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Abstract

This thesis addresses the need for a scalable distributed solution for k-nearest-neighbor

(kNN) search, a fundamental data mining task. This unsupervised method poses particu-

lar challenges on shared-nothing distributed architectures, where global information about

the dataset is not available to individual machines. The distance to search for neighbors

is not known a priori, and therefore a dynamic data partitioning strategy is required to

guarantee that exact kNN can be found autonomously on each machine. Pivot-based

partitioning has been shown to facilitate bounding of partitions, however state-of-the-art

methods suffer from prohibitive data duplication (upwards of 20x the size of the dataset).

In this work an innovative method for solving exact distributed kNN search called PkNN

is presented. The key idea is to perform computation over several rounds, leveraging

pivot-based data partitioning at each stage. Aggressive data-driven bounds limit com-

munication costs, and a number of optimizations are designed for efficient computation.

Experimental study on large real-world data (over 1 billion points) compares PkNN to the

state-of-the-art distributed solution, demonstrating that the benefits of additional stages

of computation in the PkNN method heavily outweigh the added I/O overhead. PkNN

achieves a data duplication rate close to 1, significant speedup over previous solutions,

and scales effectively in data cardinality and dimension. PkNN can facilitate distributed

solutions to other unsupervised learning methods which rely on kNN search as a critical

building block. As one example, a distributed framework for the Local Outlier Factor

(LOF) algorithm is given. Testing on large real-world and synthetic data with varying

characteristics measures the scalability of PkNN and the distributed LOF framework in

data size and dimensionality.
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Chapter 1

Introduction

1.1 Motivation

Detecting the nearest-neighbors of all points in a dataset is a ubiquitous task across nu-

merous data mining endeavors. Many techniques, including classification and regression

[1], clustering [2, 3], and outlier detection [4, 5, 6] require a k-nearest-neighbor (kNN)

search to be performed for every point in the dataset. The usefulness of this task (also

known as the all kNN query [7], similarity search [8], or kNN join [9]) has prompted

much research. Furthermore, real-world applications increasingly rely on kNN search

over very large datasets, requiring resources beyond what is feasible on a single machine.

In such cases, distributed compute clusters enable analysis of huge datasets through par-

allel processing across many machines. Therefore, the development of highly distributed

solutions for kNN search is no longer an option, but a necessity.

A distributed solution for kNN search can facilitate high value applications. This the-

sis demonstrates this for one method, the Local Outlier Factor algorithm (LOF) [5]. This

unsupervised, density-based outlier detection method detects anomalies in both sparse

and dense areas of an input dataset, by examining a ”neighborhood” for each point de-
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fined by its kNN. This data-driven outlier detection strategy, which can identify unusual

occurrences solely by evaluating other data observations around a target point, is a power-

ful tool for detecting outliers in a rich variety of data distributions. LOF has been shown

to better identify attacks in intrusion detection systems than other approaches [10], and

achieve better accuracy in correctly identifying anomalous points for datasets with vary-

ing characteristics [11], outperforming other popular outlier detection methods.

1.2 Limitations of State-of-the-Art

Given the usefulness of kNN search and the LOF algorithm and the enormous amount

of data available, it is clear that efficient distributed solutions can provide great value by

leveraging modern distributed infrastructures.

Distributed kNN Search

However, in the literature most distributed kNN search approaches from Locality-Sensitive

Hashing [12] to Z-Curves [9] only produce approximate results. Although a small amount

of error may be acceptable in some applications, in many cases the exact results are re-

quired. In the case of outlier detection, outliers by definition make up an extremely small

portion of the dataset which may fall within the margin of error of an approximate solu-

tion. It is apparent that an effective method for exact kNN distributed search is required

to facilitate such methods on large data.

Although a distributed kNN join approach is proposed in [9] that can be adapted

to support exact kNN search, it is not scalable to datasets containing above 10 million

points, as confirmed in the authors’ own experiments. In order to ensure kNN search

can be conducted independently on each machine of a distributed system, the method

duplicates a huge amount of data across the cluster. This leads to prohibitively high
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communication and computation costs. Worst yet, for skewed data, more points may be

assigned to a single machine than what it can physically accommodate, resulting in job

failures. Overall, to date no distributed approach has been proposed that scales exact kNN

search to large datasets.

Distributed Outlier Detection

The need for distributed solutions for outlier detection has been widely recognized and

addressed by researchers. Recent efforts have begun to explore distributed solutions for

outlier detection using global distance measures [4, 13, 14, 9]. However these techniques

are not designed to handle datasets with varying density. As best can be determined, no

distributed work has been proposed to date to perform local outlier detection on large

datasets.

1.3 Challenges

Designing an efficient distributed solution to exact kNN search, and by extension LOF, is

challenging. In a distributed system with a shared-nothing architecture, an input dataset

has to be partitioned and sent to different machines. A distributed solution depends on

two key elements: (1) the design of a data partitioning plan which groups nearby points

together, and (2) a strategy to guarantee that the neighbors of each point can be found

locally within a single partition. The latter challenge is typically addressed by augmenting

each partition with supporting points [3, 9, 15] which allow for local autonomy of data

mining tasks. This however requires that points which are processed in one partition and

also fall within supporting areas of other partitions be duplicated and sent to possibly

many machines. High data duplication results in excessive communication costs. Thus,

an effective strategy to limit prohibitive data duplication rates is crucial.
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Predicting the support points for each partition is challenging, since the distance from

a point to its kth-nearest-neighbor may vary considerably based on the data distribution.

The distance from a point to its neighbors will be small if it falls in a dense area, while

it could be very large if it instead falls in a sparse area. In parameterized methods, such

as distance-based outlier detection methods [16] and density-based clustering [3], the

distance to search for neighbors is fixed. For exact kNN search however there is no a

priori known parameter which determines a fixed bound on the size of supporting areas.

Although the method proposed in [9] could in principle be adapted to bound the sup-

port points of all points in a given data partition, this bound corresponds to a safe but worst

case estimation. This very conservative bound could lead to a large number of replicas.

Hence an effective strategy is required to bound the support points of each data partition

with a minimized duplication rate while still ensuring the correctness of the kNN search.

In addition to high communication costs, distributed kNN search also carries a high

computational complexity. An efficient centralized kNN search algorithm must be ap-

plied locally on each machine. End-to-end execution time is determined by the longest

running individual process, and therefore load balancing is essential. This proves to be

yet another challenging task since real-world data varies in density and distribution, which

may impact the number of points assigned to each supporting area, causing load variation

from machine to machine.

Finally, real-world data often includes many features for each data point. The utility of

distances between neighboring points has been debated as it applies to high-dimensional

data [17]. The inherent limitations imposed by the curse of dimensionality on the ef-

fectiveness of nearest neighbor search are beyond the scope of this work. It has been

noted however that the performance of nearest neighbor algorithms typically grows ex-

ponentially in the number of dimensions [18]. For very large data, this renders a high

dimensional solution intractable.
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However, a robust implementation of kNN search that scales to handle a reasonable

number of features, such as up to 10, is significantly more versatile that one that can

handle only 2 or 3 dimensions. The added complexity of evaluating more features per

data point impacts the amount of data that can be processed by each machine, and thus

the running time of the computation. A suitable partitioning method should account for

this increased complexity.

1.4 Methodology

The challenges above require the design and implementation of an algorithm for dis-

tributed kNN, optimized for efficiency and scalability, and feasible for use on real-world

data. In this work we propose an efficient distributed approach called PkNN (Pivot-Based

kNN Search). Using the popular MapReduce paradigm [19], PkNN successfully scales

kNN search to large datasets.

Similar to [9] PkNN first splits the data points based on their distances to a set of

selected pivot points. However, unlike [9] PkNN no longer utilizes theses distances to

directly estimate the worst case distance to neighbors of the points in each data partition.

Instead PkNN proposes a counter-intuitive approach. It overturns the common under-

standing that in shared-nothing distributed infrastructures an efficient approach should

complete the analytics task in as few as possible rounds. This observation is shown not to

hold in the scenario of kNN search.

Instead, PkNN decomposes the kNN search into multiple phases. The insights learned

in each step are fully utilized to dynamically guide the search in a data-driven manner.

PkNN uses a multi-pass adaptive support strategy (MPASS) to define supporting areas.

First, a preliminary kNN search learns the characteristics of the data assigned to each par-

tition. Based on these insights a two-tier support determination procedure is performed
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at first the partition level, and then the individual point level by introducing the concept

of a boundary hyperplane.

Additional optimizations further reduce the computation and communication costs of

PkNN. In particular, an early termination strategy effectively identifies those data points

for which the kNN have been found in the preliminary kNN search phase. These points

can be immediately removed from the next phase, avoiding unnecessary communication

costs and redundant computation. The pivot-based methodology is harnessed on individ-

ual machines as well, where a pivot-based index is used within individual partitions to

speed computation.

