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Abstract

Data warehousing and on-line analytical processing (OLAP) are essential

elements for decision support applications. Since most OLAP queries are

complex and are often executed over huge volumes of data, the solution

in practice is to employ materialized views to improve query performance.

One important issue for utilizing materialized views is to maintain the view

consistency upon source changes. However, most prior work focused on

simple SQL views with distributive aggregate functions, such as SUM and

COUNT.

This dissertation proposes to consider broader types of views than pre-

vious work. First, we study views with complex aggregate functions such

as variance and regression. Such statistical functions are of great impor-

tance in practice. We propose a workarea function model and design a

generic framework to tackle incremental view maintenance and answer-

ing queries using views for such functions. We have implemented this ap-

proach in a prototype system of IBM DB2. An extensive performance study

shows significant performance gains by our techniques.

Second, we consider materialized views with PIVOT and UNPIVOT
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operators. Such operators are widely used for OLAP applications and for

querying sparse datasets. We demonstrate that the efficient maintenance

of views with PIVOT and UNPIVOT operators requires more generalized

operators, called GPIVOT and GUNPIVOT. We formally define and prove

the query rewriting rules and propagation rules for such operators. We

also design a novel view maintenance framework for applying these rules

to obtain an efficient maintenance plan. Extensive performance evaluations

reveal the effectiveness of our techniques.

Third, materialized views are often integrated from multiple data sources.

Due to source autonomicity and dynamicity, concurrency may occur dur-

ing view maintenance. We propose a generic concurrency control frame-

work to solve such maintenance anomalies. This solution extends previous

work in that it solves the anomalies under both source data and schema

changes and thus achieves full source autonomicity. We have implemented

this technique in a data warehouse prototype developed at WPI. The exten-

sive performance study shows that our techniques put little extra overhead

on existing concurrent data update processing techniques while allowing

for this new functionality.
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Chapter 1

Introduction

1.1 Data Warehouse and OLAP

The amount of information available to today’s large-scale enterprises has

been growing explosively. New data are being rapidly and continuously

generated by various operational sources, such as auction databases and

order processing systems. In order to make intelligent business decisions,

complex analytical queries will be issued and answered across all data

sources [CD97]. Since the modern data sources are becoming increasingly

heterogeneous and are often distributed over a large network, it is often

preferred that their data have to be extracted, transformed and loaded

(ETL) [CD97] before complex analytical queries can be executed. Such ETL

processes are very expensive.

Data warehouses are thus proposed for efficient support of such on-line

analytical processing (OLAP) [CD97, Wid95]. A data warehouse extracts

and integrates data from independent data sources and then stores the in-
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tegrated data in a central database. Figure 1.1 depicts a typical data ware-

house architecture. Here the warehouse data is extracted from multiple

operational databases, external sources or legacy sources. The extracted

data is often further aggregated under different granularities in order to

provide a summary of the underlying data. Various front-end tools have

been developed to analyze such summary data for decision making, such

as query reporting, analysis and data mining [CD97].

Operational 
Data Sources

Data Warehouse

Backend Support Frontend Tools

OLAP 
Application

Query/Reporting

Data 
Mining

Analysis

External 
Sources  

Legacy  
Sources  

Figure 1.1: Data Warehouse Architecture

Most analytical queries over the warehouse data are fairly complex in-

volving multiple joins and aggregations [ZCL+00]. Such queries are typi-

cally operated over huge volumes of data (many terabytes). Furthermore,

most of these queries require interactive response, i.e., response time typi-

cally in a few seconds [ZCL+00]. Traditional query optimization techniques

often fail to meet such new requirements. The solution in practice is to

create materialized views to vastly improve the query performance. Materi-

alized views pre-compute and store the query results physically in order
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to avoid repetitive computation. Experience with TPC [TPC95] and deci-

sion support applications demonstrates that tremendous performance gain

can be achieved by using materialized views to answer complex queries

[ZCL+00].

1.2 Materialized Views

Extensive prior research [LMSS95, AESY97, CM77, CNS03, CGL+96, GL95,

GRT99, GT00, LMS95, SY81, SBCL00, SDJL96, ZCL+00, ZGMHW95] has

been conducted in the area of materialized views due to its importance to

data integration and warehouse applications.

View 
Adaptation

Materialized
Views

Users

View
Maintenance

View 
Synchronization

Answering Queries
Using Views

View
Selection

SourceSource Source

Figure 1.2: Overview of View Management Tasks

Figure 1.2 gives a big picture of the five most important view manage-

ment tasks, namely, view maintenance, answering queries using views, view

selection, view synchronization and view adaptation. View maintenance incre-

mentally maintains the view consistency upon source data changes. View

synchronization rewrites the view definition upon source schema changes
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in order to keep the view definition consistent with the source schema.

View adaptation incrementally adapts the view content after the view def-

inition is rewritten. Answering queries using views is to automatically

rewrite user queries using views. View selection is to pre-select a set of

views to materialize (possibly under a size constraint) in order to maxi-

mize the query performance. In the next section, we will give an overview

of these view management techniques.

1.2.1 State-of-the-art View Management Techniques

View Maintenance. Since materialized views correspond to pre-computed

and stored query results, they may become out-of-date when the underly-

ing sources are changed. Hence, one important issue is to maintain the ma-

terialized views’ consistency upon any source changes. While re-computing

views from scratch in response to any source updates may be acceptable for

some relatively static databases, it is unaffordable when the source changes

are frequent. Hence, incremental view maintenance, as an efficient alternative,

[GMS93, LMSS95, AESY97, CGL+96, GL95, SBCL00, ZGMHW95] has been

proposed and extensively studied.

We can classify the existing view maintenance algorithms into two cat-

egories, namely, algorithmic [GMS93, BLT86, KR81, CW91] and algebraic

[GL95, Qua96, GK98, KR02].

Given a view and source updates, algorithmic view maintenance algo-

rithms derive a program (a program can be a collection of deductive rules or

SQL statements) whose evaluation maintains the view. [KR81] presents the

first proposal, the finite differencing algorithm, for incremental view main-
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tenance under a functional data model. The output of the maintenance

algorithm adds several lines of code into the source update transaction in

order to also update the view. [CW91] proposes to maintain the view by

automatically deriving a set of production rules (active rules) [WCL91]. It

assumes set semantics of all base tables and a key is required to exist in the

view. [GMS93] proposes a counting algorithm for maintaining views under

bag semantics. It essentially keeps track of the multiplicity of each view

tuple, or in other words, the number of derivations of each view tuple. The

insert deltas have a positive count while the delete deltas have a negative

count. A view tuple is deleted from the view if its count becomes 0.

The main issues with algorithmic view maintenance algorithms are that

(1) the correctness of the algorithms is hard to prove, especially when the

view language is extended, it is unclear and hard to prove if the existing

algorithms will still work; (2) the output of maintenance algorithms (a pro-

gram as mentioned above) is also hard to optimize.

Hence algebraic solutions have been proposed to address these limita-

tions. More specifically, an algebraic approach [GL95] pre-defines a set of

primitive change propagation rules for each operator. The maintenance

plan can then be constructed by propagating changes through each alge-

bra operator in the view query algebra tree and recursively applying those

primitive rules. The output of such algorithms, namely, the maintenance

plan, can be optimized by a cost-based query optimizer. Also since the

algorithm is algebra-based, the result is not tied to any particular query

language.

Due to these benefits mentioned above, algebraic view maintenance al-



1.2. MATERIALIZED VIEWS 6

gorithms have been extensively explored. Most existing work builds upon

such an algebraic maintenance framework by considering more types of

operators or considering different underlying data models. [QW91] stud-

ies the join view maintenance under set semantics. [GL95] extends that

work to assume bag algebra. [Qua96, GK98] also consider group-by and

outer-join operators. [KR02] studies the higher-order operators for maintain-

ing SchemaSQL views [LSS99]. Algebra-based maintenance work has also

been studied beyond the relational data model, e.g., [DESR03] maintains

XQuery views based on an XML algebra [ZPR02]. All the work above

clearly reflects the extensibility of such an algebraic maintenance frame-

work. Such extensibility lies in the fact that for each algebra operator, its

change propagation is independent of its application context. Hence we

can reuse the existing change propagation rules for the same operator in

more complex language constructs.

Finally, incremental view maintenance techniques are applicable to many

other applications, such as trigger/constraint processing [CW91], cache/

replica maintenance [GLRG04], to name a few. The view self-maintenance

problem [QGMW96] can also be considered as an application of the view

maintenance techniques. That is, given a view and source updates, after

generating the maintenance plan, we can easily determine if we need to

query the sources or not. Some recent emerging applications, such as con-

tinuous query processing [LPT99] over data streams, are also closely related

to the incremental view maintenance techniques.
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View Synchronization. Schema evolution is unavoidable for many mod-

ern applications [LNR02, VMP03, YP05], since the business requirements

are typically changing rapidly, or new data types such as biological data or

new constraints are emerging. Examples include the schema design evo-

lution for data integration, physical data design evolution such as XML to

relational mapping, etc. As the schema of today’s data becomes increas-

ingly complex and requires more rapid changes and growth, evolution is

now a common problem. There is a growing interest to address the schema

evolution issues in the research community [LNR02, VMP03, YP05].

When schema evolution occurs, the view definition must be maintained

to stay consistent [LNR02, VMP03, YP05]. View Synchronization [NLR98,

LNR02] aims at evolving the view definition when the schema of the base

relation has been changed. In the EVE system [NLR98, LNR02], two primi-

tive types of source schema changes that may affect the view defined upon

them are considered: RenameSC that renames the source attributes or rela-

tions and DropSC that deletes attributes or relations. Note that the addition

of relations or attributes does not change the views. To maintain RenameSC,

we can simply modify the corresponding view definition by using the new

names. To handle DropSC, the basic idea is to find some alternative source

to replace the dropped data.

The schema mapping evolution techniques in [VMP03, YP05] consider

more flexible semi-structured data. In that work, more types of primitive

schema changes are considered. For example, beyond adding or removing

elements, we can also add or remove constraints, or restructure the schema.

Finally, note that the view synchronization process does not require the
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extent of the rewritten view to be always exactly equivalent to the origi-

nal one. This is a reasonable assumption for information integration over

a large scale and dynamic data sources [LNR02, VMP03, YP05]. When-

ever this view definition rewrite is a non-equivalent one, then the next step,

namely, view adaptation, becomes necessary.

View Adaptation. There are two reasons for rewriting the view defini-

tion, namely, either the user wants to explicitly update the view definition

[GMR95], or the source schema changes force the evolution of the view

definition [LNR02, VMP03, YP05] as mentioned above.

View adaptation has been studied under the view synchronization [LNR02]

context. In that work, the view definition has to be evolved since the change

of the source schema may invalidate the view definition. In [NR99], the

authors propose a view adaptation technique using the same approach as

in [GMR95]. That is, we pre-define a set of adaptation rules for primitive

schema changes. Any complex schema change can be modeled as a se-

quence of primitive schema changes.

View adaptation, in principle, is a variant of the view maintenance

problem [GMS93]. The difference is that in the view maintenance context,

the source table changes, while in the view adaptation, the view definition

itself changes. The methodology in [GMR95] is fairly close to build an al-

gebraic framework for incremental view maintenance [QW91, GL95].

At the same time, view adaptation also has a close relationship to an-

swering queries using views, which will be described shortly. That is, the

derivation of each primitive adaptation rule is based on the equivalent
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query rewriting. Intuitively, given an old view and a new view, view adap-

tation can be considered as a variation of the following problem: how to

answer the new view from the old view.

Answering Queries using Views. Once the materialized views are cre-

ated and maintained, it becomes important to utilize these views to answer

user queries. Answering queries using views is to find efficient methods to

rewrite the query using a set of previously defined materialized views in-

stead of accessing the base relations.

The core of answering query using views consists of the following two

techniques: query containment [CM77] and query rewriting [LMS95]. Query

containment is to check if the view contains enough information to answer

the query. Query rewriting is to rewrite the query to refer to the material-

ized views based on the information from query containment checking.

Both query containment and query rewriting are studied under various

query languages, such as SPJ queries [CM77, SY81], queries with arithmetic

comparison predicates [Klu88, LS93], queries with aggregations [GRT99,

CNS03] and more recently XPATH queries [MS02]. Query rewriting has

been studied for conjunctive queries [LMS95], multi-block queries [ZCL+00],

aggregate queries [SDJL96, GT00], queries over semi-structured data [PV99],

restructuring queries [Mil98] such as SchemaSQL [LSS96] and most recently

XML queries, such as XQuery [CR05a, MS05].

Depending on the applications, there are two distinct categories of work

on answering queries using views. The work in the first category has been

done in the context of query optimization and maintenance of physical
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data independence [LMS95, CKP95, SDJL96, GT00]. They consider only

equivalent query rewriting in order to ensure the correctness of the plan.

The work in the second category is for information integration in a more

loosely-coupled environment [PL00, AD98, YL87]. Even partial answers

are acceptable for these applications. Hence they consider not only equiv-

alent query rewritings but also contained query rewritings.

View Selection. The view selection problem is to choose a set of views

to materialize in order to achieve the best query performance for given

a given query workload. Typically, view selection is under a space con-

straint [HRU96, Gup97], and/or a maintenance cost constraint [GM99]. In

[CHS01, ZZL+04], the authors describe strategies to automatically select

both views and indexes.

Unlike answering queries using views that need to handle ad-hoc queries,

in view selection scenarios, the queries are known. Hence, most view se-

lection algorithms start from identifying common sub-expressions [CHS01,

Gup97] among queries. These common sub-expressions serve as the candi-

dates of the materialized views.

One fundamental practical issue with view selection is that there are

many possibly competing factors to be considered during the view selec-

tion phase, such as space, query performance, update performance, etc.

This makes the view selection decision computationally challenging. Hence,

most existing work uses heuristics-based solutions [HRU96, CHS01, ZZL+04].

The other difficulty is that view selection is typically a static process. When-

ever the query workload changes, the previous selected views may no
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longer be the best choices. Hence, incremental and/or adaptive view se-

lection algorithms become necessary for such dynamic environments.

1.2.2 New Challenges for View Management

We note that the five view management techniques described above have

been developed for specific types of views. When the view language is

extended, the corresponding techniques have to be extended to support

the new language constructs as well. Despite the abundance of prior work

described in Section 1.2.1, we observe that the classes of views considered

so far in the literature are still limited and thus not sufficient to support

complex data warehousing and OLAP applications.

• First, many decision support queries typically involve complex ag-

gregate functions for statistical modeling and trend analysis, such as

variance and regression. The effective support of such queries using

views is essential to the performance for such applications. However,

to our knowledge, most existing work only considers simple distribu-

tive aggregate functions, such as SUM and COUNT [MQM97, Qua96,

SDJL96, ZCL+00].

• Second, many decision support queries also include various ETL and

OLAP operations, such as PIVOT and UNPIVOT. The effective sup-

port of these queries using views is also important to performance.

However, to date, most views considered in the literature are sim-

ple SELECT-PROJECT-JOIN views with simple aggregation. Clearly,

there is a need to support more powerful ETL and OLAP operations.
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As we will describe in Section 1.3.1, this class of views has many ap-

plications in practice.

The other limitation is that most prior work [AESY97, ZGMHW95] as-

sume a static environment in which the data sources’ schema remains un-

changed. This is however no longer a valid assumption since schema evo-

lution is common for many modern data sources. Most online data sources

nowadays are typically dynamic, autonomous and distributed over a large-

scale of networks [LNR02]. How to manage the materialized views in such

a dynamic environment becomes increasingly important.

In this dissertation, we will address the view maintenance part for these

new challenges, since without effective view maintenance techniques, the

refresh cost will become prohibitively expensive, making such views use-

less in practice.

1.3 Dissertation Objectives

1.3.1 Views with PIVOT and UNPIVOT Operators

Data in data warehouses is typically multidimensional. For example, in a

sales data warehouse, the product, location and time of sales might be some

of the dimensions of interest. These dimensions are often hierarchical. For

example, the location dimension may be organized as a city-state-country

hierarchy. Many complex OLAP operations are designed to perform on-

line analysis on such multidimensional data, such as drill down or roll up

(decrease or increase the level of aggregation) in one or more dimension
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hierarchies, slice and dice (select one particular dimension value) and pivot

(re-orient the multidimensional view of data) [CD97].

Relational database engines [LSPC00, Mic] have been extended to na-

tively support these OLAP operations in order to achieve better perfor-

mance. One well-known example is the extension of the relational engine

with CUBE and ROLLUP operators [GBLP96] to support multidimensional

aggregation. Making such operators explicit to a relational database engine

provides excellent optimization opportunities [EN89]. Another example is

the inclusion of PIVOT and UNPIVOT operators into Microsoft SQL Server

[CGGL04, Mic] for efficient execution and optimization.

PIVOT and UNPIVOT are frequently used OLAP operators [CD97]. Re-

cently, these two operators have also been found to be useful for sparse data

set processing. Agrawal et al. [ASX01] propose to use the vertical format

to store sparse datasets in order to avoid a large number of columns with

many NULL values. For example, in Figure 1.3, the table ItemInfo stores

the attributes of each auction. While there might be thousands of different

item attributes, each individual item may just have a few of them. In this

scenario, if we were to store the ItemInfo table horizontally, i.e., devoting one

column to each auction attribute, we may have a table with thousands of

columns filled with numerous NULL values. In [ASX01], the authors sug-

gest to store such sparse dataset in the vertical format, namely, the attribute

names are treated explicitly as data values and are stored along with their

corresponding attribute values in the same tuple. For example, as in Fig-

ure 1.3, the row (1,Type,TV) denotes auction 1’s attribute ‘Type’ and the

corresponding value ‘TV’. The PIVOT operator transforms the vertical ta-
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ble into a horizontal format. More precisely, as in Figure 1.3, we pivot the

column ‘Value’ by the column ‘Attribute’. Only the values of ‘Manufac-

turer’ and ‘Type’ are specified to be of interest, indicated by the superscript

‘[Manufacturer, Type]’. They will be converted into the data values.

 Type]rer,[ManufactuUNPIVOT

VCRType3

TVType1

SonyManufacturer1

PanasonicManufacturer2

ValueAttributeAuctionID

VCRType3

TVType1

SonyManufacturer1

YUsed2

27Size1

PanasonicManufacturer2

ValueAttributeAuctionID

Panasonic2

VCR

TV

Type
Sony

Manufacturer

3

1

AuctionID

⊥
 Type]rer,[Manufactu

Valueon  Attribute PIVOTItemInfo

⊥

Figure 1.3: PIVOT and UNPIVOT Operators

Recent work [CGGL04, Mic] proposes to provide direct support of these

two operators inside the query engine. The benefits are multi-fold [CGGL04,

Mic]. For example, we can now optimize the query containing pivot/unpivot

by moving these operators around the algebra tree. We can also develop

various strategies for optimizing the execution of such operators. Despite

these execution and optimization strategies, these operators are still poten-

tially costly to evaluate especially when applied to huge datasets as com-

mon to data warehousing scenarios. Utilizing materialized views to an-

swer such queries is a commonly accepted solution. However, one critical

issue, the incremental maintenance of views with PIVOT and UNPIVOT

operators remains unsolved.

In this dissertation, we propose a novel approach to address the above
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challenges and show how to efficiently and incrementally maintain views

with PIVOT and UNPIVOT operators [CR05b].

1.3.2 Views with Complex Aggregate Functions

Aggregate queries are frequently used in decision support applications.

Typically huge fact tables are first joined with the dimension tables and

then aggregated over various granularities with multiple statistical mea-

surements, such as variance and regression. These aggregate functions are

frequently used for statistical modeling and trend analysis. The effective

support of such queries using views is essential to improve the perfor-

mance for such applications. However, to our knowledge, most existing

work only considers distributive aggregate functions, such as SUM and

COUNT [MQM97, Qua96, SDJL96, ZCL+00].

Consider the following view definition (based on the simplified TPC-H

[TPC95] schema for succinctness) which stores the regression model be-

tween price and quantity built for each customer 1:

CREATE VIEW SalesAnalysis AS

SELECT o custkey,

regr slope(l extendedprice, l quantity) as slp,

count(∗) as cnt

FROM lineitem, orders

WHERE l orderkey = o orderkey

GROUP BY o custkey

(1.1)

1Regr slope is linear regression slope function, while Regr intercept is linear regression
intercept function.
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The first issue is how to incrementally maintain SalesAnalysis when

the base tables change. The incremental maintainability of aggregate views

depends on the properties of the aggregate functions. The behavior of an

aggregate function with respect to incremental maintenance can be clas-

sified into one of the three categories [GBLP96]. A distributive function,

such as sum and count, can be computed using only the existing value and

the delta value under both inserts and deletes. An algebraic function, such

as variance and regression, can be incrementally computed with the aid of

some additional functions. A holistic function, such as median, cannot be

incrementally computed using finite-sized storage.

Most existing work on aggregate view maintenance [MQM97, Qua96]

and view matching [SDJL96, ZCL+00] only focus on distributive functions.

However, most useful statistical functions fall into the category of algebraic

functions, such as variance or regression in the above example. Views with

such algebraic functions have not been sufficiently studied in the literature.

The second issue is how to answer queries using such views, e.g., how

to answer the following query using SalesAnalysis.

SELECT c nationkey,

regr slope(l extendedprice, l quantity),

regr intercept(l extendedprice, l quantity)

FROM customer, lineitem, orders

WHERE l orderkey = o orderkey AND

o custkey = c custkey

GROUP BY c nationkey

(1.2)

In order to achieve this, we will need effective mechanisms for how to
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compute the regr intercept in the query using the regr slope in the view.

The main challenge in addressing these issues is that we need a generic

solution to support all these functions rather than a separate hard-coded

solution for each one of them. The reason is that such functions are abun-

dant in practice, such as correlation, covariance, skewness, kurtosis or even

user-defined aggregate functions [WZ00]. A generic solution would greatly

increase the system’s extensibility to add the support for new functions

while ensuring correctness.

In this dissertation, we propose a workarea function model and design

a generic framework to address the above issues using our model [CSC+03,

CCPS03].

1.3.3 Views over Dynamic and Autonomous Sources

In dynamic environments like the WWW, the data sources may change

their schema, semantics as well as their query capabilities. In correspon-

dence, the mapping or view definition must be maintained to be kept con-

sistent [LNR02, VMP03]. Moreover, in a loosely coupled environment, such

as the Data Grid [JR03], the data sources are typically owned by different

providers and function independently from one another. Hence they may

commit update transactions without any concern about how those changes

may affect the mappings or views defined upon them. Such autonomous

source schema restructuring poses new challenges for data integration.

As we will illustrate via examples in Example 1, when maintaining a

source update, we may need to query the data sources for more informa-

tion by issuing maintenance queries [ZGMHW95]. However, in these new
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autonomous and dynamic environments, such queries may either return

erroneous results due to concurrent data updates or may even fail com-

pletely due to concurrent schema changes.

Example 1 Assume we want to integrate data from the book store and library

category to provide the user the sales as well as the detailed book information (Fig-

ure 1.4). The book Retailer data, being in the XML format, is mapped into the

relational table StoreItems as a relational wrapper table. The Library catalog of the

detailed book information can be accessed by a general-purpose wrapper, which is

used to execute a query and extract source changes to notify the view manager.

Now the integrated view BookInfo from both data sources can be defined by the

SQL query in Query (1.3).

Category ReviewStore Book Price Author Publisher

View:  BookInfo

Store Author PriceBook

<Store>                    

<Book>      

<Author></>     

<Price></>      

</Book>    

</Store>                 

StoreItems

Book Store  

XML to 

Relational

Mapping               
Library Catalog 

Wrapper

YearPublisherCategory ReviewTitle

Catalog                                 

Figure 1.4: Description of View and Data Sources

Now assume a new book is inserted into the Library catalog. This new book

is extracted by the wrapper as “∆C =(‘Data Integration Guide’, ‘Adams’, ‘Engi-

neering’, ‘Princeton’ ...)”. To determine its delta effect on the view, an incremental
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maintenance query (Query (1.4)) [ZGMHW95] will be generated by decomposing

the view query (1.3) into individual source queries. Two different anomalies can be

distinguished:

CREATE VIEW BookInfo AS

SELECT Store, Book, Author, Price,

Publisher, Category, Review

FROM StoreItems S, Catalog C

WHERE S.Book = C.T itle

(1.3)

SELECT Store, Book, Author, Price

FROM StoreItems S

WHERE Book = ′Data Integration Guide′

(1.4)

(a) Data Update Anomaly: Assume that before the execution of Query (1.4),

the StoreItems table committed a data update ∆S = insert (‘Amazon’, ‘Data In-

tegration Guide’, ’Adams’, 35.99). This new tuple would be included in the query

result of Query (1.4). Thus one final tuple (’Amazon’, ‘Data Integration Guide’,

35.99, ’Adams’, ’Princeton’, ’Engineering’, ...) will be inserted into the view.

However, later when we maintain the view based on ∆S, the same tuple would

be inserted into the view again. A duplication anomaly occurs due to concurrent

data updates [ZGMHW95].

(b) Broken Query Anomaly: Now assume an alternative XML-Relational

mapping has been chosen in BookStore database as shown in Figure 1.5. That is,

the StoreItems table is normalized into two tables, namely, Item and Store. Then

Query (1.4) faces a schema conflict and cannot succeed since StoreItems table is no

longer available.

While recent work [AESY97, ZGMHW95] has proposed compensation-

based solutions to remove the effect of concurrent data updates from query

results, clearly these existing solutions fail under source schema changes.
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Category ReviewStore Book Price Author Publisher

View:  BookInfo

StoreSID

Author PriceBookSID

<Store>                    

<Book>      

<Author></>     

<Price></>      

</Book>    

</Store>                 

Store         

Book 

Store 

Item         

An

Alternative     

XML to

Relational

Mapping

Library Catalog 

Wrapper

YearPublisherCategory ReviewTitle

Catalog                                 

Figure 1.5: Change of Store Schema

The reason is that if the source schema has been concurrently changed, nei-

ther maintenance nor compensation queries would get any query response

due to the discrepancy of the source schema with the schema required by

the queries. Interleaving of concurrent source data and schema changes

even complicates the maintenance further.

In this dissertation, we propose a general concurrency control strategy

to solve all types of anomalies mentioned above even in a mixed fashion

[CZC+01, CCZ+04, CLR04].

1.4 Outline

The rest of the dissertation is organized as follows. Chapter 2 describes the

techniques for maintaining views with pivot and unpivot operators. Chap-

ter 3 presents a generic framework for how to manage views with complex
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aggregate functions. Chapter 4 introduces the maintenance of views in dy-

namic and autonomous environments. Chapter 5 summarizes this disser-

tation and discusses possible future work.
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Chapter 2

Views with PIVOT and

UNPIVOT Operators

2.1 Our Contributions

In this work, we propose a systematic approach for efficient incremental

maintenance of views with PIVOT and UNPIVOT operators, as motivated

in Section 1.3.1. Our solution is based on the algebraic view maintenance

framework designed in [GL95]. The benefits of tackling the incremental

view maintenance at the algebraic level are many-fold. First the techniques

are not tied to any particular query language. Second, the correctness of the

solution can easily be shown. Third, the result, namely, the maintenance

plan, can be optimized by a cost-based optimizer.

In summary, the main contributions of this part of the dissertation are:

• We propose a novel framework for efficient incremental maintenance
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of views with PIVOT and UNPIVOT operators. We demonstrate that

the transformation of the view query is a necessary step in order to

obtain an efficient maintenance plan. Such query transformation has

not been considered as a prerequisite step for efficient view mainte-

nance in prior work.

• We propose to transform the query into a top-heavy shape for efficient

view maintenance. That is, there is only one PIVOT in the query and

that PIVOT resides on top of the query algebra tree as its root. For

this, we propose a generalized pivot operator GPIVOT that can com-

bine multiple PIVOT operators in order to eventually keep only one

GPIVOT in the query. Note that such GPIVOT operator also has more

powerful semantics than prior operators in the literature [CGGL04,

ASX01, LSS99]. We formally define these combination rules and estab-

lish the proof for the correctness as well as the completeness of these

rules.

• We formally define the swapping rules for GPIVOT and its reverse op-

erator GUNPIVOT in order to move these operators up and down in

the query tree. We prove the correctness as well as the completeness

of these swapping rules. The combination rules and the swapping

rules, both classes of query equivalence rules, are useful not only for

view maintenance and but also for query optimization.

• We propose the propagation rules for GPIVOT and GUNPIVOT. These

rules are needed for the incremental maintenance of views with such

operators. Our techniques preserve the closure, that is, they generate
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a maintenance plan in the form of again an algebra tree (with the

same types of operators). Hence such plan can be optimized by a

cost-based optimizer using our proposed query equivalence rules.

• We demonstrate that these propagation rules may still generate an

inefficient maintenance plan when other operators exist in the view

query, such as SELECT and GROUPBY. We design special-purpose

combined propagation rules for multiple operators as one atomic unit in

order to derive a more efficient maintenance plan. We also formally

prove the correctness of these propagation rules.

• An extensive performance evaluation is conducted on top of a com-

mercial database. The experimental results confirm that 1) query

transformation does help to generate a more efficient maintenance

plan, and 2) combined propagation rules for multiple operators do

generate a more efficient maintenance plan than considering these

operators separately.

To our knowledge, this is the first work on efficient maintenance of

views with PIVOT and UNPIVOT, an important class of ROLAP views

which are of great interest in practice. Overall, our solution fits nicely into

the existing maintenance framework for aggregate views shared by current

commercial database engines [LSPC00, MQM97]. This makes our mainte-

nance solution easily integrable into these systems. Our query transforma-

tion rules serve a dual purpose, namely, both for view maintenance and

for query optimization. This paves the way to include the GPIVOT and

GUNPIVOT operators into any future query engine.
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The organization of the rest of the chapter is as follows. Section 2.2 stud-

ies the basic propagation rules for pivot. Section 2.3 presents the overview

of our proposed solution for view maintenance. We define the GPIVOT

and GUNPIVOT operators and the combination rules in Section 2.4. The

swapping rules for GPIVOT and GUNPIVOT are described in Section 2.5.

We propose the propagation rules for GPIVOT and GUNPIVOT and de-

sign a novel maintenance framework for applying these rules to obtain an

efficient maintenance plan in Section 2.6. Section 2.7 presents the results of

our performance study, while Section 2.8 reviews the related work.

2.2 Basics on PIVOT and UNPIVOT

2.2.1 Notations

A domain D is a set of values. A value can be of primitive data types, such

as a string, a number, etc. DN is a special value domain that represents

names. We assume that there is a bijective mapping between domain D

and domain DN . This means that all values can be converted to names and

vice versa. In this work, we use words in capital letters, e.g., A and B, to

denote values in domain DN . We use words in small letters, e.g., a and

b, to denote values in domain D. Furthermore, we use “ ” to denote the

conversion of values between these two domains. For instance, A ∈ DN

and a ∈ D, while “A” ∈ D and “a” ∈ DN .

A relation or a table is defined as (M,S, {(a1
1, ..., a

1
n), ..., (am

1 , ..., am
n )}),

where M ∈ DN denotes its relation name, S = (A1, ..., An) ∈ (DN )n

denotes its n attribute or column names and {(a1
1, ..., a

1
n), ..., (am

1 , ..., am
n )}
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⊆ Dn denotes its relation extent. Each (aj
1, a

j
2, ..., a

j
n), j = 1..m, is called a

tuple. Based on the above definition, a table has n columns. Each of them

has name Ai and has values {a1
i , ..., a

m
i }, i = 1..n.

In this work, we adopt the traditional definition for relational operators,

such as SELECT (σ), PROJECT (π), SET PROJECT (δ, i.e., select distinct),

RENAME (ρ), NATURAL JOIN (⊲⊳), SEMI-JOIN (�<), ANTI SEMI-JOIN

(�̄̄<), LEFT OUTER-JOIN (=⊲⊳), FULL OUTER-JOIN (=⊲⊳<) and GROUP-BY

(F) [Ull89, EN89]. Note that the definition of the relational operators typi-

cally contains both values and names [Ull89, EN89]. Take the PROJECT op-

erator for example. Given a relation (M, (A1, ..., An), {(a1
1, ..., a

1
n), ..., (am

1 , ...,

am
n )}), we have πAi

(M) = {(a1
i ), ..., (a

m
i )}. Since in this work, we do not

modify the definitions of any of these well-known relational operators, the

readers are referred to [Ull89, EN89] for their definitions. Finally, Table 2.1

summarizes the notations that will be used throughout this chapter.

2.2.2 PIVOT and UNPIVOT Operators

We now define the PIVOT and UNPIVOT operators 1. Assume V is a table

with the attributes (K,A,B), where K denotes possibly multiple columns

and A, B are one column each. The PIVOT operator is defined in Equa-

tion (1). It takes columns A and B as input parameters and [a1, ..., an] as

output parameters, where each ai (i = 1..n) is a value of column A. Here

ρ(“ai”)(B) renames the output column name from B to “ai”. =⊲⊳<n
i=1 is an

abbreviation of full outer-joins over n input tables as in Table 2.1. Such

1Except for the NULL handling, the PIVOT and UNPIVOT operators defined in this
work are similar to v2h/h2v [ASX01], FOLD/UNFOLD [LSS99] and pivot/unpivot in
[CGGL04].
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Notations Meaning

V Vertical table

H Horizontal table

A,B,K,A1, ..., An Column names

(K,A,B) Columns of one table

a, b, k, a1, ..., an Column values

(a1, a2, ..., an) One tuple

{(ai
1, a

i
2, ..., a

i
n)} A set of tuples

⊲⊳p
i=1 {(a

i
1, a

i
2, ..., a

i
n)} Pairwise binary join from (a1

1, a
1
2, ..., a

1
n) to

(ap
1, a

p
2, ..., a

p
n)

=⊲⊳<p
i=1{(a

i
1, a

i
2, ..., a

i
n)} Pairwise full outer-join from (a1

1, a
1
2, ..., a

1
n) to

(ap
1, a

p
2, ..., a

p
n)

⊥ Empty value, similar to NULL

Table 2.1: Notations

abbreviations will also be used for JOIN and UNION in the rest of this

chapter.

PIVOT
[a1,...,an]
A on B (V ) = [=⊲⊳<n

i=1πK, ρ(“ai”)
(B)(σA=ai

(V ))] (1)

For a particular K value k, the full outer-join is used to find the rows

with K = k and A being any of {a1, ..., an}. Note that there must exist at

most one row that satisfies K = k ∧ A = ai, since A and K together form

the key. If there does not exist such a row with K = k and A = ai, then this

missing value will be denoted as ‘⊥’.

An example of PIVOT is depicted in Figure 1.3. Note that in order for

the results to be meaningful, the set of columns K and column A together

must form the key of table V [CGGL04]. Then the key for the pivoted output
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table is K. Otherwise, take Figure 1.3 for example. Assume there is another

row (1,type,VCR) in the ItemInfo table, i.e., (AuctionID, Attribute) no longer

forms a key, then we have confusion of auction 1’s type information since

two values in this case, TV and VCR, cannot be put into the same output

column.

Now we assume that the table H has the attributes (K,A1, ..., An), where

K denotes possibly multiple columns and each Ai is one column, respec-

tively. UNPIVOT is defined in Equation (2) with columns [A1, ..., An] as the

input parameters. Note that here K need not be the key of table H for the

applicability of UNPIVOT [CGGL04].

