Development of Holographic Interferometric
Methodologies for Characterization of Shape and
Function of the Human Tympanic Membrane

A Dissertation
submitted to the faculty of the

Worcester Polytechnic Institute
as a partial fulfillment of the requirements for the
Degree of Doctor of Philosophy
in
Mechanical Engineering

%mey/d/(ﬂl%&

Morteza Khaleghi

21 April 2015
Approved:

Professor Cosme Furlong “Advisor

%/.f

Professor J;aﬁn J. osWsk1 Massachusetts Eye & Ear Infirmary,

_~Harvard edlciiiyol Committee Member
O; L] MC/ZJZ/ZM

P fessor John M. S’ulhvan Committee Member

Professor Allen H'/?/I/ fman, Committee Member

Nz ‘/) /;7/,»%“

Professor Jamal S.-¥agoobi, Graduate Committee Representative




Copyright © 2015
By
CHSLT - Center for Holographic Studies and Laser micro-mechaTronics
Mechanical Engineering Department
Worcester Polytechnic Institute
Worcester, MA 01609-2280

All rights reserved



Abstract

The hearing process involves a series of physical events in which acoustic waves in the outer ear
are transduced into acousto-mechanical motions of the middle ear, and then into chemo-electro-
mechanical reactions of the inner ear sensors that are interpreted by the brain. Air in the ear
canal has low mechanical impedance, whereas the mechanical impedance at the center of the
eardrum, the umbo, is high. The eardrum or Tympanic Membrane (TM) must act as a
transformer between these two impedances; otherwise, most of the energy will be reflected rather
than transmitted. The acousto-mechanical transformer behavior of the TM is determined by its
geometry, internal fibrous structure, and mechanical properties. Therefore, full-field-of-view
techniques are required to quantify shape, sound-induced displacements, and mechanical
properties of the TM. Shapes of the mammalian TMs are in millimeter ranges, whereas their
acoustically-induced motions are in nanometer ranges, therefore, a clinically-applicable system
with a measuring range spanning six orders of magnitude needs to be realized. In this
Dissertation, several full-field measuring modalities are developed, to incrementally address the
questions regarding the geometry, kinematics, and dynamics of the sound-induced energy
transfer through the mammalian TMs. First, a digital holographic system with a measuring range
spanning several orders of magnitude is developed and shape and 1D sound-induced motions of
the TM are measured with dual-wavelength holographic contouring and single sensitivity vector
holographic interferometry, respectively.  The sound-induced motions of the TMs are
hypothesized to be similar to those of thin-shells (with negligible tangential motions) and
therefore, 3D sound-induced motions of the TM are estimated by combining measurements of
shape and 1D motions. In order to test the applicability of the thin-shell hypothesis, and to

obtain further details of complex spatio-temporal response of the TMs, holographic systems with



multiple illumination directions are developed and shape and acoustically-induced vibrational
patterns of the TMs are quantified in full 3D. Furthermore, to move toward clinical applications
and in-vivo measurements, high-speed single-shot multiplexing holographic system are
developed and 3D sound-induced motions of the TM are measured simultaneously in one single
frame of the camera. Finally, MEMS-based high-resolution force sensing capabilities are
integrated with holographic measurements to relate the kinematics and dynamics of the acousto-
mechanical energy transfer in the hearing processes. The accuracy and repeatability of the
measuring systems are tested and verified using artificial samples with geometries similar to
those of human TMs.

The systems are then used to measure shape, 3D sound-induced motions, and forces of chinchilla
and human cadaveric TM samples at different tonal frequencies (ranging from 400 Hz to 15
kHz) simultaneously at more than 1 million points on its surface. A general conclusion is that
the tangential motions are significantly (8-20 dB) smaller than the motions perpendicular to the
TM plane, which is consistent with the thin-shell hypothesis of the TM. Force measurements
reveal that frequency-dependent forces of the TM, are also spatially dependent so that the
maximum magnitudes of the force transfer function of the umbo occurs at frequencies between
1.6 to 2.3 kHz, whereas the maximum values for other points on the TM surface occurs at higher
frequency ranges (4.8 to 6.5 kHz).

The Dissertation is divided into two Parts, each contains several Chapters. In the first Part,
general overviews of the physiology of the human middle ear, along with brief summaries of
previous studies are given, and basics of holographic interferometry are described. In the second
Part, developments and implementations achieved in completion of this work are described in the
form of a series of manuscripts. Finally, conclusions and recommendations for future work are

provided.
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Objective

The aim of this work is to develop, implement, and apply three-dimensional full-field

holographic systems for measurements and characterizations of the spatio-temporal complexity

of the sound-induced motions of the human Tympanic Membrane (TM). This includes

developments of novel:

compact biomedical imaging systems with measuring ranges spanning several orders of
magnitude, within the same instrument, to characterize shape (i.e., in millimeter scale)
and sound-induced motions (i.e., in nanometer scale) for applications in the research
clinic,

stroboscopic system for quantifications of the sound-induced vibrational patterns in full
3D,

multiplexed single-shot holographic system to minimize the acquisition time required for
3D motion measurements, which eventually may lead to novel full-field quantitative tools
to capture 3D vibrational patterns of the TM in-vivo,

methodologies for characterization of micro-scale sound-induced forces in the middle ear
to understand the relation between kinematics and dynamics of acoustic energy transfer
within the middle ear, and to enable characterization of stress-strain states of the TMs,
numerical methods, software implementation, and algorithms for batch processing of data
to efficiently process large amounts of holographic data, and in turn, automatically store

the kinematics and dynamics information for future data mining and clustering,

XViii



1. Introduction

1.1. Problem statement

It is recognized that sound-induced motions of the eardrum or the Tympanic Membrane (TM) are
the first step in the transduction of airborne sound energy to the mechanical energy associated
with motions of the middle ear ossicles and the sensory organs within the inner ear. Different
multi-physics phenomena involved in the transfer of energy from the outer ear to the middle ear
and the inner ear complicate the hearing process. At the very beginning, the travel of airborne
acoustic waves down the ear canal and their interaction with the TM forms an acoustic-solid
interaction problem. The sound-induced vibrations of the TM set the ossicular chain (smallest
bones in the human body) behind the TM into vibration, which in turn, induces chemo-electro-
mechanical reactions of the inner ear using the impedance matching mechanisms between the
air-filled outer ear and fluid-filled inner ear. These complicated processes and space constraints
within the human ear make experimental observation and measurements of these processes
challenging, and instead, several numerical and theoretical models have been developed to help
further understanding of the hearing processes. However, there are limited experimental
descriptions and observations of how the entire surface of the TM moves in response to sound to
test these models and hypotheses. Different challenges exist for such measurements and
metrology systems with high-resolution (magnitudes of sound-induced motions of the TM can be
on the order of a few nanometers or less), high measuring-range (sound-induced motions are in
the nanometer range, whereas shape of the TM is in the millimeter range, therefore, a suitable
metrology system should have a range spanning nearly six orders of magnitude), and high speed
of acquisition (human hearing frequency range is between 20 to 20,000 Hz, and the Nyquist

criterion suggests a minimum acquisition rate of 40,000 frames per second) are needed.
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1.2.  Significance of the problem

Tympanoplasty describes a series of procedures that either repair or reconstruct the TM and the
ossicular chain in ears damaged by trauma and/or disease. Otologic surgeons perform tens of
thousands of tympanoplasties each year with mixed results. Simpler TM patching procedures
generally produce good hearing results, but about half of the most complicated TM grafts and
ossicular reconstructions yield residual conductive hearing losses greater than 30 dB, with some
as high as 50-60 dB. However, even simple patching procedures may results in significant
residual conductive hearing loss. Our group is developing holographic interferometric tools to
investigate and understand the sources of this variability in the efficacy of TM reconstructions.
The 3-Dimensional shape and dynamic sound-induced motion measurements of the entire TM
surface are coupled with measurements of force at the umbo and other well-defined locations
along the surface of the TM. The combination of TM thickness, shape, 3D-motion and force
measurements will help us understand the factors that govern signal transmission from the outer
ear to the middle ear and finally to the inner ear and will pave the way toward characterization of

the TM’s mechanical properties.



2. Dissertation outline

This dissertation is organized in two main Parts each containing several Chapters. In the first
part, background, a summary of previous works, and principles of holographic interferometry are
presented. In the second part, overviews of the developments through this work, in the form of
several publications, are presented.

Chapter 3 gives a brief description of the physiology of the human ear, with an emphasis
on the function of the middle ear. The main components of the middle ear including the
Tympanic Membrane (TM) and the ossicles (malleus, incus, and stapes) and their main task,
which is the impedance matching mechanism, are reviewed.

Chapter 4 summarizes previously-developed models for the investigations of middle ear
function along with their main assumptions and limitations. The need for experimental
measurements of shape, full-field sound-induced motion, and forces in the middle ear are also
highlighted.

Chapter 5 reviews the state-of-the-art quantitative and qualitative tools and techniques used
by otolaryngologists for diagnosis and research purposes on the human middle ear. Their
limitations for full-field quantitative investigations of shape and 3D sound-induced motion of the
TM are also explained.

Chapter 6 describes the principles and mathematics of light interference and lensless digital
holographic interferometry for quantification of shape and 3D deformation of objects.
Constraints and limitations of 3D vibrometry of the objects are given and the needs to overcome
those constraints are described.

Chapter 7 describes challenges along the way of measurements of three-dimensional

sound-induced motion of the TM. Therefore, to simplify the problem, sound-induced kinematics



of the TM are hypothesized to be similar to those of thin-shells, where motions tangent to the
local plane of the membrane are negligible. Development of a holographic system capable of
measuring 3D shape and 1D sound-induced motions are described and, using thin-shell
hypothesis, 3D sound-induced motions of the TM are estimated.

Chapter 8 provides a comprehensive study of the use of thin-shell hypothesis on chinchilla
TM samples at several tonal excitation frequencies.

Chapter 9 describes developments and implementations of a digital holographic
interferometry system for measurements of shape and 3D sound-induced motions of the human
TMs. A new approach for automatic determination of the sensitivity vectors is introduced, and
the accuracy and repeatability of the measurements are verified.

Chapter 10 provides detailed analyses of shape and sound-induced motions of multiple
human TM samples. The 3D sound-induced motions are determined at different time intervals
realizing four-dimensional measuring capabilities. The shapes of the TM are further analyzed
and radii of curvature for the TM shapes are computed.

Chapter 11 describes developments and implementations of a new single-frame
multiplexed holographic system for simultaneous measurements of 3D sound-induced motions.

Chapter 12 shows the procedures for integration of a micro-force sensor to 3D holographic
systems to enable characterization of sound-induced sub-micro-Newton scale forces. The
combination of the two systems (shape, 3D sound-induced motions, and forces) will enable
characterization of both kinematics and dynamics of middle ear structures.

Chapter 13 reviews new technological advancements achieved during completion of this
Dissertation for the study of shape and function of the middle ear, and in particular the human
TM, at a level of details that have not been achieved before. These developments will lead to

new discoveries in the mysteries of hearing, and encourage and inspire industrial sectors in
4



optics, lasers, and imaging systems to package such imaging modalities for clinical applications.
Furthermore, this Chapter provides future work including a road map for improving the

capabilities of the systems.



Part 1: Background



3. Physiology of the Human Ear

The ear is responsible for translating variations in air pressure, whether from music,
speech, or other sources, into the neural activity necessary for our perception and interpretation
of sound (Geisler 1998). The auditory periphery can be broken into three functionally and
anatomically distinct components: external (acting as a resonator), middle (acting as an
impedance matcher), and inner ear (acting as a Fourier analyzer), as shown in Figure 3.1 . The
primary role of the external and middle ear is to pass the sound stimulus from the environment to
the inner ear. The sound wave is diffracted and scattered by the body, head, and ear, and some
fraction of the incident sound energy is gathered at the entrance to the ear canal. The funneled
sound is transformed as it travels down the roughly cylindrical ear canal to the Tympanic
Membrane (TM). The sound acting on the TM sets the ossicles (malleus, incus, and stapes) into
motion. The motion of the ossicular chain conducts acoustic energy into the inner ear through
the footplate of the stapes that is supported within the oval window at the entrance to the lymph-
filled Scala Vestibuli of the inner ear, or cochlea. The pressure difference between the fluid in
the Scala Vestibuli and the Scala Tympani of the inner ear stimulates the cochlear partition,
resulting in motion of the partition’s basilar membrane, which in turn, is sensed by the hair cells
within the partition. Then, hair cells produce graded electrical signals that are sent to the brain

for further interpretation and perception (Geisler 1998).
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(attached to
oval window)

Semicircular
Canals

Incus

Malleus Vestibular

Cochlear
Nerve

Cochlea
External
Auditory Canal

Tympanic
Membrane

External Ear

Figure 3.1. Schematic of the auditory system with its primary components including
external auditory canal, Tympanic Membrane (TM), Ossicles (including Malleus, Incus,
and Stapes), and the Cochlea (adapted from Chittka 2005).

Therefore, acoustically-induced vibrations of the TM play a primary role at the very beginning in

the hearing process, in that these motions are the initial mechanical response of the ear to

airborne sound (Khanna and Tonndorf 1972; Puria and Steele 2008; Rosowski et al., 2009).

Tympanic Membrane

The eardrum or Tympanic Membrane (TM) separates the outer ear from the middle ear.

As shown in Figure 3.2, the TM is located at the end of the curved ear canal with a particular

inclination, which allows it to have a larger surface than the cross-section of the ear canal itself.

The angle between the eardrum and the superior and posterior wall of the ear canal is 140

degrees, while the angle between the eardrum and the inferior and anterior wall is 30 degrees.
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Figure 3.2. Orientation and structure of human Tympanic Membrane (TM): (a) the TM is
located at the end of the ear canal with a particular inclination angle, so that the angles
formed with the ear canal walls are 140 or 30 degrees; (b) the TM of a human right ear as
it is visible from the ear canal (adapted from Ferrazzini, 2003).

Mammalian TMs and in particular, human TMs, are multi-layer fibrous structures
consisting of the epidermal (lateral layer), lamina propria (middle layer), and mucosal epithelial
(medial layer) layers from the lateral to medial side of the TM (Lim, 1970). Figure 3.3 shows an
image of a human TM along with the configuration of the layers and fibers within the tissue of

the TM, with collagen fibers oriented along radial and circumferential directions.

Lateral side of the TM
A

» Epidermis

oy
Subepidermal -
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3
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Submucosal 3
connective tissue _J

Mucosa

N
(a) Medial side of the TM (b)

Figure 3.3. Human TM and its internal structure: (a) an image of a human TM captured
through the ear canal; and (b) the internal structure of the TM tissue showing different
categories of fibers and layers (adapted from Lim, 1970).
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The annulus separates the TM into the pars tensa and pars flaccida. As shown in
Figure 3.3a, the pars tensa is the major part, which is surrounded by tympanic annulus and is
coupled to the manubrium of the malleus, while the pars flaccida is a small portion superior to
the manubrium (the handle) of the malleus (Funnell et al., 1982). When the TM vibrates in
response to sound pressure in the ear canal, its vibration is confined primarily to the pars tensa,
which constitutes approximately 80% of the membrane’s surface.

The exterior edge of the TM (annulus or annular ring) consists of a fibrous and cartilaginous
tissue that is thicker and stiffer than the rest of the membrane. Figure 3.4 shows the images of
the fibrous structure of the TM of a guinea pig captured by scanning electron microscope
(Kawabata and Ishii, 1971). As shown in Figure 3.4, four different groups of fiber bundles
including parabolic (PF), circular (CF), radial fibers (RF) and the annular ligament (AL), can be

observed in different areas on the surface of the membrane.
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Figure 3.4. Fibrous structure of a guinea pig TM imaged with scanning electron
microscope in: (a) the anterior superior quadrant of the TM (x300); (b) the posterior
superior quadrant of the TM (x300); (c) the bordering area between the superior and
inferior-posterior quadrant (x1000); and (d) circular fibers cross over the radial fibers and
branch and anastomose to each other forming a network (x3400) PF: Parabolic Fibers,
AL: Annular Ligament, RF: Radial Fibers, CF: Circular Fibers (adapted from Kawabata
and Ishii, 1971).

3.2.  Function of the Middle ear

The smallest bones inside the human body are three middle ear ossicular bones (Malleus,
Incus, and Stapes) located inside the middle ear space, as shown in Figure 3.5. The middle ear
cavity is normally filled with air, and under normal operation conditions, the static air pressure in
the middle ear cavity is the same as the atmospheric pressure in the ear canal (Geisler 1998).
Equal air pressure on both sides of the TM is needed to maintain the proper shape and tension of

the TM. The pressure equalization in the middle ear cavity is maintained by the periodic
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opening and closing of the Eustachian tube (auditory tube). This tube connects the middle ear
with the nasopharynx (back of the throat) and can be opened or closed by the action of the tensor
velipalatine muscles (muscles from the velum and palate). The tube is normally closed, but it
pops open during yawning and swallowing. If the air pressure in the middle ear cavity is
significantly different from the pressure in the ear canal, this may cause over- or under-stretching
of the TM, which leads to inefficient sound transmission, pain and can also produce middle ear
diseases. The function of the middle ear is to transfer sound from the air to the fluids of the
cochlea (i.e., from P to P, in Figure 3.5a) through the vibration of the TM and three middle ear
ossicular bones. The process can be considered as an impedance matcher. The specific acoustic
impedance of a medium is the ratio of the sound pressure to the particle velocity of a plane wave
propagating through the medium and is a property of the medium itself. When sound impinges
on an interface between two media with different impedances, such as an air-water (low
pressure, large velocity)-(high pressure, low velocity) interface, energy is reflected from the
boundary. The stapes terminates at the entrance of the cochlea, on a flexible membrane called
the oval window. The velocity of the stapes v, is the input signal to the cochlea. It produces a
pressure variation Py in the fluids of the Scala vestibule. The function of the external and middle
ears is to capture the energy in the external sound field of sound pressure P and transfer it to the

stapes motion v, and in turn, to the sound pressure Py in the scala vestibule.
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Figure 3.5. Human middle ear ossicular chain: (a) schematic of the human external,
middle, and inner ears; and (b) human ossicular chain including the malleus (M), incus (1),
and stapes (S) (adapted from Rossing 2007).

3.3. Middle-ear Impedance Matching Mechanisms

The primary function of the middle ear is to act as an impedance matching element
between the air-filled outer ear and the fluid-filled inner ear. If we assume that the impedance of
cochlear fluids is the same as the specific acoustic impedance of the fluid, the impedance ratio, r,
of the liquid in the cochlea to the air is 4000:1, the following equation can be used to determine

what the energy transmission coefficient, T, would be without the middle ear function

4r

T = m , (3-1)

Equation 3-1 gives a transmission of 0.001 or 0.1%. This transmission value is equivalent to a
SPL drop of about 30 dB. To overcome this impedance mismatch, the middle ear employs three

mechanical amplification mechanisms

1. Area ratio transformation
2. Ossicular chain lever action
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3. Catenary lever action

3.3.1. Area Ratio Transformation
The surface area ratio (pressure) transformer is the first and the most effective impedance
matching mechanisms in the middle ear. As shown in Figure 3.6a, it results from the differences

in surface areas of the TM and Oval Window (OW: the membrane covering the oval window).

A

\
~
7

(a) (b)
Figure 3.6. Middle ear impedance matching mechanisms: (a) area ratio transformation
resulting from surface area mismatch between TM and Oval Window; and (b) ossicular
chain lever action (adapted from Emanuel and Letowski, 2009).

A pressure P; acts over the surface of the TM and results in a force F;. Assuming that the
ossicular chain is a lossless system, the force F, acting on the oval window is equal to force F;,
that is, F;, = F, = F. Since force (F), surface area (A), and pressure (P) are related by the
equation F = P X A, then

F=P, XA =P, XA,. (3-2)

Therefore,

P—P><A1 3-3
2 =P (3-3)

Since the vibrating area of the TM (4, = 55 mm?) is approximately 17.2 times larger than the
vibrating area of the oval window membrane (4, = 3.2 mm?), this results in an increase in SPL at

the oval window of approximately 25 dB.
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3.3.2. Ossicular Chain Lever Action

The second impedance matching mechanism of the middle ear is shown in Figure 3.6b and
is called the ossicular chain lever action, which involves the rotational motion between the
malleus and incus. This type of motion is possible because the ossicles are fixed at the junction
between the malleus and incus while being suspended in the middle ear cavity by the anterior
ligament of the malleus (anteriorly) and the posterior ligament of the incus (posteriorly). This
arrangement creates a central pivot point (fulcrum) and allows for the relative rotational motion
of the malleus and incus, thereby forming a lever mechanism. In a lever system, an input force
F; applied at effort arm d, results in the output force F, acting on load arm d,, and their products
are equal, which is

Fyxd, =F,xd,. (3-4)

In the case of the ossicular chain lever, the forces F; and F, are the forces acting at the
malleus and incus and the distances d; and d, are the lengths of the malleus and incus,
respectively. Since the length of the malleus is approximately 1.3 times longer that the length of
the incus, this increases the force between the TM and the oval window membrane by

approximately 2.3 dB.

3.3.3. Catenary lever action

The third impedance matching mechanism, the catenary lever action (also known as curved
membrane effect, or buckling effect of the tympanic membrane) was first explained by
Helmholtz (1868). Because of his observation of the membrane’s curvature, he hypothesized
that the umbo of the TM vibrates less than the remaining surface of the TM, and the magnitude
of force and motion vary inversely and regularly along each radius of the curved TM. Since the

outside edge of the membrane is firmly attached to the annulus and curves medially to attach to
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the umbo, the displacement of the membrane between the annulus and umbo is larger than the
umbo motion (Khanna and Tonndorf, 1970). A simple example of this lever action is a tennis
net. The tighter the net is stretched, the larger the forces exerted on the two posts holding it.
Because the bony annulus is immobile, and due to this catenary action, the sound-induced force
at the umbo is amplified relative to the force midway between the umbo and the rim. This
creates a lever action which increases the force acting at the umbo by approximately 2 times or 6
dB (Rosowski, 1996).
Therefore the total increase in pressure between the stapes footplate and the TM can be obtained
with

201og(17.2) + 201log(1.3) + 201og(2) . (3-5)
In the literature, 33 dB ratio to compensate for the air-to-cochlea impedance mismatch is called
the ideal transformer prediction (Rosowski, 1994). Without the impedance matching function of
the middle ear, more than 99.9% of the acoustic energy acting on the TM would be reflected
back into the ear canal and not used. If the human middle ear matching function is not
functioning properly, sound can only be transmitted via a shunt pathway (tympanic membrane to
the air in the middle ear to the fluid of the inner ear), which leads to a hearing loss of as much as

60 dB (Peake et al., 1992).
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4. Previous Middle ear Studies

There are plenty of publications and reports on developments of different acousto-
mechano-electrical models for describing the function of the middle ear. These models have
been mainly developed for a better understanding of the sound transmission mechanisms in the
human ear. However, all of these models and hypotheses have been established based on several
assumptions. The real experimental data about shape and sound-induced motion of the TM and
force within the middle ear are indispensable to fully test and verify the accuracy and
applicability of these models. In this chapter, an overview of some of the existing models is
given to signify the needs for accurate measurements of shape, sound-induced motions and

forces within the human auditory systems.

4.1. Input impedance of the stapes and cochlea

As mentioned earlier, acoustic impedance is the ratio of the complex acoustic pressure
applied to a system to the resulting complex acoustic volume flow rate through a surface

perpendicular to the direction of this acoustic pressure at its point of application such that

P
Z=G=R+ix, (4-1)

where P is the complex acoustic pressure in Pa, Q is the complex acoustic volume flow rate in
m3.s71, R and X are the acoustic resistance and reactance measured in Pa.m™3.s. Therefore,
acoustic impedance Z is a complex quantity that has two parts, resistance (real part) and
reactance (imaginary part), that are responsible for the transfer and storage of energy,
respectively. The transfer of energy from one system to another is most efficient when both

systems have the same impedance (Mgller, 1965; Emanuel and Letowski, 2009). In case of
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complex impedances, the most efficient transfer occurs when the two impedances are complex
conjugates with equal magnitude, but opposite phase.

The acousto-mechanical transformation of the middle ear serves to match the high acoustic
impedance of the fluid-filled inner ear with the low acoustic impedance of the air in which sound
waves propagate in order to optimize energy transfer between these two systems. The main
resistive component is contributed by the input impedance of the cochlea at the oval window that
is the entrance to the cochlea. Therefore, in order to calculate the actual impedance mismatch,
the input impedance of the oval window and the impedance of the source from which the sound
impinges on the window should be determined.

Researchers at Harvard Medical School (Merchant et al., 1996) measured acoustic input
impedance of the stapes and cochlea in several human temporal bones. The acoustic input
impedance of the stapes and cochlea Zg. in temporal bones have been measured in response to a
sound pressure at the stapes head Ps , where the sound pressure stimulus was restricted to the
region of the oval window P,;, and was much larger than the sound pressure outside the round
window Py, (as is the case in normal ears). The load of the stapes and cochlea on the middle ear
can be defined as the ratio of the pressure acting on the stapes and the stapes volume velocity
with

Pow _ P
Usr  jw XsApp '

Zsc = (4-2)

where Agp is the area of the footplate, j is the imaginary constant, w is the angular frequency that
is equal to 2xf, and jw Xg is the complex amplitude representing the time derivative of the
sinusoidal stapes displacement. Considering a value of 3.2 mm? for Agp for human footplate,
the frequency-dependent acoustic input impedance of the stapes and cochlea have been
calculated to vary between 800,000 to 10,000,000 x 10° Pa.m™3.s (Merchant et al., 1996).
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Zwislocki (1962) also measured this value for cat’s ear and he reported values between 350,000

to 1,200,000 dyne.C;—s (x 105 Pa.m™3.s). All of these impedances are much higher than the

characteristic impedance of air, which is approximately 41.5 dyne C:l—s at 30°C temperature.

Therefore, in order to ensure an efficient transfer of energy between the acoustic system of the
ear canal and the hydraulic system of the inner ear, the middle ear must compensate for this
mismatched impedance by increasing the pressure between the tympanic membrane and oval

window by approximately 63 times (632 ~ 4000).

4.2. Middle ear input-output gains

Generally, our knowledge of middle-ear sound transfer depends on single point
measurements of sound-induced umbo and stapes motion, together with a few measurements of
TM surface displacement and a few direct measurements of middle-ear pressure gain Py /Pry.
Due to the lack of full-field 3D displacement and shape measurement of the middle ear,
theoretical assumptions and modeling have been developed by several researchers all around the
world to further characterize the middle-ear input-output transfer function. In its simplest form,
the middle ear has been described as a two-port system with one port at the ear canal and the

other port at the stapes footplate as follows:

cel=18 Bl @3)

where P,. and U, are the ear canal pressure and volume velocity, P, and Ug; are the vestibule
pressure and stapes volume velocity, respectively. Velocities entering the middle ear are defined
as positive (U,.) and velocities departing the middle ear are defined as negative (—Usy).
Equation 4-3 states that the four frequency-dependent input-output variables are related to each

other by four matrix elements A, B, C, and D that characterize the middle ear function. An
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important attribute of the ABCD matrices is that they are independent of the cochlear and ear-
canal loads, which allows a better comparison of the properties of the middle ear alone. A
schematic of the setup for characterization of input-output parameters of the middle ear is shown
Figure 4.1, where the ear-canal pressure P,., inner-ear pressure Py, and the stapes volume
velocity Ugy are directly measured with a microphone probe, hydro-pressure transducer, and a

single point LDV, respectively.
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Figure 4.1. A simplified horizontal cross-section of a human temporal bone (right ear)
preparation for driving the middle ear in the forward and reverse directions (note the
presence of the inner-ear sound source). A small speaker is used as the sound-source in
the ear canal to drive the middle ear in the forward direction. The inner-ear sound source
coupled to a tube cemented near the round window was used to drive the inner ear in the
reverse direction. The ear-canal pressure P,. was measured with an ER-7C probe-tube
microphone. To measure the inner-ear pressure P,, a hydro-pressure transducer was
placed in the vestibule. The stapes velocity was measured with a HLV-1000 PolyTec laser
vibrometer. An inlet and outlet tube allowed flushing of the inner ear to ensure that it
remained fluid filled (Puria 2003).
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Four different frequency-dependent complex middle ear parameters M1, M2, M3, and Z,
are defined to determine the transfer function of the middle ear. These variables are defined in

the following equations:

—_—

P
M]- = :V» ) (4-4)
Py
5
M2 =22, (4-5)
Py
P,
M3=—" , (4-6)
VsrAgp/ cos(Bsr)
P,
Zp=——" . (4-7)
—VsrApp/ cos(Bsr)

The right arrow (—) indicates forward drive (the sound stimulus delivered to the external ear at
the TM), while the left arrow (<) indicates the reverse drive (the sound stimulus delivered to the
inner ear). Stapes footplate area, App is considered to be = mm? and stapes angle, 65 of 55°
relative to an axis perpendicular to the footplate and through the stapes head is assumed (Aibara
et al., 2001, Puria 2003). This assumption leads to a simple cosine correction between the
measured motion of the stapes and its piston-like motion.

The forward middle-ear pressure gain, M1 is the ratio of the vestibule pressure to the ear-canal
pressure M1 = Py, /Pg.. The cochlear input impedance is the ratio of the vestibule pressure, P,
to the stapes volume velocity Ugy and is Z; = P, /—Ugr, Where Ugr is defined as the stapes
velocity times the footplate area, Arp. M2 and M3 were measured while the ear was stimulated,
with the inner ear sound source, in the reverse direction. The reverse middle-ear pressure gain,
M2, is the ratio of the ear-canal pressure to the inner-ear pressure M2 = Py /Py, and the reverse

middle-ear impedance, M3, is the ratio of the vestibule pressure to the stapes volume velocity
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and is calculated with M3 = P, /Usr. Figure 4.2 shows the results of obtained for five human

temporal bones.
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Figure 4.2. Measurements of M1, M2, M3, and Z. from five human temporal bones. The
average of the log-magnitude and angle is shown as thick-solid lines in each panel. M1
and were Z. were measured while the ear was stimulated, with an ear canal sound source,
in the forward direction, whereas M2 and M3 were measured while the ear was
stimulated, with the inner ear sound source, in the reverse direction (Puria 2003).