These strategies effectively reduce the data duplication rate and scale kNN search.

Experimental evaluation demonstrates that PkNN outperforms the existing state-of-the-art

in runtime, data duplication, and scalability. The impact of parameter selection and data

dimensionality is thoroughly investigated. Using real data, PkNN is confirmed to scale

to handle upwards of 1 billion data points. PkNN is further shown to support distributed

LOF computation by providing the key piece of a distributed LOF framework, called

PkNN-LOF.

For the proposed distributed algorithms in this thesis, the Hadoop distributed com-

puting framework [20] using MapReduce [19] has been chosen. This popular technology

is desirable for its scalability in number of nodes, flexibility in the data model, fault tol-

erant execution, and cost effectiveness as an open-source technology which can run on

commodity hardware. As a shared nothing-architecture, it allows for the design of a dis-

tributed algorithm general enough to be adapted to alternate platforms. Therefore, the

algorithms proposed can also be utilized on other popular shared-nothing architectures.

Contributions:

1. A distributed approach in MapReduce called PKNN is proposed that for the first
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time scales exact kNN search to billion point level datasets.

2. The MPASS performs computation over several rounds and fully explores the in-

sights collected in each phase for multiple optimization objectives such as limit-

ing unnecessary search, pruning completed points early, and speeding up the kNN

search process.

3. PkNN is shown to facilitate distributed computation of a high-value unsupervised

learning task, the Local Outlier Factor algorithm.

4. Evaluation on the large real world and synthetic datasets shows that PKNN signifi-

cantly outperforms the state-of-the-art approaches in various scenarios.
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Chapter 2

Preliminaries

Here we formalize the distributed kNN problem. Frequently used symbols are listed in

Table 2.1. In typical applications, the data instances, which we refer to as points, consist

of feature vectors which describe entities in the real world [8]. The task is to find for each

point a set of k other points which are similar. We assume this similarity measure to be a

well defined distance metric |·| such as any Lp norm.

2.1 Distributed kNN Search

Definition 1. kNN Search. ∀p ∈ D, find the set of points kNN(p) where kNN(p) =

{q1, q2, ..., qk ∈ D | ∀r ∈ D − kNN(p), |p, qi| ≤ |p, r|, r 6= p}.

The naı̈ve solution for centralized kNN search is to simply compare each point with

every other point in the dataset and choose the k closest. This requires access to all points

in the dataset, i.e. it is quadratic in time complexity. For today’s huge datasets, the time to

complete this exhaustive search is prohibitive. Furthermore, the data may be too large to

fit into memory on a single machine. Therefore the kNN search task must be completed

without local access to the entire dataset.
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Symbol Definition
p, q, r data points
kNN(p) the k nearest-neighbors of p
Vi Voronoi Cell
vi pivot corresponding to Vi

Vi.core {p ∈ D | |p, vi| ≤ |p, vj| i 6= j}
Vi.support all points in the supporting area of Vi

core-dist(Vi) max |p, q| ∀p, q ∈ Vi.core q ∈ kNN(p) ∈ Vi.core
Hij hyperplane boundary between cells Vi and Vj

hp-dist(q, Vi) distance from q ∈ Vj to Hij

support-dist(Vi) max |p, vi|+ |p, q| ∀p, q ∈ Vi.core q ∈ kNN(p) ∈ Vi.core
ib(Vi) |vi, vj|/2 where vj is the closest pivot to vi ∈ Vi

Table 2.1: Table of Symbols.

Definition 2. Distributed kNN Search (Problem Statement). Given datasetD distributed

across m machines in a distributed compute infrastructure, perform kNN Search by pro-

cessing m disjoint subsets (called cells) { Ci | C1 ∪C2 ∪ ...∪Cm = D, Ci ∩Cj = ∅ } on

separate machines independently and in parallel while minimizing end-to-end execution

time.

We target MapReduce [19] style distributed computing platforms where information

about data partitions is not shared between machines. Our task is to ensure that kNN

search can be completed autonomously for the portion of the dataset processed on each

machine. If data is distributed among machines randomly, then it is likely that the neigh-

bors of a given point will be sent to a different machine. Therefore a data partitioning

strategy which preserves data proximity is desired. However, for points that lie along the

boundaries of the cell, some neighbors may still be sent to a different machine.

A supporting area partitioning strategy ensures that the neighbors of all points can be

found by augmenting each cell with extra points which may be neighbors of those points

near the boundary [3, 9, 15]. First, supporting areas are determined for each cell. The

points inside a cell Ci are denoted as Ci .core = {p | p ∈ Ci}. The data points within the
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supporting area of the cell, denoted Ci.support, may affect the kNN decision of the core

points of Ci.

Data stored on HDFS blocks is mapped to a supporting area partitioning plan. Point p1 will be
mapped to both cell C1 as a supporting point, and cell C2 as a core point.

Figure 2.1: Supporting area of partition C1.

Definition 3. Supporting Area. The supporting area of a cell Ci contains at least all

data points that satisfy the following two conditions: (1) ∀q ∈ Ci.support, q 6∈ Ci .core,

and (2) there exists at least one point p ∈ Ci.core such that q ∈ kNN(p).

This strategy categorizes data points into two classes, namely core points and support

points. Supporting areas must be sufficient to guarantee that the kNN of all core points in

a cell Ci can be found among Ci.core and Ci.support.

Figure 2.2 illustrates a simple supporting area partitioning plan being used in the

execution of a MapReduce job. The dataset is divided into 4 cells, with the supporting

areas of each cell highlighted in gray. First, points are mapped to the core and supporting

areas of cells. Then, data assigned as core and support points of each cell Ci are mapped

to the same data partition, processed by a single reduce task. In this way, some points

are included in multiple partitions. For example, Reducer 1 receives a data partition

containing the circle-shaped points in C1.core, as well as support points in the gray area.

Some of the points in C1.core are duplicated and sent to the supporting area of C2 and

processed independently by a different reducer.
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Figure 2.2: Supporting area partitioning plan used in the execution of a MapReduce job.

This strategy for distributed kNN search correctly discovers neighbors. However it

hinges on the fact that supporting areas must meet the criteria of Definition 3. To ac-

complish this, PkNN takes advantage of pivot-based data partitioning to define data cells.

This in turn facilitates a data-driven process to define effective supporting areas. It also

provides a number of unique opportunities for optimization, as is described below.

2.2 Pivot-based Data Partitioning

The pivot-based data partitioning strategy is a general method to divide a dataset by first

choosing a small set of n initial points, or pivots, in a pre-processing step. Grouping data

points according to their closest pivot results in a partitioning known as a Voronoi Dia-

gram. It determines a unique division of a metric space applicable to higher dimensions

and various distance measures. Figure 2.3 shows two Voronoi diagrams for n = 9 pivots.

A formal definition of a Voronoi cell is given in Definition 4.

Definition 4. Voronoi Cell. Given a dataset D and a set of n pivots P = {v1, v2, . . . , vn}

11



Figure 2.3: Voronoi cell partitioning using a lattice of points to form a grid (left) and
irregularly shaped cells (right).

we have n corresponding Voronoi cells V1 . . . Vn where V1 ∪ V2 ∪ ... ∪ Vn = D, and

Vi ∩ Vj = ∅. Each vi serves as the pivot for cell Vi = {p | |p, vi| ≤ |p, vj|} ∀vj ∈ P, ∀p ∈

D, i 6= j.

Indexing data by proximity to pivots preserves data location, and provides flexibility

in that different pivot selection strategies result in cells of different shapes and cardinal-

ity. As Figure 2.3 illustrates, choosing pivots from the domain space in a regular lattice

produces a uniform tessellation of cells - in this example a grid. Choosing pivots from

the dataset itself, for instance using random sampling, produces cells which reflect the

underlying geometry and distribution of the data.

As we will show, in the process of partitioning we learn valuable information, namely,

the distance from each data point to the pivots. We can then exploit this key characteristic

of Voronoi cells to bound their supporting areas.

2.3 MapReduce

The MapReduce computing model has emerged as a wide-spread solution for distributed

data processing [19]. This work targets the popular Hadoop distributed computing plat-

form [20], which implements MapReduce and offers an open-source framework for man-

aging data on distributed computing clusters using commodity hardware.
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Figure 2.4: Hadoop MapReduce Framework.

A typical MapReduce job is depicted in Figure 2.4. The simple yet powerful program-

ming model consists of 3 parts. First, the map phase: data is read in from the filesystem

and a map function is applied to each data point. The input and output of the map function

are key-value pairs. Results are stored temporarily, while mapping completes.

The second step is the shuffle and sort phase, where the output from the mappers

is grouped according to some partition function on the key values. Each resulting data

partition is sent to a node in the cluster for the reduce phase. A reducer function, which

can only access one partition of data stored on its local machine, performs computation

on the set of values associated with each key, and the results are written back to the

filesystem.

