Design Simpilification by Analogical Reasoning

by
Marton E. Balazs

A Dissertation
Submitted to the Faculty
of the
WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the
Degree of Doctor of Philosophy
in

Computer Science

by

December 1999

APPROVED:

Dr. David C. Brown, Major Advisor

Dr. Lee A. Becker, Committee Member

Dr. Ashok Goel, External Committee Member
Georgia Institute of Technology, College of Computing

Dr. Stanley S. Selkow, Committee Member

Dr. Micha Hofri, Head of Department

Abstract

Abstract

Ever since artifacts have been produced, improving them has been a common humi;
activity. Improving an artifact refers to modifying it such that it will be either easier to pro-
duce, or easier to use, or easier to fix, or easier to maintain, and so on. In all of these cas
“easier” means fewer resources are required for those processes. While ‘resources’ is
general measure, which can ultimately be expressed by some measure of cost (such
time or money), we believe that at the core of many improvements is the notion of reduc
tion of complexity, or in other words, simplification. This dissertation presents our

research on performing design simplification using analogical reasoning.

We first define the simplification problem as the problem of reducing the complexity of an
artifact from a given point of view. We propose that a point of view from which the com-

plexity of an artifact can be measured consists of a context, an aspect and a measure. N¢

Design Simplification by Analogical Reasoning

Abstract ii

we describe an approach to solving simplification problems by goal-directed analogica
reasoning, as our implementation of this approach. Finally, we present some experiment

results obtained with the system.

The research presented is significant as it focuses on the intersection of a number
important, active research areas - analogical reasoning, functional representation, fun

tional reasoning, simplification, and the general area of Al in Design.

Design Simplification by Analogical Reasoning

Acknowledgements iii

Acknowledgments

First, | would like to thank my advisor, Dr. David C. Brown, for all his support and guid-

ance during my tenure at WPI. The other members of my reading committee, Dr. Le
Becker, Dr. Ashok Goel and Dr. Stanley Selkow, provided many useful ideas that contrib
uted to this research and raised several interesting issues that strengthened and broade
my understanding of analogical reasoning, design and complexity and improved this dis
sertation. Thanks also to all the faculty who during grand school helped me to build an

broaden my knowledge of computer science.

Many people in the Computer Science Department at WPI contributed to my progress i
the graduate school and to this dissertation in one way or another. My office mate Da
Grecu has been a great colleague and friend throughout my entire stay in Worcester. T

discussions with him often helped me a lot in my work and in difficulties | often had faced

Design Simplification by Analogical Reasoning

Acknowledgements iv

in my every day life, not to mention that the many things we share due to our similar pas
allowed us many fun minutes to unwrinkle our foreheads. Other people of the Al in
Design Group at WPI, especially Jon Kembel, Ming He, Peter Bastien, Janet Burge mac

the life in graduate school much more enjoyable.

Graduate school in general is stressful and the years | spent at WPI were not different. Fc
tunately | found some great friends especially George and Nina Galica, Bogdan Vernesc

and Florin Frigioiu, who made me feel at home in Worcester.

My family has been always a great source of support in my life in general and in my worl
in particular. Most of my successes in school over the years are due to my parents, Bale
Marton and Margit, who taught me the right priorities and always encouraged me to lear

and work hard.

Finally and most importantly, | want to thank my wife Aniko for her love and support, and
for putting up with me and my life as a grad student (and not only). To her | promise tha

one day I'll settle down and stop going to school.

Design Simplification by Analogical Reasoning

Table of Contents \Y

Table of Contents

ADSraCt e I.
ACKNOWIEdgmENtS ii
Table of Contents e V...,
CHAPTER 1 IntroducCtion e 1
The Goalofthe Research. 2
The Importance of and Motivation for the Research. 5
Expected Benefits of the Research. 7
The Simplification Problem 7
Specifying a Simplification Problem oL 8
Possible Approaches to Solve a Simplification Problem 9
Simplification using Analogical Reasoning. 11
The Problems Raised 11

Design Simplification by Analogical Reasoning

Table of Contents Vi

The Approach Proposed. 13
EXample .. 1€
Measuring the Complexity of Designs.ot 25
Simplifying Designs by Analogical Reasoning. 28
Methods and Expected Results 29
Organization of the Dissertation. i 34
CHAPTER 2 The Problem e 36
Simplification 37
The Simpler Relation 37
Measuring Complexity 38
Complexity Of DESIgNS . . .« ottt 56
Why Count when Measuring Complexity?. 67
The Simplification Process. 69
Propagation of Simplification 71
Performing Simplification 72
Possible Approaches. 73
Simplification by Analogical Reasoning 75
Difficulties Raised 79
Retrieving Useful Simplification Examples. 79
Mapping Simplification Problems 85

Design Simplification by Analogical Reasoning

Table of Contents vii

Transferring Simplifications 87
Evaluating the Result of the Simplification. 88
Storing new Simplifications 89
CHAPTER 3 Related Work e 90
Work on Analogical Reasoning 90
Model-Based Analogical Reasoning. 92
Goal-Driven Analogical Reasoning. 94
Work on ADSEraction 96
Work on Reasoning about Designso 99
Work on Design Optimization/Simplification 102
Suh’s Information Content Reduction. 102
Bashire & Thomson’s Estimation of Design Effort 104
Boothroyd & Dewhurst's Complexity Factor. 106
Reasoning about Designs from different Points of View. 107

CHAPTER 4 The Approach:

Simplification by Goal-Directed Analogical Reasoning 109
Simplification as a Problem SolvingGoal. 110
Representing Simplifications 114

Explaining a Simplification 115
Elements Relevant to a Simplification. 119

Design Simplification by Analogical Reasoning

Table of Contents viii

Relevance Calculation. 121
Collecting the Elements that are not Absolutely Irrelevant 122
Propagating Relevance inside Objects. 123
Organizing Simplifications 128
Organizing Simplifications for Retrieval 128
Organizing Simplifications for Knowledge Transfer 134
The Analogical Reasoning Process.t 138
RetrieVINg ... 138
MaPPING .o 145
Transferring Simplification Knowledge 154
Evaluating the Result of the Simplification. 164
Generalization and Storing.o e 166
CHAPTER 5 Application: Simplification of Designs 168
The Door Lock Domain 169
Representing DesSigNSottt 173
Representing Structure. 173
Representing Behavior 175
Representing Function 178
Connections and Dependencies between the Different Aspects 181
Contexts, Aspects and Measures for Design Complexity. 184

Design Simplification by Analogical Reasoning

Table of Contents ix

Contexts for Measuring Design Complexity. 184

Aspects for measuring Design Complexity. 185

Measures of Design Complexity 185
Structural, Behavioral and Functional Design Simplification. 196

A Structural Simplification 198

A Behavioral Simplification 199

A Functional Simplification 205

CHAPTER 6 Implementation i 208

The System 208

The Database of Known Simplifications. 210

The Interface Module 212

The Data Management Module. 212

The Simplifier Module 217

The Simplification Abstraction Module 223
Representation 225
Implementation of the Abstraction Mechanism 227

Implementation of the Analogical Reasoning Mechanisz@9

CHAPTER 7 System Demonstration 230
Simplification of an Arithmetic Expression. 230
The Sample Problem and Issued Raised. 231

Design Simplification by Analogical Reasoning

Table of Contents X

Operation of the System. e 233
Simplification of the Personal Fax Design 237
The Sample Problem and Issued Raised. 238
Operation of the System. e 240
CHAPTER 8 EXPerimentst e 243
Demonstrating that the Simplification System is Effective............. 245
Setting up the Experiments. 248
Results and DiSCUSSION.ot e 250
Measuring the Effect of Using Relevance. 253
Setting up the Experiments. 255
Results and DiSCUSSION.o 257
Measuring the Effect of Using Different Complexity Measures. 259
Setting up the Experiments. 260
Results and DiSCUSSION.ot e 261
CoNCIUSIONS . . .o 263
CHAPTER 9 CoNCIUSION 264
Contributions 264
Future WOork ... 269
Performing Further Experiments with the System. 270
Improve the Usability of the System by Buildinga GUI. 270

Design Simplification by Analogical Reasoning

Table of Contents Xi

Extending the System to other Types of Simplification. 271
Adding New Application Domainsc. .. 271
Studying the Simplification Propagation Problem. 271
Studying the Possibility of Generating Creative Simplifications 272
Bibliography 274 ..
APPENAIX A . oo 282 ..
APPENdiX B . . 295. ..
APPENAIX C .o 304. ..
Appendix D 307. ..

Design Simplification by Analogical Reasoning

Introduction 1

CHAPTER 1 Introduction

Ever since artifacts have been produced, improving them has been a common humi;
activity. Improving an artifact refers to modifying it such that it will be either easier to pro-
duce, or easier to use, or easier to fix, or easier to maintain, and so on. In all of these cas
“easier” means lesgsourcesare required for those processes. While ‘resources’ is a gen-
eral measure, which can ultimately be expressed by some measasg(sfich as time or
money), we believe that at the core of many improvements is the notredusftion of
complexity or in other wordssimplification For instance, the less complicated an artifact
Is, as measured by the number of parts it consists of, the easier it will be to manufacture.
is clearly the case that the cost of the actual manufacturing process will depend on tt
technological sophistication of the manufacturer, experience and skill of the workers an
so on. However, as opposed to cost, the complexity of an artifact gives an objective cha

acterization of the difficulty of its manufacturing.

Design Simplification by Analogical Reasoning

Introduction 2

Simplification, as a very important method of artifact improvement, is a goal-driven activ-
ity. Such goal-driven activities have been the ‘motors’ of many creative acts. While grea
inventions and discoveries have often been made by noticing connections, drawing anal
gies or using metaphors, they almost always were driven by some goal, which quite ofte

was to improve, or to simplify something.

Thus, studying simplification is a very important direction of research. On one hand, it tar
gets the understanding and simulation of a basic human (cognitive) activity. This can lea
to important results from both theoretical and applicative points of view. On the othelr
hand, the study of simplification, may set a context for studying human creativity as a by

product of goal-driven reasoning processes.

1.1 The Goal of the Research

This dissertation is concerned with the representations and reasoning requsietpfdi-

cationin general an®esign Simplificationn particular.

A design can be consideredsasiplerthan another for a variety of reasons, such as shape,
use, or ease of assembly. Simplification, as a consequence, can be done with a variety

goals, such as to simplify the shape, the use, or the ease of assembly of a design. In ac

Design Simplification by Analogical Reasoning

Introduction 3

tion, simplification can be done in a variety of ways. For example, simplifications might be

searched for (reasoned out) or retrieved.

The research presented in this dissertation studies simplification by analogy with store
simplifications. The designs are represented as function, plus behavior, plus structur
Simplifications may occur for each of these aspects, with consequences for the othe
aspects. For example, changing the behavior may make a component redundant. We c

this propagation of simplification

The two general hypotheses of our research are that simplification of designed objects
an important class of problems that is worth a special study, and that an effective and ef
cient approach to solving problems of this class is to reuse known simplifications by ana
logical reasoning. As a consequence of these hypotheses we proposed that the followi

problems need to be investigated:

» How to define and represent simplification problems.

* What special techniques are needed in the analogical reasoning process to make |

design simplification problem solving effective and efficient.

Design Simplification by Analogical Reasoning

Introduction 4

The definitions we hypothesize as needed refercionaplexity measure for desigasd a

simpler-than relation.

To use analogical reasoning to solve design simplification problems we propose that tf
following subproblems - raised by developing an analogical reasoning model for desigl

simplification - must be investigated and solved:

* use of the goal, as formulated in the simplification problem, to guide the phases o

the analogical reasoning process;

« effective and efficient retrieval of source analogs (known simplifications) under the

assumption that a simplification may refer to only some part of a design;

« effective and efficient evaluation of mappings between source analogs and the targ
under the assumption that those mappings are between deep structures as oppose
the shallow structures used to demonstrate analogical reasoning models in cogniti
science research;

« transfer of simplification knowledge to the target whether the source analog (simpli-
fication) is described by the simplification process or just by the differences betweer

the designs involved.

Design Simplification by Analogical Reasoning

Introduction 5

In the concluding chapter of this dissertation we will present the results of our investiga

tion with respect to the hypotheses and subproblems described above.

We have no knowledge of any ongoing research concerning simplification or simplifica-
tion of designs. The propagation of changes across levels of representation (e.g., fro
structure to function) is, as far as we know, a new research area, and one that appears tc
very challenging. The design simplification problem area in general raises a large numbe
of interesting research issues concerning functional reasoning and functional represent

tion schemes, and their interaction with analogical reasoning.

1.2 The Importance of and Motivation for the Research

The research presented in this dissertation is significant as it focuses on the intersection
a number of important, active research areas — analogical reasoning, functional represe

tation, functional reasoning, simplification, and the general area of Al in Design.

We investigate the process of design simplification at diffelerels (i.e., structural,
behavioral and functional). While there is some simplification-related work in the Engi-
neering community, such as Design For Manufacturing (DFM) and Design For Assembly

(DFA), their work is mainly concerned with the structural view. We believe that design

Design Simplification by Analogical Reasoning

Introduction 6

simplification is a significant problem that hasn’'t been addressed by Al, and that oul

approach provides a fresh view.

Each of the levels at which a design may be simplified can set simplification goals. The
dissertation examines simplification as a goal-based activity and proposes an analogic
reasoning model to perform it. Goal-based analogical reasoning is one of the importar

areas of the research presented.

Simplifying a design from one level may affect the other aspects. Studying the propage
tion of simplifications across levels is also a significant aspect of our research on desig
simplification. This dissertation does not propose a solution to the propagation problem. |

presents, however, the problems raised by the propagation of simplifications.

The dissertation presents both theoretical and practical results. We hope that these rest
will have significant theoretical impact on the field, as well as a strong potential to impact

design applications, and possibly other application areas.

The results from this work have the capability of influencing the next generation of desigr

systems. The techniques developed and implemented in our prototype system can be f

Design Simplification by Analogical Reasoning

Introduction 7

ther developed and refined, and included in practical CAD tools, which then will be able

to assist designers to produce simpler designs and analyze proposed simplifications.

1.3 Expected Benefits of the Research

In addition to the obvious benefits of any new research results, better understanding of tl

simplification of designs might eventually lead to cheaper, better designed products.

Design has been chosen as the domain because it is a rich source of representations
problem solving activity. It is a type of human activity that is still not very well under-

stood, and, consequently, is a natural target for Al.

1.4 The Simplification Problem

Simplifying an object means to reduce its complexity. We view complexity as a way of
characterizing objects from a giv@oint of view that iscontext aspectandmeasure A

contextfor characterizing an object by its complexity refers to a process that can be per
formed on the object (e.g., describing it, producing it, using it and so on). For a given cor
text, anaspectis the collection of those elements of the objects which play a role in their

characterization in the context considered. For a design an aspect can be its structure, t

Design Simplification by Analogical Reasoning

Introduction 8

is its components, relations between components and attributes. Finally, for a given col
text and aspect,rmeasuras a function that assigns to an object a numeric value that char-
acterizes the complexity of the object in the given context and aspect (e.g., counting tf
components of a design can be a measure of complexity defined for the context of man
facturing, in the aspect of structure: it characterizes the number of components that have

be manufactured before the design can be completed).

Given an object, a point of view (context, aspect and measure), and a set of constraints
the object, thesimplification problems the problem of transforming the object such that
the resulting object satisfies the constraints and such that its complexity, as measured f

the given point of view, is less than that of the original object.

1.4.1 Specifying a Simplification Problem

A simplification problem is defined by three elements: the object that has to be simplified
the point of view of the simplification and properties of the object that the simplification
has to preserve. These three elements correspond respectivelplgetiegoal andcon-

straint of the simplification problem.

Design Simplification by Analogical Reasoning

Introduction 9

1.4.2 Possible Approaches to Solve a Simplification Problem

We view the simplification process as a search in some search space (e.g., design spac
the case of design simplification). The goal of the search is to find a simpler object tha
the one given as the starting point. Note that we do not define simplification as an optimi
zation problem (i.e., with the goal to find the least complex object), but rather an improve
ment problem. Also, simplification is a constrained search because all simplification
problems require the preservation of some properties of the object (for example, desic
simplification is, or should be, a function-preserving process). There are several possib

ways we could try to solve a simplification problem.

One possible approach to performing simplification is to view it as an optimization prob-
lem with a complexity measure as the objective function. For instance one could appl:
local transformations known to reduce complexity and organize them into a hill-climbing
type of process. Structural simplification of a mechanical design could be approached &
applying basic simplification operators, such as removing redundancy (e.g., removing tw

gears from a line of connected gears).

Another possible approach to performing simplification would be to perform some heuris:

tic search. Having some knowledge of what operations and what sequences of operatio

Design Simplification by Analogical Reasoning

Introduction 10

may lead the search towards “good” simplifications, would overcome the deficiencies o
the local optimization approach, which is the major problem with uninformed search
methods. One general problem of this approach is the lack of good heuristics. As far as v
know there are no general (domain independent) heuristics for simplification and man:

specific domains also lack extensive simplification rules.

Finally, a third approach to performing simplification is reusing known simplifications to

produce new ones. This could be done either by reusing known simplifications from the
same domain as the problem is in (i.e., by case based reasoning), or from a differe
domain (i.e., by analogical reasoning). In this dissertation we propose this latter approac

as the best one for solving simplification problems.

In our research we propose the study of using analogical reasoning for simplification i
general, and design simplification, in particular. Our approach extends the general mod
of analogical reasoning with mechanisms for using the simplification goal to guide the

processing.

Design Simplification by Analogical Reasoning

Introduction 11

1.5 Simplification using Analogical Reasoning

Approaching the simplification problem by analogical reasoning would have several bene
fits. First, a known simplification can be reused over and over for identical simplification
problems. Second, even if a new simplification problem is not identical to any known one
if some (significant) similarity between the two can be discovered, the old simplification
may be used as an “idea” for simplification. Finally, simplification by analogical reasoning
also has the benefit that it may be capable of producing general simplification principle:

by learning and abstracting over the simplifications produced.

1.5.1 The Problems Raised

Simplification by analogical reasoning requires the solving of a number of problems. Firs
a way of representing the known simplifications must be defined. Such a representatio
must contain all the elements that are needed for solving a simplification problem in ger
eral, as well as elements that would allow the application of analogical reasoning. Th
minimal set of elements that the representation of a simplification has to contain, consisi
of: a) the objects involved in the simplification (the original object and its simplified ver-

sion) and b) the simplification process that has been applied to transform the origine

object. As we shall see, the second one is needed for the analogical transfer. In this diss

Design Simplification by Analogical Reasoning

Introduction 12

tation we propose, that in addition to these two elements, the representation of a simplif
cation also contains a description of those elements of the objects which were actual
involved in the simplification. This will allow our analogical reasoning model to concen-

trate only on elements that asdevantto simplifications.

Another problem that needs to be solved is the design of the data structures for organizil
known simplifications. These data structures must support all the phases of analogical re
soning. Designing these data structures needs to be done in parallel with building tr

model for analogical reasoning, since they will be strongly interdependent.

Finally, a model of analogical reasoning needs to be defined. For this a set of general a
specific issues must be solved. To solve the general issues we need to answer the followi

questions:

How might the retrieval of an analog occur?

How will the retrieved analog be mapped onto the given problem?

How will the mapping be used to transfer the problem solving knowledge?

How can the solution to the problem be completed if needed?

How will a solution to the problem be evaluated?

Design Simplification by Analogical Reasoning

Introduction 13

* How can a generalization over the analog and the solution to the problem be built?

» Will the generalization and/or the solution of the target problem be stored into the

database of problems for later use?

Specific issues refer to particular aspects of the simplification problem which could be
used by the analogical reasoning mechanism to improve performance and/or the quality
the result produced. Such issues are for example, whether the simplification goal could [
used to improve retrieving, mapping and knowledge transfer, what role could the simplifi-
cation goal play in producing and evaluating the solution, or how could the simplification

goal be used to generate useful abstractions for generalizing over simplifications.

1.5.2 The Approach Proposed

The approach to solving simplification problems presented in this dissertation is based c
what we call “goal-driven” analogical reasoning. Goal-driven means that the simplifica-
tion goal stated in the problem will be used all through the analogical reasoning process
improve the performance of the processing and/or the quality of the result. We had to tak
the simplification goal into account both in defining the representation of simplifications

and in designing the data structure for organizing known simplifications.

Design Simplification by Analogical Reasoning

Introduction 14

We propose that the representation of a simplification consists of the representations of tl

following elements:

* the two objects involved in the simplification (the more complex and the simpler
one);

* the explanation of the simplification, which specifies either the difference between
the two objects involved, or the process by which the more complex object was

transformed into the more simple one;

« the set of those elements of the objects, which according to the explanation, playe

some role in the simplification (we call these elemegievant elemenys

The explanation is used for two purposes. One one hand it is the basis for determinir
which elements of the objects involved in the simplification are relevant. On the othel
hand it can be used to build abstractions over simplifications, with the purpose of organiz
ing simplifications into hierarchies. Such hierarchies are useful for the analogical transfe
of simplification knowledge, as well as for generating general simplification rules and/or

principles.

Design Simplification by Analogical Reasoning

Introduction 15

The relevant elements are central to this research because they are used to focus the |
cessing on all the phases of the analogical reasoning process to only those portions

objects that are involved in some simplification.

The data structure we are proposing for organizing known simplifications was designe
along three dimensions. First, the set of known simplifications is partitioned based on the
goal (context, aspect and measure) into classes of simplifications having the same go
Second, simplifications are organized along their “more complex object” component. The
reason for this is that the retrieval of a known simplification similar to a problem is done
by matching the object specified in the problem to an object that has already been simp!
fied. Along this dimension, simplifications are organized into several hierarchies corre-
sponding to the types of elements used in the representation of the objects involve
Finally, the known simplifications are organized into simplification hierarchies. These

hierarchies are based on abstractions over the explanations of the simplifications.

The reasoning process we propose to use for simplification was derived from a quite gel
eral model of analogical reasoning and proceeds as follows (Figure 1 presents the internr

diate results of the different steps in the processing):

Design Simplification by Analogical Reasoning

Introduction 16

Known
Simplifications

Retrieval: >

- point of view based pruning

- content-based filtering .

- Indexing | Candidate
‘ Source

Analogs

Selection

Source
Analog

Mapping and Transfer— p» o

Candidate
Simplifications

Selecting Simplification —>
- apply simplification)
- select best simplification

Resulting
Simplification

FIGURE 1. The process of producing a simplification. The ovals represent sets of simplifications,
with larger ones containing more simplifications, the rectangle represents one simplification.

Design Simplification by Analogical Reasoning

Introduction 17

* Retrieval of candidate source analogjsis phase selects from the set of known sim-
plifications those that have the same point of view as the problem, and which ar
“similar” to the problem. Similarity is measured in terms of the number and kind of

elements (e.g., components, relations and attributes) they share.

 Selection of the source analagach candidate analog retrieved has associated with it
a score which measures its similarity to the object to be simplified. This score is use

to select the simplification that is closest to the problem.

* Mapping of the source analog onto the prohleéms phase will produce several
“global mappings” that are consistent sets of correspondences between relevant el

ments in the source analog, and elements in the problem.

 Selection of the best global mappimgch of the global mappings obtained will be
evaluated for quality by combining the scores of the member correspondences (e.c
correspondences between relations will assigned higher scores than correspondent
between attributes for analogical reasoning). The scores of the member correspo
dences are assigned at the time of retrieval. The global mapping with the highe:

score will be selected to be used for transferring the simplification knowledge.

Design Simplification by Analogical Reasoning

Introduction 18

 Transfer of simplification knowledgéhe best global mapping will be used to pro-
duce several candidate simplifications by associating the unmapped elements in tf

source analog with elements in the problem.

» Application and evaluation of candidate simplificatioalt of the candidate simplifi-
cations are applied to the simplification problem, producing new objects. The object:
produced will be evaluated against the problem constraints and for the simplificatior
condition. If an object produced does not satisfy the constraint or is not simpler thai

the object specified in the object, it is dropped.

 Selecting the solutiorthe object that has the minimal complexity from among those
which satisfy the constraint and are simpler than the object to be simplified, will be

reported as solution to the simplification problem.

» Generalization and learningf the simplification that was applied is significantly
different than the source analog it has been derived from, it will be added to the date
base of known simplifications. Also, if a useful generalization over the new simplifi-

cation and the source simplification can be built, it will also be added to the database

Design Simplification by Analogical Reasoning

Introduction 19

FIGURE 2. A schematic door lock

1.6 Example

In this section we will use a simple example to illustrate our ideas about the simplificatior
of designs by analogical reasoning. The example will be drawn from the domain of

designing simple door locks [Chakrabarti & Tang 1996].

We consider a door lock (Figure 2) to be a device that allows and prevents the opening of
closed door (or gate or window). It is composed dfoa, and abolt that can be fully
retracted into the box as a consequence of some input applied. When the bolt is cor

pletely retracted it allows the door (together with the whole lock) to move into the open

Design Simplification by Analogical Reasoning

Introduction 20

N

§
LT

_L |
0 o -
N/ A J

Initial State Intermediate State Final State

FIGURE 3. Behavior of a door lock

position. When the input is no longer applied the bolt returns to its initial (unretracted

position).

For our purposes, the opening of the door lock is a three state process (Figure 3). The il
tial state corresponds to the closed door and is characterized by an unretracted bolt an
shut door. The second (intermediate) state is characterized by a retracted bolt and a sl
door. The door lock may get into this state from the initial state as a consequence of appl

ing some input. The final state corresponds to the open door and is characterized by

Design Simplification by Analogical Reasoning

Introduction 21

retracted bolt and an open door. This state can be reached from the intermediate state
applying a second input to the door lock. The closing of the door lock can be described i

a similar way.

In our examples we shall limit ourselves to door locks implemented using simple compo
nents with distinct functional roles (such as levers, cams, shafts, etc.). We shall als

assume that the inputs to a door lock will be forces characterized by their directions.

Figure 4 (a) illustrates a design for the door lock device. We represent designs by the
structure, behavior and function. Note that in this dissertation we do not study designs th
achieve their function without a behavior. Figure 4 (b) is a graphical representation of th
structure of the a door lock, consisting of components, relations (represented by thicl

two-directional arrows) and attributes. Every device has at least one (intémalec)n

A function of a device is defined in terms of its interaction with a given environment
[Chandrasekaran & Josephson 1996] “We say that an object achieves its function if place
into the environment for which the function is defined, if it causes the interaction to hap-

pen, by virtue of certain of the properties of the device”.

