifications
Produced

Match
Hypotheses
Generated

Gmaps
Generated

Candidate
Simplifications
Generated

18 1 1 18 7 1

40 1 1 37 13 1

50 1 1 49 17 1

75 1 1 65 24 1

85 1 1 67 27 1

TABLE 1. Summary of Experiments Results for Within-Domain Analogies
Design Simplification by Analogical Reasoning

Experiments 251

 num-

ingle

 one

 of

s” of

ith in

blem,

d the

t that

ppings

only

e, that

is is

nsions

em we

urse,
“more complex” portion of those simplifications. We used this measure because the

ber of simplifications by itself is not informative enough: a database containing a s

simplification of a very high complexity may be harder to search for matches than

containing many simplifications of very low complexity. By multiplying the number

simplifications and their average complexity together captures both of the “dimension

the database.

Since we expected that the system would solve all the problems we presented it w

this set of experiments, columns 2, 3 and 6 all contain 1’s meaning that for each pro

the system produced exactly one candidate simplification, from which it produce

“correct” simplification (i.e., the one we expected). The other two columns sugges

both the number of match hypotheses generated and the number of global ma

(gmaps) built grows proportionally with the size of the database. Obviously this

allows the formation of a hypothesis which still need to be proven. We must note her

a theoretical characterization of this growth is extremely difficult, if possible at all. Th

true, mainly because the performance of the system will depend on both of the dime

of the database, that is, number of simplifications and their complexity.

The conclusion we can draw from the results presented in this table is that the syst

built is able to produce within-domain simplifications as expected by the user (of co
Design Simplification by Analogical Reasoning

Experiments 252

rating

 of the

nerated

ions,

mmon

e.

gether

on its

name”

 hap-

 a com-
provided it has the necessary example simplifications to rely on).

The results of experiments with different combinations of match hypothesis gene

rules are presented in Table 2. The letters in the heading row stand for the names

match hypothesis generating rules (see Appendix A): Name, common-Ancestor and aRity,

respectively. Each of those columns contain the numbers of match hypotheses ge

for each of the rule combinations. Note that, for the domain of arithmetic express

which only use binary operations, all the match hypotheses generated by the “co

ancestor” rule are also generated by the “same arity” rule, and the reverse is also tru

The results presented in the table indicate that using the different matching rules to

allows for generating more match hypotheses. This information is not very useful

own. It becomes more interesting together with the fact that even when the “same

matching was turned off (AR), the system was able to produce the right solution. This

pened due to the fact that relations with the same name were matched up as having

Database
Size

NAR N A R NA NR AR

18 18 4 7 7 11 11 14

40 37 8 14 14 23 23 28

50 49 9 19 19 30 30 38

75 65 11 26 26 39 39 52

85 67 13 30 30 43 43 60

TABLE 2.
Design Simplification by Analogical Reasoning

Experiments 253

perate

ed for

nd/or

match

” rule is

sions,

ocess

odel

impli-

proves
mon ancestor or the same arity. This clearly shows that our system is able to o

correctly based only on the structure of the objects to be matched (without the ne

restricting matching to objects with the same name).

A note we need to make here is that when only relying on the “common ancestor” a

the “same arity” rules, the system’s performance, as measured by the number of

hypotheses generated, degrades compared to the case when only the “same name

used (as it is done in other implementations of the structure mapping theory).

8.2 Measuring the Effect of Using Relevance

Applying the relevance of object elements (e.g., subexpressions of arithmetic expres

or components of designs) to simplifications throughout the analogical reasoning pr

is one of the important contributions of this dissertation. It is the way by which the m

of analogical reasoning proposed takes into account the problem solving goal (i.e., s

fication), producing goal-directed analogical reasoning.

To demonstrate that using relevance to guide the analogical reasoning process im

the performance of our system, we had to measure its effect. For this we needed:
Design Simplification by Analogical Reasoning

Experiments 254

ffected

erfor-

erfor-

the lit-

 there

vance

here is

perfor-

ses of

of the
1. to hypothesize which phases of the analogical reasoning process could be a

by the use of relevance,

2. to define a measure of performance for each of those phases,

3. to design and perform a set of experiments to collect statistics about the p

mance measures of the different phases.

As we pointed out in Chapter 2, choosing physical time as measure of the time p

mance (complexity) of a process is not adequate for several reason. As it is done in

erature on algorithm complexity (see [Brassard & Bratley, 1996]), we have proposed

that the time performance of a process should be measured by the number of specific oper-

ations performed. In our experiments, performed to measure the effect of using rele

on the performance of our system, we adopted the same approach. Unfortunately t

no unique specific operation that can be counted to measure the system’s overall

mance. For this reason we chose to identify specific operations for each of the pha

the analogical reasoning process that are affected by the use of relevance.

In addition to simply measuring the effects of using relevance on the performance

system, in this set of experiments we also pursued the following subgoals:
Design Simplification by Analogical Reasoning

Experiments 255

own-

f the

t sup-

 was

o dif-

sim-

asure

nt and

pothe-

e map-

fined a
1. to study the effect of different kinds of relevance propagation methods (e.g., d

ward propagation, limited propagation, no propagation) on the operation o

system (Note here, that in the current implementation of our system we do no

port upwards propagation, which is the reason why this propagation method

not tested);

2. to study whether relevance propagation has the same effect or not for the tw

ferent ways simplification explanations are specified (i.e., by difference, or by

plification process description.

The following subsections describe the setup for the experiments performed to me

the effect of using relevance to guide the analogical reasoning process, and prese

discuss the results obtained.

8.2.1 Setting up the Experiments

To measure the effect of using relevance on the operation of the system, we first hy

sized that the phases affected will be: a) the retrieval of source analogs, and b) th

ping of the source analog retrieved onto the target. For both of these phases we de

measure of performance in terms of a specific operation. The measures used were:
Design Simplification by Analogical Reasoning

Experiments 256

us sub-

rsions

r sys-

exper-

et of

e col-

 ones

nce

abases

only

eri-

ata-
• the number of a match hypotheses created for the retrieving phase,

• the number of gmaps generated for the mapping phase.

We used the same simplification databases and examples as described in the previo

section. We performed the following experiments:

1. We turned off the relevance checking in the system. Then, for each of the ve

of the simplification database used in demonstrating the effectiveness of ou

tem, we presented the system with all those examples used in the first set of

iments which produced correct simplifications. We repeated the same s

experiments with the relevance checking turned on. For both of the cases w

lected the measures defined above and compared the results.

2. We also wanted to study whether considering relevant elements to be only the

explicitly referred to in the explanation of simplifications would make a differe

in the performance of the system. For this purpose we regenerated the dat

used for our experiments such that the “relevance propagation” is limited to

one level (i.e., only to the elements explicitly referred to). We reran our exp

ments described in point 1. above with the newly generated simplification d

bases and performed the same measurements and comparisons.
Design Simplification by Analogical Reasoning

Experiments 257

 into

th sim-

 that

s of

 same

ults of

cts for

ven in

ments
3. We partitioned the set of examples for which we performed the experiments

two sets. One set contained examples that had been solved using analogy wi

plifications explained by differences, while the other one contained examples

had been solved using analogy with simplifications explained by specification

simplification processes. With these two sets of examples we performed the

experiments as the ones described in the first point, above. We used the res

our measurements to analyze whether the use of relevance has different effe

the two kinds of simplifications.

8.2.2 Results and Discussion

The results of the experiments for measuring the effect of using relevance are gi

Table 3. The three main columns in the table correspond to performing the experi

Relevance OFF Relevance ON One-Level Relevance

Database
Size

Match
Hypotheses
Generated

Gmaps
Generated

Match
Hypotheses
Generated

Gmaps
Generated

Match
Hypotheses
Generated

Gmaps
Generated

18 18 7 11 4 14 6

40 37 13 27 9 32 11

50 49 17 36 12 41 17

75 65 24 41 15 52 21

85 67 27 56 21 61 33

TABLE 3. Summary of Experimental Results for Measuring the Effect of Using Relevance
Design Simplification by Analogical Reasoning

Experiments 258

 (see

 of the

plifica-

 much

s. This

ults in

rove-

umber

old in

omplex-

plifi-

 one

esign

e, the

 propa-

e-level
without taking into account the relevance, with the relevance fully propagated down

Chapter 4), and with the relevance only propagated down one level in the structure

design matched, respectively. In all the cases the system produced the expected sim

tion.

The results show that when taking relevance into account the system generates

fewer match hypotheses and, as a consequence of this, much fewer global mapping

leads to an improvement of the performance of the system. Just by looking at the res

Table 3, we could claim that applying (fully propagated) relevance produced an imp

ment of about 50, in terms of both the number of match hypotheses generated and n

of global mappings generated. This is however a result that cannot be claimed to h

every situation because the actual results depend on the size of the database, the c

ity of designs involved in the simplifications and the number of elements in each sim

cation that are relevant to it (e.g., for a given simplification it is possible that only

element is relevant, but it is also possible that all the elements of the “simpler” d

involved are relevant).

Our experiments with the one-level propagation of relevance show that, in this cas

system generates slightly more match hypotheses and gmaps than when using full

gation, but less than when not using propagation at all. The reason for this is that on
Design Simplification by Analogical Reasoning

Experiments 259

ich full

hoice.

ion is

owing

tions

ation

he pro-

onse-

guide

ystem.

plexity

na-

oth

can use
propagation restricts the elements that can be matched, but not to the extent by wh

propagation does. It appears that using full propagation would always be the best c

However this may not always be the case. For simplifications for which the explanat

given by difference a full propagation may be needed because there is no way of kn

under what conditions the difference is applicable. On the other hand, for simplifica

for which the explanation is given by a simplification process description, no propag

should needed, because, ideally, all the relevant elements should be referenced in t

cess description (in a condition, a transformation, or a state description). As a c

quence, the issue of propagation needs further studying.

The conclusion we draw from this part of our experiments is that using relevance to

the analogical reasoning process can significantly improve the performance of the s

8.3 Measuring the Effect of Using Different Complexity Measures

There are two phases of the analogical reasoning process where structural com

measures are used: a) during retrieving, when searching for the best candidate source a

log, and b) during mapping, when searching for the best global mapping (gmap). In b

of these cases the system computes the complexity of structured objects. Thus, we
Design Simplification by Analogical Reasoning

Experiments 260

 (i.e.,

he two

logical

aracter-

r goal

apping.

 were

suring

results

m we

est as
either of the three ways of measuring structural complexity presented in Chapter 2

element count, combined element and relation count and external path length). For t

phases mentioned above we conducted two different sets of experiments.