Hadoop stores data in a distributed filesystem (HDFS), organized in small blocks

which may be randomly distributed throughout the cluster. During the shuffle and sort

phase, after each block has been processed by a mapper, large amounts of data are trans-

ferred between machines, sending data output from mappers to reducers. These commu-

nication costs greatly impact performance. The other main consideration when develop-

ing a MapReduce algorithm are the I/O costs of reading and writing to HDFS . These

factors tend to dominate computational costs incurred while processing data in the map

and reduce functions [21].
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Chapter 3

Pivot-based k-Nearest-Neighbor Search

The key to fully exploit pivot-based data partitioning and effectively scale kNN search

in a distributed algorithm is to break the process into several steps. PkNN uses a multi-

pass adaptive support strategy (MPASS) to distribute data among partitions and determine

sufficient supporting points for each based on the characteristics of the underlying data.

PkNN utilizes insights gained at each phase to minimize data duplication, all the while

avoiding redundant computation.

3.1 Multi-pass Adaptive Support Strategy

An initial job selects pivots which evenly partition the data by ensuring that no single

partition is so large as to overwhelm the resources of a single reducer. Then, an initial

kNN search is conducted only over the core points in each cell in another job. Information

collected during this first pass kNN search is used to determine a tight upper bound for

each cell on the distance from any core point to its kth-nearest-neighbor outside of the cell.

A final job performs support determination at both the cell level and point level, followed

by a supplemental kNN search over support points that identifies neighbors which were
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not available to local partitions initially.

Surprisingly, we find that the costs incurred from executing multiple jobs are heavily

outweighed by achieving a much tighter estimation of the size of supporting areas. In this

way the number of actual points that are replicated due to the supporting area requirement

are reduced. It is important to observe that no repeated computation ensues, as the sets of

points considered in the kNN search phases are naturally disjoint - core points in the first

step and support points in the second. Next each phase is described in detail.

3.1.1 Pivot Selection

A first pass over the data performs uniform random sampling via a distributed reservoir

sampling technique [22]. This ensures that each point has an equal likelihood of being

chosen, and the resulting subsample is a good estimation of the data. That is, points in

very dense areas of the dataset are more likely to be chosen than points in sparse areas.

The subsample will reflect the distribution of the data for this reason. For an input dataset

D with size d, and a limit on the number of points m which can fit into memory on a

single machine, a percentage α ≤ m/d points are selected from those processed by each

mapper. Then this representative subsample is s-ent to a single reducer.

At this stage, to avoid choosing too few pivots, the number of core points which will

be assigned to each pivot can be estimated. Reservoir sampling is applied a second time

to choose the desired number of pivots from the subsample. For each cell Vi, we count

the number of points ci from the subsample which are closer to it than any other pivot.

An estimate of the number of core points from the entire data set which will be assigned

to Vi will be γi = ci/α.

If γi for any partition exceeds m, then we anticipate that a single reducer will not have

enough resources to process the data assigned to that partition. In this case, the sampling

method can be repeated iteratively choosing a greater number of pivots each time until
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enough pivots are chosen, this strategy ensures reasonably sized partitions.

Given a satisfactory set of pivots, an initial kNN search is next conducted over the

core points in each partition. Information collected during this step is used to determine

data-driven bounds on the size of the support area for each partition. The bounds given

below are then applied in a subsequent job to complete the kNN search.

3.1.2 Bounding Support Areas

For a point q ∈ Vj to be a nearest-neighbor of p ∈ Vi.core, the distance from p to q must

be less than the distance from p to its kth nearest neighbor in Vi.core. By first evaluating

the core points of each cell, the maximum distance of any core point p to its kth nearest

core neighbor r can be determined. This value gives a tight upper bound on the distance

from core points to possible neighbors outside the cell. We define this as the core-distance

of the cell.

Definition 5. The core-distance of a Voronoi cell Vi.

core-distance(Vi) = max(|p, q|) ∀ p, q ∈ Vi.core where q ∈ kNN(p) ∈ Vi.core.

The core-distance of each Voronoi cell gives a natural bound on the size of its sup-

porting area. Leveraging this notion, we are now ready to design a customized evaluation

rule to determine whether a point q ∈ Vj belongs to Vi.support. The rule depends on the

ability to determine the distance from a point q to a partition Vi. When the commonly em-

ployed Euclidean or Mahalanobis distances are used, the boundaries of Voronoi cells are

comprised of piecewise linear hyperplanes described by Theorem 3.1.1. In this case, the

exact distance from any point to the hyperplane boundary of two cells can be computed

[23].

Theorem 3.1.1. The boundary between two adjacent Voronoi cells Vi and Vj is a hyper-

planeHij containing their midpoint. In Rd the hyperplane is given asHij = y : yTn+ p = 0
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where n is the normal vector orthogonal to the plane. ∀y ∈ Hij, |y, vi| = |y, vj|. The dis-

tance of any point p ∈ Rd to the plane is |p,Hij| = |sTn+p|
‖n‖2 [23]

Figure 3.1: The hp-distance(q) to the hyperplane boundary between two cells Vi, Vj .

However, in arbitrary metric spaces, computing the distance from a point to the exact

boundary between cells may not be possible. Fortunately, a lower bound on this distance

given by Theorem 3.1.1 is shown via triangle inequality in [8] to hold, and can be used in

place of an exact calculation.

Theorem 3.1.2. Given q ∈ Vj, p ∈ Vi i 6= j, |q, p| ≥ |q,vi|−|q,vj |
2

.

Using either the exact calculated distance in Theorem 3.1.1 or the lower bound dis-

tance in Theorem 3.1.2, we can compute a distance measure from a point to a cell, here-

after referred to as the hp-distance. With this, Lemma 3.1.3 provides the means to evaluate

whether a point should be mapped to the supporting area of a cell.

Definition 6. : The hp-distance from a point to a Voronoi cell Vi.

hp-distance (q, Vi) = |q,Hij| ∀q ∈ Vj where Hij is the boundary of Voronoi cells Vi, Vj

and i 6= j.

Lemma 3.1.3. If q ∈ kNN(p) for some p ∈ Vi, q ∈ Vj, i 6= j, then hp-distance(q, Vi) <

core-distance(Vi).
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Proof. Let r ∈ Vi be the kth-nearest-neighbor of p ∈ Vi among Vi.core. By Definition

5, |p, r| ≤ core-distance(Vi). If q ∈ Vj is in the true kNN(p), then |q, p| ≤ |r, p|. By

Theorem 3.1.2 hp-distance(q, Vi) ≤ |q, p|.

Figure 3.2: Core-distance(V4) used to define supporting areas.

Figure 3.2 illustrates the intuition behind the core-distance bound in a 2D space. The

shaded areas represent an extension of the linear boundaries of cell V4 by its core-distance,

which in this case has been determined by the distance from p to its kth-nearest-neighbor

r. In order for a point q to be a closer neighbor to p than r, it must fall within this

supporting area.

3.1.3 Support Cell Determination

While Lemma 3.1.3 is sufficient to determine all supporting points for each partition and

facilitate distributed kNN search, it may still lead to unnecessary data duplication. When

pivots vi and vj are far from each other, even if points in Vi.core lie close to the hyperplane

boundary with Vj , they may not necessarily be support points of Vj , since Vj may actually

be very far Vi, in particular if the Voronoi cells are not adjacent.
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Therefore, we now design a lightweight optimization to further reduce the number of

points assigned to support areas. This two-tier strategy leverages pivot-based partitioning

to perform support determination at the both the cell and individual point level granularity.

We provide a bound on the distance from each cell to candidate support cells. That is, for

each cell Vi we determine which other cells Vj the points in vi.core may support.

Definition 7. Support-distance of a Voronoi cell. support-distance(Vi) = max(|vi, p|+

|p, q|) where q is the kth nearest-neighbor of p ∀p, q ∈ Vi.core.

The support-distance captures the maximum distance from a pivot to a possible sup-

port point of its cell. This distance can be used to prune other cells which could not

possibly contain support points, as stated in Lemma 3.1.4. Performing this pruning at the

cell level, we not only reduce unnecessary data duplication, but also reduce the number

of cells a point must be checked against when mapping points to supporting areas. This

in turn reduces the amount of computation necessary to evaluate Lemma 3.1.3.

Lemma 3.1.4. Given Voronoi cells Vi, Vj and their corresponding pivots vi, vj i 6= j, if

the support-distance(Vi) ≤ |vi, vj|/2, then Vj does not contain any support points of Vi.