Design Simplification by Analogical Reasoning

Introduction

22

@)

02

()
DoorLock1

welded to connected

/ NOOKed 18

Handle Cam Bolt

estorin

FIGURE 4. Door lock implementing using a cam: (a) schematic and (b)
structural representation

Design Simplification by Analogical Reasoning

Introduction

23

Function: Open

Environment:

- input 11 applied to the handle

- input 12 applied to the handle
Interaction:

- force_I1_applied > restoring_force

retract_bolt

- bolt_retracted O apply_I12
By (deployment):

- Open_Behavior

FIGURE 5. The Open function of DoorLock1l

Figure 5 gives a description of the Open function of the door lock represented in Figure 4
Figure 6 represents the behavior implementing the Open function. We view the behavic
of a device as a process described by a sequence of state transitions. A state transitiol
specified by two (partial) state descriptions, itiieal stateand the final sta, acondition

and a specification diow the state transitions are achieved state transition may be

achieved by a function or another behavior.

Design Simplification by Analogical Reasoning

Introduction 24

State: force_on_Spring <= restoring_force
Cond: force_11_applied > restoring_force

By: Behavior Lever_Cam_transmit_force

State: bolt_position = out
Cond: force_on_spring > restoring_force

By: Knowledge Newton’s_2nd_Law

State: bolt_position = retracted
lock_position = closed
Cond: force_12_applied

¢ By: Knowledge Newton’s_3rd_Law

State: lock_position = open

FIGURE 6. State transition graph for the top level behavior of DoorLockl

Design Simplification by Analogical Reasoning

Introduction 25

1.6.1 Measuring the Complexity of Designs

Let us now see how the complexity of a design, such as the door lock described above, ¢
be measured. Since the definition of complexity is relative to a point of view, we have tc

start with defining contexts, aspects and measures for measuring complexity of designs.

The contexts for measuring the complexity of designsst be processes that can be
applied to a design such as designing, manufacturing, using, repairing, maintaining and :
on. Thus we may want to answer questions like “How complex is it to design the dool
lock?”, “How complex is it to manufacture the door lock?”, “How complex is it to use the

door lock?” or “How complex is it to describe the door lock?” and so on.

For each of the contexts above there maydgmects of a desigwith respect to which
complexity may be measured. In our research we will only be concerned with complexity

for the aspects of structure, behavior and function of designs.

For each context-aspect combination that makes sense, we can definerseastaks
We will consider measures based on counting different elements of the design. Whe
exactly needs to be counted will depend on those elements of the design in the aspect c

sidered, on which the process corresponding to the context depends. For example, in t

Design Simplification by Analogical Reasoning

Introduction 26

FIGURE 7. Door lock using a combination of two levers, a wedge and an L-
shaped bolt

context of manufacturing the door lock, for the aspect of structure, a possible measure

complexity would be the count of components.

Let us illustrate some complexity measures that could be applied to our door lock exan
ple. Here we will restrict these examples to the contexsioig thedoor lock. A door lock

that isstructurally more complex than the door lock in Figure 4 is the one illustrated in
Figure 7. This is true if we measure the complexity of the design by the count of compo
nents. The door lock in Figure 7 has 5 components (a handle, a lever, a wedge, a bolt an

spring), while the one in Figure 4 has only 4 components (a handle, a cam, a bolt and

Design Simplification by Analogical Reasoning

Introduction 27

02

-~~~

FIGURE 8. Door lock using a combination of a wedge and an L-shaped bolt

spring). In addition to the number of components, structural complexity may also refer tc
the number of relations between components as well as to the number of attributes of tl
design and/or its components. The door lock in Figure 4 iselsaviorallysimpler than

the one in Figure 7 because the state descriptions involved are simpler (this is obviously
consequence of having fewer components, but it is reflected in the behavioral represent
tion as well). This behavioral complexity may refer, for example, to the count of states (o0
states transitions) in the behavioral description. Finally a door lock tiancsonally

simpler than the door lock in Figure 4 is shown in Figure 8. This is due to the fact that th

Design Simplification by Analogical Reasoning

Introduction 28

interaction with its environment contains fewer inputs (the same force will retract the bol

and push the door open).

1.7 Simplifying Designs by Analogical Reasoning

Simplification of designs by analogical reasoning relies on a collection of known simplifi-
cations. This collection is partitioned into three classes of simplifications, corresponding
to the three aspects of designs, structure, behavior and function. This partitioning is dor

by marking (labeling) each simplification with the aspect to which it corresponds.

The analogical reasoning process is performed as described in Section 2. The most dif
cult problems raised by the simplification of designs are the transfer of simplification
knowledge, the application of the candidate simplification and the evaluation of the result
ing design. The first two problems occur when retrieving simplification knowledge from a
different domain than the domain of the problem. The most straightforward solution is tc
use a hierarchy (or several hierarchies) of object classes and of simplifications. The evall
ation of the object generated as the result of the selected simplification is difficult becaus
the modification of one aspect of the design will propagate to other aspects. This propag

tion may lead to violation of the original requirements for the design. Thus the propaga

Design Simplification by Analogical Reasoning

Introduction 29

tion has to be performed explicitly. The difficulty of propagation may range from no
modifications needed to a complete redesign of the object. As a consequence we are |

addressing it to any detail.

1.8 Methods and Expected Results

In this research we are proposing a way to solve simplification problems, in general, an
design simplification problems, in particular. For this purpose we address two major ques

tions: a) What is simplification? and b) How can simplification be performed?

To answer the first question, we are proposing a definition for the complexity of objects
modeled by their structure, behavior, and function. We chose tstus¢ure-behavior-

functionmodels as a basis for our definition of complexity because they are the most por
ular means of modeling physical systems, in general, and designs, our main domain
application, in particular. The criteria which we need to keep in mind for our definition are

the following:

» Our definition of complexity must be operational, that is, the complexity of any
object modeled by its structure, behavior and function musftfbetivelyand effi-

ciently computable. The requirement for efficiency is necessary because physica

Design Simplification by Analogical Reasoning

Introduction 30

systems may be very complicated and any process of evaluating them, includin

complexity, has to be performed efficiently, in order to be useful.

* We need to be able to explain the relation of our definition of object complexity to
other definitions used in the literature and in practice, and clearly point out its advan
tages, and (possibly) disadvantages. For this we need to compare complexity me
sure, and relations between complexity measures obtained with our definition tc
complexity measures obtained with other known methods. We then need to explai
the differences between the results of those measures (if there are any) as well

why those differences are useful for solving a simplification problem.

To answer the question “How can simplification be performed?” we did two things: a)
built a model of our approach to solving simplification problems and analyzed it theoreti-
cally, and b) implemented a system based on that model and performed a set of expe

ments to demonstrate our approach.

We propose to solve simplification problems by using “goal-directed analogical reason
ing”, that is, analogical reasoning in which the reasoning process is guided by the simplifi
cation goal. We base our problem solving model on an almost universally accepted mode

based analogical reasoning process model [Bhatta et al. 1994]. The specifics of our moc

Design Simplification by Analogical Reasoning

Introduction 31

consist in two aspects: First, the matching and mapping phases of the process are basec
Falkenheiner’s Structure Mapping Engine (SME) [Falkenheiner et al. 1993], and seconc
in each phase of the process, the relevance of object parts to simplifications is used
restrict the processing. We perform the theoretical analysis of our model by applying to |
the known theoretical analysis results for the models from which it was derived (i.e.
model-based analogical reasoning and SME) and estimating the impact on using relevan

to restrict processing. We also perform experiments to measure this influence empirically

We expect that the complexity of our model is not worse than that of known model-base
analogical reasoning models and that using relevance significantly reduces the comput

tion in the retrieving, matching and mapping phases.

Based on the model proposed we implemented a system for simplification by analogicz
reasoning. For the implementation we used the CLIPS language [CLIPS 1993]. Amon:
other reasons, we chose CLIPS for our implementation because it supports rule-based p
gramming, it supports object-oriented programming, it implements a set of powerful quen

operations, and it allows easy interfacing with other programming languages.

Design Simplification by Analogical Reasoning

Introduction 32

To use our system for demonstrating the goal-directed analogical reasoning approach
simplification we designed and performed a set of experiments. The goals of our exper

ments were the following:

» to demonstrate that the system is capable to produce simplifications using knowi

simplifications from either within the application domain, or across domains;

* to measure how using relevance influences the resources required by solving simpl

fication problems;

* to study how using different ways of measuring complexity from the same point of

view (e.g. structural complexity) affects the results produced.

We present the results of these experiments in Chapter 8.

It should be clear that the effectiveness of any similarity-based problem solver heavil
depends on the knowledge it can rely on. We wanted to make sure that for each proble
presented to the system the simplification database contains enough knowledge to propc
a solution. For this reason, in our experiments we used hand-coded simplification dat:
bases. This way we were able to demonstrate different aspects of the system and to tes
for problems that we considered interesting or hard. Never the less, we also performed

experiment in which the simplification generated by the system was added to the simplifi

Design Simplification by Analogical Reasoning

Introduction 33

cation data base and then reused in solving another simplification problem. For this expe
iment we have specially built the second simplification problem such that it would retrieve

the newly added simplification as a good source analog.

We must note here that our implementation was only tested for structural simplificatior
problems. However, the approach works for behavioral and functional simplification prob-

lems as well. We can argue for this based on our way of representing designs:

* A behavior of a given design is represented by a sequence of state transitions. Th
can be viewed as a decomposition of the behaviorsiejoswhich are connected by
a followed-byrelation. Each of these steps may be eithezlamentary stefin the
case when the transition is achieved by a function), or maycbenposed stefin
the case when the transition is achieved by another behavior). Thus a behavior is re
resented by a tree structure with relations between sibling nodes. This representatic

of a behavior is similar to the structural representation of a design.

* A function of a given design is represented byeheironmenin which the design
has to be placed into in order to achieve its functionjrttezaction of the design
with the environment required to achieve the function, and the way the function is

deployedFunctional simplification refers to either the simplification of its interac-

Design Simplification by Analogical Reasoning

Introduction 34

tion with the environment, or to the simplification of how it is deployed. We view an

interaction as a sequence of input and output pairs and we represent it in a way Ssirr
lar to representing behaviors (i.e., using a structure similar to a sequence of sta
transitions). The mode of deployment of a function is represented by a behavior the
implements that function. Consequently, based on the discussion in the previou
paragraph, the representation of function of a design uses structures similar to tho:

used in the behavioral and structural representation of designs.

In the concluding chapter we will describe what changes need to be made to the curre
implementation of our system in order to be able to solve behavioral and functional sim

plification problems as well.

1.9 Organization of the Dissertation

The remainder of this dissertation presents our approach to simplification by goal-drive!
analogical reasoning in more detail. Chapter 2 presents the simplification process b
breaking it down into subproblems, as well as possible approaches to solving those su
problems. Chapters 3 relates the work presented to work in other fields, such as analogic

reasoning, abstraction, reasoning about designs and design optimization. Chapters 4 an

Design Simplification by Analogical Reasoning

Introduction 35

describe our approach in detail. While Chapter 4 is a general description of our proposal
solve simplification problems, Chapter 5 specifically refers to the simplification of

designs, the additional problems raised by it and our solutions to those problems. Chapte
6 through 8 present the validation of the approach. Chapter 6 gives a short theoretical an:
ysis of the simplification process with emphasis on time complexity of the processing
Chapter 7 describes the implementation of a simplification system based on our approac
Chapter 8 presents the experiments performed with the implementation for demonstratir
the approach. Chapter 9 summarizes the contributions of the research and sets goals

future work.

Design Simplification by Analogical Reasoning

The Problem 36

CHAPTER 2 The Problem

The problem addressed in this dissertation is: What is simplification and how can simplifi
cation in general, and design simplification in particular, be performed in an effective anc
efficient manner? This chapter gives a detailed description of the problem. First we presel
our views on what simplification is. We use examples from different domains to illustrate
the issues raised when trying to define simplification. We conclude the first section with
definition of simplification. The rest of the chapter defines the simplification process, pre-
sents ways simplification could be performed, describes the general approach to solvir
problems by analogical reasoning, presents the issues raised by using analogical reason
in general and for design simplification in particular. These issues constitute the subprot

lems our research proposes to solve.

Design Simplification by Analogical Reasoning

The Problem 37

2.1 Simplification

Simplificationis a process by which an object is transformed into another, simpler object
Intuitively we say that an object A gmplerthan another object B, if B is mocempli-
catedthan A. Thus, to define what simplification is we need to define what we mean by
“simple” (or equivalently “complicated”) and how “degrees” of simplicity can be me mea-

sured.

2.1.1 The Simpler Relation

Using a more precise term for our definition we say that object A is simpler than anothe
object B, if thecomplexityof A is smaller than the complexity of B. This definition sug-

gests that to study the nature of the “simpler” relation we first need to define what we
mean by the complexity of an object. As we shall see in the followings this is by no mean

a trivial problem.

Following the view adopted in Mathematics and Computer Science (see for instanc
[Brassard & Bratley 1996]), we define themplexity of an obje¢b bea measure of cer-

tain resource requirements for a given process performed on the.object

Design Simplification by Analogical Reasoning

The Problem 38

2.1.2 Measuring Complexity

Our definition given in the previous subsection suggests that complexity is not an absolut
measure. We may define several complexity measures for the same object, depending
different factors. In the followings we will use several examples, from different domains to

illustrate what factors might be considered when defining the complexity of an object.

2.1.2.1 Measuring the Complexity of Mathematical Expressions

The purpose of a mathematical expression (or “expression” for short) is to describe a s
of numbers. If the expression contains variables it describes the set of all numbers that c
be obtained byubstituting(legal) values for each of those variables andluatingthe
resulting arithmetic expressions. Two expression which evaluate to the same number fi
all the possible substitutions of the variables are said sxbialent For simplicity, in

this subsection we will only consider expressions built using constants, one single nor

negative integer variable, the four arithmetic operation signs and parentheses.

One reason for the importance of measuring the complexity of an expression would be 1
estimate the effort needed to evaluate it. Based on such a measure one could dec
whether a given expression can be evaluated in a reasonable amount of time or not,

which of two equivalent expressions to evaluate for a faster result. However, as we she

Design Simplification by Analogical Reasoning

The Problem 39

see, evaluation is not the only process that can be applied to an expression. We will shc

that those other processes may require a different view on the complexity of an expressic

The following example will illustrate the problems raised by defining a complexity mea-

sure for expressions.

Consider the following three equivalent arithmetic expressions:

(n+1)(n+2)

AN = - m-2(n+2) QD
2
n“+3n+2
B(n) = 3 5 (EQ 2)
n°+nc-10n+ 8
n n
C(n) = (EQ 3)
1+1'__]£)+§
n n2 n3

-

How do these three expressions compare from the point of view of their complexity”
Unfortunately there may be several different answers to this question. In the following we
will refer to the structures of the three expressions represented in Figures 1, 2 and

respectively.

First, we could measure the complexity of each of the expressions by the number of els

ments (i.e., constants, variables, operators and parentheses) neededth@m. Such a

Design Simplification by Analogical Reasoning

The Problem 40

FIGURE 2. Structure of expression B(n)

measure would be a good basis for estimating the effort needed for the process of writir
expressions. If we chose this count as the measure of complexity of an arithmetic expre

sion, then we would say that expressi@&{n) is the simplest (least complex) because

Design Simplification by Analogical Reasoning

The Problem 41

OO0 Owww® ®Q
OXOLOXC @@ @06

FIGURE 3. Structure of expression C(n)

fat)

only uses 18 elements, compared to 26 and 29 elements used by expr&gsjons

C(n), respectively.

Let us relate this measure of complexity to the structure of an arithmetic expression. W
can describe thprocessof writing an expression based on its structure by the algorithm
presented in Figure 4. Note that this algorithm will print out all the parentheses, even i
they are not needed. To count the elements used to write an arithmetic expression usi
this algorithm we only have to count the elementarye operations performed by it.

While this could be done using standard algorithm analysis techniques, it should be obv

Design Simplification by Analogical Reasoning

The Problem 42

WriteExpression (E)
begin
switch type(E)
case NUMBER:
write E;
case VARIABLE:
write E;
case EXPRESSION:
O:= operator(E);
A[1..n]:= arguments(E);
write ‘(’;
WriteExpression(A[1]);
for ii=2ton do
write O;
WriteExpression(A(i));
end for
write)’;
end switch
end.

FIGURE 4. Algorithm for writing a fully parenthesized expression based on its
structural representation

ous that the number of elements used for writing a given expression, represented by |
structure can be found based on tle@nting of terminal nodes and nonterminal nodes,

plus their branching factorg¢i.e., the number of descendants for a node in the structure
tree) in the structural representation. Note that if we only use binary operations in our re
resentation our measure of complexity would reduce to the counting of nodes in the repr
sentation tree and the consideration of the fact that the writing of each internal nod

requires three elements, the operator sign and two parentheses.

Another situation in which we may want to measure the complexity of expressions is if we

Design Simplification by Analogical Reasoning

The Problem 43

want toevaluatethem. In this case the goal of measuring the complexity of an expressior
with respect to evaluation is to estimate the resources required during the evaluation pr
cess. One such resourtiepe could be estimated by counting the operations that need to

be performed during evaluation.

Just by looking at our expressions we can tell that from this point of view exprégsipn

would be the simplest because it only requires 9 operations to be performed, compared
11 operations foB(n) and 13 f@&(n) . However, let us again give a precise descriptior
of the process with respect to which we want to measure complexity (i.e. of evaluation)
The algorithm in Figure 5 specifies this process. To calculate the complexity of an expre:s
sion measured as the number of operations that need to be performed during evaluation

have to count the number of times the step of applying an operator, that is

result: = O(result,EvalExpresion(A[i]);

will be performed. Again, this can be easily donebynting the internal nodes and their

branching factordn the structural representation. Also, a note similar to the one made al
the end of the previous paragraph can be made, that is if the representation of the expr
sion only uses binary operators the complexity from the point of view of the number of

operations performed could be computed by counting the internal nodes in the represen

Design Simplification by Analogical Reasoning

The Problem 44

EvalExpression (E): NUMBER
begin
switch type(E)
case NUMBER:
return E;
case VARIABLE:
return value(E);
case EXPRESSION:
O:= operator(E);
A[l..n]:= arguments(E);

result:= A(1);

for ii=2ton do
result:=O(result,EvalExpresion(A[i]));

end (for)

return result;
end (switch)
end.

FIGURE 5. Algorithm for evaluating an expression based on its structural
representation

tion tree.

Finally, let us consider another process with respect to which the complexity of an expres
sion may be of interestinderstandinghe “behavior” of an expression for large values of
the variablen it depends on. This process is important because it allows a characterizati

of an expression without actually evaluating it.

It should be clear that all of the expressions we have considered will have values clos
and closer td as the value substituted in far is bigger and bigger. What is different

however about the three expressions with respect to this process is that some of the

Design Simplification by Analogical Reasoning

The Problem 45

require more effort for obtaining the same characterization. This difference in the effor
required has its explanation in the different complexity of the three expressions with
respect to the process considered. By applying simple limit calculation rules known fromn
calculus we would decide th&t(n) is the simplest because we only need to apply a fixe

number of limit calculation rules to see that

lim C(n) =0,

n - o

while both A(n) andB(n) need first to be transformed into expres<ig§n) to produce the

same answer.

Since this latter statement may sound more vague than the ones given for the previo

examples let us once again give a precise description of the process involved.

Figure 6 gives an outline of an algorithm which computes the limit of an expression
(depending on a variable, when the variable goes to infinity) using a limited set of rules o
limit calculation and of expression transformation. The structure of the algorithm is very
similar to the evaluation algorithm. Essentially the difference consists in the case whe
limit calculation of a subexpression returns ‘UNDEFINED’ (e.g., when trying to compute

jim 2
n - o0
another (equivalent) expression, for which the limit calculation rules may yield a result.

). To compute the limit in this case the expression needs to be transformed int

Design Simplification by Analogical Reasoning

The Problem 46

LimitExpression (E): NUMBER
begin
switch type(E)
case NUMBER:
return E;
case VARIABLE:
return value(E);
case EXPRESSION:
O:= operator(E);
A[1..n]:= arguments(E);
i=1;
repeat
limit[i]:=LimitExpression(A[i]);
until (i > n) or (limit[i] = UNDEFINED)
if i>n then
result:=ApplyLimitRule (O,limit);
if result = UNDEFINED then
rule:= SelectTransformationRule(E);
TransformExpression(rule,E);
return LimitExpression(E)
else
return result;
end (if)
else
return UNDEFINED;
end (if)
end (switch)
end.

FIGURE 6. Algorithm for calculating the limit of an expression based on its
structural representation

This (significant) part of the algorithm is “hidden” in the statements

rule:= SelectTransformationRule(E);
TransformExpression(rule,E);

Design Simplification by Analogical Reasoning

The Problem 47

The procedur&electTransformationRule will perform a search to find an appli-
cable transformation rule that will lead to a useful form of the expressiams-

formExpression will then apply the transformation rule to calculate the limit.

Obviously the effort required for performing the (process of) limit calculation depends on
the number of limit calculation rules that have to be applied. For a given expression th
maximum number of limit calculation rules that will be applied is given byitimeber of
nonterminal nodes of the structural representatfiog., there will be one limit calculation
rule for each elementary operation). However if expression transformations are neede
additional limit calculation rules will be performed. Thus the total number of limit calcu-
lation rules performed by the algorithm will depend on the number of nonterminals in the

structural representation and the performance of the transformation selection.

We can conclude that if we want to compare two arithmetic expressions for complexity
(simplicity) we may consider at least three differemmtexs: description, evaluation and

understanding (its behavior for large values of the variable). Note that each of these col
texts is essentially a process applied to the object for which the complexity is being evalt
ated. For each of these contexts in which the complexity of an expression can b

measured, different views on what complexity is are needed.

Design Simplification by Analogical Reasoning

The Problem 48

One intuition resulting from these examples is that different processes will refer to differ-
ent elements of the structure. Also, some processes with respect to which complexity is
be measured may introduce new elements into the complexity which depend indirectly o

the structure of the expression.

2.1.2.2 Measuring the Complexity of Algorithms

We will use the domain of algorithms to illustrate two further “problems” raised by defin-
ing complexity of objects. As examples we will use comparison-based sorting algorithms
for which complexity results are very well known. For describing the algorithms we use &

Pascal-like pseudcode language.

The study of algorithm complexity (known as Analysis of Algorithms) is a very well
researched area of computer science. Analysis of algorithms takes the view that the cotr
plexity of an algorithm is a measure of the resources it uses. Several different kinds ¢
resources may be considered, such as time, storage, number of statements (source ¢
lines for programs) and so on. Algorithm analysis typically addresses only the first two o
these resources, the others being studied mainly as part of the field of software engine
ing.

There are several different contexts in which the complexity of an algorithm could be con

Design Simplification by Analogical Reasoning

The Problem 49

Execute (A)
step[1..n]:= Steps(A);
for k=1 to n do
switch type(stepli])
case ASSIGNMENT:
arg(1,stepli]) := eval(arg(2,stepli]))
case CALL:
call (stepl[i])
case FOR_LOOP:

for k:=arg(1,stepli]) to arg(2,stepli])
Execute(arg(3,stepl[i](k)));
end for
case .. other loop constructs ...
case IF:
if arg(l1,stepli]) then
Execute(arg(2,stepli]))
else
Execute(arg(3,stepli]));
end switch
end for
end.

FIGURE 7. Algorithm for executing an algorithm based on its structural
description

sidered. For instance one could define an algorithm’s complexity in the context of writing

the algorithms (e.g., counting the number of statements used). Alternatively, one coul

define algorithm complexity in the context of execution (e.g., measuring the time or stor-

age required for performing the algorithm).

We will restrict our discussion of the complexity of an algorithm to the contesstemfu-

tion (Figure 7 gives the description of a simple execution algorithm). Unfortunately, even

Design Simplification by Analogical Reasoning

The Problem 50

within this single context for algorithm complexity, the question “what is the complexity”
of a given algorithm may have more than one answer, depending onaspeetiof the
algorithm we want to measure. We could for instance be interested either in the amount

time or in the amount of memory required by the execution of the algorithms.

Consider for example the Selection Sort and Merge Sort algorithms. Figures 8 and
respectively present algorithmic descriptions of these algorithms, together with a graphi
cal representation of their structures. Well known algorithm analysis results show that fo
sorting an array af objects Merge Sort requir€¥(nlogn) comparisons, while Selection
Sort requireO(n’) comparisons. That is, in the context of execution, under the aspect
“time required”, as measured by the number of comparisons performed, the complexity c

Selection Sort is higher than that the complexity of Merge Sort.

Intuitively this complexity measure can be done again by counting elements in the struc
tural description of the algorithms. However during the counting we need to take intc
account that certain elements in this structure of an algorithm play special roles. Thes
elements are the so-called control structures (if-then-else, while, calls and so on). The
allow for a short description of groups of operations that are alternatives to each other ¢

are repeated several times.

Design Simplification by Analogical Reasoning

The Problem 51

SelectionSort (A[1..n])
for ii=1 to n-1 do
minindex:=i;
for ji=i+1 to n do
if A[j] < A[minindex]
then minindex:=j;
end (for)
temp:= A[minindex];
A[minindex]:= A[il;
Ali]:=temp
end (for)
end. (a)

< Selection-Sort(>

if

FIGURE 8. Selection Sort Algorithm (a) and its structure (b)

On the other hand, if we were interested in the aspect of “storage requirement”, we woul

conclude that the complexity of Merge Sort is higher than that of Selection sort. This i

Design Simplification by Analogical Reasoning

The Problem 52

MergeSort (A[1..n])

if n=1
then return;
else
new ALeft[]:= A[1..n mod 2];
new ARight[]:= A[n mod 2+1..nJ;
MergeSort(ALeft);
MergeSort(ARight);
Merge(A,ALeft,ARight);
return;
end (if)
end.

(@)

2 4 MergeSort)< MergeSort >

(b)

FIGURE 9. Merge Sort Algorithm (a) and its structure (b)

because each recursive call of MergeSort will allocate two new arrays, while SelectionSo

sorts the array in place, without using any extra memory.

Again, the counting of memory allocations can be performed on the structure of the algc

Design Simplification by Analogical Reasoning

The Problem 53

rithm, but taking into account the control structure elements.

Measures of Complexity
So far we have seen that to measure the complexity of an algorithm we have to decide
the context and the aspect of this measurement. Let us concentrate now on a third dime

sion of measuring the complexity of an algorithm.