For the effect of the complexity measure used on the retrieving phase of the ana

reasoning process our goal was to measure how well each of the three measures ch

ized the similarity between two structures.

To determine the effect of the complexity measure used on the mapping phase ou

was to measure how well each of those measures characterized the quality of a m

In both of the cases we presented the system with specially built examples which

designed to reveal the advantages and disadvantages of the three measures.

The following subsections describe the way we have set up the experiments for mea

the effect of using different complexity measures, and present and discuss the

obtained.

8.3.1 Setting up the Experiments

To measure the effect of different complexity measures on the operation of the syste

preformed a set of experiments that concentrated on the two phases of inter
Design Simplification by Analogical Reasoning

Experiments 261

tabase

amples

combi-

 struc-

ncestor

to these

plex-

d data

se and

l as the

p (i.e.,

ber of

e used.

e types
described above. This time we used the last (largest) version of our simplification da

of arithmetic expressions, and varied the examples presented to the system. The ex

we used in these experiences were specially built such that they represent different

nations of structural characteristics (e.g., shallow but broad structures versus deep

tures) and of match types (e.g., exact name matches of elements versus common a

matches, versus arity matches). We used three groups of examples corresponding

three types of match.

For each of these groups we performed experiments with all the three structural com

ity measures mentioned in subsection 8.1.3. During the experiments we collecte

about the number of match hypotheses that were generated during the retrieval pha

how the known match was ranked according to the corresponding measure, as wel

number of gmaps generated during the mapping phase and whether the known gma

the global mapping that we would use to build the analogy) was generated.

8.3.2 Results and Discussion

The first result of our measurements in this set of experiments was that the num

match hypotheses generated was actually independent of the complexity measur

This result was expected because the creation of match hypotheses only relies on th
Design Simplification by Analogical Reasoning

Experiments 262

tches

-

r

g

s hard

e sim-

 data-

g pro-

pings

in the

 data-

, and
of objects.

The experiments showed that using different complexity measures for evaluating ma

and global mappings influence the way matches are ranked according to their scores, fol

lowing the propagation of matches, the number of global mappings generated and whethe

a global mapping leading to a correct simplification was generated or not. Characterizin

the exact dependency between the complexity measure used and their effect i

because those effects depend both on the simplification problem being solved and th

plification database used for solving the problem.

Based on our observations, the following characteristics of the problem and of the

base of simplification may influence the three aspects of the matching and mappin

cesses mentioned above (i.e., ranking of the matches, number of global map

generated and producing of a correct result):

• the number of components, relations and attributes of the designs involved

processes (i.e., the target design and the source designs in the simplification

base)

• the depth and breadth of the structure of the designs involved in the processes

• the size of the simplification database used.
Design Simplification by Analogical Reasoning

Experiments 263

 struc-

 these

tly of

etter

puta-

ings is

tabase

 Chap-

 that

es the

ea-

ss and

lly and
The most ‘elusive’ of these characteristics seems to be the depth and breadth of the

ture of the designs involved in the processes. Even minor differences in either of

characteristics may result in a very different result of the matching and, consequen

the mapping. Characterizing this kind of effect would probably require the use of b

complexity measures. This, however, would only be possible at an increased com

tional cost, which may not be acceptable because evaluation of matches and mapp

performed a great number of times (depending on the contents and size of the da

used).

8.4 Conclusions

As a general conclusion to our experiments we can say that the system presented in

ter 6 has proven to be effective in solving simplification problems. We demonstrated

using relevance to a simplification to guide the analogical reasoning process improv

performance of the system. Finally, while it is clear that using different complexity m

sures for evaluating matches and global mappings influences both the effectivene

the efficiency of the system, the exact dependency is hard to analyze both theoretica

experimentally.
Design Simplification by Analogical Reasoning

Conclusion 264

lyzed

 In this

nt our

define

s. In
CHAPTER 9 Conclusion

In this dissertation we described our research concerning simplification. In it we defined

the simplification problem, proposed a way to solve simplification problems and ana

the results of a series of experiments we had conducted to demonstrate our ideas.

last chapter we will draw some final conclusions about our research as well as prese

plans for continuing and extending this research.

9.1 Contributions

The research presented in this dissertation defined had two major objectives: a) to

the simplification problem, and b) to propose a way to solve simplification problem

pursuing these objectives this research has produced the following contributions:

1. It gave an operational definition of simplification and of a simplification problem.
Design Simplification by Analogical Reasoning

Conclusion 265

ge,

 This

ith

 fresh

log-

 new

oning

el as

o-

n sug-

s &

ll of

logical

of the
The study of simplification and of solving simplification problems is, to our knowled

a new area of research. Simplification was defined as reduction of complexity.

required a definition of the complexity of objects. The definition of complexity w

respect to a point of view (i.e., combination of context, aspect and measure) gives a

view on complexity.

2. It proposed a model for solving simplification problems by using analogical reasoning.

As simplification is a novel area of research, solving simplification problems by ana

ical reasoning is of course new as well. More importantly, however, it constitutes a

application of analogical reasoning in general and of model-based analogical reas

in particular.

3. It proposed an improvement to the general mode-based analogical reasoning mod

applied to simplification problems, by using the problem solving goal to guide the pr

cess.

Using the problem solving goal to guide the analogical reasoning process has bee

gested by several authors [Gentner 1993] [Holyoak & Thagard 1989] [Forbu

Oblinger 1990], but, to our knowledge, our work is unique in the way it uses it in a

the phases. We proposed that the knowledge that is to be used to guide the ana

reasoning process should be the relevance to simplification of different elements
Design Simplification by Analogical Reasoning

Conclusion 266

 can be

 our

plexity

d func-

ndent,

uence

ropa-

ild the

aniza-

y sup-

ogical
objects processed. This way, the processing required by the analogical reasoning

significantly reduced.

4. It defined the notion of simplification for different aspects of designs.

Simplification of designs is the most important application area projected for

research. To address this problem, our research proposed definitions for the com

of the three most frequently considered aspects of designs: structure, behavior an

tion. We also pointed out that since structure, behavior and function are interdepe

this will be reflected in the dependency between their complexities. As a conseq

we formulated another very important research problem, namely the study of the p

gation of simplifications.

5. It proposed a model-based analogical reasoning approach to design simplification prob-

lems.

This represents a new application of model based analogical reasoning. To bu

model we defined the representation of objects and of simplifications, and the org

tion of the database of known simplifications. These were designed such that the

port the processing required by our model of goal-directed model-based anal

reasoning.
Design Simplification by Analogical Reasoning

Conclusion 267

ifi-

 The

nsively

 prob-

avioral

 per-

:

ed to a

 set of

ion of

esent-

 to be

 taking
6. It produced a working system that implements the model proposed for solving simpl

cation problems.

The working simplification system was implemented using the CLIPS language.

implementation used all the elements proposed by our research and was exte

tested on examples.

Here we must note again the system was demonstrated for structural simplification

lems only. However, as described in Chapter 1, the approach is applicable to beh

and functional simplification problems as well. In order for the system to be able to

form behavioral and functional simplification the following two changes are needed

a) The representation of processes (e.g., behaviors, interactions) must be chang

decomposition-relation form. This means that a process will be represented as a

steps, connected by a sequencing (followed-by) relation. The current implementat

the system contains all the class definitions needed to make this modification.

b) New matching rules for generating match hypotheses for objects specific to repr

ing behaviors and functions (e.g., state descriptions, inputs and outputs) need

added to the set of Retrieving Rules (see Chapter 6). This can be done easily by

the existing match hypothesis generating rules as models.
Design Simplification by Analogical Reasoning

Conclusion 268

a-

ations

a dif-

ed

plifica-

 the

n also

gs and

sm.

atic

fer of

i-
7. Through a series of experiments, this research demonstrated that the system is oper

tional.

The experiments demonstrated that the system is capable of producing simplific

both using known simplifications from the same domain as the problem, and from

ferent domain.

8. Using the same experiments the research analyzed effects of the improvements propos

on the performance of the system.

Measurements performed in those experiments also revealed that using the sim

tion goal (in our case relevance to some simplification) can significantly improve

performance of the system.

In addition to these general contributions, the research presented in this dissertatio

produced the following technical results:

1. The use of relevance in generating match hypotheses, retrieving source analo

building mappings improves the performance of the analogical reasoning mechani

2. Explicitly representing the explanation of known simplifications allows a) the autom

calculation of the relevance for a given simplification, and b) guidance of the trans

simplification knowledge, either by transformation1 (in the case of explanations spec
Design Simplification by Analogical Reasoning

Conclusion 269

ifica-

tures

esearch

hes to

ned up

at need

ation,

ribe

.

nsfor-
fied by differences), or by derivation (in the case of explanations specified by simpl

tion process).

3. The use of external path length as measure for the complexity of tree struc

improved the effectiveness of retrieving good source analogs for deep structures.

As a general conclusion the research presented in this dissertation proposed new r

directions, presented original definitions, proposed new applications and approac

existing problems, and implemented and experimentally studied a new system.

9.2 Future Work

In addition to the results proposed, the research presented in this dissertation ope

new research directions and raised a series of theoretical and practical questions th

to be studied. This gives us several opportunities to extend our research on simplific

in general, and on design simplification, in particular. In the following we briefly desc

our plans for future work, starting with the closest goals and ending with farther ones

1. Here we use the terms ‘transformation’ and ‘derivation’ corresponding to the knowledge transfer phases in tra
mational and derivational analogical reasoning, respectively.
Design Simplification by Analogical Reasoning

Conclusion 270

oals

rawn

cation

f the

t they

h.

 users

stem.
9.2.1 Performing Further Experiments with the System

We will perform further experiments with the system. In doing so we will pursue g

such as:

• testing the system for various examples, especially with real life problems, d

from the area of design,

• testing the system with several databases, corresponding to different appli

domains, loaded simultaneously, in order to experiment with the capability o

system of finding the best analog from several domains,

• testing the scalability of the system.