Proof. Recall that by Definition 4, since q is in Vj , it is closer to the pivot vj than to any

other pivot. Therefore, |q, vi| ≥ |vi, vj|/2. We give a proof by contradiction: Let some

point q ∈ Vj be a supporting point of cell Vi. Then by Definition 3, ∃p ∈ Vi.core such

that |p, q| < |p, r| where r ∈ Vi.core is the kth nearest neighbor of p out of all the core

points in Vi. Assume that Theorem 3.1.4 is not true. Then we have:

|r, p|+ |p, vi| < |vi, vj|/2 by assumption

|q, p|+ |p, vi| < |vi, vj|/2 def 3

|q, vi| ≤|q, p|+ |p, vi| triangle inequality

|q, vi| < |vi, vj|/2 transitivity
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This results in a contradiction. If |q, vi| < |vi, vj|/2, then q ∈ Vi, which violates the

original assumption.

3.1.4 Comparison with State-of-the-Art Support Area Bound

In [9], pivot-based partitioning is used by Lu et al. in the context of distributed kNN join

processing. This join task is to find the kNN of all points in one set R among points in

a different set S. The kNN search problem addressed in this thesis is an example of a

self-join in this case where S = R. The authors derive a worst-case bound θ used to

determine the size of supporting areas containing points in S for each cell Vi ∈ R. The

kNN search for the join is conducted in a single MapReduce job using this worst-case

estimate to map points to supporting areas.

This bound θ in [9] is based on the relationship of pivots to a small number of points in

each cell collected during data partitioning. The distance from any point p ∈ Vi to its kth-

nearest-neighbor q is bounded by θi = |vi, vj|+max(|p, vi|)+|vj, r| ∀p ∈ Vi.core, i 6= j.

This is determined by first finding for each Voronoi cell Vj the kNN(vj) from Vj.core.

Let U be this set of the kNN of all pivots. Then θi for each Vi is computed using the

distance from vi to the kth closest point r ∈ U and corresponding pivot vj such that

r ∈ Vj.core, i 6= j. The intuition for this bound is that we can find at least k points closer

to any point p ∈ Vi than θi. A formal proof can be found in [9].

While an elegant solution, this approach leads to very high data duplication rates, with

the entire dataset being replicated a large number of times over in practice. By compar-

ison, in the PkNN method the data driven core-distance bound is the actual maximum

distance of any point p ∈ Vi to its kth-nearest-neighbor in Vi.core. Clearly this is a much

better gauge than θi.

Furthermore, to check if a point q ∈ Vl is a supporting point of a cell Vi, Lu et al. [9]

use a rule comparing |q, vl| against a bound LB(q, Vi) = max(0, |vi, vl| − U(Vi) − θi)
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where U(Vi) is the max(|p, vi|) ∀p ∈ Vi. We can see that any time vl is closer to vi than

θi, LB(q, Vi) will be exactly zero, and all points q ∈ Vj will be mapped to the supporting

area of Vi. This clearly would cause unnecessary data duplication. In addition, any point

q that is far from its pivot vl relative to |vi, vl| will also be unnecessarily duplicated.

In contrast, PkNN uses the two-tier assignment strategy described in Sections 3.1.2

and 3.1.3, avoiding excess data duplication. The core points of each Voronoi cell Vi

are evaluated in an initial pass, allowing the use of a natural bounds on the distance to

both candidate support cells and points in Vi.support. Cells that are far from Vi are

safely ignored using the pruning strategy of Lemma 3.1.4. No entire cell is mapped to

Vi.support, instead support determination is performed at the level of individual points

using Lemma 3.1.3.

Experimental evaluation in Section 5.2 compares PkNN to the PBJ method in [9]. A

20 fold improvement in data duplication for PkNN over the state-of-the-art is observed.

3.2 Early Output Optimization

In addition to limiting the size of supporting areas, and thereby the duplication rate, our

proposed two-pass PkNN approach provides another important opportunity for optimiz-

ing kNN search. We observe that while a distributed kNN search requires a supporting

area partitioning strategy to ensure that the kNN of all points can be found locally, in prac-

tice only those core points that lie close to the boundaries of each cell will find neighbors

in the supporting areas. If the kNN of a point can be guaranteed to be found among the

core points of its cell, then there is no need to search in a second pass among the support

points. These points can be written to disk early, saving on further I/O as well as search

time within partitions, instead of being evaluated again in a second round. To determine

which core points can be pruned early, we introduce the notion of an interior bound.
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Figure 3.3: Interior bound(V4) used to determine early output.

Definition 8. Interior bound of a Voronoi cell. ib(Vi) = |vi, vj|/2, where vj is the

closest pivot to vi.

During pre-processing, with one pairwise comparison of the pivots, noting that the

number of pivots is very small compared to the dataset size, the interior bound for each

cell can easily be determined. Lemma 3.2.1 provides a means to determine whether or

not the true kNN are guaranteed to have been found in the first kNN search phase for core

points that lie within the area defined by the interior bound. This evaluation assures that

points which meet this condition do not require kNN search over support points. Since

the search for these points is complete, their results can be written to disk early, and they

do not need to be evaluated as core points in the second kNN search phase, avoiding

unnecessary communication costs and redundant computation.

Lemma 3.2.1. For p, q ∈ Vi.core where q is the kth nearest neighbor of p in Vi.core, if

|p, vi|+ |p, q| < ib(Vi), then kNN(p) in Vi.core are guaranteed to be the true kNN(p).

Proof. If q is not the true kth nearest neighbor of p, then ∃ r ∈ Vj, i 6= j s.t |r, p| < |q, p|.

We know that since r /∈ Vi, |r, vi| > |r, vj|, and that |vi, vj|/2 ≥ ib(Vi). If we assume
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Lemma 3.2.1 is not true, then we have:

|p, q|+ |p, vi| < ib(Vi) by assumption

|p, r|+ |p, vi| < ib(Vi) def 1

|r, vi| ≤|p, r|+ |p, vi| triangle inequality

|q, vi| < ib(Vi) transitivity

If |r, vi| < ib(Vi), then r ∈ Vi, which violates our original assumption.

Figure 3.3 depicts the geometric intuition behind the internal bound. For the point p,

its kth-nearest-neighbor q lies exactly in the direction of the hyperplane bound between

V4 and the closest neighboring cell V5. We can see that it is not possible for p to have a

closer neighbor in V5, nor in any other adjacent cell. Therefore, p has found its true kNN

in the first pass, and does not require further processing.

3.3 Pivot-based Indexing for kNN Search

To mitigate the high computational cost of kNN search, PkNN requires an efficient local

kNN search technique be used within data partitions. Given the quadratic complexity

of an exhaustive kNN search, indexing schemes such as variations of the R-tree [24]

are often used to speed up computation. However, these techniques carry overhead due

to the construction of necessary data structures. Furthermore, they do not scale well in

the dimensionality of the data [6]. Fortunately, PkNN obtains information during data

partitioning that can facilitate an efficient local kNN search through the use of a simple

indexing technique. In [13] indexing by distance to some reference point is shown to

speed up a search for neighboring points within a certain threshold for the purpose of

outlier detection. In our context, we have the ideal reference point for such an index in
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the pivot of each cell, and can adapt this approach to find the kNN for all core points.

The key insight to motivate such an index is that if a point under consideration is very

close to the pivot of its own Voronoi cell, then it is likely that its neighbors are close to the

pivot as well. This implies that points far from the pivot may not need to be considered

as potential neighbors. Similarly, for points far from the pivot, their neighbors are likely

to be far as well. Therefore, by checking points with a similar distance to the pivot first,

the Voronoi cell structure can be exploited to find neighbors quickly.

To construct this pivot index for a cell Vi all points in Vi.core and any Vi.support are

sorted by their distance to the pivot. We note here that since this distance is computed

during data partitioning, the distance value can be embedded with each point for all further

stages of computation. Using this pre-computed distance for local kNN search, sorting

requires only relatively cheap comparisons of floating point values as opposed to distance

computations. Figure 3.4 depicts the sorted list of points used as an index for a Voronoi

cell Vi.

For each point p ∈ Vi.core, a search for kNN(p) is conducted along this index order,

alternating traversal of the list in ascending and descending order. Intuitively, by searching

along the index order in this way, points with a similar distance to the pivot as p will be

checked first. The kNN(p) can be found without traversing through the whole data set by

utilizing the following termination criterion.

Lemma 3.3.1. Let M be a data partition consisting of the core points and any support

points for Voronoi cell Vi sorted by their distance to the pivot vi. Let p ∈ Vi.core be

the test point under consideration. The distance from p to each point in M is evaluated

alternating traversal of the list in ascending and descending order from p. Let kdist be the

distance to the kth closest point in M found so far. When considering the distance from p

to a point q ∈M , the search can terminate immediately if:
∣∣∣|p, vi| − |q, vi|∣∣∣ > kdist.
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Figure 3.4: On the left is a Voronoi cell Vi. The pivot index is shown on the right, with
points sorted by their distance to the pivot vi. The search for the kNN(p) can stop at point
q, since |q, vi| − |p, vi| > d, saving checking 4 additional points far from vi.