UNPIVOT[A1,...,An](H) = [∪n
i=1πK,“Ai”,Ai

(σAi 6=⊥(H))] (2)

Here π“Ai” creates a column with constant values “Ai”. One example of

UNPIVOT is given in Figure 1.3, where the column names, namely, Manu-

facturer and Type, are converted into data values.

Figure 2.1 depicts an example view composed of the traditional rela-

tional algebra and pivot operators. In this example, the vertical table Pay-

ment stores the different types of payment information. It is first pivoted

to get the prices of type Credit and ByAir. Then an equi-join is performed

with the Product table. After that, we compute the total Credit and ByAir

payments for each manufacturer and type. For this, we use the notation

F [EN89] to specify the group-by operator where the columns to group on

are (Manu, Type) and the aggregation lists are (sum(Credit), sum(ByAir)).

The aggregate results are pivoted again in order to provide a crosstab view
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Figure 2.1: A Sample ROLAP View

of the summary data. That is, for each manufacturer, we report its TV and

VCR’s Credit and ByAir payments by the left and right PIVOT operators

and then join their respective results. We will show in the rest of this chap-

ter a strategy for generating an efficient maintenance plan for complex RO-

LAP views such as this one.

2.2.3 Basic Propagation Rules

As a first step to tackle the incremental maintenance of views with PIVOT

and UNPIVOT operators, we study the propagation rules for these opera-

tors. Note that PIVOT is very similar to group-by. Actually it can be sim-

ulated using a group-by query [CGGL04] (as we will show in Section 2.7).

Hence the propagation rules for PIVOT are very similar to the ones for
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group-by [Qua96].

Figure 2.2 depicts an intuitive example to show how to propagate changes

through the PIVOT operator 2. Assume three tuples were inserted into the

ItemInfo table. The first insert/delete propagation rules, intuitively, delete the

old output tuples affected by the source inserts and insert the new output

tuples introduced by the source inserts. In this example, we remove the old

output tuples (2, Panasonic,⊥) and (3,⊥, V CR), and insert the new out-

put tuples (2, Panasonic,DV D), (3, Panasonic, V CR) and (4,⊥,DV D).

Such new output tuples are generated by combining the old output tuple

and the delta tuples, i.e., PIV OT (I) ⊲⊳ PIV OT (∆I).

The second update propagation rules, intuitively, first perform a left outer-

join between the pivoted delta, PIVOT(∆I), and the original result, PIVOT(I).

Then from the join result, the unmatched delta tuples will be inserted and

the matched view tuples will be updated (by SQL Update statement). In this

example, we update the old output tuples from (2, Panasonic,⊥) and (3,⊥

, V CR) to (2, Panasonic,DV D), (3, Panasonic, V CR) and insert a new out-

put tuple (4,⊥,DV D). Note that there are also two types of rules for group-

by that are very similar in flavor [Qua96].

2.2.4 Discussion of Propagation Rules

We note that both propagation rules in Figure 2.2 access the original piv-

oted result, PIVOT(I). If the PIVOT operator is an intermediate operator

in the query plan, then re-evaluating this intermediate result PIVOT(I) or

2The propagation rules for unpivot are relatively simple and will be discussed in Sec-
tion 2.6, together with the detailed formalism.
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Figure 2.2: Example for Propagating Changes through PIVOT

even just partially re-evaluating it by predicate pushdown could still be

fairly expensive. In comparison, if the PIVOT is the last operator in the

query plan, then PIVOT(I) represents the materialized view itself. In this

case, we can safely assume that PIVOT(I) is available and accessible. In-

stead we could perform a join between the delta and the materialized view

itself. Hence, these propagation rules clearly would become more efficient

when the PIVOT operator is the last operator in the query plan.

Furthermore, even when the PIVOT operator is the last operator in

the query plan, there are still some differences between these two types

of propagation rules. For the insert/delete rules, the tuples to be deleted

might be re-inserted again with just a few column changes. In Figure 2.2,

(2, Panasonic, ⊥) and (3, ⊥, VCR) are deleted from the view and then re-

inserted into the view as (2, Panasonic, DVD) and (3, Panasonic, VCR). In

comparison, the update rules make in-place changes of these rows by an
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SQL update statement. Such deletion and then re-insertion generally intro-

duces more CPU and I/O costs than the update approach.

Based on the observations above, we conclude that in order to derive

an efficient maintenance plan: (1) the PIVOT operator should be prefer-

ably the last operator in the query plan and (2) the update propagation

rules are preferred to the insert/delete propagation rules. In fact, simi-

lar heuristics have also been employed in prior view maintenance work

[Qua96]. For example, the propagation rules for GROUPBY can also use

either insert/delete or update operations. The update propagation rules

are preferable and in fact are the ones incorporated into many commer-

cial systems [BDD+98, LSPC00]. The update propagation rules also require

the GROUPBY to be the last operator in the query plan. These heuristics for

GROUPBY are the same as ours for PIVOT. However, existing work simply

restricts the view definition to be SELECT-PROJECT-JOIN with GROUPBY

as the last operator [BDD+98, LSPC00, MQM97]. In this work, we lift such

restrictions and focus on how to efficiently maintain general views with

PIVOT and UNPIVOT operators.

2.3 Solution Overview

As we consider general views with PIVOT and UNPIVOT operators in this

work, there might be multiple PIVOT operators in a given query algebra

tree (see the example query in Figure 2.1). As discussed earlier, except for

the top PIVOT in the tree, other intermediate PIVOT operators may not

propagate changes efficiently. Hence, as shown in Figure 2.3, the first step
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of our solution is to pull the PIVOT operators up to the top of the algebra

tree, if possible, by query rewriting rules. Note that if there are multiple

PIVOT operators in the query, then at least one of them cannot be on the

top of the query tree. Hence we propose to combine them into a new single

extended PIVOT operator with more powerful semantics. We call this the

Generalized PIVOT (GPIVOT).

PIVOT

PIVOT
PIVOT
PIVOT

GPIVOT

GPIVOT

MV

Update Propagation Rules

∆

Step 1: Query Transformation Phase

Step 2: Maintenance Compile Phase

Maintenance Plan

Query Optimizer

Propagate

Apply

∆ ∆ ∆

∆P

Figure 2.3: Solution Overview

The second step is to construct the maintenance plan based on the trans-

formed query algebra tree. The resulting maintenance plan is also in the

form of a query algebra tree and logically consists of two phases, namely,

propagate phase and apply phase as described below.

Assume a materialized view MV is defined as GPIV OT (P ) as shown

in Figure 2.3. The propagate phase propagates the source deltas up the query

tree using existing propagation rules for relational operators [GL95]. As-

sume ∆P is the resulting maintenance plan for the sub-query P . The final
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maintenance plan for the propagate phase is GPIV OT (∆P ), which is com-

monly referred to as the final delta [MQM97]. The apply phase applies the

update propagation rules (Figure 2.2) for the top GPIVOT operator by in-

tegrating the final delta from propagate phase, namely, GPIV OT (∆P ) into

the view MV (i.e., GPIV OT (P )). Finally, the resulting maintenance plan

consists of the sub-plans for both propagate phase and apply phase, and can

be optimized by a cost-based optimizer before execution.

Together, this two-phase processing of propagate and apply phases fits

nicely into the traditional aggregate view maintenance framework [LSPC00,

MQM97]. This makes our solution easily integrable into existing systems.

2.4 GPIVOT and GUNPIVOT: Generalized PIVOT and

UNPIVOT

2.4.1 Definition of GPIVOT and GUNPIVOT

In this section, we will first describe how to combine multiple PIVOT op-

erators. We will show that the resulting operator, which we call General-

ized PIVOT (GPIVOT), is a natural extension of the simple PIVOT in Equa-

tion (1) with more powerful semantics. Its definition is given in Equa-

tion (3). Here we assume that the input table V has attributes (K,A1, A2, ...,

Am, B1, B2, ..., Bn), where K denotes possibly multiple columns, Ai and

Bj (i = 1..m, j = 1..n) denote one column each. Note that this input table

schema V will be used in the rest of the chapter for GPIVOT. (K,A1, ..., Am)

must form a key for pivot applicability. Compared to the simple PIVOT op-
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erator, the input parameters for GPIVOT involve multiple columns, namely,

[A1, ..., Am] and [B1, ..., Bn]. The output parameters for GPIVOT are [(a1
1, ...,

a1
m), ..., (ap

1, ..., a
p
m)], where each (ai

1, ..., a
i
m) is a tuple for columns (A1, ..., Am).

GPIVOT
[(a1

1,...,a1
m),...,(ap

1,...,ap
m)]

[A1,...,Am] on [B1,...,Bn](V )

= [=⊲⊳<p
i=1πK, ρ

(“ai
1∗∗...∗∗ai

m∗∗B1”)
B1,..., ρ

(“ai
1∗∗...∗∗ai

m∗∗Bn”)
Bn

(

σ(A1,...,Am)=(ai
1,...,ai

m)(V ))] 3 (3)

An example of GPIVOT is shown in Figure 2.4. Here input parame-

ters are [Manufacturer, T ype] and [Price, Quantity]. The output parameters are

[{Sony, Panasonic} × {TV, V CR}], or in other words, any combination of these

values (Sony, TV ), (Sony, V CR), (Panasonic, TV ), (Panasonic, V CR). Unlike the

simple PIVOT, the GPIVOT output column names now need special treat-

ment. We use the simple protocol of naming the pivoted output columns as

“ai
1 ∗∗a

i
2 ∗∗...∗∗a

i
m ∗∗Bj” (alternatively, we can use a separate table to store

such column name information). Note that the GPIVOT operator is able to

pivot multiple measurements based on multiple dimensions, a rather com-

mon and highly useful operation [CMR02] for multi-dimensional databases.

The GUNPIVOT operator is designed to decode the column names in

the reverse way (alternatively we may extract names from a separate table

mentioned before). Its formal definition is in Equation (4). Here we assume

the table H has schema (K, “a1
1 ∗∗...a

1
m ∗∗B1”, ..., “a

1
1 ∗∗...a

1
m ∗∗Bn”, ..., “ap

1 ∗

∗...ap
m ∗∗B1”, ..., “a

p
1 ∗∗...a

p
m ∗∗Bn”), where K can be multiple columns and

3For simplicity, we assume GPIVOT will output all (B1, ..., Bn) for each (ai
1, ..., a

i
m). We

can add an additional projection to remove unwanted columns. Such projection can be
pushed into the GPIVOT execution for optimization.
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Figure 2.4: Example for GPIVOT and GUNPIVOT

each “ai
1 ∗ ∗...a

i
m ∗ ∗Bj” is one column. Note that this input table schema H

will be used in the rest of the chapter for GUNPIVOT. Similar to the simple

UNPIVOT, here K need not to be the key of table H in order for the appli-

cability of GUNPIVOT. Nonetheless, its column names must all conform to

the same structure. One example is in Figure 2.4.

GUNPIVOT[(“a1
1∗∗...a

1
m∗∗B1”,...,“a1

1∗∗...a
1
m∗∗Bn”),

...

(“a
p
1∗∗...a

p
m∗∗B1”,...,“a

p
1∗∗...a

p
m∗∗Bn”)](H)

= [∪p
i=1πK,ai

1,...,ai
m,“ai

1∗∗...a
i
m∗∗B1”,...,“ai

1∗∗...a
i
m∗∗Bn”

(σ“a1
1∗∗...a

1
m∗∗Bj” 6=⊥∨...∨“a

p
1∗∗...a

p
m∗∗Bj” 6=⊥(H))] (4)

Since PIVOT is a special case of GPIVOT and UNPIVOT a special case
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of GUNPIVOT, in the rest of this chapter we will only consider GPIVOT

and GUNPIVOT. All our results obviously apply to PIVOT and UNPIVOT

as well.

2.4.2 Combination Rules for GPIVOT

Multicolumn PIVOT. The first combination rule for GPIVOT is called

multicolumn pivot. This rule is applicable when the two GPIVOT operators

have the same parameters for the pivoting columns.

Take the view in Figure 2.1 for example. Here both the total Credit and

the total ByAir payments are pivoted by first pivoting each of them indi-

vidually and then joining their respective results. We propose to combine

these two pivot operators into one that simply pivots both ‘CreditSum’ and

‘ByAirSum’ by ‘Type’ as GPIV OT
[TV,V CR]
[Type] on [CreditSum,ByAirSum]. This combi-

nation rule for GPIVOT is formally defined in Equation (5), assuming the

same schema of table V in Equation (3).

GPIVOT
[(a1

1,...,a1
m),...,(ap

1,...,ap
m)]

[A1,...,Am] on [B1,...,Bn](V ) =

GPIVOT
[(a1

1,...,a1
m),...,(ap

1,...,ap
m)]

[A1,...,Am] on [B1,...,Bj]
(πK,A1,...,Am,B1,...,Bj

(V )) ⊲⊳K

GPIVOT
[(a1

1,...,a1
m),...,(ap

1,...,ap
m)]

[A1,...,Am] on [Bj+1,...,Bn](πK,A1,...,Am,Bj+1,...,Bn
(V )) (5)

Proof for Equation (5): By GPIVOT definition in Equation (3), we have

GPIVOT
[(a1

1,...,a1
m),...,(ap

1,...,ap
m)]

[A1,...,Am] on [B1,...,Bj]
(πK,A1,...,Am,B1,...,Bj

(V )) =

=⊲⊳<p
i=1πK,B1,...,Bj

(σ(A1,...,Am)=(ai
1,...,ai

m)(πK,A1,...,Am,B1,...,Bj
(V )))

GPIVOT
[(a1

1,...,a1
m),...,(ap

1,...,ap
m)]

[A1,...,Am] on [Bj+1,...,Bn](πK,A1,...,Am,Bj+1,...,Bn
(V )) =

=⊲⊳<p
i=1πK,Bj+1,...,Bn

(σ(A1,...,Am)=(ai
1,...,ai

m)(πK,A1,...,Am,Bj+1,...,Bn
(V )))
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GPIVOT
[(a1

1,...,a1
m),...,(ap

1,...,ap
m)]

[A1,...,Am] on [B1,...,Bn](πK,A1,...,Am,B1,...,Bn
(V )) =

=⊲⊳<p
i=1πK,B1,...,Bn

(σ(A1,...,Am)=(ai
1,...,ai

m)(πK,A1,...,Am,B1,...,Bn
(V )))

In other words, we need to prove the following:

[=⊲⊳<p
i=1πK,B1,...,Bj

(σ(A1,...,Am)=(ai
1,...,ai

m)(πK,A1,...,Am,B1,...,Bj
(V )))]

⊲⊳K [=⊲⊳<p
i=1πK,Bj+1,...,Bn

(σ(A1,...,Am)=(ai
1,...,ai

m)(πK,A1,...,Am,Bj+1,...,Bn
(V )))]

= [=⊲⊳<p
i=1πK,B1,...,Bn

(σ(A1,...,Am)=(ai
1,...,ai

m)(πK,A1,...,Am,B1,...,Bn
(V )))] (5.1)

Our proof is based on the observation that both sides of Equation (5.1) contain

a key K in its output, since K is a key to each of the join input tables and the

equi-join condition is on K. Hence, in order to prove Equation (5.1), we first show

that both sides output the same set of key values. Then we show that for each key

value, they generate the same row.

1) Let us first consider Equation (3). It is easy to derive that the output of

the GPIVOT operator contains a key value k iff there exists at least one row with

K = k and (A1, ..., Am) = (ai
1, ..., a

i
m) for any i in [1, p]. Based on this observa-

tion, the left side of Equation (5.1) outputs the key set: δK(σ(A1,...,Am)=(a1
1,...,a1

m)

∨...∨(A1,...,Am)=(ap
1 ,...,a

p
m)(V )), where δ means project under set semantics (i.e., se-

lect distinct).

The right side of Equation (5.1) outputs the following key set:

δK(σ(A1,...,Am)=(a1
1,...,a1

m)∨...∨(A1,...,Am)= (ap
1 ,...,a

p
m)(V )) ⊲⊳ δK(σ(A1,...,Am)=(a1

1,...,a1
m)∨...

∨(A1,...,Am) =(ap
1 ,...,a

p
m)(V )) = δK( σ(A1,...,Am)=(a1

1,...,a1
m)∨... ∨(A1,...,Am)=(ap

1 ,...,a
p
m)(V )).

Hence, both sides generate the same set of key values.

2) Next we show that for any K value k ∈ δK(σ(A1,...,Am)=(a1
1,...,a1

m)∨...∨(A1,...,Am)=

(ap
1 ,...,a

p
m)(V )), both sides of Equation (5.1) yield the same output tuple. In this
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work, we will translate the outer-joins in Equation (5.1) to inner-joins for ease of

proof, since outer-join in general is not associative [RPZ04]. For this, we define a

set of rows {r1, ..., rp} as: ri = πK,B1,...,Bn
(σ(A1,...,Am)=(ai

1,...,ai
m) AND K=k(V )).

Note that there must be at most one such tuple ri in V that satisfies the above

condition, because (K,A1, ..., Am) forms the key of table V . If table V does not

contain any tuple that satisfies the above condition, then we set ri to (k,⊥, ...,⊥).

Based on this definition, for a given k, the output of the right side of Equation (5.1)

is ⊲⊳p
i=1 {ri} (an abbreviation of r1 ⊲⊳ ... ⊲⊳ rp). While the output of the left side of

Equation (5.1) is [⊲⊳p
i=1 {πK,B1,...,Bj

(ri)}] ⊲⊳ [⊲⊳p
i=1 {πK,Bj+1,...,Bn

(ri)}] = ⊲⊳p
i=1

{ri} since πK,B1,...,Bj
(ri) ⊲⊳ πK,Bj+1,...,Bn

(ri) = ri. Hence for any k, both sides

of Equation (5.1) yield the same output tuple.

By 1) and 2), we thus reach the conclusion that Equation (5) always holds.

PIVOT Composition. The second rule is to combine two adjacent GPIVOT

operators in the query tree. Here adjacent means that the output of one

GPIVOT operator feeds into another GPIVOT operator. In this case, when

all the pivoted output columns (i.e., all “ai
1 ∗ ∗... ∗ ∗a

i
m ∗ ∗Bj” columns in

Equation (3)) of the first GPIVOT are the input parameters of the second

GPIVOT, we can combine these two operators into one. This may occur

when the user wants to pivot the measurements by more than one dimen-

sion. One simple example is shown in Figure 2.5. On the left side of the

figure, the second pivot takes all the output columns of the first pivot as the

columns to be further pivoted on. These two operators can also be com-

bined into one operator by combining their parameters as shown on the
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right side of the figure.
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Figure 2.5: Composition of GPIVOT

Equation (6) formally defines this rule. We assume {(a1
1, ..., a

1
l ), ..., (a

p
1, ..., a

p
l )}

as the output values of (A1, ..., Al) and {(a1
l+1, ..., a

1
m), ..., (aq

l+1, ..., a
q
m)} as

the output values of (Al+1, ..., Am). Here the second GPIVOT takes all the

output columns of the first GPIVOT, i.e., [{“ai
l+1 ∗∗..∗∗a

i
m ∗∗Bj”}], i=1,...,q and

j=1,...,n, as the input parameters.

GPIVOT
[{(a1

1,...,a1
l ),...,(a

p
1,...,a

p
l
)}×{(a1

l+1,...,a1
m),...,(aq

l+1,...,aq
m)}]

[A1,...,Al,Al+1,...,Am] on [B1,...,Bn] (V ) =

GPIVOT
[{(a1

1,...,a1
l ),...,(a

p
1,...,a

p
l )}]

[A1,...,Al] on [{“ai
l+1∗∗..∗∗a

i
m∗∗Bj”}]

(

GPIVOT
[{(a1

l+1,...,a1
m),...,(aq

l+1,...,aq
m)}]

[Al+1,...,Am] on [B1,...,Bn] (V )) (6)

Proof for Equation (6): It is easy to show that both sides of Equation (6) have

a key K in its output based on the definition of GPIVOT. Next we follow a similar

approach as in the proof for Equation (5), namely, we first prove that both sides
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generate the same set of key values and then prove that for any key value, both

sides generate the same tuple.

1) The left side of Equation (6) outputs the key set: δK(σ[(A1, ...,Al)=(a1
1,...,a1

l )

∨...∨(A1,...,Al)=(ap
1 ,...,a

p
l )]∧ [(Al+1,...,Am)=(a1

l+1,...,a1
m)∨...∨(Al+1,...,Am)=(aq

l+1,...,a
q
m)](V )).

The right side of Equation (6) outputs the key set: δK(σ(A1,...,Al)= (a1
1,...,a1

l
)∨...∨

(A1,...,Al)=(ap
1 ,...,a

p
l ) (δK,A1,...,Al

(σ(Al+1,...,Am)= (a1
l+1,...,a1

m)∨...∨(Al+1,...,Am)=(aq
l+1, ...,a

q
m)(V )).

By pushing down the selection, we get δK(σ[(A1,...,Al)=(a1
1,...,a1

l ) ∨...∨(A1,...,Al)=(ap
1 ,...,a

p
l )]∧

[(Al+1,...,Am)=(a1
l+1,...,a1

m) ∨...∨(Al+1,...,Am) =(aq
l+1,...,a

q
m)](V )). Hence, both sides gen-

erate the same set of key values.

2) Next for any K value k, we define a set of rows {r11, r12, ..., rpq} as: rij =

πK,B1,...,Bn
(σ(A1,...,Al)=(ai

1,...,ai
l
) AND (Al+1,...,An) =(aj

l+1,...,a
j
n) AND K=k

(V )), where

i=1,...,p and j=1,...,q. If table V does not contain any tuple that satisfies the above

condition, then we set rij to (k1,⊥, ...,⊥). Based on this definition, the output tu-

ple for value k of the left side of Equation (6) is ⊲⊳ {rij}, i.e., r11 ⊲⊳ r12 ⊲⊳ ... ⊲⊳ rp1p2
.

For the right side of Equation (6), we have:

GPIVOT
[{(a1

1,...,a1
l ),...,(a

p
1,...,a

p
l
)}]

[A1,...,Al] on [{“ai
l+1∗∗..∗∗a

i
m∗∗Bj”}]

(

GPIVOT
[{(a1

l+1,...,a1
m),...,(aq

l+1,...,aq
m)}]

[Al+1,...,Am] on [B1,...,Bn] (V )) =

=⊲⊳<p
g=1πK,{“ai

l+1∗∗..∗∗a
i
m∗∗Bj”}

(σ(A1,...,Al)=(ag
1 ,...,a

g
l
)

[=⊲⊳<q
h=1πK,A1,...,Al,B1,...,Bn

(σ(Al+1,...,Am)=(ah
l+1,...,ah

m)(V ))]).

By pushing down the first selection, we get:

=⊲⊳<p
g=1πK,{“ai

l+1∗∗..∗∗a
i
m∗∗Bj”}

([=⊲⊳<q
h=1πK,A1,...,Al,B1,...,Bn

(

σ(A1,...,Al)=(ag
1 ,...,a

g
l
) AND (Al+1,...,An)=(ah

l+1,...,ah
n)(V ))]).

Hence, for a given K value k, the output tuple is ⊲⊳
p
g=1 [⊲⊳q

h=1 rgh] = r11 ⊲⊳ r12 ⊲⊳
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... ⊲⊳ rpq. Thus both sides of Equation (6) yield the same output tuple for any value

of K.

By 1) and 2), we thus reach the conclusion that Equation (6) always holds.

Note that we can apply the combination rules developed in this section

in the query graph in order to reduce the number of pivots. The first multi-

column pivot combination rule increases the value columns (measurements),

while the second pivot composition rule increases the pivoting columns (di-

mensions). It is important to note that these combination rules not only

help for incremental view maintenance but are also beneficial for optimiza-

tion of queries, even those with only simple PIVOTs, since after combina-

tion we can reduce the amount of computation.

Completeness of Combination Rules: Besides the two combination rules

described above, we now show that Equation (6) is the only possible rule

for combining any two adjacent GPIVOT operators. Here ‘adjacent’ means

the output of the first GPIVOT is the input of the second GPIVOT.

Proof: We note that if the two adjacent GPIVOT operators can be combined into

one, then the following two observations must hold:

(1) By the GPIVOT definition in Equation (3), one column may participate in

either the parameters {Ai} or {Bi}, but not both.

(2) Based on the GPIVOT definition in Equation (3), the pivoted output col-

umn names must have the same structure, i.e., “ai
1 ∗ ∗.. ∗ ∗a

i
m ∗ ∗Bj”, where each

ai
k is a value of column Ak. Furthermore, for any column “ai

1 ∗ ∗.. ∗ ∗a
i
m ∗ ∗Bj”,
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its values must also have the following property. That is, its values must equal to

the values of column Bj in the original table, whose (A1, ..., Am)’s value equals to

any {(ai
1, ..., a

i
m)}. Hence even if a different naming method is used, all pivoted

output column values must still have the same properties. To make our reasoning

easier, in this work, we assume such naming is explicitly available to us.

We now assume that the first GPIVOT outputs pivoted output columns {“ai
1 ∗

∗.. ∗ ∗ai
m ∗ ∗Bj”}. We also assume that the second GPIVOT pivots columns

(X1, ...,Xp) by columns (Y1, ..., Yq). We will show that the two GPIVOT opera-

tors are not combinable under the following three cases: 1) at least one “ai
1 ∗ ∗.. ∗

∗ai
m ∗ ∗Bj” /∈ {X1, ...,Xp} and “ai

1 ∗ ∗.. ∗ ∗a
i
m ∗ ∗Bj” /∈ {Y1, ..., Yq}; 2) at least

one ai1
1 ∗∗..∗∗a

i1
m∗∗Bj ∈ (X1, ...,Xp); 3) {“ai1

1 ∗∗..∗∗a
i1
m∗∗Bj”} ⊂ {Y1, ..., Yq}.

Thus the only left case is {“ai1
1 ∗∗.. ∗∗a

i1
m ∗∗Bj”} = {Y1, ..., Yq}, which is shown

in Equation (6). Figure 2.6 depicts four representative examples for two adjacent

GPIVOTs in order for easy understanding of our proof.
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Figure 2.6: Example for Combining Two Adjacent GPIVOTs

First, we consider the case that the second GPIVOT does not use at least one
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“ai
1 ∗ ∗.. ∗ ∗a

i
m ∗ ∗Bj” in its input parameters, namely, “ai

1 ∗ ∗.. ∗ ∗a
i
m ∗ ∗Bj” /∈

(X1, ...,Xp) and “ai
1 ∗ ∗.. ∗ ∗a

i
m ∗ ∗Bj” /∈ (Y1, ..., Yq). In this case, in the final

output, the column “ai
1 ∗ ∗.. ∗ ∗a

i
m ∗ ∗Bj” cannot have the same name structure

to the pivoted output columns from the second GPIVOT. This violates the obser-

vation (2). For example, in the first case of Figure 2.6, the pivoted output column

a2B is not used for the second GPIVOT and is thus not consistent with its output

columns, such as b1K and b2K, in terms of their name structure, which also in-

dicates that their column values cannot have the same relationship to the values in

the original table.

Second, based on the result above, we know that any “ai
1 ∗ ∗.. ∗ ∗a

i
m ∗ ∗Bj”

must be in either (X1, ...,Xp) or (Y1, ..., Yq). Now assume that there is at least one

“ai1
1 ∗ ∗.. ∗ ∗a

i1
m ∗ ∗Bj” ∈ (X1, ...,Xp). For any “ai2

1 ∗ ∗.. ∗ ∗a
i2
m ∗ ∗Bj”, i1 6= i2,

two cases can be distinguished. (i) If “ai2
1 ∗ ∗.. ∗ ∗a

i2
m ∗ ∗Bj” ∈ (Y1, ..., Yq), then

the original column Bj will have part of its values remain as values in the output

due to “ai2
1 ∗ ∗.. ∗ ∗a

i2
m ∗ ∗Bj”, and have the other part of its values become column

names in the output due to “ai1
1 ∗ ∗.. ∗ ∗a

i1
m ∗ ∗Bj”. This violates observation (1)

that one column cannot participate in both input parameters. The second case in

Figure 2.6 depicts such an example. As can be seen, b1 and b2 become both data

values and column names. ii) If “ai2
1 ∗ ∗.. ∗ ∗a

i2
m ∗ ∗Bj” ∈ (X1, ...,Xp), then

the output parameters for the second GPIVOT will need to specify data values

for both “ai1
1 ∗ ∗.. ∗ ∗a

i1
m ∗ ∗Bj” and “ai2

1 ∗ ∗.. ∗ ∗a
i2
m ∗ ∗Bj”. In this case, the

final output column name will have two values from the same column Bj . This

however violates observation (1), i.e., the same column is allowed to appear in the

input parameters only once. The third case in Figure 2.6 depicts such a case. That

is, the result column names have both b1 and b2 that are from the same column B.
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By (i) and (ii), we reach the conclusion that (Y1, ..., Yq) must contain all pivoted

output columns of the first GPIVOT.

Third, when (Y1, ..., Yq) only contains all the pivoted output columns of the

first GPIVOT, the two GPIVOTs can be combined as in Equation (6). The last pos-

sibility is when (Y1, ..., Yq) contains extra columns besides all the previous pivoted

output columns, as the fourth case in Figure 2.6. In this case, the two GPIVOTs

cannot be combined either. The reason is that the previous pivoted output column

names contain “ai
1 ∗ ∗.. ∗ ∗a

i
m”, such as a1 and a2 in the above example, while

the extra columns do not have such information, such as N . Hence the result-

ing pivoted output columns cannot have the same name structure, which violates

observation (2).

Thus for any two adjacent GPIVOT operations, Equation (6) is the only pos-

sible combination rule.

2.4.3 Split Rules for GPIVOT

The split rules for GPIVOT can easily be derived based on the combina-

tion rules. For example, the Equations (5) and (6) can be used to split the

GPIVOT defined on the left side of the equation to the expression on the

right side. For example, given GPIV OT
[{a1,a2}×{b1,b2}]
[A,B] on [C,D] (T ), we may split it

as GPIV OT
[{a1,a2}]
[A] on [“b1∗∗C”,“b1∗∗D”,“b2∗∗C”,“b2∗∗D”](GPIV OT

[{b1,b2}]
[B] on [C,D](V )) or

as GPIV OT
[{a1,a2}×{b1,b2}]
[A,B] on [C] (V ) ⊲⊳ GPIV OT

[{a1,a2}×{b1,b2}]
[A,B] on [D] (V ). The condi-

tions for the applicability of such split rules are the same for those in Equa-

tion (5) and (6). However, it is not clear if such split rules will be beneficial

for query optimization or for some other tasks.

Nonetheless, there is one useful split rule for parallel processing of



2.5. SWAPPING RULES FOR GPIVOT AND GUNPIVOT 46

GPIVOT (similar to the parallel processing of the simple PIVOT in [CGGL04]).

That is, we compute the GPIVOT sub-results for each processor and then

combine them together to generate the final output. This is very similar to

the standard local/global aggregation for parallel aggregate processing.

More specifically, assume a dataset S is partitioned to S1,...,Sn, where

each Si is be processed by one processor and S = S1 ∪ ... ∪ Sn. Hence at

each processor, we compute GPIV OT (S1), ..., GPIV OT (Sn). In order to

compute GPIV OT (S), the GPIVOT sub-results at each processor is com-

bined iteratively as follows:

GPIV OT (S1 ∪ S2) = f(GPIV OT (S1), GPIV OT (S2)),

GPIV OT (S1 ∪ S2 ∪ S3) = f(GPIV OT (S1 ∪ S2), GPIV OT (S3)),

...

GPIV OT (S1 ∪ ... ∪ Sn) = f(GPIV OT (S1 ∪ ... ∪ Sn−1), GPIV OT (Sn)).

At each step, the combination of the sub-result GPIV OT (Si) is seman-

tically equivalent to inserting the dataset Si. Hence we can use the propa-

gation rules for the insert case in Section 2.6.2, denoted as f above. We will

describe these propagation rules in details in later sections.

2.5 Swapping Rules for GPIVOT and GUNPIVOT

As motivated in Section 2.3, efficient view maintenance requires us to pull

the GPIVOT operators up the view query tree in order to apply the update

propagation rules. In this section, we will study the swapping rules for

both GPIVOT and GUNPIVOT in order to move them up or move them

down the query tree. In particular, we will consider the swapping rules be-
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tween GPIVOT/GUNPIVOT and four most common relational operators

in data warehousing environments, namely, SELECT, PROJECT, JOIN and

GROUPBY (including aggregate functions) [GBLP96, ZCL+00]. Table 2.2

gives the roadmap of this section. The swapping rules between GPIVOT

and GUNPIVOT will given in Section 2.5.5. We will put the correctness

proofs of these swapping rules in Appendix in order to improve readabil-

ity. In each of these sections, we will also show the completeness of these

rules in the sense that there is no other possible swapping rule.

SELECT PROJECT JOIN GROUPBY

GPIVOT Section 2.5.1 Section 2.5.2 Section 2.5.3 Section 2.5.4

GUNPIVOT Section 2.5.6 Section 2.5.7 Section 2.5.8 Section 2.5.9

Table 2.2: Roadmap of Swapping Rules

2.5.1 Swapping Rules for GPIVOT/SELECT

Both the rules for moving GPIVOT up SELECT or the rules for moving

GPIVOT down SELECT will be studied. To show completeness, we will

first show all possible scenarios. Then we will describe if there is any ap-

plicable swapping rule under that scenario. Note that Sections 2.5.1 to 2.5.9

all follow the same structure.

Pullup GPIVOT through SELECT

There are two possible scenarios, namely, if the select predicate is on the

pivoted output columns or not.

1) If the select condition is defined on non-pivoted output columns, then
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we can push it down without any changes such as the condition σCountry=‘USA′

in Figure 2.7.

2) If the select condition involves pivoted output columns and is null-

intolerant (i.e., is false when NULL), then pushing down the selection re-

sults in multiple self-joins.

For instance, in Figure 2.7, in order to push down the condition σSony∗∗TV ∗∗

Price>200, we first need to find its corresponding tuple in the original table

by σManu=Sony ∧ Type=TV ∧ Price>200(V ). Note that the results of this selec-

tion however only contain the Sony TV price information. In order to get

the pivot results, we need to perform a self-join with the original table to

find other information about these countries. In combination, the GPIVOT

pullup is rewritten as:

GPIV OT (πCountry(σManu=Sony ∧ Type=TV ∧ Price>200(V )) ⊲⊳ V ).

More self-joins are required if more pivoted output columns are in-

volved. Intuitively, each pivoted output column (and its selection) corre-

sponds to one tuple (and its selection) in the original table. Hence a se-

lect condition on multiple pivoted output columns corresponds to mul-

tiple selections on different tuples. Furthermore, in order to make sure

all the selections are satisfied, we need to perform more self-joins. For-

mally, assume a selection predicate over two pivoted output columns as:

σ
“a

i1
1 ∗∗...a

i1
m∗∗Bl1

” cp “a
i2
1 ∗∗...a

i2
m∗∗Bl2

”
(GPIV OT

[{(ai
1,...,ai

m)}]

[A1,...,Am] on [B1,...,Bn](V )). Here

‘cp’ is a comparison operation, such as = or ≤. This select predicate can

be pushed down based on the rule in Equation (7) (proof in Appendix A).