These experiments can be done with the current implementation of the system, bu

ned to be performed first to lay a firm foundation for our further experimental researc

9.2.2 Improve the Usability of the System by Building a GUI

To make the use of the system easier as well as to make it available to other

(researchers or designers) we will develop a graphical user interface (GUI) for the sy

This can be achieved by using existing GUI development tools, such as wxCLIPS.
Design Simplification by Analogical Reasoning

Conclusion 271

uture

tion.

xtend

to use

elf a

ntation

ion of

ropa-

. Our

nism
9.2.3 Extending the System to other Types of Simplification

Currently the system has been tested for structural simplifications, but in our f

research we will perform experiments with both behavioral and functional simplifica

This will allow us to fully demonstrate our ideas about design simplification.

9.2.4 Adding New Application Domains

Adding new application domains to the ones currently accepted by the system will e

the area of possible applications as well as increase the capability of the system

cross-domain similarities to produce interesting, and hopefully novel simplifications.

9.2.5 Studying the Simplification Propagation Problem

The simplification propagation problem which we formulated in Chapter 2 is by its

very interesting and rich area of research. It raises problems such as: What represe

can adequately support the propagation of simplifications? How can the propagat

simplification be performed? What are the possible consequences of simplification p

gation and how can those consequences be evaluated and anticipated?

In our future research we plan to address the problem of simplification propagation

ultimate goal in this direction is to incorporate a simplification propagation mecha
Design Simplification by Analogical Reasoning

Conclusion 272

g, our

ons.

st a

ason-

olving

 and

ingredi-
into our system.

9.2.6 Studying the Possibility of Generating Creative Simplifications

Finally, as stated earlier we expect that due to the use of analogical reasonin

approach to solving simplification problems may come up with creative simplificati

For example, “importing” a simplification idea from a different domain may sugge

completely novel way of simplifying.

We are interested in studying under what conditions our goal-directed analogical re

ing simplification process will be able to produce creative results.

As an overall conclusion we can say that in this dissertation we proposed a new direction

of research, that of design simplification, defined the design simplification problem which

is the general problem of this research direction, and proposed an approach to s

problems of this type, called design simplification by analogical reasoning. We also

described a computer system that implements the approach proposed, and presented

discussed a set of experiments we had performed to demonstrate our system.

Based on these, we believe that the results presented in this dissertation has all the

ents of a complete research.
Design Simplification by Analogical Reasoning

Conclusion 273
Design Simplification by Analogical Reasoning

Bibliography 274

gn",

by

,

 of

p

 Bibliography

M.E. Balazs & D.C. Brown, "The Use of Function, Structure and Behavior in Desi

Preprints of Workshop on Representing Function in Design, AID-94, AI in Design Confer-

ence, 1994.

M.E. Balazs, D.C. Brown, P. Bastien & C. Wills, "How to Present Designs", in Knowledge

Intensive CAD, vol. 2, (Eds.) Mantyla, Finger and Tomiyama, Chapman & Hall, 1997.

M.E. Balazs & D.C. Brown, "Function in Design Presentations", Preprints of Workshop on

Functional Reasoning, AID'96, Stanford, CA, 1996.

M.E. Balazs & D.C. Brown, "A Preliminary Investigation of Design Simplification

Analogy, in Proceedings of Artificial Intelligence in Design '98, (Eds.)Gero & Sudweeks

Kluwer, 1998.

M.E. Balazs & D.C. Brown, "Structural, Behavioral and Functional Simplification

Designs", Proceedings of the Functional Modeling and Teleological Reasoning Worksho,

AAAI-98, Madison, Wisconsin, USA, 1998.
Design Simplification by Analogical Reasoning

Bibliography 275

lem

gn

ased

-

,

 In:

91,
G. Brassard & P. Bratley, Fundamentals of Algorithmics, Prentice-Hall, 1996.

F. Bacchus & Q. Yang, “Downward refinement and the efficiency of hierarchical prob

solving”, Artificial Intelligence, 71, 1994, pp. 43-100.

H. A. Bashir & V. Thomson, “Models for Estimating Design Effort”, Design Studies (sub-

mitted), 1999.

H. A. Bashir & V. Thomson, “A Quantitative Estimation Methodology for Desi

Projects”, Journal of Engineering Design (submitted), 1999.

S.R. Bhatta, A.K. Goel & S. Prabhakar, “Innovation in analogical design: A model-b

approach” In: Artificial Intelligence in Design’94, (Eds.) Gero & Sudweeks, Kluwer Aca

demic Publishers, 1994, pp. 57-74.

S.R. Bhatta, A.K. Goel, “Discovery of Physical Principles from design Experience”AI

EDAM, 2, May, 1994.

M. Boden, “What is Creativity”, In: Dimensions of Creativity, (Ed.) Boden, MIT Press,

Cambridge, MA, London, England, 1994, pp. 75-118.

G. Boothroyd & P. Dewhurst, “Product Design for Manufacture and Assembly”,

Design For Manufacture, (Eds.) Corbett, Dooner, Meleka & Pym, Addison-Wesley, 19

pp. 165-173.
Design Simplification by Analogical Reasoning

Bibliography 276

n

olu-

 Func-

el-

 and

dge

y in

e

J.G. Carbonell, “Derivational analogy: A theory of reconstructive problems”, In: Readings

in Knowledge Acquisition and Learning, (Eds.) Buchanan & Wilkins, Morgan Kaufman

Publishers, San Mateo, CA, 1993, pp. 727-738.

A. Chakrabarti & M.X. Tang, “Generating Conceptual Solutions on FUNCSION: Ev

tion of a Functional Synthesizer“, In: Artificial Intelligence in Design ‘96, (Eds.) Gero &

Sudweeks, Kluwer Academic Publishers, 1996, pp. 603-622.

B. Chandrasekaran, “Functional Representation: A Brief Historical Perspective”, Applied

Artificial Intelligence, Special Issue on Functional Reasoning, 1994.

B. Chandrasekaran & J. R. Josephson, “Representing Function as Effect: Assigning

tions to Objects in Context and Out”, Working Notes of the AAAI-96 Workshop on Mod

ing and Reasoning with Function, 1996.

L. Chittaro, “Functional Diagnosis and Prescription of Measurements using Effort

Flow Variables”, IEEE Control Theory and Applications, Vol. 142, No. 5, 1995.

L. Chittaro, G. Guida, C. Tasso, & E. Toppano, “Functional and Teleological Knowle

in Multimodelling Approach for Reasoning about Physical Systems: A case Stud

Diagnosis”, IEEE Transactions on Systems, Man and Cybernetics, Vol, 23., No. 6, 1993.

CLIPS, C Language Integrated Production System, Version 6.0, Lyndon B. Johnson Spac

Center, Software Technology Branch, 1993.

S. Dasgupta Creativity in Invention and Design, Cambridge University Press, 1994.
Design Simplification by Analogical Reasoning

Bibliography 277

 and

igh
S. Dasgupta, Technology and Creativity, Oxford University Press, 1996.

B. Falkenheimer, K. Forbus & D. Gentner, “The structure-mapping engine: Algorithm

examples”, In: Readings in Knowledge Acquisition and Learning, (Eds.) Buchanan &

Wilkins, Morgan Kaufmann Publishers, San Mateo, CA, 1993, pp. 695-726.

R. Finke, T.B. Ward & S.M. Smith, Creative Cognition, MIT Press, Cambridge, MA, Lon-

don, England, 1992.

K. D. Forbus, D. Gentner, A. Markman & R. W. Ferguson, “Analogy just looks like h

level perception: Why a domain-general approach to analogical mapping is right”, Journal

of Experimental and Theoretical Artificial Intelligence, 1997

K. Forbus, K. & D. Gentner, “Structural evaluation of analogies: what counts?”, Proceed-

ings of the Cognitive Science Society. 1989.

K. Forbus & D. Oblinger, Making SME greedy and pragmatic. Proceedings of the Cogni-

tive Science Society, 1990.

A. Gelsey, “Automated physical modeling”, In: Proc. 11th Int. Jnt. Conf. on AI, Detroit,

MI, August, 1989, pp. 1225-1230.

D. Gentner, “Structure-Mapping: A Theoretical Framework for Analogy”, Cognitive Sci-

ence, 7, 1983, pp. 155-170.
Design Simplification by Analogical Reasoning

Bibliography 278

pp.

-

an

,

,

aly-
D. Gentner, “Analogical Inference and Access”, In: Analogica, (Ed.) Prieditis, Lecture

Notes in Artificial Intelligence, Morgan Kaufmann Publishers, Los Altos, CA, 1988,

63-88.

D. Gentner and K. Forbus, “MAC/FAC: A model of similarity-based retrieval”, Proceed-

ings of the Cognitive Science Society, 1991.

D. Gentner, “The mechanism of analogical learning”, In: Readings in Knowledge Acquisi

tion and Learning, (Eds.) Buchanan & Wilkins, Morgan Kaufmann Publishers, S

Mateo, CA, 1993, pp. 673-694.

F. Giunchiglia & T. Walsh, “A theory of abstraction“, Artificial Intelligence, 57, 1992, pp.

323-389.

A. Goel, “Representation of Design Functions in Experience-Based Design”, In: Intelli-

gent Computer Aided Design, (Eds.) Brown, Waldron & Yoshikawa, North-Holland

Amsterdam, Netherlands, 1992, pp.283-308

A. Goel, “Design, Analogy and Creativity”, IEEE Expert, vol. 12, no. 3, May/June, 1997

pp.62-70.

R. P. Hall, “Computational Approaches to Analogical Reasoning: A Comparative An

sis”, Artificial Intelligence, 39, 1989, pp. 39-120.

D.H. Hofstadter, Fluid concepts and creative analogies, Basic Books, New York, 1995.
Design Simplification by Analogical Reasoning

Bibliography 279

 In:

hop

sign
K.J. Holyoak & P. Thagard, “Analogical mapping by constraint satisfaction”, Cognitive

Science, 7(2), 1989.

K.J. Holyoak & P. Thagard, Mental Leaps: Analogy in Creative Thought, MIT Press,

Cambridge, MA, London, England, 1995.

S. Kedar-Cabelli, “Toward a Computational Model of Purpose-Directed Analogy”,

Analogica, Research Notes in Artificial Intelligence, (Ed.) Prieditis, 1988, pp. 89-108.

A. Keuneke, “Device Representation: The Significance of Functional Knowledge”, IEEE

Expert, vol. 6, no. 2, April, 1991, pp. 22-25.