Consider the problem of measuring thmee complexity of an algorithmthat is, measur-
ing thetime aspecof the algorithm in theontext of executiorAs before our question is
whether it is possible to measure the complexity with only the context and aspect spec
fied. Unfortunately the answer is once again negative. The new problem we are facing he
is deciding how exactly complexity will be measured. There are clearly several possibili-

ties.

We could measure the physical time required for executing the algorithm. That is imple
ment the algorithm in the form of a computer program, run it for the problem for which
the time requirement has to be measured and measure the time of the run (more than lik
with the computer’s internal clock). This way of measuring the time requirement of an

algorithm has several major disadvantages:

Design Simplification by Analogical Reasoning

The Problem 54

« The running time of a program will depend on how the algorithm was implemented

(implementation depender)ce

« Implementations in different programming languages may produce executable pro

grams with different performancdariguage dependengce

« Even two implementation using the same programming language can take advanta
of different features of that language (e.g. iterative versus recursive implementation)

resulting in different time requirementso@ing dependene

« Different computers may have different execution speeds.The running time of a pro
gram will depend on the machine on which it will be executadchine depen-

dence.

« Even if the same program is run on the same computer several times, the executi
times for different runs may be different due to the way the operating system man

ages the computer’s resourcepdrating system dependehce

These disadvantages suggest that physically measuring running time is not appropriate
characterizing the time requirement of an algorithm, and, as a consequence it is not appr

priate for comparing algorithm performances.

An apparently more precise way of measuring time complexity of an algorithm would be

Design Simplification by Analogical Reasoning

The Problem 55

to sum up the times (as given in the technical specifications) required by each of th
machine statements in its implementation. While one could argue that this is a precis
measure of the time required for running the program, the only disadvantage that it ove

comes (of the ones listed above) is machine dependency.

Observations like the ones above led researchers in the field of algorithm analysis t

approaches based on the following principles:

« Measure time complexity of algorithms lepunting the number of times certain
operations will be performedVe call these operatiosggnificant operationssug-
gesting that they significantly influence the time required by the execution of the

algorithm.

An operation may be considered significant for several reasons, such as importanc
to solving the problem addressed by the algorithm (e.g., comparison is required t:
sort an array of objects in place), amount of time required by the operation is gree
compared to other operations (e.g., input/output in external sorting methods requir
much more time than any CPU operation), the operation is performed with high fre-
guency compared to other operations used by the algorithm (e.g., loop control oper:

tion performed a great number of times will contribute to the execution time even if

Design Simplification by Analogical Reasoning

The Problem 56

they are neither specific to the problem, nor do they require individually a signifi-

cantly greater amount of time than other operations in the algorithm).

« It may happen that for a given algorithm more than one significant operation is iden:
tified. It is always possible to concentrate on one of those operations at a time, how
ever such an approach will disregard the possible dependencies between the differe
significant operations. A better idea isctmmbine the numbers of different significant

operations into a single expressidfor instance the average time complexity of the

Selection Sort algorithm in Figure 8. can be give®&s’)C + O(n)S , Wheargd

S stand for Comparisons and Swaps, respectively. Such a formula can then be us
to compare the complexity of two algorithm either from the point of view of one of
the measures, or from the point of view of some derived measure built from the for-

mula.

2.1.3 Complexity of Designs

In this subsection we will use a simple example of mechanical design (a clothespin)
meant only to illustrate our views on measuring complexity of designs. This example wa:

taken from [Sticklen & al. 1989] and is shown in Figure 10. Figure 10 (a) is a schematic

Design Simplification by Analogical Reasoning

The Problem

pressure point

-« teeth

pivot point

pressure point

Clothespin

assembled

glued to”~ / \ gl

Spring
restoring
force
welded to welded to
Lever 1 Teeth 1 Lever 2 Teeth 2
length length length length

FIGURE 10. Simple Device - A Clothespin: (a) a schematic and (b) a structural
representation

c
D
o
—
o

Design Simplification by Analogical Reasoning

The Problem 58

representation of a clothespin. It consists of two arms, each of them having teeth, a piv
connecting the two arms (and providing them with lever functionality) and a spring, con-
nected to both of the arms and which provides a restoring force that will keep the clothes
pin in a “closed” state (that is, with the two sets of teeth touching). There are two intende
functions of the devicao maintain[Keneuke 1991] the “closed” position, atmachieve

(move to) and then temporarily maintain the open position.

Figure 10 (b) is a graphical representation of dtracture of the device, consisting of
components (the elementary components are represented by thin framed boxes) and re

tions (represented by thick, two-directional arrows).

Every device has (at least) one (intendiohction A function of a device is defined in

terms of its interaction with a given environment [Chandrasekaran & Josephson 1996]. W
say that an object achieves its function if placed into the environment for which the func
tion is defined, it causes the interaction to happen, by virtue of certain of the properties c

the device. To describe a function of a device the following elements need to be specifiec

» the environment;

« the interaction of the device with the environment;

Design Simplification by Analogical Reasoning

The Problem 59

- the mode of deployment, that is, what properties and relations of the device, an
relations between the device and the environment determine the causal interactior

between the device and the environment.

If the mode of deployment assumes a sequence of state transformations of the design
say that the device achieves its function ipehavior Obviously there are devices which

achieve their functions without a behavior, or as it is (maybe improperly) said, by static
behavior (i.e., not via state change). For instance, a chair doesn’t behave, in the sense
changing its state, while achieving its function, that is to support a person sitting on it. Ir
this dissertation we will be only concerned with devices that achieve their function
through some behavior. In this case we also need to present our view on behavior and p

vide a way of describing behaviors.

We view the behavior of a device as a process described by a sequence of state transitic
A state transition is specified by two (partial) state descriptiongnifie stateand the

final stak, aconditionand a specification dfow the state transitions are achievédstate
transition may be achieved by a function or another behavior. This approach allows
decomposition of the function of a device into a hierachy of behaviors and functions of it:

components.

Design Simplification by Analogical Reasoning

The Problem 60

Function: Open
Environment:
- force_applied to the pressure_points
Interaction:
- force_applied > restoring_force causes teeth_more_open
By (deployment):
- Open_Behavior

FIGURE 11. The Open function of the clothespin

Note, that in Chapter 5 we will give more precise definitions for the structure, behavior

and function of a device as well as of the representations we use in our research.

For the clothespin a description of ©@enfunction is shown in Figure 12, while Figure
11 represents the behavior implementing this function. In the literature on design repre

sentation behavior is usually described by graphs, similar to the one in Figure 11.

Let us now see how the complexity of a device, such as the clothespin described abo\
can be measured. In our proposal for measuring design complexity we build on the intt

ition presented in the previous examples from other domains.

Thus we have to start with defining contexts, aspects and measures for measuring co

plexity.

Design Simplification by Analogical Reasoning

The Problem 61

State: force_on_Spring <= restoring_force
Cond: force_applied > restoring_force

+ Using: Function Arm_Pivot_Transmit_Force

State: teeth_open: false
Cond: force_on_Spring > restoring_force

+ By: Knowledge Newton’s_2nd_Law

State: teeth_open: true

FIGURE 12. Open behavior of the clothespin

Thecontexts for measuring desigmaist be processes that can be applied to a design such
as designing, manufacturing, using, repairing, maintaining and so on. Thus we may wal
to answer questions like “How complex is it to manufacture the clothespin?”, or “How

complex is it to use the clothespin?” and so on.

For each of the contexts above there maydgmects of a desigwith respect to which
complexity may be measured. In our research we will only be concerned with complexity
for the aspects of structure, behavior and function of designs. Note here that some of cc

text-aspect combinations may not make sense. For instance it doesn’t seem to make se

Design Simplification by Analogical Reasoning

The Problem 62

to talk about functional complexity in the process of assembly. This is because the proce

of manufacturing doesn’t refer at all to the function of the design.

For each context-aspect combination that makes sense, we can definerseastaks

We will consider measures based on counting different elements of the design. (In Sectic
2.1.4 we will explain why we believe that counting-based measures are the most appropt
ate for measuring the complexity of designs.) What exactly needs to be counted wil
depend on those elements of the design in the aspect considered, on which the process «

responding to the context depends.

Let us illustrate our ideas about measuring the complexity of designs using our clothespi

example.

Whendesigningthe clothespin all the aspects (structure, behavior and function) can be
considered for measuring complexity. Consider function first. To measwgonal com-
plexity of the clothespin when designing it we may take into account some or all of the fol-

lowing elements:

 thecomplexity of the environmenhat is how many elements in the environment the

design must interact with and how complex those elements are. (e.g., in order for th

Design Simplification by Analogical Reasoning

The Problem 63

clothespin to achieve its function, it must be placed into an environment where

mechanical forces can be applied to its arms),

 thecomplexity of the interaction with the environmehat is the number and com-
plexity of inputs and outputs that have to be applied to the design to achieve its func
tion (e.g., in order for the clothespin to achieve its function, two linear forces of
opposite directions must be applied to its arms and one output, the opening of th
teeth, will be generated: the number of inputs is 2 and the complexity of both input:

is that of a linear movement),

« thecomplexity of deploymerthat is how complex the decomposition of the deploy-
ment into behaviors and functions is (e.g.,@&peen function of the of the clothespin
is deployed by the behavi@pen_Behavior , which is implemented, decomposed
into the functionArm_Pivot_Transmit_Force and the physical principle

Newton’s_2nd_Law)

Let us note here that other designs may have more than one intended function, in whit
case another way to look at functional complexity is to count the different functions the

design is intended to achieve.

Design Simplification by Analogical Reasoning

The Problem 64

We can conclude that when measuring functional complexity we can count (or measur
the complexity of) objects in the environment, inputs and outputs, functions and behavior
and possible relations between these (e.g., synchronization relations between inputs: t

two forces have to be applied at the same time to the arms of the clothespin).

The statement above seems to be circular because it explains the measuring of complex
in terms of itself. However, it is meant to be interpreted in a recursive way, rather than cir
cular one. By this we mean that the complexity of a function may depend on the comple»
ity of other elements it is in relation with. For instance, we stated above that the
complexity of the interaction of the clothespin with its environment depends both on the
number of inputs and on the complexity of those inputs. The latter requires that there is
way to measure the complexity of inputs. In this case the inputs are forces that are appli
linearly. We view such a linear input as simpler (less complex) thatat@onal one, that

is one applied by winding, rotating, etc. Obviously this recursive way of defining com-
plexity will only be correct if there is a well defined set of elementary objects, behaviors,
functions, inputs and outputs for which the complexity is postulated. In the rest of this
subsection we will use similar recursive definitions for the behavioral and structural com:

plexity of designs.

Design Simplification by Analogical Reasoning

The Problem 65

To measure the behavioral complexity of the clothespin in the context of designing, wi

may take into account the following:

 thecomplexity of implementatiasf the behavior, that is, how the behavior is decom-
posed into other behaviors and functions (e.g., the decomposition of the

Open_Behavior of the clothespin),

 thecomplexity of the behavior proces#lsat is how many steps (state transitions) the
behavior consists of and how complex those steps are, in terms of the complexity ¢
the partial states and conditions involved in the description of those steps (e.g., th
Open_Behavior of the clothespin is described as a process consisting of two sta
transitions and the initial state of the first transition is specified as a value constrain

of a single attribute of the clothespin - Figure 11 (b)).

Thus, when measuring the behavioral complexity of a design we may count (or measul

the complexity) of functions, behaviors, states and conditions (i.e., of processes).

Consider finally thestructural complexityf the clothespin when it is being designed. The

elements that contribute to this aspect are:

- theattribute complexityof the design (or of its components), that is the number and

complexity of attributes (e.g., both the arms of the clothespin have one attribute

Design Simplification by Analogical Reasoning

The Problem 66

length, that can be expressed by a single numerical value, while the spring has ol
attribute, the restoring force, which can be represented as a formula that depends

several values),

 thecompositional complexityhat is, the number and complexity of the components,
subcomponents, sub-subcomponents and so on into which the design is decompos

(this decomposition of the clothespin is illustrated in Figure 11 (b)),

« therelational complexitythat is the number and complexity of the relations between
the components of the design. These relations for the clothespin are illustrated i

Figure 11 (b) by the thick, two-way arrows.

To measure the structural complexity of a design we may count or measure the complexi

of attributes, component objects and relations.

Whenmanufacturingthe clothespin all its components need to be manufactured and ther
they have to be assembled. It should be clear that in this context measuring the functior
or behavioral complexity of the design does not make sense. To measure the structul
complexity of the clothespin, with respect to manufacturing, we may take into account

some or all of the following:

Design Simplification by Analogical Reasoning

The Problem 67

« the compositional complexitythat is, the number of components that have to be
manufactured and the (structural) complexity of those components in the context o
manufacturing (e.g., for the clothespin six components have to be manufactured, c

which the spring may require a more complex manufacturing process),

« therelational complexitythat is the number and complexity of relations between the
components which have to be physically realized (e.g., for the clothespin relation:
between components are realized by gluing, welding, assembling, and each proce

may have different complexities).

We can conclude that for measuring the structural complexity of a design in the context c

manufacturing we may count (or measure the complexity) objects, relations and processe

2.1.4 Why Count when Measuring Complexity?

We will conclude this section on measuring complexity by explaining why we believe that
counting is the appropriate way to measure complexityeneral. Our motivation is simi-

lar to the one given for the analysis of algorithms: measuring complexity by counting
allows the estimation of resource requirement in terms of elements that only depend on tt
intrinsic characteristics of the design. Such measures can be used further as the basis

estimating costs in different, concrete environments (see for instance [Bashir & Thomso

Design Simplification by Analogical Reasoning

The Problem 68

1999]).

To illustrate this let us consider once again the problem of measuring the complexity c
our clothespin in the context of manufacturing. To manufacture the clothespin accordin
to the design description in Figure 11 one will have to manufacture two levers, two teeth,
pivot and a spring, weld the teeth onto the levers, assemble the two arms and the pivot a
glue the spring to the two arms. Counting these steps (of manufacturing and assembl
gives an exact measure of what needs to be done. We can then use this measure of c
plexity to estimate the cost of manufacturing the clothespin by combining it with measure:
for the technological sophistication of the manufacturer, technical difficulty of the pro-
cesses in the manufacturing environment, experience and skill of the workers and so o
Similar arguments can be made for measuring complexity in other contexts ([Bashir &

Thomson 1999 express similar ideas)

This two-step approach to estimating the cost of a design would have the following bene

fits:

« it provides an objective measure of complexity, depending only on intrinsic aspects

of the design;

Design Simplification by Analogical Reasoning

The Problem 69

« it provides an absolute basis for comparing the resource requirements of differer
designs;
« it provides a common basis for computing the costs of a design in different environ:

ments;

« it provides a better ground for certain kinds of decisions concerning designs (e.g.

whether it is feasible, in what environment is it less expensive to realize, and so on)

2.1.5 The Simplification Process

By simplification of an object we mean a transformation of the object into a different

object, such that the complexity of the result is lower than the complexity of original.

The complexityof an object can be evaluated by computing (or physically testing) it in
somecontex} relative to someaspectand according to sommeasure Contextsrefer to
processes that can be applied to the object considered. In the case of design simplificatic
contexts include assembly, manufacturing, use, aesthetic®\sptectsrefer to different
points of view on the object. For instance, in the case of design simplification, aspect
include structure, behavior and function. Corresponding to this we can speak about stru
tural, behavioral and functional simplificatiddeasuresnvolve counting, or some mea-

sure of complexity or information content. In our research we argue for the primary use o

Design Simplification by Analogical Reasoning

The Problem 70

counting, however other complexity measures have also proven useful (see for instan
[Suh 1990]). Lower counts, complexity or information content imply ‘simpler’. What is

counted depends on the context: for example, it may be assembly operations, componer
surfaces, the potential for manufacturing mistakes, internal states, inputs, or the number

terms in an equation that describes a surface.

There is a tendency for peopleassumehat certain types of changes are simplifications.

An example of this is the belief that ‘simpler = fewer components’. Such examples have
been compiled into peoples’ knowledge by repeated use, and appear to be context-free
those individuals. However, we feel that they can be traced back to contexts such as mar
facturing or use. We suspect that the common ‘assumed’ simplifications are those that le:
to being evaluated as simpler in common contexts and measures, or that lead to being e\

uated as simpler in the important majority of contexts and measures.

One primary goal of our research is to give an operational definition of design simplifica-
tion. For this purpose we will consider a fixed set of the most important contexts in whick
complexity of designs may be measured. We expect that our definitions can then b
extended to other contexts. We select only a fixed number of contexts for pragmatic res
sons. The only aspects of designs for which we will study simplification will be structure,

behavior and function. There are two major reasons for this. On one hand these are t

Design Simplification by Analogical Reasoning

The Problem 71

most important aspects of designs considered in the process of designing (our main area
research). On the other hand these three aspects address the problems of simplifying str
tured objects, relations and processes. We believe that any design simplification is a cor
bination of these thre¢ypes of simplification(i.e., structure simplification, relation

simplification and process simplification).

2.1.6 Propagation of Simplification

Simplification of an object for a given combination of context, aspect and measure will
need to propagate to the other aspects, as different aspects of an object may be interder
dent. For example, removing redundant links in a causal chain of motion or force flow
might cause two gears in a three gear train to be removed, i.e. a behavioral simplificatic
propagates to the structural aspect. Unfortunately it is not always the case that simplific:
tion in one aspect will propagate to a simplification in all the other aspects. For instance,
a design is simplified in the context of its use by making its interaction with the environ-
ment less complex (e.g., less inputs, or less complex interaction process), the structu

may need to be modified by adding new components to it, thus making it more complex.

In our current research we are not addressing to any depth the problem of propagation

simplification across aspects. We merely acknowledge its importance and illustrate th

Design Simplification by Analogical Reasoning

The Problem 72

problems it raises by some examples.

2.2 Performing Simplification

Once we have defined how to evaluate whether a transformation of an object is a simplif
cation or not, we need to study what kind of transformations can be used to produce sin
plifications, and compare them for effectiveness and efficiency. We will start our
discussion on this topic by presenting possible ways a simplification process could b

achieved.

We must view thesimplification process as a searah some search space (e.g., design

space in the case of design simplification). The goal of the search is to find a simple
object than the one given as starting point. Note that we do not define simplification as a
optimization problem (i.e., with the goal to find the least complex object), but rather an
improvement problem. Also, simplification is a constrained search because all simplifica
tion problems require the preservation of some properties of the object (for instance

design simplification is, or should be, a function-preserving process).

Design Simplification by Analogical Reasoning

The Problem 73

2.2.1 Possible Approaches

One possible approach to performing simplification igiéav the simplification problem

as an optimization problerwith a complexity measure as the objective function. For
instance one could apply local transformations known to reduce complexity and organiz
them into a hill-climbing type process. Structural simplification of a mechanical design
could be approached by applying simple simplification operators, such as removing redur

dancy (e.g., removing two gears from a chain).

While we do not view simplification as a (global) optimization, an approach of this kind
would have all the draw-backs of global optimization methods. The simplification can
quickly “get stuck” at a point where no more improvements can be obtained (local
optima). Although we can say that even in this case some simplification has bee
achieved, in general the “big picture” will be missed. For instance removing two small
gears from a very complex device may have very little or possibly no impact on its com
plexity. Those two gears may however be parts of a more complex context in which som

higher level, more conceptual simplification could have been performed.

Having some knowledge of what operations and what sequences of operations may le,

the search towards “good” simplifications, would overcome the deficiencies of the local

Design Simplification by Analogical Reasoning

The Problem 74

optimization approach. Such heuristic knowledge would in general avoid local optima.
Also, and more importantly, tHeeuristic searchapproach to simplification will allow for

simplification processes that temporarily create more complex objects with the purpose ¢
setting the context for a more significant (higher level?) simplification (e.g., adding addi-
tional, but redundant structural components may trigger a simplification where the whole

object can be made from a single molding).

One general problem of this approach is the lack of good heuristics. As far as we kno
there are no general (domain independent) heuristics for simplification. In some domain
there are certain principles of what kinds of transformations lead to simplifications. Fol
instance there are some good heuristics on how to perform simplification on arithmetice
expressions. Some other domains, such as design for instance, have very few or no st
heuristics (e.g., principles for DFM [Stoll 1991]). For such domains the heuristic searck

approach for simplification is not appropriate.

We believe thateusing known simplificationt® produce new ones is the best approach to

the simplification problem. First, a known simplification can be reused over and over for
identical simplification problems. Second, even if a new simplification problem is not
identical to any known one, if some (significant) similarity between the two can be discov-

ered, the old simplification may be used as an “idea” for simplification. These two situa-

Design Simplification by Analogical Reasoning

The Problem 75

tions suggest the use afase based reasonings a possibly good approach to
simplification. Finally, reusing known simplifications can also be done across domains
This assumes discovering some abstract similarities between a given simplification prot
lem in a domain (target) and a known simplification in some other domain (source), ant
using that similarity to transfer the “simplification idea” to the target domain. This sug-
gests thaainalogical reasoningould be used as a good approach for performing simplifi-
cations, especially in domains where simplification is not a well understood problem.
Simplification by analogical reasoning also has the benefit that it may be capable of prc
ducing general simplification principles by learning and abstracting over the simplifica-

tions produced.

In our research we propose the study of using analogical reasoning for simplification i

general, and design simplification, in particular.

2.2.2 Simplification by Analogical Reasoning

In this section we give a brief description of what analogical reasoning is. In this we fol-

low the definitions in Bhatta & Goel [1994].

Analogical reasoning is the process of retrieving knowledge of a familiar problem or situ-

ation (called the source analog) that is similar to the current problem or situation (calle

Design Simplification by Analogical Reasoning

The Problem 76

the target) and transferring that knowledge to solve the current problem.

Analogies can be of different types: within-problem, within-domain and cross-domain
analogies. Within-problem analogies involve the transfer of knowledge from one subprob
lem to another subproblem within the context of solving the same overall problem.
Within-domain analogy involves the transfer of knowledge from one problem to another ir
the same domain. Cross-domain analogies involve the transfer of knowledge from a prol

lem in a domain to another problem in a different domain.

Although several different models of analogical reasoning have been proposed, one ci
identify in most of them the following stages [Gentner 1983]: retrieval of source analog,
mapping of the source analog to the target, transfer of relevant knowledge from the sourt
to the target, evaluation of the solution to the target problem, generalization over th
source and the target, and storage of the solution to the target problem, and of the genet

ization (Figure 13).

Bhatta and Goel [1994] list a set of important issues raised when applying analogical re:

soning to problem solving:

« What should be the content and representation of source analogs?

« How is the target problem specified?

Design Simplification by Analogical Reasoning

The Problem 77

Retrieval of
Source Analog

Memory of Analogs

Storage of
New Simplificatio
and Generalization

Generalized
Simplification

Generalization ovef
Source Analog and
New Simplification

New
Simplification

Analogy Engine

Mapping

Transfer

_Canc_iida_te

Simplifications

Evaluation

FIGURE 13. A process model of analogical problem solving

Design Simplification by Analogical Reasoning

The Problem 78

 Given a target problem, how might the retrieval of the source analog occur? This
guestion gives rise to several sub-questions: What features (superficial or deep) «
the target problem will determine the retrieval? How will it be determined whether
source analogs will be retrieved from the same problem, the same domain or sorr

different domain?

« Once a source analog has been retrieved, how can it be mapped onto the target pre

lem and how will this mapping be used to transfer the problem solving knowledge?

« Since the transfer of knowledge from the source to the target may not satisfy the
requirements of the target problem completely, how can the solution to the targe

problem be completed?
« How will a solution to the target problem be evaluated?

« How can it be decided whether a useful generalization over the source problem an

the target problem can be built. How can such a generalization be built?

e How can it be decided whether the target problem and its solution are different

(novel) enough to be worth storing for later use?

« How can the generalization and/or the target problem be stored into the database

problems for later use?

Design Simplification by Analogical Reasoning

The Problem 79

Most of the models of analogical reasoning are based on one of the following two compt
tational frameworks: transformational analogy and derivational analogy. The two compu
tational models are distinguished from each other by the way the knowledge transfer
performed. Transformational analogy involves the transfer by direct mapping of the sourc
problem’s solution to the target problem. Derivational analogy, on the other hand, involve:
taking the problem solving process of solving the source problem and replaying it in the

target domain.

In the previous section we argued for approaching the problem of simplification by usinc
analogical reasoning. To do so we will have to answer to the questions above in the co

text of the simplification problem. This will be done in the next chapter.

2.3 Difficulties Raised

In this section we describe how the issues raised by applying analogical reasoning in ge

eral translate to the application of analogical reasoning to simplification.

2.3.1 Retrieving Useful Simplification Examples

A simplification consists of a relation connecting two objects, a simpler one and a mort

complex one (called th@mpler relatior) and arexplanationof the simplification (that is

Design Simplification by Analogical Reasoning

The Problem 80

of how the simpler object can be obtained from the more complex one). The explanatio
may be given as a description of the simplification process, or simply as a description ¢
the difference between the two objects. The latter case may occur when the process
simplification is not known (e.g., the simpler relation was discovered by evaluating the
complexity of the two objects, but there is no evidence of a simplification process by
which one of the objects was transformed into the other). Thus to represent a simplifice
tion we need to represent a relation, a process and possibly a set of differences betwe

objects.

As discussed earlier simplification can be performed from different points of view (that is
with respect to different combinations of context, aspect and measure). One primary org:
nization of simplification has to be made along these dimensions because simplificatio

problems are specified with respect to some point of view.

An important problem is organizing simplifications for fast retrieval. Theoretically the

most appropriate way to do this would be by building a hierarchy of simplifications and
using it for fast indexing. The problem with this approach is that since at this point there
are no general principles of simplification and no classifications of simplifications into
types, building such a hierarchy would be either impossible or would result in very shal

low hierarchies. As, hopefully, the system will produce new simplifications and generali-

Design Simplification by Analogical Reasoning

The Problem 81

zations over them, the building of such a hierarchy and of indexing schemes based on

will become possible.

An alternative solution would be to organize simplifications around the objects involved.
Since a new simplification problem will be checked against the more complex object ir
the source simplifications, it would seem appropriate to organize known simplifications

around hierarchies of these objects.

There are at least two problems with this approach. On one hand, while a simplificatio
refers to two objects, the actual simplification process may only involve a small portion of
those objects (for instance replacing three gears by two gears in a complex device w
only affect the set of gears). Thus building a design hierarchy based entiteebjects

involved in the simplification may not be useful and will definitely be unnecessarily com-
plicated. On the other hand there may be several independent simplifications connectir
the same two objects. This might require that the same object occurs in several differe

places in the hierarchy.