Here K1 and B1
l1

mean the columns K and Bl1 in the left operand, while

K2 and B2
l2

mean the columns K and B2
l2

in the right operand.
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σ
“a

i1
1 ∗∗...a

i1
m∗∗Bl1

” cp “a
i2
1 ∗∗...a

i2
m∗∗Bl2

”
(GPIV OT

[{(ai
1,...,ai

m)}]

[A1,...,Am] on [B1,...,Bn](V )) =

GPIV OT
[{(ai

1,...,ai
m)}]

[A1,...,Am] on [B1,...,Bn](πK1[σ
(A1,...,Am)=(a

i1
1 ,...,a

i1
m)

(V ) ⊲⊳(K1=K2 ∧ B1
l1

cp B2
l2

)

σ
(A1,...,Am)=(a

i2
1 ,...,a

i2
m)

(V )] ⊲⊳ V ) (7)

Note that when i1 = i2, i.e., the column names have the same prefix,

then the first join can be avoided: GPIV OT (πK1[σ
(A1...Am)=(a

i1
1 ...a

i1
m) ∧ Bl1

op Bl2

(V )] ⊲⊳

V ). The reason is that for any k ∈ K, σ
(A1...Am)=(a

i1
1 ...a

i1
m)∧K=k

(V ) and

σ
(A1...Am)=(a

i2
1 ...a

i2
m)∧K=k

(V ) correspond to the same tuple, when i1 = i2.

VCR}] {TV,Panasonic}[{Sony,

Quantity] [Price,on   Type][Manu, GPIVOT
×

260

45

250

Price

VCR

TV

TV

Type

Sony

Panasonic

Sony

Manu

30USA

50USA

Japan

Country

10

Quantity

Panasonic
**VCR
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Panasonic
**TV
**Quantity

Panasonic
**TV
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**VCR
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**TV
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**VCR
**Quantity
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xσ

Figure 2.7: Pullup GPIVOT through SELECT

The above rules can be easily extended to handle predicates with even

more pivoted output columns and complex conjunctive or disjunctive con-

ditions. To handle more pivoted output columns, we need to perform more

self-joins as mentioned before. Each join is to find one pivoted output col-

umn. The final join result provides the key values that satisfy the condition.

Conjunctive and disjunctive conditions can be achieved by unioning or in-

tersecting these key values.

However, the benefit of pulling GPIVOT up is likely offset by such mul-
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tiple self-joins since propagating changes through multiple self-join expres-

sions is non-trivial. That is, such propagation would generate multiple join

terms [GMS93], which is rather expensive. One alternative to address this

potential performance problem is that for those conditions that result in

multiple self-joins if pushed down, we pull both SELECT and GPIVOT up

the query tree and design special update propagation rules. We will de-

scribe this technique in Section 2.6.3.

Push GPIVOT Down SELECT

There are three possible scenarios. Assume the input table is V (K,A1, ..., Am,

B1, .., Bn) as before and GPIVOT pivots [A1, ..., Am] on [B1, ..., Bn]. The se-

lect condition can be either on the columns of K, or on the pivoting columns

in {Ai}, or on the value columns in {Bj}.

1) If the select condition is on K, such as ‘σcountry=USA’ in Figure 2.8,

then we can push GPIVOT down the SELECT operator without change.

VCR}] {TV,Panasonic}[{Sony,

Quantity] [Price,on   Type][Manu, GPIVOT ×

260

45

250

Price

VCR

TV

TV

Type

Sony

Panasonic

Sony

Manu

30USA

50USA

Japan

Country

10

Quantity

Panasonic
**VCR
**Price

Sony
**TV
**Quantity

Sony
**VCR
**Quantity

Panasonic
**TV
**Quantity

Panasonic
**TV
**Price

Sony
**VCR
**Price

Sony
**TV
**Price

Panasonic
**VCR
**Quantity

Country

xσ

Figure 2.8: Pushdown GPIVOT through SELECT

2) If the select condition is only on the pivoting columns in {Ai}, such as

‘σType=TV ’, then the pushdown results in a PROJECT, which turns all non-
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‘TV’ columns, in this case, ‘VCR’ related columns, into⊥. The reason is that

all other non-‘TV’ information will be filtered by the select. After that, we

will need a SELECT to remove the rows that contain only ‘⊥’ columns, since

by GPIVOT definition in Equation (3), GPIVOT does not output rows with

all ⊥ values. More precisely, it becomes: ‘σnot all⊥(πcountry,Sony∗∗TV ∗∗Price,

Sony∗∗TV ∗∗Quantity, Panasonic∗∗TV ∗∗Price, Panasonic∗∗TV ∗∗Quantity,⊥,⊥,⊥,⊥)’.

3) If the select condition is on the value columns in {Bj}, such as ‘σPrice=250’,

then the pushdown results in a PROJECT, which sets the ‘∗ ∗ Price’ column

and the ‘∗ ∗ Quantity’ column with the same prefix to ⊥ if the ‘∗ ∗ Price’ col-

umn does not equal 250. This is followed by a SELECT, which also re-

moves the rows that contain only ⊥ columns. More precisely, it becomes

‘σnot all⊥(πcountry, case(Sony∗∗TV ∗∗Price, Sony∗∗TV ∗∗Quantity),case(Sony∗∗V CR∗∗Price,

Sony∗∗V CR∗∗Quantity), case(Panasonic∗∗TV ∗∗Price, Panasonic∗∗TV ∗∗Quantity), case(Sony∗∗

V CR∗∗Price,Sony∗∗V CR∗∗Quantity))’. Here case(column1, column2) is a case ex-

pression that if column1 does not equal to 250, then it outputs (⊥,⊥), oth-

erwise it outputs (column1,column2).

In combination of scenario 2), we now describe the pushdown rule in

Equation (8).

GPIV OT
[{(ai

1,...,ai
m)}]

[A1,...,Am] on [B1,...,Bn](σAu=x∧Bv=y(V )) =

σnot all ⊥(π
K,{case(“a

i1
1 ∗∗...a

i1
u ...∗∗a

i1
m∗∗B1”,...,“a

i1
1 ∗∗...a

i1
u ...∗∗a

i1
m∗∗Bn”)}

)(

GPIV OT
[{(ai

1,...,ai
m)}]

[A1,...,Am] on [B1,...,Bn](V )) (8)

Here the case expression, case(“a
i1
1 ∗ ∗...a

i1
u ... ∗ ∗ai1

m ∗ ∗B1”, ..., “a
i1
1 ∗ ∗...a

i1
u ... ∗

∗ai1
m ∗ ∗Bn”), outputs (“a

i1
1 ∗ ∗...a

i1
u ... ∗ ∗ai1

m ∗ ∗B1”, ..., “a
i1
1 ∗ ∗...a

i1
u ... ∗ ∗ai1

m ∗ ∗Bn”) only
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when ai1
u = x ∧ “a

i1
1 ∗ ∗...a

i1
u ... ∗ ∗ai1

m ∗ ∗Bv” = y. Otherwise, it outputs (⊥, ...,⊥).

Note that this rule can also easily be extended to handle more complex

conditions, such as disjunctive conditions. For example, if the condition on

the left side of Equation (8) is σAu=x∨Bv=y(V ), then the condition in the case

expression on the right side becomes ai1
u = x ∨ “a

i1
1 ∗ ∗...a

i1
u ... ∗ ∗ai1

m ∗ ∗Bv” = y.

2.5.2 Swapping Rules for GPIVOT/PROJECT

Pullup GPIVOT through PROJECT

In this work, we consider the negative project, i.e., the removal of columns.

There are two possible scenarios. That is, we remove either the non-pivoted

output columns or the pivoted output columns.

1) The project operator that drops the non-pivoted output columns can

be pushed down unless this project results in the loss of the key, since

GPIVOT requires the existence of a key in the input for applicability. For

example, the drop of the ‘Country’ column above the GPIVOT in Figure 2.7

cannot be pushed down since the output no longer contains a key.

2) The project operator that drops the pivoted output columns needs

careful treatment. E.g., π¬V CR(GPIV OT
[TV,V CR]
Type on Price) 6= GPIV OT

[TV ]
Type on Price.

The reason is that the left part of the equation will output TV with ⊥while

the right part will not.

Push GPIVOT Down PROJECT

Similarly, we also consider the negative project, i.e., the removal of columns.

One example is shown in Figure 2.9. As can be seen, if the GPIVOT is
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pushed down, then there are two rows regarding ‘USA’. In comparison, if

the GPIVOT is not pushed down, then there is one row regarding ‘USA’.

Hence, GPIVOT generally cannot be pushed down project, unless the re-

moved columns are functionally determined, e.g., if ‘Country→ Year’ holds,

then we can pushdown GPIVOT.

VCR}] {TV,Panasonic}[{Sony,

Quantity] [Price,on   Type][Manu, GPIVOT ×

1991

1992

1991
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260

45

250
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VCR

TV
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30USA

50USA
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**VCR
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**VCR
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Panasonic
**TV
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**TV
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**VCR
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**TV
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**VCR
**Quantity

Country

year̟¬

Figure 2.9: Pushdown through PROJECT

2.5.3 Swapping Rules for GPIVOT/JOIN

Pullup GPIVOT through JOIN

Note that the join result should preserve a key in order to pull up the

GPIVOT, since GPIVOT requires the existence of a key for applicability.

In this case, both operands having a key must hold. This requirement may

seem restrictive at first. We note that in the data warehousing scenarios the

majority of the joins are between the fact tables and the dimension tables on

their keys and foreign keys, respectively. Thus they fall into this category.

There are two possible scenarios, namely, if the join predicate is on the

pivoted output columns or not. Actually, the rules of pulling up GPIVOT
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through the JOIN operator are similar to those for the SELECT operator.

1) If the join condition is not on the pivoted output columns, then we

can pull GPIVOT up without change. An example is shown in Figure 2.10.

That is, since AuctionID is a non-pivoted output column, the GPIVOT oper-

ator can be pulled up (the GPIVOT pullup through GROUPBY in the figure

will be explained later).

2) When the join condition involves pivoted output columns, pushing

down the join operator results in multiple self-joins. This again is similar

to the situation for the SELECT operator.

 Type]rer,[Manufactu

Valueon  Attribute GPIVOT

TVType2

Panasonic

Sony

TV

Sony

Value

Manufacturer1

Type1

Manufacturer2

Manufacturer3

AttributeAuctionID

553

90

220

Price

1

2

AuctionID

AuctionID

55

310

Total

TVSony

Panasonic

TypeManufacturer

⊥

FFFF Sum(Price) Typeer,Manufactur    

Figure 2.10: Pullup GPIVOT through Join and GROUPBY

As mentioned earlier, we should avoid introducing such multiple self-

joins since they would result in inefficient multiple maintenance join terms.

Assume a join is GPIV OT (A) ⊲⊳c1 ∧ c2 B, where c1 is the join condition

involving only non-pivoted output columns of GPIV OT (A) and c2 is the
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join condition involving the pivoted output columns. We can pull up the

GPIVOT as c2(GPIV OT (A ⊲⊳ c1B)). Then we can pull both c2 and the

GPIVOT together as a pair up the algebra tree (same as that for SELECT).

Note that if the join condition c1 is empty, then the GPIVOT pullup results

in a Cartesian product of the underlying tables. If the join condition is

c1 ∨ c2, then we cannot split these two conditions. For those two cases, we

instead need to choose the insert/delete propagation rules for this GPIVOT.

Push GPIVOT Down JOIN

There are two possible scenarios here. That is, either GPIVOT takes param-

eters from both join tables or it takes parameters only from one table.

1) Clearly, if GPIVOT takes parameter columns from both of the join

tables, then we have to perform GPIVOT after the join.

2) Now assume the expression is GPIVOT(V⊲⊳c1T), where c1 is the join

condition. We further assume the same table schema (K,A1, ..., Am, B1, ..., Bn)

for V and table schema (X,Y ) for T . GPIVOT pivots {Ai} on {Bj}. In this

case, the pushdown rules are quite similar to those for push GPIVOT down

SELECT.

Three sub-cases are considered. First, if the join condition c1 is on the

column K of table V , e.g., K = X, then we can push GPIVOT down the

join without change. Second, if the join condition c1 is on the pivoting

column of table V , e.g., B2 = X, then the pushdown result is σnot all ⊥(

πK,{case(“ai
1∗∗..a

i
n∗∗B1”,...,“ai

1∗∗..a
i
n∗∗Bm”)},X,Y ( GPIV OT (V ) ⊲⊳ (“a1

1∗∗..a
1
n∗∗B2”=X

∨...∨“a
p
1∗∗..a

p
n∗∗B2”=X)T )). More precisely, we apply a check between each

“ai
1 ∗ ∗..a

i
n ∗ ∗B2” column and X column. If “ai

1 ∗ ∗..a
i
n ∗ ∗B2 6= X”, then we
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set all “ai
1 ∗∗..a

i
n ∗∗Bj” columns to⊥ (the case expression). This can be eas-

ily derived from Equation (8). Finally, if the join condition σ1 is on the value

columns of table V , e.g., A1 = Y , then after we push down the GPIVOT,

we need to apply a check between the column name “ai
1 ∗ ∗..a

i
n ∗ ∗Bj” and

the column value Y . This however requires the query language extended

with such a higher order feature [LSS99].

2.5.4 Swapping Rules for GPIVOT/GROUPBY

Pullup GPIVOT through GROUPBY

There are two possible scenarios. That is, either the pivoted output columns

are used as group-by columns, or they are used for computing aggregate

functions.

1) If the pivoted output columns are group-by columns, then we can-

not pull GPIVOT up. Figure 2.10 depicts an example when the GPIVOT

operator cannot be pulled up. While the GPIVOT in the figure is success-

fully pulled upon through the join operator, it cannot be further pulled up

through the GROUPBY denoted by F in the figure. The reason is that the

group-by columns, e.g., ‘Sony’ and ‘TV’, are two values originating from

the same column ‘Value’. There is no good way to achieve such multi-value

grouping on a single column in the relational model.

2) If the pivoted output columns are used to compute the aggregate,

then we can pull up the GPIVOT. The lower PIVOT in Figure 2.1 is an ex-

ample that can be pulled up through the GROUPBY. That is, the aggregate

functions are over the pivoted output columns ‘Credit’ and ‘ByAir’. In



2.5. SWAPPING RULES FOR GPIVOT AND GUNPIVOT 57

this case, we can pull up the GPIVOT by modifying both GROUPBY and

GPIVOT’s parameters, i.e., by adding the pivot parameter ‘Payment’ into

the group-by columns and by aggregating over the ‘Price’ column. The

rewritten GPIVOT will take the aggregate results as input parameters. The

lower part of the query tree up to the GROUPBY in Figure 2.1 can thus be

rewritten as in Figure 2.11.

ByAir] [Credit,

Sumon  Payment GPIVOT
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TypeManufacturer

⊥
⊥

Figure 2.11: Pullup GPIVOT through GROUPBY

Formally, assume the same table V with schema (K,A1, ..., Am, B1, ..., Bn)

and GPIVOT pivots {Ai} on {Bj}. The GROUPBY operator F takes K ′ ⊆

K as group-by columns and computes aggregate function f over the piv-

oted output columns {“ai
1 ∗ ∗... ∗ ∗a

i
m ∗ ∗Bj”}. This pull up rule is given in

Equation (9). Note that in order to have Equation (9) work, the aggre-

gate function f is restricted to those that do not take ⊥ into account (as

NULL value). Furthermore, it outputs ⊥ when all the group data are ⊥.

This would require COUNT to output ⊥ instead of 0 when encountering a
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group with all ⊥ values.

K′Ff({“ai
1∗∗...∗∗a

i
m∗∗Bj”})

(GPIV OT
[{(ai

1,...,ai
m)}]

[A1...Am] on [B1...Bn](V )) =

GPIV OT
[{(ai

1,...,ai
m)}]

[A1,...,Am] on [f(B1),...,f(Bn)](K′,A1,...,Am
Ff(B1),...,f(Bn)(V )) (9)

Push GPIVOT Down GROUPBY

Now assume the GROUPBY operator has group-by columns {Ai}, aggre-

gate columns {Bi} with functional dependency {Ai}→{Bi}. Due to this

functional dependency, the GPIVOT operator has to pivot some Ai columns

on Bi columns for applicability. There are two possible scenarios. That

is, either GPIVOT pivots some of the {Bi} columns or pivots all the {Bi}

columns.

1) If GPIVOT pivots some of the {Bi} columns, then we cannot push

GPIVOT down GROUPBY. Assume one Bj column is not chosen for pivot.

This Bj now becomes part of the key for pivoting based on GPIVOT def-

inition in Equation (3). Note that since Bj is an aggregate column, we

cannot get Bj without first performing GROUPBY. Hence we cannot push

GPIVOT down.

2) If GPIVOT pivots all {Bi}, then Equation (9) can be applied in the

reverse manner in order to push GPIVOT down. However, the input to

GROUPBY must contain a key in order for the applicability of GPIVOT.
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2.5.5 Swapping Rules for GPIVOT/GUNPIVOT

Pullup GPIVOT through GUNPIVOT

There are three possible scenarios. That is, either GUNPIVOT takes all the

pivoted output columns as its input parameters, or GUNPIVOT takes part

of the pivoted output columns as its input parameters, or GUNPIVOT takes

none of the pivoted output columns as its input parameters.

1) GUNPIVOT takes all the pivoted output columns as input parame-

ters, then these two operators cancel each other. For example, in the first

case of Figure 2.12, these two operators cancel each other. That is, they can

be replaced by a simple select condition. Equation (10) formally defines

this rule. Here σs is a disjunctive predicate on (A1...Am), i.e., they equal to

any (ai
1, ..., a

i
m).

GUNPIV OT[{“ai
1∗∗...a

i
m∗∗Bj”}]

(

GPIV OT
[{ai

1,...,ai
m}]

[A1...Am] on [B1...Bn]
(V )) = (σs(V )) (10)

2) When GUNPIVOT takes part of the pivoted output columns as its

input parameters, their order cannot be changed. Assume two pivoted

output columns, “ai1
1 ∗ ∗...a

i1
m ∗ ∗Bi” and “ai2

1 ∗ ∗...a
i2
m ∗ ∗Bj”. The first is

used for GUNPIVOT as input parameter while the second is not. The fi-

nal result contains column “ai2
1 ∗ ∗...a

i2
m ∗ ∗Bj” and columns A1, ..., Am, Bi.

If we were to exchange the order between GPIVOT and GUNPIVOT, then

GPIVOT cannot pivot columns A1, ..., Am and still retain these columns.

In the second case of Figure 2.12, we can see that GUNPIVOT now only
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Figure 2.12: Pullup GPIVOT through GUNPIVOT

partially uses the pivoted output columns. Not only their order cannot be

changed, also the semantics of such operations is problematic in practice.

As can be seen in the figure, the result will have some ‘Sony’ as column

names and some as column values.

3) Finally, if the parameters between GPIVOT and GUNPIVOT have no

overlap, as the third case in Figure 2.12, then their order can be reversed.

Formally, we assume table V has schema (K,G1, ..., Gl, A1, ..., Am, B1, ...Bn).

(K,G1, ..., Gl, A1, ..., Am) together form the key of table V .

GUNPIV OT[{G1,...,Gl}](GPIV OT
[{(ai

1,...,ai
m)}]

[A1...Am] on [B1...Bn](V )) =

GPIV OT
[{(ai

1,...,ai
m)}]

[A1...Am] on [B1...Bn](GUNPIV OT[{G1,...,Gl}](V )) (11)
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Push GPIVOT Down GUNPIVOT

Similarly, there are also three possible scenarios. That is, either GPIVOT

takes all the unpivoted output columns as its input parameters, or GPIVOT

takes part of the unpivoted output columns as its input parameters, or

GPIVOT takes none of the unpivoted output columns as its input param-

eters.

1) When the GPIVOT takes the GUNPIVOT output columns as param-

eters. As can be seen in the first case in Figure 2.13, these two operators

cancel each other, resulting in a simple selection. Formally, assume table

H has schema (K, {“ai
1 ∗ ∗..a

i
m ∗ ∗Bj”}), i=1..p and j=1..n. Here K denotes

possibly multiple columns and is the key. Equation (12) depicts this rule.

Here σs is a disjunctive predicate on columns {“ai
1 ∗ ∗... ∗ ∗a

i
m ∗ ∗Bj”}. That

is, they do not all equal to ⊥.

GPIV OT
[{ai

1,...,ai
m}]

[A1...Am] on [B1...Bn](

GUNPIV OT[{“ai
1∗∗...∗∗a

i
m∗∗Bj”}]

(H)) = (σs(H)) (12)

2) When GPIVOT partially uses the output columns of GUNPIVOT, as

in the second case of Figure 2.13, their order cannot be changed. The reason

is that GPIVOT has to use the output columns of GUNPIVOT.

3) Finally, if the parameters between GPIVOT and GUNPIVOT have no

overlap, as the third case in Figure 2.13, then their order can be reversed.

This essentially is the reverse application of Equation (11).
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Figure 2.13: Push GPIVOT down GUNPIVOT

2.5.6 Swapping Rules for GUNPIVOT/SELECT

Starting from this section, we will present the swapping rules for GUN-

PIVOT. We now refer to the unpivoted output columns that originated from

column values as value columns and refer to the unpivoted output columns

that originated from column names as name columns. For example, in Fig-

ure 2.14, ‘Type’ is a name column while ‘Price’ is a value column.

Pull GUNPIVOT through SELECT

There are three possible scenarios for pulling GUNPIVOT through SELECT,

namely, either the select predicate is on the non-unpivoted output columns,

or on value columns, or on name columns.

1) If the select condition is on the non-unpivoted output columns, then

we can push it down without any changes such as the condition σCountry=USA
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in Figure 2.14.

*Price]**VCRPanasonic* *Price,**TVPanasonic*  
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Country

xσ

⊥
⊥

Figure 2.14: Pullup GUNPIVOT through SELECT

2) If the select condition is on a value column, e.g., σPrice=150, then push-

ing this select down results in a project that changes the column content. In

the above example, it becomes πCountry,case(Sony∗∗TV ∗∗Price), case(Sony∗∗V CR∗∗Price),

case(Panasonic∗∗TV ∗∗Price),case(Panasonic∗∗V CR∗∗Price). Here case(column1) is

a case expression that outputs column1 if column1 = 150, otherwise it out-

puts ⊥.

3) If the select condition is on a name column, e.g., σType=TV , then push-

ing this select down results in a project that removes columns. In the above

example, it becomes π¬(Sony∗∗V CR∗∗Price, Panasonic∗∗V CR∗∗Price).

Formally, we assume table H with schema (K, {“ai
1 ∗ ∗...a

i
m ∗ ∗Bj”})

(i=1..p, j=1..n), where K can be multiple columns and each “ai
1 ∗ ∗...a

i
m ∗

∗Bj” is one column. We further assume a select condition as: σAu=x∧Bv=y(

GUNPIV OT[{“ai
1∗∗...a

i
m∗∗Bj”}]

(H)). Equation (13) depicts this rule.

σAu=x∧Bv=y(GUNPIV OT[{“ai
1∗∗...a

i
m∗∗Bj”}]

(H)) =
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GUNPIV OT[{“ai
1∗∗..∗∗x..ai

m∗∗Bj”}]
(

πK,{case(“ai
1∗∗..∗∗x..ai

m∗∗B1”,...,“ai
1∗∗..∗∗x..ai

m∗∗Bn”)}(H)) (13)

Here case(“ai
1 ∗ ∗.. ∗ ∗x..ai

m ∗ ∗B1”, ..., “a
i
1 ∗ ∗.. ∗ ∗x..ai

m ∗ ∗Bn”) is a

case expression that if “ai
1 ∗ ∗.. ∗ ∗x..ai

m ∗ ∗Bv = y”, then output (“ai
1 ∗

∗.. ∗ ∗x..ai
m ∗ ∗B1”, ..., “a

i
1 ∗ ∗.. ∗ ∗x..ai

m ∗ ∗Bn”), otherwise output (⊥,...,⊥).

If the condition is disjunctive, e.g., σσ1∨σ2 , then we can first rewrite it to

σσ1(GUNPIV OT )∪σσ2(GUNPIV OT ). After that, we push the two select

conditions down the individual GUNPIVOT using the above rules.

Push GUNPIVOT down SELECT

There are two possible scenarios for pushing GUNPIVOT down SELECT.

That is, the select condition can be either on the non-unpivoted columns or

on the unpivoted columns.

1) If the select condition is on the non-unpivoted columns, then we can

push the GUNPIVOT operator down without changes, such as σCountry=USA

in Figure 2.15.

2) If the select condition is on the columns to be unpivoted, e.g., σSony∗∗TV ∗∗

Price=220, then pushing GUNPIVOT down results in self-joins, i.e., πCountry(

σSony∗∗TV ∗∗Price=220(H)) ⊲⊳ GUNPIV OT (H). Formally, assume a selec-

tion predicate over two output columns to be unpivoted as:

GUNPIV OT[{“ai
1∗∗...a

i
m∗∗Bj”}]

( σ
“a

i1
1 ∗∗...a

i1
m∗∗Bl1

” cp “a
i2
1 ∗∗...a

i2
m∗∗Bl2

”
(H))

= πK(σ
“a

i1
1 ∗∗...a

i1
m∗∗Bl1

” cp “a
i2
1 ∗∗...a

i2
m∗∗Bl2

”
(H)) ⊲⊳

GUNPIV OT[{“ai
1∗∗...a

i
m∗∗Bj”}]

(H) (14)
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Figure 2.15: Push GUNPIVOT Down SELECT

2.5.7 Swapping Rules for GUNPIVOT/PROJECT

Pull GUNPIVOT through PROJECT

Similarly, we also consider the negative project, i.e., the removal of columns.

There are also three scenarios for pulling GUNPIVOT through PROJECT.

That is, either we remove either the non-unpivoted output columns, or the

value columns, or the name columns.

1) If the project is to remove the non-unpivoted output columns, such

as π¬Country in Figure 2.16, we can push the project down without changes.

2) If the project is to remove the value column from the GUNPIVOT

output, e.g., π¬Price in Figure 2.16, then pulling up GUNPIVOT results in a

project that removes all price related columns, i.e., π¬(Sony∗∗TV ∗∗Price,Sony∗∗

V CR∗∗Price, Panasonic∗∗TV ∗∗Price,Panasonic∗∗V CR∗∗Price).

3) If the project is to remove the name column from the GUNPIVOT out-

put, e.g., π¬Manu in Figure 2.16, then pulling up GUNPIVOT requires to

modify the column names, i.e., removing ‘Sony’ and ‘Panasonic’ from the
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Figure 2.16: Pull GUNPIVOT through PROJECT

column names.

Push GUNPIVOT down PROJECT

Note that since the GUNPIVOT operator will not take the removed columns

as parameters, it is always possible to push the GUNPIVOT down. For ex-

ample, we can pull π¬Country up in Figure 2.17. Note that we can also pull

π¬Sony∗∗TV ∗∗Price up. The reason is that in this case, this ‘Sony**TV**Price’

column will not appear in the GUNPIVOT parameter column list.
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Figure 2.17: Push GUNPIVOT Down PROJECT
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2.5.8 Swapping Rules for GUNPIVOT/JOIN

Pull GUNPIVOT through JOIN

The rules for pulling GUNPIVOT above the JOIN are quite similar to those

for SELECT in Section 2.5.6. There are also three possible scenarios. That

is, the join predicate is either on the non-unpivoted output columns, or on

the value columns, or on the name columns.

1) If the join predicate is on the non-unpivoted columns, then we can

pull GUNPIVOT above the JOIN without changes.

2) If the join predicate is on a value column from the output of GUN-

PIVOT, then the GUNPIVOT pullup results in a JOIN followed by a PROJECT.

Formally, we assume table H with schema (K, {“ai
1 ∗∗...a

i
m ∗∗Bj”}) (i=1..p,

j=1..n), where K can be multiple columns and each “ai
1 ∗ ∗...a

i
m ∗ ∗Bj” is

one column. Table T has schema (X,Y ). As usual, we assume the out-

put of GUNPIVOT(H) has schema (K,A1, ..., Am, B1, ..., Bn). We further

assume a join predicate as: Bl = X. Equation (15) formally depicts this

rule.

GUNPIV OT[{“ai
1∗∗...a

i
m∗∗Bj”}]

(H) ⊲⊳Bl=X (T ) =

GUNPIV OT[{“ai
1∗∗...a

i
m∗∗Bj”}]

(πK,{case(“ai
1∗∗...a

i
m∗∗B1”,...,

“ai
1∗∗...a

i
m∗∗Bn”)},X,Y ( H ⊲⊳“a1

1∗∗...a
1
m∗∗Bl”=X∨...∨“a

p
1∗∗...a

p
m∗∗Bl”=X T )) (15)

Here case(“ai
1 ∗ ∗...a

i
m ∗ ∗B1”, ..., “a

i
1 ∗ ∗...a

i
m ∗ ∗Bn”) is a case expression

that if “ai
1 ∗ ∗...a

i
m ∗ ∗Bl” = X, then output (“ai

1 ∗ ∗...a
i
m ∗ ∗B1”, ..., “a

i
1 ∗

∗...ai
m ∗ ∗Bn”), otherwise output (⊥, ...,⊥).
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3) If the join predicate is on a name column from the output of GUN-

PIVOT, e.g., Al = Y in the above example. Then the pullup of GUN-

PIVOT requires a join between the column value Y and the column name

“ai
1 ∗ ∗... ∗ ∗a

i
m ∗ ∗Bj”. This requires a higher order feature of the query

language [LSS99].

Push GUNPIVOT down JOIN

There are two possible scenarios for pushing GUNPIVOT down JOIN. That

is, the join condition can be either on the columns to be unpivoted or not.

1) If the join condition is on the non-unpivoted columns, then we can

push GUNPIVOT down the join.

2) If the join condition is on the columns to be unpivoted, then the push-

down results in self-joins. Formally, assume the same table schema H and

table T with schema (X,Y ).

GUNPIV OT[{“ai
1∗∗...a

i
m∗∗Bj”}]

(H ⊲⊳
“a

i1
1 ∗∗...a

i1
m∗∗Bl”=X

T ) =

πK(H ⊲⊳
“a

i1
1 ∗∗...a

i1
m∗∗Bl”=X

T ) ⊲⊳

GUNPIV OT[{“ai
1∗∗...a

i
m∗∗Bj”}]

(H) (16)

2.5.9 Swapping Rules for GUNPIVOT/GROUPBY

Pull GUNPIVOT through GROUPBY

There are three possible scenarios here. That is, the GROUPBY operator

may either aggregate over the value columns from the unpivoted results,
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or aggregate over the name columns from the unpivoted results, or do not

use any of such columns.

1) When the GROUPBY operator aggregates over the value columns,

we may switch their order. Actually, by first unpivoting a table and then

performing aggregation, we are able to do horizontal aggregation [LSS99]. As

can be seen from the example in Figure 2.18, all the prices regarding ‘USA’

have been summed up even they appear as values in several columns of

the same row.

*Price]**VCRPanasonic* *Price,**TVPanasonic*  
*Price,**VCR*Sony*Price,**TV*[Sony GUNPIVOT
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⊥

⊥
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FFFFTypeCountry, Sum(Price)

]*Pricesum)**VCRPanasonic*   
 *Pricesum,**TVPanasonic*   

*Pricesum,**VCR*Sony   
*Pricesum,**TV*[(Sony GUNPIVOT

FFFF
TypeCountry, um)Sum(prices

FFFFCountry

*Price)**VCR*nicSum(Panaso

*Price),**TV*nicSum(Panaso

*Price),**VCR*Sum(Sony

*Price),**TV*Sum(Sony

Figure 2.18: Pull GUNPIVOT through GROUPBY

In this case, pulling up GUNPIVOT results in a two-level aggregation

as shown in Figure 2.18. In particular, we first aggregate all price-related

columns and then unpivot individual sum totals and finally re-aggregate

over these subtotals. This rule is formally described in Equation (17). Here

again we assume the table schema H as (K, {ai
1 ∗ ∗...a

i
m ∗ ∗Bj”}) (i=1..p,

j=1..n). The output schema of GUNPIVOT(H) is (K,A1, ..., Am, B1, ..., Bn).

For simplicity, we also assume here the aggregate function f is sum or

count. We can easily extend f to distributive or algebraic functions (see
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Chapter 3) [GBLP96]. Here K ′ is a subset of columns (K,A1, ..., Am) and

K ′′ = K ∩K ′.

K′Ff(Bj )(GUNPIV OT[{“ai
1∗∗...a

i
m∗∗Bj”}]

(H)) =

K′ F f(FBj)(GUNPIV OT[{“ai
1∗∗...a

i
m∗∗FBj”}]

(

K′′F{ρ
“ai

1∗∗...ai
m∗∗F Bj”

(f(“ai
1∗∗...a

i
m∗∗Bj”))}

(H)) (17)

2) If the GROUPBY operator aggregates over the name columns from the

GUNPIVOT output, e.g., max(Type) in the above example, then we cannot

push it down since we are not able to aggregate over column names.

3) Finally, note that even if the GROUPBY operator does not use any un-

pivoted output columns of GUNPIVOT, we still cannot remove the GUN-

PIVOT operator. The reason is that the GUNPIVOT operator may affect the

cardinality of the input table, which may subsequently affect the GROUPBY

results.

Push GUNPIVOT down GROUPBY

There are two possible scenarios. That is, the GUNPIVOT operator either

unpivots the aggregate columns, or unpivots the group-by columns.

1) If GUNPIVOT unpivots the aggregate columns as shown in Figure 2.19,

then we can push GUNPIVOT down the group-by. Formally, assume the

group-by operator computes, (K, f(B1), f(B2), ..., f(Bn)), where K are the

group-by columns and f(Bi) is to compute function f 4 over column Bi.

The GUNPIVOT unpivots (f(B1), f(B2), ..., f(Bn)) and outputs name columns

4Function f should disregard⊥.
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CN and values columns CV .

GUNPIV OT[{f(Bi)}](KF{f(Bi)}(T )) =

K,CN
F{f(CV )}(GUNPIV OT[{Bi}](T )) (18)

y]SumQuantit [SumPrice, GUNPIVOT
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Figure 2.19: Push GUNPIVOT Down GROUPBY

2) If GUNPIVOT unpivots any group-by columns, e.g., [Country,Type],

then we cannot push it down. The reason is that after pushing GUNPIVOT

down, we cannot perform group-by on multi-values from the same column.

2.6 Incremental View Maintenance

We now propose the propagation rules for GPIVOT and GUNPIVOT. We

will also show how to utilize the combination rules, swapping rules and

propagation rules together to obtain an efficient maintenance plan.

2.6.1 Types of ROLAP Views

In this work, we consider both aggregate and non-aggregate views con-

taining GPIVOT and GUNPIVOT operators. We assume a key exists in

the materialized view as that is a prerequisite for enabling efficient main-
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tenance. The reason is that if we can successfully move the GPIVOT op-

erator to the top of the query tree (or a SELECT/GPIVOT pair on top of

the query tree), then a key can be obtained from the output of GPIVOT.

We note that most existing view maintenance work [GMS93, MQM97] also

has this same assumption. If there is no key in the view, i.e., it contains

duplicates, then the count algorithm [GMS93] would need to maintain the

multiplicity of each tuple. This is equivalent to having a GROUPBY ALL

operator on top of the view query. The key then would correspond to all

columns. In addition, when there is a key in the view, we can use an SQL

update/delete statement to apply the changes efficiently. Most commer-

cial DBMSs [BDD+98, LSPC00] require the views to contain a key (or using

rowid to arbitrarily form a key) for the above reasons. Hence our proposed

techniques are applicable to the majority of the views in practice.