C. A. Knoblock, “Automatically generating abstractions for planning”, Artificial Intelli-

gence, 68,1994, pp. 243-302

A. Y. Levy, “Creating Abstractions Using Relevance Reasoning”, In: Proceedings of the

12th National Conference on Artificial Intelligence, AAAI’94, Vol. 1 1994: 588-594

D. Manfaat, The SPIDA system, personal communication, 1997.

D. Manfaat, A.H.B. Duffy and B.S. Lee, “Generalization of Spatial Layouts”, Works

on Machine Learning in Design, 23-24 June 1996, Fourth International Conference on

Artificial Intelligence in Design’96, Stanford University, USA, 1996.

J. Mostow, “Design by Derivational Analogy: Issues in the Automated Replay of De

Plans, Artificial Intelligence, 40, 1989, pp. 119-184.
Design Simplification by Analogical Reasoning

Bibliography 280

ices

s and

esign

op@,

ey
P. P. Nayak & A. Y. Levy, “A Semantic Theory of Abstractions”, In: Proceedings of the

International Conference on Artificial Intelligence, IJCAI’95, 1995, pp. 196-203.

D.N. Perkins, “Creativitie’s Camel: The Role of Analogy in Invention”, In: Creative

Thought - An Investigation of Conceptual Structures and Processes (Eds.) T. B. Ward,

S.M. Smith & J. Vaid, American Psychological Association, 1997

H. Petroski, Invention by Design, Harvard University Press, 1996.

S. Prabhakar & A.K. Goel, “Functional modeling for enabling adaptive design of dev

for new environments”, Artificial intelligence in Engineering, 12, 1998, pp. 417-444.

L. Qian & J.S. Gero, “A design support systems using analogy”, In: Artificial Intelligence

in Design'92, (Ed.) J.S. Gero, Kluwer Academic Publishers, 1992, pp.795-813.

V. Sembugamoorthy & B. Chandrasekaran, “Functional Representation of Device

Compilation of Diagnostic Problem-Solving Knowledge”, In: Experience, Memory and

Learning, (Eds.) Kolodner & Reisbeck, Lawrence Erlbaum Associates, 1986.

J. Sticklen, A. Goel, B. Chandrasekaran & W. E. Bond, “Functional Reasoning for D

and Diagnosis”, in: Proceedings of the Model-Based Diagnosis International Worksh

1989.

H. W. Stoll, “Design for manufacture: an overview”, In: Design for Manufacture, Strate-

gies, Principles and Techniques, (Eds.) Corbett, Dooner, Meleka & Pym, Addison-Wesl

Publishing Company, 1991.
Design Simplification by Analogical Reasoning

Bibliography 281

n for

ler”,
E. Stroulia., A.K. Goel, “Representation of Design Structure, Behavior and Functio

Blame Assignment”, AI EDAM, special issue on Functional Reasoning, 1995.

N.P. Suh, The Principles of Design, Oxford University Press, 1990.

N.P. Suh, “A Theory of Complexity, Periodicity and the Design Axioms”, Research in

Engineering Design, Vol. 11, No.2, 1999, pp. 116-131.

S. Thadami & B. Chandrasekaran, “Structure to function reasoning”, AAAI’93, Workshop

on Representing and Reasoning With Device Function, 1993.

Y. Umeda & T. Tomiyama, “Experimental Use and Extension of the FBS Mode

AAAI’94 Workshop on Representing and Reasoning with device Function, 1994.

M.M. Veloso, Planning and Learning by Analogical Reasoning, Lecture Notes in Artifi-

cial Intelligence (886), Springer Verlag, 1994.

M. Wolverton, Retrieving Semantically Distant Analogies, Ph. D. Dissertation, Stanford

University, 1994.
Design Simplification by Analogical Reasoning

Appendix A 282

resen-
 Appendix A

This appendix illustrates the external representation of designs by presenting the rep

tation of the “Old Fax” described in Chapter 8.

;===
; PERSONAL FAX MACHINE
;===

(RootDesign Personal_Fax_Current
(Attributes)
(Components
;===
; PRINTING PART
;===
(bind ?printPart

(Design Printing_Part
(Attributes)
(Components ; // of Printing Part
;===
; STEPPING MOTOR (printer)
;===
(bind ?stepping-motor1

(Design Stepping_Motor_1
(Attributes

(bind ?attrib-dyn-sm1(Attribute dynamics))
(bind ?attrib-str-sm1(Attribute started))

)
FALSE ;// no components
FALSE ;// no local relations
Design Simplification by Analogical Reasoning

Appendix A 283
(Behaviors
(bind ?proc-strt-sm1
(Process Start-Stepping Motor

(ProcStep
(bind ?stat-stop-sm1
(ObjectState ?attrib-str-sm1 FALSE

 ?attrib-dyn-sm1 static))
(Condition Accept Input ?attrib-str-sm1 TRUE))
(Apply and

(Apply send
 ?attrib-str-sm1 put-Value TRUE

 (Apply send
 ?attrib-dyn-sm1 put-Value rotates))

(bind ?stat-rota-sm1
(ObjectState ?attrib-str-sm1 TRUE

 ?attrib-dyn-sm1 rotates))
)

))
(bind ?proc-stop-sm1
(Process Stop-Stepping-Motor

(ProcStep
?stat-rota-sm1
(Condition Accept (Input ?attrib-str-sm1 FALSE))
(Apply and

(Apply send ?attrib-str-sm1 put-Value FALSE)
 (Apply send ?attrib-dyn-sm1 put-Value static))

?stat-stop-sm1
)

))
)

))
;===
; PLATTEN ROLLER (printer)
;===
(bind ?platen-roller1

(Design Platen_Roller_1
(Attributes

(bind ?attrib-dyn-pr1(Attribute dynamics))
)
FALSE ;// no components
FALSE ;// no local relations
(Behaviors

(bind ?proc-strt-pr1
(Process Start-Platen-Roller

(ProcStep
(bind ?stat-stop-pr1
(ObjectState ?attrib-dyn-pr1 static))
(Condition TRUE)
(Apply send ?attrib-dyn-pr1 put-Value rotates)
(bind ?stat-rota-pr1
Design Simplification by Analogical Reasoning

Appendix A 284
(ObjectState ?attrib-dyn-pr1 rotates))
)

))
(bind ?proc-stop-pr1
(Process Stop-Platen-Roller

(ProcStep
?stat-rota-pr1
(Condition TRUE)
(Apply send ?attrib-dyn-pr1 put-Value static)
?stat-stop-pr1

)
))

)
))

;===
; THERMAL HEAD
;===
(bind ?thermal-head1

(Design Thermal_Head_1
(Attributes

(bind ?attrib-str-th1 (Attribute started))
)
FALSE ;// no components
FALSE ;// no local relations
(Behaviors

(bind ?proc-strt-th1
(Process Start-Thermal-Head

(ProcStep
(bind ?stat-nopr-th1
ObjectState ?attrib-str-th1 FALSE))
(Condition TRUE)
(Apply send ?attrib-str-th1 put-Value TRUE)
(bind ?stat-prnt-th1
(ObjectState ?attrib-str-th1 TRUE))

)
))
(bind ?proc-stop-th1
(Process Stop-Thermal-Head

(ProcStep
?stat-prnt-th1
(Condition TRUE)
(Apply send ?attrib-str-th1 put-Value FALSE)
?stat-nopr-th1

)
))

)
))
Design Simplification by Analogical Reasoning

Appendix A 285
;===
; RECORDING PAPER
;===
(bind ?recording-paper1

 (Design Recording_Paper_1
(Attributes

(bind ?attrib-dyn-rp1(Attribute dynamics))
)
FALSE ;// no components
FALSE ;// no local relations
(Behaviors

(bind ?proc-strt-rp1
(Process Start-Recording-Paper

(ProcStep
(bind ?stat-stop-rp1
(ObjectState ?attrib-dyn-rp1 static))
(Condition TRUE)
(Apply send ?attrib-dyn-rp1 put-Value translates)
(bind ?stat-trns-rp1
(ObjectState ?attrib-dyn-rp1 translates))

)
))
(bind ?proc-stop-rp1
(Process Stop-Recording-Paper

(ProcStep
?stat-trns-rp1
(Condition TRUE)
(Apply send ?attrib-dyn-rp1 put-Value static)
?stat-stop-rp1

)
))

)
))

) ;// end Components

;=RELATIONS===

(bind ?rels-print
(Relations ;// of Printing Part

(bind ?touch-print
(Relation Touching

?stepping-motor1 ?platen-roller1 ?recording-paper1))
;// this is a preprocessed form of
;// (and
;// (Relation Touching ?stepping-motor1 ?platen-roller1)
;// (Relation Touching ?platen-roller1 ?recording-paper1))

))
Design Simplification by Analogical Reasoning

Appendix A 286
;=BEHAVIORS===

(Behaviors ;// of Printing Part
(bind ?start-print
(Process Start-Printing

(ProcStep
(bind ?stat-stop-print
(ObjectState ?stat-stop-sm1 ; initial state

 ?stat-stop-pr1
 ?stat-nopr-th1
 ?stat-stop-rp1))

?touch-print ; condition
(Process Start-Components ; printing process

?proc-strt-sm1
?proc-strt-pr1
?proc-strt-th1
?proc-strt-rp1

)
(bind ?stat-strt-print
(ObjectState ?stat-rota-sm1 ; final state

 ?stat-rota-pr1
 ?stat-prnt-th1
 ?stat-trns-rp1))

)
))
(bind ?stop-print
(Process Stop-Printing

(ProcStep
?stat-strt-print ; initial state
?rels-print ; final state
(Process Stop-Components ; stopping process

?proc-stop-sm1
?proc-stop-pr1
?proc-stop-th1
?proc-stop-rp1

)
?stat-stop-print ; final state

)
))

)

;=FUNCTIONS==
(Uses

(bind ?startPrint (Process Start-Printing))
(bind ?stopPrint (Process Stop-Printing))

)
) ;// end Printing Part

)

Design Simplification by Analogical Reasoning

Appendix A 287
;===
; IMAGE SENSING PART
;===
(bind ?scanPart

(Design ImageSensingPart
(Attributes)
(Components ; // of Image Sensing Part
;===
; STEPPING MOTOR (reader)
;===
(bind ?stepping-motor2