Using these variables, the forward middle-ear pressure gain M1, the cochlear input impedance
(Z¢), the reverse middle-ear pressure gain M2, and the reverse middle-ear impedance M3 have
been obtained in order to characterize the middle ear as a two-port system. Therefore, the effect
of the middle ear on OtoAcoustic Emissions (OAE) has been quantified by calculating the
roundtrip middle-ear pressure gain GRE as the product of M1 and M2 (Puria 2003) to study how

the middle ear modifies the OAE generated by the cochlea and measured in the ear canal.
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4.3. Mechanical model of the middle ear

In 1949, researchers modeled the middle ear vibratory system with a series of fitted
masses, resistances, and stiffnesses, and then derived equations that approximated the dynamics
of the middle ear (Onchi, 1961). In this section, an overview of this mechanical model including
the problem definition and constitutive equations of motion is presented. This mechanical model
of the middle ear, shown in Figure 4.3, has been obtained from anatomical observations of the
middle ear structure. Designations M, R, and S are mass, resistance, and stiffness, respectively.
The stiffness of the TM, S is considered to be equal to S; +S,, where S, is the stiffness
between the pars tensa (i.e., the most mobile part of the TM) and the bony limbus where the TM
is rigidly clamped, and S, is the stiffness between the malleus handle and the middle area of the

TM, the umbo.

antrum

rigid wall

(a) (b)
Figure 4.3. Mechanical mode of the middle ear: (a) the middle ear is modelled by a series
of Masses (M), Stiffnesses (S), and Resistances (R). Subscripts are external auditory canal
(E), tympanic membrane (T), middle ear cavity (M), antrum (A), pneumatic mastoid cells
(P), handle of malleus (H), incudo-stapedial joint (J), stapes (S), annular ligament (L),
basilar membrane (B), and round window (R); and (b) measurements of sound pressure at
the tympanic membrane (Pr) and in the middle ear (P,,) (Onchi, 1961).
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Based on this mechanical model, the kinetic energy (T), the potential energy (V), and the

dissipation (F) of the middle ear can be calculated with

1 1 1 1 1
T = EMch% + EMij + EMpxg + EMsz, +3 (Mg + M)x2 , (4-8)
1 1 1 1 1
F = =RpXx2 + =Rs%2 + =Rpx% + =Ryx% + = (Rs + R)%Z , (4-9)
2 2 2 2 2
V =282 4+ =S, (xp — x)? + = Sy (X — x4)2 + = Sa (x4 — xp)2 +
= 5o1XT T 3 2(Xr — xp) 2 m (X — X4) > a(Xa — xp) (4-10)

~Spxh + 3 Syxh + 35, (Zxy — x5)? +5 (Ss + S, + Sc)x,
1

where x = dx/dt, x is the volume displacement, r is the lever ratio, [; is the length of the malleus,

L, is the length of incus, M, is the mass of cochlear fluid to be added to the mass of the stapes, Mj,

due to incompressibility assumption for the cochlear fluid. Similarly, S; is the stiffness of the

cochlea to be added to the stiffness of the stapes and R, is the resistance of the cochlear fluid against the

displacement of the stapes. In this model M., R;, and S have been assumed to be frequency-

independent. Equations 4-8, 4-9, and 4-10 are written in Lagrangian equations of motions and the

following equations for the motion of the masses of the TM (T), antrum (A), pneumatic mastoid cell (P),

and malleus (H) are obtained.

MyXp + Rpxr + (Sp + Sp)xp = Prexp(jwt) + Syxy + Syxa, (4-11)
Mpky + Roxy + (Sy + Sa)xq = Syxy + Spxp (4-12)
MpXp + Rpxp + (Sq + Sp)xXp = Saxa , (4-13)
MyXy + Ryxy + (So 4 Sy + 128))xy = Syxr +18)%s (4-14)

where P; is the sound pressure amplitude of a pure tone, with an angular frequency of w at the

tympanic membrane.

They used this model to understand the effects of different vibratory
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organs within the human ear and obtained the magnitude and phase of sound-induced motion of
the TM at a broad frequency range. However, the main drawback of their model was the fact
that the entire TM have been considered as one single mass, with one single displacement value
(i.e., xr), which is not the case in the real world conditions, where sound-induced motion of the
TM is different at every single point on its surface. On the other hand, the curved shape of the
TM has not been taken into account, therefore, based on their model, a flat latex membrane with
similar stiffness and mass should produce similar efficacy as the complex structure of the TM

does.

4.4. Lumped parametric model of a human eardrum

Figure 4.4 shows a lumped parametric model consisting of six masses (M) connected by
springs (K) and dashpots (C) to simulate the human ear, including the external ear canal,
tympanic membrane, middle ear joints and ossicles, and cochlea (Feng and Gan 2004). The air
inside the ear canal is modeled by a mass M,, which is coupled to the mass M,, the TM, through
the spring K, and dashpot C,. Spring K; and dashpot C; represents the TM annulus. The three
ossicular bones (malleus, incus, and stapes) were represented by masses M5, M,, and Mx,
respectively. The malleus-incus joint and the incus-stapes joint, which connect the three ossicles
and form the ossicular chain, have been modeled by two pairs of springs and dashpots: K, Cs
and K, Cg, respectively. The malleus (M5) is attached to the TM (M) through K3, C5. The two
major ligaments suspending the malleus and incuse were also modeled as dashpots C, and C,.
Cochlear fluid, M, supported by dashpot Cy and C;,. On the other hand, the stapes is coupled

with the cochlear fluid through the stapedial annulus (Kg and Cg).
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Figure 4.4. Lumped parametric model of a human ear consisting of six masses (M; to M)
suspended by ten dashpots (C; to C;,) and six springs (K;, K,, K3, Ks, K4, Kg) (Feng and
Gan 2004).

The governing equation for the above-mentioned six-mass lumped element model can be written
as
[MI[X] + [C1[X] + [K][X] = [Fe], (4-15)

where [M] is the mass matrix, [C] is the damping matrix, [K] is the stiffness matrix, [X] is the
displacement matrix (6x1) of the six masses, [F,] is the force matrix (6x1) that includes external
forces acting on each masses. [X] and [X] are acceleration and velocity matrices of the system,
respectively. Eq. 4-15 can be rewritten for the case of harmonic excitation at the TM, which is

[X] = [A]ei*t , and (4-16)

[F.] = [Fle*. (4-17)
Therefore, Eq. 4-15 can be rewritten as

{-w?[M] + jo[C] + [K]}[A] = [F] . (4-18)
Figure 4.5 shows the result of this mechanical model calculated for magnitude and phase of

sound-induced motion of the umbo and stapes.
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Figure 4.5. Comparison between predicted displacements at M, and Mg of the lumped
model and the experimental single-point LDV measurement (Feng and Gan 2004).

4.5. Eardrum modeled as a string with distributed force

The eardrum of a guinea-pig has been modeled with a string with distributed force (Goll
and Dalhoff 2011). In contrast to known lumped-element models, the distributed force model of
the eardrum takes the distributed effect of the sound field on the tympanic membrane into
account. The model was adjusted to forward and reverse transfer functions of the guinea-pig
middle ear. They assumed that the TM is a collection of strings that are bounded at the annular
ring, and that the umbo is located at the center of the membrane. On the basis of the radial fiber
structure of the TM, these assumptions led them to a simple 3-wave model that sums a simple
modal pattern of motion with a combination of a backward and forward traveling wave along the
string.

The partial differential equation governing the transversal, time- and space-dependent
displacement z of a homogenous vibrating string can be expressed as (Rawitscher and Liss,

2011; Goll and Dalhoff 2011)

0%2(t,x) 02(t,x) 0%2(t,x) .
! A = 4-19
atz + 6 at u axz f(tl x) ) ( )
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where p is the linear mass density, & is the internal damping factor, u the tension, and f is the
transversal force per unit length. Assuming that the string is driven by a periodic force (e.g.,
f(t, x) = et f(x)) with an angular frequency of w = 2rf, so the complex displacement Z can
be written as the product of a time-dependent and a space-dependent parts

Z(t, x) = e'®tz(x). (4-20)
Therefore, by considering Eq. 4-20, the partial differential Eq. 4-19 can be transformed into an
ordinary differential equation

d?z(x)
dx?

(—pw? +iwd)z(x) — u = f(x) . (4-21)

Eqg. 4-21 is a second-order nonhomogeneous linear differential equation with constant
coefficients; its solution can be written as the sum of the general solution of the related
homogeneous equation and the particular solution. The general solution has been obtained by

solving the characteristic equation, whereas the particular solution was calculated by the method

of variation of parameters.

4.6. Finite Element Method (FEM)

While previous analytical approaches predicted the general behavior of the middle ear
structures for some limited situations, they were not able to model the realistic acousto-
mechanical response in the ear involving complex geometry and an array of material
compositions. The Finite Element (FE) method has distinct advantages over analytical
approaches in modeling complex biological systems. FE models can also predict the detailed
vibrational patterns, stress distributions, and dynamic behaviors at any location in a system,

which is not possible with analytical and lumped models.
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Analysis for sound transmission in the ear involves solid structures (e.g., TM, soft tissues,
bones), acoustics (e.g., air in the ear canal and middle ear cavity), and fluid (cochlear fluid),
which belong to different engineering disciplines and result in different boundary conditions,
element attributes, and model parameters. FE analysis for structure, acoustic, and fluid behavior
is usually carried out independently. However, the ear as a complex system, including the
external ear canal, eardrum, ossicular bones and joints, suspensory ligaments, and middle ear
cavity, requires coupled multi-physics FE analysis.

The first FE model of the ear (for a cat eardrum) was reported in 1978 (Funnell and Laszlo
1978). However, a group of scientists at the University of Oklahoma reported one of the very
first complete FE models of the human middle ear (Sun et al., 2002; Gan et al., 2004). They
reconstructed a CAD model of a human middle ear based on 780 histological sections of one
human temporal bone (left ear of a 61 year-old male). This FE model is shown in Figure 4.6,
where major suspensory ligaments (superior malleus and incus C1, lateral malleus C2, posterior
incus C3, and anterior malleus C4) and two intra-aural muscle tendons (stapedial muscle C5 and
tensor tympani muscle C7) were assumed as elastic constraints with four-noded solid elements.
The contribution of cochlear impedance to acousto-mechanical transmission through the middle
ear has been modeled as a mass block with 10 dashpots attached between the stapes footplate and
fixed bony wall, which represented distributed damping dominant impedance. The value of 20
GQ cochlear impedance applied on 3.2 mm? of stapes footplate was used to calculate the dashpot
damping, which resulted in 10 dashpots with damping coefficient of 0.02 Ns/m each. The TM
has been meshed by three-noded shell elements and the ossicular bones were meshed by four-
noded tetrahedral solid elements. The incudomalleolar joint, incudostapedial joint, and
manubrium that connects the malleus handle to the TM, were meshed by four-noded solid

elements.
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Figure 4.6. Finite element model of the left human middle ear: (a) the model includes the
tympanic membrane, three ossicles (malleus, incus, and stapes), two joints, manubrium,
ligaments, and muscle tendons (C1, C2, C3, C4, C5, C7), tympanic annulus, stapedial
annular ligament, external ear canal, middle ear cavity (transparent); and (b) illustration of
the connection between malleus and eardrum, incudomalleolar joint, incudostapedial joint,
and the eardrum structure (Gan et al., 2004).
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Figure 4.7 shows comparison of the results of the frequency-response motion magnitude of two

different points umbo and stapes, obtained with this FE method and the ones obtained

experimentally.
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Figure 4.7. Comparison of the results of frequency-response predicted by FE method
(thick solid line) with single-point experimental measurements at 10 different bones: (a)
sound-induced motion at the tip of the manubrium, the umbo; and (b) sound-induced
motion at the stapes footplate (Gan et al., 2004).
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Although the model could predict the general sound-induced responses of these two points, due
to the lack of full-field experimental sound-induced motion data, the accuracy of the model

cannot be further judged.

4.7. Kinematics of thin shells

The term shell is applied to bodies bounded by two curved surfaces, where the distance
between the surfaces (thickness) is small compared with other dimensions and its deformations
are not large compared to the thickness (Ventsel and Krauthammer, 2001). The locus of points
that lie at equal distances from these two curved surfaces defines the middle surface of the shell.
A primary difference between a shell structure and a plate structure is that, in the unstressed
state, the shell structure has curvature as opposed to the plate’s structure that is flat. In other
words, a plate may be considered as a special limiting case of a shell that has no curvature, and
consequently, shells are sometimes referred to as curved plates. A shell can be classified as thin

shell if the following condition is satisfied

N
mo =~ 4-22
max (R) =20’ (4-22)

where h and R are the thickness and radius of curvature of the shell, respectively.

Based on the geometrical dimensions of the TM (i.e., approximate thickness of 30-120 um and
radius of 3-5 mm) and small magnitudes of the sound-induced motions relative to its geometrical
dimensions (typical amplitudes of vibration of 50-300 nm depending on the excitation frequency
and sound pressure level), the TM can be approximated as a thin shell (Rosowski et al., 2013;
Khaleghi et al., 2013). The main kinematic assumptions, also known as the Kirchhoff-Love thin-
shell hypothesis, are

1. The thickness of the shell, h is small as compared to other dimensions.
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2. The middle plane of the shell does not go through any deformation. Thus, the middle
plane remains plane after bending deformation. This implies that shear strains €,, and €,,,
can be neglected, where z is the thickness direction.

3. Straight lines perpendicular to the mid-plane remain perpendicular after deformation.

4. The normal strain across the thickness €,, is ignored. Thus the normal stress component

0, 1S neglected as compared to the other stress components.

(a) (b)
Figure 4.8. The lack of change in the normal vector during displacement of a thin-shell.
In-plane displacement components at a distance z from the mid-plane surface along: (a) x-
axis; and (b) y-axis. Mid-plane of the shell is shown with a dashed line. w is the z-axis
displacement of the mid-plane surface.

As shown in Figure 4.8, as a thin shell undergoes deformation, based on Kirchhoff-Love thin-
shell theory, a point at any distance z from the mid-plane will have in-plane deformation
components u and v due to the rotation of the normal vector, which can be expresses as

0
u= —z—W , and (4-23)
0x
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. 4-24
% (4-24)
The components of the three-dimensional Lagrangian Green strain tensor are defined as

_ 1 aui n au] n auk auk 4-25
Cxx = 2 ax] axi axi ax] ' ( ) )

Enforcing the requirement that the plate does not change its thickness during deformation and

assuming negligible higher order terms in Eq. 4-25, the strain tensor components are reduced to

the von Karman strains and can be shown with

2w 1 /0w\°
eox =~ + 3 (5x) (420
2w 1 /0w\°
&y = g7+ (@) , (4-27)
0w 1owow
__ _owow. 4-28
Cxy Zaxay t 2o dy (4-28)

Consequently the stress-strain relationships for the plate under static and plane stress conditions

are,
O-.X'.X' E
o =

Oyxy

1 v 0 ] rxx
v 1 0 Eyy]
’ 4-29
0 0 1—vlléxy (4-29)
where E is the elastic modulus of the shell, and v is the poisson’s ratio. Therefore, considering

the strain terms shown in Eqgs. 4-26, 4-28, 4-27, the stress terms shown in the left-hand side of

EqQ. 4-29 can be expanded to

_E ] 62W+1<6W)2 N 62W+1<6W A\ (4-30)
Jxx—l—vz_ “axz T2 \ox v Zayz 2 ay) |’
E | 2w 1 /0w\° 2w 1 0w\*\]

- W (Y W (Y 4-31

Tyy 1—v2_v< Zax2+2(ax)>+< Zay2+2(6y) >_' (4-31)
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_E 62w+16waw (4-32)
v = 1+v| Poxay " 2ox oyl

4.7.1. Dynamics of Kirchhoff-Love thin shells

In the previous Section, it was assumed that all the external forces are applied slowly, so
that the resulting stresses and deformations are independent of time. In the case of dynamic
loading (i.e., time-dependent external forces or displacements), the governing equations for
dynamics of shells can be obtained by partial differential equations based on Newton’s laws or
by integral equations based on the considerations of virtual work. For an isotropic and
homogeneous shell, the in-plane deformations can be neglected and the dynamic equation of
motion can be reduced to a biharmonic equation with
o*w(x,y,t) *w(x,y,t) 0*w(x,y,t)

axt  fTaxtayr T oyt (4-33)

2w(x,y,t)
ot? ’

=q(x,y,t) + ph

Where p is the mass density of the shell and D is the bending stiffness (also known as flexural
rigidity) of the plate and for a plate with a thickness h

,__ ME (4-34)
12(1—v?)
For free vibration q(x, y, t) is set to zero and Eq. 4-33 becomes

DV?V?w + phw =0 . (4-35)

Therefore, for comprehensive dynamic analyses of thin-shell structures, similar to analyses
of sound-induced motions of mammalian TMs, shape (providing X, y, z, and radii of curvature)
and displacement field of such a shell should be accurately measured. On the other hand, and by

having a closer look at the previously-developed middle ear models and studies, including those
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briefly described in this Chapter, the main assumption that most of them have used (FEM is an
exception) is that the TM has been considered as a lumped (single) element, and therefore, the
spatio-temporal complexity of sound-induced motion, as well as its complex shape have not been
taken into account. Therefore, full-field quantitative measurements of shape and motion of the
TM are required in order to test the accuracy and applicability of these models and shed the light

on the details of the function of the TM.
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5. Existing Methodologies for Otolaryngologist

5.1. Conventional Otoscopy

Otoscopy is an examination that involves looking into the ear with an instrument called an

otoscope. This is performed in order to examine the external auditory canal and the eardrum.

Ear canal -

»  Eardrum

Otoscope

(a) (b)

Figure 5.1. Visual inspection of the outer ear (ear canal and eardrum) by qualitative
otoscopy (a) schematic of the otoscopy by illuminating the light on the surface of the
eardrum; and (b) the physician inspects the ear of a patient qualitatively (adapted from
Healthwise Inc.).

Typical otoscopes can be used to visually and qualitatively examine the outer and middle ear to
assess healthiness of the eardrum and make sure that, for instance, the ear canal is clean or the
TM is not perforated. However, they are unable to quantitatively investigate the shape and

sound-induced motions of the TM.

5.2. Single-point measurements by Laser Doppler Vibrometry (LDV)

The use of Laser Doppler Vibrometry (LDV) for various hearing research applications has
been reported. The applications include, but not limited to, characterizations of the transfer
function of the manubrium and its tip, the umbo (Foth et al., 1996; de La Rochefoucauld and

Olson 2010; Rosowski et al., 2003), vibrations and rotational axis characterization of the
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mammalian ossicles (Decraemer et al., 2014), and the use of a scanning LDV for the
investigations of the human TM motion in the presence of middle ear liquid (Zhang et al., 2014).
Figure 5.2 shows single-point 1D and 3D LDV measurements that have been used for different

medical and research applications.

__Sound Coupler
& Ear Speculum

Figure 5.2. Laser Doppler Vibrometry (LDV) for single-point analyses of middle ear
structures: (a) a typical 1D LDV setup for characterization of the umbo transfer function
(Rosowski et al., 2003); (b) 1D LDV used in a hearing research environment for
characterization of patient’s hearing loss; (c) retro reflective beads on the surface of the
TM in order to enhance the reflection of the laser light source in LDV measurements
(Maftoon et al., 2013); and (d) three-dimensional LDV using three different illumination
directions (Polytec Inc.,).

One of the very first 3D sound-induced motion measurements of the middle ear have been
reported in 1994 (Decraemer et al., 1994). The LDV head was positioned on a 2D goniometer
system enabling variation of the sensitivity vector of the measurements in repetitive

measurements. Figure 5.3a shows the definition of the 3D Cartesian axes X, y, z and the way the
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TM is located in this coordinate system, where the z-axis is along the axis of the ear canal. The
measured components of motions are shown in Figure 5.3b, where generally speaking, the x- and
y-axes motions are smaller than the z-axis motion, but, due to lack of the shape knowledge, it is

hard to judge relative sizes of motion components tangent and normal to the plane of the TM.
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(a) (b)
Figure 5.3. Single-point 3D sound-induced vibrometry of the umbo of a cat eardrum using
1D LDV that is mounted on a positioning system: (a) definition of the x, y, and z-axes with
respect to the estimate of the TM shape; and (b) measured amplitudes of 3D sound-
induced motion of the umbo, along the x, y, and z axes (adapted from Decraemer et al.,
1994).

5.3. Full-field motion measurements

LDV is a great technique, but, can only quantify sound-induced motion of the TM at one
single point. Recently, scanning LDV has been developed (Polytec) to overcome this limitation
by allowing the laser beam to be moved across the surface of interest and scan a series of points
in order to provide a 2D map of the vibration of the membrane. However, for biological samples
with time-varying nature, repeating the experiments for several times at different points is not an
ideal methodology. Therefore, holographic interferometry is preferred, because it has the
sensitivity similar to LDV, yet can simultaneously measure full-field vibrational patterns at

millions of points on the surface of the object (depending on the resolution of the camera).
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5.3.1. Time-averaged Holography

In 1972, Khanna and Tonndorf showed the very first application of time-averaged
holographic interferometry on the study of the vibrational patterns of the cat TMs (Khanna and
Tonndorf 1972). An electromagnetic shutter was used to momentarily expose the plate and the
time-averaged hologram of the vibration of the TM have been produced by illuminating on a
high-resolution photographic plate (Agfa-Gervaert 10E70) with both reference and object beams,
when the object was set in vibrations at the desired frequency and amplitude. Figure 5.4 shows
six time-averaged holograms corresponding to vibrational patterns of a live cat TM stimulated

with six different frequencies.

Figure 5.4. Time-averaged holograms of the vibrational patterns of a live cat TM at
different tonal frequencies: (a) 600 Hz; (b) 950 Hz; (c) 2000 Hz; (d) 2900 Hz; (e) 4000
Hz; and (f) 5000 Hz (adapted from Khanna and Tonndorf 1972).

In 2009, John J. Rosowski and his colleagues at Harvard Medical School and Worcester

Polytechnic Institute developed a computer-assisted time-averaged holographic system for the
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investigations of the sound-induced motion of the surface of the mammalian TMs (Rosowski et
al., 2009). They managed to capture and show time-averaged holograms corresponding to
sound-induced motion of the TMs of different species (human, cat, and chinchilla) at different

tonal frequencies from 400 Hz up to 25 kHz.

Cadaveric Cadaveric Live Cadaveric
Human Chinchilla Chinchilla Cat

e =

‘A i
Anterior) ierior

4 kHz, 106 dB SPL

4kHz, 96 dB SPL

4 kHz, 116 dB SPL

Figure 5.5. Time-averaged holograms measured in four specimens of cadaveric human,
chinchilla, and cat and live chinchilla at three different excitations frequencies (adapted
from Rosowski et al., 2009).

5.3.2. Quantitative 1D Holographic Measurements

Although time-averaged holographic measurements of the TM motions revealed

complexity of TM motion at different tonal frequencies, quantification of these vibrational
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patterns was still challenging. Stroboscopic holographic interferometry was introduced and
applied to quantify sound-induced motion of the TM (Hernandez-Montes et al., 2009; Furlong et
al., 2009; Cheng et al., 2010 and 2013). The optical path length between the TM and the
recording camera is affected by the sound-driven vibrations of the TM, producing time-related
variations in the intensity of the interference pattern at each camera pixel. In stroboscopic
measurements, the camera records holographic images while the object is illuminated by a train
of brief laser pulses that are locked to one of nine phases of the acoustic stimulus. Two
holograms illuminated at different stimulus phases are used to compute the deformation of the
TM between the two phases. Figure 5.6 shows magnitudes and phases of sound-induced motion
of a human TM at four different tonal frequencies, obtained with stroboscopic holographic
interferometry (Cheng et al., 2013).
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Figure 5.6. Magnitudes and phases of sound-induced motion of a human TM at four
different tonal frequencies. The data are normalized by the stimulus sound pressure (units
of um/Pa). The size of each image is 800 x 800 pixels (adapted from Cheng et al., 2013).
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5.4. 3D Shape Measurements

There are different contact and noncontact techniques that can be used to quantify 3D
shape of the objects. In the case of the middle ear, and in particular, for quantifying the 3D

shape of the TM, due to its delicate structure and the space constraints in the ear canal, the most
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ideal technique must be first, noncontact and second, small enough to fit within the ear canal for
in-vivo measurements. Researchers in the field of middle ear have been mainly using moiré
interferometry to measure the shape of the TM (Dirckx and Decraemer 1997, Aernouts and
Dirckx 2011). As shown in Figure 5.7, a grid is projected onto the surface of interest and a
camera, placed at an angle with the projection direction, records the sum of the demodulated grid
and the original one. In this way, a fringe pattern is observed. After averaging out the grid noise

and recording multiple phase-shifted fringe maps, a topographic map is calculated, as shown in

Figure 5.7b.
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Figure 5.7. Application of moiré interferometry for characterization of the shape of a
gerbil TM: (a) schematic drawing of the projection liquid crystal moiré profilometry setup
with LCD projector, lenses (Li,L2,Ls) and a CCD camera. The liquid crystal modulator
(LCM) grids and polarizers allow phase stepping and grid averaging; and (b) moiré
interferogram of a gerbil TM used for characterization of the shape of the TM. To obtain
the interferogram, the difference was taken between the grid line image on a flat plate and
the grid line image on the membrane. The fringes represent contours of equal height, and
demonstrate the conical shape of the membrane. The fringe plane distance, and hence the
height difference per fringe order, is 0.082 mm (adapted from Aernouts and Dirckx 2011;
Dirckx and Decraemer 1997).

However, for in-vivo applications, where the shape of the patient’s TM needs to be
measured through the ear canal, having a moire interferometric system similar to the one shown
in Figure 5.7 is challenging, because of the necessity of triangulation angle in moiré

interferometry, and in general, in structured light profilometry techniques. On the other hand, a
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system with minimum opto-electronic components should be realized in order to avoid any
potential misalignment when approaching to the TM through the ear canal. Therefore, as will be
described in the next Chapter, lensless holographic interferometry is considered as an alternative
methodology for measurements of shape and sound-induced motion of the TM and further

developments are implemented based on these techniques.
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6. Digital Holographic Interferometry

Based on the problem statement given in Chapter 1, Digital Holographic Interferometry (DHI) is
chosen as an appropriate technigue to achieve all the aims, which are full-field measurements of
shape and 3D sound-induced motions of the TM, because
e DHI provides measurements of shape and motion by capturing the entire surface of the
objects using a digital CCD camera
e DHI provides wavelength-dependent measuring resolution (1/60, Vest 1979; Hernandez-
Montes et al., 2009), therefore, nanometer-scale sound-induced motions of the TM can be
captured using appropriate wavelengths (i.e., Ultraviolet and visible light sources) and
CCD detectors
e DHI delivers the temporal resolution required for characterization of acoustically-induced
motion of the TM (i.e., in microsecond regimes), since, the temporal resolution of the
DHI is defined with frame rate and exposure time of the CCD camera, which can go
down to femtoseconds
The holographic process consists of two steps: recording and reconstruction. In the past, silver
halide holographic plates used to be utilized for recording of the holograms (Smith, 1977). As
digital technologies progressed, the conventional silver halide holographic plates have been
replaced with digital cameras in order to avoid the wet chemical processing involved in the
reconstruction of the conventional holography and also to increase the speed and efficiency of
the recording and the reconstruction of the holograms. In this Chapter, principles of
electromagnetic waves, light interference, recording and reconstruction of digital holograms are
described. Furthermore, the use of holographic interferometry for measurements of shape and

deformations of objects are also described.
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6.1. Electromagnetic waves

The primary phenomena in holography are interference and diffraction, which take place
because of the wave nature of light (Kreis 2006). Light can be described as a transverse
electromagnetic wave with time varying electric, E, and magnetic, B, fields. These two fields are
perpendicular to each other and the composed wave of E and B travels in the direction of ExB as

shown in Figure 6.1.
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Figure 6.1. Propagation of electro-magnetic wave in a direction perpendicular to its
electric and magnetic fields.