We are proposing the organization of simplifications around those portions of the object
involved which are relevant to those simplifications. This approach poses other problem:

we need to define how is it decided what is relevant to a given simplification, when this

Design Simplification by Analogical Reasoning

The Problem 82

decision will be computed and how these relevant portions will be used to organize simpli
fications. Rather than computing which portions of an object involved in a simplification
are relevant, we will compute the portions which moeabsolutely irrelevantA portion

of an object involved in a simplification is ‘not absolutely irrelevant’ to that simplification
if it is referred to in the simplification process. We call the process of deciding which por-
tions of an object involved in a simplification are not absolutely irrelevant to that simplifi-

cationrelevance calculation

Fortunately relevance calculation is quite straight-forward in this case. It assumes the co
lection of all the elements (e.g., components, relations, attributes) of an object involved i
a simplification, which are directly or indirectly (i.e., through a function or relation) men-

tioned in the explanation of that simplification.

We acknowledge here that if, as a result of generalizations, abstract simplifications (that
simplification principles or rules) will be added to the database of simplifications, the rele-

vance calculation for those simplifications may require a more sophisticated mechanism.

It is commonly accepted that, in analogical reasoning, higher level relations, or systems «
relations are more useful for solving problems. However retrieving source analogs has t

be a fast process and as a consequence it must rely on simple, surface aspects of

Design Simplification by Analogical Reasoning

The Problem 83

objects inspected (such as attributes). Such surface similarities are in most of the cases
very useful and are sometimes even misleading. Even more, when performing cros
domain analogical reasoning the domains involve may not even share common attribute
Consequently we are faced with two apparently conflicting requirements: fast retrieval o

simplifications, based on simple criteria, and retrieval of useful simplifications.

We are proposing to use for this our hierarchy of relevant portions of objects described i
the previous section. This approach will reduce the search for source analogs to only rel

vant portions of objects involved in some simplification.

We must note here that, even with this two-level organization of simplifications for retriev-
ing source analogs, the process of retrieving may be quite complex. This will happen |
either there is a great number of known simplifications, or if the object to be simplified is
complex. The second part of this statement is true because the relevant portions of .
object involved in a simplification may be similar to different portions of the target (Figure
14). This suggests that the retrieval process should be further improved, if possible L
pruning as much as possible from the space of possible source analogs. We are propos
to use a counting scheme similar to the feature-vector described in [Gentner & Forbu

1991].

Design Simplification by Analogical Reasoning

The Problem 84

“Simpler than”
Relation

\

~ —_ — — =

Simplification

Target

FIGURE 14. The relevant portion of an object may be similar to many portions of the target

The process of retrieving source analogs may produce several candidate source analc
each of them having different degrees of similarity to the object specified in the simplifica-
tion problem. This degree of similarity needs to be measured for each of the candida

source analogs retrieved. The resulting measures will then be used for selecting the b

Design Simplification by Analogical Reasoning

The Problem 85

candidate source analog to be considered in the next phases of the analogical reasoni
Defining a measure of similarity between a relevant portion of an object and anothe
object (the one to be simplified), in the context of simplification has to take into account
two main factors. On one hand the relevant portions which are parts of the retrieved canc
date source analogs, may have different degrees of relevance, resulting from their ro
played in the corresponding simplification process. On the other hand, they may be similz
to portions of the new problem with different degrees. For instance two relations with the
same name (that is identical) are “more similar” that two relations that only have the sam

signature (that is, the same number and types of arguments, but different names).

2.3.2 Mapping Simplification Problems

Once a source analog has been retrieved, it has to be mapped onto the new simplificati
problem. Due to its clarity and efficiency from a computational point of view we will use
an adaptation of Falkenheiner’s Structure Mapping Engine (SME) [Falkenheiner et al.
1986] for performing this mapping. The SME gets as its input a set of elemarataty
hypothesesA match hypothesis is a pair of elements (i.e., objects, attributes and func:
tions), one from the source analog and the other one from the target. Based on these €

mentary match hypotheses, the SME builds consistgstems of mappinger simply

Design Simplification by Analogical Reasoning

The Problem 86

mappings) between attributes, functions and relations of the source and the target, workit

“upwards” in the hierarchy of relations in the source and target.

The SME builds these systems of mappings quite efficiently. However, as acknowledge

by Forbus and Oblinger [1990] it has two significant draw-backs:

« it constructs alktructurally consistent interpretations of an analogy,

« it contains no mechanism for focusing on interpretations relevant to the ajahis

reasoner.

At this stage of our research we are primarily interested in using our problem solving goa
that is ‘simplification’, to guide the building of mappings. The way we have proposed to
do the retrieval of candidate source analogs already focuses on portions of the objec
involved in simplifications, which are relevant to our goal. The same relevant portions of
objects can be used when building the mappings. We can restrict the building of mapping
to portions of objects relevant to simplifications. This emphasizes the importance of the

relevance calculation in our approach.

During the mapping phase, several mappings between the source analog and the tar
may be generated. Some of these mappings will be better than others. Transferring knov

edge from the source analog to the target using a better mapping is more likely to produs

Design Simplification by Analogical Reasoning

The Problem 87

a solution to the target problem. To select the best mapping generated, a measure of m;
ping quality has to be defined. Such a measure needs to take into account both the qua
of the component matches and the structure of the mapping. The quality of a match withi
a mapping expresses the level of confidence of placing the two members of the match
correspondence. The structure of the mapping refers to the systems of relations from tl

source analog and the target that are placed in correspondence by the mapping.

There are several possible ways to define a measure for mapping quality. Each of the
definitions is essentially a computation process that, when applied to a mapping, will pro
duce a measure of the mapping quality. These computation processes work by accumul
ing the measures of quality of the matches constituting the mapping along the structure
connecting those matches. The measures can be classified into two classes, depending
how the processes defining them accumulate the measures of the matches: top-down

bottom-up.

2.3.3 Transferring Simplifications

Once a mapping is selected, it will be used to produce a solution to the new simplificatio
problem. This is achieved by adapting the simplification corresponding to the mapping tc

the new problem. How this adaptation will be performed depends on how the simplifica:

Design Simplification by Analogical Reasoning

The Problem 88

tion is described, more precisely how the explanation of the simplification is given.

If the simplification is explained in terms the difference between the two objects involved
in the simplification, then a similar difference must be built for the new problem. This dif-
ference can then be applied to the new problem. On the other hand, if the simplification |
explained in terms of the simplification process, that process has to be adapted to the ni
problem by abstraction and instantiating, and then replayed in the context of the new prol
lem. Thus, the way a simplification is given, naturally selects the type of analogy (trans

formational or derivational) to be used.

2.3.4 Evaluating the Result of the Simplification

After a new simplified object is produced it must be evaluated. This evaluation will neces
sarily refer to at least two aspects of the simplification. As simplification must preserve
some properties of the object being simplified (e.g., function in the case of design simplifi
cation), the first thing that needs to be verified is whether the object generated as the sol
tion to the simplification problem satisfies this constraint. Depending on how the
constraint is specified, this part of the evaluation can be performed either by computatiot
or by simulation. For instance simulation may be used to verify that a simplified desigr

satisfies the functional requirements imposed on the original one. The other aspect th

Design Simplification by Analogical Reasoning

The Problem 89

needs to be evaluated is whether the object generated as a solution to the simplificatit
problem is indeed simpler than the original. This is done by measuring the complexity o
both the object that had to be simplified and the one produced as the result of the simpli
cation, and comparing the two measures. It may happen that the adaptation of simplific:
tion required some modifications of the object which rendered it more complex that the

original one. If either of these evaluations fail, the result has to be discarded.

2.3.5 Storing new Simplifications

Any new simplification produced can be added to the database of simplifications. Th
guestion is whether it is new enough (different enough) from existing simplifications to be
worth storing it. What may produce new simplifications are the adaptations of solutions
obtained by analogical transfer. The more adaptation is needed, the more likely it is th:

the result will be different from the source simplification used.

Design Simplification by Analogical Reasoning

Related Work 90

CHAPTER 3 Related \Alork

We have no knowledge of any ongoing research in the area of “goal-based analogical re
soning for design simplification”. However, there is certainly a rich body of research
results in the relevant domains — analogical reasoning in general, and purpose-directe
analogical reasoning in particular, abstraction, reasoning about designs and design optin

zation. This chapter relates our research to those domains.

3.1 Work on Analogical Reasoning

Our broader area of interestdgeativity in Artificial Intelligence (Al) with emphasis on
technical creativity in Al [Dasgupta 1994, 1996]. Many of the case studies presented in th

literature revealed that creative acts had been results of some goal-driven activities. In t

Design Simplification by Analogical Reasoning

Related Work 91

case of technical creativity, quite often, the goal driven creative acts come in the form
improving, in general, and simplifying, in particular, some artifact or process. As a conse

guence we think of design simplification as a potentially creative activity.

Many researchers studying creativity agree that one of the most important ingredients ¢
creative acts is using (new, surprising) analogies [Dasgupta 1994], [Perkins 1997], [Bode
1994], [Holyoak and Thagard 1995], [Finke et al. 1992]. To our knowledge most of the
domains in which simplification is a common activity or a desirable goal, lack general
simplification rules and principles. This is why we believe that a reasonable way to
approach simplification problems is by reusing previously produced similar simplifica-
tions. These suggest the possibility of using analogical reasoning for solving simplifica:
tion problems both as a way to reuse previously accumulated simplification knowledge

and potentially to generate creative solutions.

Using analogical reasoning for simplification would allow the reuse of simplification
knowledge from the same problemvithin problem analogy the same domainvthin
domain analogy or from a different domaincfoss-domain analogy[Bhatta & Goel
1994]. Simplification by analogical reasoning can be done either by transferring anc
adapting the result of a known simplification to the new simplification prohiemsfor-

mational analogy, or by transferring, adapting and applying the simplification process to

Design Simplification by Analogical Reasoning

Related Work 92

the new simplification problendérivational analogy. The generalization phase [Gentner

1988] of the analogical reasoning process may result in the generation of simplificatiol
rules and principles. The simplification goal can be used to guide the analogical reasonir
and as a consequence improve its performance and/or the result it produces [Forbus

Oblinger 1994].

In the following subsections we will take a more detailed look at some work on analogica

reasoning relevant to our research.

3.1.1 Model-Based Analogical Reasoning

Model-based analogical reasoning refers to using mental models of the underlying doma
in the analogical reasoning process. Mental models [Gentner 1983] are characterized |
the types of knowledge they capture, that is, structural, behavioral (causal) and function:
knowledge of a physical situation or a physical device. The Structure Mapping Theory
used by many analogical reasoning approaches is based on this idea of mental models.
using mental models in analogical reasoning, many of the issues (raised by analogical re
soning) listed in Chapter 2 are answered through the definition of those models. For exar
ple, defining a mental model of a physical device or physical situation clearly specifies

what may be the contents of source analogs, what their representations need to contain ¢

Design Simplification by Analogical Reasoning

Related Work 93

how these representations should be designed to allow the processing required by the a

logical reasoning process, and so on.

Most of the work on analogical design [Qian & Gero 1992] [Bhatta & Goel 1994] [Goel
1997] relies on mental models of designs. These mental models of designs fall into tw
categoriescase-specific modelndcase-independent modgle.g., models of prototypi-

cal devices, physical principles, physical processes and generic mechanisms) [Bhatta

al.1994].

Probably the most popular case-specific models used in model-based analogical reasoni
are thestructure-behavior-functioiSBF) models. This kind of model explicitly repre-
sents the structure of a design in sahgect(-substance)-attribute-relation ontologgp-
resenting its internal causal behavior as well as its function. Case-independent mode
used in model-based analogical reasoning are built such that they are compatible with tl
case-specific ones. For example, a case-independent model of designs used in conjunct
with an SBF model could be defined in terms of behavior and function [Bhatta et al.
1994]. Such compatibility allows the “application” of case-independent situations (e.g.,
physical principles) to specific cases, as well the abstraction of specific cases to case-ind

pendent models.

Design Simplification by Analogical Reasoning

Related Work 94

Model-based analogical reasoning has been strongly criticized by part of research comm
nity (e.g., [Hoftsadter 1995]), due to the rigidity of predefined models for analogues. For-
bus [Forbus et al. 1997] defends the SME approach by arguments referring both t

psychological soundness and experiments.

We believe that model-based analogical reasoning indeed has strong limitations in its fle:
ibility and, as a consequence, limitations on the possibility of creating certain kinds of dis
tant (and interesting) analogies. This is due to the predefined structure of what can
inferred. We believe however that the kinds of analogies that a model-based approac
would most likely fail to find fall into the category of ‘discovery’. The results produced by

work on model-based analogical design show that (many of) the kinds of analogies need
for transferring design knowledge from one design case to another (within domain o
across domains) can be produced using this approach. For this reason we consider that

our purposes the model-based approach to analogical reasoning is appropriate.

3.1.2 Goal-Driven Analogical Reasoning

Standard structure-mapping postulates that goals help determine both what gets matck
and how the match gets evaluated [Gentner 1993]. This idea is incorporated in some of tl

research on analogical reasoning. Holyoak and Thagard [1989] use a blend of structur:

Design Simplification by Analogical Reasoning

Related Work 95

semantic and pragmatic consideration in their approach of finding a best mapping by cor
straint satisfaction. Forbus & Oblinger [1990] refer to another approach used by Falker
heiner in what he calls “contextual structure mapping”. The idea described there sugges
the relaxation of the relation identicality and one-to-one constraints of structure mappin
according to the goals of the analogical reasoning. In the same paper Forbus & Obling
propose a new approach, callepgragmatic marking”, for incorporating the analogical

reasoning goal into the operation of the SME. Their idea is to filter what subsets of loca
matches are considered, by whether or not they can support candidate inferences relev

to the analogizer’s stated goal.

Our approach is related to both Holyoak & Thagard’s and Forbus & Oblinger’s work. Sim-
ilar to Forbus & Oblinger, we propose goal-based filtering. However, in our approach the
filtering doesn’t only refer to local matches considered, but to designs and design par
based on relevance of their components, attributes and relations. Considering relevance
driving criteria for guiding the analogical reasoning process relates our work to that o
Holyoak and Thagard’s. However, we discuss relevance in the context of design simplifi
cation problems. As a consequence we define precisely what is relevant to a design simp
fication and how relevance will be computed. We call our apprapui-directed

analogical reasoning

Design Simplification by Analogical Reasoning

Related Work 96

Goal-directed analogical reasoning is not to be mistakepuigrose-directed analogical

reasoning[Kedar-Cabelli 1988]. The goal-directed analogical reasoning refers to using
the problem-solving goal to guide the analogical reasoning process. On the other har
purpose-directed analogical reasoning, as used by Kedar-Cabelli refers to using the pt
pose of using (the function of) an artifact to guide the analogical reasoning about its struc

ture.

3.2 Work on Abstraction

Abstraction is a very important ingredient of analogical reasoning, but it has develope
into an area of research of its own, because of many other applications, such as hierarc
cal problem solving, planning or model-based reasoning. In this dissertation we are mot
interested in the role abstraction can play in analogical reasoning in general and in goe

directed analogical reasoning in particular.

In general we can think of abstraction as the “process which allows people to conside
what is relevant and to forget a lot of irrelevant details which would get in the way of what

they are trying to do” [Giunchiglia & Walsh 1992].

There are two major problems raised by abstractdrat to abstract fronfi.e., what to

Design Simplification by Analogical Reasoning

Related Work 97

forget) anchow to build an abstractioWhat to abstract from has to do with determining
what is relevant or, equivalently, what is irrelevant with respect to the problem that is

being solved.

Levy [1994] proposes a way to compute the “absolutely irrelevant” elements of a set o
gueries. It essentially builds a set of elements that are referred to in the queries (releva
elements) and considers everything else absolutely irrelevant. The problem with thi
approach is that the so called “relevant elements” are symitactically relevantthat is

they may not be actually needed for solving the problem (e.g. they may be redundant
While this is not a problem for well formed representations such as query languages, fc
other domains, such as reasoning about designs, it may introduce limitations (e.g., son
actually relevant elements, that are in relation with other relevant elements, but are ne
actually referred to, will not be considered). The approach we are proposing for defining
(and computing) relevance to a simplification of designs also takes into account elemen
of designs that may be relevant due to some relations which connect them to other el

ments already determined as being relevant.

There are two general approaches to performing abstractions: a purely syntactic one a

one based on a domain model.

Design Simplification by Analogical Reasoning

Related Work 98

The purely syntactic approach has a nice theory developed [Giunchiglia & Walsh 1992] a
well as several applications especially to theorem proving [Knoblock 1994] [Bacchus &
Yang 1994]. The other general approach is based on the idea that what needs to

abstracted from has a semantic (and not just a syntactic) value. As a consequence, if 1
application domain is described in terms of a model, the abstraction needs to be applied
the model first to produce an abstracted domain model, and then the abstraction is built

this abstracted domain model [Levy 1994].

We are interested in using abstraction in the analogical reasoning process, in such a m:
ner that what is abstracted from and how the abstraction is performed is determined by tl
problem solving goal, that is, simplification. To our knowledge there is no work on goal-
driven abstraction in analogical reasoning. Since we use abstraction in the context ¢
model-based analogical reasoning, we decided to use an approach similar to the one p
posed by Levy. That is, we first perform abstraction on the model of a design, based on tt
relevance corresponding to a simplification the design is involved in and only then per

form abstract reasoning over the abstracted model.

Design Simplification by Analogical Reasoning

Related Work 99

3.3 Work on Reasoning about Designs

Another relevant area to our research is reasoning about designs. Reasoning about h
physical systems work has for some time been an important area of research in Al. Son
of the major problems that arise in this domain are understanding how a particular phys
cal system “works”, diagnosing why a given system doesn’t perform according to some
expectations, and designing a physical system that would be usable for a certain purpo:
From among these problems the last one is the most relevant to our research because s
plification can be viewed as r@design problemin which the complexity reduction is

added to the original design requirements. Within the (re)design problem, representin

designs and reasoning about designs are central for us.

Although the literature shows some variety in approaching the problem of representin
and reasoning about devices, it is usually discussed in the framework of reasoning aba
physical systems in general. As a consequence, the majority of these approaches refer
some or all of the notions of structure, behavior and function of an object and use son

function-behavior-structure model to represent designed objects.

Our approach to representing designs follows the ideas concerning the structure-behavic

function representation scheme initially introduced by Sembugamoorthy & Chandraseke

Design Simplification by Analogical Reasoning

Related Work 100

ran [1986] and further developed in work by Chandrasekaran [1994], Goel [1992] [1998]
Bhatta [Bhatta et al. 1994] and others. In this approach, designs are represented by th
structure, behavior and function and the relations between these. Structure is expressec
terms of components (sometimes substances as well [Bhatta et al. 1994]), attributes a
relations between components. The behaviors of a device are represented as sequence
state transitions between behavioral states. Each state transition is characterized by
structural and causal context in which it can occur and the state variables that will be tran
formed. Finally, function is represented as a “top level behavior”, and is characterized b
an initial (input) state, a final (output) state and an internal causal behavior that “achieves
the function. Chandrasekaran and Josephson [1996] proposed an extension to represen
function, by considering objects embedded in an environment. In their approach a functio
is defined in terms of the effects on its environment. This allows function to be specifiec
without reference to the behavior it is implemented by. This idea of defining functions was
used by Prabhakar & Goel [1998] to define an extension of the SBF model called Environ
mentally-bound Structure-Behavior-Function (ESBF). This new model allows reasoning
about function without reference to the underlying behavior or, consequently to the struc

ture.

Umeda & Tomiyama [1994] propose a slightly different way of modeling designed

Design Simplification by Analogical Reasoning

Related Work 101

objects. Their proposal is based on the observation that “function cannot be modele
objectively because functions are intuitive concepts depending on the intentions of desig
ers and users” and as a consequence “it is difficult to distinguish clearly function fromr
behavior and it is not meaningful to represent function independent of the behavior fron
which it is abstracted”. As a consequence they propose a two-level representation
designed objects consisting of two connected levels: the functional level and the beha
ioral level. Functions are represented in a knowledge base of function prototypes collecte
from existing designs. Behavior and state are represented in terms of Qualitative Physi
Theory as a network of individuals, individual views and processes. A function-behaviol
relationship describes behaviors that can perform a given function in the form of views. A
behavior-structure relationship describes the possible behaviors of an entity in terms ¢

physical laws.

While at a first glance the FBS model used elements similar to the SBF model, it has a fe
disadvantages that make it unsuitable for our problem. For example, it does not suppc
multiple levels of abstraction in describing behavior, and it does not allow reasoning fromn

structure to behavior and from behavior to function.

There are several applications of functional reasoning about designs, such as concept

design [Umeda & Tomiyama 1994], diagnosis [Chittaro 1995], blame assignment

Design Simplification by Analogical Reasoning

Related Work 102

[Stroulia & Goel 1995].

3.4 Work on Design Optimization/Simplification

Design simplification, and simplification (as a cognitive activity) in general, is a less
researched area. Most designers and design researchers, including those we have spc
to about this topic, see simplification as reducing the number of components and/or cot
nections between components. This view characterizes simplification as a process appli

to the structural level of designs.

We find it reasonable to also think about the possibility of simplifying the behavior of a
design (for instance, to involve less friction) or the function of a design (for instance, to
need less input). Also, simplification of designs from the points of view of different life-

cycle phases (manufacturing, maintenance, recycling and so on) has been extensive
studied but not in the context of the general simplification problem. One of the most clea
formulations of (what we may interpret as) design simplification principles are Stoll's

[1991] design rules for efficient design for manufacture.

3.4.1 Suh’s Information Content Reduction

The only general approach to design simplification we know of is Suh’s [1990][1999]

Design Simplification by Analogical Reasoning

Related Work 103

“Reduction of the Information Content of a Product”. This work gives a formal definition

of theinformation contenof a design, which we may interpret as a ‘measure of complex-

ity’.

The definition of information content of a design is based on the functional decompositior
of the design and the following definition: “Information is the measure of knowledge

required to satisfy a given FR (functional requirement) at a level of the FR hierarchy”. The
quality of a design is then formulated in terms of its information content (The Information
Axiom): “The best design is a functionally uncoupled design that has the minimum infor-
mation content”. This together with the Independence Axiom, form the basis of the desig
principles formulated by Suh. We can interpret some of these principles as rules for redut

ing the complexity of designs, such as:
« Minimize the number of functional requirements;
« Integrate design features in a single physical part;
« Use symmetrical shapes and/or arrangements.
Suh’s axiomatic way of measuring design quality, and within that context design complex

ity, is a nice theoretical approach. The problem with it is on one hand that it is not clear ii

what context the complexity or cost is being measured (most likely manufacturing). It alsc

Design Simplification by Analogical Reasoning

Related Work 104

has the draw-back of all universal measure approaches in that it does not focus on differe

aspects in response to the primary goal of the designer.

3.4.2 Bashire & Thomson'’s Estimation of Design Effort

In their work on methodologies for estimation of design projects Bashir and Thomsor
[1999a][1999Db], suggest that the accuracy of estimating the time required by a desig
project depends on the accuracy of effort estimation. They refer to a general view accort
ing to which the effort required by a design project depends on three factmigetioéthe
project (the number of componentdhe complexity of the tagkhe relative difficulty of

the task in a particular environment) atiee productivity(the rate at which the task
progresses). According to them, the problem with this view is that it is not clear how
project size should be defined. Measures such as counting may not be appropriate beca
the reduction of the number of components of a device may increase the complexity c

other parts.

They are proposing to measure the size of a project in terms of its functionality. The
method they propose for computing the complexity of a design project is based on
canonical decomposition of the top level function of the design and summation of the

number of subfunctions at each level weighted with the corresponding level number. Th

Design Simplification by Analogical Reasoning

Related Work 105

design effort is then computed by combining the complexity of the design project with
factors that influence the productivity (e.g., technical difficulty; experience, skill and atti-

tude of the team members, and so on).

In conclusion, Bashir and Thomson, proposed a way of measuring the cost of designir
which clearly distinguishes between the complexity of the design on one hand, and th

productivity factors on the other.

Essentially they propose a way to measure complexity of a project in the context o
designing it and from the aspect of its function. The measure used is based on summing

the number of subfunctions at each level weighted with the corresponding level number.

While the idea of measuring functional complexity is a very interesting idea, considering :
set of canonical functional decompositions will render the (conceptual) design phase quit
inflexible (routine). Also, the functional decomposition will have to rely on a set of ele-

mentary functions. Those elementary functions may in theory be implemented by differen
structural elements, the design of which will also have possibly significantly different

complexities. This will not be reflected in the model proposed.

Design Simplification by Analogical Reasoning

Related Work 106

3.4.3 Boothroyd & Dewhurst’'s Complexity Factor

Bothroyd and Dewhurst [1991] developed a set of principles for reducing the manufactur
ing and assembly cost of a product. Their work is in the domain of Design for Manufac-

ture (DFM) and Design for Assembly (DFA).

According to them DFM may mean different things to different people. For example, for
individuals, whose task is to design of a single component, DFM may mean to avoid th
use of features that are unnecessary expensive to produce, or it may mean minimizit
material costs. The important point for us in their work is the distinction they make
betweerpart (components) DFMndproduct DFM They suggest that the “key to product
DFM” is product simplification through DFA. Part DFM is only the fine-tuning process

undertaken once the final form has been decided upon”.

For DFA they propose a quantitative method, known asBitathroyd and Dewhurst
method This method consists of two steps: a) minimizing the part count, and b) estimating
the handling and assembly costs for each part. Based on this method they define a meas
of complexity of products, calledomplexity factgrcomputed as the cube root of the
result of multiplying together the number of parts, the number of part types and the num

ber of relations between parts.

Design Simplification by Analogical Reasoning

Related Work 107

In conclusion, Boothroyd and Dewhurst view simplification as the reduction of a complex-
ity measure in the context of manufacturing. They argue based on a practical point of vie
that simplification is a major components of cost and that in fact simplification is the goal
of product DFM, and reduction of cost is the result. As a general principle for simplifica-

tion they propose the reduction of the number of parts.

3.4.4 Reasoning about Designs from different Points of View

Simplification at one level may cause modifications of the design at other levels. The stud
of causal reasoning about the effects of a simplification is a new area of research. To o
knowledge, considering simplifications from different points of view is also a new

research area. Some relevant work refers to reasoning about designs from different poir

of view.