(Design Stepping_Motor_2
(Attributes

(bind ?attrib-dyn-sm2(Attribute dynamics))
(bind ?attrib-str-sm2(Attribute started))

)
FALSE ;// no components
FALSE ;// no local relations
(Behaviors

(bind ?proc-strt-sm2
(Process Start-Stepping-Motor

(ProcStep
(bind ?stat-stop-sm2
(ObjectState ?attrib-str-sm2 FALSE

 ?attrib-dyn-sm2 static))
(Condition Accept (Input ?attrib-str-sm2 TRUE))
(Apply and

(Apply send ?attrib-str-sm2 put-Value TRUE)
 (Apply send

 ?attrib-dyn-sm2 put-Value rotates))
(bind ?stat-rota-sm2
(ObjectState ?attrib-str-sm2 TRUE

 ?attrib-dyn-sm2 rotates))
)

))
(bind ?proc-stop-sm2
(Process Stop-Stepping-Motor

(ProcStep
?stat-rota-sm2
(Condition Accept (Input ?attrib-str-sm2 FALSE))
(Apply and

(Apply send ?attrib-str-sm2 put-Value FALSE)
 (Apply send ?attrib-dyn-sm2 put-Value static))

?stat-stop-sm2
)

))
)

))
Design Simplification by Analogical Reasoning

Appendix A 288
;===
; PLATTEN ROLLER (reader)
;===
(bind ?platen-roller2

(Design Platen_Roller_2
(Attributes

(bind ?attrib-dyn-pr2(Attribute dynamics))
)
FALSE ;// no components
FALSE ;// no local relations
(Behaviors

(bind ?proc-strt-pr2
(Process Start-Platen-Roller

(ProcStep
(bind ?stat-stop-pr2
(ObjectState ?attrib-dyn-pr2 static))
(Condition TRUE)
(Apply send ?attrib-dyn-pr2 put-Value rotates)
(bind ?stat-rota-pr2
(ObjectState ?attrib-dyn-pr2 rotates))

)
))
(bind ?proc-stop-pr2
(Process Stop-Platen-Roller

(ProcStep
?stat-rota-pr2
(Condition TRUE)
(Apply send ?attrib-dyn-pr2 put-Value static)
?stat-stop-pr2

)
))

)
))

;===
; CONTACT IMAGE SENSOR (reader)
;===
(bind ?image-sensor2

(Design Contact_Image_Sensor_2
(Attributes

(bind ?attrib-str-is2(Attribute started))
)

FALSE ;// no components
FALSE ;// no local relations
(Behaviors

(bind ?proc-strt-is2
(Process Start-Image-Sensor

(ProcStep
(bind ?stat-nord-is2
Design Simplification by Analogical Reasoning

Appendix A 289
(ObjectState ?attrib-str-is2 FALSE))
(Condition TRUE)
(Apply send ?attrib-str-is2 put-Value TRUE)
(bind ?stat-read-is2
(ObjectState ?attrib-str-is2 TRUE))

)
))
(bind ?proc-stop-is2
(Process Stop-Image-Sensor

(ProcStep
?stat-read-is2
(Condition TRUE)
(Apply send ?attrib-str-is2 put-Value FALSE)
?stat-nord-is2

)
))

)
))

;===
; A ROLLER (reader)
;===
(bind ?roller1

(Design Roller_1
(Attributes

(bind ?attrib-dyn-rl21
(Attribute dynamics))

)
FALSE ;// no components
FALSE ;// no local relations
(Behaviors

(bind ?proc-strt-rl21
(Process Start-Roller

(ProcStep
(bind ?stat-stop-rl21
(ObjectState ?attrib-dyn-rl21 static))
(Condition TRUE)
(Apply send ?attrib-dyn-rl21 put-Value rotates)
(bind ?stat-rota-rl21
(ObjectState ?attrib-dyn-rl21 rotates))

)
))
(bind ?proc-stop-rl21
(Process Stop-Roller

(ProcStep
?stat-rota-rl21
(Condition TRUE)
(Apply send ?attrib-dyn-rl21 put-Value static)
?stat-stop-rl21

)

Design Simplification by Analogical Reasoning

Appendix A 290
))
)

))

;===
; ANOTHER ROLLER (reader)
;===
(bind ?roller2

(Design Roller_2
(Attributes

(bind ?attrib-dyn-rl22(Attribute dynamics))
)
FALSE ;// no components
FALSE ;// no local relations
(Behaviors

(bind ?proc-strt-rl22
(Process Start-Roller

(ProcStep
(bind ?stat-stop-rl22
(ObjectState ?attrib-dyn-rl22 static))
(Condition TRUE)
(Apply send ?attrib-dyn-rl22 put-Value rotates)
(bind ?stat-rota-rl22
(ObjectState ?attrib-dyn-rl22 rotates))

)
))
(bind ?proc-stop-rl22
(Process Stop-Roller

(ProcStep
?stat-rota-rl22
(Condition TRUE)
(Apply send ?attrib-dyn-rl22 put-Value static)
?stat-stop-rl22

)
))

)
))

;===
; DOCUMENT (reader)
;===
(bind ?document2

(Design Document_2
(Attributes

(bind ?attrib-dyn-dc2(Attribute dynamics))
)
FALSE ;// no components
FALSE ;// no local relations
(Behaviors

(bind ?proc-strt-dc2
Design Simplification by Analogical Reasoning

Appendix A 291
(Process Start-Document
(ProcStep

(bind ?stat-stop-dc2
(ObjectState ?attrib-dyn-dc2 static))
(Condition TRUE)
(Apply send ?attrib-dyn-dc2 put-Value translates)
(bind ?stat-trns-dc2
(ObjectState ?attrib-dyn-dc2 translates))

)
))
(bind ?proc-stop-dc2
(Process Stop-Document

(ProcStep
?stat-trns-dc2
(Condition TRUE)
(Apply send ?attrib-dyn-dc2 put-Value static)
?stat-stop-dc2

)
))

)
))

) ;// end Components

;=RELATIONS===

(bind ?rels-scan
(Relations ;// of Scanning Part

(bind ?touch-scan
(Relation Touching ?stepping-motor2

 (Relation And
 (Relation Touching ?roller1 ?document2)
 (Relation Touching

?platen-roller2 ?document2 ?image-sensor2)
 (Relation Touching ?roller2 ?document2)

)))
))

;=BEHAVIORS===

(Behaviors ;// of Scanning Part
(bind ?start-scan
(Process Start-Scanning

(ProcStep
(bind ?stat-stop-scan
(ObjectState ?stat-stop-sm2

 ?stat-stop-pr2
 ?stat-nord-is2
 ?stat-stop-rl21
 ?stat-stop-rl22
 ?stat-stop-dc2))
Design Simplification by Analogical Reasoning

Appendix A 292
?touch-scan
(Process Start-Components

?proc-strt-sm2
?proc-strt-pr2
?proc-strt-is2
?proc-strt-rl21
?proc-strt-rl22
?proc-strt-dc2

)
(bind ?stat-strt-scan
(ObjectState ?stat-rota-sm2

 ?stat-rota-pr2
 ?stat-read-is2
 ?stat-rota-rl21
 ?stat-rota-rl22
 ?stat-trns-dc2))

)
))
(bind ?stop-scan
(Process Stop-Scanning

(ProcStep
?stat-strt-scan
?touch-scan
(Process Stop-Components

?proc-stop-sm2
?proc-stop-pr2
?proc-stop-is2
?proc-stop-rl21
?proc-stop-rl22
?proc-stop-dc2

)
?stat-stop-scan

)
))

)

;=FUNCTIONS==

(Uses
(bind ?startScan (Process Start-Scanning))
(bind ?stopScan (Process Stop-Scanning))

)

) ;// end Image Sensing Part
) ;// (end bind Image Sensing Part)
)

;==
; end Components of Personal Fax
;==
Design Simplification by Analogical Reasoning

Appendix A 293
;=FAX RELATIONS==

(Relations
(Relation And rels-print ?rels-scan)

)

;=FAX BEHAVIORS===

(Behaviors
(bind ?send

(Process Send-Behavior
(ProcStep

?stat-stop-scan
(Condition TRUE)
?start-scan
?stat-strt-scan

)
(ProcStep

?stat-strt-scan
(Condition TRUE)
?stop-scan
?stat-stop-scan

)
))

(bind ?receive
(Process Receive-Behavior

(ProcStep
?stat-stop-print
(Condition TRUE)
?start-print
?stat-strt-print

)
(ProcStep

?stat-strt-print
(Condition TRUE)
?stop-print
?stat-stop-print

)
))

)

Design Simplification by Analogical Reasoning

Appendix A 294
;=FAX FUNCTIONS==

(Uses
(bind ?send (Process Send-Behavior))
(bind ?receive (Process Receive-Behavior))

)

) ;// end Personall Fax Description
Design Simplification by Analogical Reasoning

Appendix B 295

ut of
 Appendix B

This appendix illustrates the use of the simplification system by presenting the printo

an interaction during a problem solving session.

SIMPLIFY (/ x (+ (* x y) (* x (+ z (* u v)))))

RETRIEVE SIMILAR to: (/ x (+ (* x y) (* x (+ z (* u v)))))

MATCHES FOUND: 387 of which

+ same relation: 51

+ common ancestor: 168

+ same arity:168

PROPAGATE MATCHES

..

COMPUTE SCORES ..