The propagation of light is described by the wave equation, which is derived from the

Maxwell equations. The wave equation for propagation of light in vacuum is
V2ZE— —— =0, (6-1)

where E is the electrical field strength vector, V is the Laplace operator

a2 9% 02

2 __
v _6x2+6y2+622 ’

(6-2)

where (x, y, z) are the Cartesian spatial coordinates, t denotes the temporal coordinate, time, and
c is the propagation speed of the wave that depends on the refractive index of the propagation

medium and the speed of light, ¢, in vacuum (i.e. ~3x10° m/s).
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The direction of vibration of the light is described by its polarization and it is transverse to the
direction of propagation (Hecht, 1998). The polarization direction could be horizontal, vertical
or in any combination of these. Light waves vibrating in a single plane are called plane polarized
light. For a plane polarized light propagating in the z-direction, Eq. 6-1 could be converted to a
scalar wave equation

0°E  10%E
0z>  c2ot2

(6-3)
The wave field described by the scalar wave equation, Eqg. 6-3, retains its form during
propagation (Hecht 1998). The scalar wave equation is a linear differential equation, thus the
superposition principle is valid. Most practical applications of holography rely on a solution of
the wave equation called the harmonic wave
E(z,t) = Eycos(kz — wt + ¢) , (6-4)
where E| is the real amplitude of the wave, the kz — wt + ¢ term is the phase of the wave, ¢ is

the initial phase offset, k is the wave number and w is the angular frequency of the light wave

2 2
w=2nf=%andk=7n, (6-5)

where f and A are the frequency and corresponding wavelength of the light wave. The wave
number, k, quantifies the fundamental relationship between phase of the harmonic wave and its
spatial and temporal distribution. Using Euler’s formula, the trigonometric functions in Eq. 6-4

can be represented as complex exponentials
1 . 1 . 1 .
E(zt) = EEoel(kz—wt+¢) + EEoe—l(kz—wt+(]5) — EEoel(kz—wt+¢>) ) (6-6)

where the second term of Eq. 6-6 represents the complex conjugate of the first term and it can be
omitted since only the real part of Eq. 6-6 represents the physical light wave. The spatial

distribution of the harmonic wave forms surfaces of constant phase, called wavefronts, which are
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normal to the direction of propagation of the harmonic wave. A wavefront that has constant
phase in all planes orthogonal to the propagation direction for a given time t is called a planar
wave. Analogously, a spherical wavefront is called spherical wave and an arbitrary coordinate
system, the position vector r = (x,y, z) and the wave (propagation) vector k, k = (k. k, k),
can be used to define the harmonic wave by substituting them into Eq. 6-6 to yield (within a
constant)

E(r,t) = Ejelkr—ot+¢) (6-7)

6.2. Light Interference
The basic principle of holographic interferometry is the interference between two or more
coherent light waves when they are superimposed. In order to mathematically describe the
coherent superposition, two linearly polarized waves of the same frequency, emitted by the same
source, with wave vector directions k; and k,, phases ¢; and ¢,, and amplitudes E,; and E,
are considered:
E,(r,t) = Eyel@t-kir+d1) and (6-8)
E,(r,t) = Eyel@t-ker+dz) (6-9)

The superposition of the two waves shown in Egs. 6-8 and 6-9 can be obtained with

E(r,t) = Z E;(r,0) = E.(r,t) + E,(r,t) . (6-10)

The vacuum wavelengths of visible light are in the range of 400 nm (violet) to 800 nm (near IR).
The corresponding frequency range is 750 THz to 380 THz. Therefore, common light sensors,
such as photographic film, photodiodes, and CCDs, are not able to detect such high frequencies

due to the technical and physical reasons (Kreis, 2005; Schnars et al., 2015). The only directly

47



measurable quantity is the intensity that is proportional to the average of the square of the

electrical field and can be obtained with

1 1
I = §€OHC|E|2 = EeoncEE* ) (6-11)

where g, is the vacuum permittivity, c is the light speed, and n is the refractive index of the
medium. In practice, only the proportionality of the intensity, I, to the electric field strength,
|E|?, is considered, i.e., I~|E|?, which can be written as
I(r,t)=|E|?=EE* = (E; + E;)(E, + Ey)*, (6-12)
where * denotes the complex conjugate. Substituting Eq. 6-10 into 6-12 results in
I(r,t) = [E01ei(wt—k1-r+¢1) + Eozei(wt—kz-r+¢2)]
(6-13)
v [E01e—i(wt—k1-r+¢1) n Eoze—i(wt—kz-r+¢2)] _
The exponential terms with temporal variables cancel out each other and Eq. 6-13 can be
simplified to
I(r,t) = E3, + EZ; + Eg1 Egp[ef1T= ke mt81=02) 4 o=illa =k rtd1=92)] | (6-14)
which can be further simplified to
I(r,t) = E3, + E3, + Eg1Egy cos(K -1 + @), (6-15)
where K = ky — k, and ¢ = ¢, — ¢p,. Equation 6-15 can be written in terms of intensities of
the two waves
Ir) =1 + I, + 2|/l 1, cos(K -7 + ¢) . (6-16)
Therefore, the resulting interference pattern between two waves of equal frequency does not

depend on the temporal variation of their electromagnetic field (Kreis, 2005).
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6.3. Holographic recording and reconstruction

Holograms are usually recorded with an optical set-up consisting of a light source (e.g. a
laser), beam guiding components (e.g., mirrors and lenses) and a recording device (e.g. a
hologram plate). Figure 6.2 shows the two main steps of holographic process, which are
Recording and Reconstruction. In the recording step, principles of interferometry can be used to
record the wavefronts scattered off the surface of an object at a specified time. In the recording
step, as shown in Figure 6.2a, light with sufficient coherence length (Kreis, 2005) is split into
two waves Reference and Object by a beamsplitter (BS). One wave, called the object wave,
illuminates the object and is then scattered and reflected to the recording medium, e.g., a
photographic plate or a camera sensor. The second wave, called the reference wave, illuminates

the sensor directly.

b
(a)| Laser l_‘_\*%] ( )| Laser l_‘;*{u — Laser
-=- Object beam
M2 | .| BS M2 /“{: """""" BS ... Reference beam
Llﬂ L2 Q;/Mj LI 5
— a9 N =
Object Hologram Virtual image Hologram  Qpserver

Figure 6.2. Principles of recording and reconstruction of holograms: (a) the hologram is
illuminated with both reference and object beams; and (b) the hologram is illuminated
with only the reference beam during holographic reconstruction. In the figure, M is
mirror; L is lens; BS is beam splitter; and S is shutter (Dobrev, 2014).

In this case, the reference and object waves can be described with
0(x,y) = o(x, y)etlPo@] and (6-17)
R(x,y) = r(x,y)ellerenl, (6-18)
where o and ¢, are the amplitude and phase of the complex object wave and r and ¢, are the

amplitude and phase of the complex reference wave. The interference between the two waves at
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the plane of the sensor (hologram plate) is recorded by the holographic plate. Similar to

Eq. 6-12, the intensity, I1(x, y), of the complex field of the hologram can be expressed as
I(x,y) =10(x,y) + R(x, )12 = I,(x, ) + I (x, y)

+ 2\/ Io (x, y)IT(x’ y) COS[A¢(X' y)] ’

where I,(x, y) and L.(x, y) are the intensities of the two waves at the hologram plane, and A¢ is

(6-19)

the phase difference between the two waves. The recorded holographic wavefront, h(x,y), at
the sensor is proportional to I(x, y)

h(x,y) = ho(x,¥) + Btm [(x,¥) = Bt I(x,y), (6-20)
where £ is a constant related to the light sensitivity of the sensor (holographic plate or camera
sensor), t,, is the exposure time (measurement time), and h, represents the read-out noise (or
amplitude transmission of the unexposed plate) of the sensor and it will be neglected in further
descriptions of the holographic recording process.

During the reconstruction step, as shown in Figure 6.2b, the object beam is typically turned off
(by a shutter) and the hologram is illuminated with the reference beam only. This produces a
virtual image of the original object that can be observed by a viewer through the holographic
plate. The reconstruction process can be mathematically described as a multiplication between
the hologram and the reconstruction (reference) wave. Based on Egs. 6-19 and 6-20, the
reconstructed hologram, U, at the recording plane can be expressed as

U= h*R = Bty[(r?+ 0*)R + 1?0 + R?0"] , (6-21)

where the spatial dependence, (x,y), of all variables has been omitted for brevity. The first term
represents undiffracted wave, also called zero diffraction order, which does not have any
information about the phase of the object wave. The second term is the reconstructed object

wave that forms an image at the object plane that can be observed through the recording media,
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as shown in Figure 6.2b, assuming a holographic plate was used. The third term produces an

out-of-focus real image of the object.

6.4. Fresnel-Kirchhoff Diffraction Theory

During the process of holographic reconstruction, the reconstruction (reference) wave is
diffracted by the aperture of the hologram and it produces a diffraction pattern at the image
plane. Figure 6.3 illustrates the coordinate systems where (x, y) are Cartesian coordinates in the
hologram plane, (&, n) are Cartesian coordinates in the image plane, z is the Cartesian coordinate

along the surface normal of the hologram plane in the direction of the image plane.

4 y + 1

__//X //E
—

_—
Reference
beam / r / /
B
/ Hologram / Image
’ Plane d

plane

Figure 6.3. Schematics of the coordinate system nomenclature for lensless digital
numerical reconstruction (Kreis, 2005).

During numerical reconstruction, the propagating wavefronts can be modeled by the

Fresnel-Kirchhoff diffraction formula (Schnars et al., 2015) that is
2T
—lTT

r¢nz) = %Hm h(x, )R (X, y) —cos 6 dxdy, (6-22)
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where cos8 = z/r , I'(¢,n, z) is the reconstructed hologram, and r is the distance between any

two points on the hologram and image planes, as shown in Figure 6.3, and is defined as

r=\/(x—f)2+(y—n)2+zz . (6-23)

6.5. Numerical reconstruction By the Fresnel Transform

Fresnel-Kirchhoff diffraction formula shown in Eq. 6-22 is computationally expensive and
for practical applications of the Fresnel transformation, several assumptions should be made in
order to simplify and optimize this equation. It can be assumed that the distance between the
hologram and the image plane is large compared to the lateral size of the hologram and the
image (Kolenovic, et al., 2004; Kreis et al., 2005; Schnar et al., 2015). This means that r in the
denominator of the integral shown given in Eq. 6-22 can be replaced by z. However, since r is
typically in the centimeter to meter range and A is in the sub-micron range, slight variations of r
in the exponential term may lead to significant phase errors. Thus, an approximation of r is
required in order to simplify the exponential term. This leads to the Fresnel approximation that

relies on the binomial expansion of Eq. 6-23 using a Taylor series to approximate r with

@-9* G-m® 1[G-O°+G-m*° (6-24)

r=d+—0g 2d 8 PE

The Fresnel approximation is valid as long as the quadratic term in the binomial expansion series

(i.e., the forth term in Eq. 6-24) leads to a phase changes « 1 radian, which means

a3 -+ 5= )T (6-25)

Equation 6-25 defines the near field region, where the Fresnel approximation can be applied.

Therefore, Eq. 6-24 can be simplified to
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x—=8? —-n)? )
d+—F—+ . (6-26)

Assuming that the requirements stated by Eqs. 6-25 and 6-26 are met, the Fresnel approximation,
Eq. 6-26, can be applied to the exponential term of Eq. 6-22 as follows

21

i
r¢énz = 14 &P [—de

(6-27)
« T
x [ nGuyy exp[=ins (G- £ + 0 = )] dxdy.
If the multiplication term in the argument of the exponential under the integral is carried out,

then Eq. 6-27 can be written as

r¢nz = ﬁexp [—i%nd] exp [—i%(fz + nz)] X ffjooo h(x,y)exp [—i%(x2 +
(6-28)
yz)] exp [ii—z (x¢ + yn)] dxdy .

This equation is known as Fresnel Transformation, which enables reconstruction of the
wavefield in a plane (plane of the real image) behind the hologram.

To digitize the Fresnel Transform shown in Eq. 6-28, the substitutions u = £ /Ad and v = n/Ad
are introduced and Eg. 6-28 can be modified to

i 2m . ) )
I'(u,v) = 4P [—le] exp[—imAd(u” + v*)]

(6-29)
X Jf_w h(x,y)exp [—i % (x? + yz)] exp[i2n(xu + yv)] dxdy .

Aside from a constant intensity and quadratic phase factors preceding the integral, Eq. 6-29 is the

two-dimensional inverse Fourier Transform of the product of the hologram function, h(x,y),
with a 2D chirp function exp [—i%(x2 +y2)]. In practical applications with recordings of

diffuse (optically rough) objects, the constant intensity and phase factors preceding the double-
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integrals of Eq. 6-29 can be omitted since only the phase change and not the absolute phase of

the object field is of importance, therefore Eq. 6-29 can be expressed as (Kreis, 2005)

r(u,v) = IFFT2 [h(x,y) e‘%["z*«“z]] . (6-30)

6.5.1. Discrete Fresnel transformation

The function I" (u, v) shown in Eq. 6-30 can be digitized if the hologram function, h(x,y),
is sampled on a rectangular sensor array with M x N pixels and a pixel pitch of Ax and Ay.
According to Fourier Transform procedures, Au and Av can be written in terms of the pixel sizes
Ax, Ay with

1 1

AuzM—Ax , AU:N—Ay.

(6-31)

Therefore, the horizontal and vertical resolution of the reconstructed hologram, A¢ and An

(i.e., the pixel size in the image plane) can be obtained with

1 dA
- " 6-32
as MAu MAx'’ ( )
1 da
M = S = Wy (6-33)

Therefore, the discrete form of Eq. 6-29 can be mathematically expressed as the Fast
Fourier Transformation (FFT) of
r(m,n,d) = IFFT2[h(k, DR(k, Dy (k, L, d)] , (6-34)
where IFFT2 is the discrete 2D Inverse Fast Fourier Transform (FFT), h(k, 1) is the discretized
hologram recorded by the sensor, R(k,l) is discrete numerical model of the reconstruction
(reference) wave, and Y(k,[l,d) is the discrete chirp function used for reconstruction at a

position z away (behind the sensor) from the hologram plane
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—1

d [k2Ax? + 12Ay?]] . (6-35)

Y(k,1,d) = exp

Equation 6-34 allows for numerical reconstruction of a digitally recorded hologram. Adjustment
of the reconstruction distance, d, during the numerical reconstruction process, allows focusing at
a user defined imaging plane, thus allowing free-focusing capabilities after the recording of the
hologram (Schnars and Juptner 2002; Kreis 2005). The intensity and optical phase of the
numerically-reconstructed hologram can be respectively obtained with

I(m,n) = [F'(m,n)|? ,and (6-36)

3[r(m,n,d)]

R[F(m,n,d)]’ (6-37)

@(m,n) = atan2

where 3 and R denotes the imaginary and real parts. In order to avoid the [—-m/2,7/2]
ambiguity of the tan~! function, the computationally efficient atan2 function is utilized,
allowing for quantification of the phase within the full [—m, ] range. Furthermore, the
mathematical nature of atan2 function leads to sudden jumps in the optical phase data from —x to
7 and vice versa and these discontinuities should be removed in the phase unwrapping post-

processing step (Herréez et al., 2002; Karasev et al., 2007; Pham et al., 2010).

6.6. 3D Displacements measurements

Digital holography allows for quantification of the deformation of an object, by comparing
holograms of the object before and after deformation. The holograms are individually
reconstructed using Eq. 6-34 and the Fringe-locus function of a double-exposure (DE) hologram,
i.e., the unwrapped optical phase difference of two reconstructed holograms corresponding to
deformed and reference states of the object, is used to obtain the 3D displacement with

21
Q(m,n) = unwrap((pdef - q)ref) = Tks -d(m,n), (6-38)
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where Q(m,n) is the fringe-locus function at coordinates m and n in the reconstruction plane,
@aer and @, are optical phases of the reconstructed holograms recorded at deformed and
reference states of the object, respectively, ks(K., K, K) is the sensitivity vector, defined by
vectorial subtraction of the observation vector from the illumination vectors, and d(m,n) is the
displacement vector with three components of d,, d,,, and d,. Assuming a coordinate system as
given in Figure 6.4, the directions of observation and illumination vectors are described by unit
vectors k, and k;. Based on this geometrical setup, the resulting sensitivity vector is defined as
ks, = k, — k; (Vest, 1979). The sensitivity vector, kg, indicates the direction of the component
of the displacement field vector, d(x, y, z), of the object’s surface, which the holographic system
is sensitive to. In other words, at each object point the holographic system measures the

projection of the displacement vector, d, onto the sensitivity vector, k.

A [lumination
X k i .
i point

ko= k,—k;

Observation

Object Hologram point

Figure 6.4. Geometrical definition of the sensitivity vector that is the vectorial subtraction
of the observation vector from the illumination vector (Pryputniewicz et al., 1990).

In order to measure all three components of the displacement vector, d, shown in Eq. 6-38,
at least three independent measurements with different sensitivity vectors are required. In our
approach, and to minimize experimental errors, optical phase maps are obtained with four
sensitivity vectors to form an over determined system of equations that is solved with the least-

squares error minimization method with
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-1
{d} = [[SI"[S]] {[SI"{Q}}, (6-39)
where [S] is the sensitivity matrix containing all the sensitivity vectors K;, and {Q} is the fringe-
locus function vector. In this method, all the sensitivity vectors need to be as linearly

independent as possible for the system to provide accurate results. Therefore, the condition

number, C, of the square matrix, [F] = [S]7[S], characterizing the geometry of a holographic
setup is calculated with (Osten, 1985)

/1max (F)

C(s) = K

(6-40)

where Apqx, and A, are the maximum and the minimum eigenvalues of [F]. A condition
number close to one indicates a well-conditioned matrix, but this represents a holographic setup
with large angles of illumination (Vest, 1979; Osten, 1985; Furlong, 1999). However, in our
application and because of the particular cone-like geometry of the TM and the presence of the
bony structures around it, the maximum possible angles of illumination are limited. Therefore, a
holographic setup has to be arranged to achieve the largest angles of illumination within the

constraints imposed by the geometry of the TM.

6.7. 3D Shape measurements with Holographic Interferometry

Contouring in general means the modulation of the image of a 3D object by fringes
corresponding to contours of constant phases (Kreis 2005). In holographic contouring, the
shape-related fringe pattern arises from the superposition of two holograms recorded and
reconstructed at two states with different sensitivity vectors, which relates the geometric shape of
an object to the measured optical phases. The sensitivity vector in holographic interferometry
contains three variables, wavelength, refractive index, and illumination and observation

directions (Vest 1985, Li 2009). Therefore, the differences in the two states are either due to
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change in the refractive indexes (Zelenka and Varner 1969; Hung et al., 1978; Chen et al., 2000),
the change in the positions of the illumination directions (Joenathan et al., 1990; Zou et al., 1992;
Pedrini et al., 1999; Furlong 1999), or the changes in the applied wavelengths (Polhemus 1973;
Furlong 2000; Wagner et al., 2000; Yamaguchi et al., 2006). The other technique for shape
measurements is time-of-flight method, which is based on the direct measurement of the time of
flight of a laser pulse (Makynen et al., 1994; Cui et al., 2010). During measurements, an object
pulse is reflected back to the receiving sensor and a reference pulse is passed through an optical
fiber and received by the sensor. The time difference between the two pulses is converted to

distance. The main three approaches for holographic contouring are described below.

6.7.1. Two-refractive Index holographic contouring

In this technique, the object is located in an immersion cell containing a specific liquid. By
changing the refractive index of the fluid around the object between the two exposures of the
hologram, interference fringes are produced (Zelenka and Varner 1969; Hung et al., 1978). Two
holograms are captured at two different refractive indices and the phase difference between the

two states is related to the shape of the object, Z(x, y), with

A (1 = ¢2)

2n(n, — ny) (6-41)

Z(x,y) = = Ad(x,y)

2nm(ng —ny)
where n, and n, are the two refractive indices of the fluid surrounding the object during each of

the two exposures, and A¢ is the phase difference.

6.7.2. Multiple illumination directions holographic contouring

The second shape measurement techniques can be achieved by changing the illumination
direction between the two exposures of the hologram. A change in the illumination beam

produces a change in the phase of the wavefront which depends on the object shape (Pedrini et
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al., 1999; Furlong 1999). The change in the illumination direction can be achieved by translating
the illumination point from one to another. The phase difference between the two states can be

obtained with
A6 A6 A6 A6
AP(x,y) = 2k sin—-x cos [9 + 7] — 2k sin—-h(x,y) sin [9 + 7] , (6-42)

where h(x,y) is the object height, and A8 is the angle change between the two illuminations.

6.7.3. Dual-wavelength holographic contouring

Fringe pattern corresponding to the shape of an object can be generated by phase
measurements of the object using an interferometer with a wavelength 1. However, these shape
measurements are limited to geometries with heights of less than a few wavelengths, e.g., for
geometries with heights less than 20 um for a wavelength of 780 nm. In order to extend the
shape measuring range, a dual-wavelength holographic contouring technique is developed and
implemented, in which the height measurements are performed based on a beating frequency
between the two wavelengths (Seebacher et al., 1998; Furlong and Pryputniewicz 2000). In this
case, first, the complex amplitude of the object of interest is recorded and reconstructed with
wavelength of A;. Then, the wavelength is tuned to a new value of 1, and the complex
amplitude of the object is recorded and reconstructed with wavelength of 1,. The optical phases
obtained with the two wavelengths are subtracted from one another in order to obtain a fringe

pattern corresponding to the shape of the object with

Q= L S ('12_'11)01314—2 OPL (6-43)
=¢1= ¢y =2mg- 2o = 2| AT

where OPL is the optical pathlength of the laser light. It has been mathematically shown

(Polhemus 1973) that the dual-wavelength contouring technique generates the same fringe
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pattern as if the shape measurements would have been interferometrically performed with a

A1y

synthetic wavelength of A that is equal to A = TRwik
1—42

In parallel illumination-observation

configurations, the contour depth is equal to half the synthetic wavelength (Az = A/2) and

therefore, the height at each point on the surface of the object can be calculated with

26) = 10, (6-44)

One of the prominent advantages of this holographic contouring technique is that the
measuring sensitivity can be adjusted by controlling the differences between the first and second
wavelengths. As shown in Figure 6.5, larger wavelength differences, AA = A, — 44, provide

smaller contour depth, which in turn, enables better shape measuring resolutions.

A=780nm

Contour Depth
(m)
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Figure 6.5. Adjusting the measuring sensitivity range in dual-wavelength holographic

contouring by controlling the differences between the first and second wavelengths

ALl = A, — A;: (2) broad changes in the wavelengths (in this case up to 100 nm) leads to

fine contour depths A/2 = 5 um and in turn, a better shape measurement resolution; and

(b) narrow changes in the wavelength (in this case up to 1 nm) leads to larger contour

depths A/2 =~ 0.5 mm and hence, lower measuring sensitivity. The results are shown for

four different central wavelengths 473, 532, 632, and 780 nm.

6.8. Applications of Holographic Interferometry in Hearing Research

Study of the sound-induced vibrational patterns of different mammalian TMs has been an
ongoing area of interest for many researchers. Previous studies on the applications of

holographic interferometry for the study of the middle ear can be divided into three main
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categories: qualitative investigations of the sound-induced vibrational patterns of the TM using
conventional time-averaged and double exposure holography (Khanna and Tonndorf 1972; von
Bally 1978; Uyemura et al., 1979; von Bally and Greguss 1982; Ogura et al., 1979 and 1983);
quantitative one-dimensional measurements of sound-induced motions of the TMs (Wada et al.,
2002; Rosowski et al., 2009; Cheng et al., 2010; Chang et al., 2013; Cheng et al., 2013; Dobrev
et al., 2014); and measurements of 3D shapes of the TMs (Decraemer et al., 1991; Solis et al.,
2012).

One of the main goals of this Dissertation is to realize a clinically-applicable integrated
holographic system capable of full-field qualitative and quantitative measurements of shape, and
3D sound-induced motions of the TMs. The main challenge along the way is that a broad
measuring range is indispensable for such a holographic system to cover both shape (i.e., in the
millimeter range) and 3D sound-induced motions (i.e., in the nanometer range). Therefore, a
clinically-applicable holographic system with a measuring range spanning nearly six orders of
magnitude needs to be realized. Furthermore, the system should be capable of being

miniaturized and packaged to be used in the clinics and for in-vivo applications.
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PART 2: Developments
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General Overview

In this Part, developments and contributions towards expanding the capabilities of the previous
state-of-the-art technologies are described by realizing metrological imaging modalities to
improve the knowledge and understanding about shape and function of the mammalian TMs.
The developments have been organized in several consecutive publications that incrementally

describe advancements leading to innovative tools for the study of the middle ear mechanics.

Chapter 7 describes developments and applications of a holographic system that is used
to estimate 3D sound-induced displacements of TM by combining shape information and 1D
components of displacement. Shape and displacement measurements are carried out with a
lensless dual-wavelength digital holographic system with shape measured in two-wavelength
mode and 1D displacements measured in single wavelength mode. The assumptions we used in
the computation of the 3-Dimensional sound-induced motions from measured shape and 1D-
displacments are based on considering the TM as a thin-shell, where sound-induced
displacement vectors at each point on the surface of the TM are hypothesized to be along the
normal vectors of its shape. This approach is tested and verified using FEM models and then,
the system is used to measure shape and 1D motion, and in turn, to estimate all 3D sound-

induced motions of the TM at several tonal excitation frequencies.

Chapter 8 describes the use of thin-shell hypothesis on a chinchilla TM sample at several
tonal frequencies. The measurement of shape and its application to realize thin-shell hypothesis
enable to separate the measured motions into those components orthogonal to the plane of the

tympanic ring, and those components within the plane of the tympanic ring. The predicted
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in-plane motion components (x- and y-axis motions) are generally smaller than the motions
normal to the plane of the tympanic ring (z-axis motion), and the tangential motions are assumed
to be negligible. The needs for true measurements of 3D sound-induced motions of the TMs are

also highlighted.

Chapter 9 describes developments of a three-dimensional holographic system capable to
near-simultaneously measure shape and three-dimensional sound-induced motion of the TM. 3D
components of sound-induced displacements of the TM are measured with the method of
multiple illumination directions in holographic interferometry using a series of repetitive
stroboscopic measurements for each sensitivity vectors. To accurately obtain sensitivity vectors,
a new technique is developed and used in which the sensitivity vectors are obtained from the
images of a specular sphere that is being illuminated from different directions. Shape and 3D
acoustically-induced displacement components of cadaveric human TMs at several excitation

frequencies are measured at more than one million points on its surface.

The physiological applications of the developed holographic system are described in
Chapter 10, where, the system is used to quantify shapes and 4-Dimensional sound-induced
motions (in space (X, y, z) and time (t)) of multiple TM samples at several tonal frequencies. The
results obtained from the shape measurements are combined with 3D components of
displacements in order to obtain motion components tangent (in-plane) and normal (out-of-
plane) to the local plane of the TM. The results support thin-shell hypothesis of the TMs, in
which the tangential motion components are negligible and the motion vectors are hypothesized

to be mainly along the normal vector of the surface of the membrane.
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Due to the time-varying nature of biological tissues like the TM, a novel method for 3D
deformation measurements based on multiplexed holography is described in Chapter 11, which
allows for simultaneous holographic measurements along multiple sensitivity vectors. The
developed methodology is a critical step forward towards in-vivo measurements of 3D TM
motions. The holograms of the objects of interest are recorded with three simultaneous
incoherently-superimposed pairs of reference and object beams, such that the modulation image
corresponding to each illumination direction is reconstructed at a different position of the image.
An image registration algorithm based on the shift theorem of the Fourier Transform is
implemented to register the images. The time needed for a given 3D motion measurement is
decreased at least threefold. We demonstrate that the present method is a valid alternative to
repetitive holographic methods and offers promising perspectives towards accurate 3D

deformation measurements of biological specimens for in-vivo applications.

To further expand our knowledge on the dynamics of sound-induced energy transfer
through the middle ear, measurements of sound-induced forces are also required. Force sensing
techniques are usually invasive and due to the viscoelastic properties of the TM, any interaction
between the probe and the TM may result in modification of its mechanics. In chapter 12, efforts
to measure sound-induced forces of the TM using minimally-invasive sensing methodologies are
described. The methodologies consist of integrating MEMS-based sensors with the developed
holographic systems for simultaneous characterizations of kinematics and dynamics of the TM.
The MEMS-based force sensors have sub-micro-Newton resolution and are capable of
measurements along a single axis on a localized area of the sample on the order of 50x50 pm?.
A computer-controlled 3D nano-positioner automatically places and scans the force sensor at

several locations on the TM that are critical for the transfer of energy from the outer ear to the
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inner ear. These developments are enabling new approaches for quantitative investigations of

middle ear mechanics.
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7. Paper A: Digital holographic measurements of shape
and three-dimensional sound-induced displacements of
tympanic membrane

Overview

This paper, published in Optical Engineering in 2013, describes the development of a single
holographic system capable of measurements of shape and sound-induced motions of the
mammalian tympanic membranes. The Shapes of the mammalian TMs are in millimeters range,
whereas sound-induced motions of such membranes are in nanometers range. It is truly
challenging to find one single imaging system with resolutions spanning six orders of magnitude
from millimeter (for shape measurements) to nanometer (for sound-induced motion
measurements), but we have developed a holographic system capable of near-simultaneous
measurements of shape and acoustically-induced motion of the TMs. Conventional methods for
3D motion measurements require data from at least three different sensitivity vectors, which, due
to space constraints, is challenging for measurements of the sound-induced motions of
mammalian ear drums. Based on geometrical similarities of mammalian TMs with those of thin-
shells, Kirchhoff-Love’s thin-shell theory is applied to the case of mammalian TMs in order to
estimate three-dimensional sound-induced motions from shape and motion measurements
obtained along only one single sensitivity vector. Therefore, the sound-induced kinematics of
mammalian TMs are hypothesize to be similar to those of thin-shells, where the sound-induced
motion vector is along the vector normal to the local surface and motion components tangent to
the surface of the TM are negligible. The applicability of this thin-shell hypothesis is tested and
verified using Finite Element Methods and an implementation of the method using real

chinchilla’s TM samples is presented.
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7.1. Shape measuring approach

There are several techniques for holographic measurements of 3D shape of the objects.
However, delicate structure and space constraints within the human ear restrict the use of some
of those techniques. For instance, the shape measuring technique based on inducing a change in
the refractive index of the medium is not applicable for measurements of mammalian TMs, since
the object needs to be located within a medium with a refractive index that can be tuned, e.g., the
TM would be submerged in water, which is an undesirable method. Another shape measuring
technique, holographic contouring by changing the illumination direction, is also challenging for
measurements of TMs’ shapes, because, for instance in humans, the TM is located at the end of a
curved canal with a length of 3 centimeter and a diameter of 8 millimeter, and changing the
illumination direction in such a restricted area is difficult. Therefore, for TM shape
measurements, and considering the metrological challenges, dual-wavelength holographic
contouring technique are developed. The dual-wavelength capability can be embedded into an
optical fiber-based configuration capable of measurements of both, shape and motions.

Furthermore, the system can be miniaturized and packaged for clinical and in-vivo applications.

7.2. TM as a thin-shell

Figure 7.1 shows an example of the shape of a mammalian TM modeled as a thin-shell
(Rosowski et al., 2013; Khaleghi et al., 2013). For each differential TM element, shown in
Figure 7.1b, a curvilinear coordinate system (a,f,n)can be defined and corresponding

components of displacement, d, dg, and d,,, are expressed as
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de(a,B,m) = dg(a,B) +1

dﬂ(aug'n) = dg(d,ﬁ) +n
dy(a, B, 1) = dy(a, )

where d9, d,?, and d?, are tangential and normal components of displacements of the neutral

plane.

TM element

Neutral ;;lalle
(b)
Figure 7.1. Thin-shell modeling of a TM: (a) measured shape of a chinchilla TM
(Khaleghi et al., 2013); and (b) schematic of curvilinear coordinate system (a, ,1) on a
TM element with a thickness t. Tangential components of the neutral plane, d% and dg,
are negligible.