Chittaro, Tasso and Toppano [Chittaro et al. 1994] introdoadtimodellingin represent-

ing and reasoning about physical systems. The key idea in their work is that the task
reasoning about physical systems can be viewed as a cooperative activity, which exploi
the contribution of several separate models of the system, each one encompassing onl

specific type of knowledge. The different models of a physical system are interconnected

The task of problem solving is based on two fundamental mechamesassning inside

Design Simplification by Analogical Reasoning

Related Work 108

the modeland reasoning across model$he models they are proposing can represent

structural knowledge (knowledge about the topology of the system), behavioral knowl
edge (knowledge about the potential behavior of the components), functional knowledg
(roles components may play in the physical processes in which they take part), teleolog
cal knowledge (knowledge about the goals assigned to the system by its designer) al
empirical knowledge (knowledge concerning the explicit representation of system proper
ties). The different models are integrated by using associations between structure al
behavior, and links between function and behavior implementing the function, as well a

between function and teleology.

Another piece of work relevant to reasoning about designs from multiple points of view is
Manfaat's [Manfaat et al. 1996], [Manfaat 1997] work on viewpoint-based abstraction.
This work proposes building multiple models of a physical system by building abstrac-
tions from different points of view. These abstractions are interconnected through th
model of the whole system. These interconnections are used for managing the interdepe

dencies between the different models.

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 109

CHAPTER 4 The Approach:
Simplification by Goal-Directed
Analogical Reasoning

In this chapter we describe the approach we are proposing for solving simplification prob
lems. It is based on using analogical reasoning to transfer knowledge from known simpli
fications to the new problem. Since theal of the reasoning, (i.e., “to simplify”), is
known it will be used to guide all the phases of the analogical reasoning process. We cz
this kind of analogical reasoning procegml-directed analogical reasoningNote that

this is different from the purpose directed analogy proposed by Kedar-Cabelli [1988]
There “purpose” does not refer to the purpose of the analogical reasoning, but rather to tl
purpose of the physical device that is being reasoned about. We will see later that in tt
application of our approach to the simplification of designs, this corresponds to using

device function to guide analogical reasoning.

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 110

To illustrate our method we will use examples from the domain of mathematical expres
sions. The expressions we will be using consist of constants, variables and the four ba:s
arithmetic operators. It is true that arithmetic expressions have well-formed structures, ar
that the same problems we will be addressing in this chapter will become much more con
plicated when applying our approach to designs. However, we believe that they are ad
guate to present the most important problems raised and the solutions we are proposing

them.

4.1 Simplification as a Problem Solving Goal

A simplification problem is defined by three elements:dhgctthat has to be simplified,
the point of view(context, aspect and measure) of the simplificationpgopertiesof the
object thatthe simplification has to preserv&hese three elements correspond respec-

tively to theobject goal andconstraintof the simplification problem

Under certain circumstances the goal and the constraints of a simplification problem ca

be implicit. As an example consider the following problem:

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 111

Problem 1 Reduce the number of multiplications in the following expression:

2
_ ((uv)"=16) + 2u
B(u V) = u(l+v)

The object of this problem is the expression E. The goal is to simplify the expression E i
the context of evaluation, with respect to the aspect of its structure, as measured by t
number of multiplications. The constraint is that the result has to be equivalent to E (i.e., |
has to represent the same set of numbers). Note that part of the goal (the context and

aspect) and the constraint are implicit.

In the rest of this chapter, for all the examples using arithmetic expressions, we wil
assume that the simplifications they are involved in, or the simplification problems of
which object they are, all have the same point of view as the problem above (i.e., evalu:

tion as context, structure as aspect and count of multiplications as measure).

We can conclude that a simplification problem can be specified by the followings:
* a specification of thebjectof the simplification.
* a specification of thgoal of the simplification. This has to be given a point of view

of the simplification, consisting of@ntext anaspectand ameasure

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 112

FIGURE 1. Structural representation of expression E(u,v)

* a specification on theonstraintof the simplification This can be given for instance

as a set of logical propositions that has to be satisfied by the result of the simplifica

tion.

For our example the object of simplification can be specified as a representation of th
structure of expression E (Figure 1.). Note, that for the sake of simplicity, in this chapte
we will only use binary trees for structural representation of expressions. The point o

view can be specified by the names of its components, that is, “evaluation”, “structure’

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 113

and “number of multiplications”. Finally, the constraint can be specified by the following

condition:

If F(a, b) is a solution of the problem, than

[(a, b)F(a, b) = E(a, b)

A simplification problem should be validated for consistency. This will involve at least the
verification of whether the point of view specified as goal makes sense (see Section 2.1

for an example of a context, aspect, measure combination that does not make sense).

A simplification problem has to, explicitly or implicitly, specify how its solution(s) will be
evaluated. Evaluating the result of a simplification problem meanfying whether the
result satisfiegshe simplification constraintandcomparingits measure of complexity

the corresponding measure of the original object. Evaluating the result of a simplificatior
can be performed by eithevaluationof formulae or bysimulation or by a combination

of the two.

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 114

Relevant

Simpler-than
Relation

N
N

®

\

Simpler Object

Explanation Complex Object

- differences
- processes

FIGURE 2. The structure of a simplification.

4.2 Representing Simplifications

To be able to perform analogical reasoning (or any kind of reasoning, for that matter) o
simplifications we need to define how simplifications will be represented as well as how

those representations will be organized to support the reasoning process.

We will represent a simplification by what we calfisampler-than relation” (Figure 2). A

simpler-then relation is a binary relation connecting two objects, a simpler one and a mot

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 115

complicated one. A simpler relation may have two attributeexplanationof the simpli-
fication it represents and a description of the aspects of the two objects tiedé\zaat to

the simplification

4.2.1 Explaining a Simplification

The explanation of a simplification can be given in either of the following two ways: a)
specifying the difference between the two objects involved in the simplification, or b)

specifying the process by which the simplification was achieved.

Specifying the difference is needed when the fact that an object is simpler than anoth
one was “discovered” (e.g., by comparing their complexity from some point of view), but
no process for transforming is known. How the difference can be specified depends on tt
ontology used for representing the objects. For instance if the objects are represent
using an objects, components, relations and attributes ontology, the difference can be re
resented by two sets: a set of elements (components, relations and attributes) that are
of the more complicated object, but not part of the simpler one (elements removed), and
set of elements that are part of the simpler object, but not of the more complicated or
(elements added). In this dissertation we will assume that the differences are not vel

complicated and will represent both of these sets as lists.

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 116

As an example let us consider the following simplification of expressions:

Simplification 1

1+xy
x+10

1+xy
X+2[b

is simpler than

The simplification can be explained b2 £b5 “ being removed ab@ “ “ being added.

When the process by which the simplification was achiesedp(ification processis
known, the description of this process can be added to the simpler relation as explanatic
A simplification processvill be represented as a sequence of transformations. Each trans
formation involves two objects (one being the object before the transformation, and th
other the one after the transformation), the transformation operation applied, and the pr
condition which had to be satisfied in order for the operator to be applicable. To represel
such a transformation we need the following:

* a partial representation of the objectontaining only those elements to which the

operator refers and the ones involved in the precondition,
 arepresentation of the operatand theargumentst was applied to,

 arepresentation of the preconditionader which the operator was applied.

Let us consider the following simplification of expressions:

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 117

Simplification 2

X(x—=3)+2

X —1 is simpler than (xX=2)

The simplification process used in this simplification could be the following:

X(X_—S)"'Z is transformed intcg(&;-'-2
(x=2) (x=2)
XD(_—?’X-'-Z is transformed int(%(XX 2X+ 2
x=2) (x=2)
X D(EXX—_ZZ)X 2 is transformed int(%((x_ 2'))(: gx —4)
X(x=1) ~2(x~1) mX=D=2)
x—2) is transformed |nto((x—2)
(x=1)(x=2) is transformed intg — 1
(x=2)

The process explaining this simplification can be represented as a transformation grap
with the nodes representing intermediate forms of the expressions and the rounded box
representing the transformations applied (see Figure 3). Note that not each transition in tl
simplification process has to be a simplification. For instance, the first transition produce:

a more complex expression. This sets the context for a simplification to be applicable.

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 118

X(X—3) + 2
(x-2)

r

X[X—3x+ 2
(x=2)

+<

X[XK=X—2x+2
(x=2)

r

X(Xx—=1)—-2(x-1)
(x-2)

+<

(x=1)(x—2)
(x=2)

r

Xx—1

Multiply

)

Decompose

Y

Factor out

)

Factor out

Y

Reduce

N N N N

)

FIGURE 3. The transformation graph for the explanation of Simplification 2.

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 119

Note that since the process explaining a simplificatiasbeen performed, the precondi-
tions are not absolutely required for representing the process. The reason we are includi
them into the representation is that they will play a role of rationale during the process c

analogical transfer.

4.2.2 Elements Relevant to a Simplification

The second attribute (after explanation) that can be associated with a simplification, spec
fies the elements in the two objects involved, whichrelevant to the simplificatiofwe

will call them relevant elemenfsRelevant elements are useful for two purposes. On one
hand, they allow buildingbstractionsof the objects involved in simplifications. These
abstractions will not contain those portions of the objects that are irrelevant to the simplifi
cation. On the other hand, the relevant elements can be used as a basis for building ind

ing schemes over the set of objects involved in known simplifications.

The set of relevant elements corresponding to a given simplification can be compute
automatically from the two objects involved in the explanation of the simplification and
the explanation itself. In Section 2.3.1 we called the process of finding the relevant ele

mentsrelevance calculationRelevant elements of a simplification can be computed at the

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 120

time the simplification is created and can be used thereafter whenever needed.

As an example let us consider the following simplification:

Simplification 3

3(x+y)—1
(X+y)(x—-Y)

3(x+y)—1

2 2
X =y

is simpler than

The more complicated expression has 3 multiplications, while the simpler one only has -

The explanation can be specified as a single step process consisting of the transformatic

“replace (X (X—y[y) by the (equivalent) expressi¢r + y)(X—Yy) *“. It should be

clear that, while the simpler relation holds between the two expressions, only part of ther

is referred to in the explanation of the simplification. For each of the two expressions

involved in the simplification, the parts (subexpressions) referred in the explanation con

stitute the relevant elements. Figure 4 presents a graphical representation of Simplificatic

3, with all its components. The shadowed portion of the structure represents the releva

elements of the two objects.

In Section 4.5 we will describe our proposal for performing relevance calculation.

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 121

Relevant

Simpler-than
Relation

Explanation

Simper Object “processes More Complex Object

replace
XPy? e (xHy)(xy)

FIGURE 4. The representation of Simplification 3. The shadowed portions of the two objects
involved in the simplification represent their relevant elements

4.3 Relevance Calculation

For every simplification added to the database of known simplifications the set of relevan

elements will be computed. We called the process of computing the relevant elements of

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 122

simplification relevance calculation. The relevance calculation can be decomposed int
two phases: a)dtlecting the elements that are not absolutely irrelev@nth respect to

the explanation) and Ipropagating relevancalong relations in the objects.

4.3.1 Collecting the Elements that are not Absolutely Irrelevant

Elements not absolutely irrelevant (see [Levy, 1994]) with respect to an explanation ar
elements that are explicitly mentioned in the explanation of the simplification. They may
occur in the description of differences, in the case that the explanation is given in terms
differences, or in partial descriptions of objects, specifications of preconditions and argu
ments of operators, if the explanation is given as a process. These elements are said to
not absolutely irrelevant because, while mentioned in the explanation, they may not b

absolutely needed. However there may not be any basis for discarding them as irrelevan

The algorithm for computing the not absolutely irrelevant elements of an object involvec
in a simplification works by iteratively building a set of elements (objects, relations and
attributes). The set is first initialized to the empty set. Next all the elements occurring in :
difference or in a partial object description part of a transformation are added to the se
Finally, the relevance calculation is applied recursively to predicates, functions and objeci

in the preconditions and operators in the transformations. This algorithm builds a maxime

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 123

set of not absolutely irrelevant elements.

Figure 5 illustrates how relevance is computed for the more complex expression involve
in Simplification 3. For better understanding the (functional) prefixed notation of the
expression is used. The relevance calculation proceeds recursively: first, the top level ope
ator (-) is added to the set of relevant element, and then the addition is repeated recursive

for its arguments.

Note that only the elements explicitly present in the explanation will be added to the set ¢

relevant elements.

4.3.2 Propagating Relevance inside Objects

In the previous section we described the first phase of the relevance calculation. We not:
there that only the elements which were explicitly present in the explanation are collecte
in the set of relevant elements. However, the elements collected this way may be related
other elements in the object which were not explicitly present in the explanation, bu
which may bear some relevance to the simplification. This could happen for instance whe

the explanation of the simplification is given by the difference between the two objects

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 124

(X, x), 5 (Y, Y))

prefixed notation

replace
XSy — (X+Y)(x-y)

Explanation
- processes

More Complex Object

FIGURE 5. Computing the relevant elements of the more complex object involved in
Simplification 3 the top level operator in the explanation is added first, than its arguments,
recursively

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 125

involved. In this case only the removed and added elements are specified, without any re

erence to relations between them.
Consider for example the following simplification, very much similar to Simplification 3:

Simplification 4:

3(x+y)—1

3(x+y) -1
(A+B)(A-B) 2 2

A°_B?

Is simpler than

whereA = X - yandB = 1 + Xy. The more complicated expression has expression has 4
multiplications, while the second one only has 3. As there is no simplification process
specified as explanation, the only assumption that can be made is that an expression
A? - B? has been replaced by the expres¢ianB)(A-B). Sincex andy are not explic-

itly present in the explanation, they will not be added to the set of relevant elements. Fig
ure 16 illustrates the result of the first phase of the relevance calculation by placing th
elements collected into a dark filled shape. The question is whether the elements in tf
subexpressions involved & andB, and possibly the operator ‘/ (of which the relevant
portion of the expression is an argument) should be added to the set of relevant elemer
In other words, should relevance be propagatside the objeét For the example consid-

ered, “downward propagation” - that is, propagating from relations to their arguments (o

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 126

upward propagation
@ N
P e

first phase result

downward propagation

FIGURE 6. Propagation of relevance inside the more complex object involved in
Simplification 4.

components to their subcomponents) - is desired, because it is important that subexpre
sions are identical. For this example it may not be so obvious whether the operator
should be added to the set of relevant elements. On one hand we could argue that it ple
no role in the simplification, and thus it should not be added. On the other, however, th
‘context’ of the ‘/" operator sets some conditions on its arguments (e.g., the second argt
ment cannot evaluate to 0) which suggests that it should be added to the set of relevant ¢
ments. Thus relevance may need to be propagated ‘upwards’ inside an object. We c;

conclude that relevance propagation is a knowledge-based activity. In Figure 6 the shap

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 127

filled in lighter colors indicate the elements to which relevance can be propagated durin

the second step of relevance calculation.

We conclude from the above discussion that relevance may also need to be propaga
inside the more complex objects involved in the simplification, along the decompositions
relations and attributes. This propagation can be done either downwards (i.e., from con
ponent to subcomponents, from relations to arguments, or components to attributes),

upwards (i.e., from subcomponents to their “parent” component, from components to rele
tions they are arguments of, and from components to relations of which attributes the

are).

This raises two further questions: a) Are both of the kinds of propagations needed? b) Ho

far does relevance need to be propagated inside the object?

We propose that downward propagation be always performed. Upward propagation wi
only be performed if it is supported by several sources. For example, a relation not men
ber of the set of relevant elements at the end of the first phase of propagation, will only k&
added to the set of relevant elements if all its arguments have already been added. In 1
next chapter we will describe propagation of relevance corresponding to our represent:

tion of designs.

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 128

Answering the question of how far relevance needs to be propagated is harder. There ¢
two factors that should be taken into account when deciding whether or not relevanc
should be further propagated: tlemgth of the propagatiofbecause the farther we get

from where the propagation inside the object started, the lower the relevance is likely t
be), and thestrength of the connectioalong which the propagation would happen

(because, for instance propagating relevance from a relation to its arguments is mo
important than propagating it from an element to the relations in which it is involved). We

will propagate relevance both downwards and upwards as far as it is possible.

4.4 Organizing Simplifications

Simplifications will have to be organized mainly for two phases of the analogical reason
ing processretrieving and (simplification)knowledge transfedn the next two subsec-

tions we propose how these organizations should be done.

4.4.1 Organizing Simplifications for Retrieval

Simplifications have to be organized such that the resulting structure supports the retriev

of candidate source analogs. There are two important ways of approaching the problem

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 129

the retrieval of candidate analogsdexingandspreading activationln our research we
use indexing rather than spreading activation because the application of spreading activ

tion requires the representation of knowledge by (complex) conceptual networks.

To build indexes over the set of simplifications we have to first decide what to use fol
indexing. Since the retrieval of a candidate analog can only be based on the elemer
defining a given simplification problem, we propose to build indexing around these ele-
ments. A simplification problem is defined by three elementsobjectthat has to be
simplified, thepoint of view(context, aspect and measure) of the simplificationcamd
straint (properties of the object that the simplification has to preserve). We are currently
not considering the constraint part for organizing simplifications for retrieval. Therefore,
we have two dimensions along which simplifications will be organized, and consequently

two possible ways of indexing into the collection of known simplifications.

The first dimension along which simplifications can be organized for retrieval is their
points of viewthat is context, aspect and measure. While it is possible to exploit commor
features of simplifications with different point of views (for instance looking at simplifica-

tion of structures, or simplification of processes), in this research we only use points c

view for partitioning a given set of simplifications into classes of simplifications with the

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 130

same points of view. In the simplification of designs we partition the set of known simpli-
fications into three classes corresponding to the structural, behavioral and functione

aspects of the designs.

The other dimension along which simplifications can be organized for retrievar&dehe

vant elementsRelevant elements of a simplification are elements (e.g., components, rela
tions, attributes, etc.) of the objects involved in the simplification, as obtained from the
relevance calculation, based on the explanation of the simplification. For retrieving candi
date source analogs we are only interested in the relevant elements of the more compl
object involved in a simplification. The reason for this is that the object given to be simpli-
fied has to be matched with an object for which a simplification is known (that is, an objec

which is the more complex member in a known simplification).

Using relevant elements for indexing has the advantage of concentrating the retrieval prt
cess on elements that play some role in simplifications. What kinds of relevant elements «
objects will be used for building indexes for retrieval will depend on the ontology used for
representing the objects in the domain. For example, for organizing designs involved i
structural simplification, if design structure is represented in terms of objects, component:

relations and attributes, indexes can be build for some or all of the element types: object

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 131

relations and attributes. Objects could be organized by their classes into a hierarchy. Rel
tions can be organized into hierarchies of relations and sub-relations (general to specific
or along features of relations such as signature (types of arguments), arity (number
arguments). Attributes can be organized into hierarchies of attributes. For example w
may have numeric and non-numeric attributes. Numeric attributes may refer to sizes

intensities, etc.

Consider the example Simplification 3 shown in Figure 4. The more complex object
involved in that simplification, which is the one used in the retrieval process, has only 7
‘relevant’ elements out of a total 15 elements in its representation. Only those 7 elemen

will be used to build the indexes for retrieval.

Arithmetic expressions are described in termglefnentary expressior{sonstants and

variables) anaperators which combine expressions into other expressions. Thus, there
are three types of elements for which indexes could be built. The set of constants and tl
set of variables cannot be decomposed into a hierarchy of classes. The set of operatc
however can be decomposed into a (very simple) hierarchy of classes as shown in FigtL
5. We acknowledge that, for this example, this indexing scheme is not very useful becau:

there are too few classes in the hierarchy and, as a consequence, a possibly large nurn

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 132

Additive

Multiplicative

FIGURE 7. Indexing into the relevant aspects of expressions involved in a simplification, using
a simple operator class hierarchy

of operators will go into every class. It is however useful to illustrate our proposal of build-
ing indexes over the types of elements which are parts of the relevant elements of a simp

fication

Note that, in general, in analogical reasoning certain kinds of features may be preferre
over others for retrieving similar analogs. As a consequence retrieving is done based ¢

either “surface similarities” (such as same attributes), or on “deep similarities” (such a:

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 133

same relations), or on “literal similarity” (both deep and surface features).

Due to the nature of simplification, it is hard to prefer any of these over the others. First, |
should be obvious that literal similarity is too strong because it will only find identical

objects to be similar. On the other hand both deep and surface similarities may be impo
tant for a given simplification. Deep (relation based) similarities are important because it
most of the cases simplifications can be performed because a certain system of relatio
hold. On the other hand a simplification may refer to only an attribute, or an attribute
value. For instance a structural simplification of a cam mechanism may consist only i

changing the shape of the cam to a simpler shape.

We propose that simplifications from a given point of view be organized for retrieval by
the relevant elements of the objects involved, into several indexing hierarchies. Thes
indexing hierarchies will be based on any of the types of relevant elements (e.g., object
relations and attributes). If more than one such indexing scheme is used, different weigh
(levels of importance) may be given to them, as relations my lead to “more significant”

simplifications than attributes.

As we shall see later, the proposed two-stage retrieval of candidate source analogs, usi

point of view based pruningst, and thenndexing into the relevant elememtssimplifi-

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 134

cations, may still be quite inefficient. In Section 4.4 we will propose additional operations

for speeding up the retrieval.

4.4.2 Organizing Simplifications for Knowledge Transfer

Simplifications should also be organized iatustraction hierarchiebased on their expla-

nations. This, as we shall see later, will allow the analogical transfer of simplification
knowledge by abstraction. Depending on how the explanation is specified (by difference
or by simplification process), two kinds of abstraction hierarchies can be built: one along
object abstractionghat is, along the classes of objects removed and added (as given in th

specification of a difference), and another one ajagess abstractions

For simplicity, we prefer to take a unified view of the two abstraction hierarchies. To do sc
we view the difference between two objects as representing a “replace” operator with pre
conditions that are not explicitly known. Figure 8 shows the representation of Simplifica-
tion 1 where the explanation as difference was replaced by a one step process. Thus

view a difference as a single step simplification process.

Abstraction over simplification processes can be defined and build by using a “reduce

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning

135

Relevant

Explanation
- processes

2*5

replac
_>

1%

10

FIGURE 8. Representing the explanation by difference of Simplification 1 by a one step

process

model” or a “relaxed model” as described in [Knoblock, 1994]. The essence of thess
abstracting techniques is to remove some elements from the states and/or preconditio
involved in the process and replacing the transitions between states with abstract tran:

tions obtained by dropping references to the removed elements.

To illustrate this by a very simple example, let us consider Simplification 2, for which the

explanation was specified in the form of a process. The simplest abstraction that can |

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 136

applied to the process is to replace the constant ‘3’ by a variable, say ‘a’. This will result ir
a more abstract process, that will work for any value of ‘a’. The problem with this abstrac:
tion is that there is more than one way to apply it. On one hand we could simply replace &
the occurrences of ‘3’ by ‘a’ without considering the context in which this is performed.
The consequence will be that the result of the abstracted process will not be a simplific:
tion. This happens because the decomposing and factoring steps will not work for thi
abstraction (Figure 9(a)). On the other hand if, the abstraction is guided by the fact that ‘Z
Is less than ‘3’ by ‘1’ and that is why the decomposition and factoring work, the abstrac-
tion of ‘3’ to ‘a’ should be accompanied by replacing ‘2’ layl’. The resulting abstrac-

tion of the process will work for any value of ‘a’ (that is it abstracts from what exactly

number is the coefficient of the ‘x-term’ and it will produce a simplification (see Figure

a(b).

The above example shows that even simple abstractions can be performed in more th
one ways. Performing formal abstraction, based only on the syntax of the object
abstracted, may lead to abstractions that are not useful for the problem for which th

abstraction is being used.

In conclusion, we propose that the simplification relations be organized into abstractiol

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 137
X(x—a) + 2 X [X—ax+ 2 _ _(a=2-1)x
(x=2) (x—2) x—1
ABSTRACTED TO
X(X=3) +2 X[XK=3x+2 |
x=2) x=2) > ox-1
(a)
(b)
x(x—a)+a-—-1 xk—-ax+a—1
(x-2) I

(x—a+1)

(x=2)

/\

ABSTRACTED TO

X(x—3) +2

(x=2)

X[X—3x+ 2

x-2 [~~~ ™

FIGURE 9. Two simple abstraction over the simplification process explaining Simplification 2.

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 138

hierarchies based on their explanations viewed as processes. These abstractions will all
the transfer of simplification knowledge from the source to the target. We will build the
abstractions over the processes explaining the simplifications. In the mechanism of builc
ing abstraction we have to incorporate an evaluation mechanism which will check whethe
the abstraction produced will satisfy the problem goal and constraints. This verificatior

will have to be done in tha&bstracted domain

4.5 The Analogical Reasoning Process

In this subsection we describe the analogical reasoning process we are proposing for so
ing simplification problems. The process is illustrated in Figure 10. The rectangles repre

sent phases of the process, while the rounded rectangles represent data.

4.5.1 Retrieving

Retrieving is the first phase of the analogical reasoning process. Its purpose is to find
simplification that corresponds to an object “similar” to the object that needs to be simpli-

fied.

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning

139

Simplification
Problem

Retrieval

Known
Simplifications

Source Analog

Mapping Storing
Best Global .
Mapping Generalized
Simplification

Transfer
Generalization

Candidate
Simplifications

Evaluation

Y

Solution
(Simplified Object)

FIGURE 10. The analogical reasoning process used for solving simplification problems

New
Simplification

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 140

As described earlier, we propose that, for the purpose of retrieval, simplifications are orge
nized first into classes of simplifications corresponding to points of view and, second by
an indexing scheme over the relevant elements of the objects involved in the simplifica
tion. Consequently retrieving similar simplifications will also work in two stagegsua-

ing, that is restricting the search to only the class of simplification with the same point of
view as the one specified in the simplification problem, antchd@xing that is search

using the indexing schemes.

The first stage is trivial and will be implemented by marking each object involved in some
simplification with the corresponding point of view. Note, that if we decide to organize

points of view into a hierarchy, a more efficient data structure should be used.

The second stage in retrieving a similar simplification iage the indexeluilt over the

relevant elements of the simplifications, in the class under consideration. Since there me
be more than one such indexing hierarchy, corresponding to the different types of releval
elements (e.g., object, relations, and attributes) we need to decide which of those hiere
chies need to be searched and in what order. One way to organize this is to search 1
indexes in decreasing order of their level of importance (see Subsection 4.3.2.). Fc

instance, search the hierarchy of relations first, the hierarchy of objects next, and the hie

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 141

archy of attributes last. Given that the objects specified in the simplification problem may

be complex, searching each of these indexes may be expensive (at least for a retrieval).

Unfortunately, the two step retrieval process we have proposed so far may be inefficier
for retrieving. This will happen if the problem contains many elements that can be assoc

ated with elements in the relevant elements of the simplifications under consideration.