 SORT MATCHES

Match objects [(+ (* x y) (* x (+ z (* u v)))) <=>

(+ (* (- a (* 2 b)) (* 3 c (+ d e))) (* (- a (* 2 b)) z)
)] (16)
Design Simplification by Analogical Reasoning

Appendix B 296
Match objects [(/ x (+ (* x y) (* x (+ z (* u v))))) <=>

(+ (* (- a (* 2 b)) (* 3 c (+ d e))) (* (- a (* 2 b)) z)
)] (16)

Match objects [(* x (+ z (* u v))) <=>

(* 1 (- a (* 2 b)))] (16)

Match objects [(/ x (+ (* x y) (* x (+ z (* u v))))) <=>

(* 1 (- a (* 2 b)))] (16)

Match objects [(+ (* x y) (* x (+ z (* u v)))) <=>

(* 1 (- a (* 2 b)))] (16)

Match objects [(+ (* x y) (* x (+ z (* u v)))) <=>

(+ 0 (- a (* 2 b)))] (16)

Match objects [(/ x (+ (* x y) (* x (+ z (* u v))))) <=>

(+ 0 (- a (* 2 b)))] (16)

Match objects [(* x (+ z (* u v))) <=>

(+ 0 (- a (* 2 b)))] (16)

Match objects [(+ (* x y) (* x (+ z (* u v)))) <=>

(* (- a (* 2 b)) (* 3 c (+ d e)))] (12)

Match objects [(+ z (* u v)) <=>

(+ (* (- a (* 2 b)) (* 3 c (+ d e))) (* (- a (* 2 b)) z)
)] (11)

Match objects [(/ x (+ (* x y) (* x (+ z (* u v))))) <=>
Design Simplification by Analogical Reasoning

Appendix B 297
(- a (* 2 b))] (11)

Match objects [(* x (+ z (* u v))) <=>

(+ (* (- a (* 2 b)) (* 3 c (+ d e))) (* (- a (* 2 b)) z)
)] (11)

Match objects [(+ z (* u v)) <=>

(* 1 (- a (* 2 b)))] (11)

Match objects [(+ (* x y) (* x (+ z (* u v)))) <=>

(* (- a (* 2 b)) 1)] (11)

Match objects [(+ z (* u v)) <=>

(+ 0 (- a (* 2 b)))] (11)

Match objects [(+ (* x y) (* x (+ z (* u v)))) <=>

(+ (- a (* 2 b)) 0)] (11)

Match objects [(* x (+ z (* u v))) <=>

(* (- a (* 2 b)) (* 3 c (+ d e)))] (7)

Match objects [(/ x (+ (* x y) (* x (+ z (* u v))))) <=>

(* (- a (* 2 b)) (* 3 c (+ d e)))] (7)

Match objects [(+ z (* u v)) <=>

(* (- a (* 2 b)) (* 3 c (+ d e)))] (7)

Match objects [(+ (* x y) (* x (+ z (* u v)))) <=>

(+ d e)] (6)
Design Simplification by Analogical Reasoning

Appendix B 298
Match objects [(+ z (* u v)) <=>

(+ d e)] (6)

Match objects [(* u v) <=> (* (- a (* 2 b))

(* 3 c (+ d e)))] (6)

Match objects [(* x y) <=>

(* (- a (* 2 b)) z)] (6)

Match objects [(* x y) <=>

(* 2 b)] (6)

Match objects [(/ x (+ (* x y) (* x (+ z (* u v))))) <=>

(* (- a (* 2 b)) z)] (6)

Match objects [(/ x (+ (* x y) (* x (+ z (* u v))))) <=>

(* 2 b)] (6)

Match objects [(/ x (+ (* x y) (* x (+ z (* u v))))) <=>

(+ d e)] (6)

Match objects [(* x (+ z (* u v))) <=>

(+ d e)] (6)

Match objects [(* u v) <=>

(+ (* (- a (* 2 b)) (* 3 c (+ d e))) (* (- a (* 2 b)) z)
)] (6)

Match objects [(* u v) <=>

(+ d e)] (6)
Design Simplification by Analogical Reasoning

Appendix B 299
Match objects [(* x y) <=>

(+ (* (- a (* 2 b)) (* 3 c (+ d e))) (* (- a (* 2 b)) z)
)] (6)

Match objects [(* x y) <=>

(+ d e)] (6)

Match objects [(* u v) <=>

(* 1 (- a (* 2 b)))] (6)

Match objects [(* x y) <=>

(* 1 (- a (* 2 b)))] (6)

Match objects [(* x (+ z (* u v))) <=>

(* (- a (* 2 b)) 1)] (6)

Match objects [(* u v) <=>

(* (- a (* 2 b)) 1)] (6)

Match objects [(* x y) <=>

(* (- a (* 2 b)) 1)] (6)

Match objects [(/ x (+ (* x y) (* x (+ z (* u v))))) <=>

(* (- a (* 2 b)) 1)] (6)

Match objects [(+ z (* u v)) <=>

(* (- a (* 2 b)) 1)] (6)

Match objects [(* u v) <=>
Design Simplification by Analogical Reasoning

Appendix B 300
(+ 0 (- a (* 2 b)))] (6)

Match objects [(* x y) <=>

(+ 0 (- a (* 2 b)))] (6)

Match objects [(+ z (* u v)) <=>

(+ (- a (* 2 b)) 0)] (6)

Match objects [(/ x (+ (* x y) (* x (+ z (* u v))))) <=>

(+ (- a (* 2 b)) 0)] (6)

Match objects [(* x (+ z (* u v))) <=>

(+ (- a (* 2 b)) 0)] (6)

Match objects [(* u v) <=>

(+ (- a (* 2 b)) 0)] (6)

Match objects [(* x y) <=>

(+ (- a (* 2 b)) 0)] (6)

BEST MATCHES

 APPLY simpler ((+ (* 3 (- a (* 2 b))) (* (- a 2) (* (- a
(* 2 b)) (+ (* 3 c (+ d e)) z)))) (+ (* 3 (- a (* 2 b))
) (* (- a 2) (+ (* (- a (* 2 b)) (* 3 c (+ d e))) (* (- a
(* 2 b)) z)))))

 TO Match objects [(+ (* x y) (* x (+ z (* u v)))) <=> (+
(* (- a (* 2 b)) (* 3 c (+ d e))) (* (- a (* 2 b)) z))]
(16)

 IN (/ x (+ (* x y) (* x (+ z (* u v)))))

(+ (* x y) (* x (+ z (* u v)))) => (* x (+ y (+ z (* u v)
)))
Design Simplification by Analogical Reasoning

Appendix B 301
 SIMPLIFIED OBJECT: (/ x (* x (+ y (+ z (* u v)))))

VALID SOLUTION

 APPLY simpler ((+ (* 3 (- a (* 2 b))) (* (- a 2) (* (- a
(* 2 b)) (+ (* 3 c (+ d e)) z)))) (+ (* 3 (- a (* 2 b))
) (* (- a 2) (+ (* (- a (* 2 b)) (* 3 c (+ d e))) (* (- a
(* 2 b)) z)))))

 TO Match objects [(/ x (+ (* x y) (* x (+ z (* u v)))))
<=> (+ (* (- a (* 2 b)) (* 3 c (+ d e))) (* (- a (* 2 b))
z))] (16)

 IN (/ x (+ (* x y) (* x (+ z (* u v)))))

(/ x (+ (* x y) (* x (+ z (* u v))))) => (* (* x y) (+ (
* 3 gen7097 (+ gen7101 gen7105)) (* x (+ z (* u v)))))

 SIMPLIFIED OBJECT: (* (* x y) (+ (* 3 gen7097 (+ gen7101 gen7105
)) (* x (+ z (* u v)))))

NOT VALID

 APPLY simpler ((- a (* 2 b)) (* 1 (- a (* 2 b))))

 TO Match objects [(* x (+ z (* u v))) <=> (* 1 (- a (* 2 b
)))] (16)

 IN (/ x (+ (* x y) (* x (+ z (* u v)))))

(* x (+ z (* u v))) => (+ z (* u v))

 SIMPLIFIED OBJECT: (/ x (+ (* x y) (* x (+ z (* u v)))))

NOT VALID

 APPLY simpler ((- a (* 2 b)) (* 1 (- a (* 2 b))))

 TO Match objects [(/ x (+ (* x y) (* x (+ z (* u v)))))
<=> (* 1 (- a (* 2 b)))] (16)

 IN (/ x (+ (* x y) (* x (+ z (* u v)))))

(/ x (+ (* x y) (* x (+ z (* u v))))) => (+ (* x y) (* x
(+ z (* u v))))

 SIMPLIFIED OBJECT: (/ x (+ (* x y) (* x (+ z (* u v)))))
Design Simplification by Analogical Reasoning

Appendix B 302
NOT VALID

 APPLY simpler ((- a (* 2 b)) (* 1 (- a (* 2 b))))

 TO Match objects [(+ (* x y) (* x (+ z (* u v)))) <=> (*
1 (- a (* 2 b)))] (16)

 IN (/ x (+ (* x y) (* x (+ z (* u v)))))

(+ (* x y) (* x (+ z (* u v)))) => (* x (+ z (* u v)))

 SIMPLIFIED OBJECT: (/ x (+ (* x y) (* x (+ z (* u v)))))

NOT VALID

 APPLY simpler ((- a (* 2 b)) (+ 0 (- a (* 2 b))))

 TO Match objects [(+ (* x y) (* x (+ z (* u v)))) <=> (+
0 (- a (* 2 b)))] (16)

 IN (/ x (+ (* x y) (* x (+ z (* u v)))))

(+ (* x y) (* x (+ z (* u v)))) => (* x (+ z (* u v)))

 SIMPLIFIED OBJECT: (/ x (+ (* x y) (* x (+ z (* u v)))))

NOT VALID

 APPLY simpler ((- a (* 2 b)) (+ 0 (- a (* 2 b))))

 TO Match objects [(/ x (+ (* x y) (* x (+ z (* u v)))))
<=> (+ 0 (- a (* 2 b)))] (16)

 IN (/ x (+ (* x y) (* x (+ z (* u v)))))

(/ x (+ (* x y) (* x (+ z (* u v))))) => (+ (* x y) (* x
(+ z (* u v))))

 SIMPLIFIED OBJECT: (/ x (+ (* x y) (* x (+ z (* u v)))))

NOT VALID

 APPLY simpler ((- a (* 2 b)) (+ 0 (- a (* 2 b))))
Design Simplification by Analogical Reasoning

Appendix B 303
 TO Match objects [(* x (+ z (* u v))) <=> (+ 0 (- a (* 2 b
)))] (16)

 IN (/ x (+ (* x y) (* x (+ z (* u v)))))

(* x (+ z (* u v))) => (+ z (* u v))

 SIMPLIFIED OBJECT: (/ x (+ (* x y) (* x (+ z (* u v)))))

NOT VALID
Design Simplification by Analogical Reasoning

Appendix C 304

ns of
 Appendix C

This appendix contains the CLIPS class definitions for the internal representatio

objects and relations.