Based on thin-shell assumptions (Chen et al., 1987; Love, 1888), straight lines, initially
normal to the neutral plane, remain straight and normal to it after deformation and the length of
such element is not altered. The lack of change in the direction of the normals to the neutral
plane during deformation leads to negligible out-of-plane shear strains yq, and yg,.
Furthermore, considering the relatively small magnitudes of sound-induced motion of the TM
(100-300 nm) compared to its thickness (50-150 wm), the gradient terms, shown in the tangential
components of Eq. 7-1, are assumed to be negligible and in turn, the neutral plane is assumed to

remain unstrained after deformation, resulting in d2, and d,? being zero. The second assumption,

that is the constant thickness of the shell during the deformation process, results in negligible
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normal strain, €,,. Therefore, based on Eq. 7-1, the displacement vector on the TM element
remains, mainly, out-of-plane, which is along the normal vector of the surface. This
displacement vector, then, can be decomposed along three axes X, y, z, providing 3D components
of displacement. Using these thin-shell assumptions, it is possible to obtain 3D components of
displacement of the TM by having displacement’s component along only a single axis (e.g. ear
canal axis), and combining it with components of the normal vectors of the shape. Therefore,
principal components of displacementd,, d,, and d, at every point on the surface of the
membrane along Cartesian axes X, y, and z, can be obtained by decomposition of the

displacement vector along the normal vector’s components n (n,, ny, n,) with

|d, |
d, =n,—— ,and 7-2
X nx |nZ| an ( )
|d,|
dy = ny |nz| ' (7'3)

By using this approach, complexity in the 3D displacement measurements, that requires
acquiring displacements data from at least three independent directions, will be bypassed by

measuring the shape and 1D displacement, both measured from a single axis.
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Figure 7.2. Application of thin-shell theory to recover three-dimensional motion
components from shape and only 1D motion measurements: (a) shape of the TM to
determine surface normal vectors; (b) 1D sound-induced motion measurements of the TM
through lateral axis (z-axis); (c), (d), and (e) are recovered x- and y-axes, and measured z-
axis sound-induced motion, superimposed on the shape of the TM, respectively. The TM
was subjected to tonal frequency of 5,730 Hz at the sound pressure level of 101 dB SPL.
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1 Introduction

Abstract. Acoustically induced vibrations of the tympanic membrane (TM)
play a primary role in the hearing process, in that these motions are the
initial mechanical response of the ear to airborne sound. Characterization
of the shape and three-dimensional (3-D) displacement patterns of the TM
is a crucial step to a better understanding of the complicated mechanics of
sound reception by the ear. Sound-induced 3-D displacements of the TM
are estimated from shape and one-dimensional displacements measured
in cadaveric chinchillas using a lensless dual-wavelength digital hologra-
phy system (DWDHS). The DWDHS consists of laser delivery, optical
head, and computing platform subsystems. Shape measurements are per-
formed in double-exposure mode with the use of two wavelengths of a
tunable laser, while nanometer-scale displacements are measured
along a single sensitivity direction with a constant wavelength. Taking
into consideration the geometrical and dimensional constrains imposed
by the anatomy of the TM, we combine principles of thin-shell theory
together with displacement measurements along a single sensitivity vector
and TM surface shape to extract the three principal components of dis-
placement in the full-field-of-view. We test, validate, and identify limitations
of this approach via the application of finite element method to artificial
geometries. © The Authors. Published by SPIE under a Creative Commons Attribution
3.0 Unported License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including jts DOI. [DOI: 10.1117/1.0E.52.10.101916]

Subject terms: digital holography; middle-ear mechanics; shape and three-
dimensional displacement measurements; sound-induced response; thin-shell
theory; tympanic membrane.
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function is not fully understood. Current methodologies
for characterization of TM function in the laboratory and

The tympanic membrane (TM) is an essential part of the ter-
restrial vertebrate middle ear. Its function as an acousto-
mechanical transformer greatly increases the sensitivity of
the ear to sound.' Despite the importance of the TM, the
relationship between its structure and its sound-reception

clinic have limitations: time-averaged holography is qualita-
tive rather than quantitative, laser-Doppler vibrometry is
usually limited to single-point (or a series of single-point)
measurements of mobility, and most measurement techniques
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only measure displacements along a single direction.
Furthermore, none of the current clinical tools for diagnosis
of hearing losses measure the shape of the TM and the ques-
tion of how shape affects function is an open question.?

The shape of the TM has been measured by different opti-
cal techniques (e.g., Moiré interferometry®*° and fringe pro-
jection®). However, the temporal resolution and sensitivity of
such three-dimensional (3-D) shape measurements are usu-
ally not sufficient to accurately measure the sound-induced
motions of the TM. The lack of an accurate tool for simul-
taneous measurements of shape and 3-D vibrations of the
TM is problematic. Conventional methods to measure the
full-field 3-D displacements of the TM need at least three
illumination or observation directions to realize three sensi-
tivity vectors.”® In this paper, a new technique is proposed to
determine the full-field 3-D displacement components of the
TM based on its shape and one-dimensional (1-D) displace-
ment measurements.>® The shape of the TM is measured by a
lensless dual-wavelength digital holography system (DWDHS)
that uses a tunable near-infrared laser. Concurrently, 1-D dis-
placement measurements of acoustically induced motion of
the TM are obtained by stroboscopic holography with a sin-
gle laser wavelength and parallel illumination-observation
recording geometry. Decomposing the shape’s normal vector
at each point on the surface of the TM into three orthogonal
axes, combining the shape information with the 1-D dis-
placement at each point on the surface of the TM, and taking
advantage of thin-shell theory principles allow estimation of
the full 3-D displacement at each point on the surface of the
TM. Therefore, a single, compact otoscope system could
determine both the shape and 3-D acoustically induced dis-
placement components of the TM.

2 Theoretical Considerations

2.1 TM as a Thin-Shell

The shape, planar dimensions, and thickness of the TM vary
among various vertebrate species.'” For human TM, Uebo
et al.'' measured mean thickness values between 50 and
150 pm in several TMs of humans of different ages. Ruah
et al.'” measured thicknesses at different regions of several
TMs of humans aged between two days and 91 years. In
adults the thickness varied between individuals and within
regions: the pars flaccida varied from 80 to 600 um, the post-
erosuperior pars tensa from 100 to 500 gm, posteroinferior
tensa from 20 to 200 pm, anterosuperior tensa from 50 to
340 pm, anteroinferior tensa from 30 to 430 pm, and the
umbo from 820 to 1700 um. Decraemer and Funnell'® mea-
sured the thickness of the TM of three different species,
including cats, gerbils, and humans, by confocal microscopy.
For cats, the measured thickness was 12.5 to 60 um; for ger-
bils, 7 to 70 um; and for humans, 115 to 145 um. Aernouts
et al."® measured the thickness of the human TM by confocal
microscopy and found variations between 97 and 110 pm.

Can we think of the TM as a thin-shell? Novozhilov'*
developed an engineering criterion that classifies a shell
as thin if the following condition is satisfied:

max (%) <0.05, (1)

where h is the thickness of the shell and R its radius of cur-
vature. For chinchilla TM, a radius of curvature of 3.95 mm

is obtained by the method proposed by Funnell.'* In all of the
references cited in this paper this ratio is much smaller than
0.05, except around the manubrium, where the membrane is
thicker; therefore, we modeled as a thin-shell.

According to plate and shell theory, and specifically con-
sidering Kirchhoff’s assumptions,'® in an elastic, homog-
enous, and isotropic thin-shell, where the displacement at
any point of the shell is small compared with the thickness
of the shell, (1) the displacement at any point on the surface
of the membrane is perpendicular to the middle surface of the
membrane and remains normal to it during and after defor-
mation and (2) there is no displacement tangent to the surface
of the membrane.

Although the TM is not strictly homogenous and iso-
tropic, it is often approximated as such. '

2.2 lensless Digital Holography

Digital holography enables quantitative measurements of
shape and displacements of objects by recording holograms
with digital cameras and reconstructing them numerically.
This allows imaging and focusing capabilities at arbitrary
locations without the need of optical lenses and correspond-
ing mechanisms. The Fresnel-Kirchhoff integral, Eq. (2), is
used for holographic numerical reconstruction.'”'®

(en) = % / f :O h(x.y)R(x. ) exp(~i%0)
1

1
4o ) 2
X (2 3 Ccos 9) dxd_». ( )

p= \/(x—§)2+(.v—n)2+d2, 3)

where A is the wavelength of the laser, k(x, y) is the complex
hologram function, R(x, y) is the complex amplitude distri-
bution of the reference wave used for the reconstruction, p,
which is expanded in Eq. (3), is the distance between a point
on the hologram plane (x, y) and a point in the reconstruction
plane (&.7), and d is the reconstruction distance. The
DWDHS discretizes and digitizes the function T'(£,7) in
Eq. (2) to the form of Eq. (4), by sampling the hologram
function f(x,y) on a CCD sensor of M X N pixels.

i ) m? n?
r(m,n) =ﬁ—dexp —inAd W-‘rm
M—1 N-1
x h(k, DR (k. 1)
k=0 =0
T
- kZA 2 lZA 2
X exp IM( x* + Ay )]
km In
Y] Qi 4
xexp {l ﬂ(M +N)} ( )

where m and n are coordinates in the reconstruction plane,
k and [ are coordinates in the CCD plane, M and N are num-
ber of pixels of the CCD sensor, and Ax and Ay are the pixel
dimensions. Figure 1 illustrates numerical reconstructions at
specific distances from the CCD sensor of a digitally
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recorded hologram corresponding to a chinchilla TM stimu-
lated with a tone of 7 kHz at 91 dB sound pressure
level (SPL).

2.2.1 Shape measurements by dual-wavelength
digital holography

A two-wavelength holographic contouring technique is
applied to generate depth contours related to the geometry of
the TM. The technique is based on the utilization of a coher-
ent polarized light source with wavelength tuning capabil-
ities.”® The technique requires acquisition of a set of
optical amplitude and phase information at wavelength 4,,
the reference state, as well as acquisition of a second set
of amplitude and phase information at wavelength 1,, the
deformed state. Interferometric depth contours, related to
the geometry of the TM under investigation, are generated
by speckle phase correlation of two sets of phase-stepped
speckle intensity patterns.

The phase difference of the two corresponding sets of data
Ag is given by

2
Ap= by — ) = X”OPL, (5)

where ¢, is the phase of the optical path length recorded at
the first wavelength 4, ¢, is the phase of the optical path
length recorded at the second wavelength 4,, OPL is the opti-
cal path length defined as the distance from the illumination
point to an object point and to an observation point, and A is
the synthetic wavelength given by

Aida

A=—".
[41 = A,

(6)

From Eq. (6), it is clear that the smaller the difference
between the two wavelengths used, the larger the synthetic
wavelength and, consequently, the smaller the optical phase
difference.

In two-wavelength contouring, the phase difference, Ag,
is a discontinuous wrapped function varying in the interval
[, ]; thus phase unwrapping algorithms are applied to
obtain a continuous phase distribution called the fringe-
locus function, Q(x, y), for calculation of the relative height
of each point on the surface of the object Z(x,y) with

T3(§,m) L(n) nEn

h(x,y)

— Z

CCD plane
(Hologram)

Image plane d
(Best focus position)

Fig. 1 Recording and numerical reconstruction of a digital hologram
at specific distances from the CCD detector. Numerical
reconstruction, performed at video rates, enables imaging and focus-
ing capabilities without the need of optical elements. The object of
interc—:gt is a chinchilla TM stimulated with a tone of 7 kHz at 91 dB
SPL.

Q(x,y)* A
Z(x,y) = 2+ A 4}; . %)

If the angle between illumination and the observation
directions, @, is zero, the distance between two consecutive
contours is

Az (8)

_ A A
" l4cos(@) 27

2.2.2 Full-field three-dimensional displacement
measurements

Conventional methods for measurement of 3-D displace-
ments of objects by holographic interferometry use at
least three illumination points or three observation points
to define three sensitivity vectors. We describe a new method
that utilizes measurements of the 1-D sound-induced dis-
placements along the optical (z) axis together with the 3-D
decompositions of shape information into surface normal
vectors to calculate the displacements in the other two
orthogonal directions (x and y). Figure 2 illustrates the algo-
rithm we applied to compute the 3-D displacement maps.
A double-exposure stroboscopic mode is used for quan-
titative measurements of displacements between two loading
states. In stroboscopic holography mode, the computed opti-
cal phase change, which is related to displacement, is based
on the difference between measurements corresponding to

Sound stimuli

Shape
Measurement

Displacement
Measurement

v

Shape acquisition
(Before deformation)

|

Surface normals

Displacement acquisition

l (1D, along Z axis)
Decomposition of
surface normals onto 3 >
axes X, V. z

Displacement
(2D, x and y axes)

3D displacements

Fig. 2 Algorithm used to extract 3-D components of displacement by
measurements of shape and one component of displacement.
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two different stimulus phases, where the phases are defined
by the pulsing of the “strobe switch” (an acousto-optic
modulator capable of high-frequency switching) that is
phase-locked to the acoustic stimulus. In our measurements,
the sinusoidal motion of the TM driven by a tone was deter-
mined from holograms of the TM that were gathered during
strobed laser pulse illumination at each of eight evenly
spaced stimulus phases (@ =0,7.%.... ,Imy Each laser
pulse has a duration of 5 to 10% of the period of the
tonal stimulus. The result gives a difference between the
two states in the form of a wrapped phase map. By consid-
ering our parallel illumination-observation experimental
setup, only out-of-plane displacements along the optical
axis can be measured. DWDHS records four images contain-
ing holographic patterns that result from the phase-shifting of
the reference beam in steps of multiples of 7 /2, at both refer-
ence and deformed states. The intensities at each pixel mea-
sured by the camera at each of the four reference phase steps
are Iy,..., I, in the reference state and I7,..., I; in the
deformed state. The optical phase difference between
these two states is

S| =B =) = (=) - 1)

(h= L) =) + (s = L) - 1)]
9)

Q(x,y) =tan

which enables the measurements of out-of-plane displace-
ment by

Qx,y) x4

U.(x,y)= yp

(10)
The hypothesis that the major components of acoustically
induced displacements occur along the local surface normal
of the TM makes it possible to recover the two principal
components of TM motion in the plane of the tympanic
ring, E]_, and Ef\. in a Cartesian coordinate system defined
by the correspoﬁding sensitivity vector, as shown in Fig. 3.
Specifically, single-axis measurements, f]z, together with
the knowledge of shape normal vectors, 7(7,, 7y, 1;), enable
estimation of the two additional corresponding orthogonal
components of displacement, Z]x and —Uy, with
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As illustrated in Fig. 3, angles between displacement in x,
v, z directions and the resultant displacement are the same as
angles between the normal vectors in x, y, z directions and
the normal vector.

2.3 Test of the Proposed Approach

In order to test our approach, a finite element method (FEM)
modal analysis of an ideal semi-spherical membrane with
physical properties similar to those of a TM is implemented
and the results imported and processed in MATLAB.
Figure 4 shows the test procedures, while the geometry,
mechanical properties, and modeling parameters incorpo-
rated into the finite element analysis (FEA) model analyses
are listed in Table 1.

Outputs of the FEM modal analysis are the resultant dis-

placement, U, as well as displacement along the x, y and
z axes. By taking the fourth mode of vibration, for example,
and by applying Egs. (11) and (12), the two additional dis-
placements U, and U, are calculated and plotted in Fig. 5.

A significant criterion used in the testing of our approach
is the computation of the differences between the displace-
ments obtained from the FEM analysis and the predicted
components based on the thin-shell hypothesis. These dif-
ferences are shown in Fig. 6. Because of the nature of the
eigenvectors obtained by FEM, data from each FEM solution
and prediction are normalized by the maximal displacement
value on the TM surface.

Table 2 shows the root mean square (RMS) and standard
deviation of the differences between FEM and predicted dis-
placements averaged over the surface for different modes of
vibration after data normalization. The results show that the
RMS difference and the standard deviation around the mean
is less than 5%, which indicates that the predicted x and y
displacement components obtained by our approach are well
matched by the displacements obtained by FEM analysis.

3 Experimental Procedures

3.1 Digital Optoelectronic Holography System

The lensless DWDHS consists of laser delivery (LD), optical
head (OH), and computing platform (CP) subsystems. The
LD subsystem contains a tunable near-infrared diode laser

<l

(b)

Fig. 3 Decomposition of the surface normal vector and resultant displacement at one point: (a) nis the surface normal vector and i, hy, and n, are
decomposed components of n along x, y and z axes. (b) U is the resultant digplacgmenl and Uy, U,, and U, are decomposed components of U
along x, y and z axes. a, 5, and y are the angles between the direction of U or n and the x, y, z axes.
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FE Analysis: Importing data into MATLAB: Calculations:
Eigen-frequency = 3D displacements (U,, Uy, U,) [ Predicting displacements U,' & U,"
analysis of an object and shape (x, y, z) based on U, and Ny, N, N,
Decomposition: Comparisons:
Normal vectors of shape surface Comparing FEA displacements (U,, Uy)
along principal axes (Ny, Ny, N) with Predicted displacements (U,’ & U,,")

Fig. 4 Procedure for testing our approach by FEM simulations.

Table 1 Geometry, mechanical properties, and FEM parameters of the semi-spherical test object.

Geometry Mechanical properties FEA parameters
Spherical radius 2.5 mm Young’s modulus 60 MPa No. of nodes 15,697
Thickness 30 um Poisson’s ratio 0.33 No. of elements 7747
Mass density 1100 kg/m?

Note: Boundary conditions: fully constrained along entire perimeter.

1
0

2 X(mm)

(b)

Fig. 5 Computed x and y components of displacements obtained by applying our approach: (a) Predicted displacement along x-axis (DX).
(b) Predicted displacement along y-axis (U,,).

Uy in the range from 770 to 789 nm with a central wavelength of
779 nm, an anamorphic prism pair, an acousto-optic modu-
lator, a half-wave plate, and a fiber coupler assembly. The

. output of LD is delivered to the OH directly. The OH
was designed using 3-D optical ray tracing simulations, in

» which selected components are rotated in specific angles

4 to overcome reflection issues.’’ A 5 megapixel (2452x

2054 pixels) digital camera with pixel size of 3.45 by
2 4 3.45 ym? in OH is used for image recording at high rates,
X (mm) X (mm) while the CP acquires and processes images in either

y (mm)

(=]

Predicted Ux Predicted Uy

0 Table2 Root mean square (RMS) and standard deviation (SD) of the
difference between FEM solutions and predictions for different modes
of vibration for the ideal semi-spherical test object.

y (mm)

Difference Mode 1 Mode 2 Mode 3 Mode 4

X RMS (%) 3.08 3.52 3.18 0.71

E
(=}

2 2 4 STD (%) 3.10 4.18 2.91 0.90
X (mm) X (mm)

y  RMS (%) 3.11 3.38 3.52 0.71

Fig. 6 Comparisons of x and y components of displacements
between FEM solutions (U, and U,) and predictions obtained by STD (%) 3.12 3.07 4.30
our approach after data normalization.

0.91
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Tunable IR Laser Laser Delivery (LD)

N Laser to Fiber
Coupler

Mirror

Speaker

B T E——
BT T —
S e — ;

Computing Platform (CP)

Fig. 7 Schematic views of different subsystems of our DWDHS.
Laser delivery consists of an infrared tunable laser, acousto-optic
modulator, mirror, and laser to fiber coupler; optical head contains
a modified Michelson interferometer; and computing platform controls
the recording parameter such as sound-excitation level and fre-
quency, phase-shifting, synchronizations for stroboscopic measure-
ments and all the acquisition parameters. The dashed lines are
analog signal lines and digital control and sense lines.

time-averaged or double-exposure modes.”? Figure 7 shows
the major components of the DWDHS.

3.2 Design of Optical Head Subsystem

The OH subsystem is based on a Michelson optical configu-
ration, shown in Fig. 8. The input to the interferometer is a
single-mode polarization-maintaining fiber terminated with
an fiber-optic connector/angled physical contact connector
that attaches to a collimator (C) producing a circular beam
of 7.1 mm diameter. The collimated beam is directed to a
nonpolarizing broadband (700 to 1100 nm) beam splitter
cube (BC) that splits the light into reference and object

240mm

57mm

(a)

beams. A neutral density filter (NDF) and a linear polarizer
(P) are embedded on the optical path of the reference beam
to control the beam ratio; the ratio has an optimal value
between 2 and 5 and depends on the reflectivity of the tested
sample. NDF provides coarse adjustment and the P fine
adjustment. There are no components in the optical path
of the object beam since we utilize lensless digital holo-
graphic methods. The reflected reference and object wave-
fronts are combined at the CCD sensor and a piezoelectric
transducer is used for temporal phase-shifting.

In our initial OH configurations, we observed that the BC
can introduce significant internal reflections that affect the
quality of the reconstructed digital holograms. Therefore,
the geometry of the interferometer was modified by applying
rotations to some of the components within the optical path
of the reference beam in order to identify a suitable optical
configuration. In Fig. 8, the original axis describing the loca-
tion of all parts is shown by the vertical dotted line. The BC
was rotated by an angle of a with respect to the vertical axis,
and the mirror, M, and CCD camera were rotated by 2« in
order to maintain the mirror and the camera parallel to each
other. The angle a was changed from —18 to +18 deg in 2-
deg increments. The resultant numerically reconstructed®>*!
digital holograms obtained after applying these rotations are
shown in Fig. 9. Selected images with interference fringes
generated on a conical metal object for shape measurements
are shown. Marks on the object were introduced to help
numerical focusing of the object. While significant reflec-
tions degraded the holograms measured at a between +18
and —18 deg, good quality, low-reflection holograms were
obtained at larger angles. By quantifying image intensity and
contrast, it was determined that 14 deg was a suitable choice.

3.3 Sound Generation and Measurement

In displacement measurement experiments, the TM is
excited by a sound source. The sinusoidal output of the func-
tion generator was amplified by a unity gain power amplifier
and used to drive a dynamic speaker coupled to an inverted

(b)

Fig. 8 Computer aided design (CAD) models of the designed and implemented optical head: (a) Assembled package showing characteristic
dimensions. (b) View showing its principal components. PZT, piezoelectric transducer; M, mirror; p, linear polarizer; NDF, neutral density filter;
BC, beam splitter cube; CCD, digital camera; C, collimating lens with fiber-optic (FC) connector for optical fiber input; and O, object.
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-2°

-14° 18°

Fig. 9 Comparison of interferogram quality corresponding to different optomechanical configurations used during optimization of the OH by chang-
ing the incident angle of the BC. The configuration corresponding to 14 deg rotation was chosen in the final configuration.

horn. The narrow mouth of the horn was positioned about
8 cm away from the TM. A PCB Piezotronics (Depew,
New York) prepolarized 1/4-inch microphone with a cali-
brated probe tube was positioned just at the edge of the
TM to measure the SPL. In the experiments, sinusoidal
sound stimuli varied in frequency from 414 to 10,000 Hz
with levels between 70 and 120 dB SPL.

3.4 Sample Preparation

The heads of chinchillas used in other physiological experi-
ments were harvested from dead animals. The bilateral bullae
were exposed and the bullar walls partially removed to
expose the tympanic cavity. The cartilaginous ear canals
were resected, and the bony external auditory canals were
drilled away until 80 to 90% of the TM surface was vis-
ible.®?> When using laser imaging, it is essential that the sur-
face upon which the beams are emitted is reflective enough
to produce a good clean image. Due to the translucent nature
of the TM, the surface of the membrane needs to be coated
with a suitable material to increase the light reflection from

Sound stimuli

Coated TM
(chinchilla)

Microphone probe

Fig. 10 Chinchilla’s TM is coated with zinc oxide to increase light
reflection. The TM is shown surrounded by the bone of the middle-
ear wall. The placement of the tube conducting sound to the ear
and the probe microphone are also illustrated.

the surface. While there are many chemical compounds that
could be used to paint the TM, most are unsuitable due to
concerns and limitations regarding what is permissible for
future use in the human TM.?

First, the coating must not be toxic or cause any inflam-
mation or irritation to the skin. Second, there must be a safe
method for applying and removing the coating. Beyond
health concerns, there are also concerns about what impact
the coating will have on the results of the experiments. If the
coating is too thick or too rigid, it may affect how the mem-
brane vibrates, leading to incorrect measurements.*’ Third,
the coating needs to be highly reflective, specifically within
the wavelength region of the laser that is used during the
experiments (780 nm). Last, the coating needs to be evenly
distributed on the membrane, as any large-scale unevenness
could alter the vibration patterns or the quality of the
reflected light.® Based on literature®® and the experience
from physicians and researchers at the Massachusetts Eye
and Ear Infirmary, zinc oxide (ZnO) was used as paint.
ZnO is commonly used in cosmetics, is highly reflective,
and is soluble in weak acetic acid for easy removal from

3

2

1

0 rad
-1

-2

-3

-3 -1.5 0 15 3
mm

Fig. 11 Masked and filtered wrapped optical phase of the shape of
the TM, computed by lensless DWDHS.°
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mm

mm

(b)

mm

(c)

Fig. 12 Measured shape of the TM of a chinchilla: (a) Three-dimensional shape. (b) Two-dimensional side view of the shape. (c) Two-dimensional
top view of the shape; the outline of the entire tympanic ring is highlighted by a circle. The outline shows the handle of the malleus (the manubrium).

The umbo of the manubrium is at the apex of the TM cone.

the membrane. Figure 10 shows a coated TM of a chinchilla
subjected to the sound stimuli in a displacement measure-
ment test.

4 Results

4.1 Shape and Surface Normal Vectors

The shape of a chinchilla’s TM measured by DWDHS is
shown in Figs. 11 and 12. Figure 11 shows the masked
and filtered wrapped optical phase of the shape of the TM
obtained by dual-wavelength double exposure. In these mea-
surements, the first exposure (reference state) was captured
at the wavelength of 779.8 nm and the second exposure
(deformed state) at 780.2 nm, leading to a synthetic wave-
length of 1.52 mm, a little smaller than the depth of the
TM cone.

4 ,'\ IE?

-2
05
3 06
3 -2 -1 0 1 2 3
mm
(a)

(b)

Figure 12 shows the unwrapped scaled image of the opti-
cal phase that quantifies the shape of the lateral surface of the
TM, where a z value of 0 corresponds to the location of the
bony rim that supports the TM and larger z values code a
deeper location within the ear. The outline of the handle
of the malleus (the manubrium) embedded in the medial sur-
face of the TM is also illustrated. The depth of the membrane
(from the umbo to the rim) is about 2.4 mm and the diameter
of the membrane is about 7 mm. Because it is not possible to
completely remove the bony canal that surrounds the TM,
the image does not reconstruct the entire surface; this limi-
tation is most severe at values of x€ (1:3) and ye (1:3),
which correspond to more ventral (inferior) portions of
the TM.

The principal components of the surface normal vector
along the three orthogonal x, y, and z observation axes

.02
04
06

-0.8

Fig. 13 Principal components of surface normals along x-axis (a), y-axis (b), and z-axis (c).° The outline shows the handle of the malleus (the

manubrium).
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414 Hz 101 dB SPL 1000 Hz 118 dB SPL 2500 Hz 122 dB SPL

mm mm mm

Fig. 14 Out-of-plane or z-axis peak displacements measured at six different frequencies by DWDHS. Displacements are in the unit of ym.®
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Fig. 15 Principal components of displacement along three orthogonal axes of the TM as obtained by application of our approach. TM was sub-
jected to sound stimuli of 5730 Hz and sound pressure level of 101 dB: (a) 3-D view. (b) 2-D top view. The z axis corresponds to the lateral-medial

direction with medial as positive, which was defined by the longitudinal axis of the illuminating and reflected laser beam. The x direction is approxi-

mate to the rostral (anterior)-caudal (posterior) axis with rostral positive. The y direction is approximate to the dorsal (superior)-ventral (inferior)
direction with ventral positive. Displacements are in the unit of ym.
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are obtained by vector decomposition of the surface normal
vector as shown in Fig. 3(a). The results of this decomposi-
tion are shown in Fig. 13. Since the umbo is located at the
apex of the TM cone, the surface at the umbo is nearly par-
allel to the TM ring and orthogonal to the observation direc-
tion that defines the z axis. Therefore, the normal vector at
the umbo is dominated by its z-component (z-component
near 1, and significantly small x and y components). Also
note that the cone-like shape of the TM and the near
match between the z-projection and the axis of the cone
yields z-components that are all positive, while the x- and
y- components may be negative or positive depending on
the spatial gradient of the membrane surface in x and y.°

4.2 One-Dimensional Displacement Measurements
Along One Optical Axis

Sinusoidal continuous sound stimuli were applied to the
membrane and the displacements of the surface were
recorded and computed at six frequencies of interest: 414,
1000, 2500, 5730, 8735, and 10,000 Hz with SPLs between
100 and 122 dB. The levels were selected to produce meas-
urable sound-induced TM displacements.

Stroboscopic holography was used to measure TM
motions. In stroboscopic holography, the acousto-optic
modulator contained within the DWDHS strobes the laser,
so that the object and the CCD are illuminated by a series
of brief pulses. Each pulse is 5 to 10% of the period of
each cycle of the acoustic stimulus, and within each camera
frame the pulses are locked to a single phase of the stimulus
cycle. Each camera image then represents the summed
response to a large number of strobe impulses that are all
locked to the same stimulus phase. To describe the variations
in TM displacement with the phase of the stimulus, a
holographic image (each calculated from four images
with stepped optical phase of the reference beam) was
gathered at each of the eight stimulus phases of either
0,45,90...315 deg relative to the zero-crossing of the
sinusoidal voltage that drives the earphone.?*

Figure 14 shows out-of-plane (z-axis) displacements of
the TM at different stimulus frequencies. The vibration pat-
terns are categorized based on the sound excitation fre-
quency. The vibrational pattern of 414 Hz is simple, which
is characterized by one or two spatial maxima. The vibra-
tional patterns of 1000 and 2500 Hz are complex,” which
are characterized by multiple spatial maxima and minima
separated by areas of small displacement. Above 4 kHz,
the displacement patterns of chinchilla TM are ordered,
which are characterized by many small areas of maximal dis-
placement around the manubrium, with some order to the
location of the maxima.

4.3 Recovering the Three Components of
Displacement

By applying Eqgs. (11) and (12), and the measured z-axis
component of displacement (U,), and taking advantage of
the corresponding normal vectors extracted from the mea-
sured shape, the x-axis (U,), y-axis (U,), and resultant
(Ues) components of displacement are calculated. To help
identify the computed 3-D components of displacement
on the TM surface, these displacements are overlaid on
the measured 3-D shape of the TM for one of the experi-
ments in which a sound stimulus of 5730 Hz and 101 dB

SPL sound level stimulates the TM, as shown in Fig. 15,
which demonstrates that the x and y components of displace-
ment (U, and U,) are smaller than the out-of-plane compo-
nent (U_). The resultant displacement has a maximum value
within the posterior-inferior quadrant of the TM.