Proof. First we show that if the above condition is true, then q cannot be closer to p than

distance kdist.

|p, q| >
∣∣∣|p, vi| − |q, vi|∣∣∣ triangle inequality∣∣∣|p, vi| − |q, vi|∣∣∣ > kdist by assumption

|p, q| > kdist transitivity

Next we show that for any point r evaluated after q, the above condition holds true as

well. Since the points are evaluated in alternating order along the pivot index, each point

evaluated will either be (1) closer to the pivot than p and q or (2) farther from the pivot

25



than p and q.

|r, vi| > |p, vi|, |r, vi| > |q, vi| =⇒ |p, r| >
∣∣∣|p, vi| − |q, vi|∣∣∣ (1)

|r, vi| < |p, vi|, |r, vi| < |q, vi| =⇒ |p, r| >
∣∣∣|p, vi| − |q, vi|∣∣∣ (2)

Lemma 3.3.1 can provide significant savings on the number of comparisons needed

for kNN search and speed execution time. In the worst case, a neighbor will have to check

all others in order to satisfy the stopping criteria. Therefore complexity in the worst case

is O(n2). However, in the best case, the k-nearest-neighbors are sequential along the

index order and the minimal number of comparisons are performed. Figure 3.4 illustrates

a typical case.

Furthermore, this stopping criteria allows us to re-use previous work. Simple floating

point comparisons of pre-computed distances from each point to the pivot are a cheaper

way to evaluate neighbors than computing the actual distances between all points, es-

pecially as the dimensionality of the data increases. In the PkNN method, this pivot

index provides an even more powerful speedup in the second round of kNN search. At

this stage of computation, each point already has the distance to its kth-nearest-neighbor

among core point associated with it. This means the stopping criteria avoids comparison

with unnecessary support points.

Experimental evaluation in Section 5.1.1 confirms these observations. A speed up in

the overall kNN search time for PkNN using the pivot index improves over an implemen-

tation of PkNN using the naive nested-loop algorithm by a factor of 100.
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3.4 Overall PkNN Framework

Here we now show how the MPASS strategy is realized in one integrated optimized PkNN

framework using the MapReduce paradigm. Figure 4.3 illustrates the overall framework.

Pivot Selection: (MapReduce job 1). Mappers sample the dataset, and a set of pivots is

chosen by a single reducer. The pivot list is sent to all machines via the distributed cache

for subsequent jobs.

Data Partitioning: (MapReduce job 2). A single job consisting of only a map phase

assigns each point to a Voronoi cell based on its closest pivot.

After this job the pivot list is evaluated locally on the NameNode and refined. A

constraint that cells contain at least k+1 core points is enforced by simply dropping pivots

for cells with less points. This ensures that every core point can find k core neighbors in

its cell. A pairwise comparison of the remaining pivots determines the interior bound for

each cell. The pivot list is updated with this information, and put back into the cache.

Initial kNN Search: (MapReduce job 3). Mappers use the cell assignments from the

previous job. Any point which was mapped to a cell with less than k + 1 points in data

partitioning is reassigned to the next closest pivot. Then, each reducer receives all the core

points of one Voronoi cell, along with each point’s distance to the pivot. These distances

are re-used for pivot-based indexing. The output of the initial kNN search is a key-value

pair. The pivot id is the key, and the value is a tuple containing all information needed in

subsequent steps.

As the initial kNN search is conducted, the core-distance and support-distance for

each cell are computed and written out to a separate file on HDFS. This information is

sent along with the pivot list to all machines for the next MapReduce job.
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Support Determination: (MapReduce job 4 - setup and map). In a one-time setup phase

on each machine, a hash table is constructed using the support-distance to map each cell

to a list of cells it may support. Mappers then read in the key-value pairs output from the

previous job. To map points to supporting areas, Lemma 3.1.3 is applied only for the cells

in the support list of each point’s core cell. Each point is also checked against the interior

bound of the cell. If the kNN search for a point is given by Lemma 3.2.1 to be complete,

it is written out to HDFS early. The rest of the data are again mapped to their Voronoi

cells as core points.

Supplemental kNN Search: (MapReduce job 4 - reduce). Finally, reducers complete

the kNN search for the remaining core points in each cell. Pivot-based indexing is again

used, however in this phase only comparisons to supporting points are necessary, as all

neighbors among core points have already been found in the first step.

Figure 3.5: PkNN Framework.

3.5 Adaptive Support Determination

PkNN provides effective bounds on the size of supporting areas derived from the data

within each individual partition. This greatly reduces the data dupication rate of previous
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worst-case bounds given in [9]. However, the strategies described in the sections above

fundamentally depend on some distance between points in the dataset. Both the theoreti-

cal worst-case estimation given in [9], and the data-driven MPASS approach are sensitive

to the distribution of points in the dataset. When applied to real data with various char-

acteristics, a robust distributed kNN search method must account for the possibility of

extreme data skew, and the presence of outliers in the data. To truly scale kNN search to

modern data quantities, PkNN requires an adaptive partitioning solution.

The specification of a given compute cluster determines a limit m on the number

of points which can be processed on a single machine. The data assigned to a single

partition must not overwhelm the resources of any reducer. Therefore our partitioning

problem is subject to the constraint Vi.core+ Vi.support <= m,∀ Vi ∈ D. As shown in

Figure 2.3, the cardinality of Voronoi cells is determined directly by the set of pivots used,

and the distribution of the underlying data. Since the actual data space is unknown, the

pivot selection step only approximates the number of core points assigned to partitions.

The number of pivots chosen can be increased to avoid partitions which are assigned too

many core points. However, this will not address the number of support points.

Consider the case of an outlier in the dataset far from all other points. No matter the

pivot set chosen, this point must be mapped to some cell. Due to the extreme distance

of this point to its kth-nearest-neighbor, a skewed support area will result. To address

this problem directly, a fixed constraint must be set on the maximum size of the core-

distance of partitions. Luckily, the MPASS approach provides an opportunity to adapt

data partitions to accommodate both the resources of the compute cluster as well as the

distribution of the data.

To mitigate the impact of outliers in a dataset, a new threshold parameter maxkdist

is introduced which imposes a constraint on the possible size of individual supporting

areas. Without this treatment, using pivot-based partitioning and derived bounds, the
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PkNN method is still at the mercy of the distribution of points within each partition. This

threshold enforces that ∀ Vi ∈ D, core-distance(Vi) ≤ maxkdist. If a partition contains

core points too far from their kth-nearest-neighbor they are removed from the cell. Special

handling for these points is now introduced.

Global Outlier Handling

As described in Section 3.1, the core-distance of each cell is determined during the initial

kNN search phase of PkNN. To handle outlying points, the threshold parametermaxkdist

is specified in the configuration file for the initial kNN search job. As the distance from

each point p to its kth-nearest-neighbor is found, points for which this value exceeds

maxkdist are flagged as global outliers.

Then, in the support determination phase these points are treated as additional ”spe-

cial” pivots. They differ from regular pivots in that each global outlier point is the only

core point mapped to the partition defined. In other words, no additional points are as-

signed to this partition as the data partitioning stage has already completed. Since the

global outlier points would have already found their kth-nearest-neighbor from among

the core points in their original partition, this distance determines the core-distance of

their new special partition. A list of the special pivots and corresponding core-distances

are supplied to the support determination map phase via the distributed cache in addition

to the regular pivot list. Support points are mapped accordingly.

kNN search is conducted at the reducer phase only for the single core global outlier

point of each of these additional partitions. In this way, global outliers do not impact the

support determination of their original partitions, nor do they skew the data duplication

rate in the supplemental kNN search phase.

30



Chapter 4

Case Study on kNN Search for

Distributed Outlier Detection

In this chapter we demonstrate one example of a case where PkNN can facilitate a dis-

tributed solution for an important data mining task. The Local Outlier Factor algorithm

(LOF) [5] is a high value detection method based on the relationship between each point

in a dataset and its kNN. Lacking an exact distributed solution for kNN search to handle

modern data quantities, this algorithm is not feasible at scale.

4.1 Local Outlier Factor Algorithm

The LOF algorithm compares the relative density of each data point to the average den-

sity of nearby points. This technique succeeds in identifying outliers in cases where pure

distance [16] and neighbor-based [4, 23] outlier detection methods fail. To illustrate this,

Figure 4.1 illustrates a case where LOF is preferred over other methods. In the dataset de-

picted, points are densely clustered in one area and more sparsely distributed in another.

Intuitively, points P and Q appear to be outliers which do not to fit the patterns of the data
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Figure 4.1: Outliers in dataset with varying densities.

in their respective vicinities. Unfortunately, simple outlier detection strategies categorize

points as outliers based on some global distance measure. With this approach, any dis-

tance threshold which would identify Q as an outlier would also categorize many points

in the upper right sparse area as outliers as well. By the same token, the use of a large

enough threshold to categorize point P as an outlier would not identify Q as an outlier.