In this work, we also assume the GPIVOT above the GROUPBY is to

pivot the aggregate results based on the group-by columns, e.g., pivot the

total sales for each product type. This is common for most OLAP applica-

tions since the user often pivots the measurements by various dimensions

[CD97]. In comparison, pivoting product type based on total sales is often

problematic. The reason is that the functional dependency, measurements

→ dimensions, often does not hold. This makes the pivot not applicable.

Note that for the views that do not have the above properties, e.g., hav-

ing duplicates, we have to apply the insert/delete propagation rules. The

resulting maintenance plan may still outperform the full re-computation

approach when the source change is small. This makes our solution com-

plete in the sense that it is capable of maintaining any general views with
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GPIVOT and GUNPIVOT operators.

2.6.2 Propagation Rules for GPIVOT and GUNPIVOT

The insert/delete propagation rules for GPIVOT and GUNPIVOT are de-

picted in Figure 2.20. Here ‘1.’ means the first join operand and ‘2.’ means

the second join operand. The update propagation rules for GPIVOT are

depicted in Figure 2.21. Note that we assume set semantics in this paper

since GPIVOT requires a key to exist in its input.

)GPIVOT(V))     V)(GPIVOT((πσ                               (5)

V)GPIVOT(     GPIVOT(V)                               (4)

GPIVOT(V))V  GPIVOT(V

GPIVOT(V)     V)GPIVOT(                                (3)

GPIVOT(V))     V)(GPIVOT(   π                             (2)
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Figure 2.20: Insert/Delete Propagation Rules for GPIVOT and GUNPIVOT

As can be seen in Figure 2.20, the propagation rules for GUNPIVOT are

quite straightforward. The propagation rules for GPIVOT in Figure 2.20

and 2.21 formalize the ideas in Figure 2.2. We now formally prove these

rules.
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Figure 2.21: Update Propagation Rules for GPIVOT

Proofs for Propagation Rules in Figures 2.20 and 2.21: We first prove the

rules in Figure 2.20. The correctness of the GUNPIVOT rules can be shown as

follows:

(1) GUNPIV OT[{“ai
1∗∗...a

i
m∗∗Bj”}]

(H +△H) (i=1..p, j=1..n)

= [∪p
i=1πK,ai

1,...,ai
m,“ai

1∗∗...a
i
m∗∗B1”,...,“ai

1∗∗...a
i
m∗∗Bn”(

σany “ai
1∗∗...a

i
m∗∗Bj” 6=⊥

(H +△H))

= [∪p
i=1πK,ai

1,...,ai
m,“ai

1∗∗...a
i
m∗∗B1”,...,“ai

1∗∗...a
i
m∗∗Bn”(σany “ai

1∗∗...a
i
m∗∗Bj” 6=⊥

(H)]+

[∪p
i=1πK,ai

1,...,ai
m,“ai

1∗∗...a
i
m∗∗B1”,...,“ai

1∗∗...a
i
m∗∗Bn”(σany “ai

1∗∗...a
i
m∗∗Bj” 6=⊥

(△H)]

= GUNPIV OT[{“ai
1∗∗...a

i
m∗∗Bj”}]

(H)+GUNPIV OT[{“ai
1∗∗...a

i
m∗∗Bj”}]

(△H)

Similarly, we can prove the GUNPIVOT rules under the delete case.

(2.1) Next, we show the correctness of the rules for GPIVOT. We first prove the

insert case. Given any K value k, we define a set of rows {ri} as:

ri = πK,B1,...,Bn
(σ(A1,...,Am)=(ai

1,...,ai
m) AND K=k(V + △V )). If there is no row
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that satisfies the condition for a particular i, we set ri = (k,⊥, ...,⊥). We also de-

fine other two sets of rows {si} and {ti} as si = πK,B1,...,Bn
(σ(A1,...,Am)=(ai

1,...,ai
m)

AND K=k(V )) and ti = πK,B1,...,Bn
(σ(A1,...,Am)=(ai

1,...,ai
m) AND K=k(△V )). Sim-

ilarly, we also set si or ti as (k,⊥, ...,⊥) if no row satisfies. Based on the above

definition, the following function f must hold for any i: ri = f(si, ti), where

f(si, ti) either equals si if ti = (k,⊥, ...,⊥) or equals ti if ti 6= (k,⊥, ...,⊥). The

reason is that (K,A1, ..., Am) forms the key, thus at most one row exists in either

V or△V , but not in both.

Based on the above definition, the output of GPIV OT (V + △V ) for key k

is r1 ⊲⊳ ... ⊲⊳ rp, denoted as ⊲⊳ {ri}. The output of GPIV OT (V ) for key k1 is

s1 ⊲⊳ ... ⊲⊳ sp, denoted as ⊲⊳ {si}. The output of GPIV OT (△V ) for key k is

t1 ⊲⊳ ... ⊲⊳ tp, denote as ⊲⊳ {ti}. Then we consider the following two cases:

If {si} contains only (k,⊥, ...,⊥) tuples, then the original output does not

contain such a row with key k based on the GPIVOT definition. In this case, if

{ti} contains any non-empty tuples, then ⊲⊳ {ri} = ⊲⊳ {f(si, ti)} = ⊲⊳ {ti}. This

explains to the anti semi-join (line 3) in Figure 2.20.

If both {si} and {ti} contain any non-empty tuples, then ⊲⊳ {ri} =⊲⊳ {f(si, ti)}.

This explains to the inner-join term (line 2) for generating a new row in Fig-

ure 2.20. Obviously, the original row with key k has to be deleted in this case. This

explains the delete term (line 1) in Figure 2.20.

Hence the propagation rules hold under the insert case.

(2.2) We now prove the propagation rules for GPIVOT under the delete case. Given

any K value k, we define a set of rows {ri} as ri = πK,B1,...,Bn
( σ(A1,...,Am)=

(ai
1,...,ai

m) AND K=k(V − ▽V )). If there is no row that satisfies the condition for

a particular i, we set ri = (k,⊥, ...,⊥). We also define two other sets of rows
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{si} and {ti} as si = πK,B1,...,Bn
(σ(A1,...,Am)=(ai

1,...,ai
m) AND K=k(V )) and ti =

πK,B1,...,Bn
(σ(A1,...,Am)=(ai

1,...,ai
m) AND K=k(▽V )). Similarly, we also set si or ti

as (k,⊥, ...,⊥) if no row satisfies them, respectively. Based on the above definition,

the following function g must hold for any i: ri = g(si, ti), where g(si, ti) either

equals si if ti = (k,⊥, ...,⊥) or equals (k,⊥, ...,⊥) if ti 6= (k,⊥, ...,⊥). The

reason is that since (K,A1, ..., Am) forms the key, if one row is deleted from V ,

then the same row no longer exists in V −▽V .

If both {si} and {ti} contain any non-empty tuples, then the resulting row

becomes ⊲⊳ {ri} =⊲⊳ {g(si, ti)}. The original row with K = k has to be deleted

in this case. This explains to the delete term (line 4) in Figure 2.20. We insert the

new row only when not all {ri} equal (k,⊥ ...,⊥). This explains the insert term

(line 5) in Figure 2.20.

Hence the propagation rules also hold under the delete case.

(3) It is easy to show that the update propagation rules in Figure 2.21 are equiv-

alent to the insert/delete propagation rules in Figure 2.20. Intuitively, for those

rows that we first delete them from the table and then re-insert them again, we can

instead perform a single update.

Figure 2.22 describes a simple example to show how to use our propa-

gation rules to maintain a view. Assume a materialized view is defined that

first pivots the ‘Items’ table and then joins the results with the ‘Payment’

table.

First let us assume two tuples, namely, (1,Type,TV) and (2,Manufac-

turer,Panasonic), are inserted into the ‘Items’ table. Figure 2.23 depicts the
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Figure 2.22: A Simple View with GPIVOT

change propagation by naively applying the insert/delete rules for GPIVOT.

We can see that the change propagation through the GPIVOT operator gen-

erates one insert delta and one delete delta using the rules in Figure 2.20.

Each of these two deltas will be further propagated through the JOIN oper-

ator. The final maintenance plan is shown at the bottom of the figure, which

involves several GPIVOT and JOINs. The results show that we have to

delete existing view tuples, namely, (1,Sony,⊥,200,15) and (2,⊥,VCR,300,15),

and re-insert them with a few column changes.

Figure 2.24 depicts an alternative maintenance plan achieved by our

GPIVOT pullup techniques in order to apply the more efficient update

propagation rules. First, the GPIVOT operator is pulled up above the join

and becomes the top of the query tree. The propagation phase propagates

the source deltas through JOIN as ∆I ⊲⊳ P . It then computes the final delta

as GPIV OT (∆I ⊲⊳ P ). The apply phase uses the update propagation rules

for GPIVOT in Figure 2.21 by evaluating a left outer-join between the fi-
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Figure 2.23: Maintenance without GPIVOT Pullup

nal delta and the view (MV) to insert new tuples and make appropriate

changes. The final plan (depicted at the bottom of the figure) is obviously

more efficient than the one in Figure 2.23.

Note that such GPIVOT pullup is only necessary when the GPIVOT

is on the delta propagation path. For example, the maintenance of some

inserts on ‘Payment’ table need not pull up GPIVOT.

2.6.3 Update Propagation Rules for Multiple Operators

Note that the propagation rules in Section 2.6.2 can be used to maintain any

general views with GPIVOT and GUNPIVOT operators. However, the up-

date propagation rules for GPIVOT in Figure 2.21 require (1) the GPIVOT

to be at the top of the algebra tree, and (2) the insert/delete changes to the

input ∆V to be available. For some views, it might either be expensive to
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Figure 2.24: Maintenance with GPIVOT Pullup

move GPIVOT to top of the algebra tree or too expensive to compute the

delta changes to the input. In the sections below, we propose to solve this

problem by developing alternative update propagation rules.

Update Propagation Rules for GPIVOT over GROUPBY

When GPIVOT is above a GROUPBY operator, then the input ∆V to GPIVOT

is no longer trivial to compute. The reason is that we have to use the in-

sert/delete propagation rules for GROUPBY [Qua96]. This is inefficient

since we may need to re-compute some groups.

We propose to combine the GPIVOT update propagation rules and GROUPBY

update propagation rules as depicted in Figure 2.25. Here we assume the

output of aggregation,F(V), has schema (K,A1, ..., Am, B1, B2, ...Bn), where

K,A1, ..., Am are group-by columns, B1, ..., Bn are aggregate function columns
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including count(∗). The GPIVOT operator is assumed to pivot B1, ..., Bn by

A1, ..., Am. For simplicity, we only consider SUM and COUNT in this pa-

per. It is not hard to extend to support AVG or other algebraic functions

[GBLP96] using the techniques that will be described in Chapter 3 in this

dissertation.
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Figure 2.25: Update Propagation Rules for GPIVOT over GROUPBY

As can be seen from Figure 2.25, under the insert case, we simply up-

date the pivoted aggregate columns in the view by adding the correspond-

ing columns in the delta (line 2 in Figure 2.25). If the delta row does

not exist in the view before, then we insert it into the view (line 1). Un-

der the delete case, we update the pivoted aggregate columns in the view

by subtracting the corresponding columns in the delta. Note that when

the count(*) column, namely, “ai
1 ∗ ∗...a

i
m ∗ ∗cnt” = 0, then all the out-

put columns with the same prefix “ai
1 ∗ ∗...a

i
m” become empty. That is,

“ai
1 ∗ ∗...a

i
m ∗ ∗Bj” =⊥ for any j. The reason is that no more items exist
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for this subgroup (line 3). When all the output columns become ⊥, i.e., all

subgroups are deleted, this row should be deleted from the view by the

GPIVOT definition (line 4). We now formally prove these rules.

Proofs for Combined Update Propagation Rules in Figure 2.25: We as-

sume the output of the GROUPBY, namely,F(V), has schema (K,A1, ..., Am, B1,

B2, ..., Bn), where K,A1, ..., Am are group-by columns, B1, ..., Bn are aggregate

function columns including count(∗). The GPIVOT operator is assumed to pivot

B1, ..., Bn by A1, ..., Am. We first prove the insert case.

(1) Given any K value k, we define a set of rows {ri} as ri = πK,B1,...,Bn
F(σ(A1,...,Am)=

(ai
1,...,ai

m) AND K=k(V + △V )). If there is no row that satisfies the condition for

a particular i, we set ri = (k,⊥, ...,⊥). We also define two other sets of rows

{si} and {ti} as si =K,B1,...,Bn
F(σ(A1,...,Am)= (ai

1,...,ai
m) AND K=k(V )) and

ti =K,B1,...,Bn
F(σ(A1,...,Am)=(ai

1,...,ai
m) AND K=k(△V )), respectively. Similarly,

we also set si or ti respectively as (k,⊥, ...,⊥) if no row satisfies.

Based on the above definition, the output of GPIV OT (F(V +△V )) for key

k is ⊲⊳ {ri}. The output of GPIV OT (F(V )) for key k is ⊲⊳ {si}. The output of

GPIV OT (F(△V )) for key k is ⊲⊳ {ti}.

By applying the propagation rules for GROUPBY in [Qua96], we have: if

si = (k,⊥, ...,⊥), then ri = ti; if si 6= (k1,⊥, ...,⊥), then ri = (k, si.B1 +

ti.B1, ..., si.Bn + ti.Bn), assuming each aggregate function Bj is either a sum or

count column.

Then we consider the following two cases:

If {si} contains only (k,⊥, ... ⊥) tuples, then the original output does not
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contain such a row with key k. In this case, if {ti} contains any non-empty tuples,

then ⊲⊳ {ri} =⊲⊳ {ti}. This explains the insert term (line 1) in Figure 2.25.

If both {si} and {ti} contain any non-empty tuples, then ⊲⊳ {ri} =⊲⊳ {(k, si.B1+

ti.B1, ..., si.Bn + ti.Bn)}. This explains the update term (line 2) for generating

the new row in Figure 2.25.

Hence the propagation rules hold under the insert case.

(2) Next, we prove the delete case. Given any K value k, we define a set of rows

{ri} as ri = πK,B1,...,Bn
F(σ(A1,...,Am)=(ai

1,...,ai
m) AND K=k(V −▽V )). If there is

no row that satisfies the condition for a particular i, we set ri = (k,⊥, ...,⊥). We

also define other two sets of rows {si} and {ti} as si = πK,B1,...,Bn
F(σ(A1,...,Am)=

(ai
1,...,ai

m) AND K=k(V )) and ti = πK,B1,...,Bn
F(σ(A1,...,Am)=(ai

1,...,ai
m) AND K=k(▽V )).

Similarly, we also set si or ti as (k,⊥, ...,⊥) if no row satisfies.

Based on the above defintion, the output of GPIV OT (F(V − ▽V )) for key

k is ⊲⊳ {ri}. The output of GPIV OT (F(V )) for key k is ⊲⊳ {si}. The output of

GPIV OT (F(▽V )) for key k is ⊲⊳ {ti}.

By applying the propagation rules for GROUPBY in [Qua96], we have ri =

(k, si.B1−ti.B1, ..., si.Bn−ti.Bn), assuming each aggregate function Bj is either

sum or count. Furthermore, if the count(*) column, namely, si.cnt − ti.cnt = 0,

then ri = (k,⊥, ...,⊥).

Thus, ⊲⊳ {ri} =⊲⊳ {(k, si.B1 − ti.B1, ..., si.Bn − ti.Bn)}. If the count(*)

column ri.Bj = si.Bj − ti.Bj = 0, then we need to set ri = (k,⊥, ...,⊥). This

explains the update term (line 3) in Figure 2.25. If the resulting {ri} contains only

(k,⊥ ...,⊥) tuples, then we should delete this row from the pivot output based on

the GPIVOT definition. This explains the delete term (line 4) in Figure 2.25.
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Hence the propagation rules also hold under the delete case.

We now use the motivating example (Figure 2.1) in Section 2.2.2 to de-

scribe how to use these update propagation rules to efficiently maintain

this view. We first pull up and combine multiple pivot operators in the

query. For example, the top two pivots can be combined into one operator,

denoted as G1 = GPIV OT
[TV,V CR]
Type on [CreditSum,ByAirSum] as described in Sec-

tion 4.2. The lower pivot can be pulled up through JOIN and GROUPBY

denoted as G2 = GPIV OT
[Credit,ByAir]
Payment on [Sum]

using the rewriting rules in

Section 5. Then we combine G1 and G2 using the composition rules in

Section 4.3. Since the original view only contains SUM, we also need a

COUNT(*) column in the view definition in order to make the view incre-

mentally maintainable (Figure 2.26).
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Figure 2.26: Maintenance of View in Figure 2.1

Then we construct the maintenance plan based on this rewritten view
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query. We can propagate the changes through the algebra tree (propaga-

tion phase) and apply the GPIVOT/GROUPBY update propagation rules

in Figure 2.25 (apply phase) in order to maintain the view. Note that in Fig-

ure 2.26 since the resulting VCR**Credit**Cnt for Panasonic equals 0, both

VCR**Credit**Cnt and VCR**Credit**Sum will be set to ⊥. Consequently,

since all the pivoted output columns of Panasonic become empty, this row

can be deleted from the view. In comparison, the update propagation rules

in Figure 2.21 require significant re-computation of the group-by operator.

Update Propagation Rules for SELECT over GPIVOT

As mentioned before, the other problem with the update propagation rules

in Figure 2.21 is that it might be expensive to move GPIVOT to the top

of the algebra tree. For example, the rewriting rules show that the pullup

of GPIVOT through SELECT may result in multiple self-joins. The propa-

gation through multiple self-joins generates multiple join terms [GMS93].

This can be quite inefficient. In this section, we propose alternative up-

date propagation rules for SELECT (σc) on top of a GPIVOT depicted in

Figure 2.27.

We first explain the delete case using an example. Figure 2.28 depicts

a simple view query with a SELECT above the GPIVOT. To maintain the

deletes on the Items table as shown in Figure 2.29, the pullup of GPIVOT

above this selection generates multiple self-joins. Alternatively, we pull

both SELECT and GPIVOT up to the top of the query tree. Then we prop-

agate the changes below the GPIVOT operator. The apply phase uses the

update propagation rules in Figure 2.27. It first performs a join between
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Figure 2.27: Update Propagation Rules for SELECT over GPIVOT

the final delta and the view. We delete the view tuple that no longer sat-

isfies the select condition. This is stricter than deleting the view tuple

with all entries empty as in Figure 2.21. For example, the resulting tuple

(3,Panasonic,⊥,300,20) will be deleted from the view since it no longer sat-

isfies the condition. Such tuple will be retained if there is no such SELECT

on top of GPIVOT.
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Figure 2.28: Views with SELECT over GPIVOT
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Figure 2.29: Maintenance with SELECT over GPIVOT

The intuition behind this idea is that the deleted source tuples may

cause an existing view tuple to no longer satisfy the condition, which can

be removed by the postponed selection filtering during the apply phase.

Auction 3 in Figure 2.28 is an example of this. Or they may cause an exist-

ing view tuple to update some of its columns but still satisfy the condition,

such as auction 1. Lastly, they may affect some pivot output tuples that

originally do not satisfy the condition hence are not in the view, such as

auction 2. An important observation is that if an original pivot output tu-

ple does not satisfy the condition, then after some deletion it still will not

satisfy the condition (if the condition is null-intolerant). The join between

the delta and the view, as a side product, effectively removes such tuples.

In comparison, the source inserts may cause an originally unsatisfied

tuple to now satisfy the select condition. If so, we have to find some other

tuples that are not in the view originally in order to construct a new view
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tuple. For instance, in order to maintain the insert (2,Manufacturer, Sony),

we have to locate the source tuple (2, T ype, V CR) to generate a new view

tuple. The maintenance plan generated based on the rules in Figure 2.27 is

shown below.

GPIV OT ((πID(σc′(∆I) ⊲⊳ P ) ⊲⊳ I ⊎∆I) ⊲⊳ P )=⊲⊳MV ,

where σc′ = σ(Attribute=Type∧V alue=TV )∨(Attribute=Manufacturer∧V alue=Sony).

Note that here we push σ′c down the join in order to reduce the join

size. The rationale is that only those deltas that are related to the columns

referenced in the select predicate may change the result of the predicate,

and consequently generate new view tuples. We now formally prove these

propagation rules below.

Proofs for Combined Update Propagation Rules in Figure 2.27: We first

prove the delete case.

(1) Given any K value k, we define a set of rows {ri} as ri = πK,B1,...,Bn
(σ(A1,...,Am)=

(ai
1,...,ai

m) AND K=k(V − ▽V )). If there is no row that satisfies the condition

for a particular i, we set ri = (k,⊥, ...,⊥). We also define two other sets of

rows {si} and {ti} as si = πK,B1,...,Bn
(σ(A1,...,Am)=(ai

1,...,ai
m) AND K=k(V )) and

ti = πK,B1,...,Bn
(σ(A1,...,Am)=(ai

1,...,ai
m) AND K=k(▽V )). Similarly, we also set si

or ti as (k1,⊥, ...,⊥) if no row satisfies their respective predicates.

Based on the above definition, the output of GPIV OT (V − ▽V ) for key k

is ⊲⊳ {ri}. The output of GPIV OT (V ) for key k is ⊲⊳ {si}. The output of
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GPIV OT (▽V ) for key k is ⊲⊳ {ti}. Similar to the proof for the rules in Fig-

ure 2.20, the following function g must hold: ⊲⊳ {ri} = ⊲⊳ {g(si, ti)}.

Then we consider the following two cases:

i) If the original row ⊲⊳ {si} satisfies the condition σc , then σc(⊲⊳ {si}) =

⊲⊳ {si}, since ⊲⊳ {si} results in only one row. Or in other words, the original

output contains the row ⊲⊳ {si}. Hence, we can compute the new row by σc(⊲⊳

{ri}) = σc(⊲⊳ {g(si, ti)}). If the resulting row ⊲⊳ {ri} statisfies the condition σc,

then we perform updates using function g (defined in the proof (2.2) for the rules

in Figure 2.20). This explains the update term in Figure 2.27. If the resulting row

⊲⊳ {ri} no longer satisfies the condition σc, then we delete this row from the result.

This explains the delete term in Figure 2.27.

ii) If the original row ⊲⊳ {pi} does not satisfy the condition σc , then the re-

sulting row ⊲⊳ {ri} will not satisfy the condition either, since the condition is

null-intolerant. In this case, σc(⊲⊳ {pi}) ⊲⊳ (⊲⊳ {qi}) must evaluate to an empty

result and will not make any changes to the view.

Hence we proved that this update propagation rule always holds under the

delete case.

(2) Next, we prove the insert case. Given any K value k, we define a set of rows

{ri} as ri = πK,B1,...,Bn
(σ(A1,...,Am)=(ai

1,...,ai
m) AND K=k(V +△V )). If there is no

row that satisfies the condition for a particular i, we set ri = (k,⊥, ...,⊥). We also

define two other sets of rows {si} and {ti} as si = πK,B1,...,Bn
(σ(A1,...,Am)=(ai

1,...,ai
m)

AND K=k(V )) and ti = πK,B1,...,Bn
(σ(A1,...,Am)= (ai

1,...,ai
m) AND K=k(△V )). Sim-

ilarly, we also set si or ti as (k,⊥, ...,⊥) if no row satisfies.

Based on the above definition, the output of GPIV OT (V + △V ) for key k
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is ⊲⊳ {ri}. The output of GPIV OT (V ) for key k is ⊲⊳ {si}. The output of

GPIV OT (△V ) for key k is ⊲⊳ {ti}. Similar to the proofs for the rules in Figure

2.20, the following function f must hold: ⊲⊳ {ri} = ⊲⊳ {f(si, ti)}.

Then we consider the following two cases:

i) If the original row ⊲⊳ {si} satisfies the condition σc , then σc(⊲⊳ {si}) =⊲⊳

{si}, since ⊲⊳ {si} results in only one row. Or in other words, the original output

contains row ⊲⊳ {si}. Hence we can compute the new row by σc(⊲⊳ {ri}) = σc(⊲⊳

{f(si, ti)}). Note that in this case the resulting row ⊲⊳ {ri} must still satisfy the

condition σc. The reason is that if the resulting row ⊲⊳ {ri} did not satisfy the

condition, then turning some of its columns to null, i.e., the original row ⊲⊳ {si},

still should not satisfy the condition when σc is null-intolerant. We thus only need

to perform updates using function f . This explains the update term in Figure 2.27.

ii) If the original row ⊲⊳ {si} does not satisfy the condition σc , the resulting

⊲⊳ {ri} may now satisfy the condition. Hence, in this case, we have to re-compute

⊲⊳ {ri}, since the original output does not contain the row ⊲⊳ {si}. The re-

computation can be evaluated as GPIV OT (πK(△V ) ⊲⊳ (V +△V )), i.e., we re-

compute those rows that are affected by the deltas, πK(△V ). We insert these new

rows that now satisfy the condition into the view. That is, σc(GPIV OT (πK(△V ) ⊲⊳

(V +△V ))).

Furthermore, we observe that only when those rows in △V that related to the

columns referenced in σc may generate new rows to the view. Hence, we can add

σc′ to reduce the join size as in Figure 2.27. σc′ is of the form (A1, ..., Am) =

(ai1
1 , ..., ai1

m) ∨ ... ∨ (A1, ..., Am) = (ail
1 , ..., ail

m), where σc refers to the columns

“a
ij
1 ∗ ∗... ∗ ∗a

ij
m” . This explains the insert term in Figure 2.27.

Hence this update propagation rule always holds under the insert case.
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2.7 Experimental Evaluation

In this section, we will experimentally evaluate the effectiveness of our

maintenance framework by measuring the performance of the maintenance

plans. In particular, we will show that the maintenance using update prop-

agation rules by first transforming the query into a particular “top-heavy”

shape is more efficient than the direct application of the insert/delete prop-

agation rules.

2.7.1 Setup

Implementation

In this work, we manually generate the maintenance queries and measure

the execution cost of these maintenance queries on top of a commercial

DBMS (Oracle 10g [ora]). Compared to an actual implementation inside the

database engine, our current maintenance measurement will not include

the cost of generating a maintenance plan. However, we argue that such

cost is generally much smaller than the actual maintenance. The reasons are

that, first, although our maintenance plan generation involves some query

transformation, such query transformation is much cheaper than that for

query optimization. Since the goal of our query transformation is simply

to move GPIVOT up, a single traversal of the query suffices. In compari-

son, the general query optimization needs to consider a much larger search

space for query transformation. Second, in data warehousing scenarios, the

size of data often easily exceeds giga-bytes or even tera-bytes. In this case,

the cost of generating a maintenance plan becomes almost negligible com-
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pared to the actual execution. Hence, our measurement is a good indication

for the maintenance performance.

Recall that our proposed maintenance technique has two phases, namely,

the propagation phase and the apply phase, as described in Section 2.3.

During the propagation phase, we may need to compute GPIVOT. This

currently has not yet been supported by any commercial database. To solve

this, similar to [CGGL04], we implement GPIVOT using the following SQL

GROUPBY subquery (in a concise form):

SELECT K,

max(case((A1, ..., Am) = (a1
1, ..., a

1
m), B1,⊥)) as “a1

1∗∗...∗∗a
1
m∗∗B1”,

max(case((A1, ..., Am) = (a1
1, ..., a

1
m), B2,⊥)) as “a1

1∗∗...∗∗a
1
m∗∗B2”,

...

max(case((A1, ..., Am) = (a1
1, ..., a

1
m), Bn,⊥)) as “a1

1∗∗...∗∗a
1
m∗∗Bn”,

...

max(case((A1, ..., Am) = (ai
1, ..., a

i
m), Bj ,⊥)) as “ai

1∗∗...∗∗a
i
m∗∗Bj”,

...

max(case((A1, ..., Am) = (ap
1, ..., a

p
m), B1,⊥)) as “ap

1∗∗...∗∗a
p
m∗∗B1”,

max(case((A1, ..., Am) = (ap
1, ..., a

p
m), B2,⊥)) as “ap

1∗∗...∗∗a
p
m∗∗B2”,

...

max(case((A1, ..., Am) = (ap
1, ..., a

p
m), Bn,⊥)) as “ap

1∗∗...∗∗a
p
m∗∗Bn”

FROM V

WHERE (A1, ..., Am) in {(ai
1, ..., a

i
m)}

GROUP BY K
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Here case((A1, ..., Am) = (ai
1, ..., a

i
m), Bj ,⊥) is a case expression that

for a given row r in V , if its columns (A1, ..., Am) = (ai
1, ..., a

i
m), then we

output its Bj column, otherwise, we output ⊥. The max function is used

here simply to conform to the SQL standard, since a non-group-by output

column must be an aggregate column. (A1, ..., Am) in {(ai
1, ..., a

i
m)} is an

abbreviation of a disjunctive predicate, i.e., (A1 = a1
1 ∧ ...∧Am = a1

m)∨ ...∨

(A1 = ap
1 ∧ ... ∧Am = ap

m).

The apply phase will first evaluate a join between the final delta and

materialized view. Based on the join results, INSERT, DELETE or UPDATE

will be applied to the view. It is important to apply such INSERT, DELETE

or UPDATE in one statement in order to avoid materializing any temporary

results. For this, we will use the MERGE operation [ora] to achieve this. In

particular, the MERGE operation inserts a row if there is no match between

the final delta and the materialized view, updates a row in the materialized

view if there is such a match, and deletes a row if the updated row now

contains only ⊥ entries or no longer satisfies the select condition.

The syntax of MERGE for integrating the final delta (the sub-query of

propagate phase in Section 2.3) into the view in the case of insertion is

as follows. Here we assume the view has key K and two pivoted output

columns, namely, c1 and c2.

MERGE INTO view

USING final delta

ON view.K = final delta.K

WHEN MATCHED
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UPDATE SET view.c1 = case((final delta.c1 =⊥),view.c1, final delta.c1),

view.c2 = case((final delta.c2 =⊥),view.c2, final delta.c2)

WHEN NOT MATCHED

INSERT VALUES (final delta.K, final delta.c1, final delta.c2)

As can be seen, it first performs a join between the final delta and the

view on the key K. If there is such a matching tuple, then we update the

view tuple using the case expression. In particular, this case expression

outputs view.c1 (or c2) if final delta.c1 (or c2) is ⊥, otherwise it outputs fi-

nal delta.c1 (or c2). If there is no such match, then we know that it is a new

row and insert it into the view.

The syntax of MERGE for integrating final delta (the sub-query of prop-

agate phase in Section 2.3) into the view in the case of deletion is as follows:

MERGE INTO view

USING final delta

ON view.K = final delta.K

WHEN MATCHED

UPDATE SET view.c1 = case((final delta.c1 =⊥),view.c1,⊥),

view.c2 = case((final delta.c2 =⊥),view.c2,⊥)

DELETE WHEN view.c1 = ⊥ AND view.c2 = ⊥

Compared to the insertion case, the difference is that when there is a

match between final delta and view, the case expression outputs ⊥ if fi-

nal delta.c1 (or c2) does not equal ⊥, otherwise it outputs view.c1 (or c2).
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After generating the new view tuple, we shall delete it if all its pivoted

output columns have become ⊥.

Testbed

We run our experiments on a TPC-H [TPC95] database with scale factor

1.0, i.e., the total size of tables is around 1 gigabytes. The schema of the

three TPC-H tables used in the experiments, namely, Lineitem, Orders and

Customer, are described below.

Lineitem(l orderkey, l partkey, l supplykey, l linenumber, l quantity, l ext-

endedprice, l discount, l tax, l returnflag, l linestatus, l commitdate, l rec-

eiptdate, l shipinstruct, l shopmode, l comment). Total 6,000,000 rows.

Order(o orderkey, o custkey, o orderstatus, o totalprice, o orderdate,

o orderpriority, o clerk, o shippriority, o comment). Total 1,500,000 rows.

Customer(c custkey, c name, c address, c nationkey, c phone, c acctbal,

c mktsegment, c comment). Total 150,000 rows.

Our experiments vary the types of views, as well as the sizes of the

source changes and their impact on the views. We then study how the dif-

ferent maintenance methods perform under these conditions. All the ex-

periments are conducted on a dual-CPU 800MHZ machine with 1G mem-

ory, running Linux.
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2.7.2 Maintaining Non-aggregate Views

Without SELECT on TOP of GPIVOT

Figure 2.30 gives the algebra definition of a non-aggregate materialized

view. As can be seen, it first pivots the Lineitem table and then joins the re-

sults with the Orders and Customer tables. The size of this view is 1,500,000

rows. Here the rename operator ρ is to rename the column names from

1,2,...,7 to itm1,itm2,...,itm7. The corresponding view definition in SQL

used in our experiments is depicted in Figure 2.31.

Lineitem Orders Customer

,6,7][1,2,3,4,5
pricel_extendedon er l_linenumb GPIVOT

pricel_extendeder,l_linenumb,l_orderkeyπ

itm7itm6,itm5,itm4,itm3,itm2,itm1,
y,c_nationkeo_custkey,,l_orderkeyπ

o_orderkeyl_orderkey=

c_custkeyo_custkey=

6,71,2,3,4,5,ρ
itm7itm6,itm5,

itm4,itm3,itm2,itm1,

Figure 2.30: Materialized View Definition for View1

Before we describe the experimental results, we provide a brief cost

analysis of the maintenance methods we use. In particular, we compare

the maintenance using the insert/delete propagation rules to the mainte-

nance using the update propagation rules in Figures 2.20 and 2.21.
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y c_nationke o_custkey, ,l_orderkey   GROUPBY

7)erl_linenumb OR ... OR 1ber (l_linenum AND                 

c_custkeyo_custkey AND o_orderkeyl_orderkey   WHERE

Customer Orders, Lineitem,   FROM

itm7 as ))price,l_extended7),erl_linenumbmax(case((                 

....                 

itm2, as ))price,l_extended2),erl_linenumbmax(case((                 

itm1, as ))price,l_extended1),erl_linenumbmax(case((                 

y,c_nationkeo_custkey,,l_orderkey   SELECT

   view1VIEW   CREATE

==
==

⊥=

⊥=
⊥=

Figure 2.31: Materialized View Definition for View1 in SQL

Cost analysis. Assume one view is defined as V = GPIV OT (T ) 5. Here T

can be any arbitrary sub-query. The maintenance expressions generated using the

insert/delete propagation rules are:

(1) GPIV OT (∆T ) ⊲⊳ GPIV OT (T ) for deleting existing view rows;

(2) GPIV OT (∆T )=⊲⊳GPIV OT (T ) for generating the new view row.

The maintenance expression generated using the update propagation rules is

simply:

(3) GPIV OT (∆T )=⊲⊳V .

Clearly, the cost of evaluating expression (3) is always cheaper than that of

evaluating expressions (1) and (2). The reason is that, first the evaluation of ex-

pression (2) is always more expensive than that of expression (3). The reason is that

V = GPIV OT (T ). Expression (3) uses pre-computed result V while expression

(2) instead re-computes it from scratch. Second, the computation of expression (1)

is an extra cost, which the update propagation rules do not incur.

5Here the parameters for GPIVOT are not important for cost analysis and are thus omit-
ted for brevity.
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Maintenance under Source Insertions: We now discuss the experimental

results and show that they are consistent with our cost analysis. First, we

consider the insert case on the Lineitem table. The following three methods

can be used to refresh the view. The first method is to perform full re-

computation. The second method is to perform incremental maintenance

using the insert/delete propagation rules for GPIVOT in Figure 2.20. The

third method is to first pull up GPIVOT to the top of the algebra tree and

then apply the update propagation rules in Figure 2.21.

In particular, we distinguish between two extreme cases. The first case

is that the insert of the source data causes only view updates. Under this

scenario, the cost of expression (1) in the above cost analysis is maximal.