;***
; class: ATTRIBUTE DEFINITIONS
;***

(defclass defAttribute (is-a USER)
(role concrete) (pattern-match reactive)

(slot Name (create-accessor read-write))
(slot Type (create-accessor read-write))
(slot Constraints (create-accessor read-write) (default TRUE))
(slot Default (create-accessor read-write))

)

;***
; class: ATTRIBUTE
;***

(defclass Attribute (is-a USER)
(role concrete) (pattern-match reactive)

(slot Name (create-accessor read-write))
(slot Value (create-accessor read-write))
(slot Definition (create-accessor read-write))
(slot Of (create-accessor read-write) (default FALSE))
(slot Object (create-accessor read-write) (default FALSE))

)

Design Simplification by Analogical Reasoning

Appendix C 305
;***
; class: SET OF ATTRIBUTE
;***

(defclass setOfAttributes (is-a USER)
 (role concrete) (pattern-match reactive)

(multislot Members (create-accessor read-write) (default (create$)))
(slot Count (create-accessor read-write) (default 0))
(slot Object (create-accessor read-write) (default FALSE))

)

;***
; class: RELATION DEFINITION
;***

(defclass defRelation (is-a USER)
(role concrete) (pattern-match reactive)

(slot Name (create-accessor read-write))
(slot Signature (create-accessor read-write))
(slot Ordered (create-accessor read-write) (default FALSE))
(slot SupRel (create-accessor read-write) (default nil))
(multislot SubRels (create-accessor read-write) (default (List)))
(multislot Members (create-accessor read-write) (default (create$)))

)

;***
; class RELATION INSTANCE
;***

(defclass Relation (is-a USER)
(role concrete) (pattern-match reactive)

(slot Name (create-accessor read-write))
(slot Arity (create-accessor read-write))
(slot Members (create-accessor read-write))
(slot Attributes (create-accessor read-write))
(slot Definition (create-accessor read-write))
(slot Root (create-accessor read-write) (default FALSE))
(slot Object (create-accessor read-write) (default FALSE))
(slot InRelation (create-accessor read-write) (default FALSE))
(slot CntRelsIn (create-accessor read-write) (default 0))

)

;***
; class OBJECT
Design Simplification by Analogical Reasoning

Appendix C 306
;***

(defclass Object (is-a USER)
(role concrete) (pattern-match reactive)

(slot Name (create-accessor read-write))
(slot Class (create-accessor read-write) (default nil))
(slot ExternalRels (create-accessor read-write) (default FALSE))
(slot Attributes (create-accessor read-write) (default FALSE))
(slot Composed (create-accessor read-write) (default FALSE))
(slot LocalRels (create-accessor read-write) (default FALSE))
(slot Root (create-accessor read-write) (default FALSE))
(slot Object (create-accessor read-write) (default FALSE))
(slot InRelation (create-accessor read-write) (default FALSE))

)

;***
; class OBJECT STATE
;***

(defclass ObjectState (is-a USER)
 (role concrete) (pattern-match reactive)

(multislot Attributes (create-accessor read-write))
(multislot Values (create-accessor read-write))

)

Design Simplification by Analogical Reasoning

Appendix D 307

 dem-
 Appendix D

This appendix shows the contents of the simplification database used for running the

onstration examples presented in Chapter 7.

SIMPLIFICATIONS CURRENTLY LOADED

simpler (x (+ x 0))
 - explanation:
 (replace (+ x 0) x)
 - relevants:
 (+ x 0) / Object
 x / Object
 0 / Object
 + (x 0) / Relation

 simpler (x (+ 0 x))
 - explanation:
 (replace (+ 0 x) x)
 - relevants:
 (+ 0 x) / Object
 0 / Object
 x / Object
 + (0 x) / Relation

 simpler (x (+ x 0 0))
 - explanation:
 (replace (+ x 0 0) x)
 - relevants:
 (+ x 0 0) / Object
 x / Object
 0 / Object
Design Simplification by Analogical Reasoning

Appendix D 308
 0 / Object
 + (x 0 0) / Relation

 simpler (x (+ 0 x 0))
 - explanation:
 (replace (+ 0 x 0) x)
 - relevants:
 (+ 0 x 0) / Object
 0 / Object
 x / Object
 0 / Object
 + (0 x 0) / Relation

 simpler (x (+ 0 0 x))
 - explanation:
 (replace (+ 0 0 x) x)
 - relevants:
 (+ 0 0 x) / Object
 0 / Object
 0 / Object
 x / Object
 + (0 0 x) / Relation

 simpler ((* x y) (* x (+ 0 y 0)))
 - explanation:
 (replace (+ 0 y 0) y)
 - relevants:
 (+ 0 y 0) / Object
 0 / Object
 y / Object
 0 / Object
 + (0 y 0) / Relation

 simpler (x (- x 0))
 - explanation:
 (replace (- x 0) x)
 - relevants:
 (- x 0) / Object
 x / Object
 0 / Object
 - (x 0) / Relation

 simpler (x (- x 0 0))
 - explanation:
 (replace (- x 0 0) x)
 - relevants:
 (- x 0 0) / Object
 x / Object
 0 / Object
 0 / Object
Design Simplification by Analogical Reasoning

Appendix D 309
 - (x 0 0) / Relation

 simpler ((* x y) (* x (- y 0)))
 - explanation:
 (replace (- y 0) y)
 - relevants:
 (- y 0) / Object
 y / Object
 0 / Object
 - (y 0) / Relation

 simpler (x (* x 1))
 - explanation:
 (replace (* x 1) x)
 - relevants:
 (* x 1) / Object
 x / Object
 1 / Object
 * (x 1) / Relation

 simpler (x (* 1 x))
 - explanation:
 (replace (* 1 x) x)
 - relevants:
 (* 1 x) / Object
 1 / Object
 x / Object
 * (1 x) / Relation

 simpler (x (* x 1 1))
 - explanation:
 (replace (* x 1 1) x)
 - relevants:
 (* x 1 1) / Object
 x / Object
 1 / Object
 1 / Object
 * (x 1 1) / Relation

 simpler (x (* 1 x 1))
 - explanation:
 (replace (* 1 x 1) x)
 - relevants:
 (* 1 x 1) / Object
 1 / Object
 x / Object
 1 / Object
 * (1 x 1) / Relation

 simpler (x (* 1 1 x))
Design Simplification by Analogical Reasoning

Appendix D 310
 - explanation:
 (replace (* 1 1 x) x)
 - relevants:
 (* 1 1 x) / Object
 1 / Object
 1 / Object
 x / Object
 * (1 1 x) / Relation

 simpler ((+ x y) (+ x (* 1 y 1)))
 - explanation:
 (replace (* 1 y 1) y)
 - relevants:
 (* 1 y 1) / Object
 1 / Object
 y / Object
 1 / Object
 * (1 y 1) / Relation

 simpler (x (/ x 1))
 - explanation:
 (replace (/ x 1) x)
 - relevants:
 (/ x 1) / Object
 x / Object
 1 / Object
 / (x 1) / Relation

 simpler (x (/ x 1 1))
 - explanation:
 (replace (/ x 1 1) x)
 - relevants:
 (/ x 1 1) / Object
 x / Object
 1 / Object
 1 / Object
 / (x 1 1) / Relation

 simpler ((+ x y) (+ x (/ y 1)))
 - explanation:
 (replace (/ y 1) y)
 - relevants:
 (/ y 1) / Object
 y / Object
 1 / Object
 / (y 1) / Relation

 simpler ((* 7 x y) (* 7 (+ 0 x 0) y))
 - explanation:
 (replace (+ 0 x 0) x)
Design Simplification by Analogical Reasoning

Appendix D 311
 - relevants:
 (+ 0 x 0) / Object
 0 / Object
 x / Object
 0 / Object
 + (0 x 0) / Relation

simpler ((* (- a 2) (* x (+ y z)))
(* (- a 2) (+ (* x y) (* x z))))

 - explanation:
 (replace (+ (* x y) (* x z)) (* x (+ y z)))
 - relevants:
 (+ (* x y) (* x z)) / Object
 (* x y) / Object
 x / Object
 y / Object
 * (x y) / Relation
 (* x z) / Object
 x / Object
 z / Object
 * (x z) / Relation
 + ((* x y) (* x z)) / Relation

 simpler ((- a (* 2 b)) (+ (- a (* 2 b)) 0))
 - explanation:
 (replace (+ (- a (* 2 b)) 0) (- a (* 2 b)))
 - relevants:
 (+ (- a (* 2 b)) 0) / Object
 (- a (* 2 b)) / Object
 a / Object
 (* 2 b) / Object
 2 / Object
 b / Object
 * (2 b) / Relation
 - (a (* 2 b)) / Relation
 0 / Object
 + ((- a (* 2 b)) 0) / Relation

 simpler ((- a (* 2 b)) (+ 0 (- a (* 2 b))))
 - explanation:
 (replace (+ 0 (- a (* 2 b))) (- a (* 2 b)))
 - relevants:
 (+ 0 (- a (* 2 b))) / Object
 0 / Object
 (- a (* 2 b)) / Object
 a / Object
 (* 2 b) / Object
 2 / Object
 b / Object
 * (2 b) / Relation
Design Simplification by Analogical Reasoning

Appendix D 312
 - (a (* 2 b)) / Relation
 + (0 (- a (* 2 b))) / Relation

 simpler ((- a (* 2 b)) (+ (- a (* 2 b)) 0 0))
 - explanation:
 (replace (+ (- a (* 2 b)) 0 0) (- a (* 2 b)))
 - relevants:
 (+ (- a (* 2 b)) 0 0) / Object
 (- a (* 2 b)) / Object
 a / Object
 (* 2 b) / Object
 2 / Object
 b / Object
 * (2 b) / Relation
 - (a (* 2 b)) / Relation
 0 / Object
 0 / Object
 + ((- a (* 2 b)) 0 0) / Relation

 simpler ((+ 0 (- a (* 2 b))) (+ (- a (* 2 b)) 0 0))
 - explanation:
 (remove 0)
 - relevants:
 0 / Object

 simpler ((* (- a (* 2 b)) (* 3 c (+ d e)))
(* (- a (* 2 b)) (+ 0 (* 3 c (+ d e)) 0)))