In comparison, the LOF algorithm [5] is robust to varying densities in a dataset. In-

stead of a fixed, pre-determined distance measure, the distance from each point to its

kth-nearest-neighbor defines a neighborhood. Then, the density of each point is com-

pared to the average density of its neighbors. In this way, LOF introduces a concept of

”outlierness”, where each point in the dataset is assigned an outlier score. The set of

points with the highest scores are considered to be outliers. In the example above, the

LOF algorithm will correctly identify both P and Q as more anomalous than the rest of

the points in the dataset.

The computation of LOF requires a kNN search be performed for every point in the

dataset. Then intermediate values must be computed for p and kNN(p). The definitions

below follow from the original paper.
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4.1.1 LOF Concepts

For each point p in a dataset D, a single user-specified parameter k is used to determine

a k-neighborhood made up of the kNN(p). The k-distance(p) is the distance from p to

its kth-nearest-neighbor, and is used in lieu of a fixed distance parameter to determine the

outlier status of each point.

Definition 9. k-distance of a point p.

The distance |p, q| between points p, q ∈ D such that for at least k points q′ ∈ D −

p, |p, q′| ≤ |p, q| and for at most k − 1 points q′ ∈ D, |p, q′| < |p, q|.

Figure 4.2: Neighborhood of p, k = 3.

Figure 4.2 shows the k-neighborhood of a point p. It is important to note that the

neighbor relationship is not symmetric. If q is one of the kNN(p) it does not necessarily

imply that p is one of the kNN of q. The k-distance value for each of the neighbors of p

is used to determine another intermediate value for p, the reachability-distance.

Definition 10. Reachability Distance of p w.r.t. n.

reachability-distance(p, n) = max(k-distance(n), |p, n|).

For a point q far from p, the reachability-distance is simply the distance |p, q|, while

for points close to p, such that the distance from p lies within the k-neighborhood of q, the
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reachability-distance is the k-distance of q. This definition was introduced by Breuning et

al. [5] as a smoothing factor for LOF. The reachability-distance is then used to compute

the local reachability distance of p.

Definition 11. Local Reachability Density of a point p.

LRD(p) = 1/

( ∑
n∈kNN(p)

reach− dist(p, n)

‖k − neighborhood‖

)

LRD(p) is the inverse average reachability distance of p to kNN(p). The LRD value of

every point in the dataset must be computed in order to compute the final LOF scores.

Definition 12. Local Outlier Factor of a point p.

LOF (p) =

( ∑
n∈kNN(p)

LRD(n)
LRD(p)

‖k − neighborhood‖

)

Informally, LOF (p) corresponds to the ratio of the average density of each neighbor

of a point p, to the average density of p. LOF scores close to 1 indicate in-lying points,

and the higher the score the more out-lying the point. The points with the highest LOF

values in the dataset are considered to be outliers.

4.1.2 Centralized LOF Algorithm

The centralized procedure for computing LOF is a two-step algorithm. In the first step,

the kNN of each point p are found and materialized in a database along with the distances

from each neighbor to p. For dataset D with cardinality n the database table has size on

order n ∗ k. In the second step, the LOF scores are computed. Two passes are made over

the database to compute the LRD and LOF values. In each of these passes the intermediate
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values for the neighbors of each point are updated, maintained in the global data table,

and then utilized in the next step of the computation.

A number of centralized algorithms are available for the kNN search in the first step.

In the original LOF paper, Breuning et al. propose to use an O(n) grid-based search for

low-dimensional data, an index-based O(log n) method for medium dimension data, or

anO(n2) method for high dimensional data. For the sake of simplicity here, let us assume

an index-based method withO(log n) complexity (perhaps similar to our own pivot-based

index described in Section 3.3). The total time complexity of the centralized algorithm is

thenO(n log n) for the first step andO(n) for the second. We note here that the bottleneck

for computation is the kNN search.

Applying the centralized approach on a shared nothing distributed architecture is not

practical. First, when computing the kNN of each point the centralized approach assumes

access to all other data points. If the data size exceeds the resources of a single node in

the compute cluster, than a distributed kNN search is required.

Second, even if the kNN of each point can be computed, it is not feasible to store

the resulting kNN of all points along with their distances on one single compute node as

a database table, considering the size of the large dataset. Therefore such intermediate

values have to be stored across different compute nodes. This inevitably complicates the

next two steps of the LOF algorithm, namely the computation of LRD and LOF values.

For example, to compute the LRD value for a point pwe have to locate the compute nodes

that store kNN(p), and then retrieve this information from corresponding remote tables.

However, since the shared nothing architecture does not allow data exchange at will, a

distributed mechanism has to be designed for the efficient maintenance and retrieval of

intermediate results.

PkNN can address the first challenge above by facilitating kNN search in parallel

across compute nodes. Once the kNN of each point p are found in the last stage of
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the PkNN algorithm, the k-distance(p) is known. The second challenge is more difficult.

Although the supporting area strategy of PkNN allows us to identify the neighbors of each

core point within a given partition, some of these neighbors may be support points. In

this case, the k-distance values of these support point neighbors are computed in different

partitions. Therefore, the information necessary to compute the LRD of the core points

within a single partition is not available on the local machine. To solve this problem we

introduce an extension to the MPASS approach using two additional MapReduce jobs.

4.2 Distributed PkNN-LOF Framework

To facilitate LOF computation, the PKNN framework described in Section 3.4 is aug-

mented with 2 additional passes over the data. As the output of the final kNN search

phase, each reducer writes core points along with the IDs of their kNN and their k-

distance values back to HDFS. At the same time, partitioning related information is also

maintained and re-used as in all previous stages of PkNN.

Figure 4.3: PkNN framework extended to include two additional rounds of computation
for LRD and LOF values.

LRD Computation: (MapReduce job 5). Mappers read in the output from the previous

job, and assign each point to the corresponding partition based on the partitioning infor-

mation. Each reducer then inserts the received points (both core and support points) into
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a hash table with the point ID as key and its respective k-distance as value.

Now for the core points in each partition, we have sufficient information to calculate

the LRD scores. Even if the neighbors of a core point include any support points, each

such support point now also has a k-distance value associated with it. Furthermore, the

k-distances of each of p’s neighbors can be located in constant time utilizing the hash

table.

LOF Computation: (MapReduce job 6). This process of calculating values for each

point, and maintenance of intermediate results is repeated for the final step of LOF com-

putation. Mapping is the same as in the previous job, and then reducers compute a final

LOF score using the LRD values.

This intuitive strategy successfully allows for the intermediate values computed in a

single phase of computation to be shared among machines in the cluster, and avoids a

single lookup table, as is used in the centralized algorithm. The necessary information

is effectively passed to each MapReduce job for further computation by extending the

MPASS strategy of PkNN.
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Chapter 5

Experimental Evaluation

All experiments are conducted on a shared-nothing cluster with one master node and

28 slave nodes. Each node consists of 16 core AMD 3.0GHz processors, 32GB RAM,

250GB disk, and nodes are interconnected with 1Gbps Ethernet. Each server runs CentOS

Linux (kernel version 2.6.32), Java 1.7, Hadoop 2.4.1. Each node is configured to run up

to 4 map and 4 reduce tasks concurrently. Speculative execution is disabled to boost

performance. The replication factor is set to 3.

Datasets. We utilize the OpenStreetMap [25] dataset to evaluate the performance of

our strategy on real world data. OpenStreetMap is one of the largest real datasets publicly

available and has been used in other similar research work [15]. It contains the geoloca-

tion information for physical landscape features such as a buildings and roads all over the

world. As the default for our experiments two attributes are utilized, namely longitude

and latitude. In addition, hierarchical datasets have been built to evaluate the scalability

of PkNN with regard to the data size. A subset of Massachusetts is the smallest, then

all Massachusetts, then New England, up a dataset containing all data from the western

hemisphere. The number of data points gradually grows from 10 million to over 1 billion.

Synthetic data. Synthetic datasets are used evaluate PkNN on data with a varying
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number of dimensions. To produce realistic synthetic data sets, data clusters with vary-

ing sizes and random position are constructed following Zipf distribution as described in

[26]. Then a small amount of noise (< 0.01% of the dataset size) is added via uniform

random sampling of the domain space, introducing outliers which do not conform to the

distribution of the rest of the data. Datasets with increasing numbers of attributes, from 3

to 10, were generated.

Methods. We compare our PkNN approach against the state-of-the-art distributed so-

lution for kNN search in MapReduce [9] called PBJ. The authors of the [9] generously

shared their code, which we adapted to run on a single dataset. We also adapted it to

use the pivot index introduced in Section 3.3 to perform kNN search within local parti-

tions. As shown by our evaluation in Section 5.1.1, this greatly increases the speed of the

search and allows for a fair comparison of the PBJ and PkNN methods. All methods are

implemented in Java.