To illustrate this, let us consider that our simplification problem is Problem 1 and that the
collection of known simplifications that remained after the point of view based pruning,
consists of Simplification 1 through 3. We illustrate this in Figure 11 (since the retrieval is
only based on the more complex parts of the known simplification, we omit the rest of the
representation for all the simplifications). In the figure we only show the possible associa
tions between all the *’ operators in the target and the relevant element of Simplificatior
1. Although the relevant portion of Simplification 1 only contains three elements, of which
only one is a ¥’ operator, there are five possible associations with the five occurrences of
“** operator in the target. Note that there will be a total of 20 possible associations for the

operator “*’ only!

This problem calls for further improvement of the performance of the retrieval process

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 142

Simplification 1

- Simplification 2

Problem 1
(target)

Simplification 3

FIGURE 11. Possible associations of the *’ operators in the target with corresponding elements
in one of the source simplifications

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 143

Such an improvement could be achieved with a pruning scheme similactmtbat-vec-

tor based filtering proposed by Gentner & Forbus [1991]. This approach would filter the
set of candidates for retrieval, based on the number of their features considered in the pr
cess. Forbus and Gentner propose building the content-vectors using the counts of the re
tions, functions and predicates in a structural description. These counts are then used
only select candidates for similarity which have the corresponding numbers of element

close to the one in the problem.

The problem with applying that idea directly to our problem is that it has a major limita-
tion: it only works within a domain where there is a fixed number of predefined relations,
functions and predicates. In such a domain a fixed sized vector of counters can be assigr
to each candidate simplification. If, however, the analogical reasoning is used acros
domains the method is not applicable. One possible solution to overcome this probler
would be to make a fixed association between relations, functions and predicates acro
the domain and build the content-vectors based on this association. This would howew

render the problem solving very inflexible.

In conclusion, for retrieving similar simplifications we propose a two-stage process. In the

first stage the simplifications from other points of view than the one of the problem are

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 144

pruned from the search. In the second stage multiple indexing is used to retrieve candide
simplifications. In addition, for simplifications retrieved which are in the same domain as

the problem, we will use feature-vector filtering to prune the search space.

The result of retrieving is a set of candidate analogs: that is, simplifications that are likel
to be adaptable to the new simplification problem. Each candidate analog consists of a <
of match hypothesemn which its selection as a candidate was based. A match hypothesi:
associates an element (e.g., relation, object or attribute) belonging to the relevant elemel
of the candidate analog, with an element of the object to be simplified. Each matcl
hypothesis has associated with is@re computed during the retrieval process, which

expresses its quality (e.g., match hypotheses between relations are considered as hav

higher quality than the ones between attributes of objects).

The candidate analog with the highest score is selected to be used in the next phase of
analogical reasoning process. In the rest of this section we will assume that a candide
analog has already been selected. As usual, we will refer to the selected candidate ana

as the “source” and to the simplification problem as the “target”.

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 145

4.5.2 Mapping

Mappingis the second phase of the analogical reasoning process. It builds maximal sets
consistent correspondencasatche}y between relevant elements of the source and ele-
ments in the target, calleglobal mappinggor gmays, as the are called in the Structure
Mapping Engine (SME) literature). For mapping we propose to use a modified version o
Falkenheiner's SME [Falkenheiner et al., 1986]. In the next section we give a shor
description of how SME works, emphasizing the modifications we suggest so that it suit
our purposes. In this description we will follow the explanation given by Forbus & Bun-

gler [1990].

To illustrate our discussion, let us consider that the problem to be solved is Problem 1 ar
that Simplification 4 is the source. Figure 12 represents the structures of these two expre
sions. The dotted lines represent some of the match hypotheses. Because the numbel
match hypotheses associated with this source analog is too high, for our explanation v
will only use the ones marked. For easier reference we labeled the matches involved in tl
match hypothesis. We used numbers to label elements in the source and lower case lett

to label the elements in the target.

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 146

Simplification 4

Problem 1

FIGURE 12. An example of a set of match hypotheses between one element of Problem 1 and
similar relevant elements in Simplification 4, the selected candidate source analog.

4.5.2.1 Structure Mapping

SME takes as input two descriptions, one of the source and one of the target, and produc

as output a set of gmaps of the source onto the target. Each gmap contains a maximal

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 147

of matches. Here ‘maximal’ means that adding any match to it would violate the consis
tency of the gmap. SME also attaches to each gnsiuetural evaluation scorgvhich

provides an indication of the quality of the mapping.

The original version of SME, proposed by Falkenheiner et al. [1986], begins the mappin
process by computing match hypotheses. Each match hypothesis represents a poten
correspondence between relevant a element of the source and an element of the target.
construct these match hypotheses, SME relies on a set of rules which specify what kin

of elements should be placed in correspondence.

In our approach to solving the simplification problem by analogical reasoning, the retriev-
ing process associates with each candidate source analog a set of corresponden
between relevant elements of the source and elements in the target. Each of these col
spondences has assigned to it a score that is an indication of the quality of that correspc
dence. Our implementation of SME uses these correspondences as initial matc

hypotheses

The next step in the operation of SME is to filter and combine the match hypotheses col
structed. First, match hypotheses involving elements (functions and relations) whose arg

ments cannot be placed in correspondence are eliminated from further consideratio

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 148

Next, SME checks local consistency constraints between pairs of match hypotheses

detect violations of the one-to-one constraint. This means that pairs of match hypothes
which would map two different elements in the source to the same element in the target, «
would map the same element in the source to different elements in the target are separa

as being inconsistent.

The third step in the operation of SME is the construction of maximal sets of consister
match hypotheses, i.e., gmaps. This is performed by combining systems of match hypot
eses generated in the previous step and testing them for consistency. A system of ma
hypotheses will be maximal if it cannot be consistently extended any further by combining

it with some match hypothesis.

Figure 13 shows the match hierarchies obtained after the filtering step for the exampl
illustrated in Figure 12. The two way arrows indicate violations of the one-to-one con-
straint. The darker ones connect leaf matchesdbatradict each other directlyhat is

matches which associate the same element in the source with two or more different el
ments in the target. The lighter arrows connect contradicting match hierarchies. The max

mal sets of consistent matches obtained for our example are shown in Figure 14.

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 149

1.9
29 G.h 3.b
SIPRRCHD W

_

FIGURE 13. The match hierarchies for the example in Figure 12. Two way arrows show
inconsistent pairs of matches (darker arrows) and hierarchies (lighter arrows).

Note, that the process of building gmaps uses only the relevant elements of the simplific:

tion corresponding to the source.

4.5.2.2 Structural Evaluation of Mappings

The mapping process produces a set of global mappings which can be the basis for diffe
ent simplifications that are likely to be applicable to the simplification problem to be

solved. Some of these global mappings may be better than others, in the sense that tt

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 150

D 53,5
Yelo) 7.1)

N (@9)

FIGURE 14. The gmaps built for the example in Figure 12. The labels represent scores assigned
to the match hypotheses.

represent better matches between the corresponding source simplification and the targ
problem. Our purpose is to select the best of these global mappings to increase the chan
of generating a simplification in the target. For this purpose we need to define a measul

for estimating the quality of global mappings.

Measuring the quality of a global mapping should take into account two factors: the struc
ture of the mapping and the quality of the correspondences (matches) involved in the ma
ping. This can be achieved by accumulating the measures of quality of the individua
matches in the mapping over the structure of the global mapping. We call the result ¢

applying such a measure to a global mappingthetural evaluation score ahat map-

ping.

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 151

There are two general approaches used in accumulating the measures of quality for t

matches involved, thiep-down approacland thebottom-up approach

The top-down approach for accumulating measures of match quality along the structure
a global mapping starts at the root and recursively propagates the quality of each match
all of its descendants. The rule of propagation has the following general form [Forbus &
Gentner, 1989]: a match hypotheses adds its score to the match hypotheses of its desc
dants. The score of the global mapping is then computed by adding together all the scor
accumulated in the leaf matches. The intuition behind this approach is that high score
will accumulate in the “leaf” matches expressing their role in supporting high level or

complex systems of relations.

The bottom-up approach to measuring the quality of a global mapping computes the sco
of a global mapping by starting at the root match and adding its score with the recursivel
computed scores of its descendant matches. This means essentially an upward propaga
of scores from the leaves to the root. The score of the global match will be the score acc
mulated in the root match (or the sum of the scores accumulated in the root matches if tl
global mapping consists of a set of tress of matches). The intuition behind bottom-u

accumulating of scores is to increase the scores of matches that are supported by a lar

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 152

system of relations.

To explain how the scores for global mappings are computed we need to assign scores
the different kinds of match hypotheses. Let us assume that a match hypothesis connect
two identical operators has associated with it a score of 5, a match hypothesis connecti
two constants or two variables has associated with it a score of 3, while a match hypoth
sis connection two different operators, or an operator and an operand has associated witl
a score of 1. We labeled the match hypotheses in Figure 14 with their initial score, that

with the score associated to them at the time of retrieval.

The results of applying the two approaches to our example are presented in Figure 15. T
numbers below the ‘leaf’ matches represent the scores accumulated by the top-dow
approach. The numbers above the ‘root’ matches represent the scores accumulated by
bottom-up approach. The pairs of numbers below the rounded boxes representing the gl
bal mappings represent the finals scores for the two approaches (top-down/bottom-up) fi
the corresponding gmap. Both of the types of measures clearly indicate global mapping

as being the best one.

In this dissertation we propose to use the top-down approach to evaluate the quality of gl

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 153

A 11
4 17 I
1.9 (6 ée> <71,0f>

5 16/11
ah & s
N\ J
32/17 S o
10/10

FIGURE 15. The results of evaluating the global mappings for the example in Figure 12. The
pairs of numbers represent the structural evaluation score of the top-down approach versus
the ones of the bottom-up approach.

bal mappings. The main reason for this decision is that the measure obtained by the to
down approach contains structural information as opposed to the bottom-up one, which
rather a weighted count of the scores of the matches involved in the mapping. The toj
down approach will assign higher scores to gmaps with more relation matches that rely c
more object matches. For global mappings consisting of the same number of matches, t
measuring quality using the top-down approach to accumulate scores favors “deeper stri

tures”.

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 154

At the end of the mapping phase the global mapping with the highest structural evaluatic

score will be selected for further consideration in the analogical reasoning process.

4.5.3 Transferring Simplification Knowledge

Once a global mapping has been selected as the best candidate for analogical transfe
will be used to computeandidate simplificationsA candidate simplifications is a simpli-
fication in the source which can be hypothesized to be applicable in the target as a result

the correspondences of the global mapping.

A candidate simplification is computed by finding elements in the source which are con
sistent with the global mapping’s correspondences, but are not in fact included in then
We will call these elementsnbound element®\n unbound element sonsistenwith a

given global mapping if there is no match in the global mapping which has that element &
its member. Unbound elements are searched for in the set of relevant elements of tl

source since those are the only ones that play some role in that simplification.

Once the unbound elements are found the existence of corresponding elements in the t
get can be hypothesized. Building these hypotheses is performed by the simplificatio

knowledge transfer process.

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 155

How exactly the simplification knowledge will be transferred depends on whether the
explanation for the simplification is given by a difference or by a simplification process.
The two different ways of transferring simplification knowledge will be presented in the

next two subsections.

4.5.3.1 Transferring Differences

If the explanation of the source (simplification) is given by a difference (between the two
objects involved), then the knowledge transfer will consist of applying the difference to

the target and, if needed, adapting the resulting simplification.

To apply the difference to the target, the difference explaining the source must be firs
transformed according to the global mapping. This means to view the matches containe
in the global mapping as substitutions. These substitutions are applied to the differenc
l.e., in the representation of the difference, each occurrence of (the reference to) an el
ment which is the first (source) member of a match will be substituted by the second (tal
get) member of the match. Those elements in the difference which are not first member
any matches will be replaced tgriables During the process of adapting the simplifica-

tion, these values will be assigned to variables. After the difference in the source has be

transformed according to the global mapping (viewed as a substitution), it is applied to th

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 156

target. This will result in a new object representation which may be incomplete (contair

variables, or unspecified portions).

Let us assume that for our example problem global mapping A in Figure 15 has bee
selected as the best one. Of the relevant elements in the source there are two which are
associated with any element by the global mapping A. Applying A as a substitution will
result in a difference of the form: repla(cm,\/)2 - T by (uv + T)(uv - T), whereT is a

variable that corresponds to the subexpression B, which is not associated with any eleme
in the target, according to the global mapping A. Figure 16 illustrates the result of apply
ing the substitution to the example simplification problem (the *?’ sign corresponds to the

place where adaptation needs to be performed).

After transforming the difference in the source according to the global mapping anc
applying it to the target problem, the representation of a new object is obtained. Thi:
object may be incomplete, and as a consequence it may needdapgied Adapting an

incomplete object is done by associating with the elements in the difference (of the
source) which are not first member (i.e., the member from the source) of any matche:
objects from the domain of the target. How these objects are selected depends on the tar

domain. The only requirement is that the new associations be consistent with the glob

Design Simplification by Analogical Reasoning

Buluoseay eaiboreuy Aq uoneoydwis ubisaq

Source

-

\
'

\

Simplified Target

FIGURE 16. Applying global mapping A to Simplification 4.

-sipgler

Buluoseay |ealboeuy paldalig-eos Aq uoneoydwis :yoeoiddy ayL

LGT

The Approach: Simplification by Goal-Directed Analogical Reasoning 158

mapping. It is possible that there is more than one way to select those objects in a manr
consistent with the global mapping. These will correspond to different new objects. Thes
objects need to be evaluated to check if they satisfy the requirements on the object, tl
constraints on the simplification, and if they are less complex (simpler) than the target
The objects which satisfy all of the above will be ‘simplified objects’ corresponding to the
target. Each of these simplified objects corresponds to a new simplification. We call the s

of simplifications generatechndidate simplifications

For our example the variable T could be replaced with any expression. Some domain sp
cific knowledge needs to be used to actually select the right one, namely we need to knc
that “any positive number can be written as the square of a positive number’. Based on tt
we can write 16 = 4004 , which will allow us to associate B with 4 and come up with the

simpler expression (UV+4)(uv—4)

From all the candidate simplifications we have to select one. Ideally we would select thi

simplification corresponding to the least complex simplified target produced.

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 159

4.5.3.2 Transferring Simplification Processes

If the explanation of the source (simplification) is given by the description of the simplifi-
cation process, then the knowledge transfer will consist of adapting the simplification pro

cess according to the global mapping and applying it to the target.

To adapt the simplification process according to the global mapping means viewing th
global mapping as a substitution, and then applying it to the representation of the simplifi
cation. This is performed by substituting in each element (i.e., initial state, condition,
transformation and final state) of each step of the simplification process, every occurrenc
of an element which is the first (source) member of a match by the second (target) memb
of that match. Those elements occurring in the representation of the simplification proces
which are not members of any matches of the global mapping will be replasedi-by

ables If the process description obtained this way contains variables, we say that it i

incomplete

To illustrate this, let us consider the following simplification problem:

Problem 2:Reduce the number of multiplications in the in the following expression:

3(3-u)+(u-1)

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 160

Simpler-than

Relation

Problem 2

FIGURE 17. The best match retrieved for Problem 2. The dashed arrows represent the match
hypotheses in the best gmap built.

Assume that after performing the retrieving phase of the analogical reasoning process, t
best match source retrieved was Simplification 2 (Figure 17). Also assume that the dash:

arrows connecting elements in the source to elements in the problem represent the mai

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 161

hypotheses of which the best gmap built by the mapping phase is composed. This glok
mapping corresponds to a substitution (i.e. association between elements of the source ¢
elements of the target). Remember that the explanation for Simplification 2 was given i
the form of a simplification process (see page 114). To adapt that simplification process 1
Problem 2 according to the global mapping built, we need to apply the substitution givel
by the gmap to the simplification process specified in explanation of Simplification 2. The
process description resulting from this is shown in Figure 18. Note, that the proces
description contains unspecified elements (two operators) and, as a consequence,

incomplete.

To apply an incomplete process description to the target two approaches are possible:
bind the variables to (compatible) elements in the target and than apply the proces
obtained, or b) build an abstraction of the process and apply that abstract process to t
target. For the first approach there may be several different way elements in the target c
bound to the variables in the incomplete process description. Taking this approach woul
mean to consider all the possible ways this can be done, for each of them apply the proce
ad then perform the evaluations of the results. Since this may be quite expensive, we pr

pose to use the second approach.

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 162

(3(3—-u)+(u-1) O X

/ Multi >
ply
2 S
(3M-3u+(u-1)0X
f Decom >
pose
2 S
(3@B-3-3(u-1)+(u-1)0X
/ Factor out >
2 S
(3(3-1)-(u-1)(3-1)) O X
f Factor out >
2 S
(3-(u-1)B3-1)OX
/ Reduce >
2 S

(3= (u=1))(3-1) 0 X

FIGURE 18. Adapted simplification process for Problem 2

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 163

Building an abstraction of an incomplete simplification process can be done by removing
from the process description those elements which are not associated with elements in 1
target by the best global mapping found (i.e., the variables). The process description thi

obtained will applicable to the target.

For our example the abstraction would consist of removing from each of the steps of th
“variable operatord and the variableX. Note that, applying this abstracted process to the
target will yield the expressidi3 - (U - 1))(3 - 1), which is not simpler then the original
expression (i.e., Problem 2) from the point of view considered. This shows that evaluatin
the result of the transfer is absolutely necessary, and that transferring simplificatiol
knowledge from the source to the target doesn’t necessarily result in a new simplificatiol
and. Also, while the result of applying the abstracted process to the target may not be
simpler object than the target itself, it may be possible that it will be easier to simplify
within the domain of the target. For instance, using some basic arithmetic calculations, th
result produced for our example can be transformed into the equivalent expBasston
(which, by the way, is not simpler from the point of view of the number of multiplications,

however is simpler from the point of view of the overall number of operations).

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 164

4.5.4 Evaluating the Result of the Simplification

Each of the simplified targets resulting from transferring the simplification knowledge and
adapting the result has to be evaluated for thexcalirement®on the object, byonstraints

of the simplification and cgomplexity

The requirements on the objects (e.g., design requirements in the case of design simpli
cation problems) have to be checked by domain specific methods. These may be eith
simulation, reasoning or evaluation. The constraints (which refer to properties of the targe
that the simplification process has to preserve) can also be checked by simulation, reasc
ing or evaluation. Finally, the verification complexity condition is done by applying the

complexity measure corresponding to the simplification problem (i.e., to the point of view
specified in the simplification problem) and compare the result with the complexity of the

target.

For our example, we need to check the expressions resulting by assigning different expre
sions to the variable T, whether they are correct (well formed and legal), if they are equiv
alent to the target (i.e., they evaluate to the same value for every legal assignment of t
variables involved) and if their complexity is lower than that of the target. For example,

the object produced for this example satisfies the first two conditions and, since the con

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 165

BestSimplifiedObject

begin
best := NULL;
while new objects can be produced do
0 := ProduceNewObiject;
if SatisfiesRequirements(o) then
if SatisfiesConstraints(o) then
if Complexity(o) < best then
best := 0;
end
end
end
return best;
end.

FIGURE 19. Algorithm for producing the best simplified object

plexity (as measured by the number of multiplications) is the same as the complexity c

the target (5), it does not satisfy the last one.

Evaluation of a new object may be expensive. In addition, if all the possible new object:

are generated first, and only than evaluation and the selection of the best (simplest) is pe

formed, the simplification process will become very time consuming. To reduce the time

of selecting the best simpler object we propose to perform evaluation interleaved with th

generation of new objects. Thus, after a new (partial) object was produced as a result

transferring the simplification process producing new objects and selecting the best sin

plified object will be performed according to the algorithm presented in Figure 19. This

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 166

way of organizing generation and evaluation will immediately discard any object that
doesn't satisfy the requirements and constraints and only evaluates the complexity «

those objects that do.

After the best simpler object was selected the corresponding simplification can be gene
ated. The target and the new object will be respectively the ‘more complicated’ and ‘sim
pler’ objects involved in the simplification. The explanation will be computed as the

difference between the two objects, and the relevance calculation will be applied.

4.5.5 Generalization and Storing

The simplification corresponding to the target can be used to extend the simplificatior
database. This can be done by either adding the simplification to the database, or by ac
ing to the database a newly generated simplification which is a generalization over th

source simplification and the simplification produced by the analogical reasoning proces:

Simply adding the simplification to the simplification database is straightforward, as it
only requires creating the appropriate links connecting it to the structure of the databas
The question that is raised here is whether the simplification is “new” enough (i.e., differ-

ent enough from simplifications already on the database) so that it is worth being stored.

Design Simplification by Analogical Reasoning

The Approach: Simplification by Goal-Directed Analogical Reasoning 167

To create a generalization over two simplifications (in our case the source simplificatior
and the simplification produced by the analogical reasoning mechanism) we can us
abstraction. This abstraction has to be applied both to the objects involved in the two sin
plifications and to the explanations of those simplifications. The abstraction process w:
are proposing for building a generalization over two simplifications consists of two
phases:

* remove the elements that are not relevant from the objects involved, and

* build the generalizations from those elements that are shared by the simplifications.

Abstracting from the irrelevant elements of a simplification is simple because the relevar
elements are explicitly known. Removing the elements that are not relevant in both of th
simplifications result in two new simplifications in which all the elements represented are
relevant. Abstracting from the elements not shared by the two simplification is performec
by considering the global mapping produced by the structure mapping and the variabl
substitution used to produce the simplified object. These two represent a mapping of ea
element in the representation of the source simplification to an element of the newly ger
erated simplification. The abstraction then will consist of finding for each of these map-
pings a common supertype of the types of the two elements involved. This commol

supertype can be found by following the predefined object type hierarchy.

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 168

CHAPTER 5 Application:
Simplification of Designs

In this chapter we will apply the approach proposed in Chapter 4 for solving the simplifi-
cations of designs. In our explanations we will refer to simple examples from the domair
of door lock design (Chapter 1 has already introduced an example from this domain). Th
first section of the chapter describes this domain. The next section defines the represen
tion we are proposing to use for designs. It first defines the representations for the thre
aspects of designs we are considering in our research: structure, behavior and functic
Then it discusses the connections and dependencies between the different aspects c
design and how those connections and dependencies are reflected in the representat
The third section discusses the problem of defining the complexity of designs. As in thi:

research we limit ourselves to the above mentioned three aspects of designs, complexity

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 169

FIGURE 1. A schematic door lock

only defined with respect to structure, behavior and function. Section four describes whe

we mean by structural, behavioral and functional simplification in different contexts.

5.1 The Door Lock Domain

Simple door locks will be used throughout this chapter to explain and illustrate our idea

on design simplification by analogical reasoning.

We consider a door lock (Figure 1) to be a device that allows and prevents the opening of
closed door (or gate or window). It is composed tio& and abolt which can be fully

retracted into the box as a consequence of some input applied. When the bolt is cor

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 170

N

§
LT

v -

N y

Initial State Intermediate State Final State

FIGURE 2. Behavior of a door lock

pletely retracted it allows the door (together with the whole lock) to move into the open
position. When the input is no longer applied the bolt returns to its initial (unretracted

position).

For our purposes, the opening of the door lock is a three state process (Figure 2). The il
tial state corresponds to the closed door and is characterized by an unretracted bolt an
shut door. The second (intermediate) state is characterized by a retracted bolt and a sl

door. The door lock may get into this state from the initial state as a consequence of appl

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 171

ing some input. The final state corresponds to the open door and is characterized by
retracted bolt and an open door. This state can be reached from the intermediate state
applying a second input to the door lock. The closing of the door lock can be described i

a similar way.

In our examples we shall limit ourselves to door locks implemented using simple compo
nents with distinct functional roles (such as levers, cams, shafts, etc.) [Chakrabarti & Tan
1996]. We shall also assume that the inputs to a door lock will be forces characterized k

their directions.

Figure 3 (a) illustrates a design for the door lock device. The door lock considigarf a

dle, acam abolt and aspring The Open function of the door lock is achieved by first
applying input I1 (a vertical force with its direction pointing downwards) to the handle.
When this force becomes greater than the restoring force of the spring, the handle w
rotate around its end opposite to where the input was applied. Thus, the handle will tran:
form a linear movement (corresponding to input 11) to a rotational movement of the cam
The cam, which is hooked to the bolt, transforms this rotational movement back to a linez

one (but one with a horizontal direction), retracting the bolt into the box. When the bolt is

Design Simplification by Analogical Reasoning

Application: Simplification of Designs

172

@)

02

(b)

welded to connected to

(Handle (Cam)

FIGURE 3. Door lock implementing the cam mechanism using a cam: (a)
schematic and (b) structural representation

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 173

retracted into the box, the second input, 12 is applied to the handle. This is a horizontz

input, perpendicular to the plane of the door onto which the door lock is mounted.

5.2 Representing Designs

We represent a design by representing its structure, behavior and function and the conn
tions between these aspects. In the following subsections we describe the representatic

we are proposing for each of these aspects.

5.2.1 Representing Structure

For representing the structure of a design we usibpct, component, attribute and rela-
tion ontology A design is represented as an objects which may be composed of sever
other objects, called the object®mponentsDesigns may havattributes attached to
them. An attribute is a function that may be applied to an object to obtain a characteristi
of the object. For instance the attribute “color” if applied to an object will give the color of
that object. Attributes are not object specific, or object class specific, in the sense that the
may be applied to many different objects of different object classes. For instance, a doc

lock may have a color, or a clothespin may have a color, and so on. However, there may |

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 174

objects for which a given attribute doesn’t make sense (is undefined). For example a cor

puter program doesn’t have a smell.

A design may be in relations with its environment, that is, with objects which are not its
components, or its component’s components, and so on. We call such redatensl
relations For instance a door lock mountedonto a door. This connection between the
door lock and the door it is mounted onto is an external relation of the door lock. For ¢
given design, there may be relations between its components. We call such relations loc
(internal) relations. For instance the components cam and bolt of our door lock example i
Figure 3 (a), are hooked to each other. This connection by hooking is a local relation of th

door lock.

Figure 3(b) gives a structural representation of the door lock illustrated in Figure 3(a). Th
rounded boxes represent objects, while the ovals represent attributes. A line connectir
two rounded boxes means that the object corresponding to the box in a lower position is
components of the one corresponding to the box in a higher position. A line connectin
rounded box and an oval means that the attribute corresponding to the oval is an attribt
of the object corresponding to the box. Note, that in our representation, if there is no ov:

representing a given attribute connected to an object, it means that either the attribu

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 175

doesn’'t make sense for that object, or that the representation abstracts from it (e.
because it is irrelevant to the problem for which the representation is used). We treat bo
cases identically, considering that the object “doesn’t have that attribute. For example, tr
object “cam” in Figure 3(b) has no attribute “shape” connected to it. Although a cam
clearly has a shape, we omitted it because we didn’t find it relevant for our purposes. Tt

thick gray arrows in Figure 3(b) represent relations local to the door lock.