5 Conclusions

‘We presented a new approach to measure 3-D displacements
of TM by combining shape information and 1-D components
of displacement. Shape and displacement measurements are
carried out with a lensless DWDHS, with shape measured in
two-wavelengths mode and 1-D displacements measured in
single-wavelength mode. The assumptions we used in our
computation of the 3-D components of displacement from
measured shape and 1-D displacements are based on consid-
ering the TM as a thin-shell, so that the principal components
of TM vibration are hypothesized to be parallel to the prin-
cipal components of the normal vectors of the surface of the
TM. This approach was tested using FEM models. However,
further testing of our approach will be performed in the
next steps of this research, including the development of
improved FEM models as well as direct measurements of
x, y components of displacement by other digital holo-
graphic methods that involve speckle correlation and multi-
ple sensitivity vectors. We expect that our efforts toward the
development of methodologies for the concurrent measure-
ment of shape and the three components of displacement
vectors will lead to realizable full-field-of-view tools for
the study of the normal and pathologic middle-ears.
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8. Paper B: Measurements of three-dimensional shape and
sound-induced motion of the chinchilla tympanic membrane

Overview

The precise mechanism by which the TM gathers and couples sound-energy to the ossicular
system is a continuous point of investigations. In the previous Paper, we hypothesized that the
kinematics of the mammalian TMs resemble thin-shells. One incentive for establishing this
hypothesis is that the intact human eardrum is located at the end of the ear canal (3 centimeter
long and 8 mm in diameter) and application of typical 3D motion measurements techniques
(which require at least three different illumination or observation directions) is limited. In this
paper, published in Hearing Research in 2013, the thin-shell hypothesis is applied to chinchilla
TM and the results at multiple tonal excitation frequencies are shown with emphasis on the
medical side and importance of the technique. The importance of accurate shape measurements
and in turn, the effects of shape local normal vectors on final 3D sound-induced motions are
highlighted. One of the limitations of the thin-shell hypothesis is that the relative sizes of the
predicted motion components along the x- and y-axes are fixed by anatomy and don’t vary with
frequency. Furthermore, the thin-shell assumption predicts that motions that occur in the plane
of the tympanic ring are either in-phase or half a cycle out of phase with the motions normal to
the tympanic ring. Therefore, the need for real 3D sound-induced motion measurements are also

highlighted to test and potentially verify the applicability of this hypothesis.
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Opto-electronic computer holographic measurements were made of the tympanic membrane (TM) in
cadaveric chinchillas. Measurements with two laser wavelengths were used to compute the 3D-shape of
the TM. Single laser wavelength measurements locked to eight distinct phases of a tonal stimulus were
used to determine the magnitude and the relative phase of the surface displacements. These measure-
ments were made at over 250,000 points on the TM surface. The measured motions contained spatial
phase variations consistent with relatively low-order (large spatial frequency) modal motions and
smaller magnitude higher-order (smaller spatial frequency) motions that appear to travel, but may also
be explained by losses within the membrane. The measurement of shape and thin shell theory allowed
us to separate the measured motions into those components orthogonal to the plane of the tympanic
ring, and those components within the plane of the tympanic ring based on the 3D-shape. The predicted
in-plane motion components are generally smaller than the out-of-plane perpendicular component of
motion. Since the derivation of in-plane and out-of plane depended primarily on the membrane shape,
the relative sizes of the predicted motion components did not vary with frequency.
Summary: A new method for simultaneously measuring the shape and sound-induced motion of the
tympanic membrane is utilized to estimate the 3D motion on the membrane surface.
This article is part of a Special Issue entitled “MEMRO 2012".
© 2012 Elsevier B.V. All rights reserved.

1. Introduction of the measurements of TM motion are based on optical techniques

which are only sensitive to one direction of TM motion, and (3) the

The precise mechanism by which the tympanic membrane (TM)
gathers and couples sound energy to the ossicular system is
a continuing point of investigation by measurements (e.g. Cheng
et al, in press; de La Rochefoucauld and Olson, 2010; Rosowski
et al,, 2011) and models (Funnell and Laszlo, 1977; Rabbitt and
Holmes, 1986; Funnell et al., 1987; Blayney et al., 1997; Gan et al.,
2002; Koike et al,, 2002; Fay et al., 2005; Parent and Allen, 2007,
2010; Goll and Dalhoff, 2011). Our understanding of this issue is
clouded by several significant complications including: (1) the
complex nature of the sound-induced TM displacements, (2) many

* Corresponding author. Eaton-Peabody Laboratory, Massachusetts Eye and Ear
Infirmary, 243 Charles Street, Boston, MA 02114, USA. Tel.: +1 617 573 4237; fax: +1
617 720 4408.
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0378-5955/$ — see front matter © 2012 Elsevier B.V. All rights reserved.
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conical structure of the TM complicates the relationship between
unidirectional measurements of surface motion and the actual
three-dimensional motions of the surface of the TM and also
suggests complexities in the relationship between TM surface
motions and the forces produced along the manubrium at the input
to the middle-ear ossicular system.

Several optical techniques have been used to estimate the shape
of the TM, as well as changes in TM shape introduced by static
pressure (e.g. Moire interferometry: Decraemer et al., 1991; Dirckx
and Decreaemer 1992, 2001; optical coherence tomography (OCT):
Chang et al. in preparation; Ilgner et al. MEMRO 2012). However,
the temporal resolution and sensitivity of such three-dimensional
measurements are usually not sufficient to measure accurately
the sound-induced motions of the TM (an exception is high-speed
OCT, e.g. Chang et al. in preparation). In this paper we describe
a new technique for near simultaneous measurements of the shape
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and sound-induced motions of the TM in cadaveric chinchillas. The
combination of measurements allows us to estimate the compo-
nents of the TM that are in-the-plane and out-of-the-plane of the
tympanic ring.

2. Methods
2.1. Computer controlled opto-electronic holography

Our basic technique is to capture two-dimensional holographic
interference patterns in order to reconstruct holographic images of
shape or motion (Hernandez-Montes et al., 2009; Flores-Moreno
et al., 2011). The measurement methods are based on a tunable
near infrared laser beam (adjustable wavelength of 770—789 nm),
that is split into reference and object beams within an optical
head (Fig. 1). One of the split beams illuminates the measurement
object, and the other is a reference beam for which the light path
can be shifted by 0, %, %2 or % of a wavelength by a mirrored
piezoelectric transducer (the optical path-length shifter). The
reference beam and the reflected object beam are recombined to
produce an interference pattern that is imaged by a high-speed CCD
camera. The camera, laser wavelength and the phase shifting of the
reference beam path length are under computer control. The
computer uses a 2-D FFT of the images captured at each of the four
reference beam path lengths with a numerical holographic recon-
struction algorithm to compute the interference pattern at the level
of the object (Kolenovic et al., 2004; Flores-Moreno et al., 2011).
These interference patterns are gathered with two-different
wavelengths to measure shape, or with a single wavelength at
different stimulus phases to determine sound-induced motions in
the direction of the object illumination beam.

2.2. Measurements of membrane shape: two wavelength mode

Measurements of shape were made by illuminating the TM
within a cadaveric chinchilla head with the tympanic ring placed
roughly orthogonal to the object beam. With the laser wavelength
(41) set at 779.8 nm, the camera gathered two-dimensional images

of the light intensity of the interference patterns at the baseline
optical path length (Ip) and with the reference path lengthened by
14,5 and 34 (I4, I, and I3 respectively) by the path-length shifter. The
laser wavelength was adjusted to 780.2 nm (A2) and images were
taken at the four different reference path lengths: Ij....I5. The
optical phase difference, ¢(x,y), between the two sets of images was
computed:

[ = B)( — 1) — (lh — la)(I — 15)
(=B 1) = (b —1a) (I, 1)
This two-dimensional phase image was filtered and masked

(Fig. 2), then unwrapped and converted to variations in the depth
from the tympanic ring using a synthetic wavelength of

@(x,y) = tan (1)

A Ay 779.8 x 780.2

A= =h T 7802-7798

= 1.521 mm. (2)

Because differences in the distance between the object and the
optical head affect the path lengths of both the incident and re-
flected object beams, a 27 change in the wrapped phase is related
to a difference in position of A/2, i.e.,

20xy) = 275D 3)

where ¢'(x,y) is the unwrapped masked and filtered phase.

2.3. Measurements of sound-induced motion: stroboscopic
holography

Our techniques for describing the sinusoidal motion of the TM
surface at frequencies as high as 20 kHz (Cheng et al., 2010) are
summarized here. The laser wavelength was fixed, and a high-
speed opto-acoustic modulator (Herndndez-Montes et al., 2009)
placed in the output beam of the laser to strobe the laser on and off
(Fig. 1). The strobe was locked to selected phases of the sound
stimulus cycle period with a duty cycle of 5—-10% of a period. Strobe
measurements were made at eight separate stimulus phases (0, 7/

Function Generator

1

Strobe
Switch

Tunable

Laser

Pulse e

Fig. 1. The tunable laser, strobe switch, optical path length shifter, CCD camera, stimulus and timing generator, earphone, microphone and the measurement control computer. The

dashed lines are analog and digital stimulus and sensing lines.
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(suelpey u) eseyd
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Fig. 2. Masked and filtered wrapped phase image, ¢(x,y), computed from a two-laser
shape measurement. The gray scale of each pixel is coded with a value between +/— .
The three fringe lines (the transitions between black and white that are labeled with
white numbers) suggest the total phase change between the outer rim and the apex of
the cone (marked by a *+') is just over 67, and equivalent to a rim to a cone height of
(67/41)*1.521 or 2.28 mm (Equation (3)).

4,1(2,...77/4). The changes in optical phase related to the different
stimulus phases at each of the 720 x 720 pixels were calculated
using Equation (1), the phases patterns in each image were
unwrapped and normalized, and the resultant phases converted to
displacement using the appropriate laser wavelength (780.2 nm).
The position versus stimulus phase functions gathered at each of
the camera pixels were Fourier transformed and the magnitude and
phase of the fundamental and second harmonic components
computed. The magnitude of the second harmonic was always at
least 30 dB below the fundamental, except in regions where the
motion magnitude was less than the effective 5~10 nm resolution
of our measurement system. In order to judge the quality of the
Fourier description of the magnitude and angle of the motion at
each pixel, we computed the Pearson Product Correlation Coeffi-
cient between the measured phasic variations of the motion and
the sinusoidal motion reconstructed from the magnitude and angle
of the Fourier determined fundamental component of the phasic
motion. The square of this correlation R? was generally greater than
0.8 except at locations where the magnitude of the measured
motions was less than 10 nm.

2.4. Specimen preparation

Measurements were made on thawed chinchilla heads that had
been frozen and stored. The time after collection varied between
days and months. The ears investigated were the ears contralateral
to the experimental ear in single-sided physiological experiments
(e.g. Chhan et al., 2013). The cartilaginous external ear canal was
removed and the posterior and inferior middle ear cavities were
widely opened. The peripheral portions of the bony eternal canal
were drilled away, and much, but not all, of the medial portion of
the bony canal were removed. The curved pocket shape of the
medial bony ear canal and its complex support within the bones
surrounding the middle ear, made it impossible to expose more
than 80% of the TM to direct view (with the tympanic ring
orthogonal to the illuminating light beam) without damaging the
support of the tympanic membrane. An acute view angle gave

access to much of the TM surface, but compromised the sensitivity
of our measurements, which are only sensitive to motions in the
direction of the illuminating laser beam. In removing the bony ear
canal it was usually not possible to maintain the thin dermal layer
of the TM that also covered the inside of the bony canal. Finally the
TM was painted with a thin layer of a 60 mg/ml of zinc oxide (ZnO)
in saline solution.

2.5. Sound generation and measurement

The sinusoidal output of the stimulus generator was amplified
by a unity gain power amplifier and used to drive to a dynamic
speaker coupled to a reverse elliptical horn based on a Tucker-Davis
Technologies (Alachua, FL) CF1 speaker. The sound stimulus left the
narrow mouth of the horn, which was positioned about 8 cm away
from the TM. A PCB Piezotronics (Depew, New York) pre-polarized
¥4 inch microphone with a calibrated probe tube was positioned
just at the edge of the TM to make measurements of sound pressure
magnitude. Our techniques did not enable accurate measurement
of the absolute phases of TM motion and sound pressure at the TM.
However, our estimates of the relative phase of motion of different
locations on the TM surface to the same stimulus are quite accurate
(within 0.01 radians) as long as the motion at the TM location is
larger than 10 nm.

3. Results
3.1. Shape of the TM

Fig. 3 shows the shape of the TM of a chinchilla taken from
a viewing angle that exposed all of the dorsal TM to view and about
1/3 of the ventral half. The z axis of the plots correspond to the
lateral medial axis, with medial as positive, and the peak is the
location of the spatulated umbo of the chinchilla. The outline of the
umbo and the rest of the manubrium are shown in the figure. The
depth of the membrane (from the umbo to the rim) is about
2.2 mm. The diameter of the membrane is about 5 mm.

An alternative method for describing the TM shape is to define
its surface in terms of the magnitudes of the three Cartesian
components that describe the vector normal to the TM surface at
each point on the surface (Fig. 4). The shape data were processed by
Matlab scripts that identified the plane that was tangent to the
surface and the unit vector normal to the surface at each point on
the TM n(x. y). This normal vector could then be broken into three
orthogonal Cartesian components ny, ny, and n; (which define the
signed magnitudes of the component vectors), with the direction of
the z component defined by the optical axis of the measurement
system. The roughly conical shape of the TM and the similarity of
the normal vector and its z component leads n;(x,y) to vary only
between 0 and +1. However, ny(xy), and my(xy) can be either
positive or negative depending on the gradient of the surface in
either x or y.

3.2. Sound-induced motion of the TM

Examples of the sound induced motion of the TM surface,
measured along the optical axis of the laser (which corresponds to
the direction of the z component of the normal vector) are illus-
trated in Fig. 5. The motion response at all frequencies shows
significant variations in the motion at different locations, and the
spatial complexity of the motion response increases with
increasing frequency. While the use of our techniques with human
cadaveric material has yielded good matches with umbo
displacement measurements made with different techniques (e.g.
Rosowski et al, 2011), the absolute value of the umbo
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Fig. 3. A reconstruction of the shape of a chinchilla TM. The z axis corresponds to the lateral-medial direction with medial as positive that was defined by the longitudinal axis of
the illuminating and reflected laser beam. The x direction corresponds roughly to the rostral (anterior)—caudal (posterior) axis with rostral positive. The y direction corresponds
roughly to the dorsal (superior) —ventral (inferior) direction with ventral positive. The black outline shows the connection of the TM to the manubrium of the malleus. The umbo of
the manubrium is at the apex of the TM cone, which is colored deep red. The ventral (inferior) edge of the TM is hidden from view by a significant remnant of the boney ear canal.
The inset in the upper left corner shows a 2-dimensional view of the TM looking along the x-axis.

n (xy)
0.4
0.0
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Fig. 4. A lateral surface view of the three Cartesian components of the unit vector normal to the TM surface. A). A schematic illustrating the normal vector n at a point on the TM
surface, and its decomposition into three Cartesian vectors with signed magnitudes of ny, ny, and n, and corresponding unit vectors based on a z axis defined by the direction of the
illuminating and reflected laser light. The , § and y describe the angles between the normal vector and the Cartesian vectors. B & C). Color rendering of n,(x,y) and n,(x,y). Note that
x and y components of the normal vector are negative for positions where the gradient of the TM surface in x and y is negative. The outline of the manubrium is included in the

figure for orientation. D). A color rendering of n,(x,y). Due to the conical shape of the TM and the similarity of n,(x,y) to the normal vector, n,(x.y) is always positive. The components
of the normal unit vector are unitless.
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Fig. 5. Color renderings of the fundamental Fourier magnitude and angle of the sound-induced motion of the TM surface along the z axis made at 5 combinations of stimulus
frequency and level. The leftmost data column contains the computed magnitudes of motion. The center column contains the computed angles. The rightmost column shows the
square of the correlation coefficient between the measured time waveform at each point and the waveform predicted by the Fourier magnitude and angle. Each figure in the data
table shows the location of the manubrium, with the umbo at its central tip. The magnitude color bars are coded in micrometers. The phase color bars are in radians. The correlation

color bar show variations in R? between 0 and 1.

displacements we measured in this specimen were at least a factor
of three smaller than the mean chinchilla umbo displacements
reported by Ruggero et al. (1990). Similar results were observed in
one other chinchilla TM.

At the lowest frequency measured (414 Hz) the largest motions
on the TM surface are at the dorsal (superior) edge of the TM and in
the ventral (inferior) regions. There is a putative nodal line of near
zero motion between these two regions. (The umbo actually
straddles this zero motion line.) The phase measurements suggest
the two regions are moving half a cycle out of phase with each other,
where the phase changes abruptly at the location of near zero
motion. The co-localization of near zero motion and a rapid phase
half-cycle change is consistent with the presence of a nodal line. The

correlation plot shows that the measured sinusoidal motions are
well fit by the estimates of the magnitude and angle of the motion
(R? > 0.9) at all locations except the nodal line, where the magni-
tudes of motion are too small (<10 nm) to be determined accurately.

With 1000 and 2500 Hz stimuli the patterns of motion become
more complicated: the number of local magnitude peaks on the
surface increases to at least 8, and the area of each magnitude peak
is decreased in size. There is also an increase in the complexity of
the phase maps with smaller areas of contiguous phase about one
for each local magnitude maximum. At 1000 Hz there are multiple
nodal lines of near zero magnitude associated with half-cycle phase
changes. At 2500 Hz, most of the spatial variations tend to be more
graded or of step sizes smaller than half-cycle.
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As frequency increases there is a continued increase in the
number of local spatial maxima and regions of spatially distinct
phase, with an order to the arrangement of the maxima. We no
longer see clear nodal lines; however, the entire manubrium
(which is firmly attached to the chinchilla TM all along its length)
and the umbo generally show very small motion response. While
we see an increase in regions of spatially distinct phase of motion,
contiguous regions often have phase values that cluster around
some mean value. For example, with 10,000 Hz stimulation, the
regions of the membrane in the lower-left hand quadrant of the
figure tend to phase values that vary between —1 and —2 radians,
while the lower right hand quadrant has regions with phases close
to 1 radian. At frequencies below 10,000 Hz, the phase of the umbo
(the tip of the manubrium) differs from the phase of the rest of the
manubrium, but these phases are similar to the phases of the
adjacent TM locations. At 10,000 Hz the entire manubrium
(including the umbo) moves with similar phase, though this phase
differs from the phase of the membrane adjacent to much of the
manubrium.

4. Discussion
4.1. Comparison with other estimates of sound-induced motion

The spatial and frequency dependence of the magnitude of
displacements in Fig. 5 are consistent with time—average—
holography measurements of the TM motion in chinchillas that
were reported by Rosowski et al. (2009), the only other report of
the motion of the entire surface of the chinchilla TM. The
progression of an increasing number of spatial maxima and
a decreased size of the area of each maxima as stimulus frequency
increases is observed in measurements made in both live and
cadaveric chinchillas reported in that study. Time—average holog-
raphy cannot address the relative phases of the measured
displacements without extended techniques.

There are significant similarities and differences between stro-
boscopic holography measurements of the motion of the TM
surface in chinchilla and cadaveric human TMs (Cheng et al., 2010;
Rosowski et al., 2011; Cheng et al. in press). In both preparations, we
see a progression in the patterns of motion from simple to complex
to ordered patterns of motion as frequency increases, as noted by
Rosowski et al. (2009). However, the frequencies where the tran-
sitions between these behaviors occur are lower in chinchillas than
in humans. Related to this issue, Cheng et al. (in press) demonstrate
that the entire human TM moves in phase at frequencies lower than
1 kHz, while at the lowest frequency we measure in the chinchilla
(414 Hz), we see half-cycle phase differences between different
halves of the TM, with a nodal line nearly perpendicular to the
manubrium running through the umbo (Fig. 5). Similar patterns in
which one half of the TM moves a half-cycle out-of-phase from the
other half are not observed in humans with acoustic stimulation. It
is possible that the inter-species differences in displacement
pattern are a result of the difference between the circularly
symmetric chinchilla TM and the relatively asymmetric human TM
(Puria and Steele, 2010).

If we scale stimulus frequency by a factor of about 2.5 and
compare the 1-2.5 kHz range in chinchilla to ~2.5 to 6.25 kHz in
human, we can discern similar behaviors. At 4, 5 and 6 kHz in
humans, Cheng et al. (in press) describe two kinds of phase varia-
tions across the TM surface: gradual phase changes that are
suggestive of either traveling surface waves or significant damping
within the TM surface (Aernouts et al. MEMRO, submitted for
publication), and relatively sudden half-cycle phase changes asso-
ciated with local magnitude minima suggestive of nodes on the TM
surface. The small number of these nodes in both humans and

chinchillas is consistent with low-order modal patterns of motion
(Cheng et al., in press).

At 8—16 kHz in humans, and 3.5 kHz and higher in chinchilla
there are numerous (>15) regions defined by oval local
magnitude peaks with associated oval regions of similar phase
values. There is little evidence of rapid half cycle phase shifts.
Instead the phase patterns of adjacent regions generally show
cyclic variations in phase of less than 0.25 cycles. This pattern has
been interpreted by us (Cheng et al., 2010; Rosowski et al., 2011)
to result from the combination of a large-spatial wavelength mode-
like displacement, and a smaller spatial wavelength traveling-wave
like component of smaller magnitude. As Aernouts et al. (submitted
for publication MEMRO) point out, such patterns are also consistent
with the summing of a large magnitude low-order modal motion of
the membrane and a smaller magnitude higher-order modal in
a membrane with losses.

4.2. A simple model relating shape and motion

Three dimensional motions can be recovered by measurements
of optical phase with displacements, U, and optical phase, ¢, related
by the fringe-locus function

¢ = KU, (4)

where K = K; — K; is the sensitivity vector characterizing the
illumination-observation geometry of the optical setup and
U = P’ — P are vectors representing induced motions, as shown in
Fig. 6. The expanded form of Equation (4)

@ = (Kx,Ky,Kz)-(Ux, Uy, Uz) (5)

indicates that in order to recover the three components of motion,
(Uy, Uy, Uz) that introduce measurable optical phase changes at
point (x, ¥, z) on an object, it is necessary to (1) determine the
object’s shape, which together with the knowledge of the points of
illumination and observation, P;, P,. respectively, define the
sensitivity vector (Ky, Ky, Kz) and (2) recover corresponding optical

PI P2

Undeformed
™
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v T™
Undeformed

™

Fig. 6. lllumination-observation geometry of an interferometric optical setup: (a)
overall geometry; and (b) detail showing motions, U, at a single point on the object.
Points of illumination and observation are P, P> and vectors of illumination and
observation are KK, Geometry relates mations with sample shape as well as with
optical phase measurements via Equation (4).
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phase, ¢, by multiple measurements requiring at least three inde-
pendent sensitivity vectors (Stetson, 1975; Vest, 1979;
Pryputniewicz, 1986).

Our optical configurations (Hernidndez -Montes et al., 2009;
Flores-Moreno et al., 2011; Lu, 2012) have been designed to define
parallel illumination-observation conditions that lead to a simpli-
fied fringe-locus function

¢ (0,0,Kz)-(Ux, Uy, Uz), (6)

2w
e
where 1 is the laser wavelength and (0, 0, K;) = (0, 0, 2) is the
sensitivity vector defining parallel illumination—observation
conditions. Similar to Equation (3), Equation (6) describes
measurements along a single axis with the recovered motions of
the TM corresponding to the components of the deformation
vectors that are parallel to the measuring optical axis. A method
that we are investigating to recover the three components of the
deformation vector in an absolute coordinate system consists of
using multiple sensitivity vectors with Equation (5). The method
requires making measurements along multiple directions of
observation. Though promising for shape measurements, further
investigations are underway in order to minimize temporal
decorrelation of displacements that occur when sensitivity
vectors are changed.

QOur recently developed approach to recover three dimen-
sional motions of acoustically excited TM by the use of a single
optical instrument and a single sensitivity vector consists of
simultaneously applying Equations (3) and (6) together with
well-accepted structural mechanics theories and assumptions.
From the structural point of view, the TM can be considered as
a thin shell because the maximum value of the ratio of its
thickness and any other of its dimensions is <0.05 (Timoshenko,
1959; Saada, 1974). In addition, the acoustically induced defor-
mations of interest with magnitudes <1 pm are substantially
smaller than the 10—30 um of the thickness of the chinchilla TM
(Decraemer and Funnell, 2008), as has been demonstrated in
other species by earlier work (Khanna and Tonndorf, 1972;
Rosowski et al., 2009; Cheng et al., in press). Therefore, by
considering thin shell theory (Fig. 6), and assuming negligible
TM thickness changes introduced by acoustic excitation, we have
developed and computationally validated, with <3% uncertainty,
the hypothesis that the major components of acoustically
induced deformations occur parallel to the local surface normals
of the middle thickness layer of the TM (Lu, 2012). Such a judg-
ment is consistent with Kirchhoff's thin shell theory with small
displacements (Love, 1888), and with estimates of the very small
sound-induced TM thickness change (Chang et al. in prepa-
ration).

4.3. Estimation of the normal component of TM motion

With our hypothesis that the major components of acoustically
induced deformations occur parallel to the local surface normals of
the TM and measurements with an optical setup characterized by
Equation (6), it is possible to recover the normal components of TM
motion, U, in a Cartesian coordinate system defined by the corre-
sponding sensitivity wvector, Fig. 7. Specifically, single axis
measurements, Uz, together with the knowledge of surface
normals, n = (nX, nY, nZ), enable estimation of the two additional
corresponding orthogonal components of motion, Uy and Uy with

U U;
Ux = nxn—? Uy = nvn—s« (7)
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Fig. 7. The relationship between the displacement normal to the TM surface U and the
signed magnitudes of the three Cartesian components that describe the normal
displacement Uy, UY, and Uz.

and the resultant normal TM motion, U, with
U = |U|-(nx,ny.nz), and |U| = /UZ + Uz + U2 (8)

4.4. Estimation of the x and y components of TM motion

We have used Equation (7) to estimate the x and y components
of the TM motion (Uy and Uy) from measurements of the motion
in z (Uz) and the shape in the same chinchilla TM (Fig. 8). The
right-hand pair of columns (C & D) in Fig. 8 illustrate great
similarity between the magnitudes of the measured Uz and the
computed motion normal to the surface (the resultant, U). Such
similarity is expected in these measurements because of the near
alignment of the direction normal to the TM surface and the z-
axis that is demonstrated by the z-component of the normal
vector, 1, having a value of 0.75—1 over most of the TM surface
(Fig. 4D). Furthermore, since n; is always positive (Fig. 4), the
temporal phase of the motion measured along the z-axis is the
same as the phase of motion in the direction normal to the TM
surface.

Columns A, B and D of Fig. 8, on the other hand, suggest large
differences between the magnitude and phase of the resultant
normal displacement (U) and its x- and y-components (Uy and Uy):
The x and y displacement components are of significantly smaller
magnitude and there are regions of the TM surface where the
predicted Uy and Uy are negative relative to U. (This negativity
implies U and the component with a negative values are a half-
cycle out of phase.) Uy and Uy are negative at locations where
the x- or y-component of the unit normal vector are negative,
while the differences in magnitude occur because the magnitudes
of the x- or y-component of the unit normal vector generally fall
between 0 and 0.5.

Because the z measurement axis is roughly orthogonal to the
tympanic ring, the x- and y-components computed in Equation (7)
describe motions in the plane of the tympanic ring, where the
magnitude and phase of such ‘in-plane’ motions is directly related
to that of the measured z-component and the components of the
normal unit vector computed from the shape of the TM (Fig. 3). The
significance of the in-plane motion components is unknown. It is
worthwhile noting that, according to our thin-shell assumption and
the small size of the measured displacements relative to membrane
dimensions, the motion of the TM is well approximated by motion
along the direction normal to the TM surface, and we assume no
additional motion components in the plane tangential to each TM
location.

The predicted motions in the plane of the tympanic ring
(columns A & B of Fig. 8) are computed by the product of the
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Fig. 8. The components of the normal displacement U (A & B). The x and y components of the normal displacement calculated as describe above. The color bar in between (which
scale both positive and negative values in um) applies to both columns. Because Uy and Uy are the product of the normal displacement magnitude and the x and y components of the
normal unit vector, the scales include both negative and positive values (C & D). The magnitude of the z component of the normal displacement UZ and the computed normal

displacement U. The color bars in between these two columns only scale positive values.

measured z-component of the displacement, Uz, and the ratio of the
positive or negative real number defined by the x- or y-component
of the normal unit vector to the positive real number defined by the
z-component of the normal unit vector (Equation (7)). Therefore,
the thin-shell assumption predicts the motions that occur in the
plane of the tympanic ring are either in-phase or half a cycle out of
phase with the motions of the normal vector. This contrasts with
oral reports (Jackson et al., presented at MEMRO 2012 and ARO
2012) that 3-D laser Doppler measurements of TM motion in
humans show in-plane motion components with phases different
from that of the out-of-plane motions and magnitudes comparable
to the out-of-plane motions. The cause of these discrepancy is
unknown, but could be related to limitations of the thin shell
assumptions we apply in this report, or to difficulties in the 3-D
laser determination of motions within the plane of a surface who's
orientation to the laser varies in space.