Metrics. End-to-end execution time is measured, which is common for the evalua-

tion of distributed algorithms. Furthermore, the execution time for the key stages of the

MapReduce workflow is broken down to evaluate the performance of different stages of

computation. This includes the pre-processing time for pivot selection, data partitioning,

and k-NN search in one or two steps. The other key metric we employ is the duplication

rate across the whole dataset. This measure captures how effectively supporting areas

are bounded. This value is calculated as the total number of core and support points pro-

cessed divided by the total number of points in the input dataset.
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5.1 Impact of Optimizations

We first evaluate the key optimizations of PkNN individually: the pivot index introduced

in Section 3.3, the early output optimization given in Section 3.2, and the use of support

cells given in Section 3.1.3. These experiments measure the impact of these techniques on

the performance of PkNN. All subsequent experiments employ these strategies to speed

execution time.

A subset of the OpenStreetMap Massachusetts dataset containing 10 million points

is used for the experiments in this section. The number of pivots is set to 100, and k

is set to 5. To perform a fair comparison of PkNN and PBJ, they are required to use

the same pivot set for each experiment, as the choice of pivots and number of partitions

impact performance significantly. Therefore we omit the grouping step introduced in [9],

which starts with a very large number of pivots and then groups them into a small number

of final partitions. As their own evaluation shows, this grouping step only results in a

modest decrease in execution time [9].

5.1.1 Evaluation of Pivot Index for kNN Search

First we evaluate the performance of the pivot index introduced in Section 3.3 to facilitate

kNN search within local data partitions. PkNN and PBJ, both implemented using the

pivot index, are compared to versions called PkNN-NL and PBJ-NL which use a nested-

loop exhaustive kNN search within partitions. On the left, Figure 5.1 shows the total

execution time in log scale for the kNN search step of each method (whether performed

in one MapReduce job in PBJ or two jobs in PkNN).

This experiment reveals a number of insights. The pivot index provides a significant

improvement in runtime for both distributed search methods. A 100x speedup over the

naı̈ve method for kNN search is observed when the pivot index is used for PkNN. We
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Figure 5.1: On the left the pivot index is compared to a nested loop implementation for
kNN search. On the right, all stages of computation for PkNN and PBJ using the pivot
index are compared.

note that the execution time of PBJ-NL is an underestimate since execution was stopped

after 27 hours, however even using this conservative estimate, the PBJ kNN search phase

using the pivot index was over 18x faster than the nested loop version.

On the right of Figure 5.1 all stages of computation for PkNN and PBJ are compared.

PkNN achieves a speedup of over 20x the runtime of PBJ, even when both methods use

pivot indexing. As subsequent experiments show, this decrease in time of execution is

directly correlated with the decreased data duplication rate made possible by the MPASS

solution.

5.1.2 Evaluation of Early Output and Support Cells.

Next the impact of two key optimizations of the PkNN method are evaluated. Figure 5.2

compares three versions of PkNN. The first called PkNN-NoOpts does not use the early

41



output evaluation given in Section 3.2, and does not use support cell determination, as

described in Section 3.1.3. That is, Lemma 3.1.3 is evaluated for every point outside each

cell, instead of using Lemma 3.1.4 to first perform support determination at the cell level.

The next method called PkNN-Early introduces early output to the method. We can

see we get a modest improvement in execution time using this technique. The compu-

tational cost to evaluate Lemma 3.2.1 appears to mitigate some of the savings in com-

munication costs that early output achieves. Finally PkNN-Support introduces the use

of support cells to the PkNN-Early method. Here a performance boost of a factor of 5

is observed. By performing a 2-tier support determination evaluating first cells and then

individual points there is a savings in both computational and communication cost. Both

early output and support cells are used in all subsequent experiments.

Figure 5.2: Impact of early output and support cell optimizations for the kNN Search
phase of PkNN.
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5.2 Impact of Parameters.

The parameters used in the PkNN and PBJ methods are next evaluated. Experiments are

conducted on the small Massachusetts dataset containing 10 million points. This data set

has areas of varying density throughout the domain space. First, k is fixed at 5 and the

number of pivots is varied from 50 to 900.

5.2.1 Impact of Pivot Number.

Figure 5.3: Impact of number of pivots on PBJ and PkNN methods.

To evaluate the impact of the number of pivots selected, both the end-to-end runtime

as well as the data duplication rate are measured for PkNN and PBJ. Figure 5.3 shows

the MPASS method employed by PkNN clearly results in much lower data duplication

(shown on the right), and consequently execution time (shown on the left) compared to

the state-of-the-art. Even using a small number of pivots, the minimum duplication rate

for PBJ is around 30. The number of pivots is increased to evaluate the rate at which

data duplication increases with the number of partitions. For a truly scalable solution, the

benefit of adding partitions (necessary as the data size grows) should not be outweighed

by the increased communication costs. The PBJ method shows a quadratic increase in
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running time. PkNN on the other hand increases linearly, and at a slow pace. Figure 5.3

shows that the duplication rate closely corresponds to the running time of the algorithm.

5.2.2 Impact of k Number of Nearest Neighbors.

Figure 5.4: Impact of parameter k (number of neighbors) on end-to-end execution time
for PBJ and PkNN methods.

Next the impact of the parameter k is evaluated. For this experiment a subset of the

small Massachusetts dataset containing 3 million points is used. The number of pivots is

fixed at 50, and the value of k increased from 3 up to 100. The running time of PkNN

and PJB is shown in Figure 5.4. The duplication rate is not impacted by the parameter

k. Here, an advantage of the single job solution in PBJ is revealed. Although PkNN has

a large benefit over PBJ at low values of k due to the lower rate of duplication, this is

mitigated at higher values due to the communication costs between the two kNN search

phases of the MPASS solution. Since neighbor information is embedded with each data

point after the first search step, much more intermediate information is communicated

from mappers and reducers in the second kNN search step. For values of k close to the
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number of pivots used, the running time for the two methods appears to increase at about

the same rate. This implies that for very large data, since the number of pivots will be

high compared to even large values of k, the benefit of PkNN will be more pronounced.

5.2.3 Impact of Number of Dimensions.

Figure 5.5: Impact of data dimensionality on PBJ and PkNN methods.

The performance of the two methods is compared on synthetic datasets containing 3

million points. The number of dimensions increases from 2 to 15. Figure 5.5 compares the
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duplication rate and running time respectively of both methods on the synthetic generated

data. 50 pivots are used and k is set to 3.

To interpret these results we note that the maximum possible duplication rate is exactly

equal to the number of pivots used (when all data is sent to every partition). Figure 5.5

shows that the bounds used in the PBJ method are ineffective at limiting data duplication

on dimensions greater than 2. On higher dimensional data the duplication rate is close

to or equals to the number of pivots, meaning that the entire dataset is duplicated and

sent to each reducer. The duplication rate for PkNN remains under 30x the size of the

dataset. However, it can also be observed that the running time of PkNN degrades to

the worst case at 10 dimensions. Poor performance of distance based methods above

10 dimensions has been has been shown to be a common phenomena [17], therefore

this result is not surprising. At 15 dimensions, PBJ outperforms PkNN, indicating that

the communication cost of the large amount of intermediate data in the PkNN method

negatively impacts the execution time at high dimensions.

5.3 Scalability.

The experiments in Section 5.2 clearly show that PkNN method outperforms the state-of-

the-art. Attempts to evaluate PBJ on data larger than 10 million points were not successful

due to job failures caused by the high data duplication rate. In this section the scalability

of PkNN on bigger data is evaluated. For our next set of experiments we use 2d data from

the Open Street Map dataset and fix k at 3. To choose the number of pivots, it was ob-

served that a ratio of 1:100,000 performed well on the small dataset in initial experiments.

Therefore the number of pivots for each dataset was chosen accordingly. Table 5.1 shows

the datasets used for evaluation.
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Dataset Number of Points Number of Pivots Mean Partition Size
Small Massachusetts 10,000,000 100 100,000

Massachusetts 31,136,409 300 103,788
Northeast 80,464,841 800 100,581

North America 812,233,510 8,000 101,529
Western Hemisphere 1,185,194,762 10,000 118,519

Table 5.1: Dataset Sizes.

Figure 5.6 shows the scalability of PkNN in the size of the input dataset up to 1 bil-

lion points. This demonstrates the MPASS solution used in the PkNN method facilitates

processing of data orders of magnitude larger than the previous state-of-the-art, and truly

scales to handle modern data quantities.