5.2.2 Representing Behavior

We view the behavior of a device as a process described by a sequence of state transitic
A state transition is specified by two (partial) state descriptiongnifie stateand the
final stak, aconditionand a specification dfow the state transitions is achievédstate

transition may be achieved by a function, another behavior, or by a physical law.

We represent behaviors by a sequence of state transitions. Each state transition is ref
sented by four elements: the representation of the initial state, the representation of tl
final state, the representation of the condition and the representation of the means |
which the transition is achieved. We represesitiage by using partial state representa-

tion. A partial state representation consists of a set consisting of attribute/attribute-valu

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 176

pairs, and relations. Here “partial state” refers to the fact that only those attributes an
relations of the design are represented which are affected (i.e., used or changed) by t
transition. The condition of a state transition is represented as a logical proposition the

may evaluate to ‘true’ or ‘false’. Finally, the transformation is a reference to some othel

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 177

, , State O1 (Output 1)
State: force_on_Spring <= restoring_force

Cond: force_I1_applied > restoring_force

By: Behavior Lever_Cam_Transmit_Force

State: bolt_position = out State 02
Cond: force_on_spring > restoring_force

By: Knowledge Newton’s_2nd_Law

State: bolt_position = retracted State O3
lock_position = closed
Cond: force_12_applied

¢ By: Knowledge Newton’s_3rd_Law

State: lock_position = open State O4

FIGURE 4. State transition graph for the top level Open behavior of the door
lock in Figure 3.

behavior of the design, or to a function of its components, or to a physical law. Figure -
uses dransitiongraph to illustrate the representation of a behavior of the door lock shown
in Figure 3. Note that two of the transformations refer to physical laws, while the third one

prefers to another behavior, Lever_Cam_Transmit_Force. This behavior (represented

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 178

State: handle_position: horizontal State LC1
cam_position: upright
bolt_position: out

Cond: force_11_applied
rotating_force > restoring_force

Function: Lever_Function

State: handle_position: oblique State LC2
cam_position: rotated
bolt_position: retracted

FIGURE 5. State transition graph for the ‘Lever_Cam_Transmit_Force’ behavior referred to by
the ‘Open’ behavior represented in Figure 4.

Figure 5) describes how the lever-cam combination transmits force and transforms th
direction of the movement. Note that this time the transition refers to a function, namely

the lever function played by the handle.

5.2.3 Representing Function

A function of a design is defined in terms of its interaction with a given environment. To

represent a function of a design we will represenetivronmenin which the design has

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 179

to be place into in order to achieve its function,itfteractionof the design with the envi-

ronment required to achieve the function, and the way the functitaplieyed

We represent thenvironmenof a design by of a set of objects, which are not components
of the design, but are either in some relation with the design, or get into some relation wit

the design while it achieves its function.

The interaction of a design with its environment is a sequencepfits applied to the

design anautputsproduced by the design. We view both the application of an input to a
design, and the generation of an output by the design, as the instantiating of a relatic
between the design and its environment. The difference between the two is usually mac

based on the “direction” of the relation that is instantiated.

For example, we know that any force acting on an object will cause a reacting force ti
occur. This reacting force could be viewed as an output of the object. We however viey
this kind of interaction as “initiated” by the external force, and as a consequence having
feel of “sequence” or direction (action to reaction). This is why we view the application of

a force to an object as an input.

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 180

Function: Open
Environment:
- input 11 applied to the handle
- input 12 applied to the handle

Interaction:
- (force_I1_applied > restoring_force) O retract_bolt
- bolt_retracted O apply_12

By (deployment):
- Open_Behavior

FIGURE 6. The Open function of the door lock in Figure 3.

The mode of deployment of a function is represented by representing those properties a
relations of the design, and those relations between the design and the environment tt

determine the causal interactions between the design and the environment.

If the mode of deploymermissumes a sequence of state transformations of the design we
say that the device achieves its function by a behavior. In this dissertation we are only co
cerned with devices that achieve their function through some behavior. As a consequen
we will represent the mode of deployment of a function by a reference to the behavior b
which the function is achieved.

Figure 6 shows the representation of the Open function of the door lock in Figure 3. Th

environment consists of two forces (11 and 12) that can be applied to the handle of the do

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 181

lock as inputs. The interaction is described as a sequence of inputs applied to the door lo
and outputs generated by the door lock. The first force applied is I1. If this force is greate
than the restoring force of the spring, than the output produces is the retracted bolt. Ne»
if the bolt is retracted (that is the first output was generated), the second input, that is forc
12, is applied. The output generated will be placing the door lock in ‘open’ status. The
deployment of this function is represented by a reference to the behavior

‘Open_Behavior'.

5.2.4 Connections and Dependencies between the Different Aspects

The structure, behavior and function of a design are interdependent. Behavior describes
process of transformation of some structural element (component, attribute or relation) c
the design. As such, behaviorstsongly dependerdn structure. This dependence is gov-

erned by physical laws. In our representation this dependence is expressed by the ref
ences to structural elements used in the representation of behavior. For example, all t
partial state descriptions in the behavior represented in Figure 4 are expressed in terms
attributes and relations of the door lock’s components. A design may have several differel
behaviors, corresponding to different sequences of transformations. Our representatic

maintains a list of all the behaviors of a design which are referred to by at least one func

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 182

tion of the design. Thus, the representation we are proposing explicitly connects the stru
ture of a design to its behaviors through explicit references, and connects every behavi
to the structure to which it corresponds to through the references used in the description

transformations.

The kinds of functions we are considering (i.e., functions achieved by behavior), depen
on the behavior they armmplementeddeployed) by. We represent this dependency by an

explicit reference to the behavior (or function, or physical law). A behavior may imple-
ment more than one functions. Our representation does not explicitly maintain a connet
tion from a behavior to each of the functions it implements. It maintains however, a list o
all the intended functions of a design, linked to the representation of the design. Figure
illustrates the way the interdependencies explained above are represented for our exam

door lock.

Design Simplification by Analogical Reasoning

Buluoseay |eaiboeuy Aq uonesnldwis ubisag

functions

Open
Function

implemented by

Close
Function

implemented by

Q tc1 = Lc2 | Q Lc1 || Lc2 |
€ eV

ver_Cam_Transmit_Force er_Cam_Transmit_Force
[o1
Open

FIGURE 7. Dependencies between structure, behavior and function for the door lock in Figure 3.

subisaq Jo uoneaydwis :uoneslddy

€8T

Application: Simplification of Designs 184

5.3 Contexts, Aspects and Measures for Design Complexity

As described in Chapter 2, the complexity of an object can only be defined with respect t
a point of view, that is, a combination of context, aspect and measure. In this subsectic

we will present some possible points of view for defining the complexity of a design.

5.3.1 Contexts for Measuring Design Complexity

As stated earlier, a context, in which complexity of an object will be measured, is a pro
cess that is performed on that object (or in which that object is involved). As a conse
guence, considering the processes that may be performed on designs, we can talk ab
complexity in the context oflesigning manufacturing using repairing and so on. It

should be clear that each of these contexts may require different (sometimes even conflic
ing) views on complexity. For instance, when using a design, its function matters, while
during the process of manufacturing it does not (or, at least it is less obvious that it doe

although during manufacturing it may be required that the functioot echieved).

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 185

5.3.2 Aspects for measuring Design Complexity

We relate the aspects for measuring design complexity to the levels of description c
designs, that is structure, behavior and function. Thus, we will talk abadtural,

behavioralandfunctional complexitypf a design.

Structural complexityf a design means that measuring complexity will refer to the struc-
tural aspect of the design, that is, attributes, components and local relBgbasioral
complexitymeans that measuring complexity will refer to the states and transitions the
behaviors consist of. Finallfynctional complexityneans that measuring complexity will

refer to the interaction of the design with its environment, or to its multiple functions.

5.3.3 Measures of Design Complexity

For a given context and aspectmaasure of complexityf designs will be a function,

which applied to a design will result in a positive number, which will be interpreted as an
estimation of the effort required to perform the process given by the context, in terms
the level given by the aspect. For example, a measure of complexity of a design for tr
context of manufacturing, in the aspect of structure could be the number of components

the design. The complexity of the door lock in Figure 3, by this measure, will be 4.

Design Simplification by Analogical Reasoning

Application: Simplification of Designs

186

Structure

Behavior

Function

Designing

- attribute nbr.

- component nbr.

- relation nbr.

- attribute complexity

- attributes referred nbr.

- components referred nbi
- relation referred nbr.

- states nbr.

- transitions nbr.

- behaviors nbr.

- inputs nbr.
. - outputs nbr.
- functions nbr.
- input complexity
- output complexity

Manufacturing

- attribute nbr.
- component nbr.

- component nbr.
- relation nbr.
- attribute complexity

NO

" NO NO
- relation nbr.
- attribute complexity
Using - attributes referred nbr - inputs nbr.
NO - components referred nbi. - outputs nbr.
- relation referred nbr. - functions nbr.
- states nbr. - input complexity
- transitions nbr. - output complexity
- behaviors nbr.
Repairing - attribute nbr.

NO

TABLE 1. Possible elements for defining complexity measures for different context/aspect

Note that not all the combinations of context and aspect make sense for defining a meast
of complexity for designs. Table 1 gives a list based on which measures of complexity ca
be defined for different combinations of context and aspect. The table cells containin
‘NO’ correspond to combinations of context and aspect which don’t make sense to be use

for defining a measure of complexity. The elements in the cells can be combined to defin

combinations.

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 187

measures of complexity. Most of those elements refer to counts (denoted by “nbr.”). How
ever there are some referring to “complexity”. As discussed in Chapter 2, this means that
measure of complexity can be defined recursively, along decompositions. Such a recursi
definition requires a set of “base cases”, that is a set of designs for which the measure
complexity in question is postulated. For example, in the context of designing, for the
aspect of structure, the complexity of a design may need to include an estimate of ho
complicated its shape is. Such a measure of complexity may characterize the effo
required to describe the design (as the design itself is a description of a device). To defit
such a measure of complexity one must postulate a complexity measure for some eleme
tary shapes, such as triangle, rectangle, circle (e.g., complexity of circle = 3, complexity c
triangle = 6 and complexity of rectangle = 8, as given by how many numbers are require

to represent each of them).

To illustrate the above discussion, let us define some example measures of complexity. V

will apply the measures defined to the door lock in Figure 3.

5.3.3.1 Measures of Structural Complexity

A measure of structural complexitpuld be the number elementary components the

design (elementary components are components that are not further decomposed in t

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 188

representation of the design). The complexity of the door lock as measured with this me:
sure is 4. This measure would abstract away both the attributes of the design and its co

ponents as well as the local relations connecting those components.

A measure of complexity that would take into account both the number of components ar
the number of local relations could be defined asntiaber of elementary components
plus the number of relation3he door lock as measured by its complexity measure will
have complexity 4+3=7. While this measure of complexity includes the number of rela-
tions into its definition, it gives them the same “weight” in the computation as that of the

elementary components.

Another way to combine the two counts (i.e., the count of elementary components, and tt
count of local relations) is to follow Boothroyd and Dewhurst’s [1991] method to compute
the complexity factoof a design. According to that, the complexity of theigie would be
computed bynultiplying the two counts and taking the square root of the rddate that,
Boothroyd and Dewhurst, actually consider three counts (adding the number of ‘compa
nent types’ to the ones we are considering) for their formula and take the cube root of the

product. Using this square root measure, the complexity of the door lock is

JAB = J12 = 3.46

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 189

(@) (b)

FIGURE 8. Two relation hierarchies which have the same complexity according to the measure
proposed by Boothroyd and Dewhurst (circles represent relations, squares represent
components)

Note thatthis measure is defined with the assumption that there are no higher level rela
tions (i.e., relations between relations) in the structure. For this reids jt does com-

bine the number of components and the number of relations in the structure, it doesr
distinguish between designs with the same number of components and same number
relations, but using higher level relations. For example, if the two trees in Figure 8 repe
sented hierarchies of relations connecting components of two designs (e.g., a hierarchy

decompositions), then the measure of complexity defined above would yield for both o

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 190

them /45 = /20 = 4.47. This is because both of them have the same number of rela

tions and the same number of elementary components.

To be able to distinguish between the complexty of hierarchies of relations over a set
components, we propose that the complexity of such a hierarchy be measureekigrthe

nal path lengthcorresponding to the tree representing the hierarchy. By external path
length of a tree we mean the sum of path lengths from the root of the tree to each of i
leaves. Using this measure of complexity, the hierarchy (a) in Figure 8 has a complexit
of 12, and the hierarchy (b) a complexity of 14. This difference in complexity is due to the
fact that the measure defined assigns higher measure to hierarchies with higher systems
relations. If applied to the decompositional structure of a design, this measure of comple»
ity could be interpreted as assigning higher values to “more critical” components, that is
components whose change would have a greater impact on the entire structure (e.g.,
more levels of decompositions a component has “underneath”, the more of its compc

nents, sub-components, and so all may be affected by its change).

Other measures of structural complexity for designing could be defined using the elemen
in Table 1. The actual elements that would go into defining such a measure and the wz

they would be combined depends on what is important for the purpose of the user.

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 191

5.3.3.2 Measures of Behavioral Complexity

A design may have more than one behaviom@asure of behavioral complexity a

design in the context of designing can be defined as a combination (e.g., sum, or max
mum) of the complexity of its individual behaviors. Note here, that for our example, in the
context of designing, the sum seems to be a better choice, because both of the behavi
have to be considered at design time. On the other hand, for use, taking the maximu
complexity of the two behaviors (Open and Close) is a better choice, because at most o

of those behaviors will be exhibited at any time.

Thus, we are faced with the problem of defining sample measures of complexity for :
behavior. Let us recall that a behavior is represented as a sequence of state transitio
Each state transition consists of a partial representation of a state of the design, a conditi
and a transformation. Elements of these may be used in defining a measure of complex

for a behavior.

A simple measure of complexity for a behavior would be the number of state transitions |
consists of. The behavioral complexity of the door lock as measured by this measure is
Note that, an equivalent way to measure behavioral complexity would be to count thi

number of states in a behavior, rather than the number of transitions.

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 192

Measuring complexity by counting the state transitions it consists of doesn’t take intc
account “how complicated” the individual state transitions are. To take these into accour
the definition of complexity has to refer to either the initial and final states in each of the
transitions, or the complexity of the transformation (or, possibly, both). We can thus define
a complexity for each individual state transition and define the complexity of a behavior a:
the sum of the complexities of the transitions it consists of (note, that the complexity defi
nition proposed in the previous paragraph would correspond to a complexity measure ¢

one for considered for each transition).

Intuitively, the complexity of a transition depends on how much change the transition
causes (e.g., how many state variables are modified) and on how complicated the transft
mation process is. Note that, the transformation in a state transition refers to anoth
behavior, or to a function, or to some domain law. Thus, its complexity is defined by eithe
the complexity of another behavior (recursively), or the complexity of a function (see sub-:
section 5.3.3.3 below), or it can be defined (postulated) as a constant characterizing

physical principle).

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 193

Summing up the discussion, we propose that the behavioral complexity of a design &

defined as the sum of the complexitté(an) of all its top level behaBirqrs . With these

notations, the complexity of a behavior is defined by:

C(B) = > u(® @),

toT,

WhereTn: E’[l, t2, t3, ey tkD the represents the sequence of state transitions in behav

ior Bn, H(t) represents the number of changes (e.g., number of state variables affectec
andC(6(t)) represented the complexity of the transforma@t). Note again tha®(t)

can be either a behavior, or a function, or a domain law.

Simpler behavioral measures, such as the state transition count defined above, can

derived by choosing appropriate valuesfigt) andC(0(t)) respectively.

Using the complete definition given above thBn) , and assuming that the complexity

of “Lever_Function” shown in Figure 5 is 1, and postulating that the complexity of trans-

formations caused by a physical law is also 1, the complexity of the “Open_Behavior’

represented in Figure 4 will de[({3[1) + 1 (1L + 1[Il = 5 . Note, that this measure

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 194

takes into account that the first state transition in the behavior is implemented by anoth
behavior (“Lever_Cam_Transmit_Force”), which consists of a single state transition tha

affects three state variables and is implemented by the function “Lever_Function”.

5.3.3.3 Measures of Functional Complexity

A design may have more than one function. The functional complexity of a design in the
context of designing may refer to either the number of functions the design has, or to ho
complicated its function(s) is (are). Thus, a genenaksure of functional complexiy a

design can be defined as a combination of the complexities of its (top level) functions.

Similar to the definition of behavioral complexity, this combination can be defined, for
instance, as a sum of complexities of individual functions or as a maximum of complexi-
ties of individual functions. Again we can note that, in the context of designing, the sun
seems to be a better choice, because all of the functions have to be considered at des
time. On the other hand, fase taking the maximum complexity of the functions is a bet-

ter choice when at most one of the functions will be achieved at any time.

Thus, we need to give a sample definition for a the complexity of a function of a design

Remember that, we defined a function by an environment (a set of objects the design m:;

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 195

interact with), a set of interactions (a sequence of inputs-outputs pairs) and a mode
deployment. Thus a definition of the complexity measure for a function should take intc
account the complexity of the environment, the complexity of inputs and outputs as wel

as the complexity of the mode of deployment of the function.

The complexity of the environment can be defined as the number of the objects in the env
ronment. This will essentially correspond to the number of objects the design will interac
with while delivering the function considered. The complexity of the environment for the
“Open” function represented in Figure 6 is 2, as the design interacts with two forces while

delivering this function.

To define the complexity measure of an interaction we first need to define a complexity o
each input-output pair of which the interaction consists, and then define a way to combin
those complexities into a single measure. The complexity of an input-output pair can b
defined as a combination of the complexity measures of the input and of the output. In ot
application domain (simple, schematic mechanisms), inputs can be forces which have
trajectory (e.g., linear, or circular) and outputs can be either forces or (object) states. F

forces, a way to define the complexity measure may be by the complexity of (describing

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 196

the trajectory associated. For states the complexity may be defined as the number of st

variables needed to describe them.

Finally, the complexity of deployment could also be defined as the complexity of the

behavior implementing the function.

In this stage of our research we define the complexity of a function as only depending o
the complexity of the environment, that is the number of objects the design interacts witl

while delivering that function.

5.4 Structural, Behavioral and Functional Design Simplification

In this section we describe what we mean by structural, behavioral and functional simplifi
cation, respectively. Before starting our discussion however, let us note that in this disse
tation we discuss behavioral and functional simplifications only at a conceptual level, by
defining them and pointing out what specific issues they raise. The working system pre

sented in the next chapter was built and tested on structural simplification problems only.

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 197

A design simplificationis a binary relation connecting two designs, a simpler one and a
more complicated one. Every design simplification has assigned pmib&of view that

IS, a context, an aspect and a measure (of complexitgkmanationand aset of relevant
elementsA design simplification has to satisfy the “simplification condition”, that is, if
the measure (corresponding to the point of view of the simplification) is applied to the twc
designs involved, for the corresponding context and aspect, the value obtained for tt

“simpler design” will be (strictly) less than the one obtained for the more complicated one.

The set of relevant elements associated with a design simplification consists of elements
the representation of the aspect corresponding to the point of view of simplification, whict
were used or affected by the simplification. For example, for a design simplification, in the
context of designing, for the aspect of structure and with the measure defined by countir
the components of the design, the set of relevant elements may consist of objects, relatic
and attributes of the designs involved. These elements may be referred to in conditior
that needed to be satisfied for the simplification to be “realizable”, or in the operations

which were applied to transform the more complicated design into the simpler one.

The explanation of a design simplification is a description of the process that has bee

applied to the more complicated object to obtain the simpler one. Such a process is

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 198

sequence of transformations. Each transformation consists of a partial description of tw
designs (one before the transformation has been applied, and one after the transformati
has been applied), a predicate describing the conditions that had to be satisfied in order |

the transformation to be applicable, and the operation that describes the transformation.

In the rest of this section we will give examples of design simplifications for each of the
three aspects considered. The examples will again be drawn from the domain of door loc

designs.

5.4.1 A Structural Simplification

A structural simplification of a design refers to either physical attributes of the design, ol
to its structural composition. For instance, an object with the shape attribute “circle” may
be considered simpler than an object with the shape attribute “oval”. With respect to struc
tural composition, a design can be simpler than another design if it has fewer componen
fewer relations between components, or simpler relations between components. Here |

“simpler relations” we mean relations with fewer arguments.

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 199

Let us consider the door lock illustrated in Figure 9. Comparing it with the door lock in
Figure 3, it appears to have a simpler structure, because (while it has the same number
components, the same number of relations) the shapes of the roller and the plain bolt &

simpler that those of the cam and the bolt with a hooked shape.

To represent this relation between the two designs as a design simplification we first nee
to consider a measure of complexity that is able to capture the difference described aboy
The measure of structural complexity based on the external path length of the decompo:
tional structure, defined in section 5.3.3.1, would yield for both of the designs a complex
ity of 4. To capture the complexity introduced by attributes and attribute values, we mus

extend this measure.

The structural simplification connecting “Door Lock 1” and “Door Lock 2” is represented

in Figure 10.

5.4.2 A Behavioral Simplification

A behavioral simplification refers to either the complexity of the partial state description,

or the number of states, or the number of transitions in a behavior. By the complexity of

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 200

@
= 4

e
<
—
(b)
Door Lock 2
welded to connected
/ touching \

Handle Roller Spring
i it festorin

plain

FIGURE 9. Door lock implementing the cam mechanism using a roller: (a)
schematic and (b) structural representation

Design Simplification by Analogical Reasoning

Application: Simplification of Designs

201

pleﬁ)

touching(Roller,Bolt[shape

replace
hook]y—®

(Cam,Bolt[shape

:

hooked to

(

/A

welded to hooked t§ connected to

=& <&
Gosio) \ Geostop) Conape) - osivr)

Structurally
Simpler
Than

< D Relevant

Door Lock 2
7\
welded to connected

// touching \

FIGURE 10. Simplification “Door Lock 1” to “Door Lock 2”

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 202

State: handle_position: horizontal State LC1
cam_position: upright
bolt_position: out

Cond: force_11_applied
rotating_force > restoring_force

Function: Lever_Function

State: handle_position: oblique State LC2
cam_position: rotated
bolt_position: retracted

FIGURE 13. State transition graph for the ‘Lever_Lever_Wedge_Transmit_Force’ behavior
referred to by the ‘Open’ behavior represented in Figure 4.

partial state description we mean a measure depending on the number of elemer

(attributes, objects and relations) in the partial state description.

To illustrate this with an example, let us consider the door lock design illustrated in Figure
11. This door lock uses two levers, a wedge and an L-shaped bolt to implement the do

lock functions. Figures 12 and 13 represent the behavior of this door lock.

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 203

Il * 02 (a)
\ ’

|

|

(b)

Door Lock 3
welded to WE

_——

L-shaped

connected

ac(

FIGURE 11. Door lock using a combination of two levers, a wedge and an L-shaped bolt: (a)
schematic and (b) structural representation

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 204

State: force_on_Spring <= restoring_force
Cond: force_l1_applied > restoring_force

By: Behavior Lever_Lever_Wedge_Transmit_Force

State: bolt_position = out
Cond: force_on_spring > restoring_force

By: Knowledge Newton's_2nd_Law

State: bolt_position = retracted
lock_position = closed
Cond: force_12_applied

¢ By: Knowledge Newton’s_3rd_Law

State: lock_position = open

FIGURE 12. State transition graph for the top level behavior of the Door Lock 2.

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 205

5.4.3 A Functional Simplification

A functional simplification may refer to either the “complexity” of using a designed

object, or to its possible multiple functions. An object may be “functionally simpler” than
another object if it is easier to use. For example, if it requires fewer inputs or simplel
inputs (e.g., force applied in a linear rather than curved motion). On the other hand, a
object can also be “functionally simpler” than another object if it has fewer functions (i.e.,

it can be used for fewer purposes).

As an example, consider the door lock in Figure 14. This design uses a wedge and an
shaped bolt to implement the door lock functions. The function of this door lock is repre-
sented in Figure 15. If we measure functional complexity by the number of inputs (i.e., th
complexity of the environment), we can say that the door lock in Figure 14 is functionally

simpler than the door lock in Figure 11.

Design Simplification by Analogical Reasoning

Application: Simplification of Designs 206

g
Wiy
—~ -~

_—

\

(b)

Door Lock 2
welded to connected

/ touching '\

Handle Wedge Spring

L-shaped

FIGURE 14. Door lock using a combination of a wedge and an L-shaped bolt: (a) schematic and
(b) structural representation

Design Simplification by Analogical Reasoning

Application: Simplification of Designs

207

Function: Open

Environment:

- input 11 applied to the handle

Interaction:
- (force_I1_applied > restoring_force)
=> retract_bolt and open_door

By (deployment):

- Open_Behavior

FIGURE 15. The Open function of the door lock in Figure 14.

Design Simplification by Analogical Reasoning

Implementation 208

CHAPTER 6 Implementation

In this chapter we present the implementation of the computer system that was used
demonstrate our approach to solving simplification problems. The first section gives
general description of the system architecture and provides an explanation of why CLIP
was the language of choice for our implementation. The second section presents the rep
sentation used by the system. Section three describes the abstraction mechanism us
while the last section describes the implementation of the analogical reasoning mechanis

for simplification.

6.1 The System

The system was implemented in the CLIPS language [CLIPS 1993]. We chose CLIPS fc

the following reasons:

Design Simplification by Analogical Reasoning

Implementation 209

it supports rule-based programming, using a powerful pattern matching algorithm

called Rete (also used in the implementation of the OPS-5 language);

it supports object-oriented programming;

it supports procedural programming;

it implements a set of powerful query operations;

it allows easy interfacing with other programming languages (e.g., C);

a great variety of additional tools are available (e.g., a GUI builder).

These features of the language allowed an object-oriented design of the system and qu

prototyping.

To us the major disadvantage of the language was the lack of a Lisp-like list data type. Dt
to this, the manipulation of nested lists and symbolic processing, such as evaluation of lis
as function calls, cannot be directly implemented in CLIPS. To overcome this we imple-
mented a ‘List’ class which provides the entire range of list manipulation methods avail-
able in most of the Lisp implementations, including evaluation of lists. This class was

implemented in CLIPS.