Hence, update propagation rules likely will significantly outperform the

insert/delete propagation rules. The second case is that the insert of the

source data causes only view inserts. Under this scenario, the insert/delete

rules may perform better since the execution cost of expression (1) is mini-

mal. The goal of this experiment is to justify if the update propagation rules

are always preferable choices.

Figure 2.32 depicts the maintenance results for the first case when the

source changes result in only view updates. Here y-axis denotes the exe-

cution cost of the maintenance expression in seconds. x-axis denotes the

percentages of insertion on the Lineitem table, namely, the number of tu-

ples inserted over the number of tuples in the original Lineitem table.

As can be seen, the maintenance using the update propagation rules

performs much better than the maintenance using the insert/delete prop-

agation rules. This is consistent with our previous cost analysis, since the
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Figure 2.32: Maintenance of View1 under Source Insertion (Resulting in
Only View Updates)

insert/delete rules cause many existing view tuples to be deleted and re-

inserted again.

Also the maintenance using the update propagation rules outperforms

the full re-computation when the size of insertion is small. At 1% inser-

tion, the maintenance using the update propagation rules already performs

one order of magnitude better than full re-computation (120s .vs. 13s).

The maintenance cost increases faster than the full re-computation cost

as the size of insertion increases. The reason is that the cost of integrat-

ing the deltas to the view increases. Such cost does not occur for full re-

computation. The crossover point is around 20% in this case 6. This makes

our solution fairly attractive in data warehousing scenarios, since most data

6This crossover point primarily will be affected by the size of view, as will be described
in the Workarea Chapter 3. The maintenance of aggregate (or pivoting) views contains
two portions: propagate phase and apply phase. The propagate phase often accesses less
data than that for re-computation, while the apply phase is an extra cost compared to re-
computation. Hence the larger the size of the view, the lower the crossover point between
incremental maintenance and full re-computation. The experimental results in Figure 3.7
describe such behavior.
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warehouse periodical load is small compared to the base table size.

Figure 2.33 depicts the maintenance performance for the second case

when the source changes result in only view insertions. Under this sce-

nario, the maintenance using the insert/delete rules performs much bet-

ter than in the former case, as no existing view tuples will be deleted and

re-inserted again. However, the maintenance using the update rules still

outperforms the maintenance using the insert/delete rules by a factor of

two. This is also consistent with our previous cost analysis: because the

maintenance expression (3) uses the pre-computed result (view), while the

maintenance expression (2) has to re-compute the view from scratch.
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Figure 2.33: Maintenance of View1 under Source Insertions (Resulting in
Only View Insertions)

Maintenance under Source Deletions: Next, we consider the maintenance

of View1 (Figure 2.30) under the deletion on the Lineitem table. Similarly,

three methods can be used to refresh the view. The first method is to per-

form full re-computation. The second method is to perform incremental

maintenance using the insert/delete propagation rules for GPIVOT in Fig-
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ure 2.20, while the third method is to first pull up GPIVOT to the top of the

algebra tree and then apply the update propagation rules in Figure 2.21.
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Figure 2.34: Maintenance of View1 under Deletion

Figure 2.34 depicts the maintenance results. Here y-axis denotes the

execution cost of the maintenance expression in seconds. x-axis denotes

the percentages of deletion on the Lineitem table. As can be seen from the

figure, the maintenance method using the update rules performs three to

four times better than the method using the insert/delete rules. This is

consistent with our cost analysis and the results in the insertion case.

The maintenance cost increases as the size of deletion increases, while

at the same time, the full re-computation cost decreases since the size of the

base table decreases. The crossover point is now around 15% in this case.

Note that such 15% deletion of the historical data warehouse data can be

still fairly large in practice. This means that our incremental maintenance

solution would be useful under most common data warehouse workloads.

Hence, from both our cost analysis and the experiments in Figures 2.32,

2.33 and 2.34, we conclude that the update propagation rules are always
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preferable choices compared to the insert/delete propagation rules.

With SELECT on TOP of GPIVOT

Figure 2.35 gives the algebra definition of another type of view, namely,

a non-aggregate materialized view with a SELECT on top of GPIVOT. As

can be seen, it first pivots the Lineitem table and then chooses these rows

whose first item price is greater than 30000. The results are then joined with

the Orders and Customer tables. The size of this view is 890,000 rows. The

corresponding view definition in SQL used in our experiments is depicted

in Figure 2.36.

Lineitem Orders Customer

,6,7][1,2,3,4,5
pricel_extendedon er l_linenumb GPIVOT

pricel_extendeder,l_linenumb,l_orderkeyπ

itm7itm6,itm5,itm4,itm3,itm2,itm1,
y,c_nationkeo_custkey,,l_orderkeyπ

30000itm1 σ >

o_orderkeyl_orderkey=

c_custkeyo_custkey=

6,71,2,3,4,5,ρ
itm7itm6,itm5,

itm4,itm3,itm2,itm1,

Figure 2.35: Materialized View Definition for View2

Before we describe the experimental results, we will provide a brief cost

analysis of the maintenance methods we use. In particular, we will com-

pare the maintenance using update propagation rules in Figure 2.21, which

requires us to push down the SELECT resulting in multiple self-joins, to the
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30000  itm1 AND                 

c_custkey o_custkey    AND   o_orderkey  l_orderkey   WHERE

Customer Orders, TEMP, as )l_orderkey   GROUPBY                

7)erl_linenumb OR ... OR 1ber (l_linenum AND                      

c_custkeyo_custkey  AND  o_orderkeyl_orderkey   E       WHER          

Lineitem   FROM                

itm7 as ))price, l_extended7),r_linenumbe lmax(case((                     

...                     

itm2, as ))price, l_extended2),r_linenumbe lmax(case((                     

itm1, as ))price, l_extended1),r_linenumbe lmax(case((                     

y,c_nationke o_custkey,,l_orderkey   (SELECT   FROM

itm7itm6,itm5,itm4,itm3,itm2,itm1,               

y,c_nationke  o_custkey, ,l_orderkey SELECT

2 VIEW  view  CREATE

>
==

==
==

⊥=

⊥=
⊥=

Figure 2.36: Materialized View Definition for View2 in SQL

maintenance using the combined update propagation rules in Figure 2.27.

Cost analysis. We first consider the simplest case that the select predicate

involves only one pivoted output column. Assume one view is defined as V =

σc(GPIV OT (T )). Here T can be any arbitrary sub-query. After pushing σc

down as in Section 2.5.1, we have V = GPIV OT (σc′(T ) ⊲⊳ T ).

In the deletion case, the maintenance expression generated by SELECT push-

down and the update propagation rules in Figure 2.21 is:

(1) GPIV OT (σc′(▽T ) ⊲⊳ (T −▽T ) + σc′(T ) ⊲⊳ ▽T ) ⊲⊳ V .

The maintenance expression generated by the combined update propagation

rules explained in Figure 2.27 is simply:

(2) GPIV OT (▽T ) ⊲⊳ V .

Clearly, the cost of evaluating expression (2) is always cheaper than that of

evaluating expression (1).
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In the insertion case, the maintenance expression generated by SELECT push-

down and the update propagation rules in Figure 2.21 is:

(3) GPIV OT (σc′(△T ) ⊲⊳ (T +△T ) + σc′(T ) ⊲⊳ △T )=⊲⊳V .

The maintenance expression generated by the combined update propagation

rules as in Figure 2.27 is:

(4) GPIV OT (△T + σc′(△T ) ⊲⊳ T )=⊲⊳V .

The maintenance expression (4) avoids the join term σc′(T ) ⊲⊳ △T compared

to expression (3). The semantics σc′(T ) ⊲⊳ △T is to find the delta rows with the

keys that had satisfied the select condition in the original base tables. Actually

these keys must be in the original view since V = GPIV OT (σc′(T )). The join

between view V will provide us such information.

When the select predicate involves more pivoted output columns, the mainte-

nance by select pushdown will generate even more self-join terms, while the main-

tenance using combined update propagation rules remains the same.

Maintenance under Source Deletions: Based on the cost analysis, we now

discuss the experimental results. We first consider the delete case on the

Lineitem table. The following four methods can be used to refresh the view.

The first method is to perform full recomputation. The second method is

to perform incremental maintenance using the insert/delete propagation

rules for GPIVOT in Figure 2.20. The third method is to pullup GPIVOT to

the top of the algebra tree, i.e., pushing SELECT down GPIVOT, in order to

apply the update rules in Figure 2.21. The fourth method is to pull both SE-

LECT and GPIVOT up and apply the combined update propagation rules
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in Figure 2.27.
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Figure 2.37: Maintenance of View2 under Deletion

Figure 2.37 depicts the maintenance results. Here the y-axis denotes

the execution cost of the maintenance expression in seconds. x-axis de-

notes the percentages of deletions on the Lineitem table. As can be seen

from the figure, the maintenance method using our combined update rules

(in Figure 2.27) considerably outperforms both the maintenance method

using the update propagation rules by SELECT pushdown and using the

insert/delete propagation rules.

More precisely, the maintenance plan by the SELECT/GPIVOT com-

bined update propagation rules is:

(GPIV OT (▽L) ⊲⊳ C ⊲⊳ O) ⊲⊳ MV 7.

In comparison, the maintenance by pushing down the SELECT operator is:

((GPIV OT (σc′(▽L) ⊲⊳ (L−▽L) + σc′(L) ⊲⊳ ▽L) ⊲⊳ O ⊲⊳ C) ⊲⊳ MV 8.

Obviously, propagating changes through multiple self-joins is non-trivial,

as it generates multiple join terms [GMS93]. Note that when the select con-

7Here L denotes Lineitem table, O denotes Orders table, C denotes Customer table,▽L

denotes deletion on Lineitem table and MV denotes materialized view.
8Here c′ is σl linenumber=1∧l extendedprice>30000
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dition involves more pivoted output columns, then more self-joins will be

generated when pushing down the select operator. Hence, the select push-

down method will likely perform even worse in this case. This confirms

the result of our cost analysis that the combined update propagation rules

generate a cheaper maintenance plan.

Maintenance under Source Insertions: Next, we consider the insert case

on the Lineitem table. Figure 2.38 depicts the maintenance results.
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Figure 2.38: Maintenance of View2 under Insertion

We find that our combined update propagation rules again outperform

the SELECT pushdown and the insert/delete maintenance methods. Here

the maintenance plan generated by combined update rules is:

((GPIV OT (σc′(△L) ⊲⊳ L +△L) ⊲⊳ O ⊲⊳ C)=⊲⊳MV .

In comparison, the maintenance plan by SELECT pushdown is:

((GPIV OT (σc′(△L) ⊲⊳ (L +△L) + σc′(L) ⊲⊳ △L) ⊲⊳ O ⊲⊳ C)=⊲⊳MV .

Clearly, the latter plan generates more join terms than the former. It
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would generate even more join terms when the select condition is more

complex. Thus both our cost analysis and experimental results confirm

that our combined update rules are preferable incremental maintenance

choices.

2.7.3 Maintaining Aggregate Views

Figure 2.39 gives the algebra definition of an aggregate materialized view.

As can be seen, it first joins the Lineitem, Orders and Customer tables and

then computes total price and count for each customer, nationality and

year. After that, the summary data is pivoted by year on both sum and

cnt in order to provide a cross-tab view, namely, with each output tuple

containing the summary information from 1992 to 1996 for each customer.

The size of this view is 100,000 rows with 12 columns. The corresponding

view definition in SQL used in our experiments is depicted in Figure 2.40.

Lineitem Orders Customer

,1996],1994,1995[1992,1993
cnt][sum,on year  GPIVOT

FFFFo_custkey, c_nationkey,
year(l_shipdate)

sum(l_extendedprice), count(*)

o_orderkeyl_orderkey=

c_custkeyo_custkey=

Figure 2.39: Aggregate Materialized View Definition for View3

Note that the cost analysis comparing the update propagation rules
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y c_nationke o_custkey,   GROUPBY

1996)pdate)year(l_shi OR ... OR 1992 ipdate)(year(l_sh AND                 

c_custkeyo_custkey AND o_orderkeyl_orderkey   WHERE

Customer Orders, Lineitem,   FROM

*cnt,*1996 as ))price,l_extended6),199hipdate)((year(l_scount(case                 

*sum,*1996 as ))price,l_extended1996),pdate)year(l_shisum(case((                 

....                 

*cnt,*1992 as ))price,l_extended2),199hipdate)((year(l_scount(case                 

*sum,*1992 as ))price,l_extended1992),pdate)year(l_shisum(case((                 

y,c_nationkeo_custkey,   SELECT

3VIEW  view  CREATE

==
==

⊥=
⊥=

⊥=
⊥=

Figure 2.40: Aggregate Materialized View Definition View3 in SQL

with the insert/delete propagation rules for GROUPBY is the same for

GPIVOT as in Section 2.7.2. Hence, in this section, we will directly dis-

cuss the experimental results to confirm such finding.

Maintenance under Source Deletions: We first consider the case of delet-

ing tuples from the Lineitem table. The following three methods can be

used to refresh the view. The first method is to perform full re-computation.

The second method is to perform incremental maintenance using the up-

date rules for GPIVOT and using the insert/delete propagation rules for

GROUPBY, since GROUPBY is not at the top of the view query. The third

method is to use combined update propagation rules for both GPIVOT and

GROUPBY as in Figure 2.25.

Figure 2.41 depicts the maintenance results. Here y-axis denotes the

execution cost of the maintenance expression in seconds. x-axis denotes

the percentages of deletion on the Lineitem table. As can be seen from

the figure, the maintenance method using our combined update rules (in
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Figure 2.41: Maintenance of View3 under Deletion

Figure 2.25) performs one order of magnitude better than the one using

the insert/delete rules for GROUPBY [Qua96]. The reason is that the in-

sert/delete propagation rules for GROUPBY [Qua96] are non-trivial. They

involve costly identification and then recomputation of affected groups.

Our combined update rules avoid using insert/delete rules for both GPIVOT

and GROUPBY. Hence they perform much better.
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Figure 2.42: Maintenance of View3 under Insertion

Maintenance under Source Insertions: Next, Figure 2.42 depicts the main-

tenance results under the insertion case. As can be seen, the results are
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similar to the deletion case. The maintenance using combined update rules

performs significantly better. In conclusion, our combined update rules are

preferable incremental maintenance choices than the maintenance method

that considers GPIVOT and GROUPBY separately.

2.7.4 Summary of Experiments

In this section, first we have presented the cost analysis of various our pro-

posed maintenance rules. We show that 1) the update propagation rules are

preferable choices compared to the insert/delete propagation rules, and 2)

the combined update propagation rules are preferable choices compared

to considering each operator separately. Overall, our extensive experimen-

tal results validate our cost analysis and confirm the effectiveness of our

proposed maintenance strategies.

2.8 Related Work

Incremental view maintenance has received considerable attention from

the database community for the last decade [GMS93, GL95, MQM97, CGL+96,

SBCL00]. In [GMS93], the authors propose algorithms for incremental view

maintenance under bag semantics. They also support recursive views in

Datalog. In [GL95], the authors establish an algebraic framework for prop-

agating deltas through each operator, which is more robust and extensible

to new language constructs. In this work, we propose to extend this frame-

work to also support PIVOT and UNPIVOT operators. Note that since

PIVOT requires a key to exist in the source table, we assume set seman-
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tics for non-aggregate views and bag semantics for aggregate views (since

group-by columns form a key).

PIVOT is similar to GROUPBY in many ways [CGGL04]. In [Qua96],

the authors propose the insert/delete and update propagation rules for the

GROUPBY operator. They also show that it is more preferable to use the

latter rules. However, unlike the PIVOT operator, the GROUPBY opera-

tor loses the detailed data. Hence the combination and pullup rules for

GROUPBY are fairly restrictive. As a result, most commercial database sys-

tems only support SPJ+GROUPBY views. Or in other words, they do not

support general views with any number of GROUPBY operators that can

be anywhere in the query tree. Fortunately, we illustrate in this work that

the PIVOT operator has a lot of interesting properties since it keeps the de-

tailed data. As shown in this chapter, they can be combined in many ways,

resulting in a generalized pivot operator. They can also be pulled up in the

query algebra tree, which is more flexible than the situation observed for

the GROUPBY operator [CS94]. As a result, we illustrate that it is possible

to derive an efficient maintenance plan. In fact, the same approach can be

applied for efficient maintenance of general aggregate views with arbitrary

number of GROUPBY operators.

In [CGGL04], the authors propose the optimization and execution strate-

gies for pivot and unpivot in Microsoft SQL Server. In fact, similar tech-

niques can also be applied to include the GPIVOT and GUNPIVOT into

the query engine as also briefly mentioned by the authors. In this chapter,

we address another important aspect of the PIVOT and UNPIVOT opera-

tors, namely, incremental view maintenance. We also show the necessity
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of the GPIVOT definition for efficient view maintenance as well as for the

optimization of queries with even just simple PIVOTs.

The PIVOT operator defined in [CGGL04] has slight semantic difference

than our definition here. In that work, a pivoted output row may contain

all⊥ columns. In this case, when we have a maintained pivoted tuple (K,⊥

, ...,⊥), we cannot simply delete it. One solution is to extend the definition

of such a PIVOT operator to also include a column COUNT(*), which com-

putes the number of rows for each K. We delete the view tuple (K,⊥, ...,⊥

, CNT ) only when CNT becomes 0. When GPIVOT is above a GROUPBY

operator, we can extend the GPIVOT definition to include a SUM(count(*))

column. We delete the view tuple (K,⊥, ...,⊥, SUM(count(∗))) only when

SUM(count(*)) becomes 0.

The PIVOT and UNPIVOT operators studied in this chapter are first-

order, since the output columns are pre-determined in the query by speci-

fying the interested values. In [LSS99], the authors propose the SchemaSQL

language with FOLD and UNFOLD operators which are very similar to

PIVOT and UNPIVOT operators. However, these two operators are high-

order since the output columns are dynamically determined by all distinct

values. The incremental maintenance SchemaSQL views was first studied

in [KR02]. However, the technique is primarily tuple-based and not effi-

cient for batch updates. In this work, we study the first-order version of

such operators and thus we are able to derive efficient maintenance plans.

It is an interesting future work to extend our proposed algorithms to sup-

port the maintenance of such higher-order pivot and unpivot operators,

such as FOLD and UNFOLD [LSS99].
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Chapter 3

Views with Complex Aggregate

Functions

3.1 Our Contributions

In this chapter, we will propose a generic and comprehensive solution frame-

work for management of views with complex aggregate functions as moti-

vated in Section 1.3.2. In summary, the main contributions of this work are

as follows:

• We propose a workarea function model for management of views

containing complex aggregate functions. This framework greatly in-

creases the system’s extensibility to add the support of new func-

tions, which is an especially useful feature for user-defined functions

[WZ00].

• Based on this model, we propose a generic strategy for maintaining
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aggregate materialized views with complex aggregate functions.

• We introduce a view matching algorithm to answer queries using

such views also in a generic fashion using our workarea function

model.

• Our workarea function model can also be extended to support multi-

dimensional view maintenance and view matching. We can now also

efficiently stack the computation of a multidimensional query.

• We have implemented our techniques in a prototype system of IBM

DB2 UDB [Cha98]. The extensive experimental study demonstrates

orders of magnitude performance improvement for incremental view

maintenance and stacking computation for multi-dimensional queries.

The rest of this chapter is organized as follows. Section 3.2 presents the

workarea function model. In Sections 3.3, we describe the techniques for

incremental view maintenance with algebraic functions. Section 3.4 intro-

duces a view matching algorithm for answering queries using such views.

Section 3.5 describes how to support algebraic functions with multidimen-

sional operators. We discuss the experimental results in Section 3.6. Sec-

tion 3.7 reviews the related work.
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3.2 Workarea Function Model

3.2.1 Properties of Aggregate Functions

In [GBLP96], the authors classify the aggregate functions into three cate-

gories in terms of their incremental maintainability, namely, distributive,

algebraic and holistic. The definitions of these functions in [GBLP96] are as

follows. Consider two data sets {Xi|i = 1..n} and {Yj |j = 1..m}.

• A function F is distributive if there is a function G such that F ({Xi} ∪

{Yj}) = G(F ({Xi}), F ({Yj})).

• A function F is algebraic if there are functions G and H such that

F ({Xi} ∪ {Yj}) = G(H({Xi}),H({Yj})), where H is a function that

computes M values.

• A function F is holistic if there is no constant bound on the size of the

storage requirement for computing the sub-aggregate on {Xi}.

Note that since holistic functions, such as Median, are not incrementally

maintainable, in this work, we will only consider distributive and algebraic

functions. While the above definitions clearly state the properties of differ-

ent types of aggregate functions, they do not provide a clear picture how

the views with such aggregate functions can be managed. For example, it is

not straightforward how the function H that computes M values is defined

and used for view maintenance or view matching. In this section, we will

introduce a fine-grained model, called workarea function model, that captures

the properties of the incrementally maintainable functions while enabling

generic view management techniques for such functions.
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3.2.2 Workarea Functions

There are basically two ways to incrementally compute an aggregate func-

tion. The first method is to maintain the function F directly. That is, two

maintenance functions, namely, f+
F and f−F , are required to incrementally

compute F under either insert or delete case. Obviously, for distributive

aggregate functions, no other extra function is required for f+
F and f−F . For

algebraic aggregate functions, some auxiliary functions now become neces-

sary.

Table 3.1 describes the functions that are maintained directly. Here

NVar is Variance*Count and NCov is Covariance*Count. n denotes Count.

s denotes Sum. nv denotes NVar. nc denotes NCov. sx or sy denotes the

Sum of variable x or y. △ denotes the computation of the function from the

insert delta, e.g.,△nv denotes the computation of nv from the insert delta.

Similarly, ▽ denotes the computation of the function from the delete delta.

Workarea Func F Aux. Func Maint. Func f+
F Maint. Func f−F

Count(x) - n +△n n−▽n

Sum(x) - s +△s s−▽s

NVar(x) Count,
Sum

f+
NV ar(nv,△nv,

s,△s, n,△n) (1)
f−NV ar(nv,▽nv,
s,▽s, n,▽n) (2)

NCov(x,y) Count,
Sumx,
Sumy

f+
NCov(nc,△nc,

sx,△sx, sy,△sy,
n,△n) (3)

f−NCov(nc,▽nc,
sx,▽sx, sy,△sy,
n,▽n) (4)

... ... ... ...

Table 3.1: Workarea Function Table

As can be seen from Table 3.1, since Sum and Count are distributive

functions, they do not need any auxiliary function. NVar and NCov are al-
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gebraic functions. Their maintenance functions require two auxiliary func-

tions, namely, Sum and Count. Note that any of such auxiliary functions

must also be defined in Table 3.1, otherwise the maintenance logic is in-

complete since these auxiliary functions need to be maintained as well. The

maintenance functions for NVar and NCov are defined in Equation (1) to (4)

[CGL83]. Finally, we call the functions defined in the first column of Ta-

ble 3.1 as workarea functions.

f+
NV ar() = nv +△nv + n

△n∗(n+△n)
∗ (△n

n
∗ s−△s)2 (1)

f−NV ar() = nv−▽nv− n
▽n∗(n−▽n)

∗ (▽n

n
∗ s−▽s)2 (2)

f+
NCov() = nc +△nc + n

△n∗(n+△n)
∗ (△n

n
∗ sx−△sx) ∗ (△n

n
∗ sy −△sy) (3)

f−NCov() = nc−▽nc− n
▽n∗(n−▽n)

∗ (▽n

n
∗ sx−▽sx) ∗ (▽n

n
∗ sy −▽sy) (4)

3.2.3 Derived Functions

The second method is to maintain function F indirectly by defining it based

on the workarea functions. As depicted in Table 3.2, a function F is defined

as a scalar function f over a set of workarea functions in Table 3.1. The

maintenance of function F is achieved by first maintaining its workarea

functions and then computing the new value of F from the maintenance

results.

For example, V ariance is defined as NV ar
Count

, where NVar and Count are

workarea functions defined in Table 3.1. Since the maintenance of NVar

also requires Sum as in Table 3.1, all (NVar, Sum, Count) are the supporting

workarea functions for Variance. Variance is thus maintained by first main-

taining its workarea functions (NVar, Sum, Count) and then computing the
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Derived Func F Workarea Func W F Scalar Func f

Stddev(x) NVar, Count, Sum fStddev =
√

NV ar
Count

Variance(x) NVar, Count, Sum fV ar = NV ar
Count

Regr Inter
cept(x,y)

Sumx, Sumy, Count,
NVarx, NVary, NCov

fIcpt = Sumy
Count

− NCov
NV arx

∗
Sumx
Count

Regr Slope (x,y) Sumx, Sumy, Count,
NVarx, NVary, NCov

fSlope = NCov
NV arx

... ... ...

Table 3.2: Derived Function Table

new value from the maintenance results.

Finally, as a general rule for function design, we should design a small

set of core workarea functions such that they can be used to support a large

class of other functions. The reason is simply that the derived function is

much easier to implement (as only one scalar function is required). Such

design is also beneficial for view matching as a small set of workarea func-

tions in the view can be used to answer a variety of derived functions in the

query. This workarea function model serves the basis for aggregate view

management as we will elaborate in the next few sections.

3.3 View Maintenance using Workarea Functions

We first explore how to incrementally maintain the view based on the workarea

function model in Section 3.2.
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3.3.1 View Creation

Given an aggregate function F in the view, we first need to determine the

method to maintain this function and if any additional function is neces-

sary. Note that these additional functions need to be maintained as well.

All such information can be exploited from our workarea function model

in Section 3.2. That is, if F is a workarea function, then we maintain it di-

rectly using f+
F , f−F in Table 3.1. If F is a derived function, then we maintain

it indirectly by first maintaining its workarea functions and then compute

the new F value from the maintained workarea functions.

Note that for both methods, some auxiliary workarea functions may be

necessary to be added into the view in order to incrementally maintain F .

Furthermore, these auxiliary workarea functions have to be incrementally

maintained as well. As a result, more functions would have to be added.

In fact, such information can be easily pre-derived and stored by adding

all necessary functions into the Auxiliary functions in Table 3.1 and into the

Workarea functions in Table 3.2. For example, in Table 3.2, although the def-

inition of Regr Slope only needs NCov and NV arx two workarea func-

tions, other workarea functions, such as Sumx and Sumy are also included

in order to incrementally compute NCov and NV arx.

Based on the above discussions, we need to add the following workarea

functions into the view definition when creating an aggregate materialized

view. For any workarea function F , we add its auxiliary functions (Ta-

ble 3.1) into the view. For any derived function F , we add its workarea

functions (Table 3.2) into the view. Note that this step can be done auto-
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matically using the workarea function model without any user actions. For

example, when user creates the view (1.1) in Section 1.3.2, this view defi-

nition will be automatically rewritten by adding W slope, i.e., the workarea

function for Regr slope, which consists of six functions shown in Table 3.2.

CREATE VIEW SalesAnalysis′ AS

SELECT o custkey, regr slope(l extendedprice, l quantity) as qtyonprice,

W slope(l extendedprice, l quantity) as wa, count(∗) as cnt

FROM lineitem, orders

WHERE l orderkey = o orderkey

GROUP BY o custkey

(3.1)

3.3.2 Incremental View Maintenance

In this section, we will first describe the existing view maintenance frame-

work and then show how to extend this framework to support the mainte-

nance of complex aggregate functions. In [CGL+96, MQM97], the authors

proposed to maintain the views in two steps, namely, the Propagate phase

and the Apply phase as shown in Figure 3.1. The Propagate phase computes

the final delta from the base changes which represents the net effect of the

changes to the view. The Apply phase integrates the final delta into the view.

We now describe how to extend this basic framework to support complex

aggregate functions using our workarea function model.
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Figure 3.1: Incremental View Maintenance Framework

Propagate Phase

The Propagate phase computes the final delta [MQM97] from the base changes

which represent the net effect of the changes to the view. A number of algo-

rithms [GL95, GMS93] discuss the propagation of the deltas through each

operator, such as select, join, group-by, etc.

Take the view (3.1) for example, assume there are some inserts △L on

Lineitem table. The final delta is computed as in Query (3.2), which also

includes the workarea functions as a result of the rewriting of view (3.1).

CREATE VIEW FinalDelta AS

SELECT o custkey,

regr slope(l extendedprice, l quantity),

W Slope(l extendedprice, l quantity),

count(∗)

FROM △L, orders

WHERE l orderkey = o orderkey

GROUP BY o custkey

(3.2)
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Apply Phase

The Apply phase will evaluate an equi-join between the view and the final

delta on the group-by columns. Note that a left outer-join may be required

as the insert final delta may create new groups to the view. If all the tuples

of one group are deleted, then that group should be deleted (COUNT(*) is

hence required.). If both the view and the final delta contain tuples of the

same group, these two tuples will be combined to update the correspond-

ing tuple in the view. For any workarea function F in Table 3.1, we can fetch

the corresponding f+
F or f−F to incrementally compute F . For any derived

function F in Table 3.2, we can compute its new value from maintained

workarea functions.

A key feature of our maintenance framework is that, while user still

needs to implement all workarea related functions, there is no need to hard

code in the maintenance algorithm for any specific function. In order to

add the support of new functions, we just need to insert the corresponding

entries into Table 3.1 and 3.2. Clearly such extensibility is a very useful

feature for user-defined aggregate functions [WZ00].

3.4 View Matching using Workarea Functions

View matching algorithms [CKP95, GL01, LMS95] decide if and how a view

can be used to answer a query. [GHQ95, SDJL96, CNS99, ZCL+00] studied

the problems of how to answer aggregate queries using aggregate views.
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However these prior work only focus on handling distributive functions,

such as Sum and Count. In this section, we introduce a generic view match-

ing algorithm for how to answer queries with complex aggregate functions

using views based on our workarea function model.

3.4.1 View Matching Background: Matching Framework

We first briefly review the existing view matching framework [ZCL+00]

that our work is based on. This framework is built upon the Query Graph

Model (QGM) [HFLP89], which is a structural representation of the SQL

statements. In QGM, a query is represented as a rooted directed graph

consisting of rectangular boxes. Each box implements one relational oper-

ator based on the specified input and output columns. In particular, the

leaf boxes are the base tables. The intermediate boxes are the intermedi-

ate query results labeled by its operation, such as SELECT, GROUPBY, etc.

SELECT box represents the select-project-join (SPJ) query, while GROUPBY

box computes the aggregates, or multidimensional aggregates such as CUBE

and Rollup [GBLP96]. The edges represent the data flow from the output

columns of one box to the input columns of another box. The root box

represents the final query result.

SELECT o custkey, Sum(l extendedprice) as price

FROM lineitem, orders

WHERE l orderkey = o orderkey

GROUP BY o custkey

(3.3)

Figure 3.2 depicts the QGM for the SQL query (3.3). The leaf boxes
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l_orderkey = o_orderkey

o_custkey, extendedprice

Base        lineitem

group by o_custkey

o_custkey, sum(extendedprice) as price

Output columns

Output columns

Group-by Predicates       

GROUP BY        

SELECT        

Base      orders

Predicates       

Figure 3.2: Query Graph Model (QGM) for Query (3.3)

are the base tables lineitem and orders. The next SELECT box evaluates an

equi-join between two base tables. Finally, we perform aggregation in the

GROUPBY box with group-by column o custkey. It outputs two columns,

namely, o custkey and sum of price.

A general query matching framework based on QGM model is intro-

duced in [ZCL+00]. The framework is a bottom-up matching of pair of the

query QGM and the view QGM boxes. The overall algorithm works as fol-

lows. Given a query QGM and a view QGM, we start matching from the

bottom of the two QGMs. A view QGM box X is called (subsumee) if it

provides all the data necessary to compute the corresponding query QGM

box Y (subsumer). Adjustment is needed if the two boxes do not match ex-

actly, which is called compensation. Such compensation makes the subsumee

and subsumer semantically equivalent and has to be pulled up along the

matching phases. The compensation to the root of the view QGM gives the

rewritten query. The essence of this approach is that at any time, we only
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need to consider the current two QGM boxes and the last compensation.

The general matching conditions of two boxes include first, the two

boxes must be of the same type, and second, the subsumer expression can be

derived from the output of the subsumee. For two SELECT boxes, the local

predicates of the subsumee box must be semantically equivalent or weaker

than that of the subsumer box. The subsumee box may contain extra join with

the tables that do not exist in the subsumer box. However, such join must

be an equi-join on key and foreign key in order to preserve the cardinality.

The subsumer box may contain rejoin with the tables that do not exist in the

subsumer box. Such rejoin should be included in the compensation and the

join columns have to be in the final output of the subsumer.

l_orderkey = o_orderkey

o_custkey, l_extendedprice

group by o_custkey

o_custkey,
sum(l_extendedprice) as price

GROUP BY        

SELECT        

Base   orders        Base   lineitem

l_orderkey = o_orderkey

o_custkey, year(l_shipdate) as year,          
l_extendedprice

group by o_custkey, year

o_custkey, year
sum(l_extendedprice) as price

GROUP BY        

SELECT        

Base   orders        Base   lineitem

match        

match with 
compensation        

group by o_custkey

o_custkey,
sum(price) as price

GROUP BY        

Rewritten Query:
SELECT o_custkey, SUM(price) as price   
FROM MV  
Group By o_custkey

Query MV

Figure 3.3: Matching Framework: An Example

Figure 3.3 describes a concrete example of such matching phase. The

left part is the QGM for query (3.3). The right part with solid rectangles is
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the QGM of a view defined in (3.4).

CREATE VIEW V AS

SELECT o custkey, year(l shipdate) as year,

Sum(l extendedprice) as price,

FROM lineitem, orders

WHERE l orderkey = o orderkey

GROUP BY o custkey, year(l shipdate)

(3.4)

The matching starts with the base tables and then the two SELECT

boxes. The two join predicates match while the view QGM box contains ex-

tra columns which can be ignored. Then the matching goes up for the two

GROUP BY boxes. The group-by columns in the view must be a superset of

(or equal to) that in the query. If they are not equivalent, then re-aggregation

compensation is required as the dotted box in Figure 3.3. Furthermore, an ex-

act match of the aggregate function is expected, i.e., Sum(X) in the query

expects Sum(X) in the view as well. The rewritten query is shown in the

left-top in Figure 3.3.

3.4.2 Matching without Re-aggregation

From this section, we will describe our proposed view matching algorithm

using workarea function model. We will only consider the matching of

the two GROUPBY boxes since the aggregate functions are evaluated in-

side the GROUPBY box. In general, our proposed algorithm handles two

matching categories, namely, matching without re-aggregation over the view

and matching with re-aggregation over the view.

The general matching rules of the first category are that:
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l_orderkey = o_orderkey

o_custkey, 
extendedprice, quantity

group by o_custkey

o_custkey,
regr_slope(extendedprice, 

quantity) as slp

GROUP BY        

SELECT        

Base orders        Base lineitem

o_custkey,           
regr_intercept(extendedprice, 

quantity) as icpt, 
WIcpt (extendedprice, 

quantity) as WA

group by o_custkey

o_custkey, 
extendedprice, quantity

GROUP BY        

SELECT        

Base orders   Base lineitem

match        

with 
compensation        

o_custkey, f(WA) as slp

SELECT        

Rewritten Query:
SELECT o_custkey, f(WA) as slp
FROM MV  

Query
MV

l_orderkey = o_orderkey

Figure 3.4: Match without Re-aggregation

• The sub-graphs of the query and the view match each other with

SELECT-only compensation and the predicates of such SELECT-only

compensation must be on the group-by columns.