Figure 5.6: Impact of data size on overall runtime of PkNN method.
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5.4 PkNN-LOF Evaluation

Section 4.2 describes a framework for the distributed computation of LOF scores using

an extension of PkNN. Here we evaluate the performance of the method. The small

Massachusetts dataset is used with 25 pivots and k is fixed at 3. Figure 5.7 shows the

runtime for each stage of computation in PkNN: Pivot Selection, Data Partitioning, and

two kNN Search Phases. The PkNN-LOF framework includes two additional phases of

computation to compute LRD and LOF values for each point. It can be observed that the

kNN search step of the LOF algorithm is indeed the bottleneck for computation, as the

LRD and LOF phases outperform the runtime of both kNN search steps.

Figure 5.7: Breakdown of PkNN-LOF computation on Massachusetts dataset.
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Chapter 6

Related Work

6.1 Distributed kNN Search

kNN search is a well-studied problem with many solutions to mitigate the high O(n2)

complexity of the problem. In centralized algorithms, spatial indexing structures are typi-

cally used, such as grid-based indices for low dimensional data, or hierarchical tree struc-

tures [24, 27, 28], as they can achieve an O(nlogn) expected complexity. Pivot-based

partitioning in centralized solutions has been shown to perform well for data with varying

distributions [29] and higher dimensions in [23], where the authors focus on creating a

spatial index for high dimensional data. Recursive data partitioning is used along with

VA-File quantization to handle data with upwards of 50 dimensions. This centralized

technique confirms the use of pivot-based partitioning as appropriate in higher dimen-

sional spaces, as well as for use with other distance measures than Euclidean, such as the

Mahalanobis distance which they evaluate.

In recent years, a number of distributed solutions for kNN search have been proposed

for message-passing and peer-to-peer distributed systems [7, 30, 31]. However, shared-

nothing distributed architectures such as Hadoop [20] and Spark [32] are preferred due
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to their scalabilty, fault tolerance, and ability to run on commodity hardware. An exact

distributed solution to the kNN join in MapReduce is presented in [15]. In this approach,

the dataset is divided into blocks and all possible pairs of blocks are formed, each corre-

sponding to one data partition. In this way, every data point is compared with all other

points in the dataset. As the authors note in [15], this method is impractical on large data

due to the quadratic number of partitions.

To address the shortcomings of this exact solution, the authors of [15] then propose

an approximate solution using space filling curves to partition data while retaining ap-

proximate proximity. As in our PkNN method, points near the boundaries of partitions

are duplicated and sent to multiple partitions. Supporting points are approximated using

the z-curve index. Another approximate method uses Locality Sensitive Hashing [12] to

hash nearby points to the same partitions with high probability. This solution is designed

to process single queries at a time and only the point under consideration is duplicated

and sent to multiple partitions. In this scenario, high data duplication is not a concern, as

opposed to our problem where the kNN of all points in the dataset are found at the same

time.

The current state of-the-art solution [33] for exact distributed kNN search is given in

[9]. This approach also uses pivot-based partitioning to divide the dataset. Then worst-

case estimation based on the distance from the pivots to a small number of points in

each partition bounds the size of supporting areas. As shown in their experiments and

confirmed by our results, this leads to extremely high data duplication, upwards of 20x the

size of the original dataset. Our data-driven PkNN approach over multiple MapReduce

jobs instead establishes a much tighter bound on supporting areas. Using this bound,

PkNN achieves data duplication rates close to 1 on datasets orders of magnitude larger

that those previously evaluated (See experimental evaluation in Section 5.3).

kNN search is also used as a core step in a number of different machine learning algo-
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rithms. For instance, DBSCAN clustering searches for the nearest-neighbors of a point,

and checks if more than minPts are within a certain distance eps. In this case, the area

that needs to be checked for neighbors is fixed across all partitions and pre-determined

by the user specified parameter eps. This simplifies the problem in a distributed setting,

as this fixed value can be used to predetermine the supporting area size [34]. For other

methods which depend on the distance to the kth nearest neighbor, such as distance-based

[6] and density-based outliers [5] the size of supporting areas may vary across partitions.

Our proposed PkNN method can be leveraged to facilitate distributed solutions for the-

https://preview.overleaf.com/public/syhbdvhnbxwn/images/a4e27a99e1d0049f0913445a7419d6f4dcaf8a62.jpegse

algorithms as well, as is demonstrated by the PkNN-LOF framework presented in this

work.

6.2 Distributed LOF

Breunig et al. developed the notion of local outliers in opposition to that of distance-based

outliers proposed by Knorr and Ng in [16]. To overcome what they saw as shortcomings

of a binary definition of outliers, they sought to define a degree of outlier-ness. One

method [6] had been proposed to rank outliers using nearest-neighbor relationships, how-

ever it still hinged on a distance measure. Inspiration for LOF came from density based

clustering algorithms including DBSCAN [3] and BIRCH [35]. These methods can iden-

tify outlying points, however they classify them as noise.

As best can be determined, no distributed LOF algorithm has been proposed to date.

In [36], Lozano and Acunna proposed a multi-process LOF algorithm on one single ma-

chine. All processes share the disk and main memory and therefore can access any data in

the dataset at any time. Clearly this approach cannot be adapted to popular shared-nothing

distributed infrastructures targeted by our work.
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Distributed solutions have been proposed for distance-based outliers. Hung and Che-

ung [37] give a parallel version of the basic Nested-loop algorithm [16]. This method

requires strict synchronization between worker nodes, assuming all nodes can commu-

nicate with each other by message passing. Angiulli et al. [4] presented a distributed

algorithm for another major variation of distance-based outliers [6]. It utilizes a solving

set of points sampled from the original dataset to approximate whether a given point p is

an outlier by comparing p to only the elements in this sample set. This approximate result

requires the solving set to be broadcast to each node.

Another solution from Bhaduri et al. [13] utilizes a ring overlay network architecture.

Their algorithm passes data blocks around the ring allowing the computation of neighbors

to proceed in parallel. Along the way, each point’s neighbor information is updated and

distributed across all nodes. A central node maintains and updates the top-n points with

the largest k nearest neighbor distances.

Unlike our solution, reliance on special architectures and message passing between

nodes limits the scope of the applicability of the above mentioned methods. In general,

these strategies are not practical for MapReduce-like shared nothing infrastructures which

do not feature a central node, and where mappers and reducers work independently from

each other.
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Chapter 7

Conclusion

This thesis presents PkNN, a distributed solution for kNN search. It demonstrates that the

common assumption in the design of MapReduce algorithms that using fewer jobs results

in lower costs does not hold in the context of kNN search. The MPASS method used

for support area partitioning over multiple rounds of computation effectively limits data

duplication and scales PkNN to billion point datasets. Pivot-based data partitioning is

shown to facilitate data-driven bounds on supporting areas, and provide a flexible means

of distributing data in a compute cluster. Optimizations for early kNN output and pivot-

based indexing for local search are also given. Together, these components provide a

scalable approach to distributed kNN search, and a frame of reference for further study in

this area.
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Chapter 8

Future Work

Additional Data Mining Tasks

The PkNN method presented in this thesis provides a distributed solution to a high-value

data mining task: kNN search. As the PkNN-LOF case study demonstrates, the PkNN

method can be extended to facilitate other data mining tasks which depend on a kNN

search. In addition to outlier detection [5], future extensions could include clustering

[2, 3] and classification [1] methods. The strategies outlined in this work can also pro-

vide a basis of study for pivot-based partitioning as applied to data partitioning for other

distributed algorithms.

Pivot selection

In PkNN an intuitive strategy to select pivots is presented. Uniform random sampling

is used to select a subset of the data as pivots. With this strategy, the pivot set reflects

the underlying data distribution, providing more examples chosen from dense areas as

opposed to sparse. However, random sampling does not provide any guarantees that

particularly dense clusters of data will be grouped into the same partition. In fact, since

more pivots are likely to be chosen from dense areas, natural clusters of data are likely to
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be broken up among many partitions. Pre-processing via clustering or vector quantization

may help to identify pivots at the center of dense clusters, perhaps improving on random

selection, albeit with an added overhead cost. While distributed clustering methods are

available, the process is expensive.

Furthermore, it is not obvious whether it is preferred to have dense or sparse areas fall

in the center of partitions, or along boundary divisions. On the one hand, having more

data close to the partition edge means there will be many duplicated points in the support

areas. On the other hand, the points in these areas will be close together, requiring only

a small support area. In addition to density of the data, the volume of the cells also plays

a role in the size of supporting areas. Therefore it may also be desirable to constrain

the position of pivots relative to each other, for instance by choosing a regular lattice of

points as described in Section 2.2. In this case the resulting Voronoi diagram yields a

homogeneous partitioning, and the distance of data points to pivots becomes predictable.

Figure 8.1 shows some alternative strategies for pivot selection from the Massachusetts

dataset. Future work could develop improvements to the pivot selection phase of PkNN,

perhaps customizing the selection strategy to the input dataset.

55



Figure 8.1: Various pivot selection strategies. From the top down: uniform random sam-
pling, k-means clustering, lattice, and sparse sampling.
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