Design Simplification by Analogical Reasoning

Implementation 210

The current implementation uses a text interface which is based on an interface library w
implemented. This library contains functions for various kinds of input and output opera-
tions as well as for menu definitions. The library was implemented completely in CLIPS
and can be used with any CLIPS program. We must note here that there is a CLIPS impl
mentation, called wxCLIPS, which allows the development of graphical user interfaces
(GUI's) for CLIPS programs. We plan to extend our system in the future with a GUI

implemented in wxCLIPS.

The architecture of the system is shown in Figure 1. The system consistatabase of
known simplificationsaninterfacemodule, alata managememhodule, essimplifierand a

simplification abstractiormodule.

6.1.1 The Database of Known Simplifications

The database of known simplifications stores a collection of CLIPS instances representir
simplifications and the objects that are connected by those simplifications. The entire dat:
base is stored on disk, possibly in several files. To solve simplification problems all or par

of the data base has to be loaded into the memory.

Design Simplification by Analogical Reasoning

Implementation

211

Interface

/

Data
Management

N

Design

Manager |y

Simplification
Manager

Y

Explanation
Builder

Y

Relevance
Calculator <

Simplification /
Editor

T~

Simplifications

.

Simplifier

- retrieving

Retrieving Rules

v

- mapping

Modified SME

Y

Generator
- transfer

Simplification

Abstraction
Mechanism

- generalizing

Y

Evaluator
- evaluation

- new simplificatior

FIGURE 1. Architecture of the simplification system

Design Simplification by Analogical Reasoning

Implementation 212

We currently partition the data base based on the different application domains our syste
accepts. Those application domains are mathematics, programs and mechanical desi
Each partition is stored in a different file. We made this design decision for our implemen:
tation to be able to perform experiments with “within domain” and “across domain” ana-
logical reasoning. Any number of partitions corresponding to different application

domains can be loaded into memory at the same time.

6.1.2 The Interface Module

The interface module allows the user to interact with the system. It uses a coourmed

mand-line/menu interfacd his means that the user may type in commands at the systerr
prompter, but entering the empty command (just carriage return) or an erroneous con
mand will cause a menu of the available commands to be displayed. The sample ru

shown in Appendix B illustrate the use of the interface.

6.1.3 The Data Management Module

The data management module allows the creation, editing, saving and loading of objec
and simplifications. It consists of two submodules:dasign manageand thesimplifica-

tion manager

Design Simplification by Analogical Reasoning

Implementation 213

6.1.3.1 The Design Manager

The design manager submodule allows the creation and editing of objects represented
external formats well as saving and loading tharternal format The external represen-

tation of an object has the structure shown in Figure 2. Appendix A presents the extern
representation of several designs. The internal representation is in the form of CLIP!
instances. While CLIPS instance files are text files (just like the files containing externa
representations), they use a much more compact representation of objects than our ext
nal representation and are saved and loaded efficiently by the corresponding CLIPS fun

tions.

In the current implementation, creating and editing of objects is done using a standard te
editor (currently Emacs running on UNIX) which is called by the system. When a new
object is created a template file is loaded into the text editor. This template file contains th
syntactical structures of all the elements which may be needed for externally representir

an objects.

Note that for some domains, the general external representation defined by us may not

natural. For instance, representing mathematical expressions as objects (with attribute

Design Simplification by Analogical Reasoning

Implementation 214

(RootDesign <root-design-name>

(Attributes
(Attribute <attribute-name> <default-value>)
... more attributes
(Components
(Design <design-name> ... design description)
... more component designs
(Relations
(Relation <relation-name> <list-of-components>)
(Behaviors
(Process <process-name>
(ProcStep
(ObjectState <state-description >)
(Condition <condition-description>)
(Apply <action-description>)
(ObjectState <state-description >)

) ... more process steps o
... more behaviors (process descriptions)

(Uses o
(Process <process-description>)
... more process description

)

FIGURE 2. The structure of the external representation of an object

components and relations, plus behavior and function) is very counterintuitive. For thi:
reason, if a domain which is to be included into the system, has a well established ar

widely used system of representation, a module for interpreting that representation ar

Design Simplification by Analogical Reasoning

Implementation 215

building the appropriate internal representations needs to be added to the system. Our s
tem currently has a module which is able to read in arithmetical expressions in prefixe

“Polish notation” and build the appropriate internal representations.

Besides creating and editing objects represented in external format, the simplificatiol
manager module implements routines for saving and loading objects in internal (CLIPS
instance) format. Saving can be done selectively, that is, the user can select to save all

just some of the objects currently represented in the memory.

6.1.3.2 The Simplification Manager

The simplification manager allows for creating new simplifications, saving simplifications

to a simplification database and loading simplifications from a simplification database.

Creating a new simplification consistsagfiting the simplificatiopexplaining the simplifi-

cationandperforming the relevance calculation

Editing a simplification can be done either by calling an external editor (currently Emacs
running under UNIX), or interactively. Using the editor for simplifications is similar to the
way of editing objects, that is, initially the editor loads a template describing the syntacti

cal structures of the elements needed to represent simplifications (objects and explan

Design Simplification by Analogical Reasoning

Implementation

216

(Simpler
<simpler-design-description>
<less-simple-design-description>
(Explain
(Difference (replaced <component-1> <component-2>
... more difference descriptions
)
)

Or, if the explanation is by simplification process:

(Simpler
<simpler-design-description>
<less-simple-design-description>
(Explain
(Process <process-description>)
)

)

FIGURE 3. The structure of the external representation of a simplification

tion). This template can then be edited (Figure 3 shows the structure of the template fi

loaded into the editor when a new simplification is to be built).

During the interactive creation of a simplification the system first prompts the user to
select the objects which will be involved in the simplification to be created. Next, the sys-

tem asks the user to select é&xplanation typdby difference or by simplification process)

))

Design Simplification by Analogical Reasoning

Implementation 217

and the correspondingkplanation specificatiofdifferences or sequences of transforma-

tion).

When a new simplification is created, the complexity of the two objects involved are com:
pared, according to the complexity measure currently in use. If the complexities of the tw:
objects are not in the correct relation (i.e., the complexity of the “simpler” object is greatel
or equal than the complexity of the “more complicated” one) the simplification is not gen-

erated.

After a new simplification is created the relevance calculation (see Chapter 4) is pel

formed automatically.

The simplification manager submodule also implements routines for loading and savin

simplifications represented in internal format, that is, in form of CLIPS instances.

6.1.4 The Simplifier Module

The simplifier module is the part of the system that solves simplification problems. It con-
sists of four submodules: the seR#trieving RulesheModified SME theSimplification

Generatorand theEvaluator

Design Simplification by Analogical Reasoning

Implementation 218

6.1.4.1 The Retrieving Rules Submodule

The Retrieving Rules submodule consists of a set of CLIPS rules implementing the
retrieval phase of the analogical reasoning process. These rules are divided into tw
groups:rules for selecting objects involved in simplificatiqis®urce objects) with the
same point of view (context, aspect and measure) as the simplification problemeand

for building match hypotheses

The rules for building match hypotheses look for relations in the source objects that: ar
identical (same name) to some relation in the object to be simplified, or hamaraon
super-relationwith some relation in the object to be simplified, or haveséimee signature
(same number and type of arguments) with some relation in the object to be simplified
Each rule, when fired will create a match hypothesis object, that will be used as an inpt
by the SME. Figure 4 shows the rules currently used by the system to build match hypott

eses.

6.1.4.2 The Modified Structure Mapping Engine

The Modified SME submodule is a CLIPS implementation of the SME with two signifi-

cant modifications: a) the match hypotheses are input to the SME as they are generated

Design Simplification by Analogical Reasoning

Implementation 219

; Building a match for relations with the same name

(defrule NameMatch
(retrieved match ?design ?oldDesign ?simRel)
?locRelNew <= (object (is-a Relation)
(Name?n)
(Root?design)

)
?locRelOld <= (object (is-a Relation)
(Name?n)
(Root?oldDesign)

)
(test (neq ?locRelNew ?locRelOld))
(test (IsRelevantp ?locRelOIld ?simRel))
=>
(MatchHypothesis ?locRelNew ?locRelOld ?simRel)

; Building a match for relations with a common ancestor

(defrule CommonAncestorMatch
(retrieve match ?design ?oldDesign ?simRel)
?locRelNew <= (object (is-a Relation)
(Root ?design)
(Definition ?relDefNew)

)
?locRelOld <= (object (is-a Relation)
(Root ?oldDesign)
(Definition ?relDefOld)

)

(test (neq ?locRelNew ?locRelOld))
(test (IsRelevantp ?locRelOIld ?simRel))
(test (neq (CommonSupRel ?relDefNew ?relDefOld) nil))

(MatchHypothesis ?locRelNew ?locRelOld ?simRel)

FIGURE 4. CLIPS rules for building match hypotheses

Design Simplification by Analogical Reasoning

Implementation

220

; Building a match for relations of the same arity

(defrule ArityMatch
(retrieve match ?design ?oldDesign ?simRel)
?locRelNew <= (object (is-a Relation)
(Arity?n)
(Root?design)

)
?locRelOld <= (object (is-a Relation)
(Arity?n)
(Root?oldDesign)

)
(test (neq ?locRelNew ?locRelOld))
(test (IsRelevantp ?locRelOIld ?simRel))
=>
(MatchHypothesis ?locRelNew ?locRelOld ?simRel)

FIGURE 4 continued. CLIPS rules for building match hypotheses

the retrieving rules, and b) building the global mappings (maximal consistent systems c

matches) is restricted to the relevant elements of the source object. Our implementation

the SME consists of a set of CLIPS routines based on the description in [Gentner 1983].

high level description of the mapping phase as implemented my our modified SME is

given in Figure 5.

The Modified SME will produce a best global mapping which then will be used by the

Simplification Generator submodule to build candidate simplifications.

Design Simplification by Analogical Reasoning

Implementation 221

Mapping Algorithm

Input: M - a set of match hypotheses

Output: G - a set of global mappings

begin

- Build a patrtition L of M consisting of locally
consistent subsets ofM 1.

- Propagate local inconsistencies up the arguments
structure of relevant match hypotheses (i.e., match
hypotheses which involve a relevant element) to rule
out match hypotheses that are inconsistent due to the
inconsistency of their arguments

- Combine consistent sets of match hypotheses to obtain
the set of global mappings

end

1. A set of match hypotheses is locally consistent if it represents an 1:1 association between elements.

FIGURE 5. A description of the mapping phase as implemented by the modified SME

6.1.4.3 The Simplification Generator

The Simplification Generator submodule takes as input the best global mapping betwee
the source and the target produced by the modified SME and will produce candidate sin
plifications. This global mapping takes the form of a list of matches. Each match is a pai

of elements, the first one being from the source and the second one from the target.

The operation of the simplification generator is described in Figure 6.

Design Simplification by Analogical Reasoning

Implementation 222

Simplification Knowledge Transfer
Input: g - global mapping
Output: O - an object resulting from transferring the
simplification knowledge
begin
if source explained by difference then
- interpret g as a substitution and
apply it to the target to generate a new object O,
- complete O by assigning values to the elements

notboundbyg 1
else (source explained by process)

- interpret g as a substitution
- create O as a copy of the target
- for each step in the explanation do

- assign values to the still unbound elements
- apply the step obtained to modify O
end (do)
end (if)
end

1. Note that this assignment may be done in more than one way

FIGURE 6. Generation of a candidate simplifications from a global mapping

6.1.4.4 The Evaluator

The Evaluator submodule evaluates the candidate simplifications from two points of view
For a candidate simplification generated, it first checks if it is indeed a simplification. It

does this by computing the complexities of the two objects involved according to the com

Design Simplification by Analogical Reasoning

Implementation 223

plexity measure currently in use. If the two complexities are not in the correct relation,

then the candidate simplification is discarded.

The second evaluation refers to comparing the “quality” of the candidate simplification to
that of the currently best simplification obtained. This is achieved by running the Simplifi-
cation Generator and the Evaluator interleaved. At any time during the generation of car
didate simplification a “best candidate simplification” is stored. The quality of a candidate
simplification is measured by the complexity of the “more complicated object” involved in

it. Whenever a new candidate simplification is generated, if it passes the first phase ¢
evaluation, its quality is immediately compared to that of the currently best one and if it is
better, it will become the new currently best simplification. Note, that this second phase ¢
evaluation does not require any extra computation, except for the comparison of two nun

bers, since the complexities have already been computed in the first phase.

6.1.5 The Simplification Abstraction Module

The Simplification Abstraction Module implements a mechanism for building an abstrac-
tion over two given simplifications. It is called when a new simplification is generated and
it is sufficiently significant from the source simplification used for generating it. Currently

our system only performsralevance-based abstractiomhis means that it will create a

Design Simplification by Analogical Reasoning

Implementation 224

Abstraction
Input: S(A,B) - simplification (Asimpler than B)
Output: AS- simplification

begin
- Find the minimal part Bthat contains all the

relevant portions (by propagation up along the
structural representation)
- Build an object b which is a copy of this minimal part
- Build afrom Abyremoving all the elements that
are not part of b
- Generate a simplification AS(a,b) with the an
explanation identical to that of S(A,B)
end

FIGURE 7. Performing relevance-based abstraction

new simplification in which the elements which are not relevant have been removed fron
the objects involved. The operation of the simplification abstraction as implemented in ou
system is described in Figure 7. While this is a very simple way of building abstractions i
Is very useful for two reasons: a) it will create simplifications that involve simpler objects,

which will be easier to match, and b) it allows the extraction of some simplification rules.

Design Simplification by Analogical Reasoning

Implementation 225

6.2 Representation

To represent designs and simplifications we took an object-oriented approach, defining
set of CLIPS classes. Besides the obvious advantages of object-oriented design and p
gramming, this allowed us to use features offered by CLOOS, the CLIPS object oriente

system [CLIPS, 1993], such as pattern matching on objects and queries on sets of objec

Figure 8 presents the class hierarchy defined in our implementation. The thick gray arrow
represent the “subclass of” (or “is-a”) relations between classes, while the thin blac}
arrows represent the “has part” (i.e., the inverse of “part-of”) relation. In Appendix C we
give a complete printout of the class definitions in this hierarchy. The class hierarchy

should be extended every time a new application domain is added to the system.

To add a new application domain one needs to add a new class defining the objects of t
domain, by deriving it from theObject ” class. In order for such a class to be properly
integrated into the system one needs to overload a set of message handlers and functi

for performing domain-specific input and output. We must note here that, for adding a nev

Design Simplification by Analogical Reasoning

Implementation 226

Relation
Definition

Attribute
List

(Simplification)

Attribute

FIGURE 8. The hierarchy of classes defined in the design simplification system

application domain, the language of the system has to be extended by the definitions
relations and attributes specific to that domain. This can be done by either manually edi
ing the default language file (called “default.Ing”), or by creating a new language file and

loading it into the system.

Design Simplification by Analogical Reasoning

Implementation 227

6.3 Implementation of the Abstraction Mechanism

The abstraction mechanism is used to produce a new object (or relation) representation
removing (abstracting from) some of the details in the representation of a given object (c
relation). Our current implementation allows abstracting in objects by removing compo-
nents, relations, attributes or attribute values, or in simplification relations, by applying
abstraction to the objects involved, or by removing elements in the explanation (e.g., con
ponents, explanation process steps). Note here that when an abstraction over a given s
plification is performed by removing elements in the explanation, the set of relevant
elements needs to be recomputed for the abstract simplification. In our implementatio

this is automatically performed every time a new simplification is created.

In our system abstraction can be applied to an object, to make the analogical reasoni
process more efficient by only considering the relevant elements of known simplifications
or to a set of simplifications to produce an abstract simplification (corresponding to

generic simplification rule or to a simplification principle).

When applying abstraction to an object the abstraction process is guided by the proble

solving goal, that is, simplification. This is done by only considering elements that are rel

Design Simplification by Analogical Reasoning

Implementation 228

evant to some simplification (i.e., which are in the set of relevant elements attached t
some simplification). We implemented this by including into the left hand side (i.e., the
“if” side) of the CLIPS rules used for building the match hypotheses, conditions for testing
relevance of the elements for which a match is trying to be hypothesized. The testing ¢
this condition is efficient because the relevance computation is always done at the time
creating a new simplification. The advantage of applying this abstraction is that it result:
in pruning the from the database all the objects that are not relevant to a simplification ¢

the type (i.e., point of view) searched for.

The only way our system can currently apply abstraction to simplifications is to remove
irrelevant elements for a given simplification. This is done by applying abstraction to the
two objects involved in the simplification. Note that there is no need to generate a ne\
explanation because every element referred to in the old explanation in the set of releva
elements and thus will not be removed by the abstraction process. This process is pe
formed by performing a CLIPS query on all the relevant elements of the given simplifica-
tion. This process is efficient because it only uses value matching on two slots of CLIP:

instances representing objects.

Design Simplification by Analogical Reasoning

Implementation 229

6.4 Implementation of the Analogical Reasoning Mechanism

Our analogical reasoning is essentially an implementation of Falkenheiner's Structur
Mapping Engine (SME) [Falkenheiner et al. 1993]. in this implementation we used an
object-oriented approach (as opposed to the purely procedural approach of the origin
implementation). For this we defined CLIPS classes for representing match hypothese
and mappings. The implementation of SME is by a set of CLIPS rules which use matc
conditions formulated in terms of objects of class match hypothesis and mapping. By thi

the operation of SME is described more clearly.

Design Simplification by Analogical Reasoning

System Demonstration 230

CHAPTER 7 System Demonstration

In this chapter we present a set of sample problems we have solved using the syste
described in the previous chapter. The goal of presenting these problems is on one hand
illustrate the operation of the system, and on the other hand to demonstrate the breadth

the system. Each of the sections in this chapter presents one sample problem

7.1 Simplification of an Arithmetic Expression

Simplification of arithmetic expressions is one of the application domains on which our
system was tested. Among others, our decision to use arithmetic expressions to demc

strate the system was based on the following considerations:

Design Simplification by Analogical Reasoning

System Demonstration 231

1. Since there are a significant number of transformation rules for arithmetic expres:
sions, it is easy to build large simplification databases that allow the testing of dif-

ferent aspects of the system'’s operation;

2. The rules for forming arithmetic expressions are flexible enough to allow the
building of interesting simplification problems;
3. The experience gained by performing simplifications on well-formed structures

can be used in other domains, such as software or hardware.

In this section we will describe the simplification of an arithmetic expression as performec

by our system.
7.1.1 The Sample Problem and Issued Raised
We presented the system with the following simplification problem:

Reduce the number of elements used to represent the following arithmetic expression:

X
Xy+ x(z+ uy

Design Simplification by Analogical Reasoning

System Demonstration 232

FIGURE 1. Structure of the arithmetic expression to be simplified. The shaded portion specifies
where factoring can be applied.

The structure of this expression is shown in Figure 1.

For an expert in manipulating arithmetic expressions, it should be clear that this expre:s

sion is equivalent with the following simpler expression:

1
y+(z+uy

By showing how our system solves this problem we will demonstrate how the following

issues are addressed:

* how to retrieve the best matching source simplification in the simplification data-

base,

Design Simplification by Analogical Reasoning

System Demonstration 233

* how to apply the retrieved simplification to the current problem (target),
» how to decide whether the result produced is a valid simplification, and

* how to decide whether further simplifications could be applied.

In the following subsection we will describe how our system solves the simplification

problem proposed.

7.1.2 Operation of the System

To Solve the simplification problem proposed above the system was loaded with a simpl
fication database containing a set of sample simplifications. This sebtidntain a sim-

plification corresponding to the general distributivity property of multiplication with

respect to addition (i.efor all X,y,z00 O, Xxy+ xz = x(y+ 2). It contained, how-
ever, examples of factoring out a term from a sum of subexpressions in a more compl

cated expression. One such simplification example was the following:

3(1-2a) +{(a—2b)[c(d+ ¢ + 7]}

SIMPLER THAN

3(1-2a)+[(a—2b) (£(d+ e + (a—2b) [Z]

Design Simplification by Analogical Reasoning

System Demonstration 234

FIGURE 2. Representation of a simplification of an arithmetic expression

Figure 2 illustrates the structure of this simplification. When this simplification was added
to the database, it was explained by the difference between the two expressions, that is
the replacement of the subexpresgian- 2b)c(d + e) + (a - 2b)zy the subexpres-
sion(a - 2b)[c(d + e) + z] Due to this, the database did not contain any explicit infor-
mation about the conditions under which the simplification was performed, or about wha
was relevant in performing this simplification. As a consequence, as described in Chaptc

4, the relevance calculation will result in designating the shaded portion shown in Figure

Design Simplification by Analogical Reasoning

System Demonstration 235

as relevant to the simplification. This relevant portion will be used in the retrieving and

mapping phases of the analogical problem solving process.

The first difficulty raised by the simplification problem presented to the system is to
retrieve the simplification shown in Figure 2 as the best source analog, or at least to find
sufficiently similar to the problem to be used for building a global mapping. The difficulty

of this is a consequence of the fact that an arithmetic expression may have a very comp
cated structure which is built using only four operators, corresponding to the four arith:

metic operations.

The first step in retrieving a source analog is to generate match hypotheses associati
relations (corresponding to operators) in the target with relations in the relevant portion
of known simplifications (i.e., simplifications stored in the database). For arithmetic
expressions, it is the case that practically every relation in the target can be matched wi
any relevant relation in a simplification. This is true because any two relations (operators
have either have the same name or are descendants of the same super-relation (e.g., bo
"and ‘+’ are ‘additive operations’), and definitely have the same arity (number of oper-

ands).

Design Simplification by Analogical Reasoning

System Demonstration 236

Generating matches could be restricted to only considering relations with the same nam
(e.g., only match a ‘+’ to another ‘+’). In this case, however, the system would not be abl
to discover any analogies based solely on structural similarities, or cross-domain anal
gies. The problem of generating matches is further complicated by the fact that it is poss
ble that only a (small) part of the target can be simplified by analogy with some known
simplification. For example, in our example only the shaded portion shown in Figure 1 cat

be simplified by analogy with the simplification shown in Figure 2.

After generating the match hypotheses, the system builds a set of global mappings of t
target onto the source and then selects the best global mapping(s) to transfer the simpl
cation knowledge. Once the set of matches was generated the building of global mappin
is not difficult (see [Falkenheiner et al., 1993]). The difficulty arises in the evaluation of
the quality of the global mappings generated. This is due to the fact that, a large (i.e., co
sisting of many match hypotheses) but weak (i.e., consisting of low score match hypothe

ses) global mapping may score higher than a small but strong one.

To overcome these difficulties, our system uses a score evaluation scheme that combir

structural complexity measurement (external path length) with type-dependent matc

Design Simplification by Analogical Reasoning

System Demonstration 237

weighting (i.e., assigning different weights to different types of matches). Due to this

scheme our system correctly selects the best global matching for our problem.

From the global mapping the system builds a substitution and then it transfers the simplifi
cation knowledge to the target using this substitution. This results in the simpler expres

sion presented above.

After the simpler expression was generated, a corresponding simplification is built an

added to the simplification data base for future use.

Note, that currently, our system does not implement any mechanism for evaluating if th
new simplification is worth to be stored. Thus, when a solution to a simplification problem
is found, the user is prompted to decide whether the new simplification will be added ftc

the data base or not.

7.2 Simplification of the Personal Fax Design

The goal of the example presented in this section is to demonstrate how the system he
dles issues raised by cross-domain analogy. The target domain of the example is mecha

cal design, while the source domain is the domain of arithmetic expressions. In addition t

Design Simplification by Analogical Reasoning

System Demonstration 238

demonstrating how the simplification method works, the goal of this example is to show
how a domain with many known simplification rules and principles can be a source of

inspiration for another domain that lacks them.

7.2.1 The Sample Problem and Issued Raised

The example presented was taken from [Petroski 1996], and it represents a two-step str
tural simplification for the “Old Fax” presented in Figure 1. The first step of the simplifica-

tion is to remove the two pairs of rollers in the reader part. This is possible under th
condition that the platen roller could take over the role of the rollers. This is obviously
achievable because a similar mechanism is implemented in the printer part of the fax. T}
second step of the simplification is to replace the two stepping motors used in the tw

parts of the fax by a single stepping motor used by both parts.

We were expecting the system to produce a known structural simplification, similar to the

“New Fax” presented in the same figure.

Design Simplification by Analogical Reasoning

System Demonstration 239

“Old Fax”
Reader Part Printer Part
. image sensor " . thermal head Y
1 ! 1 o
. ; ! recording!
I
docume ! . paper
I
o Ol .
Lroller—" ' ~—rollen ! ! Q !
! N 1 /plateh | ! platen \ !
| N . roller ! . roller | ,
\ / 1
A W o | .
1 N | , | I | :
| . .
i stepping ! : stepping
1 . motor | ! motor :
@© \ ,' \ 1
e S . N 7
Sl e e -
o
o
£
n
Printer Part
thermal head N
|
recording
paper
|
|
platen Q Q |
platen AN roIIer/, :
\ roller N) 7 |
stepping
motor

FIGURE 3. Simplification example of a Personal Fax (adapted from [Petroski 1996])

Design Simplification by Analogical Reasoning

System Demonstration 240

7.2.2 Operation of the System

When our system, loaded with a simplification database of arithmetic expressions, is pre
sented with this example, it first retrieves sources containing chains of the same operatic
connecting objects of the same type (similar to “roller 1 moves document and
platen_roller_1 moves document and roller_2 moves document”). Ideally it would retrieve
a source of the fornX simpler than &- X+ 0 (when¢ is an arbitrary arithmetic

expression), which would obviously suggest the removing of the two rollers.

Note however that, even if such a simplification is not present in the database, a matchir
chain of any length will be retrieved (if one exists). The mapping built between the
retrieved source and the target will suggest that two elements of the three be removed frc
the chain consisting of the two rollers and the platen roller. Which of the two can actually
be removed has to be decided within the domain (of the fax machine). According tc
Petroski [1996] the only function of the two rollers was to feed the document to the image
sensor. The platen roller however played a more central role in the process of reading, a
could not be removed. As a consequence, the two rollers could be removed with approp

ate propagation of this change (our system does not perform the propagation at this poin

Design Simplification by Analogical Reasoning

System Demonstration 241

The design generated by removing the two rollers is then proposed as a new simplificatic
problem. The system will retrieve simplifications that are instances of the “factoring out”
operation, that is sources of the fol{ Y+ 2) simpler thanrXY+ XZ (wh¥ére

and Z are arbitrary arithmetic expressions). Such a source maps well onto the relatio
“stepping_motor_1 drives platen_roller_1 and s