• The group-by columns of the query and the view match exactly.

In this case, re-aggregation is not necessary. In fact, the aggregate func-

tions in the query can be answered using the workarea functions in the view

if there is no exact function match.

Figure 3.4 describes such an example. The left part is the query that

computes regr slope, while the view on the right part computes regr icpt. A

naive exact function match would fail in this case. However, note that the
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workarea function for regr icpt is also evaluated in the view for incremental

maintenance, which can also be used to compute regr slope. Hence the gen-

eral rule is to compute regr slope using this workarea function by the scalar

function f in Table 3.2. The compensation and rewritten query is displayed

in the figure.

Similar to the incremental view maintenance techniques in Section 3.3,

the matching algorithm only needs to look up the corresponding entries

in the workarea function table. No hard-coding for any specific function

is necessary in order to enable such matching. This example clearly con-

firms the flexibility and extensibility of our workarea model for both view

maintenance and view matching.

3.4.3 Matching with Re-aggregation

The second category is that the matching between the GROUPBY boxes

of the query and the view requires re-aggregation compensation. This may

happen when either the group-by columns of the query and the view do

not match or the query has some rejoin with some additional tables that

do not exist in the view. The row multiplicity may be affected due to such

rejoins and hence re-aggregation is necessary.

Re-aggregation Compensation without Rejoin

We first consider the case when the query does not contain join with the

tables that do not exist in the view, i.e., no rejoin in the query. More specif-

ically, the general matching rules of this category are that:
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• The sub-graphs of the query and view match with SELECT-only com-

pensation (which does not contains join with other tables, i.e., no re-

join).

• The group-by columns in the query and view GROUPBY boxes do

not match exactly. In particular the view GROUPBY box must contain

more group-by columns than that in the query box.

In this case, we have to re-aggregate over the view to the same granular-

ity of the query. We note that direct re-aggregation over derived functions,

such as variance, is not defined in Table 3.2. The reason is that the computa-

tion of the derived function is completely dependent on its corresponding

workarea functions. Hence we propose to instead re-aggregate over the

corresponding workarea functions.

Such re-aggregation, equivalently speaking, can be viewed as comput-

ing the workarea function under multiple insertions. More specifically, as-

sume one workarea function F and a set of its input values (w1, w2, ...wn).

Re-aggregating over wi can be considered as multiple insertions of the in-

put dataset from which each wi computes. Hence, we can naturally define

the re-aggregate function fagg
F as an iterative application of f+

F .

We follow a similar three-step for aggregate function definition as in

[GBLP96, WZ00], namely, (init, iter, f inal), to define fagg
F . Here the init

step computes the result when there is only one data input. The iter step

defines how to compute the new result based on the previous result and the

current data input. The final step defines how to compute the final result

once all the input data are consumed.
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Based on this formulation, our re-aggregate function fagg
F can be eas-

ily defined as (F, f+
F , ). That is, initially, the result is simply the input

workarea function value. After that, we can apply f+
F to incrementally

compute the new workarea function value. We do not need any final step,

since after each iterative step we get the new workarea function value.

We can extend the workarea function table (3.1) to also contain an entry

for fagg
F as shown in Table 3.3. Note that user need not populate this entry

at all since such re-aggregate function can be automatically derived.

Workarea Func F Aux. Func f+
F f−F fagg

F (init,iter,final)

Count(x) - f+
Count ... f−Count ... (n, f+

Count, )

Sum(x) - f+
Sum ... f−Sum ... (s, f+

Sum, )

NVar(x) Count,
Sum

f+
NV ar ... f−NV ar ... (nv, f+

NV ar, )

NCov(x,y) Count,
Sumx,
Sumy

f+
NCov ... f−NCov ... (nc, f+

NCov , )

... ... ... ... ...

Table 3.3: Extending Workarea Function Table with Re-aggregate Functions

Figure 3.5 depicts an example for how to use such re-aggregate func-

tions to answer queries. The group-by columns in the view GROUPBY box

are o custkey and year, which are more than that in the query GROUPBY

box. Hence we need re-aggregation compensation. Here W agg consists of

total six re-aggregate functions, one for each workarea function. To answer

regr icpt in the query, we first re-aggregate over the workarea in the view.

After that, we compute the regr icpt from the resulting workarea using

the scalar function f in Table 3.2. Those two compensation operations are
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GROUP BY        

SELECT        

GROUP BY        

SELECT        

Base orders        Base lineitem

match        

o_custkey, f(WA) as slp

SELECT        
Rewritten Query:

SELECT o_custkey,
f(Wagg(WA)) as slp

FROM MV 
GROUP BY o_custkey

Query
MV

o_custkey,W agg(WA) as WA

GROUP BY        

o_custkey, l_year
regr_intercept(l_extendedprice, 

l_quantity) as icpt, 
WIcpt (l_extendedprice, 

l_quantity) as WA

group by o_custkey, l_year

o_custkey, l_year
l_extendedprice, l_quantity

l_orderkey = o_orderkeyl_orderkey = o_orderkey

o_custkey, 
l_extendedprice, l_quantity

group by o_custkey

o_custkey,
regr_slope(l_extendedprice, 

l_quantity) as slp

Base orders        Base lineitem

with re-agg
compensation        

Figure 3.5: Re-aggregation Compensation without Rejoin

shown in the two dotted boxes in Figure 3.5.

Re-aggregation Compensation with Rejoin

Now let us consider the case when the matching of the GROUPBY boxes

includes rejoin compensation from sub-graphs. In that case, we need a re-

aggregation compensation unless the rejoin is an equi-join on key and for-

eign key and the group-by columns include the join key.

The matching compensation for such GROUPBY boxes would be first to

pull up the compensation from the lower boxes, i.e., do a join between the
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view and the extra base table (as well as other residual predicates). Then

we re-aggregate over the join results.

l_orderkey = o_orderkey and
c_custkey = o_custkey

o_custkey, o_nationkey
l_extendedprice, l_quantity

group by c_custkey, c_nationkey

c_custkey, c_nationkey
regr_slope(l_extendedprice, l_quantity) 

as slope_qtyonprice

GROUP BY        

SELECT        

Base lineitem

l_orderkey = o_orderkey

o_custkey,         
regr_icpt(l_extendedprice, l_quantity) 

as icpt_qtyonprice, 
W(l_extendedprice, l_quantity) as WA

group by o_custkey

o_custkey, 
l_extendedprice, l_quantity

GROUP BY        

SELECT        

c_custkey, c_nationkey, 
f(WA) as slope_qtyonprice

SELECT        

Rewritten Query:
SELECT c_custkey, c_nationkey,

f(Wagg(WA)) as slope_qtyonprice
FROM MV, Customer
WHERE c_custkey = o_custkey
GROUP BY c_custkey, c_nationkey

Query

MV

c_custkey = o_custkey

c_custkey, c_nationkey, WA

GROUP BY        

Base orders Base customer 

Base lineitem Base orders 

Base customer 

…

Base customer 

c_custkey, c_nationkey

c_custkey, c_nationkey, 
Wagg(WA) as WA

SELECT        

SELECT        

Figure 3.6: Re-aggregation Compensation with Rejoin

Figure 3.6 depicts such an example. Here the two SELECT boxes of the

query and view do not match. The compensation includes a rejoin between

the view and the table Customer. When the algorithm goes up to match

the two GROUPBY boxes, it will first pull up the compensation from lower

box, namely, evaluate a join between the view and Customer. It then re-

aggregates over the workarea function and computes the final regr slope.

Note that in this particular example, if the rejoin with Customer is on key

and foreign key (i.e., the cardinality is not changed), we can avoid such

re-aggregation altogether.
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3.4.4 Matching of Multidimensional Queries

The matching for multidimensional query is carried out similar to [ZCL+00].

First, the matching between a simple GROUPBY query and a multidimen-

sional view is essentially to match the simple GROUPBY query with each

cuboid of the multidimensional view. Here a cuboid is known as a sim-

ple group-by query block [GBLP96]. The techniques in Section 3.4.2 and

3.4.3 can be used to match the query and individual cuboid. The matching

cuboid with fewest group-by columns will be selected from the multidi-

mensional view due to its smallest size. For example, consider the follow-

ing view and query:

CREATE VIEW SalesAnalysis AS

SELECT o custkey, l year, l month,

regr slope(l extendedprice, l quantity) as slp,

W slope(l extendedprice, l quantity) as wa,

count(∗) as cnt

FROM lineitem, orders

WHERE l orderkey = o orderkey

GROUP BY o custkey,ROLLUP (l year, l month)

(3.5)

SELECT l year, regr intercept(l extendedprice, l quantity)

FROM lineitem

GROUP BY l year

(3.6)

Here the query (3.6) matches two cuboids of view SalesAnalysis (3.5)

(Note that here the join with Orders is on key and foreign key). The cuboid

(o custkey, l year, NULL) from view SalesAnalysis is picked to answer

the query rather than the cuboid (o custkey, l year, l month), since the size
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of the cuboid (o custkey, l year, NULL) is always no larger than the size

of cuboid (o custkey, l year, l month) [ZCL+00]. The rewritten query is

shown below.

SELECT l year , f(W agg(WA))

FROM SalesAnalysis

WHERE l month IS NULL AND l year IS NOT NULL

GROUP BY l year

(3.7)

Second, the matching between a multidimensional query and a simple

GROUPBY view, on the other hand, requires a match exist between each

cuboid of the query and the GROUPBY view. Intuitively, this requires the

view to aggregate at a finer level compared to each cuboid of the query. The

compensation will be a multidimensional query with the same grouping

sets over the view.

While the above two cases are 1-n and n-1 matching, the matching be-

tween a multidimensional query with a multidimensional view is essen-

tially a n-m matching. We require each cuboid of query to match some

cuboid in the view. The matching between two cuboids can use the tech-

niques in Section 3.4.2 and 3.4.3.

3.5 Cube Computation using Workarea Functions

We have addressed the incremental maintenance and view matching of

multidimensional queries. Note that the processing of multidimensional

queries can also benefit from our workarea function model.
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There is a well-known technique, which we call subset stacking. This

technique was first described in [GBLP96]. It utilizes the fact that a group-

ing set (GS1) with groupby columns e1, e2, ..., en might be used to com-

pute any other grouping set (GS2) whose group-by columns are a subset of

e1, e2, ..., en.

Our workarea function model can be utilized generically to support this

feature. Assume one cuboid Q is to compute function F over grouping

sets GSQ. Another cuboid Q′ is to compute function F over grouping sets

GSQ′ , where GSQ′ ⊂ GSQ.

In order to compute Q′ from Q instead of re-computing from scratch,

we need to also compute the workarea function W F for Q. The general

strategy is to first re-aggregate over Q with group-by columns GSQ′ and

apply the workarea re-aggregate function fagg

W F described in Section 3.4.3

over the workarea columns. After that, we compute function F for Q′ from

the resulting workarea using the scalar function f in Table 3.2.

For example, consider the following two cuboids.

SELECT o custkey, l year, l month,

regr slope(l extendedprice, l quantity) as slp,

W slope(l extendedprice, l quantity) as wa,

FROM lineitem, orders

WHERE l orderkey = o orderkey

GROUP BY o custkey, l year, l month

(3.8)
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SELECT o custkey, l year

regr slope(l extendedprice, l quantity) as slp,

W slope(l extendedprice, l quantity) as wa,

FROM lineitem, orders

WHERE l orderkey = o orderkey

GROUP BY o custkey, l year

(3.9)

The grouping sets of cuboid (3.9) are a subset of that of cuboid (3.8). By

our workarea function model, cuboid (3.9) can be computed from cuboid (3.8)

in a stack fashion as follows:

SELECT o custkey, l year

f(W agg(WA)) as slp,

W agg(WA) as wa,

FROM Cuboid (3.8)

GROUP BY o custkey, l year

(3.10)

3.6 Experimental Evaluations

3.6.1 Implementation

We have implemented our proposed techniques in a prototype system of

IBM DB2 UDB [Cha98]. We have two workarea tables (Table 3.1 and 3.2) for

each aggregate function. They are extensible to accommodate any new ag-

gregate functions. For each aggregate function, we create a hidden workarea

column (of type Bit Data) which may contain multiple logical fields during

the view creation time. During the propagation phase of view maintenance,

we will compute the workarea functions over the deltas. During the ap-

ply phase of view maintenance, we first maintain the workarea functions
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and then the derived functions. The appropriate maintenance functions are

fetched on the fly from the two workarea tables. Note that our implementa-

tion also includes the support of multidimensional view maintenance, view

matching and stacking cube computation. In this section, we will present

the performance results for incremental view maintenance and stacking

cube computation of multidimensional queries using our proposed tech-

niques. The experiments are conducted on a TPC-H [TPC95] database with

scalar factor 0.1, i.e., total around 100 Megabytes source data.

3.6.2 Incremental View Maintenance

In this section, we experimentally evaluate the incremental view mainte-

nance in terms of performance. Basically, we compare our incremental main-

tenance method that uses the workarea-based techniques in Section 3.3 to

the full re-computation method that re-computes the entire view.

There are several key aspects that will affect the incremental view main-

tenance performance, such as the size of view and the size of delta changes.

We create four materialized views with different sizes. The general view

definition is shown in Query (3.11).
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CREATE VIEW SalesAnalysis AS

SELECT [gb columns],

regr slope(l extendedprice, l quantity) as slp,

count(∗) as cnt

FROM lineitem, orders, customer

WHERE l orderkey = o orderkey AND

o custkey = c custkey

GROUP BY [gb columns]

(3.11)

The four materialized views differ in their group-by columns, i.e., [gb columns]

in Query (3.11). The [gb columns] for the four views are

(1) c custkey, year(l shipdate), month(l shipdate),

(2) c custkey, year(l shipdate),

(3) c custkey,

(4) c nationkey, respectively.

The sizes of the first three views are 50%, 10%, 1.6% compared to the

fact table lineitem (600,000 rows), respectively. The last view has a constant

size of 25 rows. They represent different sizes of materialized views used

in practice.

First, we consider the deletion on the lineitem table 1. In particular, we

compare the view refreshing cost between full re-computation and incre-

mental maintenance for each of the four views. The results are depicted in

Figure 3.7. The x-axis represents the size of deletion in terms of the percent-

age to the original table. The y-axis represents the refresh cost in terms of

execution time, which are normalized into relative units.

1We use the following SQL statement: ‘delete * from lineitem where l orderkey≤ n’,
where n controls the size of deletion.
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Figure 3.7: Refresh Cost under Deletion on Lineitem Table

There are a number of points that can be seen from Figure 3.7. First,

the incremental maintenance approach significantly outperforms the full

re-computation approach for all four views when the source changes are

small, e.g., 0.1%. Second, the incremental maintenance cost increases as

the size of delta change increases. The cross-point between the incremental

maintenance and the full re-computation for view (1) is around 10% dele-

tion. It increases to around 30% for view (2) and even higher for view (3)

and (4). This indicates that incremental maintenance is more preferable for

small-sized views. The reason is that the incremental view maintenance

process consists of the propagate phase and the apply phase as described in

Section 3.3. The apply phase will evaluate a join between the final delta

and the view. The smaller the size of the view, the cheaper the join cost.

In summary, our workarea-based view maintenance is a preferable method
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for refreshing views when the change of the base table is small, which is

common in data warehousing scenarios. Similar results can be found un-

der the insertion case 2 as shown Figure 3.8.
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Figure 3.8: Refresh Cost under Insertion on Lineitem Table

We find that even under the same source delta size, the maintenance

performance still could differ significantly from each other. This largely

depends on how the view is affected by the source changes. Figure 3.9

depicts the maintenance of view (1) under 0.1% insertion on Lineitem table.

The x-axis denotes the percentages of view tuples that are affected by this

0.1% insertion. The y-axis denotes the relative maintenance cost.

As can be seen from the figure, the larger the portion of the view that

is affected, the more costly the incremental maintenance performance. The

main reason is that the apply phase for incremental maintenance will eval-

2We generate the insert using the TPC-H data generator [TPC95].
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Figure 3.9: Refresh Cost under 0.1% Insertion on Lineitem Table

uate a join between the final delta and the view. If large portion of view is

affected, then this join becomes more costly and more view tuples have to

be updated.

Finally, our workarea-based view maintenance will add additional columns

to the view. This also introduces extra overhead when we initially popu-

late the view. In this experiment, we measure such extra cost by comparing

the population of the view itself and the view with workarea columns. The

population cost of the four views are depicted in Figure 3.10. The y-axis is

the relative view population cost.

As can be seen, by adding the workarea columns, we increase the view

population cost. However, such extra cost is relatively small. It is within

10% for all four views since the number of rows is the major factor for

the query performance, which remains unchanged. Furthermore, since the

view population is a one-time cost, i.e., it requires to be done only once

initially, such extra cost is insignificant.

In conclusion, our workarea-based maintenance framework enables ef-
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Figure 3.10: View Population Cost

ficient incremental maintenance of many practically useful views.

3.6.3 Stacking Computation of Multidimensional Queries

We now experimentally evaluate the cube computation techniques in Sec-

tion 3.5. Consider the following multidimensional query (3.12):

SELECT c custkey, year,month

regr slope(l extendedprice, l quantity) as slp,

count(∗) as cnt

FROM lineitem, orders, customer, nation

WHERE l orderkey = o orderkey AND

c custkey = o custkey AND

c nationkey = n nationkey

GROUP BY c custkey, ROLLUP (year,month)

(3.12)

We can either compute each cuboid from scratch, or we can stack the

computation of each cuboid using workarea functions. In particular, we

can first compute cuboid Q1 = (c custkey, year,month) with workarea
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function W slope. Then we compute cuboid Q2 = (c custkey, year) based

on Q1 by aggregating the workarea function. Finally, we compute cuboid

Q3 = (c custkey) based on Q2 by further aggregating the workarea func-

tion. The experimental comparison of these two methods are depicted in

Figure 3.11.
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Figure 3.11: Stacking Cube Computation of Query (3.12)

As can be seen, the stacking of cube computation significantly outper-

forms the naive one. Note that when the grouping sets are more complex,

or when an entire cube has to be computed, we expect the performance

gain will be even larger. Thus our workarea-based method enables efficient

stacking of cube computation for a large class of aggregate functions.

3.7 Related Work

Gray et al. [GBLP96] classifies the aggregate functions into three cate-

gories in terms of their stacking computation for multidimensional queries,

namely, distributive, algebraic and holistic. The algebraic function is de-
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fined as a global aggregate function over a local aggregate function that

computes n values. Despite the similarities, there are some key differences

compared to our model. Their model does not address the incremental

maintenance of aggregate functions (under delete case) or how to define

the aggregate functions to enable view matching. The n-value is similar to

our workarea concept but it does not illustrate the property of the local ag-

gregate function, global aggregate function nor the sub-aggregate functions

that compute part of the n-value. Our work presents a finer modeling of ag-

gregate functions. Compared to prior (init, iter, final) style for user-defined

aggregate function definition [WZ00], our model provides a more efficient

implementation for incrementally maintainable functions. Re-using exist-

ing functions becomes straightforward. Finally, based on our model, we

are able to address a number of issues in a generic way, such as incremen-

tal view maintenance, view matching, multidimensional query processing,

etc.

Incremental view maintenance has received considerably attentions from

the database community for the last few years. Blakeley et al. [BLT86] de-

fines when a SPJ view is incrementally maintainable. Griffin et al. [GL95]

describes an algebraic framework for propagating deltas through each op-

erator. Colby et al. [CGL+96] introduces a deferred view maintenance al-

gorithm separating the propagation phase and apply phase. Salem et al.

[SBCL00] proposes a deferred maintenance algorithm capable of tuning the

refresh window. [MQM97, CCH+98, LSPC00, Qua96] studied how to main-

tain the aggregate or multidimensional views from theoretical or commer-

cial systems point of views. These work primarily focus on the incremental
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maintenance of distributive aggregate functions, such as sum and count.

Palpanas et al. [PSCP02] proposes a selective re-computation approach to

handle any type of aggregate function. The basic idea is to only selec-

tively recompute those affected groups. Our proposed techniques avoid

any recomputation and thus performs considerably faster for incrementally

maintainable functions. In that work, the initial idea of using workareas for

incremental view maintenance has been discussed. However, no details are

provided and view matching is not considered.

Answering queries using views [CKP95, GL01, LMS95] has also been

studied extensively in the literature. It has a wide range of applications.

[GHQ95, SDJL96, CNS99, ZCL+00] studied the problems of how to an-

swer aggregate queries using aggregate views. These prior works consider

how to answer the query with distributive functions using views. Oracle

[ora] supports some complex aggregate functions such as Standard devia-

tion and Variance. However, unlike our approach, the solution is not gen-

eral. Our proposed view matching algorithm is based on our workarea

function model. This offers a generic framework and flexibility to add new

functions. Another clear advantage is that we need not implement any ad-

ditional functions to enable such matching.

Recent SQL extension includes the introduction of three complex group

functions, namely, grouping sets, rollup and cube, which allows multidi-

mensional grouping can be expressed in a single group-by clause. The

result of such complex group functions is essentially a union of multi-

ple group-bys. Our proposed workarea model is orthogonal to the exist-

ing work on the incremental maintenance of multidimensional aggregate
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views [MQM97], multidimensional query/view matching [ZCL+00] and

stacking computation of multidimensional queries [AAe96]. A significant

portion of those problems, i.e., with complex statistical measurements are

supported by our techniques.
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Chapter 4

Views in Dynamic

Environments

4.1 Our Contributions

In this chapter, we propose a comprehensive solution for handling the new

types of maintenance conflicts under both source data and schema changes,

as motivated in Section 1.3.3. This solution enables data sources to au-

tonomously commit all types of updates, which provides great flexibil-

ity for data integration in loosely-coupled environments, such as the Data

Grid [JR03]. To our knowledge, this is the first complete solution to the

view maintenance anomaly problems. In summary, the contributions of

this work are:

(1) We identify three different types of maintenance anomalies, namely,

those caused by the data updates, by the data-preserving schema changes
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(such as for example, rename and restructuring operations that result

in equivalent view rewritings), and by the non-data-preserving schema

changes (such as for example, drop operations that result in non-

equivalent view rewritings).

(2) For the first and the second types of anomalies, we extend the existing

compensation algorithms for concurrent data updates, such as SWEEP

[AESY97], to also handle data-preserving schema changes in order to

restore the correct maintenance query results.

(3) We illustrate that the third type of anomalies, namely, those caused

by non-data-preserving schema changes, are due to the violations of

dependencies between the maintenance processes. We develop detec-

tion algorithms to first detect and correction algorithms to then correct

any violated dependencies. This way we solve the anomalies caused

by non-data-preserving schema changes.

(4) Given that our dependency correction algorithm above may generate

mixed batches of data updates and schema changes, which cannot

be handled by existing algorithms, we propose a view adaptation al-

gorithm to handle such mixed batches. Furthermore, we show why

such merged processing solves the anomaly problems and prove the

correctness of this adaptation algorithm.

(5) We establish proofs of the correctness of our proposed compensation

and our dependency correction algorithms. Furthermore, we also prove

the correctness of our overall solution framework that it is capable of
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maintaining views correctly even under a mixture of anomalies.

(6) As a proof of feasibility, we have implemented the above solution in

our DyDa [CZC+01] prototype system. We have experimentally stud-

ied the impact of different types of anomalies and their correspond-

ing solutions on maintenance performance. The experimental results

show that our new concurrency handling strategy imposes a minimal

overhead on data update processing while allowing for the extended

functionality for view maintenance even under concurrent schema

changes.

In the next section, we present the background material necessary for the

remainder of the chapter. Section 4.3 describes our proposed architecture of

the DyDa framework and explains our overall concurrency control strate-

gies. Section 4.4 introduces a compensation algorithm to solve the concur-

rency caused by data updates and data-preserving schema changes. Sec-

tion 4.5 formalizes the dependencies between the maintenance processes

and their relationship to the concurrency caused by drop schema changes.

An algorithm is proposed to detect and correct the violated dependencies.

Section 4.6 introduces a new view adaptation algorithm to adapt multiple

distributed schema changes and data updates required by the dependency

correction algorithm. Section 4.7 discusses the experimental results. Sec-

tion 4.8 reviews related work, while Section 4.9 concludes the paper.
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4.2 Background Material

4.2.1 View Maintenance Techniques Revisited

We distinguish between three view maintenance tasks, namely, View Main-

tenance, View Synchronization and View Adaptation. View Maintenance

[ZGMHW95, AESY97, SBCL00] maintains the view extent under source

data updates. In contrast, View Synchronization [LNR02] aims at rewrit-

ing the view definition, or in a more general sense, evolving the schema

mappings when the schema of a source has been changed [VMP03, YP05].

Thereafter, View Adaptation [NR99, GMRR01] incrementally adapts the

view extent to again match the newly changed view definition. In this sec-

tion, we first give a brief review of existing techniques. Then we provide

an abstract model for these techniques that provides us with the necessary

machinery to study the anomaly problems and later prove our solution

techniques correct. Utilization of this abstraction highlights that our solu-

tion framework is a generic solution approach for resolving the anomalies.

Our solution framework could fairly easily be plugged into any existing

view system.

View Maintenance

View maintenance aims to incrementally maintain the view extent under a

source data update (DU). This area has been extensively studied in the past

[GMS93, ZGMHW95, SBCL00]. The idea is to issue a maintenance query

based on the data update to calculate the delta change on the view extent.

In Example 1, an incremental maintenance query (Query (1.4)) [ZGMHW95]
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is issued for maintaining ∆Catalog. In other words, we compute ∆V =

∆Catalog ⊲⊳ StoreItems.

In this work, we generalize this maintenance process using the follow-

ing abstraction: “r(V D)r(DS1)r(DS2)...r(DSn) w(MV )c(MV )”, where V D

is the view definition, DSi is the data source with index i, r(DSi) is the

query sent to DSi, w(MV ) and c(MV ) are write and commit to the view,

respectively. For brevity, we denote such a maintenance process for DU

as M(DU). Note that any view maintenance algorithm would fit into this

model in the sense that in general they need to issue queries to each individ-

ual source. For example, full re-computation is one maintenance method

and it obviously fits into this model.

View Synchronization

View Synchronization [NLR98, LNR02], on the other hand, aims at evolv-

ing the view definition when the schema of the base relation has been

changed. In that work [NLR98, LNR02], two primitive types of source

schema changes (SCs) that may affect the view defined upon them are

considered: RenameSC that renames the source attributes or relations and

DropSC that deletes attributes or relations. Note that the addition of rela-

tions or attributes does not change the views. To maintain RenameSC, we

can simply modify the corresponding view definition by using the new

names. To handle DropSC, the basic idea is to find some alternative source

to replace the dropped data.

The schema mapping evolution techniques in [VMP03, YP05] consider

more flexible semi-structured data. In that work, more types of primitive
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schema changes are considered. For example, beyond adding or remov-

ing elements, we can also add or remove constraints, or restructure the

schema. In Figure 1.5, the BookStore database is restructured, which is a

data-preserving schema change that breaks one table into two. The original

StoreItems table is equivalent to the newly decomposed ones, namely, to

Store ⊲⊳ Item. Thus we can rewrite the view as shown in Query (4.1).

CREATE VIEW BookInfo AS

SELECT Store, Book, I.Author, Price, Pub-
lisher, Category, Review

FROM Store S, Item I, Catalog C

WHERE S.SID = I.SID AND I.Book = C.Title

(4.1)

In this work, we in general capture this view synchronization (or map-

ping evolution) process by the representation: r(V D)w(V D)w(MV )c(MV ).

Note that here V D represents view definition and is an in-memory data

structure. w(V D) modifies that in-memory view definition in order to gen-

erate the subsequent maintenance query. The actual physical update of

the view schema and view definition (e.g., updating the system catalog) is

done in w(MV ), where MV is the materialized view.

Finally, note that the view synchronization process does not require the

extent of the rewritten view to be always exactly equivalent to the original

one. This is a reasonable assumption for information integration over a

large scale and dynamic data sources [LNR02, VMP03, YP05]. In the EVE

system [LNR02], for example, the authors suggest to replace the dropped
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data by some alternative sources.
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View:  BookInfo

Store Author PriceBook

<Store>                    

<Book>      

<Author></>     

<Price></>      

</Book>    
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YearPublisherCategory ReviewTitle

Catalog                                 

Figure 4.1: Drop of Review Attribute

For example, in Figure 4.1, the Review attribute has been dropped. In

this case, we may find some alternative library database that can be used

for replacement. The main purpose of finding such alternative informa-

tion is in the spirit of aiming to keep as much of the original view data as

possible. Such decision can be made based on the source containment rela-

tionships, e.g., equivalent, subset or superset relationships, defined by the data

integration administrator [LNR02]. For example, we may find an alterna-

tive source that contains similar review information and rewrite the view

correspondingly as shown in Figure 4.2.

In comparison, the mapping evolution strategies [VMP03, YP05] do not

attempt to find a replacement for the dropped data. They instead focus

on how the mapping evolves for the remaining data. Hence for the drop

operation in Figure 4.1, the result of mapping evolution may simply drop

the Review attribute in the view.
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Figure 4.2: View Rewriting for Drop of Review Attribute

Whenever this view definition rewrite is a non-equivalent one, then this

makes the next step, namely, view adaptation, necessary.

View Adaptation

As mentioned above, if the rewriting of the view definition is not equiva-

lent to the one before, we need to adapt the view extent as well in order

to be consistent with the new view definition. Such technique is called

view adaptation [NR99, GMRR01]. Obviously, full re-computation is one

method for view adaptation. Several incremental techniques [NR99, GMRR01]

have also been proposed to incrementally adapt the view extent after the

rewriting of the view definition.

In this work, we distinguish between two types of schema changes

that differ in whether the result of view rewriting is equivalent or not. If

the rewritten view is equivalent to the one before, then there is no need

to do view adaptation work. For example, schema restructuring, such as
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RenameSC 1 and the normalization operation in Figure 1.5, are both data-

preserving schema changes. Thus the rewriting view is equivalent in both

cases.

In the rest of this chapter, without loss of generality, we use RenameSC to

represent data-preserving schema changes that result in equivalent rewrit-

ings of views and use DropSC to represent non-data-preserving schema

changes that result in non-equivalent rewriting of views. The full mainte-

nance process for a DropSC including both view synchronization and view

adaptation can be generalized as “r(V D)w(V D)r(DS1) r(DS2)...r(DSn)w(MV )

c(MV )”. For brevity, we denote such a maintenance process for DropSC

as M(DropSC). The maintenance of a RenameSC can be generalized as

“r(V D)w(V D) w(MV )c(MV )”, denoted as M(RenameSC).

As a final remark, these generalizations of various maintenance pro-

cesses by sequence of read/write steps in this section are independent of

any particular maintenance algorithms being applied to such steps. This

allows us to make our proposed concurrency control strategy in this chap-

ter general and thus applicable to a wide range of view maintenance algo-

rithms [ZGMHW95, LNR02, AESY97, VMP03].

4.2.2 Types of View Maintenance Anomalies

We now formally define the anomaly problems in Example 1.

1This may not be true for higher order views, such as SchemaSQL views [KR04], where
the data as well as the meta data can be queried. In this case, RenameSC can result in the
data changes in the views. In this work, we only consider first order SQL views under bag
semantics.
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Definition 1 Assume one update w(DSi) at source DSi and one update w(DSj)

at source DSj . Maintenance of neither update has finished yet. We say that the

update w(DSj) conflicts with the maintenance M(w(DSi)) iff the source update

w(DSj) is committed at DSj before the query r(DSj) of M(w(DSi)) is an-

swered. We call such a conflict view maintenance anomaly.

Note that the anomaly would never occur for M(RenameSC) because

no maintenance queries will be generated (Section 4.2.1). In other words,

no anomaly would ever occur when maintaining the schema changes that

result in an equivalent rewriting of view. However, the anomaly could occur

during either M(DU1) or M(DropSC1) due to some other concurrent DU2,

RenameSC2 or DropSC2.

Based on the types of w(DSi) and w(DSj), we distinguish between

three types of maintenance anomalies (six cases) as listed in Table 4.1. Among

them, the anomalies I are caused by a concurrent data update DU , while

the anomalies II are caused by a concurrent RenameSC . The anomalies of

type III are due to a concurrent DropSC . The two cases in Example 1 are

anomalies of types I and II, respectively.

Type Cases

I A DU2 conflicts one maintenance query of M(DU1)

A DU conflicts one maintenance query of M(DropSC)

II A RenameSC conflicts one maintenance query of M(DU)

A RenameSC conflicts one maintenance query of M(DropSC)

III A DropSC conflicts one maintenance query of M(DU)

A DropSC2 conflicts one maintenance query of M(DropSC1)

Table 4.1: Three Types of Maintenance Anomalies.
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Notice that for the anomalies of type I in Table 4.1, we still could get

some query results returned, however the results may be incorrect. For

the anomalies of II and III in Table 4.1, we may not even be able to get

any query result back due to the schema inconsistency between the main-

tenance query and the underlying sources. In this chapter, we will intro-

duce a comprehensive solution framework that successfully solves all three

types of anomalies.

4.3 View Management Framework

Figure 4.3 depicts the architecture of our DyDa view management frame-

work. In this framework, similar to most prior work [ZGMHW95, AESY97],

we assume that all data source transactions are local to their respective

sources. Also every data update and schema change at a data source is re-

ported to the view manager once committed (or alternatively the changes

can be detected and extracted by the wrapper). The view manager collects

and stores these source updates in the Update Message Queue (UMQ).

The view manager is responsible for maintaining the views under source

updates. For this, it makes use of three types of general view manage-

ment services, namely, view maintenance (VM), synchronization (VS) and

adaptation (VA) as introduced in Section 4.2.1. These three view manage-

ment techniques generate the maintenance logic, i.e., maintenance queries,

to allow the system to handle individual source data updates and schema

changes. Such maintenance queries will be processed by the Query Pro-

cessor. The Query Processor sends the maintenance query to the remote
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Figure 4.3: Architecture of DyDa Framework

sources and assembles the results. However, the anomaly problems as de-

scribed in Section 4.2.2 may occur. In Figure 4.3, we highlight the concur-

rency control modules designed to solve the anomaly problems by shading

them. We propose different strategies to handle the three types of anoma-

lies listed in Table 4.1. In particular, we distinguish between two categories

of concurrency control strategies, namely, the intra-maintenance compen-

sation strategy and the inter-maintenance scheduler strategy.

Intra-maintenance compensation strategy solves the anomalies of type I

and II. Its key property is that it will not abort any current maintenance pro-

cess. Prior work in the literature [ZGMHW95, AESY97, ZGMW96, SBCL00]

has focused on solving anomaly I by compensating the maintenance query

result. Our Intra-Compensation module in Figure 4.3 extends this method
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to compensate the maintenance query also in the case of conflicting data-

preserving schema changes, such as RenameSC and Normalization in Fig-

ure 1.5. The main advantage of this technique is that we can solve the

anomalies caused by data-preserving schema changes without aborting the

current maintenance process (see Section 4.4).

Inter-maintenance scheduler strategy solves the anomalies of type III

caused by non-data-preservation schema changes. In this case, aborts can-

not be avoided. It requires to abort the current maintenance process and

then to globally reschedule the maintenance processes. This issue arises

due to the fact that most existing view maintenance algorithms process the

source updates simply based on their arrival order. However, we will illus-

trate that such order is no longer appropriate and that in fact it may cause

anomalies of type III. We formally identify that such anomalies are due to

the violation of dependencies between the maintenance processes. We then

introduce a dynamic maintenance scheduler that corrects such anomalies

by rescheduling the maintenance order (see Section 4.5).