 - explanation:
 (replace (+ 0 (* 3 c (+ d e)) 0) (* 3 c (+ d e)))
 - relevants:
 (+ 0 (* 3 c (+ d e)) 0) / Object
 0 / Object
 (* 3 c (+ d e)) / Object
 3 / Object
 c / Object
 (+ d e) / Object
 d / Object
 e / Object
 + (d e) / Relation
 * (3 c (+ d e)) / Relation
 0 / Object
 + (0 (* 3 c (+ d e)) 0) / Relation

 simpler ((- a (* 2 b)) (* (- a (* 2 b)) 1))
 - explanation:
 (replace (* (- a (* 2 b)) 1) (- a (* 2 b)))
 - relevants:
 (* (- a (* 2 b)) 1) / Object
 (- a (* 2 b)) / Object
 a / Object
Design Simplification by Analogical Reasoning

Appendix D 313
 (* 2 b) / Object
 2 / Object
 b / Object
 * (2 b) / Relation
 - (a (* 2 b)) / Relation
 1 / Object
 * ((- a (* 2 b)) 1) / Relation

 simpler ((- a (* 2 b)) (* 1 (- a (* 2 b))))
 - explanation:
 (replace (* 1 (- a (* 2 b))) (- a (* 2 b)))
 - relevants:
 (* 1 (- a (* 2 b))) / Object
 1 / Object
 (- a (* 2 b)) / Object
 a / Object
 (* 2 b) / Object
 2 / Object
 b / Object
 * (2 b) / Relation
 - (a (* 2 b)) / Relation
 * (1 (- a (* 2 b))) / Relation

 simpler ((* 1 (- a (* 2 b))) (* 1 (- a (* 2 b)) 1))
 - explanation:
 (remove 1)
 - relevants:
 1 / Object

 simpler ((- a (* 2 b)) (* 1 1 (- a (* 2 b))))
 - explanation:
 (replace (* 1 1 (- a (* 2 b))) (- a (* 2 b)))
 - relevants:
 (* 1 1 (- a (* 2 b))) / Object
 1 / Object
 1 / Object
 (- a (* 2 b)) / Object
 a / Object
 (* 2 b) / Object
 2 / Object
 b / Object
 * (2 b) / Relation
 - (a (* 2 b)) / Relation
 * (1 1 (- a (* 2 b))) / Relation

 simpler ((+ (- a (* 2 b)) (* 3 c (+ d e)))
(+ (- a (* 2 b)) (* 1 (* 3 c (+ d e)) 1)))

 - explanation:
 (replace (* 1 (* 3 c (+ d e)) 1) (* 3 c (+ d e)))
 - relevants:
Design Simplification by Analogical Reasoning

Appendix D 314
 (* 1 (* 3 c (+ d e)) 1) / Object
 1 / Object
 (* 3 c (+ d e)) / Object
 3 / Object
 c / Object
 (+ d e) / Object
 d / Object
 e / Object
 + (d e) / Relation
 * (3 c (+ d e)) / Relation
 1 / Object
 * (1 (* 3 c (+ d e)) 1) / Relation

 simpler ((* 7 (- a (* 2 b)) (* 3 c (+ d e)))
(* 7 (+ 0 (- a (* 2 b)) 0) (* 3 c (+ d e))))

 - explanation:
 (replace (+ 0 (- a (* 2 b)) 0) (- a (* 2 b)))
 - relevants:
 (+ 0 (- a (* 2 b)) 0) / Object
 0 / Object
 (- a (* 2 b)) / Object
 a / Object
 (* 2 b) / Object
 2 / Object
 b / Object
 * (2 b) / Relation
 - (a (* 2 b)) / Relation
 0 / Object
 + (0 (- a (* 2 b)) 0) / Relation

 simpler ((+ (* 3 (- a (* 2 b)))
 (* (- a 2)
 (* (- a (* 2 b)) (+ (* 3 c (+ d e)) z))))
(+ (* 3 (- a (* 2 b)))
 (* (- a 2)

 (+ (* (- a (* 2 b)) (* 3 c (+ d e)))
 (* (- a (* 2 b)) z)))))

 - explanation:
 (replace (+ (* (- a (* 2 b)) (* 3 c (+ d e)))

 (* (- a (* 2 b)) z))
 (* (- a (* 2 b)) (+ (* 3 c (+ d e)) z)))

 - relevants:
 (+ (* (- a (* 2 b)) (* 3 c (+ d e)))

 (* (- a (* 2 b)) z)) / Object
 (* (- a (* 2 b)) (* 3 c (+ d e))) / Object
 (- a (* 2 b)) / Object
 a / Object
 (* 2 b) / Object
 2 / Object
 b / Object
Design Simplification by Analogical Reasoning

Appendix D 315
 * (2 b) / Relation
 - (a (* 2 b)) / Relation
 (* 3 c (+ d e)) / Object
 3 / Object
 c / Object
 (+ d e) / Object
 d / Object
 e / Object
 + (d e) / Relation
 * (3 c (+ d e)) / Relation
 * ((- a (* 2 b)) (* 3 c (+ d e))) / Relation
 (* (- a (* 2 b)) z) / Object
 (- a (* 2 b)) / Object
 a / Object
 (* 2 b) / Object
 2 / Object
 b / Object
 * (2 b) / Relation
 - (a (* 2 b)) / Relation
 z / Object
 * ((- a (* 2 b)) z) / Relation
 + ((* (- a (* 2 b)) (* 3 c (+ d e)))

 (* (- a (* 2 b)) z)) / Relation
Design Simplification by Analogical Reasoning

	Abstract
	Acknowledgments
	Table of Contents
	CHAPTER 1 Introduction
	1.1 The Goal of the Research
	1.2 The Importance of and Motivation for the Research
	1.3 Expected Benefits of the Research
	1.4 The Simplification Problem
	1.4.1 Specifying a Simplification Problem
	1.4.2 Possible Approaches to Solve a Simplification Problem

	1.5 Simplification using Analogical Reasoning
	1.5.1 The Problems Raised
	1.5.2 The Approach Proposed

	1.6 Example
	1.6.1 Measuring the Complexity of Designs

	1.7 Simplifying Designs by Analogical Reasoning
	1.8 Methods and Expected Results
	1.9 Organization of the Dissertation

	CHAPTER 2 The Problem
	2.1 Simplification
	2.1.1 The Simpler Relation
	2.1.2 Measuring Complexity
	2.1.3 Complexity of Designs
	2.1.4 Why Count when Measuring Complexity?
	2.1.5 The Simplification Process
	2.1.6 Propagation of Simplification

	2.2 Performing Simplification
	2.2.1 Possible Approaches
	2.2.2 Simplification by Analogical Reasoning

	2.3 Difficulties Raised
	2.3.1 Retrieving Useful Simplification Examples
	2.3.2 Mapping Simplification Problems
	2.3.3 Transferring Simplifications
	2.3.4 Evaluating the Result of the Simplification
	2.3.5 Storing new Simplifications

	CHAPTER 3 Related Work
	3.1 Work on Analogical Reasoning
	3.1.1 Model-Based Analogical Reasoning
	3.1.2 Goal-Driven Analogical Reasoning

	3.2 Work on Abstraction
	3.3 Work on Reasoning about Designs
	3.4 Work on Design Optimization/Simplification
	3.4.1 Suh’s Information Content Reduction
	3.4.2 Bashire & Thomson’s Estimation of Design Effort
	3.4.3 Boothroyd & Dewhurst’s Complexity Factor
	3.4.4 Reasoning about Designs from different Points of View

	CHAPTER 4 The Approach: Simplification by Goal-Directed Analogical Reasoning
	4.1 Simplification as a Problem Solving Goal
	4.2 Representing Simplifications
	4.2.1 Explaining a Simplification
	4.2.2 Elements Relevant to a Simplification

	4.3 Relevance Calculation
	4.3.1 Collecting the Elements that are not Absolutely Irrelevant
	4.3.2 Propagating Relevance inside Objects

	4.4 Organizing Simplifications
	4.4.1 Organizing Simplifications for Retrieval
	4.4.2 Organizing Simplifications for Knowledge Transfer

	4.5 The Analogical Reasoning Process
	4.5.1 Retrieving
	4.5.2 Mapping
	4.5.3 Transferring Simplification Knowledge
	4.5.4 Evaluating the Result of the Simplification
	4.5.5 Generalization and Storing

	CHAPTER 5 Application: Simplification of Designs
	5.1 The Door Lock Domain
	5.2 Representing Designs
	5.2.1 Representing Structure
	5.2.2 Representing Behavior
	5.2.3 Representing Function
	5.2.4 Connections and Dependencies between the Different Aspects

	5.3 Contexts, Aspects and Measures for Design Complexity
	5.3.1 Contexts for Measuring Design Complexity
	5.3.2 Aspects for measuring Design Complexity
	5.3.3 Measures of Design Complexity

	5.4 Structural, Behavioral and Functional Design Simplification
	5.4.1 A Structural Simplification
	5.4.2 A Behavioral Simplification
	5.4.3 A Functional Simplification

	CHAPTER 6 Implementation
	6.1 The System
	6.1.1 The Database of Known Simplifications
	6.1.2 The Interface Module
	6.1.3 The Data Management Module
	6.1.4 The Simplifier Module
	6.1.5 The Simplification Abstraction Module

	6.2 Representation
	6.3 Implementation of the Abstraction Mechanism
	6.4 Implementation of the Analogical Reasoning Mechanism

	CHAPTER 7 System Demonstration
	7.1 Simplification of an Arithmetic Expression
	7.1.1 The Sample Problem and Issued Raised
	7.1.2 Operation of the System

	7.2 Simplification of the Personal Fax Design
	7.2.1 The Sample Problem and Issued Raised
	7.2.2 Operation of the System

	CHAPTER 8 Experiments
	8.1 Demonstrating that the Simplification System is Effective
	8.1.1 Setting up the Experiments
	8.1.2 Results and Discussion

	8.2 Measuring the Effect of Using Relevance
	8.2.1 Setting up the Experiments
	8.2.2 Results and Discussion

	8.3 Measuring the Effect of Using Different Complexity Measures
	8.3.1 Setting up the Experiments
	8.3.2 Results and Discussion

	8.4 Conclusions

	CHAPTER 9 Conclusion
	9.1 Contributions
	9.2 Future Work
	9.2.1 Performing Further Experiments with the System
	9.2.2 Improve the Usability of the System by Building a GUI
	9.2.3 Extending the System to other Types of Simplification
	9.2.4 Adding New Application Domains
	9.2.5 Studying the Simplification Propagation Problem
	9.2.6 Studying the Possibility of Generating Creative Simplifications

	Bibliography
	Appendix A
	Appendix B
	Appendix C
	Appendix D