5. Summary

We describe a new optical method for near simultaneous
measurements of the 3D-shape and 1D motion measurements of
the tympanic membrane based on opto-electronic computer
assisted holography. These methods have been applied to the
study of the sound-induced motions of the chinchilla TM. The
coupling of these two methodologies with the hypothesis that
the TM acts primarily as a thin shell in which the primary motion
component is normal to the surface of the membrane allows us
to estimate the three-dimensional motion of over 250,000 points

on the TM surface. By this theory, the relative phases of the in-
plane and out-of-plane motion depend on the gradient of the
TM surface, and the in-plane motions can never be larger in
magnitude than the motion normal to the TM surface. However,
the computed in-plane motions can be larger than the motion
estimated from a single measurement direction in which the
measurement vector is not normal to the TM surface. The sound-
induced motion of the chinchilla TM has several features in
common with those observed in humans (Cheng et al., in press);
however, these features occur in lower frequency ranges in
chinchilla.
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9. Paper C: Three-dimensional vibrometry of the human
eardrum with stroboscopic lensless digital holography

Overview

In this paper, published in Journal of Biomedical Optics in 2015, the development of a
unique holographic system capable of near-simultaneous measurements of shape and three-
dimensional sound-induced motion of the human TM is described. The sound-induced motions
of the TM are measured stroboscopically along four different sensitivity vectors to realize a
system of equations that in turn, enables computation of 3D motions. A new technique is
proposed for accurate estimation of the sensitivity vectors to decrease the experimental errors
induced by manual calculation of the sensitivity vectors. Aurtificial samples with repetitive
motions are used to characterize repeatability and accuracy of the measurements. The system is
then used to quantify, three-dimensional sound-induced motion of human TMs at different tonal
frequencies. Furthermore, these 3D data are used in combination with the shape of the TMs to
enable characterization of motion components tangent and normal to the TM surface. These
results also enable experimental evaluation of the validity and applicability of the thin-shell
hypothesis. A general conclusion is that the motion components tangent to the local plane of the
TM are smaller than the ones perpendicular to the plane. The system, opto-electro-mechanical
components, and its working principles are described in the following paper, however, some

general procedures are discussed in the following Sections.
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9.1. Stroboscopic measurements of motion

Sound-induced vibrations of mammalian TMs are fast phenomena whose capture requires
high-speed acquisition methods. In our system, we use stroboscopic measurements (Furlong et
al., 2009; Cheng et al., 2010; Rosowski et al., 2013; Khaleghi et al., 2013) with a conventional
speed camera to capture the repetitive fast motions produced by sinusoidal stimuli. Acoustically-
induced motions of the TM are frozen at different stimulus phases using pulses of laser light to
illuminate the sample at particular points during the sinusoidal excitation signal. As shown in
Figure 9.1, a dual-channel function generator is used with one of the channels set to a sine wave
for stimulating the TM through a speaker. The second channel is set to the same frequency, but
with a pulse wave to drive an Acousto-Optic Modulator (AOM) to enable and disable the laser
beam illumination. Typically, each laser pulse has a duration of 2-5% of the period of the tonal
stimulus (Rosowski et al., 2013). This generates the same effect as a strobe light by only
capturing the motion of the TM at desired phases of the stimulus wave.

Sinusoidal Signal
Sent to Speaker

Acoustic Phase (degree)

(a)

! T = Period of Acoustic Tone
Pulsed Signal i
Sent to AOM
Pulse Duty Cycle=2 to 5% of T

Acoustic Phase (degree)

(b) —————————y;
0 45 90 135 180 225 270 315 360

Figure 9.1. Signals for stroboscopic measurements of sound-induced displacements of the
TM at an example phase of 90 degrees: (a) sinusoidal signal sent to the speaker to
stimulate the TM; and (b) pulsed signal sent to the AOM that acts as a high-speed shutter
for laser light illumination with a duty cycle of 2-5% of the tonal excitation period.
During a full measurement, the phase position of the pulse is varied from 0 to 360 degrees
at specified increments to capture the complete cyclic motion.
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A double-exposure technique that compares the deformed state strobe hologram gathered
at one phase and a hologram gathered at a reference phase (usually 0) is used to compute the
displacement of a series of strobe holograms to describe the phase-locked sound-induced
variation in the optical phase. The result is a wrapped phase map that describes the differences
in optical phase between the deformed and reference states. At every double-exposure strobe
hologram, including reference and deformed states, the system records four images containing

holographic patterns that result from the phase stepping of the reference beam (RB) in steps of
multiples of g , equivalent to adding steps of 1/4 of a wavelength. Considering the intensities at
each pixel measured by the camera at each of the four phase steps to be I,,..., I, in the reference

state, and I1,..., I in the deformed state, the wrapped optical phase difference between any two

states is related to displacements of the sample and obtained with

(I, = 1)1 — 1) — (I, — 1) — 15)
(11 - 13)(11 - Ié) + (14 - 12)(14,1- - Ié) .

Ap(m,n) = atan2 |— (9-1)

9.2. Three-dimensional vibrometry

Principal components of displacements, d,, d,,, d, of a given point of a sinusoidally-

driven object are all harmonic functions of time, i.e.,

d,(x,y) = | d,(x,y)| - sin[2rfy + @, (x,¥)], (9-2)
d,(x,y) = | dy(x,y)| - sin[2nfy + @, (x,y)], (9-3)
d,(x,y) = | d,(x,y)| - sin[2rfy + ¢, (x,¥)], (9-4)
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with appropriate amplitudes and phases relative to the sound pressure. In order to quantify all
three components of displacement vector, d,, d,, and d,, the harmonically-induced motion of
the objects should be stroboscopically recorded at least three times from three linearly-
independent sensitivity vectors. In our experimental system and to minimize the experimental
errors, sinusoidal motion of the objects are repetitively captured along four different sensitivity
vectors, realizing an over-determined system of equations (i.e., four knowns and three

unknowns) and then, the 3D data are quantified.

In repetitive measurements of vibrations, the phase of the harmonic load and in turn, the
vibrational phase of the sample cannot be granted to be similar when repeating the measurements
from different sensitivity vectors. This issue was one of the most troublesome challenges
through measurements of 3D motion of vibratory objects with the method of multiple
illumination directions, and instead, researchers have suggested the use of multiple observation
directions for such measurements (Pryputniewicz and Bowley 1978; Vest, 1979). However, for
our application (i.e., 3D sound-induced motion measurements of human TM) the method of
multiple observation directions is not preferred, because first, it requires complicated image
processing algorithms to register data from different cameras coordinate systems to one common
coordinated system for all of the observers; and second, having three different cameras requires
larger space, which is not applicable for the study of the space-limited middle ear. Therefore, the
method of multiple illumination directions is preferred and the phase issue is solved as follows.
Figure 9.2 shows the overall procedures for quantification of 3D sound-induced motion of the
TM. Sinusoidal motions of the TM are frozen at nine equally-spaced stimuli phases and the
digital holograms corresponding to sound-induced motion of the TM at each stroboscopic phase

are recorded. This step (step 1 in Figure 9.2) is repeated four times along four different
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sensitivity vectors K; to K,. Therefore, temporal variations of sound-induced motion of the TM
at each point on its surface are obtained along all the sensitivity vectors (step 2 and 3 in
Figure 9.2). Due to the potential phase lags between the measurements, the system of equations
shown in Eq. 6-39 is solved at every single stroboscopic phase 0, 45, 90, ..., 360 °, individually

(step 4 in Figure 9.2).

o An example for sound-induced motions at phase 90 along
‘ ' . K
Holographic recording of sound-induced e Kl
motion of human TM at acousticphases, [ [ _~7F~8 & . § ™ | _____ Kz
0,45, 90 .....360 Degrees . Kj
e 1 I AOM signal
Repeating step 1 four times
along four different sensitivity | =———

vectors K to K,

+O

e z,0 3D Displacements at
every stroboscopic phase

FFT algorithms to reconstruct the
amplitudes and phases of 3D motion

hy
07" = K. drhase

{dPhasey = [[s]7[s]] " { [SI"{Q})

A
v v
Magnitude of 3D Phase of 3D
displacements displacements
x. 6 v, 0
| dx: dy: dz | | Dy (Py: Pz ?

Figure 9.2. Procedures for stroboscopic measurements of three-dimensional magnitudes
and phases of sound-induced motion of the TM.

FFT algorithms are then used along each Cartesian axes X, y, z with 8 discrete temporal
points (motion measurements at each 8 stroboscopic phases) in order to obtain magnitudes and

phases of motion at every single pixel on the surface of the TM (step 5, 6 in Figure 9.2).

9.3. General procedures for 3D motion measurements

In this Section, an example is given to further describe the procedures for quantification of

magnitudes and phases of three-dimensional motions of a harmonically-driven membrane. The
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stroboscopic measurements of motion are repeated four times along four different sensitivity
vectors by varying the illumination direction. For each sensitivity vector, sinusoidally-driven
motion of the membrane is frozen at 9 distinct instances corresponding to 9 equally-spaced
vibrational phases 0, 45, 90, ..., 360. Figure 9.3 shows wrapped optical phases obtained with
Eq. 9-1 corresponding to stroboscopic measurements of motions at each stimuli phase along four
sensitivity vectors. 2D phase unwrapping algorithms (Herréez et al., 2002) are then used to
unwrap the discontinuous phase maps (data shown in Figure 9.3) and the results are shown in

Figure 9.4.
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Phase 0
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Phase 90
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Phase 270

Phase 315

Figure 9.3. Wrapped optical phases corresponding to stroboscopically-measured motion of
a harmonically-driven semi-spherical artificial membrane along four sensitivity vectors at
8 different temporal phases.
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Figure 9.4. Unwrapped optical phases corresponding to harmonically-driven motion of a
semi-spherical artificial membrane along four sensitivity vectors at 8 different
stroboscopic phases.

'
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The position versus stimulus phase functions gathered at each of the camera pixels were
Fourier transformed and the magnitudes and phases of the fundamental and second harmonic
components are computed for data of all four sensitivity vectors (Cheng et al., 2010; Khaleghi et
al., 2015). The magnitude of the second harmonic was always at least 30 dB below the
fundamental, except in regions where the motion magnitude was less than the effective 10 nm
resolution of our measurement system. Figure 9.5 shows representative examples for
magnitudes (top) and phases (middle) of the reconstructed motions along four sensitivity vectors

K,t0K,.

@
Displacement’s
Magnitude

®)

Displacement’s
Phase

©
Correlation 0
Coefficient
Squared 4

8

Figure 9.5. The results obtained from FFT algorithm obtained for measurements along
four sensitivity vectors K; to K,: (a) magnitudes of motions; (b) phases of motion; and (c)
the squared of the Pearson Product Correlation Coefficient between the measured phasic
variations of the motion and the sinusoidal motion reconstructed from the magnitude and
angle of the Fourier determined fundamental component of the phasic motion.
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In order to evaluate the quality of the Fourier description of the magnitude and angle of the
motion at each pixel, we computed the Pearson Product Correlation Coefficient between the
measured phasic variations of the motion and the sinusoidal motion reconstructed from the
magnitude and angle of the Fourier determined fundamental component of the phasic motion.
As shown in Figure 9.5c, the square of this correlation R? is generally greater than 0.9 except at

locations where the magnitude of the measured motions was less than 10 nm.

In order to measure magnitudes and phases of three-dimensional motion of the membrane,
Eq. 6-39 is solved at every single stroboscopic phases 0, 45, 90, ..., 360, individually to realize
3D motion of the membrane at every single phases of the vibration cycle. Figure 9.6 shows
representative examples of the 3D motion of the membrane at stroboscopic phases of 45, 90,
135, 180, 225, 270 degrees. Motions along each Cartesian axes x, Yy, and z, are then Fourier
transformed to enable characterization of magnitudes and phases of motion along all three axes.
The results of this FT are shown in Figure 9.7 illustrating magnitudes and phases of three-

dimensional motion of the sample.
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Displacement along x-axis Displacement along y-axis Displacement along z-axis

Figure 9.6. Three-dimensional vibration measurements at different phases of cyclic
vibration of a thin semi-spherical membrane captured by our developed holographic
interferometric system. The results have been obtained by solving the system of equations
shown in Eq. 6-39 for each phase of stimuli.
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Figure 9.7. 3D harmonically-driven reconstructed motion along three axes X, y, and z
obtained experimentally with the holographic system: (a) motions’ magnitudes; (b)
motions’ phases; and (c) goodness of curve-fitting by estimating the squared of correlation
coefficient. The results have been obtained from data shown in Figure 9.6 by fitting a
sinusoidal function with a given magnitude (a) and phase (b) at each pixel along each
Cartesian axes X, y, and z using developed FFT algorithms.
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resolution, and 3-D sound-induced motion of the TM with sub-
micrometer resolution, are described. The accuracy and repeat-
ability of the measuring system is tested and verified using
artificial samples with geometries similar to those of human
TMs. Then the system is used to measure the shape and 3-D
sound-induced motions of human cadaveric TM samples at dif-
ferent tonal frequencies. Data obtained from the shape of the
membrane are combined with the measured 3-D sound-induced
motion components along three axes, x, y, and z, in order to
obtain the motion’s components tangent and normal to

1 Introduction

The hearing process involves a series of physical events in
which acoustic waves in the outer ear are transduced into
mechanical motions of the middle ear, acoustic and mechanical
motions in the inner ear, and then into chemo-electro-mechani-
cal reactions of the inner ear sensors that are interpreted by the
brain,! Air in the ear canal has low mechanical impedance,
whereas the mechanical impedance at the center of the eardrum,
the umbo, is high. The eardrum or tympanic membrane (TM)

must act as a transformer between these two impedances;
otherwise, most of the energy will be reflected rather than
transmitted.>® The acousto-mechanical transformer behavior
of the TM is determined by its shape, internal fibrous structure,
and mechanical properties.*® Therefore, full-field-of-view tech-
niques are required to quantify shape, sound-induced displace-
ments, and mechanical properties of the TM. In our previous
works,'"!? we have reported holographic interferometric mea-
surements of sound-induced displacements over a majority of
the surface of mammalian TMs. A potential criticism of these
measurements is that the displacements were measured only
along one direction that was along the normal vector to the tym-
panic ring. Therefore, it was not possible to characterize all
three-dimensional (3-D) motion components including those
tangent (in-plane) and normal (out-of-plane) to the local plane
of the TM. In this paper, developments of a single holographic
system capable of measuring both shape with sub-millimeter

*Address all correspondence to: Morteza Khaleghi, E-mail: mkm @wpi.edu

the local plane of the TM, enabling a more comprehensive
view of TM mechanics.

2 Methods
2.1 Lensless Digital Holography

In conventional holography, an optical lens is used to focus on
an object of interest; however, our techniques are based on lens-
less digital holography in which reconstructions and focusing of
the holograms are numerically obtained by Fresnel-Kirchhoff
integrals.'”> Using temporal phase-stepping algorithms,'*'® the
complex amplitude of the hologram, A(k, [), is obtained with

h(k, 1) = [I5(k. 1) = I (k, )] + i[14(k. 1) = 15 (k. )], (1)

where I, to I, are intensity patterns of four consecutive phase-
stepped frames of the camera with an induced phase step of
/2 between them, and k and / are the coordinates of the
pixel in the CCD (hologram plane). As shown in Fig. 1, numerical
reconstruction algorithms are based on two-dimensional (2-D)
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Fast Fourier Transform (FFT) of the product of a reconstruction
reference wave, R(k,[), complex amplitude of the hologram,
h(k, 1), and a chirp function, y(k, 1), that can be obtained with
['(m,n) = Q(m,n) X FFT2[R(k, [)h(k, )y (k,1)], (2)
where ['(m,n) is the complex reconstructed hologram at
coordinates m and n in the reconstruction plane, R(k,!) is the
complex amplitude of the reference wave, Q(m,n) and y(k, [)
are the quadratic phase factor and 2-D chirp function, respec-
tively, and are defined by

. m? n?
Q(m, n) = exp [—mﬂd(m+Nz—Ayz)}. 3)
and
w(k,l) = exp {;—Z[ (K2 Ax? + leyz)} . C))

where Ax and Ay are the pixel size of the CCD sensor, N? is
the number of pixels, 4 is the laser wavelength, and d is the
reconstruction distance. As shown in Fig. 1, the chirp function
is acomplex 2-D oscillatory signal, where the frequency of oscil-
lation linearly varies with the spatial coordinate and is
used for numerical reconstruction of the hologram at different
distances of d. The reconstructed hologram, I'(m, n), is a com-
plex function that contains both the amplitude and optical phase,
@(m, n), that is defined by

h(k, 1)

(a)

\Hologram

2D complex Chirp furjlction

of the human eardrum with stroboscopic lensless. ..

@(m,n) = arg[['(m, n)]. Q)

The fringe-locus function of a double-exposure (DE) holo-
gram, i.e., the unwrapped optical phase difference of two recon-
structed holograms corresponding to deformed and reference
states of the object, is related to displacement with'>!'®

2
K-d

2 (©6)

Q(m, n) = unwrap(@er = Prer) = (m, n),
where Q(m, n) is the fringe-locus function at coordinates m and
n in the reconstruction plane, ¢4.¢ and ¢.; are the optical phases
of the reconstructed holograms recorded at deformed and
reference states of the object, respectively, K(K,,K,,K_) is
the sensitivity vector, defined by vectorial subtraction of the
observation vector from the illumination vectors, and d(m, n) is
the displacement vector with three components of d,, d, andd..

2.2 Stroboscopic Measurements of Displacement

Sound-induced vibrations of the TM are fast phenomena that
require high-speed acquisition methods to be captured. In
our system, we use stroboscopic measurements'’ ! with a con-
ventional speed camera to capture the repetitive fast motions
produced by sinusoidal stimuli. Acoustically induced motions
of the TM are frozen at different stimulus phases using pulses
of laser light to illuminate the sample at particular points during
the sinusoidal excitation signal. As shown in Fig. 2, a dual-
channel function generator is used with one of the channels set

Yk, D

"

2D Discrete Fourier Transform

(b) *
Complexdata | T'(m,n)
A Fringe Locus Function, Q(m,n)
¢ :. (i.e., unwrapped phase difference
of a DE hologram)
Unwrapping

(c) g,
Modulation Image
of a DE hologram

‘\‘x‘/faﬁpcdbpﬁcal Phase
of a DE hologram

¥

Fig. 1 Numerical algorithms used for reconstruction of digitally recorded holograms: (a) multiplication of
complex amplitude of hologram, h(k,/), with 2-D complex chirp function, w(k,/), (b) numerical
reconstruction of the hologram, I'(m, n), by 2-D FFT, (c) typical examples of modulation and wrapped
optical phase of a reconstructed double-exposure (DE) hologram corresponding to sound-induced dis-
placements of a TM sample, and (d) unwrapping the optical phase difference to obtain the fringe locus
function, Q(m, n).
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Sinusoidal Signal
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Acoustic Phase (degree)
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T
135 360
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Fig. 2 Signals for stroboscopic measurements of sound-induced dis-
placements of the TM at an example phase of 90 deg: (a) sinusoidal
signal sent to the speaker to stimulate the TM and (b) pulsed signal
sent to the acousto-optic modulator (AOM) that acts as a high-speed
shutter for laser light illumination with a duty cycle of 2% to 5% of the
tonal excitation period. During a full measurement, the phase position
of the pulse is varied from 0 to 360 deg at specified increments to
enable capturing of the entire cyclic motion.

to a sine wave for stimulating the TM through a speaker. The
second channel is set to the same frequency but with a pulse
wave to drive an acousto-optic modulator (AOM) to enable
and disable the laser beam illumination. Typically, each laser
pulse has a duration of 2% to 5% of the period of the tonal
stimulus.’"'® This generates the same effect as a strobe light
by only capturing the motion of the TM at desired phases of
the stimulus wave.

A DE technique that compares the deformed state strobe
hologram gathered at one phase and a hologram gathered at a refer-
ence phase (usually 0) is used to compute the displacement of a
series of strobe holograms to describe the phase-locked sound-
induced variation in the optical phase. The result is a wrapped
phase map that describes the differences in optical phase between
the deformed and reference states. At every DE strobe hologram,
including reference and deformed states, the system records four
images containing holographic patterns that result from the phase
stepping of the reference beam (RB) in steps of multiples of z/2.
Considering the intensities at each pixel measured by the camera at
each of the four phase steps to be I, . .., I, in the reference state,
and I{,..., I} in the deformed state, the wrapped optical phase
difference between any two states is related to displacements of
the sample and is obtained with

(L =5L) I -L) = (L, =L)(I1 - 13)

(L =5B)U = 15) + (L= D)= 1) ]
@

Ag(m,n) = atan2 |—

2.3 Dual-Wavelengths Shape Measurement

The shape of the TM is measured with the method of dual-
wavelength holographic contouring.*** The technique requires
acquisitions of a set of optical amplitude and phase information
at wavelength 4, as well as a second set of amplitude and phase
information at wavelength 1,. As shown in Fig. 3, depth con-
tours related to the shape of the object under investigation are

defined by

2
Ad(m,n) = = ¢hy = ~ZOPL, )

Py
(%2, Y2, 22)

Py
(x1, Y1, 21)

Surfaces of Constant
Optical Phase

,f;‘ \ﬁ Contour Depth

-

A representative point on T Object of Interest
the surface of the object p (xp’ Vps AP) (T™M)

Fig. 3 Optical path length (OPL) of the laser light in dual-wavelength
holographic contouring. P, is the point of illumination, P, is the point
of observation, and P is a point on the surface of the object of interest.
Surfaces of constant optical phase intersect the object of interest gen-
erating contours of depth h.

where ¢ is the phase of the optical path length (OPL) recorded
at the first wavelength 4, ¢, is the phase of the OPL recorded at
the second wavelength A,, and OPL is the OPL of the laser light
from the point of illumination, (x,, ¥, z;), to a point on the sur-
face of the object, (xp. yp, zp), and to the point of observation,
(x2.¥2.22). and is defined with

OPL = \/[(xﬁ *xl)z + (y.n 7},1)2 + (ZP - z1)2]+

©)
\/[(XZ - xp)z + (yZ - yp)z + (ZZ - Zp)z}'

The phase difference obtained with Eq. (8) is equivalent to
performing measurements with a synthetic wavelength of A
given by

_ Ak
A -al 1o

which defines the contour depth, 7 =~ (A/2).

In dual-wavelength contouring using phase-stepping algo-
rithms, the phase difference, Ag, is a discontinuous wrapped
function varying in the interval [—z, ], thus phase unwrapping
algorithms are applied to obtain a continuous phase distribution,
Q(m, n), for calculation of the relative height of each point on
the surface of the object Z(m, n) by

A

Z(m. n) = 221 + cos(0)]

Q(m, n). (11

2.4 3-D Displacement Measurements

To ensure that measurements are reliable and independent of
the measuring method, the holographic system is configured
so that principal components of displacements, d,, d,, d..
can be measured with two different holographic interferometric
approaches. The first one is based on the method of multiple
illumination directions, whereas the second one uses a hybrid
in-plane and out-of-plane displacement measurement method
to obtain 3-D displacement data. In the hybrid method, in-plane
measurements provide displacements’ components along the
x- and y-axes (perpendicular to the observation direction) and
out-of-plane measurements provide displacements’ components
along the z-axis (along the observation direction).

2.41 Method of multiple illumination directions

Full field-of-view, 3-D, sound-induced displacements of the
TM are measured with the method of multiple illumination
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Observation system

Sensitivity vector
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. Tympanic ring
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Fig. 4 3-D displacement measurements of the TM surface by the
method of multiple illumination directions. Sensitivity vectors for each
illumination direction, K;, are obtained by vectorial subtraction of the
corresponding unit observation vector, K», from the unit illumination
vector, K4;. The geometry of the TM limits the maximum angle of illu-
mination that can be implemented to achieve a well-conditioned sen-
sitivity matrix.

directions in holographic interferometry.”* In order to measure
the three components of the displacement vector, d, shown in
Eq. (6), at least three independent measurements with different
sensitivity vectors are required. In our approach, and to mini-
mize experimental errors,”** optical phase maps are obtained
with four sensitivity vectors to form an over determined system
of equations that is solved in Matlab with the least-squares error
minimization method with

{d} = [[S]"[S]7! < {[S)"{Q}}, (12)

where [S] is the sensitivity matrix containing all the sensitivity
vectors K;, shown in Fig. 4, and {Q} is the fringe-locus function
vector. In this method, all the sensitivity vectors need to be as
linearly independent as possible for the system to provide accu-
rate results. Therefore, the condition number, C, of the square
matrix, [F] = [S]T[S], characterizing the geometry of a holo-
graphic setup is calculated with?’

Illumination Vector
ceb I (After Object’s Displacement)

Reference Wave

Observation Vector

I
Object
(Deformed Stmﬁ
-

”

Illumination Vector
(Before Object’s Displacement)

doye: Out-of-plane

Displacement (Reference State) X

| oPD

Object '—I

A’max (F)
llnin(F) .

where A, and 4., are the maximum and the minimum eigen-
values of [F]. A condition number close to one indicates a
well-conditioned matrix, but this represents a holographic
setup with large angles of illumination.'>*® However, because of
the particular cone-like geometry of the TM and the presence of
the bony structures around it, as illustrated in Fig. 4, the maxi-
mum possible angles of illumination are limited. Therefore, a
holographic setup has to be arranged to achieve the largest
angles of illumination within the constraints imposed by the
geometry of the TM. In this case, the condition number is
greater than one, therefore, the accuracy of the measurements
obtained with such a holographic setup has to be verified.

13)

2.4.2 Hybrid in-plane and out-of-plane method

A hybrid method that utilizes independent and direct measure-
ments of “out-of-plane” and “in-plane” displacements is used
to test and verify the measurements obtained with the method
of multiple sensitivity vectors. In this hybrid method, in-plane
measurements provide displacement components along the
x- and y-axes (perpendicular to the observation direction),
and out-of-plane measurements provide displacements along the
z-axis (along the observation direction), so that all three dis-
placement components can be obtained independently.

Figure 5 shows optical configurations of the two measuring
schemes. As shown in Fig. 5(a), an out-of-plane displacement
d gy induces a change in the OPL of the laser light (OPD). Based
on the geometry of the system, OPD is related to the out-of-
plane displacement d,,, with

OPD = d,,, cos(8,), (14)

where 0, is the angle between the illumination and observation
directions. Using the wavenumber equation, k = 2z /4, OPD is
converted to the out-of-plane fringe-locus function, £, with
Q. = (2z/4)OPD, and consequently, the out-of-plane dis-
placement d,, is calculated with

AQqu
out = 2z[1 +cos(8,)] (13)

In the case of in-plane measurements, the object is illumi-
nated with two symmetrical beams that interfere with each

CCD

Observation Vector

Nlumination 2 Illumination 1

OPD, din OPD,
In-plane Displacement

(b)

Fig. 5 Two displacement measurement schemes that are combined to achieve 3-D displacement mea-
surements in the hybrid method: (a) configuration for out-of-plane (along z-axis) displacement measure-
ments and (b) configuration for in-plane (along x- or y-axes) displacement measurements. The dashed
lines represent illuminations after displacement occurs. OPD is OPL difference.
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other and realize a self-reference configuration.”> As shown in
Fig. 5(b), once in-plane displacement, d,,, occurs, the OPL of
each interfering beam changes, which causes a relative phase
change between the two interfering beams. Figure 5(b) shows
only one of the in-plane components of displacement, however,
displacement components along both the x- and y-axes are inde-
pendently measured with this method.

Equations (16) and (17) show the relation between OPD and
the in-plane fringe-locus function corresponding to the in-plane
displacement d;,

OPD, = OPD, = d;, cos (g— 9) = d,, sin(0). (16)

2x
A
where OPD,,,, = OPD; + OPD,. Using Egs. (16) and (17), in-
plane displacement, d;,,, is calculated with
ALY
din - —m s
47 sin(0)

Q, = (OPDtnml)v (17)

(18)

where Q,, is the in-plane fringe-locus Function, 4 is the wave-
length of the laser, and @ is the angle between the illumination
and observation directions.

2.5 Experimental Setup

The schematic of the developed Digital Opto-Electronic
Holographic System (DOEHS) is shown in Fig. 6. The DOEHS
can measure microscale variations in shape as well as nanoscale
displacements of the TM using both 3-D displacement measure-
ment methods described in Sec. 2.4. The DOEHS consists of
three main subsystems including laser delivery (LD), computing
platform (CP), and optical head (OH). An external-cavity tun-
able diode laser capable of continuous tuning with minimal

Laser Delivery (LD)

Tunable IR Laser

Optical Switch (0S)
Laser to Fiber

Coupler

i
|
|
|
|
|
i
|
H Analog to Digital ._5.
|
H Digital to Analog -} -4
|
: USB Interface
|
227! Function Generator

Camera Interface +--f------------===-—==-------- 1

Computing Platform (CP)

Fig. 6 Schematic of the developed holographic system for shape and
3-D displacement measurements. The laser delivery (LD) subsystem
consists of a near-infrared tunable laser (with central wavelength of
780 nm), acousto-optic modulator (AOM), mirror, and laser to fiber
coupler; the computing platform (CP) controls the recording param-
eter such as sound-excitation frequency and sound pressure level,
phase-stepping, synchronizations for stroboscopic measurements,
and controlling the optical switch (OS) for high-speed multiplexing
between any of the object beams (OB1-OB4). The dashed lines
are analog and digital signal lines.

mode hopping (New Focus, Velocity) is placed in the LD,
which provides a near IR laser light with a central wavelength
of 780 nm. A polarization maintaining fiber coupler (Thorlabs
PM-780-HP) splits the light into two beams to be used as refer-
ence (10%) and object (90%) beams. A MEMS optical switch,
with a response time of less than 0.5 ms (Thorlabs OSW 8104),
is used to multiplex between the object beams (OB) of each illu-
mination direction once triggered by a Digital to Analog signal.
The CCD is illuminated with the RB through a beam splitter and
through a piezo-mounted mirror that is used for phase stepping.
A 5 Megapixel (2452 x 2054 pixels) digital camera with a pixel
pitch of 3.45 ym in the OH is used for image recording and the
CP acquires and processes images in either time-averaged or DE
stroboscopic modes.* The sinusoidal output of the function
generator is amplified by a unity gain power amplifier and is
used to drive the speaker. A microphone with a calibrated
probe tube was positioned just at the edge of the TM to make
measurements of sound pressure. In stroboscopic measure-
ments, the light illumination is synchronized with the sound-
waveform by means of a digital pulse signal from the function
generator to the AOM.