4.4 Intra-Compensation for Anomalies I and II

As a first step, we need to determine which source updates are concur-

rent to the current maintenance query. Similar to the prior work [AESY97,

ZGMHW95], we rely on the following FIFO assumption in order to detect

concurrent updates.
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Assumption 1 The network communication between an individual data source

and the view manager is FIFO 2.

Assumption 1 guarantees that when we receive one maintenance query

result from a particular source, all concurrent updates at that source must

have already arrived at the view manager. For instance, in Example 1, the

concurrent source data update ∆S (1.a) or the schema change ‘Normalize

StoreItems table’ (1.b) must arrive at the view manager before the erro-

neous maintenance query result.

By this assumption, we are able to identify the anomalies when receiv-

ing the maintenance query results. If the concurrent updates contain data

updates, then anomaly of type I occurs. If the concurrent updates contain

RenameSCs (or data-preserving schema changes), then anomaly of type II

has occurred. Finally, if the concurrent updates contain DropSCs (or non-

data-preserving schema changes), then anomaly of type III has occurred.

When the concurrent updates are only data updates, i.e., only anomaly

I occurs, a number of algorithms in the literature [AESY97, ZGMHW95,

ZGMW96] propose to use compensation queries to remove the erroneous

tuples from the query results. Take the SWEEP algorithm in [AESY97] for

example. Suppose the maintenance query result is ∆Rj ⊲⊳ R′i instead of

∆Rj ⊲⊳ Ri. This erroneous query result can be corrected by ∆Rj ⊲⊳ R′i −

∆Rj ⊲⊳ ∆Ri, where ∆Ri are the concurrent data updates.

2It may not always hold in a real environment for some network where the transfer order
is not guaranteed. However, we can solve this problem by timestamping each message
[LS99]. For simplicity, in this paper, we assume Assumption 1 always hold.
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However, this basic idea would fail if there is any concurrent data-preserving

schema change, i.e., when anomaly II occurs. The reason is that the mainte-

nance query now faces a schema conflict and may fail to return any query

results. A straightforward solution is to rewrite the maintenance query us-

ing the new schema, e.g., using the new schema names. The issue now

is that the concurrent data updates may be of a different schema if any

schema change occurred in between.

Example 2 In Example 1, assume the three updates, ∆StoreItem (1.a), the ‘Nor-

malization of StoreItems’ (1.b) and ∆Item (1.c) are concurrent to the maintenance

query ∆Catalog ⊲⊳ StoreItems. We may rewrite the query to ∆Catalog ⊲⊳

Store ⊲⊳ Item to address the schema change (1.b). While this rewritten mainte-

nance query succeeds, we now still have to remove the effects of ∆StoreItem and

∆Item from the query results. Note that since StoreItem does not ever occur

in the current view definition, we cannot directly apply the existing data update

compensation methods in [AESY97, ZGMHW95, ZGMW96].

The idea to resolve this issue is to generate a sequence of compensation

query for each individual delta. Such compensation query is assumed to

be consistent with the delta schema “at that time”. In Example 2, we first

generate a compensation query ∆StoreItem ⊲⊳ ∆Catalog, since the view

schema at the time when ∆StoreItem occurred was StoreItem ⊲⊳ Catalog.

Next we generate a compensation query ∆Item ⊲⊳ Store ⊲⊳ ∆Catalog,

since the view schema at the time when ∆Item occurred became Item ⊲⊳

Store ⊲⊳ Catalog.
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We now give a brief analysis why this strategy works. The normal-

ization schema change (1.b) only changes the query interface (schema) of

the StoreItem table but not the actual data. In this case, we can view

StoreItem as a virtual data source and any subsequent data changes as

virtual deltas on StoreItem. Here ∆StoreItem directly shows the change

of the virtual StoreItem table, while ∆Item ⊲⊳ Store indirectly shows the

change to the virtual StoreItem table. Any maintenance query sent to the

virtual source StoreItem can be corrected by compensating these virtual

deltas using traditional compensation technologies [AESY97, ZGMHW95,

ZGMW96] (we shall prove later).

Algorithm 1 depicts the pseudo-code of this IntraCompensation algo-

rithm. The QueryProcessing function accepts the original maintenance query

Q and possibly its rewritten query Q′ (due to data-preserving schema changes,

see line 6) as input parameters. It returns the correct query result QR after

compensation. It first sends the maintenance query Q′ (equal to Q origi-

nally) to the source(s). If this query failed due to data-preserving schema

changes, then we rewrite this query and process the new query Q′ again

(lines 6 and 7). If this query failed due to non-data-preserving schema

changes (line 10), then we have to reschedule the maintenance processes

(Section 4.5). Finally if the query succeeds, then we apply IntraComp al-

gorithm in Algorithm 1 to solve the anomalies of type I and II. Note that

if there is no non-data-preserving schema change, then the rewritten query

will be guaranteed to eventually succeed after taking all data-preserving

schema changes into account.
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Algorithm 1 QueryProcessing and IntraCompensation Algorithms

1: Boolean QueryProcessing(Query Q, Query Q′, QueryResults QR)

2: Boolean success = Issue(Q’, QR);
//Execute query Q’, return TRUE if success, results in QR

3: ConUpdateSet CD=IdentifyConUpdates(QR); // Assumption 1
4: if success=FALSE then

5: if CD does not contain DropSC then

6: Q’=Rewrite(Q, CD);
7: success = QueryProcessing(Q,Q’,QR);
8: return success;
9: else

10: InterScheduler();
11: return FALSE;
12: end if

13: else

14: success = IntraComp(Q,QR,CD);
15: return success;
16: end if

17: End Function

1: Boolean IntraComp(Query Q, QueryResult QR, ConUpdateSet CD)

2: ConDUSet CData;
3: ConSCSet CRen;
4: Boolean success = TRUE;
5: if CD does not contain RenameSC then

6: success = Compensation Algorithm(Q, QR, CD);
7: else

8: while (CD not empty AND success)
9: SameSchema(CD, CData, CRen);

10: success = Compensation Algorithm(Q, QR, CData);
11: Q=Rewrite(Q, CRen);
12: end;
13: end if
14: return success;
15: End Function
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IntraComp algorithm first detects if there is any concurrent data-preserving

schema change. If not, it applies any existing compensating algorithm

[AESY97, ZGMHW95, ZGMW96] for data updates to solve anomaly I. If

any concurrent data-preserving schema change is identified, then the al-

gorithm generates a sequence of compensation queries for the data up-

dates of the same schema. In Example 2, the initial maintenance query

is StoreItems ⊲⊳ ∆Catalog. The IntraComp algorithm first extracts the

concurrent updates, namely, ∆StoreItem and Normalization. Then we

generate the compensation query as ∆StoreItem ⊲⊳ Catalog and rewrite

the maintenance query to Item ⊲⊳ Store ⊲⊳ ∆Catalog based on the normal-

ization update. Finally we extract the data update ∆Item and generate the

compensation query as ∆Item ⊲⊳ Store ⊲⊳ ∆Catalog.

Theorem 1 Assume the data source state DS evolves to the state DSu by up-

dates w(DS). The correct maintenance query result r(DS) can be generated

from r(DSu) using Algorithm 1 if w(DS) contains only data updates and data-

preserving schema changes.

Proof: We first assume w(DS) are: “∆DS,DS → DS1,∆DS1,DS1 →

DS2, ...,DSn−1 → DSn,∆DSn”, where DSi−1 → DSi are data-preserving

schema changes for source DS, assuming from the source schema DSi−1

to DSi, ∆DSi are data updates at source DS on the schema DSi.

The state of data source DS evolves correspondingly as follows: DS
∆DS
−→

DS′
DS→DS1

−→ DS1 ∆DS1

−→ DS1′ ...
DSn−1→DSn

−→ DSn ∆DSn

−→ DSn′ = DSu. Here

DSi′ is the state after some data updates ∆DSi applied to state DSi, while

DSi corresponds to the state after some schema changes DSi−1 → DSi.
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We further assume that the maintenance query r(DS) is rewritten to

r1(DS1) after DS → DS1, to r2(DS2) after DS1 → DS2, ..., to rn(DSn)

after DSn−1 → DSn.

Based on the above notations, we note that when the schema change is

data-preserving, we must have ri(DSi′) = ri+1(DSi+1). In other words,

while the schema change DSi → DSi+1 may change the query interface

from ri to ri+1, the query results remain unchanged.

The rewritten query rn(DSn′), or rn(DSu) succeeds since it is consistent

with the current schema of the source DS. However, it includes the effects

of any concurrent data updates, i.e., ∆DS, ∆DS1, ..., ∆DSn.

The compensation of ∆DSn is straightforward. In fact, a number of

existing solutions [AESY97, SBCL00, ZGMHW95] could be used here to

compensate the query result rn(DSn′) to rn(DSn) by removing the effect

of ∆DSn.

Next, since rn(DSn) = rn−1(DSn−1′) (as the schema change is data-

preserving), we can apply the same technique to remove the effect of ∆DSn−1

from rn−1(DSn−1′) to get rn−1(DSn−1). The later equals rn−2(DSn−2′). By

repeating the same process, finally, we can compensate ∆DS to get the de-

sired query results r(DS).

Now from the proof itself, we can identify the properties of the schema

changes that must hold in order for Algorithm 1 to work. That is, there

must exist an equivalent rewriting of the maintenance query, i.e., from ri

to ri+1, ri(DSi′) = ri+1(DSi+1). In other words, the query results must re-

main unchanged after view rewriting. Clearly, non-data-preserving schema
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changes do not have this property. They thus cannot be solved by this strat-

egy. We instead propose an extended solution in the next section.

4.5 InterScheduler for Anomaly III

Algorithm 1 guarantees that if there is no concurrent DropSC (non-data-

preserving schema changes), the compensation solution can successfully

generate the correct maintenance query result within one maintenance pro-

cess. However, if any concurrent DropSC exists, i.e., anomalies of type

III, then the solution no longer works. Figure 4.1 depicts such an exam-

ple. Here the Review attribute of Catalog table is dropped. The maintenance

query, ∆StoreItem ⊲⊳ Catalog, will fail and cannot be compensated using

Algorithm 1 since the Review data is gone.

In this section, we demonstrate that the reasons for this are the viola-

tions of dependencies between maintenance processes. We first formalize

the dependencies and point out their relationship to the anomalies III. Then

we propose algorithms to solve them.

4.5.1 Dependencies among Maintenance Processes

Concurrent Dependency

There are two cases for anomalies of type III, namely, the maintenance

process M(DU1) or M(DropSC2) conflicts with another DropSC3. More

formally, assume DU1 or DropSC2 occur at source DSi and DropSC3 oc-

curs at DSj , respectively. Their maintenance processes, namely, M(DU1),

M(DropSC2) and M(DropSC3), are generalized as “r1(V D)r1(DS1)r1(DS2)



4.5. INTERSCHEDULER FOR ANOMALY III 166

...r1(DSn) w1(MV )c1(MV )”, “r2(V D)w2(V D)r2(DS1)r2(DS2)... r2(DSn)

w2(MV )c2(MV )”, and “r3(V D) w3(V D) r3(DS1) r3(DS2)...r3(DSn)w3(MV )

c3(MV )” respectively. (see Section 4.2.1). By Definition 1, a conflict be-

tween r1(DSj)/DropSC3 or between r2(DSj)/DropSC3 may arise.

Notice that there is also a read-write conflict on the view definition be-

tween these maintenance processes, i.e., r1(V D)/w3(V D) and r2(V D)/w3(V D).

Interestingly, this conflict on the view definition is the reason for the con-

flict between r1(DSj)/DropSC3 and also between r2(DSj)/DropSC3. The

rationale is that the queries r1(DSj) and r2(DSj) have been constructed

based on the reads of the view definition r1(V D) and r2(V D), respectively.

For instance, in Example 1.b, the maintenance query (2) is constructed over

the Catalog database based on the view definition query (1). If this view

definition read r1(V D) (or r2(V D)) conflicts with w3(V D), the constructed

query r1(DSj) (or r2(DSj)) may no longer reflect the actual schema of DSj .

Definition 2 Let w(DSi) and w(DSj) denote two updates committed on data

sources DSi and DSj . The view manager has not finished maintenance for either

of them. We say that maintenance process M(w(DSi)) is concurrent depen-

dent (CD) on maintenance process M(w(DSj)), denoted by M(w(DSi))
cd
←−

M(w(DSj)) iff w(DSi) is either a DU or DropSC and M(w(DSi)) contains

a read view definition operation, while w(DSj) is a DropSC and M(w(DSj))

contains a write view definition.

Concurrency dependency defines the relationship between maintenance

processes over a critical resource, namely, the view definition. For instance,

in Figure 4.1, there is a concurrent dependency “M(∆S)
cd
←−M(DropSC)”.
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Note that there are several differences between the concurrent dependen-

cies and wait-for dependencies in traditional transactions [BHG87]. First,

the conflict is on the view definition not on the actual data tuples. Sec-

ond, even if the maintenance of a sequence of updates is processed in a

serial fashion, dependencies between them may still occur. The rationale is

that the source updates are committed autonomously and thus may conflict

with any ongoing maintenance process. Third, the dependency direction is

always from a write to a read of the view definition since the concurrent

schema change may invalidate the old view definition and consequently

any of the ongoing maintenance processes.

Semantic Dependency

The materialized view is maintained consistent if it reflects some valid

state of each data source [ZGMHW95]. Assume the state of DS evolves

as DS
∆1

−→ DS1 ∆2

−→ DS2. It is important to maintain ∆1 and ∆2 in that

order. If we maintain ∆2 first, then the view reflects the data source state as

DS
∆2

−→ (DS′), which does not equal to either DS1 or DS2. In this case, the

strong consistency [ZGMHW95], in which the view reflects the valid state

of data sources in the same order, cannot be achieved. Furthermore, the

view consistency may not even converge, i.e., the final state may be invalid

too. For example, assume there are two updates from the same relation, a

rename B to C and then a rename C to D. If we reverse their maintenance

order, we cannot correctly maintain the view.

Thus it is necessary to preserve the processing order of updates from

shared resources such as the same tuple, the same attribute or the same
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relation in the examples above. For simplicity, we employ the conserva-

tive method of the same relation here. We now formally define this as a

semantic dependency (SD).

Definition 3 Assume two updates w1(DSi) and w2(DSi) from data source DSi,

then M(w2(DSi)) is semantic dependent (SD) on M(w1(DSj)), denoted by:

M(w2(DSi))
sd
←−M(w1(DSi)) iff w1(DSi) and w2(DSi) refer the same relation

and w1(DSi) is committed before w2(DSi).

4.5.2 Dependency Properties

The two types of dependencies, concurrent dependency and semantic depen-

dency, share an important property, namely, both represent constraints on

the maintenance order between updates. Hence we now abstract them as

one common concept.

Definition 4 For two updates m1 and m2, we define M(m2) is dependent on

M(m1), denoted by M(m2) ← M(m1) if either M(m2) is concurrent depen-

dent on M(m1) by Definition 2 or M(m2) is semantic dependent on M(m1)

by Definition 3.

Definition 5 Given two updates m1 and m2 in the Update Message Queue (UMQ).

If m1 precedes m2 in the UMQ, then we denote this by “pos(m1, UMQ) ≺

pos(m2, UMQ)”. We define the dependency relationship between M(m1) and

M(m2) to be:

1). independent iff there is no dependency between M(m1) and M(m2) by

Definition 4.



4.5. INTERSCHEDULER FOR ANOMALY III 169

2). safe iff pos(m1, UMQ) ≺ pos(m2, UMQ) and all dependency orders be-

tween M(m1) and M(m2) by Definition 4 are M(m2)←M(m1).

3). unsafe iff pos(m1, UMQ)≺ pos(m2, UMQ) and there is at least one depen-

dency M(m1)←M(m2).

Consider the example in Figure 4.1. The concurrent dependency is

M(∆S)
cd
←−M(DropSC). However, since the pos(DU,UMQ) ≺ pos(DropSC,

UMQ), this dependency is unsafe by Definition 5. Next, it is obvious that

if M(m2) is dependent on M(m1), then the maintenance M(m1) must be

processed before M(m2). For a semantic dependency, the required order is

obvious as discussed in Section 4.5.1. For a concurrent dependency, as shown

in Section 4.5.1, the write view definition operation has to be done first to

solve the read-write conflict on the view definition. Since the concurrent

schema change invalidates the view definition, rewriting it becomes criti-

cal.

Theorem 2 An anomaly of type III occurs during the maintenance M(w(DSi))

only if there is at least one unsafe concurrent dependency M(w(DSi))
cd
←−

M(w(DSj)).

Proof: An anomaly of type III implies an unsafe dependency, but not vice

versa. The proof is straightforward. If an anomaly III occurs during the

maintenance of w(DSi), by Definition 1, then there is a DropSC denoted as

w(DSj) that conflicts with M(w(DSi)). By Definition 2, there is concurrent

dependency M(w(DSi))
cd
←− M(w(DSj)). Since M(w(DSi)) is scheduled

before M(w(DSj)), this concurrent dependency is unsafe.
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However, an unsafe concurrent dependency does not necessarily lead

to anomaly. The reason is that the maintenance query r(DSj) might have

already been answered before w(DSj).

Definition 6 A Dependency Graph is a directed graph G=(V,E) with the set of

nodes V denoting all updates mi in the UMQ and with the set of directed edges E

denoting the dependencies e(mi,mj) between two updates mi and mj iff a con-

current dependency or a semantic dependency exists between M(mi) and

M(mj).

The complexity of identifying concurrent dependencies between mainte-

nance processes is O(mn), where m is the number of DropSC and n is the

number of updates. The reason is that each concurrent dependency involves

at least one DropSC . In the worst case, one DropSC would have one con-

current dependency to all other updates. Second, the complexity of building

semantic dependencies between updates is O(n), where n is the number of

updates. To achieve this, we can create one bucket for each data source

and scan the list of updates once. Thus the time complexity of building a

dependency graph is O(mn) + O(n), i.e., O(mn).

4.5.3 Cyclic Dependencies

A set of dependencies may comprise a cycle as illustrated by the example

below. This is similar to the deadlock problem in the traditional serializ-

ability theory [BHG87]. Given the source relations from Figure 4.1, let us

refer to the drop of Review attribute as SC1. Now assume the StoreItems
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chooses not to map the Author attribute as shown in Figure 4.4. We now

refer this change as SC2.

Category ReviewStore Book Price Author Publisher

View:  BookInfo

Store Author PriceBook

<Store>                    

<Book>      

<Author></>     

<Price></>      

</Book>    

</Store>                 

StoreItems

Book Store  

XML to 

Relational

Mapping               
Library Catalog 

Wrapper

YearPublisherCategory ReviewTitle

Catalog                                 

Figure 4.4: Example of Cyclic Dependencies

Assume these schema changes SC1 and SC2 have already been commit-

ted at their data sources. If we process SC1 first, the view definition may

be rewritten as in Figure 4.2. The basic idea is to find an alternative source

to replace the data [LNR02]. The rule for finding such alternative source is

based on the source containment relationship defined by user [LNR02].

However, this new view definition is no longer consistent with the sources

since the attribute Author no longer exists in StoreItems table due to SC2.

Similarly, if we process SC2 first, the view definition may be rewritten into

Query (4.2), i.e., simply drop the Author attribute, since we may not be able

to find any alternatives. Again, the view definition is not valid since the at-

tribute Review is no longer available due to SC1. We call such a situation a

cyclic dependency.
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CREATE VIEW BookInfo′ AS

SELECT Store, Book, Price, Publisher, Category, Review

FROM StoreItems S, Catalog C

WHERE S.Book = C.T itle

(4.2)

By Definition 2, there are concurrent dependencies M(SC1)
cd
←−M(SC2)

and M(SC2)
cd
←− M(SC1). This comprises a cycle. Intuitively, the reason

is that all these updates in a “cycle” are competing to modify the source

schema. If the view manager rewrites the view definition based on any

subset of them, the rewritten view definition is still not consistent with the

underlying sources.

4.5.4 Detection and Correction of Unsafe Dependencies

After we detect an unsafe dependency between the maintenance processes,

we need to reschedule the maintenance processes to turn the unsafe depen-

dencies into safe ones (or equivalently speaking, we need to reorder the

updates in the UMQ). We achieve this by sorting the dependency graph con-

structed during the detection phase.

Theorem 3 Given a fixed number of updates, if the dependency graph is acyclic,

we can obtain a maintenance order with all dependencies being safe.

Theorem 3 holds since given an acyclic dependency graph, we can sim-

ply apply a topological sort algorithm [Tar72] to obtain a partial order of

nodes. The complexity is O(n + e), where n is the number of nodes (up-

dates) and e is the number of edges (dependencies). This way we obtain an

order of updates that has all dependencies in their safe direction.
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However, if the dependency graph is cyclic as shown in Section 4.5.3,

the topological sort algorithm cannot generate a partial order [Tar72]. For

this, we first identify all cycles in the dependency graph (similar to identi-

fying strong connected components in [Tar72], with complexity also O(n+e)).

Traditional transaction processing [BHG87] breaks the cycle (or deadlock)

by removing one of the nodes in the cycle, in other words, aborting one

of the transactions. However, this strategy is not appropriate here because

the source update is autonomous and hence not abortable. Instead of re-

moving one node, we propose to merge these nodes (updates) into a merged

one to be processed at one time. The intuition of the merge operation is

that we have to take all the schema changes into account such that we can

generate a new view that is consistent with all the sources. Otherwise, if

the new view is not consistent with one or more sources, the maintenance

query may fail.

The main idea of this merge operation is that for those merged main-

tenance processes, we actually reschedule their read/write operations in

order to resolve their conflicts on view definition. We now give an example

to show why cyclic anomalies are solved through merging. Assume two

maintenance processes M(SC1) and M(SC2) with cyclic dependencies are

r1(V D)w1(V D)r1(DS)w1(MV ) and r2(V D)w2(V D)r2(DS)w2(MV ), respec-

tively. The merged processing of these two changes, namely, M(SC1&SC2),

is actually as follows: r1(V D)w1(V D)w2(V D)r3(V D)r1(DS)w1(MV )r2(DS)

w2(MV )

That is, we first rewrite the view definition V D using w1(V D) and

w2(V D). After that, based on the new view definition r3(V D), we start
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the adaptation steps r1(DS) and r2(DS), which are now consistent with

the source schema. As can be seen, there is no conflict in the maintenance

process of M(SC1&SC2), as the conflicting operations are appropriately

ordered. Note that such reordering of operations is clearly always pos-

sible. This however requires a new view adaptation algorithm capable

of atomically batching such combined updates by first performing all the

view rewritings. This algorithm will be described in Section 4.6.

After removing all cycles in the dependency graph, we can apply the

topological sort again to the now acyclic dependency graph to obtain a main-

tenance order with all dependencies being safe, as shown in Algorithm 2.

Algorithm 2 InterScheduler

1: Procedure InterScheduler()
2: Queue UMQ;
3: UMQ.Build Dependency Graph();
4: UMQ.TopologySort with CycleMerge();
5: End Procedure

Concurrency Dependency              Semantic Dependency

SC1 SC2DU1
SC1 SC2DU1

Figure 4.5: Examples of Unsafe Dependency Correction

Figure 4.5 depicts this dependency correction algorithm for our run-

ning example. Assume in the view (1) of Example 1, three updates occur,

namely, first the data update DU1 (∆S on StoreItems table) then the two

schema changes SC1 and SC2 in Section 4.5.3, in that order. The mainte-

nance of DU1 failed since it encounters a schema conflict when processing

the maintenance query. The QueryProcessor module in Algorithm 1 found



4.5. INTERSCHEDULER FOR ANOMALY III 175

that an anomaly of type III occurred due to SC1. The InterScheduler in Al-

gorithm 2 is thus invoked to solve this anomaly. As can be seen, the Inter-

Scheduler algorithm involves two steps, namely, detection and correction,

to solve the anomaly of type III. It first identifies and builds the dependency

graph. Since DU1 and SC2 are from the same source, there is a semantic de-

pendency between them. Several concurrent dependencies are unsafe initially,

such as DU1←−SC1 and SC1←−SC2. Then Figure 4.5 illustrates the de-

pendency correction step by merging these three nodes into one big node

to make the dependency graph acyclic. The final schedule is to maintain

these updates altogether in one batch and the current maintenance of DU1

is then aborted.

Theorem 4 Given a number of updates, ∆X1, ..., ∆Xm, no anomaly of type III

will occur if the maintenance order is scheduled by the InterScheduler in Algo-

rithm 2.

Proof: The InterScheduler reorders the maintenance processes such that all

the dependencies are safe. By Theorem 2, no anomaly III will occur if there

are no unsafe dependencies.

Finally, the idea to distinguish between data-preserving and non-data-

preserving schema changes is to avoid always to abort the maintenance pro-

cess whenever there is any concurrent schema change. The idea of rewrit-

ing the maintenance query in Algorithm 1 essentially is similar to the idea

of dependency correction, namely, processing the data-preserving schema

changes first.
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4.6 View Adaptation for Merged Update Sets

In Section 4.5.4, the correction algorithm generates a maintenance order

for a number of updates. However, if there exist cycles in the dependency

graph, some updates will be merged. Such combined updates now could

contain both schema and data updates over different data sources. State-

of-the-art view maintenance algorithms [AESY97, SBCL00, LNR02] cannot

maintain such mixed updates in one maintenance process.

As stated earlier in Section 4.5.4, the goal to merge the maintenance

processes is to reorder their conflicting operations in order to resolve the

anomalies. In particular, we must rewrite the view definition for all the

schema changes first and then adapt the view extent. Our view adaptation

algorithm follows the same principle. Below we introduce a batch exten-

sion of previous view maintenance algorithms, in particular, the EVE view

synchronization algorithm [LNR02], for processing such merged updates.

We assume first-order SQL views under bag semantics.

4.6.1 Preprocessing Step of the Source Updates

After merging cyclic dependent updates as described in Section 4.5.4, we

have a complex update containing updates from multiple sources. We first

partition these updates based on the data source DSi that they originate

from. After that, we further partition the updates from the same data

source DSi into two subgroups, namely, the data updates group defined

as < DUi > and the schema changes group defined as < SCi >. Without

loss of generality, we define such a merged update as: U = {(< SC1 >,<
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DU1 >), (< SC2 >,< DU2 >), ..., (< SCn >,< DUn >)}, where n is the

number of data sources.

For such a merged update, first, the schema changes in < SCi > can

sometimes be combined, e.g., if rename A to B and then B and C occur in

the same data source, we could simply rename A to C. Second, the data up-

dates may be inconsistent with their schema due to some schema changes

between them. For example, assume two inserts into the same relation with

a drop attribute in between, the latter tuple will have fewer columns. Thus

our first step is to preprocess these updates in U from the same source to

adjust these differences in order to enable us to maintain them in one batch.

Unifying Schema Changes: Given a group of schema changes < SCi >

from one data source DSi, we rewrite < SCi > to an equivalent group.

This would optimize the maintenance, because those SCi that have been

removed need not be processed. Table 4.2 shows all possible combinations

T(SC1, SC2) between two SCs (SC1, SC2) with SC1 the row entry and SC2

the column entry. Here R, S, T represent relations, while R.a, R.b, R.c rep-

resent attributes. If the entry of the combination in Table 4.2 is empty, then

this means that these two operations cannot be combined. Hence both of

them will be kept.

S → T drop R drop S R.b→ R.c drop R.b

R→ S R→ T - drop R - -

R.a→ R.b - drop R - R.a→ R.c drop R.a

Table 4.2: Combination Rules between Two SCs
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Finally, we define < SC ′i > as the set of schema changes after combin-

ing the schema changes in < SCi > pair wise using the rules above.

Unifying Data Updates: We then try to combine the data updates in <

DUi >, some of which might be of different schemata. To achieve this,

we define: < DU ′i >= πattr(Ri)∩attr(R′i)
(< DUi >). That is, we project on

the common attributes of both the original relation Ri and the new relation

R′i. These common attributes are actually the original Ri’s attributes minus

the dropped ones. The purpose of this projection is to make the < DU ′i >

schemata consistent with each other while still correct for maintenance. We

justify this below.

Lemma 1 All DU ′i must have the same schemata.

Proof: We prove this by contradiction. Suppose that one tuple A contains

one more attribute than another tuple B. This extra attribute must be ei-

ther an added attribute of A or a dropped attribute of B. Note that the

added attribute would only appear in the new state of relation R′i, while

the dropped attribute will only appear in the old state of relation Ri. Thus

such attribute will not appear in attr(R′i) ∩ attr(Ri).

Example 3 Assume a view V(A,B,C) defined as R1(A,B) ⊲⊳ R2(A,C). Suppose

relation R2(A,C) has updates: +(3,4), add attribute D, +(4,5,6), drop attribute

C, and -(5,7). We have R2(A,C) and R′2(A,D) and attr(R2) ⊲⊳ attr(R′2) = {A}.

We get < DU ′2 >= πA < DU2 >=< +(3),+(4),−(5) >, which are schemata

consistent. Now let’s examine the new view definition V new. A possible rewriting
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might be V new(A,B,C) = R1(A,B) ⊲⊳ πA,C(R′2(A,D) ⊲⊳ R3(A,C)). Since

only attribute R′2.A is involved in the view definition V new, we confirm that <

DU ′2 > is sufficient for the view maintenance.

Using the process described above, we can convert U into U ′ = {(<

SC ′1 >,< DU ′1 >), (< SC ′2 >,< DU ′2 >), ..., (< SC ′n >,< DU ′n >)}. We

characterize the relationship between < SC ′i > and < DU ′i > as follows:

• If < SC ′i > contains “Drop Relation Ri”, then < DU ′i >= ∅ and <

SC ′i > = Drop Relation Ri.

• If < SC ′i > contains a “Drop Attribute” operation, then both < SC ′i >

and < DU ′i > might not be empty.

• If < SC ′i > contains no DropSC , < DU ′i > = < DUi >.

In the next section, we will show that we can also safely have < DU ′i >=

∅ when < SC ′i > contains a “Drop Attribute”.

4.6.2 Incremental View Adaptation Step

Now we are ready to incorporate these modified updates U ′ into the view.

Recall that the view manager process involves two steps to incorporate

schema changes, namely, view rewriting and then view adaptation. Be-

low we describe how to maintain U ′ using these two steps.

View Rewriting by View Synchronization: We first apply view synchro-

nization to all < SC ′i > in U ′, i=1..n. That is we rewrite the view definition

for each schema change in < SC ′i > [LNR02].
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Assume the old view definition as V = R1 ⊲⊳ R2 ⊲⊳ ... ⊲⊳ Rn and the

new view definition as V new = Rnew
1 ⊲⊳ Rnew

2 ⊲⊳ ... ⊲⊳ Rnew
n , where Rnew

i

is the rewriting of Ri in the new view definition. We now describe the

possible outcomes of such view rewriting.

If the updates contain drop relation, then by Section 4.6.1 we know that

< SC ′i > has only that drop relation after merging the schema changes. Thus

the rewriting of this relation in the view definition is a replaced relation 3

[LNR02]. If the updates contain drop attributes, then either the attribute is

simply dropped in the view (such as the drop of Author attribute in Section

4.5.3 ), or alternative tables and additional joins may be needed (such as

the drop of Review attribute in Section 4.5.3). If the updates do not contain

any DropSC , then Ri remains unchanged in the new view definition. In

summary, we have each new source relation as:

Rnew
i =















































πRi
Rnew

i : Drop Rel

πRi
(Ri ⊲⊳ R1

i ⊲⊳ R2
i ... ⊲⊳ Rm

i ) : Drop Attr w. Replacement

πRi−AttrRi : Drop Attr w.o. Replacement

Ri : No DropSC

Let us take the cyclic dependency example in Section 4.5.3. The correct

view definition taking both SC1 and SC2 into consideration is defined in

Query (4.3). This definition is now consistent with each data source.

3Note that if we cannot find such a replacement, the view will become invalid.
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CREATE VIEW BookInfo AS

SELECT Store, Book, Price, Publisher, Cate-
gory, Comment as Review

FROM StoreItem S, Catalog C, Comments
M

WHERE S.Book = C.Title AND C.Title =
M.Article

(4.3)

Incremental View Adaptation: After the view is rewritten, one straightfor-

ward way to maintain the view content is to do a full recomputation based

on the new view definition. In order to incrementally adapt the view ex-

tent, we need to determine the delta change. Here the old view extent is

V = R1 ⊲⊳ R2 ⊲⊳ ... ⊲⊳ Rn and the new view extent is V new = Rnew
1 ⊲⊳

Rnew
2 ⊲⊳ ... ⊲⊳ Rnew

n = (R1 + ∆R1) ⊲⊳ (R2 + ∆R2) ⊲⊳ ... ⊲⊳ (Rn + ∆Rn).

Comparing the old and the new view extent, the delta change is:

∆V = ∆R1 ⊲⊳ R2 ⊲⊳ ... ⊲⊳ Ri ⊲⊳ ... ⊲⊳ Rn (4.4)

+ Rnew
1 ⊲⊳ ∆R2 ⊲⊳ R3 ⊲⊳ ...... ⊲⊳ Ri ⊲⊳ ... ⊲⊳ Rn + ...

+ Rnew
1 ⊲⊳ ... ⊲⊳ Rnew

i−1 ⊲⊳ ∆Ri ⊲⊳ Ri+1 ⊲⊳ ... ⊲⊳ Rn + ...

+ Rnew
1 ⊲⊳ ... ⊲⊳ Rnew

i ⊲⊳ ... ⊲⊳ Rnew
n−1 ⊲⊳ ∆Rn.

The ∆Ri is derived below based on the definition of Rnew
i . Here R′i is

the new state of Ri after source updates.

△Ri =























πattr(Ri)(R
new
i )−Ri : Drop Rel

πattr(Ri)(R
′
i ⊲⊳ R1

i ⊲⊳ · · · ⊲⊳ Rm
i )−Ri : Drop Attr w. Replacement

πRi−Attr < DUi > : Drop Attr w.o. Replacement

< DUi > : No DropSC
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4.6.3 Correctness of Adaptation Algorithm

Theorem 5 Assume a view V is defined as R1 ⊲⊳ R2... ⊲⊳ Rn. We further assume

a complex update U , which includes ∆R1, ..., ∆Rn. Each ∆Ri evolves the table

state as: Ri
∆Ri−→ R′i. The new view V new based on our batching algorithm is

consistent to the new source state R′i in terms of both its schema and data.

Proof: Assume the updates to be maintained in a batch are ∆R1, ∆R2, ...,

∆Rn. Each ∆Ri includes two update sets, namely, < DUi > and < SCi >.

The unifying step for < SCi > in Section 4.6.1 is trivial, i.e., the resulting

< SC ′i > is equivalent to < SCi >. Obviously, after taking all the schema

changes SC ′i into account, the resulting view V new is consistent to the new

source state R′i in terms of its schema.

Next, we prove that V new is consistent to the data state of R′i. Assume

the rewritten view as V new = Rnew
1 ⊲⊳ Rnew

2 ⊲⊳ ... ⊲⊳ Rnew
n . Obviously, a full

recomputation of V new will reflect the correct data state of R′i.

To incrementally maintain V new from V = R1 ⊲⊳ R2 ⊲⊳ ... ⊲⊳ Rn, it is

known to compute ∆Rnew
i as the set difference between Rnew

i and Ri then

apply Equation (4.4) to correctly compute ∆V .

Theorem 6 The proposed techniques achieve strong consistency for view mainte-

nance.

Proof: The proof of the overall solution can be derived based on all the

theorems developed so far. We start with the static case, assuming there
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are n source updates ∆U1, ..., ∆Un. The Inter-Scheduler technique in Sec-

tion 4.5 will schedule these maintenance processes that is free of anomaly

III (Theorem 4). Assume the resulting order of updates for maintenance

is ∆U ′1, ..., ∆U ′m. The correctness of each maintenance M(∆U ′i ) without

any anomalies is guaranteed by Theorem 5, which will generate a num-

ber of maintenance queries. Moreover, even if there are anomalies I and

II when processing these maintenance queries, they can be compensated

by Theorem 1. Hence, the materialized view reflects the correct state after

each M(∆U ′i ). Finally, given the semantic dependency constraints posed by

the scheduler, there is a partial order between ∆U ′i . Thus the materialized

view achieves strong consistency but not complete consistency because some

of the intermediate states may be missing due to the merge step.

Now we consider the dynamic case, i.e., new updates occur during the

maintenance. If the new updates are DUs or RenameSCs, then they can

be compensated by Theorem 1. If the new updates are DropSCs, then the

maintenance is aborted and we reschedule the maintenance processes. We

then turn back to the static case.

4.7 Experimental Evaluation

4.7.1 Experiment Testbed

We have implemented the above techniques in our DyDa [CZC+01] sys-

tem, using Java as development language and Oracle8i as view servers

and data source servers. In our experimental setting, there are six sources

evenly distributed over three different source servers with one relation
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each. Each relation has four attributes and contains 100, 000 tuples. The

materialized join views are defined on these six source relations. They con-

tain all twenty four attributes and reside on a fourth server. All experiments

are conducted on four Pentium III PCs with 256MB memory each, running

Windows NT and Oracle8i.

4.7.2 Individual Update Processing

We first study the individual update processing of view maintenance. We

distinguish between two classes of updates, i.e., data updates and schema

changes. We further distinguish between RenameSC and DropSC , be-

cause we expect that they have significant differences in maintenance costs.
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DU Rename Drop

Time (s)

Figure 4.6: Comparison of Individual Update Processing Types

Figure 4.6 depicts the average view maintenance cost under our basic

experimental setting, measured in seconds (depicted on the y-axis) for dif-

ferent types of updates. We find that the cost for DU maintenance is the

least while the cost of DropSC maintenance is significant. This is because
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the latter invokes both VS and VA modules. This observation provides us

some intuition that it is more costly to abort and re-process a DropSC .

In the next three experiments, we will study the system performance

under various kinds of anomalies described in Section 4.2.2, all of which

are supported in our DyDa system.

4.7.3 Study of Compensation for Anomaly I

Note that our DyDa system extends the ordinary view manager function-

ality to also deal with concurrent schema changes. We first study the over-

head that such extended functionality may bring to the normal system’s

data update processing. We examine our QueryProcessor algorithm in Al-

gorithm 1. When there is no concurrent DropSC , we can avoid the con-

struction of dependency graph and correction step. Thus the extra cost to

the existing data update maintenance algorithms is very small by having a

DropSC flag. In this experiment, we compare DyDa to SWEEP [AESY97]

as the view maintenance algorithm under a number of concurrent data up-

dates from distributed sources to measure the extra overhead that the DyDa

framework may be imposing.

Figure 4.7 depicts the total view maintenance cost measured in seconds

(depicted on the y-axis) under different numbers of source data updates

(depicted on the x-axis). From the result, we find that the extra cost is al-

most negligible (less than 3%) for a number of data updates in our envi-

ronmental settings. We thus conclude that the DyDa system imposes little

extra cost on data update processing while offering added support for con-

current schema change processing.
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Figure 4.7: SWEEP vs. DyDa on Data Update Processing

4.7.4 Abort Cost of Anomalies II and III

Recall that a maintenance query may fail due to the existence of some

concurrent schema changes, i.e., anomalies II and III. Once a concurrent

DropSC causes the query failure, the view manager has to abort all previ-

ous maintenance work and redo it again imposing some extra cost on the

view maintenance process. While in comparison, if a concurrent RenameSC

occurs, we simply rewrite the query using new names and try the new

query again without aborting any prior effort as described in Algorithm 1.

The extra abort cost of anomaly II is thus less than that of the anomaly III.

In this experiment, we study the cost of all four cases of anomalies II

and III. To observe the exact abort cost, we employ controlled cases here,

i.e., one data update processing aborted by one schema change and one

schema change processing conflicts with another one. Two different envi-

ronmental settings are compared. First, we measure the maintenance cost

of all updates by spacing them far enough so that each source update oc-
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curs after the completion of the previous view maintenance step. This way

they will not interfere with each other. This can be considered to be the min-

imum cost as no concurrency handling cost would arise. Second, we allow

the anomalies to occur by spacing the updates close enough and measure

the cost.
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Figure 4.8: Abort Cost for Anomaly II and III

Figure 4.8 depicts the total view maintenance cost in terms of seconds

(depicted on the y-axis) for the different types of anomalies II and III. We

find that the extra cost of aborting M(DropSC) by another DropSC is more

significant than any others. The reason is the complete abort of M(DropSC),

which is the most expensive maintenance process as observed in Section

4.7.1.

We also find that the abort cost of anomalies type II is small because

the loss is just one maintenance query. All other maintenance efforts com-

pleted to that point can be kept since we can simply rewrite the query and

try again. Finally, since data update maintenance is the least costly process,
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even if it’s completely aborted and redone again, the cost is still insignifi-

cant.

4.7.5 Mixed Update Processing

We now study how DyDa performs in an environment composed of a ran-

dom mixture of both data updates and schema changes. We employ a mix-

ture of updates with three DropSC , three RenameSC and one hundred

data updates over all six sources. We apply a worst case study here, i.e.,

no schema changes could be combined and no data updates could be dis-

carded as described in Section 4.6.1. If so, the performance of our tech-

niques should be better than we will find here. In this experiment, we vary

the time interval between the DropSC , RenameSC and data updates.

Figure 4.9 depicts the abort cost and the overall maintenance cost (which

includes the abort cost) when only varying the time interval between DropSC

from 0s to 45s. 0s means that all updates flood into the view manager be-

fore any maintenance kicks in. From Figure 4.9, we see that this case has

the best performance. This is because the system is able to correct all unsafe

dependencies at once for all updates. Thus no anomalies type III would

occur during maintenance processing. When the time interval between

DropSC increases, the new DropSC could break the ongoing maintenance

work. Hence the cost increases. The cost reaches a high peak when the

new DropSC always occurs near the end of the current M(DropSC), re-

sulting in the maximum abort cost. After the interval is larger than the

maintenance time, there is no conflict between the DropSC . Hence the cost

significantly decreases.
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Figure 4.9: Varying Time Interval be-
tween DropSCs
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Figure 4.10: Varying Time Interval
between DUs and RenameSCs

Next, we fix the time interval between the DropSC to 10s, but we vary

the time interval between data updates and RenameSC , respectively. Fig-

ure 4.10 depicts the abort cost and the overall maintenance cost for both

cases. From the figure, we see that the system performance as well as the

abort cost remain stable because the concurrency between DropSC is not

affected. Although the rate of the other two types of concurrency may vary,

it seems not to affect the system performance much as observed in Sections

4.7.3 and 4.7.4.

4.8 Related Work

Schema mapping [MBR01, MHH00] specifies how to map the data from

one schema to another to achieve interoperability of heterogeneous data

sources. A variety of modern applications requires schema mapping as

foundations, such as data integration for heterogeneous sources, XML to

relational mapping or semantic Web [LGMT03]. With the popular usage
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of WWW, the application environment becomes increasingly complex and

dynamic. The data sources may change their schema, semantics as well as

their query capabilities. In correspondence, the mapping or view definition

must be maintained to keep consistent. In EVE [LNR02] system, the view

definition evolves after the source schema changes. In [VMP03] the authors

propose to incrementally adapts the schema mapping to the new source or

target schema or constraints.

Maintenance of materialized view has been extensively studied in the

past few years [AESY97, SBCL00, ZGMHW95, CGL+96, GL95, LMSS95].

However, most of these works assume a static schema. This is no longer a

valid assumption in the dynamic environment. While in [AESY97, SBCL00,

ZGMHW95], the authors proposed compensation-based solutions to remove

the effect of concurrent data updates from query results, these solutions

would fail under source schema changes. [ZR01] assumes a fixed synchro-

nization protocol between the view manager and data sources to resolve

the concurrency problem. This restricts the autonomy of sources in that the

sources have to wait before applying any schema change. Our proposed

solution successfully drops this restricting assumption.

In this work, we identify that the new concurrency problems are caused

by the read-write conflicts on the view definition. Unlike traditional seri-

alizability theory [BHG87] that has full control to schedule the read/write

operations to resolve the conflicts, in our context, the write (source update)

is autonomous and hence locking is not an appropriate technique. Since the

write is unabortable, we propose to process the related updates altogether

to resolve the deadlock using a novel view adaptation algorithm.
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Chapter 5

Conclusions and Future Work

5.1 Summary of Contributions

The overall contribution of this dissertation is to consider broader types

of views than prior work that are useful for OLAP and data warehouse

applications.

In particular, first, we consider views with PIVOT and UNPIVOT op-

erators, which are of great interest in practice. We propose a novel frame-

work for both query optimization and incremental maintenance of views

with PIVOT and UNPIVOT operators. We find that a generalized oper-

ator, GPIVOT, not only has more powerful semantics but is also crucial

to achieve the above goals. We propose the combination rules, swapping

rules and various propagation rules for GPIVOT and GUNPIVOT in order

to derive an efficient maintenance plan. Extensive performance evaluations

confirm the effectiveness of our approach.

Beyond the contributions to solve the incremental maintenance of views
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with PIVOT and UNPIVOT operators, our methodology, for the first time,

also shows that the query transformation plays an important role for effi-

cient view maintenance. Based on this pre-step of query transformation,

our combined propagation rules for multiple operators demonstrate an ef-

fective method for efficient maintenance of more complex views.

The second contribution of this dissertation is that we propose a workarea

approach for supporting views with complex aggregate functions. With

our general and extensible workarea function model, we resolve a num-

ber of issues related to complex aggregate functions. First, we propose an

incremental view maintenance method using workareas. Second, we also

propose a generic view matching algorithm for answering queries using

such views. Third, our workarea model efficiently supports the stacking

of cube computation. Our real implementation in a prototype of IBM DB2

UDB proves the feasibility of our approach. Significant performance gain

and extra functionalities are realized by our approach.

Beyond the contributions for managing views with complex aggregate

functions, our workarea model also generically serves the basis for sup-

porting user-defined aggregate functions. By our workarea function model,

the user-defined aggregate functions can be more easily defined and im-

plemented (one scalable function as opposed to always init-iter-term three

functions [WZ00]). The sharing among user-defined aggregate functions

can also easily be exploited.

The third contribution of this dissertation is that we illustrate that the

view maintenance anomaly problems in a loosely-coupled environment

correspond to the unsafe dependencies between source updates. We cate-
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gorize the different types of dependency relationships that cause the anomaly

problem. Then we propose a suite of detection methods for unsafe depen-

dencies. We also introduce a dependency correction solution to eliminate

unsafe dependencies. Finally we propose Dyno algorithm that combines

both detection and correction strategies into one integrated solution. We

show the correctness of Dyno, namely, that it enables the integrator to han-

dle concurrent data and schema changes in a dynamic context.

The essence of this approach is that, Dyno is a general strategy for

handling view maintenance concurrency problems, which is independent

of any specific view maintenance algorithms or even the underlying data

model. Hence it has the potential to be plugged into any view system.

5.2 Future Work

5.2.1 Answring Queries using Views with GPIVOT and GUN-

PIVOT Operators

There are a number of promising future directions beyond the work in

Chapter 2, e.g., optimization and execution of GPIVOT and GUNPIVOT in

RDBMS, maintenance of source updates in order to avoid always to decom-

pose them into inserts and deletes, maintenance of pivot that includes all

null tuples, maintenance of high-order pivot and unpivot operators [LSS99]

and query matching for such views.

We now describe some initial ideas on query matching part for such

views. One approach is to extend the view matching framework in Sec-

tion 3.4, such that we can re-use the existing framework for other relational
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operators and extend it by developing techniques for handling GPIVOT

and GUNPIVOT operators.

(ID,Type, Value)

[TV, VCR]

Type on Value

(ID,Type, Value)

ItemInfo ItemInfo

GPIVOT

[TV,VCR,DVD]

Type on Value

GPIVOT

[ID, TV, VCR]

TV≠≠≠≠ OR VCR ≠≠≠≠

SELECT

⊥ ⊥

290TV1

120DVD1

100VCR2

250MP32

ValueTypeID
100

VCR

290

TV

1201

2

DVDID

⊥
⊥

⊥

100

VCR

290

TV

1

2

ID

⊥
⊥

Figure 5.1: Matching Example for Views with GPIVOT

Figure 5.1 shows one matching example. The view definition is on the

left side, while the query is on the right side. As can be seen, a bottom-up

matching will start from two base tables. Then we try to match between

two GPIVOT operators. Since the query contains more pivot parameters

than the view does, we can compute the query from the view as shown on

the top of the right side of the figure.

Figure 5.2 shows another matching example for aggregate views. The

view definition is on the left side, while the query is on the right side. As

can be seen, the matching between two group-by operators require com-

pensation as shown in the figure. The matching between two GPIVOT op-

erators require to first pull up the lower compensation as in Section 3.4,

which results in aggregation over each pivoted output column. Then we

match the two GPIVOT operators similar to the last example. The final

rewriting is shown on the top of the right side of the figure. From these two

examples, we can see that the views with GPIVOT operators can be used
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(Country, Type, Year, Sales)

[TV, VCR]

Type on Sum

GPIVOT

[TV,VCR,DVD]

Type on Sum

GPIVOT

[ID, SUM_TV, SUM_VCR]

SUM_TV≠≠≠≠ OR SUM_VCR ≠≠≠≠

SELECT

⊥ ⊥

Country, Type, SUM(Sales)

GB

Country, Type, Year, SUM(Sales)

GB

Country, Type, SUM(S)

GB

Country, SUM(TV),

SUM(VCR), SUM(DVD)

GB

(Country, Type, Year, Sales)

Sales Sales

Figure 5.2: Matching Example for Aggregate Views with GPIVOT

to answer the queries containing such operators. Also it seems promising

to extend the existing matching framework to support such views.

5.2.2 Top-K Aggregate, Window Aggregate and More

There are also a number of promising future directions beyond the work

in Section 3. For instance, how to efficiently maintain holistic aggregate

functions, as a simple example, we may want to keep Top-K values in order

to efficiently maintain Min/Max under deletion. The challenge is how to

pick the right K such that we can maximally reduce the full recomputation

without maintaining too many extra data [YYY+03].

Also we note that windowing functions are frequently used by many

applications (e.g., computing average sales every three months) [GBLP96].

How to efficiently compute windowing functions as well as how to manage
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views with windowing functions are important issues. The challenge is

that the insertion or deletion of one data point may affect many windows

simultaneously if such changes are not ordered on the window attributes.

Lastly, experience with our experiments shows that, while the incre-

mental view maintenance improves the view refreshing performance, it

may also decrease the quality of view content due to floating point com-

putation [ANS87b]. For example, the incremental maintenance of variance

may result in significant error compared to full recomputation. For in-

stance, the variance for the dataset {6.0, 8.0, 8.0∗103} under single-precision

system [ANS87a] (about 7-decimal digits precision) is 1.42 ∗ 107 initially.

After removing the data 8.0 ∗ 103, the incremental computation of variance

results in 1.67 rather than 1.0 by recomputing from {6.0, 8.0}. The relative

error is more than 60%. The resulting variance may even become negative,

which is obviously incorrect. It is interesting future work for how to mea-

sure such errors in order to achieve both quality and performance for view

maintenance.

5.2.3 XML and XPATH/XQuery View

There are many open and interesting research issues beyond the topics ad-

dressed in this dissertation. While this dissertation shows the first step to

extend the views with complex aggregate functions and PIVOT/UNPIVOT

operators, there are much richer sets of interesting views to be considered

in practice.

For example, since the data sources are heterogeneous, complex extract-

transform-load (ETL) processes are often necessary to achieve the integra-



5.2. FUTURE WORK 197

tion of such data. How to manage views with some common ETL opera-

tions is still an unexplored but important problem. Furthermore, the source

data models may not even be relational. In this case, a more flexible semi-

structured query language, such as XPATH [W3C99] and XQuery [W3C05],

would be necessary for the purpose of integrating such data.

The challenges of maintaining views defined using these languages are

multi-fold. First, the update of the XML document is more complex than

the relational insert, delete or update. The update may involve complex

tree pattern predicate, followed by insertion, deletion or update of subtrees

[TIHW01].

Second, unlike relational data, XML document is ordered. Such order

requirement adds significant complexity for view maintenance. The reason

is that while we may be able to compute some new trees to be inserted into

the view, the hard part is to know where to insert them.

Third, XQuery supports result restructuring. This complicates the view

maintenance problem further. The reason is that after restructuring, we no

longer know where these data come from the original document, or in the

words, the original structure information is lost after restructuring.
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Appendix A

Correctness Proofs of

Swapping Rules in Section 2.5

Equation (7) in Section 2.5.1:

σ
“a

i1
1 ∗∗...a

i1
m∗∗Bl1

” cp “a
i2
1 ∗∗...a

i2
m∗∗Bl2

”
(GPIV OT

[{(ai
1,...,ai

m)}]
[A1,...,Am] on [B1,...,Bn](V )) =

GPIV OT
[{(ai

1,...,ai
m)}]

[A1,...,Am] on [B1,...,Bn](πK1[σ
(A1,...,Am)=(a

i1
1 ,...,a

i1
m)

(V ) ⊲⊳(K1=K2 ∧ B1
l1

cp B2
l2

)

σ
(A1,...,Am)=(a

i2
1 ,...,a

i2
m)

(V )] ⊲⊳ V )

Proof for Equation (7):

σ
“a

i1
1 ∗∗...a

i1
m∗∗Bl1

” cp “a
i2
1 ∗∗...a

i2
m∗∗Bl2

”
(GPIV OT

[{(ai
1,...,ai

m)}]
[A1,...,Am] on [B1,...,Bn](V )).

= (πK1[σ
(A1,...,Am)=(a

i1
1 ,...,a

i1
m)

(V ) ⊲⊳(K1=K2 ∧ B1
l1

cp B2
l2

) σ
(A1,...,Am)=(a

i2
1 ,...,a

i2
m)

(V )]) ⊲⊳

(GPIV OT
[{(ai

1,...,ai
m)}]

[A1,...,Am] on [B1,...,Bn]
(V )).

By pushing down the join condition (since it is on the key column), we have:

= GPIV OT
[{(ai

1,...,ai
m)}]

[A1,...,Am] on [B1,...,Bn](πK1[σ
(A1,...,Am)=(a

i1
1 ,...,a

i1
m)

(V ) ⊲⊳(K1=K2 ∧ B1
l1

cp B2
l2

)

σ
(A1,...,Am)=(a

i2
1 ,...,a

i2
m)

(V )] ⊲⊳ V ).
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Equation (8) in Section 2.5.1:

GPIV OT
[{(ai

1,...,ai
m)}]

[A1,...,Am] on [B1,...,Bn](σAu=x∧Bv=y(V )) =

σnot all ⊥(π
K,{case(“a

i1
1 ∗∗...a

i1
u ...∗∗a

i1
m∗∗B1”,...,“a

i1
1 ∗∗...a

i1
u ...∗∗a

i1
m∗∗Bn”)}

)(

GPIV OT
[{(ai

1,...,ai
m)}]

[A1,...,Am] on [B1,...,Bn](V )) (8)

Proof for Equation (8): (1) First we prove that both sides of Equation (8) generate

the same set of key values. The left side outputs the key value set as: δK(σAu=x∧Bv=y(V )).

Or in other words, it outputs a key value k iff there exists at least one row in V

that satisfies K=k∧Au=x∧Bv=y.

The right side outputs a key value k iff there exists at least one row with its

column “a
i1
1 ∗ ∗...a

i1
u ... ∗ ∗ai1

m ∗ ∗Bv” satisfying ai1
u = x and “a

i1
1 ∗ ∗...a

i1
u ... ∗ ∗ai1

m ∗

∗Bv” = y. The original row in V that corresponds to this column must then satisfy

K=k∧Au=x∧Bv=y. Hence, both sides generate the same set of key values.

(2) Next we prove that for each key value k, both sides generate the same

row. For any column “a
i1
1 ∗ ∗... ∗ ∗a

i1
m ∗ ∗Bj”, the left side of Equation (8) outputs

πBj
(σ

K=k∧A1=a
i1
1
∧...∧Au=a

i1
u =x...∧Am=a

i1
m∧Bv=y

(V )). The right side of Equation (8)

outputs πBj
((σ

a
i1
u =x∧Bv=y

)(σ
K=k∧A1=a

i1
1
∧...∧Au=a

i1
u ...∧Am=a

i1
m

(V ))). Hence, both sides

output the same value for any column “a
i1
1 ∗ ∗... ∗ ∗a

i1
m ∗ ∗Bj”.

By (1) and (2), we know that Equation (8) always holds.

Equation (9) in Section 2.5.4:

K′Ff({“ai
1∗∗...∗∗a

i
m∗∗Bj”})

(GPIV OT
[{(ai

1,...,ai
m)}]

[A1...Am] on [B1...Bn](V )) =

GPIV OT
[{(ai

1,...,ai
m)}]

[A1,...,Am] on [f(B1),...,f(Bn)](K′,A1,...,Am
Ff(B1),...,f(Bn)(V )) (9)
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Proof for Equation (9): We assume the output parameters for GPIVOT are

{(a1
1, ..., a

1
m), ..., (ap

1, ..., a
p
m)}.

(1) Since both sides of Equation (9) have a key K ′ in their output, we first show

that both sides output the same set of key values. The left side of Equation (9) out-

puts the key set: δK′(δK(σ(A1,...,Am)=(a1
1,...,a1

m)∨... ∨(A1,...,Am)= (ap
1 ,...,a

p
m)(V )) =

δK′(σ(A1,...,Am)=(a1
1,...,a1

m)∨ ...∨(A1,...,Am)= (ap
1 ,...,a

p
m)(V )), where δ means project

under set semantics (i.e., select distinct). The right side of Equation (9) outputs the

key set: δK′(σ(A1,...,Am)=(a1
1,...,a1

m) ∨...∨(A1,...,Am)=(ap
1 ,..., a

p
m)( δK′,A1,...,Am

(V )) =

δK′(σ(A1,...,Am) =(a1
1,...,a1

m)∨...∨ (A1,...,Am) =(ap
1 ,... ,a

p
m)(V )). Hence, both sides gen-

erate the same set of key values.

(2) Next we show that for any K ′ value k′, both sides of Equation (9) gen-

erate the same row. We now assume {kl} = πK(σK′=k′∧((A1,...,Am)= (a1
1,...,a1

m)∨

...∨(A1,...,Am) =(ap
1 ,...,a

p
m))(V )), l = 1..q. Then for some i ≤ m and j ≤ n, we let

rl = πBj
(σK=kl∧(A1,...,Am)=(ai

1,...,ai
m)(V )), l = 1..q. If there is no satisfied row in

V , we let rl =⊥.

We first consider the left side of Equation (9). In particular, we consider the

column f(“ai
1 ∗ ∗a

i
2... ∗ ∗a

i
m ∗ ∗Bj”) for a given k′. The data to be aggregated are

{rl}, l = 1, .., q, i.e., the column outputs f({rl}).

Now we consider the right side of Equation (9), which equals

=⊲⊳<p
i=1πK′,f(B1),...,f(Bn)(σ(A1,...,Am)=(ai

1,...,ai
m) (K′,A1,...,Am

F f(B1),...,f(Bn)(V ))) =

=⊲⊳<p
i=1πK′,f(B1),...,f(Bn)(K′,A1,...,Am

F f(B1),...,f(Bn)(σ(A1,...,Am)=(ai
1,...,ai

m)V )). Hence,

for a given value k′ and (ai
1, ..., a

i
m), the inner GROUPBY for column Bj com-

putes f(πBj
(σK′=k′∧(A1,...,Am)=(ai

1,...,ai
m)(V ))). Here, we note that σK′=k′∧ (A1,...,Am)=

(ai
1,...,ai

m)(V ) must equal to ∪q
l=1(σK=kl∧(A1,...,Am)= (ai

1,...,ai
m)(V )) based on the

definition kl.
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Hence, the inner GROUPBY for column Bj actually computes:

f(πBj
(∪q

l=1(σK=kl∧(A1,...,Am)=(ai
1,...,ai

m)(V ))). Or in other words, the out-

put is f(σrl 6=⊥{rl}). The next GPIVOT will output either f(σrl 6=⊥{rl}) or ⊥ if

σrl 6=⊥{rl} is empty.

Since the aggregate function f disregards ⊥ value and outputs ⊥ when all the

data in a group are ⊥, then f({rl}) = f(σrl 6=⊥{rl}).

By (1) and (2), we thus establish the proof for Equation (9).

Equation (10) in Section 2.5.5:

GUNPIV OT[{“ai
1∗∗...a

i
m∗∗Bj”}]

(

GPIV OT
[{ai

1,...,ai
m}]

[A1...Am] on [B1...Bn](V )) = (σs(V )) (10)

Proof for Equation (10): First, obviously, GUNPIVOT outputs a table schema

that equals to that of table V . Next, for each row (k1, a1, ..., am, b1, ..., bn) in V , 1)

if (a1, ..., am) does not equal to any (ai
1, ..., a

i
m), then both sides of Equation (10)

will not include it. 2) if (a1, ..., am) does equal to some ai
1, ..., a

i
m, then GPIVOT

outputs (k1, ..., b1, ..., bn, ...), with the column name for each column bj as “a1 ∗

∗.. ∗ ∗am ∗ ∗Bj”. The next GUNPIVOT outputs row (k1, a1, ..., am, b1, ..., bn).

Note that here we assume not all (b1, ..., bn) are ⊥. If not, the predicate σs should

be extended to choose those rows whose {Bj} not all ⊥. Hence both sides of Equa-

tion (10) contain that row. By 1),2), Equation (10) always holds.

Equation (11) in Section 2.5.5:

GUNPIV OT[{G1,...,Gl}](GPIV OT
[{(ai

1,...,ai
m)}]

[A1...Am] on [B1...Bn](V )) =

GPIV OT
[{(ai

1,...,ai
m)}]

[A1...Am] on [B1...Bn]
(GUNPIV OT[{G1,...,Gl}](V )) (11)
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Proof of Equation (11): Assume a row in V as v = (k1, g1, ..., gl, a1, ..., am, b1,

..., bn). We further assume that applying GUNPIV OT[{G1,...,Gl}] on this row

will output p rows (k1, h
1
1, ..., h

1
q , a1, ..., am, b1, ..., bn),..., (k1, h

p
1, ..., h

p
q , a1, ..., am,

b1, ..., bn).

Hence, for this row v, the right side of Equation (11) will first output p rows

(k1, h
1
1, ..., h

1
q , a1, ..., am, b1, ..., bn), ..., (k1, h

p
1, ..., h

p
q , a1, ..., am, b1, ..., bn). The

next GPIVOT also outputs p rows as (k1, h
1
1, ..., h

1
q , ..., b1, ..., bn, ...), ..., (k1, h

p
1, ...,

hp
q , ..., b1, ..., bn, ...), with each bj column’s name as “a1 ∗ ∗..am ∗ ∗Bj”.

For the left side of Equation (11), GPIVOT will first output (k1, g1, ..., gl, ..., b1,

..., bn, ...), with each bj column’s name as “a1 ∗ ∗..am ∗ ∗Bj”. Then GUNPIVOT

outputs p rows as (k1, h
1
1, ..., h

1
q , ..., b1, ..., bn, ...), ...,(k1, h

p
1, ..., h

p
q , ..., b1, ..., bn, ...).

The reason is that the output of GUNPIVOT is determined by (g1, ..., gl).

Thus, both sides of Equation (11) generates same output for each input row v.

Hence Equation (11) always holds.

Equation (12) in Section 2.5.5:

GPIV OT
[{ai

1,...,ai
m}]

[A1...Am] on [B1...Bn](

GUNPIV OT[{“ai
1∗∗...∗∗a

i
m∗∗Bj”}]

(H)) = (σs(H)) (12)

Proof for Equation (12): First, obviously, GPIVOT outputs the table schema

same as table H . Next, for each row h = (k1, c1, ..., cpn) in H , 1) if (c1, ..., cpn)

all equal to ⊥, then both sides of Equation (12) will not include it. 2) if not all

(c1, ..., cpn) equal to⊥, then GUNPIVOT outputs a set of rows {(k1, a
i
1, ..., a

i
m, b1,

..., bn)| if not all bj equals ⊥,i=1,..,p }. The next GPIVOT takes these rows as in-
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put and outputs row (k1, c1, ..., cpn). Hence both sides of Equation (12) contain

that row. By 1) and 2), Equation (12) always holds.

Equation (13) in Section 2.5.6:

σAu=x∧Bv=y(GUNPIV OT[{“ai
1∗∗...a

i
m∗∗Bj”}]

(H)) =

GUNPIV OT[{“ai
1∗∗..∗∗x..ai

m∗∗Bj”}]
(

πK,{case(“ai
1∗∗..∗∗x..ai

m∗∗B1”,...,“ai
1∗∗..∗∗x..ai

m∗∗Bn”)}(H)) (13)

Proof for Equation (13): Proof of Equation (13): The proof of this rule is

straightforward. The left side of Equation (13) outputs a row r = (k1, a1, a2, ..., am,

b1, ..., bn) iff au = x∧ bv = y. On the right side of Equation (13), the case expres-

sion actually removes the rows that do not satisfy au = X ∧ bv = y. Hence they

are equivalent.

Equation (14) in Section 2.5.6:

GUNPIV OT[{“ai
1∗∗...a

i
m∗∗Bj”}]

( σ
“a

i1
1 ∗∗...a

i1
m∗∗Bl1

” cp “a
i2
1 ∗∗...a

i2
m∗∗Bl2

”
(H))

= πK(σ
“a

i1
1 ∗∗...a

i1
m∗∗Bl1

” cp “a
i2
1 ∗∗...a

i2
m∗∗Bl2

”
(H)) ⊲⊳

GUNPIV OT[{“ai
1∗∗...a

i
m∗∗Bj”}]

(H) (14)

Proof of Equation (14): The proof of this rule is straightforward. On the right

side of Equation (14), since the join is on the key K, we can push it in as:

GUNPIV OT[{“ai
1∗∗...a

i
m∗∗Bj”}]

(

πK(σ
“a

i1
1 ∗∗...a

i1
m∗∗Bl1

” cp “a
i2
1 ∗∗...a

i2
m∗∗Bl2

”
(H)) ⊲⊳ (H))

= GUNPIV OT[{“ai
1∗∗...a

i
m∗∗Bj”)}]

(
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σ
“a

i1
1 ∗∗...a

i1
m∗∗Bl1

” cp “a
i2
1 ∗∗...a

i2
m∗∗Bl2

”
(H)).

Equation (15) in Section 2.5.8:

GUNPIV OT[{“ai
1∗∗...a

i
m∗∗Bj”}]

(H) ⊲⊳Bl=X (T ) =

GUNPIV OT[{“ai
1∗∗...a

i
m∗∗Bj”}]

(πK,{case(“ai
1∗∗...a

i
m∗∗B1”,...,

“ai
1∗∗...a

i
m∗∗Bn”)},X,Y ( H ⊲⊳“a1

1∗∗...a
1
m∗∗Bl”=X∨...∨“a

p
1∗∗...a

p
m∗∗Bl”=X T )) (15)

Proof of Equation (15): The proof of this rule is straightforward. The left side of

Equation (15) outputs a row r = (k, a1, a2, ..., am, b1, ..., bn, x, y) iff bl = x. On

the right side of Equation (15), the case expression actually removes the rows that

do not satisfy bl = x. Hence we conclude that they are equivalent.

Equation (16) in Section 2.5.8:

GUNPIV OT[{“ai
1∗∗...a

i
m∗∗Bj”}]

(H ⊲⊳
“a

i1
1 ∗∗...a

i1
m∗∗Bl”=X

T ) =

πK(H ⊲⊳
“a

i1
1 ∗∗...a

i1
m∗∗Bl”=X

T ) ⊲⊳

GUNPIV OT[{“ai
1∗∗...a

i
m∗∗Bj”}]

(H) (16)

Proof of Equation (16): The proof of this rule is straightforward. On the right

side of Equation (16), since the join is on the key K, we can push it in as:

GUNPIV OT[{“ai
1∗∗...a

i
m∗∗Bj”}]

(

πK(H ⊲⊳
“a

i1
1 ∗∗...a

i1
m∗∗Bl”=X

T ) ⊲⊳ (H)) =

GUNPIV OT[{“ai
1∗∗...a

i
m∗∗Bj”}]

(H ⊲⊳
“a

i1
1 ∗∗...a

i1
m∗∗Bl”=X

T ).

Equation (17) in Section 2.5.9:

K′Ff(Bj )(GUNPIV OT[{“ai
1∗∗...a

i
m∗∗Bj”}]

(H)) =
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K′ F f(FBj)(GUNPIV OT[{“ai
1∗∗...a

i
m∗∗FBj”}]

(

K′′F{ρ
“ai

1∗∗...ai
m∗∗F Bj”

(f(“ai
1∗∗...a

i
m∗∗Bj”))}

(H)) (17)

Proof of Equation (17): Assume the group-by columns are K ′ = (K ′′, Al1 , ..., Alq ),

with K ′′ ⊆ K and Alr ∈ {A1, ..., Am} for r = 1, .., q. On the right side of Equa-

tion (17), the inner group-by computes “ai
1 ∗ ∗...a

i
m ∗ ∗FBj”, which is equivalent

to computing f(Bj) for each group (K ′′, A1, ..., Am) on the unpivoted data.

Note that since (K ′′, A1, ..., Am) is a superset of the next group-by columns,

namely, (K ′′, Al1 , ..., Alr ), we can compute the group-by on (K ′′, Al1 , ..., Alr )

from the group-by result on (K ′′, A1, ..., Am) using re-aggregation. This is known

as a classic two-level aggregation strategy in [GBLP96].

Equation (18) in Section 2.5.9:

GUNPIV OT[{f(Bi)}](KF{f(Bi)}(T )) =

K,CN
F{f(CV )}(GUNPIV OT[{Bi}](T )) (18)

Proof of Equation (18): Assume for a given group-by value k1, there are a

set of rows {t1, ..., tp}= {(k1, b
1
1, ..., b

1
n), ..., (k1, b

p
1, ..., b

p
n)} in T with that group

value k1 (we ignore other columns). The left side of Equation (18) first computes

(k1, f({bj
1}), ..., f({bj

n})) and unpivots it to a set of rows as {(k1, c
i
v , f(bj

i ))},

where ci
v are the corresponding name columns.

The right side of Equation (18) first unpivots {t1, ..., tp} to {(k1, c
1
v, b

1
1), ...,

(k1, c
n
v , b1

n), ..., (k1, c
1
v , ..., b

p
n), ..., (k1, c

n
v , ..., bp

n)} (note that some row may not

exist if bj
i =⊥). The next group-by on (k1, c

i
v) computes {(k1, c

i
v , f(bj

i ))}. Thus it

is identical to the left side.
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