2.6 Determination of the Sensitivity Vectors

In the method of multiple illumination directions, accurate deter-
mination of the position of each illumination source is required
to define the corresponding sensitivity vectors. A new technique
is developed in which all the sensitivity vectors are obtained by
automatic analyses of the images of a specular sphere illumi-
nated from different directions in order to avoid the uncertainties
introduced by manual measurements. As shown in Fig. (7), a
specular sphere is placed in front of the imaging system to
acquire images from all four directions of illumination. The
center of the image is marked in the acquisition software
LaserView™ and the sphere is accurately located in this position
and within a circular mask provided by the software to ensure
that the sphere is placed along the optical axis of the holographic
system. As shown in Fig. 7(a), the mirror-like reflection creates
a specular highlighted area on the sphere.’! Each image is
cropped and enhanced by image processing techniques that
include histogram equalization, threshold definition, and edge
detection. Then, a sphere is numerically fitted on the detected
circular edge which represents the outline of the sphere. The
normal vector of the fitted sphere at the centroid of the specular
highlighted area, for each direction of illumination, defines the
sensitivity vector, K;, which can be expressed as

K; = N (xo, y0i). Ny (Xoi. Yoi )» N (Xo1. Yoi) (19)

where N, N, and N_ are components of the unit normal vector,
and (xo;, vo;) are the centroid coordinates of each of the specular
highlighted areas. To accurately determine the centroids,
(xoi» Yo )» @ circular Hough transform (CHT) algorithm is used.
The Hough Transform can be used to determine the parameters
of a circle when a number of points that fall on its perimeter are
known.*> A circle with radius R and center (xg,y) can be
described with the parametric equations

x = xp+ R cos(0), (20)
v =Yyp+ R sin(8), 21

in which the angle @ sweeps through the full 360 deg range and
the points (x, y) trace the perimeter of the circle. The output of
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(a)

Detected circle by CHT algorithm

‘\ Sensitivity Vector, K
K (N, N,,N;)

Fig. 7 Automatic determination of a sensitivity vector by use of a specular reflective sphere and circular
Hough transformation (CHT): (a) image of a specular reflective sphere illuminated with one of the object
beams, (b) cropped, enhanced image of the sphere, (c) CHT algorithm is used to detect the specular
highlighted area and its centroid, and (d) the normal vector at the centroid of the detected highlighted area

defines the sensitivity vector.

the CHT algorithm is the coordinate of the centroid of the specu-
lar highlighted area.

3 Results

3.1 Validation of Measuring Accuracy and
Repeatability

Considering the acquisition speed of the 3-D holographic sys-
tem and the time-dependent mechanical behavior of biological
samples like the TM, we characterized the accuracy and repeat-
ability of the measurements of the 3-D holographic system using
measurements of artificial samples that have negligible time-
varying behaviors. Based on the particular concave shape of
the TM, a semispherical membrane with a geometry similar
to the TMs is used. For 3-D displacement measurements of

(a) % (b)

non-flat membranes, the large illumination angles necessary
for a well-conditioned 3-D holographic system create shadows
on the surface of the membrane. Therefore, the maximum angles
of illumination are limited by geometrical constraints induced
by the membrane, leaving the holographic system with condi-
tion numbers greater than one, as described in Sec. 2.4.1. To
calibrate the measuring system and to verify the accuracy of the
measurements obtained with such non-ideal 3-D holographic
configuration, 3-D displacement components are measured
using both of the methods described in Sec. 2.4, in order to
ensure that the obtained displacement components are accurate
and independent of the measuring approach. Once the accuracy
of the measurements is verified, repeatability of the stroboscopic
measurements is tested and verified with sound-induced dis-
placement measurements of a latex membrane.

Fig. 8 Measurements of the shape of an artificial membrane using dual-wavelength holographic con-
touring: (a) semi-spherical membrane with a thickness of 25 ym and a radius of 6 mm, (b) wrapped opti-
cal phase corresponding to the shape of the membrane, and (c) 3-D scaled shape of the membrane.
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Fig. 9 3-D displacement components of a semi-spherical membrane excited mechanically with a piezo-
electric shaker at a frequency of 25,418 Hz. Displacement components measured with the method of
multiple illumination directions along (a) x-axis, (b) y-axis, (c) z-axis, (d) magnitude of displacement, and
displacement components measured with the hybrid method along (e) x-axis, (f) y-axis, (g) z-axis,
(h) magnitude of displacement. The correlation coefficient, R, of the displacements component obtained
with the two methods are 0.95, 0.96, 0.99, and 0.99 for displacement components along x-, y-, z-axes,
and magnitude of displacement, respectively. All the displacements are in micrometers.
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Fig. 10 Repeatability of the holographically obtained displacement measurements of a circular latex
membrane acoustically excited with a tone of 2917 Hz at 91 dB SPL along one sensitivity vector.
Representative DE (a) modulation, (b) wrapped optical phase, (c) map of the magnitudes of displace-
ments averaged over six consecutive measurements, and (d) cross-sections of six displacement maps
along specific horizontal (solid) and vertical lines (dashed), illustrating the repeatability of the
measurements.
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Fig. 11 Measuring the shape of a human tympanic membrane (TM) using dual-wavelength holographic
contouring: (a) human temporal bone highlighting the tympanic ring, (b) wrapped optical phase corre-
sponding to the shape of the TM, and (c) 3-D shape of the TM. The shape is measured with wavelengths
of 780.2 and 780.6 nm.

3.1.1  Accuracy of 3-D displacement measurements Figure 8(b) shows the wrapped optical phase, which is
unwrapped and scaled to obtain the corresponding 3-D shape,
as shown in Fig. 8(c).

The semispherical membrane is mounted on a piezoelectric
shaker (JODON EV-100) that can operate at frequencies as
high as 150 kHz. By sweeping the excitation frequency and

The shape and 3-D displacements of a thin semispherical mem-
brane, shown in Fig. 8, with a radius of 6 mm and a thickness of
25 ym are measured with the developed holographic system.
The shape of the membrane is measured with a dual-wavelength
contouring method with wavelengths of 779.8 and 780.6 nm.

x-axis Displacement y-axis Displacement z z-axis Displacement

(@
1,560 Hz ‘
108 dB SPL

6
mm 8 0 P

y-axis Displacement z z-axis Displacement
R
(b)

4,480 Hz
101 dBSPL ym

©
8,021 Hz
96 dB SPL

um
01~

mm 6 8

Fig. 12 Measured 3-D sound-induced displacement of a human TM along the x-, y-, and z-axes at three
different tonal excitations. Magnitudes of displacements along x-, y-, and z-axes are (a) +-220, +-250, and
+520 nm for tonal frequency of 1560 Hz at 108 dB SPL, (b) +200, +120, and +220 nm for tonal fre-
quency of 4480 Hz at 101 dB SPL, and (c) +110, +210, and 510 nm for tonal frequency of 8021 Hz at
96 dB SPL. The diameter of the TM is 8 mm and the outline shows the handle of malleus (manubrium).
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monitoring the membrane’s time-averaged motions, %1633 an

appropriate mode of vibration is chosen. Representative results
are shown in Fig. 9, in which the membrane is excited with a fre-
quency of 25,418 Hz and amplitude of 0.4 V. Comparisons of the
displacement components along the x-, y-, z-axes, and the mag-
nitudes of displacements obtained with both methods show cor-
relation coefficients >95%, illustrating that the measurements are
accurate, repeatable, and independent of the measuring method.

3.1.2 Repeatability of stroboscopic measurements

Repeatability of the results obtained with the 3-D holographic
system is tested and verified by a series of consecutive strobo-
scopic measurements of a 10 mm diameter latex membrane
excited with a tone of 2917 Hz at 91 dB sound pressure
level (SPL), as shown in Fig. 10. Figures 10(a)-10(c) show rep-
resentative examples of the obtained modulation, wrapped
optical phase, and magnitude of displacements, respectively.
Furthermore, repeatability of the measurements is shown in
Fig. 10(d), where vertical (shown with dashed lines) and hori-
zontal (shown with solid lines) cross-sections of six consecutive
displacement measurements lie on top of each other.

In-plane d, (um)

In-plane dg (pm)

3.2 Shape and 3-D Sound-Induced Displacements
of Human TM

The TM sample was part of a human right ear temporal bone
from a 49-year-old male donor. The sample was prepared in
accordance with previously established procedures.”!? In order
to have the least amount of shadow on the surface of the TM, all
the bony structures around the TM were removed. In preparing
the specimen, it was necessary to also open the middle ear cav-
ity, however, those openings were filled by silicone impression
materials (Westone Inc.) prior to these measurements in order to
avoid and minimize the air flow through the middle ear cavity.
Also, to enhance light reflection from the sample and to reduce
the required camera exposure time in order to have a better sig-
nal to noise ratio, the lateral surface of the TM was coated with a
solution of zinc oxide. The effect of this coating on the vibra-
tional patterns of the TM has been shown to be negligible.”!!
The shape of the sample was measured with dual-wavelength
holographic contouring, as shown in Fig. 11, with two wave-
lengths of 780.2 and 780.6 nm. Figure 11(b) shows the wrapped
optical phase, which is unwrapped and scaled to obtain corre-
sponding 3-D shape, as shown in Fig. 11(c).
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Fig. 13 In-plane and out-of-plane sound-induced motions of a human TM excited with frequency of
(a) 1560 Hz at 108 dB SPL, (b) 4480 Hz at 101 dB SPL, and (c) 8021 Hz at 96 dB SPL. It can be clearly
seen that tangential (in-plane) components are negligible and the motions are mainly normal (out-of-
plane) to the TM surface. Displacements are in the unit of micrometers.
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Tones with different frequencies were used to stimulate the
membrane and 3-D sound-induced displacement components
of the surface of the TM were acquired. Figure 12 shows 3-D
displacement components of the TM along the x-, y-, and z-axes
produced by tones of 1560 Hz at 108 dB SPL, 4480 Hz at
101 dB SPL, and 8021 Hz at 96 dB SPL. The levels
were selected to generate measurable sound-induced TM dis-
placements. As shown in Fig. 12, as sound excitation frequency
increases, the number of local maxima in the displacement pat-
terns also increases and sound-induced motion patterns of the
TM become more complex.

Combining data obtained from the shape of the membrane,
shown in Fig. 11, with measured 3-D sound-induced displace-
ment components, shown in Fig. 12, displacement components
tangent (in-plane) and normal (out-of-plane) to the TM surface
are obtained. A numerical rotation matrix is used™ to rotate the
original Euclidean coordinate system of the measuring system
(x,y,2). so that the new coordinate system (e, /3, 77) has unit vec-
tors tangent and normal to the TM surface. Figure 13 shows the
results of the rotation of the coordinate system, where rotated
displacements have components tangent (in-plane components
d, and d;), and normal to the TM surface (out-of-plane com-
ponent d,). As shown in this figure, in-plane components are
much smaller than out-of-plane components (<20%), so that
the displacement vectors can be considered to be mainly normal
to the surface of the TM.

These data support hypotheses based on considering the
motions of the TM similar to those of thin-shells, in which the
tangential motions’ components are negligible and the motion
vectors are hypothesized to be mainly along the normal vector
of the surface of the membrane.®’

4 Conclusions

While there are many hypotheses of how the TM couples sound
to the rest of the ear, there is little data to support them.>**

cos @+ U3(1 — cos 0)
R = |U,U,(1 —cos 8) + U; sin &

where U = (U,,U,, Us) is the unit vector of the axis of
rotation of the observation direction (z-axis in the original
measuring coordinate system), and @ is the angle of rotation.
Therefore, as shown in Fig. 14, ateach point m, n, the rotated
displacement vector d,,, has components tangent (d,, andd )

Observation vector

Normal vector

TM surface

U: Axis of Rotation
(Normal to both Z and N)

U, U, (1 —cos ) — Us sin
cos 8+ U3(1 —cos )
U;sU (1 —cos §) —=U, sin @ UsU,(1 —cos 8) + U, sin

Knowledge about the shape and 3-D sound-induced displace-
ment of the TM are necessary sets of data in order to better
understand the acousto-mechanical transformer behavior of
the mammalian TMs. In this direction, we are developing opto-
electronic holographic systems capable of measuring shape with
sub-millimeter resolution, and 3-D sound-induced displacement
of the TM with sub-micrometer resolution. Combining the mea-
sured shape and 3-D sound-induced displacements of the TM at
each point on its surface enables characterization of the motion’s
components tangent and normal to the TM surface. Results
show that the tangential motions’ components are much smaller
(<20%) than the out-of-plane motions’ components. These
results are consistent with the modeling of mammalian TM
as thin-shells in which the tangential motions’ components
are negligible.

Appendix: Rotation Matrix used to Obtain
In-Plane and Out-of-Plane Displacements
The original Euclidean coordinate system x, y, z is mathemati-
cally rotated in order to obtain the local in-plane and out-
of-plane displacement components. In the holographic system
and based on the definition of the sensitivity vectors, the obser-
vation vector Z, i.e., a vector perpendicular to the CCD sensor,
has unit vector components Z,, Z,, and Z_ equal to [0, 0, 1].
Also, by having the 3D shape of the membrane, the unit normal
vector, N, at every point on the surface of the TM is quantified.
Since, both N and Z are unit vectors, the angle between them is
calculated with dot product of the two vectors; and the cross
product of these two vectors provide a vector, U, normal to
both of them that, in this case, is tangent to the local plane
of the membrane and is considered as the axis of rotation.
The rotation matrix R, is used to rotate the original displace-
ment vector d(d,.d,.d_), based on the rotation angle & and the
unit vector of the axis of rotation U with

0 U, U;(1 —cos )+ U, sin @
U,U;(1 —cos 0) = U, sin 6 (22)
0 cos @ + U3(1 —cos 8)

I
and normal (d,) to the local TM plane and is calculated with

the matrix multiplication of the rotation matrix, R, with the
original displacement vector d with

do(m,n) =R xd(m,n). (23)

Rotated displacement vector
droc (dar dﬂ: dr))

in-plane out-of-plane

B

Fig. 14 Transformation of the global measuring coordinate system x, y, z to the local coordinate system
a, 5, n, of the TM. The observation vector Z is rotated # degrees along the axis of rotation U.
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10. Paper D: 4D Measurements of the in-Plane and out-of-
plane motion of the human tympanic membrane

Overview

In this paper, being prepared for submission to the Journal of the Acoustical Society of America,
the developed 3D holographic methodologies are used to study multiple human TM samples in
order to better understand the general behavior of sound-induced motions of the human TMs.
The main focus of this Chapter is on the study of relative sizes of in-plane motions (components
tangent to the local plane of the TM) with respect to the out-of-plane motions (components
normal to the local plane of the TM). Shape and sound-induced motions of three human TM
samples are measured with our 3D holographic system. Four-dimensional sound-induced
motions of the TM (i.e., motions along X, y, z, at each temporal phase 0) are quantified, which in
turn, using FFT algorithms enable both magnitudes and phases of three-dimensional sound-
induced motion of human TMs along all three axes. A numerical algorithm is developed and
implemented to rotate the original global Euclidean coordinates of the measuring system (x, y, z),
so that new local coordinate systems (o, f, n) have unit vectors that are tangent (in-plane) and
normal (out-of-plane) to the TM surface. The general conclusion is that the in-plane components
are generally 10 to 20 dB smaller than the out-of-plane components, which is consistent with the
TM acting as a Kirchhoff-Love’s thin-shell dominated by out-of-plane motion with little in-plane
motion. These results argue against the presence of large in-plane motion components over
much of the auditory range, and reduce the probability of the involvement of such motions in

acousto-mechanical energy transformation.
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Four dimensional (Space + Time) Measurements of the In-Plane and Out-of-Plane
Motion of the Human Tympanic Membrane
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We develop and describe new computer-controlled digital holographic techniques to measure three-
dimensional (3D) shape and sound-induced motion of the surface of the tympanic membrane (TM),
and present new stroboscopic holography measurements of 3D nano-scale displacements of the
surface of the tympanic membrane (TM) in cadaveric human ears in response to tonal sounds. The
displacement measurements are made concurrently with detailed micron-scale measurements of the
3D shape of the lateral surface of the TM using the same holographic recording camera. The
combination of these measurements allows us to calculate the out-of-plane (normal to the surface) and
in-plane (tangential) motion components at over 1,000,000 points on the TM surface with a high-
degree of accuracy and sensitivity. A general conclusion is that the in-plane motion components are
significantly smaller than the out-of-plane motions calculated from our data whenever the sensitivity
and signal-to-noise of our displacement measurements allow accurate determination of the different
displacement components. These conditions are most often compromised with higher-frequency
sound stimuli where the overall displacements are smaller, and the spatial density of holographic
fringes is higher, both of which increase the uncertainty in our measurements. Our results are
consistent with the TM acting as a Kirchhoff-Love’s thin shell dominated by out-of-plane motion with
little in-plane motion, at least with stimulus frequencies up to 8 kHz. These results argue against the
presence of large in-plane motion components over much of the auditory range, and reduce the
probability of the involvement of such motions in acousto-mechanical energy transformation.

Keywords: 4D motion measurements; Digital Holography; Kirchhoff-Love Thin-shell; Tympanic Membrane.

1. Introduction
from recent stroboscopic holography measurements that

It is recognized that sound-induced motions of the
tympanic membrane (TM) are the first step in the
transduction of airborne sound energy to the mechanical
energy associated with motion of the sensory organs
within the inner ear; however, our knowledge of the
workings of the TM is rather superficial. While there are
multiple model descriptions of TM structure and function,
progressing from simple piston models (Shaw and
Stinson, 1983), through curved-membrane catenary-
dependent models (Goll and Dalhoff, 2011), to complex
3D finite element models (e.g., Funnell, Decreamer and
Khanna, 1987; Willams and Lesser 1990; Blayney,
Willimas and Rice 1997; Gan et al. 2002; Koike, Wada
and Kobayashi, 2002; Fay et al., 2005), there is no
complete description of how the surface of the TM moves
in response to sound to test these models. The most
complete descriptions of sound-induced TM motion come
P 5 ‘ﬂ) Acoustical Society of America
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quantify the sound-induced displacement at over 500,000
points on the TM surface, but only along a single
measurement direction (Cheng et al. 2010, 2013). While
some 3D motion measurements describing the
displacement of selected regions of the TM exist
(Jackson, Cai and Puria 2012), there has not been a report
of the 3D motion of the entire TM surface.

An approximation of such motions has been described
from a combination of nano-scale TM displacement
measurements with micro-scale measurements of the
shape of the lateral surface of the TM, both made on the
TM surface in a cadaveric chinchilla preparation
(Rosowski et al., 2013; Khaleghi et al.,, 2013). The
technique employed the Kirchhoff-Love approximation of
thin shell behavior (which suggests that small motions -
much smaller than the thickness - in shells of appropriate
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thickness and shape occur in the direction ‘normal’ to the
local surface of the shell) to estimate the motion normal to
the surface at each measurement point. This procedure
‘corrected’ the measure 1D motions measured along the
holographic camera axis for significant variations in the
direction normal to the curved surface of the TM (Kraus
1967; Saada 2009) . The computed motions ‘normal’ to
the TM surface showed more spatially uniform patterns in
TM motion magnitude, than were observed in the raw 1D
measurements (Rosowski et al. 2013; Khaleghi et al.
2013).

In the present paper we expand on our description of
TM motion by directly measuring the 3D motion as well
as the shape. This methodological advancement is
described in the methods section. The combination of 3D
motion measurements and shape allow us to not only
describe the motions normal to the surface, but now we
also quantify motions that are tangential to the local TM
surface, the so called in-plane motions. Quantification of
these motions allows us to test the applicability of the
Kirchhoff-Love thin shell approximation and also
investigate suggestions that in-plane motions are involved
in the transformation of acoustic energy into the
mechanical energy associated with the motion of the
malleus and ossicles (Goll and Dalhoff 2011; Jackson, Cai
and Puria 2012). Descriptions of our methods and some
preliminary results have been published previously
(Khaleghi et al., 2015).

2. Material and Methods

2.1 Preparation and the use of human temporal
bones

All of the measurements of TM motion we report here are
made in three de-identified normal human temporal bones
from donors of age 49 (TM1, male), 77 and 46 (TM2 and
TM3, female) years. The bones were either fresh or
previously frozen at the time of preparation. The
preparation of the temporal bones has been described
previously (Cheng et al., 2013, in press) and included: (a)
removal of the cartilaginous and most of the boney ear
canal to expose over 90% of the TM surface, (b) drilling
out the mastoid and opening the facial recess to inspect
the stapes and round window, and (c) opening the
epitympanic space to view the malleus and incus head.
After preparation, the bones were lightly fixed in Thiel
solution (Thiel 2002) for more than 2 weeks; this degree
of fixation has been demonstrated to have only small
effects on sound-induced stapes and umbo velocities
(Stieger et al. 2012), and has been demonstrated to have
little effect on the patterns of TM motion in treated human
temporal bones (Cheng and Guignard 2015). The lateral
surface of the TM was then painted with a thin coat of
zinc oxide (ZnO) suspended in distilled water at a
concentration of 60 mg/ce to increase the light reflected
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from the surface. Such painting has been demonstrated to
have little effect on the measured motion (Rosowski et al.
2009; Cheng et al. 2013).

The temporal bones were then mounted on a 3D
positioner placed on a large vibration-isolated table,
which also supported the multiple lasers and optical
devices needed for the holographic measurements
(Hernandez-Montez et al. 2009; Flores-Moreno et al.
2011). The bones were positioned such that the planes of
their tympanic rings were parallel to the holographic
recording CCD camera, and the TM image was centered
in the camera plane. The sound stimulus from a speaker
mounted on the table was conducted to the ear via a
flexible tube, which terminated several centimeters in
front of the lateral surface of the TM. A pre-calibrated
probe-tube microphone positioned near the intersection of
the TM and its ring was used to record stimulus sound
pressure. The stimuli were all continuous tones (Cheng et
al., 2010; 2013).

2.2 Digital Holography

2.2.1 Holography determines the change in the
optical path length between an object and
a reference position
Digital holography uses changes in the accumulated
optical phase between an object and a recording camera
plane to quantify the shape or motion of the object
(Hernandez-Montez et al., 2009; Rosowski et al., 2013,
Khaleghi et al., 2015). The differences in optical phase
can arise due to motion of the object (Cheng et al., 2010),
or a change in the wavelength of the laser illumination of
a stationary object (Khaleghi et al., 2013).

2.2.2 Measurements of shape using dual-
wavelength holographic contouring
Our technique for measuring the shape of the TM has
been described in previous articles (Khaleghi et al., 2013;
Rosowski et al., 2013). Briefly, the shape is estimated
from correlation fringe pattern produced by combining a
holographic image gathered using a laser with wavelength
Ai, and a second image gathered using a different laser
wavelength A4,. The result is a two-dimensional pattern
with fringes that code differences in the optical phase
captured on the plane of the recording camera, A¢(x, V),
produced by the two different wavelengths as they
propagate along a fixed Optical Path Length (OPL) that
includes the distance light travels from the illumination
point, to the reflecting surface, and on to the recording
camera, i.e.:

2m
Ap(x,y) = - OPL(x,y), (1)
where A is the synthetic wavelength defined by
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In practice both A, and A, where near 780 nm and
differed by ~ 0.5 nm, such that A =1.2 mm. Since our
digital holographic techniques are able to distinguish
optical phase difference equivalent to ~ 1/50 of a
wavelength, the functional sensitivity of our shape
measurements is ~24pm.

2.2.3 Measurements of Motion: Stroboscopic
holography

Our techniques for determining the sound-induced motion
at hundreds of thousands of points on the surface of the
TM have been described in detail elsewhere (Hernandez-
Montes et al., 2009; Cheng et al., 2013, Khaleghi et al.,
2015). As in the shape determinations, displacement
measurements use holographic interference patterns to
describe changes in the optical phase; however, the phase
changes occur due to change in OPL that results from a
change in the position of the object between two time
instants, while the wavelength of illumination A is fixed.

In order to ‘freeze’ the motion of an object vibrating in
response to a 0.1 to 20 kHz acoustic stimulus, we use a
high-speed acousto-optic modulator to strobe the
illuminating laser such that it is only illuminating the
optical path for a brief instant of time during each cycle of
acoustic stimulation (Hernandez-Montes et al., 2009). In
practice the duration of the illumination is 2 to 5% of the
period of the acoustic stimulus. The laser ‘strobe’ is
triggered at a specific phase of the acoustic stimulus, and
for each stimulus frequency, eight holographic recordings
are performed each at a regularly-spaced phase of the
acoustic stimulus (0, n/4, n/2, ... 7n/4). From these
recordings we reconstruct the cyclic motion at each point
on the surface of the TM. We then use Fourier transforms
to describe the magnitude and phase of the motion relative
to the magnitude and phase of the acoustic stimulus.

2.2.4 Definition of Holographic coordinate
system and calculation of sensitivity
vectors

An important part of this paper is our methods for

quantifying motion and shape in three dimensions, and

fundamental to that discussion is the definition of the
directionality of our measurement system, which is
summarized in Figure 1. The nearly planar tympanic ring
that supports the outer edge of the TM is positioned in the

Object Plane, parallel to the imaging Camera Plane of the

digital camera. Both of these planes are orthogonal to the

z-axis, while the x- and y-axes fall within the object and
camera planes.
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Figure 1. Definition of the camera based Cartesian
coordinates with z increasing with displacements toward
the camera and x and y defined by the right-hand rule.
The camera plane and object plane are parallel.

While Figure 1 describes the physical orientation of the
camera and the TM, part of our methods include altering
the sensitivity of the holograms recorded by the camera
plane to motions of different direction: these alterations
occur by varying the direction of the illumination path
while maintaining a constant observation path (Figure 2).
To understand the alteration in directional sensitivity of
the recorded hologram, we need to define the wunit
illumination direction vector, Kj(x,»), and the unit
observation direction vector, K (x,y) at each point of the
recorded hologram (Figure 2). While K; and K, are
dimensionless, the sensitivity vector, Kg (x,3), is defined
by the product of the wave number of the laser light and

the vector difference 2TR(K_O — K;), and describes the

directional sensitivity of the interference patterns recorded
at each point on the hologram. In other words,
holographic interferometry measures motions in the
direction of the sensitivity vector of the system with
sensitivity proportional to the magnitude of Kg (x,)), and
motion components perpendicular to the sensitivity vector
are not captured.

XXX (X), 2015

119



Camera point

Clxy)
- Camera Plane
|
|
|
|
z | — — —
Observation K=K -K
path | sThoTH
| /Fiberoptic
|
| /
I 7/
/
| /
|
|

,/Illumination
/ Path

unit observation

direction vector, Kg, unit illuminatiop.

direction vector, K|

~Tympanic Ring Plane
Object point
Olxy)

Figure 2. A schematic of the determination of the
holographic sensitivity vector Kg from the unit
illumination vector K; and the unit observation direction
vector K, , where Kg = 277:@ = 2TT[(K_O —K;). Variations
in the direction of K, cause variations in the direction and
magnitude of K.

2.2.5 Description of transformation of three
independent measurements to compute
motion along three coordinates

In order to determine all three Cartesian components of

displacement, at least three independent equations,

obtained by varying the sensitivity vector, K , are needed

(Figure 2). To reduce errors, 2D optical phase change

maps were obtained from four sensitivity vectors and the

3D displacement vector at each point on the TM surface
calculated by the least-squares method (Pryputniewicz
and Bowley, 1978). At each x, y point on the TM surface:

(@} = [1s1"(s1] " { [s]" (23} 3

where {d} is the 3x1 column vector describing the x, y
and z components of displacement, and [§] is the 4 X 3
sensitivity matrix describing the x, y and z components of
the four sensitivity vectors Kg , and {1} is the 4% 1column
vector describing the holographically determined fringe
locus functions that describe the motion-induced
difference in optical phase in each of the four
measurements. The details are provided in Appendix A.

1) Aquisition of holograms of the
stimulus induced difference in
Optical phase for each of
the four sensitivity directions
at / points on the TM surface

1€} | 2) Stroboscopic measurement [ {€);(6)}| 3) Compute 3D Displacement at
of Optical Path Length

Difference at eight stimulus
phases: 0,7, .., 21

’ each of eight Stroboscopic Phases

() = [[S17xIS]] " x{[sT"x(2})

5) FFT to define the magnitude
and phase of each of the 3 motion
components at each of the i
points on the TM syrface

— ¥

Magnitudes Phases
dy, dy, dz P Py Pz

1d(0);

4) Reconstruct phasic variation
in displacement in each direction
at each point on the TM surface.

Figure 3. Schematic of the calculation of the magnitude and phase of the Cartesian coordinate representation of
the 3D displacements of the TM surface. (1) At all points on the TM surface, (2) we define {Q} the fringe locus
function that describes the optical phase difference due to displacement at 8 stimulus phases for all four
sensitivity directions, (3){€2} and the sensitivity matrix are used to compute {d}which describes the three
Cartesian components of the displacement at each point, and at each phase of the stimulus, (4) The phasic
motion of each Cartesian component is reconstructed, and (5) Fourier transformation defines the magnitude and

phase of each of the three Cartesian motion components.

The four illumination directions were chosen to produce
linearly independent sensitivity vectors. Due to the
inverted conical shape of the TM and the TM’s position
recessed within the remnant of the boney ear canal, most

7z
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illumination directions produced noticeable shadows on
the TM surface. The illumination paths were chosen to
reduce such shadows as much as possible and maintain
adequate independence (Khaleghi et al., 2015).
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2.3 Quantification of the magnitude and phase of the
three dimensional motions

The displacement vector {d} containing the three
Cartesian components of 3D motion was calculated at
each of the i points on the TM surface for each of the
eight stimulus phases. As shown in Figure 3, fringe locus
functions, ();, corresponding to the sound-induced
difference in optical phase at each point on the TM along
every sensitivity direction, are stroboscopically measured
at eight different instances of the acoustic waveform
(Cheng 2010). Using Eq. 3, 3D sound-induced motions
of the TM are calculated at each of the eight stimulus
phases, and used to define the variation in the component
motion in each of the Cartesian directions as a function of
stimulus phase. The Fourier magnitudes (d,, dy, d, ) and

phase-angles (¢, Py @) of the phasic displacements of

each component were then computed for each point on the
TM surface.

2.4 Use of shape to define in- and out-of-plane
motions

According to Kirchhoff-Love thin plate theory, in cases
where surface displacements are small relative to plate
dimensions, the motion of the TM is well approximated
by out-of-plane motions along the direction normal to the
TM surface, and consequently, in-plane components of
displacement tangent to the surface of the TM are
negligible (Kraus 1967; Saada 2009). The theory also
suggests that knowledge of the unit normal vector 7
calculated from the shape of the TM at each point on the
TM surface (Figure 4), and a measure of motion in one
direction, can be used to compute the motion normal to
the membrane surface d,,. Calculations of d,, based on
shape and a 1D measurements and shape and our 3D
measurements will be compared.
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mm

mm

Figure 4. A 2D view of the 3D shape of a human TM.
The illustrated x-z plane is orthogonal to the x-y plane of
the camera, which is roughly aligned with the plane of the
tympanic ring. Increasing x corresponds to superior >
inferior. Increasing y is anterior > posterior. Increasing z
is medial > lateral. The umbo is the apex of the conical
TM. The inset shows the transformation to the local
coordinate system at a point on the TM surface, where
n(x,y) is normal (out-of-plane) to the membrane surface.

Since we also know the shape of the TM we can use the
measured x, y and z displacements at each point on the
TM to define motions that are normal to the local TM
surface, 7, (displacements out of the local plane) and
motions that are tangential to the local surface
(displacements within the local plane, a, £). A numerical
rotation matrix [R] (described in Appendix B) is used to
rotate the original Euclidean coordinate system of the
measuring system (x, y, z) at each point on the TM
surface, to a new coordinate system (a, f,n) with unit
vectors tangent and normal to the TM surface, so that at
each point on the surface of the TM, the new
displacement vector {dg,.} can be obtained

{droc} = [R] x {d}. (C]

Comparisons of the magnitude of d, with d, and dg
describe the relative magnitude of the out-of-plane and in-
plane motions and test the likelihood that sound energy
may be carried by in-plane motions of the membrane. It
should be noted that the magnitude of the rotated
displacement vector |d,.,;| is equal to the magnitude of the
original displacement vector |d], i.e.

|d| = /dx2+dy2+dj:|dm|: /d“2+dﬁ2+dn2 .

(5)
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Figure 5. Measured 3D shape of the lateral surfaces of three human TM samples: (a) shape of TM 1; (b) shape of TM 2;
shape of TM 3; the black outlines show the borders of the manubrium of the malleus on the medial surface of the TM. (d)
Cross sections along the manubrium (bounding the superior part of the membrane) of the shapes of all three TM samples; (e)
cross sections of the shapes of the three samples along a line through the umbo, but normal to the manubrium; (f) estimating
the individual radius of curvature of the TM by fitting circles to the semi-cross-sections defined by tracing the TM surface
between the umbo and the TM rim. In the illustration the posterior semi-cross-section is fit by a circle of radius R,, and the

posterior section is fit by R,.

3. Results

3.1 Measurements of human TM shape

Two dimensional projections of the shape of the three
human tympanic membranes are illustrated in the top row
of Figure 5. In each illustration the umbo is used to
define the x, y, z origin, and the manubrium is positioned
along the positive x and y diagonal (toward the far corner
in each of the plots). In each specimen the TM appears as
a blunted cone, with a depth of about 2 mm and a radius
of about 4 mm. The umbo is the most medial point on the
TM (z value of 0) and the z-coordinates of all points on
the TM surface are > 0. Figures 5d and e compare the z
coordinate of different points along two diameters on the
TM surfaces: one diameter that includes the manubrium
of the malleus and a second perpendicular to the first that
also includes the umbo. To evaluate the radii of
curvature, the z-coordinates of the shape along lines
normal to the manubrium were considered. The radius of
curvature of the toroid section of the TM (as per Fay et al.
2006) was calculated with a least-square fit of a circle
equation of the outermost part of the TM. As shown in
Figure 5f, circles are fit to the two sides of the TM (left
(R;) and right (R,)). The computed radii of curvature are
listed in Table 1.

Table 1. Estimation of the radii of curvature for three
human TM samples.

Radii of Curvature TM1 | TM2 | TM3
R, (mm) 584 | 481 |38
R, (mm) 341 | 4.65 | 494
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3.2 Magnitude and phase of motion along different
sensitivity vectors

Figure 6 illustrates the measured displacements along 4
sensitivity vectors in one bone at 4.48 kHz. The
magnitude and phases at the different points on the TM
surface measured along each vector have all been
normalized by the motion of the umbo measured with
each sensitivity vector. The displacement magnitude and
phases are arranged in complex patterns on the TM
surface with on the order of 10 local displacement
maxima and a similar number of distinct islands of
different phase. About half of the membrane moves with
a magnitude larger than the umbo displacement. More
than half of the membrane moves with a phase that is
within + 0.2 cycles of the umbo, and a large part of the
remaining area is nearly moving out of phase with the
umbo. Similar patterns have been observed with this
frequency of stimulation in other specimens (Rosowski et
al. 2009; Cheng et al. 2010, 2013, in press). The
magnitudes and phases of the motions of the surface are
similar for the four different sensitivity vectors, though
there are differences in the relative magnitudes of the
peaks and in the phase of motion. The similarity in
displacement across the sensitivity vectors is consistent
with the relatively small differences in illumination
direction that were consistent with minimize shadowing
on the TM (See section 2.2.3). Similar results were
obtained in the other two bones.
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Figure 6. Measurements of the magnitude and phase of the displacements measured along four different
sensitivity vectors (K, ... K,) in bone TB 1 normalized by the displacement of the umbo measured in each
sensitivity vector. The magnitudes scaled as dB re umbo displacement are in the top row. The phase angles
relative to the phase of the umbo are in the bottom row. The stimulus was a 4.48 kHz tone of 106 dB SPL.

3.3 4D Motion: Displacement as a function of space
(X, ¥, z) and stimulus phase (6)

As described in Figure 3, the three dimensional position
of the TM at each stroboscopic phase (relative to stimulus
phase 0=0) is calculated from the data obtained from all
four sensitivity vectors. The three leftmost columns of
Figure 7 show the calculated three Cartesian components
of surface motion at four representative acoustic stimulus
phases (0=45°, 90°, 135° and 180°), and display both +
and — changes in position with stimulus phase. The
rightmost column shows the computed magnitude of the
displacement (Eqn. 5) at each stimulus phase and maps
only positive values. While parts of the TM surface move
in (negative displacements) and others out (positive
displacements), the absolute value of all three components
and their combined magnitude increase while 0 varies
from 45° to 135° and change little between 135° and 180°
of stimulus phase. The progression of surface
displacements with stimulus phase suggest that the =0
condition is nearly aligned with a maximum or minimum
in the displacement waveforms on much of the TM
surface.

3.4 Estimates of TM Motion in the Camera-Based
Cartesian Coordinate system

The displacement components at each point on the TM

surface gathered from the four illumination directions
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(Figure 6) were used with Eqn. 3 to calculate 3D motions
at each stroboscopic phases (Figure 7) and then, Fourier
transforms were computed of the phasic displacement
along each of the three Cartesian axes to compute the
magnitudes and phases of motion in the 3-dimensional
camera-based coordinate system (Figure 8), where d,, and
d,, describe displacements in the measurement plane and
d, describes motions toward and away from the camera.
A general result from this calculation is that the x and y
components of motion at many locations on the TM
surface are 10 dB smaller in magnitude than the z
component, though there are regions and frequencies
where d, and d,, are within 5 dB of the magnitude of d,.

Comparisons of the phase angles of the 3 components are
complicated by the small magnitude of d, and d, at
many locations on the TM surface. These small
displacements approach the mnoise floor of our
measurement system and lead to inaccuracies in the phase
estimates that cause the speckling visible in the phase
maps in regions of low displacement magnitude.
Regardless of the noise-associated speckling, it is clear
the phase of motion in the x and y directions can differ
from the phase in the z direction. For example: ¢, the

phase angle of d,, is generally about 0.5 period out of
phase with ¢,
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Figure 7. Four-Dimensional (x, y, z and 0) sound-induced motion measurements in one bone at one single
frequency of 4.48 kHz at 106 dB SPL at four values of 0 (the stimulus phase). The three left hand columns are
maps of the relative displacement between the stimulus phase and phase zero, and can contain + or —
displacement values (with 0 values coded as pale yellow-green). The right hand column shows the magnitude of
the displacement (Eqn. 5) at each location on the TM at the different phases and only displays positive values

(with zero values coded as deep blue).

3.5 Estimates of TM Motion in the Camera-Based
Cartesian Coordinate system

The displacement components at each point on the TM
surface gathered from the four illumination directions
(Figure 6) were used with Eqn. 3 to calculate 3D motions
at each stroboscopic phases (Figure 7) and then, Fourier
transforms were computed of the phasic displacement
along each of the three Cartesian axes to compute the
magnitudes and phases of motion in the 3-dimensional
camera-based coordinate system (Figure 8), where d, and
d,, describe displacements in the measurement plane and
d, describes motions toward and away from the camera.
A general result from this calculation is that the x and y
components of motion at many locations on the TM
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surface are 10 dB smaller in magnitude than the z
component, though there are regions and frequencies
where d, and d,, are within 5 dB of the magnitude of d,.

3.6 Computed Normal and in-TM plane motions

Our methods provide measurements of TM 3D shape and
3D motion that we combine (using Eqns. 3 and4) to
compute the displacement components that are normal to
the TM surface d;, (out-of-TM plane) and the two
displacement components describing the motion in the
plane orthogonal to the local normal vector d, and dg
(the two components in the local plane of the TM).
Figure 9 illustrates maps of the magnitude and phase of
these three components for TM 1. Note that in regions
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where the magnitude of the motion normal to the TM
surface is clearly measurable (= 0 dB), the magnitudes of
the in-plane motion components |d,| and |dg| are
generally 10 to 20 dB smaller than the magnitude of the
motions normal to the TM surface |d,|. This point will be
re-addressed after we look at the computations of d,, for
all three of the temporal bones measured in our series.

Figure 10 illustrates maps of the magnitude of the
computed d,, for all three bones measured at similar
frequencies. There are many similarities and differences
in the set of three results. Similarities include: (a) The
progression from a few displacement maxima with
stimulation near 1 kHz to many local maxima with
stimulation near 8 kHz; (b) the arrangement of the
multiple maxima around the umbo and manubrium

observed with 4-9 kHz stimulation, and (c) the
observation that the magnitude of motion of the umbo and
manubrium in the direction normal to the local TM
surface is at least 10 dB smaller than the maxima
displacements on the TM surface. All of these features
have been observed in our previous reports of
measurements of z-component motion (Cheng et al. 2010,
2013, in press).

Figure 10 also points out differences in how the TMs of
individual temporal bones respond to sound. Where we
see differences in the shape and location of maxima as
well as differences in the rate in which the patterns
increase in complexity with frequency (Rosowski et al.
2009).

dB
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. 0 2
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+4 25
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Figure 8. The magnitude and phase of the three camera-based components of the TM displacement in x, y and z

(dx7 dy,
displacement of the umbo in the z direction. The
motion in the z direction.
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d,) magnitude (in dB) and phase in one ear. The magnitudes are scaled in dB relative to the

phases are scaled in periods relative to the phase of umbo
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Figure 9. The in- (d, and dg) and out-of-plane (d,) motion components of TM1 normalized by the out-of-
plane motion of the Umbo at each frequency. The colorbars are in logarithmic magnitude scale, and phases are in
cycles.

in-plane magnitude is defined by the mean of the
magnitudes of d, and dg. These ratio maps indicate that
over much of the TM surface with stimulus frequencies
less than 2 kHz, the in-plane motion is much smaller in

We next address the relative magnitudes of the normal,
d,, and in-plane displacements, d,, and dg, in the three
bones. Figure 11 illustrates the point-by point ratio of the
in-plane and normal displacement magnitudes, where the
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magnitude (<0.25 or < -12 dB) than the motion normal to
the surface (most of the surfaces of the TM are coded
from dark blue to green corresponding to -30 to -12 dB).
The comparison is more complicated at higher
frequencies where the regions colored in orange and red
increase in prominence as frequency increases. Careful
comparisons of Figures 10 and 11, point out that regions
in Figure 11, where the displacement ratio is coded red
(i.e. in-plane displacement magnitudes > out-of-plane)
correspond to regions in Figure 10, where the motion
normal to the surface is of low-magnitude. Indeed, many
of the regions in Figure 11 where the ratio is near or
greater than 0 dB are attributable to regions where |d,| is
near the measurement noise floor. Therefore, we specified
a threshold of 10 nm for the |d,|, and the value of every
single pixel with magnitude of <10 nm are removed from

™ 1

this analysis and their color set to white. Furthermore,
since our techniques reconstruct the phasic motion in each
of the component direction, we can test for the stimulus
driven sinusoidal response of each component at each
pixel, by correlating the measured phasic motion with the
sinusoidal motion predicted by the fundamental
component of the FFT fit to the motion at each pixel
(Cheng et al., 2010). Pixels of poor correlation (with
squared correlation coefficients values less than 0.5 ) are
also shown as white in these displays. The numbers under
each plot panel in Figure 11 note the average of the dB
values in each panel. The consistent reading near -10 dB
say that on average, the in-plane motion components are
about 30% of the magnitude of the out-of-plane motion
component.
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Figure 10. The magnitude of the motion normal to the TM surface |d, | normalized by the sound pressure at the
TM at three frequencies in the three temporal bones in our study. The displacement magnitudes are scaled in
terms of dB re 100 nm of displacement per Pascal of sound pressure stimulus.
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Figure 11. Maps of the ratio of in-plane to out-of-plane where in-plane is defined by (the sum of the magnitudes

of the two in-plane motion components)/2.

4. Discussion

New computer-controlled holographic techniques have
been used to quantify 3D spatial displacement
components at over a million points on the surface of the
TM in response to tonal sound stimulation TM, and
(nearly simultaneously and using the same observation
angle) determine the 3D shape of the lateral surface of the
TM. This combination of measurements allows us to
quantify the out-of-plane displacements (the displacement
component normal to the local surface), and the in-plane
displacements (the displacement components tangential to
the local surface) associated with sound-induced TM
motion.

4.1 Description of the multiple directional
components of TM surface motion

Our methods use four independent measurements of the

sound-induced motion of the TM, with each measurement

associated with a different illumination direction and

holographic sensitivity vector Ks (Figure 2). Because the

variation in sensitivity vector was limited by the geometry
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of the TM and its supporting bone, measurements made
with the four illumination directions were similar (but not
identical) in magnitude and phase (Figure 6). The known
sensitivity vectors and the four measurements were used
in a least-squares calculation (Equation 3, Appendix 1) to
define the motion of over 1,000,000 points on the TM
surface in terms of the Cartesian coordinates (d,, d, and
d,) imposed by the camera plane, with the z-direction
orthogonal to the plane. Because of the flattened cone
shape of the TM, the measurement geometry with the TM
ring paralleling the camera plane, and the limited
variations in the directions of the four sensitivity vectors,
the computed d, is generally similar in magnitude and
phase to the displacements measured with the different
illumination directions (Figure 6 and 8).

4.2 Comparison of out-of-plane motion and motion
orthogonal to the tympanic ring

Our new measurements allow us to assess the out-of-

plane (normal to the local surface) component d,, of TM

motions and compare it to the more usual measurements

of motion orthogonal to the tympanic ring (Cheng et al.

2010, 2013, in press) that generally correspond to our d,
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measurements. Direct comparison of measurements in
TB1 at 4.48 kHz, show great similarity between d,
(Figure 8, right hand column) and the computed d,
(Figure 9, right hand column, center rows), though there
are differences, particularly in areas midway between the
center of the TM and its rim. The location of these
differences corresponds to regions where the curvature of
the TM is largest, while the regions of similarity are
explainable in terms of the near orthogonal orientation of
the TM ring (and the center of the TM) with the z axis of
the camera defined coordinate system employed in our
methods.

Further comparisons of the d, magnitude maps of
Figure 10 with similar maps in the literature show great
similarities between the measured normal component of
motion and the previously published one-dimensional
measurements made along the z axis in our previous
reports (Cheng et al. 2010, 2013, in press). The d,, data
from this study illustrated in Figures 9 and 10 all show the
relatively low-magnitude of motion of the umbo at all
stimulus frequencies, and the frequency dependent
evolution of displacement patterns that we have
previously  described in  our  one-dimensional
measurements of TM motion. These include: (1) The
presence of one or two displacement maxima and
generally in phase motion of the entire TM surface near 1
kHz and at lower frequencies, (2) the increase in the
number of local displacement maxima with frequency
coupled to the introduction of phase variations on the TM
surface with stimulus frequencies between 1 and 5 kHz,
and (3) the ring-like organization of maxima and iso-
phase islands that are circularly arranges around the umbo
in the center of the TM at frequencies above 6 kHz.

4.3 Comparison of in-plane displacements (d, and
dg) with d, and d,

Our methods also provide a measurement of the x and y
components of displacement d, and d,, as well as the
two components of in-plane displacements (d, and dg)
on the TM (those tangent to the local surface). While d,
and dg components where measureable, they were
generally small, and our estimates of their magnitude and
angle were often limited by our ability to resolve these
components (Figure 9). The motion magnitudes in the x
and y, were generally larger in magnitude than the in-
plane components (e.g. Figure 8). This is consistent with
the cone shape of the TM and a motion that is dominated
by displacements normal to the cone’s surface. Because
of the orientation of the TM cone relative to the x — y
plane define by the tympanic ring, motions normal to the
surface can have significant x and y motion components,
even when the in-plane motions are zero in magnitude.
The importance of the TM shape in relating d, and dg to
d, and d, suggests that measurements of the latter two,
without knowing shape, are not useful estimates of in-
plane TM motions.
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4.4 What is the relative magnitude of in-plane and
out-of-plane motions
Because of the large variations we observed in the
magnitude of d, and dg, we performed more direct
comparisons of d, and dg, and d,,. These are illustrated
in Figure 11 as maps of point-by-point computations of
the mean magnitude of d, and dg divided by d,
magnitude, where this ratio is scaled in dB. In Figure 11,
0 dB (coded in red-orange) is assigned to those regions
where the in-plane and out-of-plane displacement
magnitudes are equal, red codes where the in-plane
motions are larger than the out-of-plane, and orange to
blue codes regions where the out-of-plane motions are
larger in magnitude. The gestalt from these plots is that
out-of-plane motions are generally larger than the in-plane
motions. More quantitatively, the ratio of in-plane to out-
of-plane motion varies over the surface of the TM
between 6 and -30 dB with an average value of near -10
dB. As noted in the results section, this comparison is
complicated when the motion of the out-of-plane
component is small and near the magnitude of the
measurement noise floor, and many, but not all, of the
locations where the computed ratio is 0 dB or better
surround locations where the measured displacements are
small and our displacement estimates are known to be
noisy.
Our estimates of the magnitudes of in-plane motion
components were not always small, especially in isolated
spatial regions in response to stimuli of frequencies above
a few kHz. For example, in Figure 9, the d, and dj data
with the 4.48 kHz stimulus show several small punctate
regions (shaded in yellow) just to the right of the
manubrium were these ‘in-plane’ motions are larger than
the out-of-plane |d,,',| motions of the umbo. Small,
localized regions near these same locations also show d,
and dg magnitudes larger than the out-of-plane motion of
the umbo with 8 kHz stimulation. The highly localized
nature of these regions argues against any functional
significance of these puncta where the in-plane motions
are large in magnitude.

4.5 Does the TM act as a thin shell?

The Kirchoff-Love theory of thin shells describes a
system dominated by out-of-plane displacements
(displacements normal to the plate surface; Kraus 1967;
Saada 2009). Our measurements of 3D sound-induced
motions of the cadaveric human TM and its 3D shape
suggest that out-of-plane motions generally dominate the
sound-induced motion of the TM; however, our data do
suggest the presence of in-plane motions and, in isolated
regions of the TM, the in-plane motions can be larger than
the out-of-plane.

Thin-shell theory generally applies to shells made of
homogenous  material, in which the resultant
displacements are small compared to the thickness of the
shell, and the thickness of the shell is less than 0.05 of the
radius of curvature of the curved plate. Our data and TM
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preparations are consistent with both of the numerical
constraints: The thickness of the human TM varies
between 50 and 140 um (Van der Jeught et al. 2013), and
the largest displacements we observe are less than 10 um,
which leads to a displacement to thickness ratio of less
than 0.2. Also, the radius of curvature in the three TMs
we measured varies between 3.4 and 5.8 mm (Table 1)
yielding a ratio of max thickness to this radius of < 0.045.
However, the TM is not homogenous.

The normal TM is tri-laminar structure in which the
central layer contains several populations of fibers with
different orientations (Decraemer and Funnell 2008), a
structure that is not consistent with homogeneity.
Furthermore, as ears age, the TM is subject to multiple
subclinical alterations in structure, e.g. tympanosclerosis
(Merchant et al. 2010). The events can cause scars or
mineral deposits in the TM that further impact the
heterogeneity of its structure. While each of the three ears
used in our study had no overt signs of middle ear disease,
none had the clear pristine TM generally observed in
children and young adults. Furthermore, non-uniformities
in the painting of the TM surface with the ZnO solution
are also possible; the TM surface is somewhat
hydrophobic and the water-based solution odes not always
cover the surface equally. Whether paint-induced or
natural structural in-homogeneities were associated with
the punctate regions of clearly large in-plane
displacements is a point of further study.

5. Summary and Conclusion

We have described new holographic methods that can
measure the 3D-shape and 3D-motion of the surface of
the TM nearly simultaneously using a fixed geometry of
TM specimen and digital camera back plane (Khaleghi et
al. 2013, 2015). The combination of shape and 3D
motion was used to produce the first accurate
measurements that separate the out-of-plane (normal to
the surface) and in-plane (tangential to the surface)
displacement components. While the later were shown to
be generally small, consistent with thin plate theory, they
were difficult to quantify when the membrane motion was
small. There were also small regions of the membrane
surface with in-plane motions that were larger in
magnitude than the measured out-of-plane.
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Appendix A: 3D motion measurements with the
method of multiple sensitivity vectors

As mentioned in Section 2.2.3, 3D motion components of
the TMs are measured with the method of multiple
sensitivity vectors in holographic interferometry. The
difference in optical phase (1 produced by a displacement
d measured with sensitivity vector Ky is the dot product
of the sensitivity vector with the object’s displacement
vector

O=K;-d , (A1)

where the sensitivity vector is the product of the light
wave number and the vector difference between the unit
observation vector and the unit illumination vector
(Figure 2). In the case of a three dimensional motion and
a sensitivity vector described in three dimensions, Eq. Al
can be expanded to

Q = (Kgy , Ksy, Ks,) - (d, . dy, d,)
= Kopd, + Ky dy, + K, d, . (A2)

If we know () and K, we have one equation and three
unknowns, dy, d, and d,. In order to solve (A2), we
require at least three different three-dimensional
sensitivity vectors: K;, K, and K. In order to minimize
experimental errors, we obtain double exposure optical
phase maps using four different sensitivity vectors to form
an over determined system of equations:

0, Ky Kly K,

d
K. K. K. *

9.2 — 2x 2y 2z « dy ) (A3)
Q3 K3x K3y K3z d
Z

Q4 K4-x K4 K4—z

and they can be simplified into the following equation

{41 = [Slaxs X {d}ax1 - (A4)

Equation A4 is solved with the least-squares error
minimization method. First, both sides are multiplied by
the transpose of the sensitivity matrix S,

[T 58 X (Dxcs = [S17 5 X [Slasa X (dhaxs (AS)

Thus, the displacement vector {d} can be obtained by

-1
(dss = [IST 505 X [Slass] g X {ISI 500 X (Daa}, (A6
An important consideration in the method of multiple
sensitivity vectors is that all the sensitivity vectors need to
be as linearly-independent as possible for the system to
provide accurate results.  Therefore, the condition

number, C, of the square matrix, [F] = [S]7[S],
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characterizing the geometry of a holographic setup is
calculated (Vest 1979; Golub and Van Loan 2012)

Ilmax(F)

(C(S) - Amin(F) ° (A7)
where A4, and A,,;,, are the maximum and the minimum
eigenvalues of [F]. A condition number close to one
indicates a well-conditioned matrix, but this represents a
holographic setup with large angles of illumination (Vest
1979; Osten 1985). However, because of the particular
cone-like geometry of the TM and the presence of the
bony structures around it, the maximum possible angles of
illumination are limited. Therefore, we arranged our
different illumination directions to achieve the largest
angles of illumination within the constraints imposed by
the geometry of the TM (Khaleghi et al., 2015).

Observation vector
A

Normal vector

TM surface

a
U: Axis of Rotation
(Normal to both Z and N)

Appendix B: Rotation Matrix used to obtain in- and
out-of-plane motions

The original Cartesian coordinate system x, vy, z is
mathematically rotated in order to obtain the local in-
plane and out-of-plane displacement components. In the
holographic system and based on the definition of the
sensitivity vectors (Figure 4), the observation vector Z,
i.e., a vector perpendicular to the CCD sensor, has unit
vector components Zy, Zy, and Z, with magnitudes equal
to [0, 0, 1]. From the measured 3D shape of the
membrane, we can define the unit normal vector, N, at
every point on the surface of the TM (Khaleghi et al.
2013). Since, both N and Z are unit vectors, the angle 0
between them is calculated as the dot product of the two
vectors; and the cross product of these two vectors
provide a vector, U, normal to both of them that, in this
case, is tangent to the local plane of the membrane and is
considered as the axis of rotation.

Rotated displacement vector

drot (da: d,B: dn)

)

in-plane out-of-plane

B

Figure B1. Transformation of the measuring coordinate system to the local coordinate system of the TM by
means of a rotation matrix. Left panel: The definition of the normal direction N and U, the axis of rotation
between the observation direction Z and N, where U is normal to both N and Z Middle panel: The
transformation between the Cartesian coordinates defined by the camera plane (x, y) and observation direction
(z) and the out-of-plane (7 normal to the local surface) and in-plane (o and B, tangential to the local surface)
motion directions.

The rotation matrix IR, is used to rotate the original displacement vector d(dy, d,, d,), based on the rotation angle 0 and the
unit vector of the axis of rotation U with

cos6 + U,%(1 — cos 0) U,U,(1—cos@) —Ussinf U,U;(1—cos@)+ U,sinb
R =|U,U;(1 —cos8)+ Ussinf cos 8 + U,%(1 — cos 9) U,U;(1 —cosB)—U,;sinb|, (B1)
U;U (1 —cosB)—U,sin8@ UzU,(1—cosf)+U,sind cosf + Us*(1 — cos8)

the rotation matrix, R, with the original displacement
vector d with

where U(U,,U,,Us) is the unit vector of the axis of
rotation of the observation direction (z-axis in the original
measuring coordinate system), and 6 is the angle of
rotation. Therefore, as shown in Figure 4, at each point 1,
n, the rotated displacement vector d,,; has components
tangent (d, and dg) and normal (d) to the local TM
plane and is calculated with the matrix multiplication of

dpor(mn) = Rxd(m,n). (B2)

It should be noted that the magnitude of the rotated
displacement vector |d,.,;| is equal to the magnitude of the
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original displacement vector |d|, and the following
condition is always valid

dez +d,*+d,’ = Jdaz +dg*+d,”, (B3)

Appendix C: Procedures for 3D shape measurements

Four phase-stepping holographic contouring technique
(Furlong and Pryputniewicz 2000; Khaleghi et al., 2015)
is used to quantify the 3D shape of several human TM
samples. As shown in Figure Cla, the CCD sensor is
illuminated with both reference and object beams at
wavelength A; and camera captures four intensity patterns
I, to I, as four consecutive camera frames gathered with
accumulating 7/2 phase steps added to the optical path.

(a)
Intensity
Maps

4; I Az 4
I I
I3 I3
Iy Iy
(b)
Optical Phase
Maps
Pl

Then, the laser is tuned to a new wavelength 4, and
another set of four intensity patterns at the second
wavelength are recorded. The optical phases at each of
these two states are calculated as shown in Fig. Clb.
Then, the differences between the optical phases of the
two states are calculated in order to obtain a fringe pattern
corresponding to the shape of the TM. Based on the
geometry of the holographic system and mainly
sensitivity vectors, carrier fringes are also overlaid on top
of the shape-related fringes. Therefore, a numerical plane
is subtracted to mathematically remove the carrier fringes.
Then, the data are masked and scaled in order to obtain
the 3D shape of the object.

\;/Phase Subtraction

©
Optical Phase
Difference

(d) LS,
Unwrapped, Masked, 0?5 L

and scaled 3D shape 34

0
mm

: Plane Subtraction
(Mathematical)

4 4 mm

Figure C1. Algorithms used to calculate 3D shape of the objects using dual-wavelength holographic contouring.
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11. Paper E: Simultaneous full-field three-dimensional
vibrometry of the human eardrum using spatial-bandwidth
multiplexed holography

Overview

In this paper, published in the Journal of Biomedical Optics in 2015, development of a novel
single-frame multiplexed lensless holographic system for truly simultaneous measurements of
the motion of samples such as human TM using multiple sensitivity vectors are described.
Accepted 3D deformation measurement using holographic techniques require repeating the
measurement at least along three different directions, and assume high reproducibility of
response (i.e. the observed specimen behaves similarly when stimulated and measured several
times). For in-vivo measurements reproducibility is affected by a number of factors including
changes in shape due to respiration, motion of the subject, and the subject’s pulse. A single-
frame multiplexed holographic system is developed, which allows for simultaneous holographic
measurements along multiple sensitivity vectors. The holograms of the objects of interest are
recorded with three simultaneous incoherently-superimposed pairs of reference and object
beams, such that the modulation image corresponding to each illumination direction is
reconstructed at a different position of the image. An image registration algorithm based on the
shift theorem of the Fourier Transform is implemented to register the images. The time needed
for a given 3D motion measurement is decreased at least threefold. We demonstrate that the
present method is a valid alternative to repetitive holographic methods and offers promising
perspectives towards accurate 3D deformation measurements of biological specimens for in-vivo

applications.
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Simultaneous full-field three-dimensional
vibrometry of the human eardrum using
spatial-bandwidth multiplexed holography
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Abstract. Holographic interferometric methods typically require the use of three sensitivity vectors in order to
obtain three-dimensional (3-D) information. Methods based on multiple directions of illumination have limited
applications when studying biological tissues that have temporally varying responses such as the tympanic
membrane (TM). Therefore, to measure 3-D displacements in such applications, the measurements along all
the sensitivity vectors have to be done simultaneously. We propose a multiple-illumination directions approach to
measure 3-D displacements from a single-shot hologram that contains displacement information from three sen-
sitivity vectors. The hologram of an object of interest is simultaneously recorded with three incoherently super-
imposed pairs of reference and object beams. The incident off-axis angles of the reference beams are adjusted
such that the frequency components of the multiplexed hologram are completely separate. Because of the
differences in the directions and wavelengths of the reference beams, the positions of each reconstructed
image corresponding to each sensitivity vector are different. We implemented a registration algorithm to accu-
rately translate individual components of the hologram into a single global coordinate system to calculate 3-D
displacements. The results include magnitudes and phases of 3-D sound-induced motions of a human cadaveric
TM at several excitation frequencies showing modal and traveling wave motions on its surface. © 2015 Society of
Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JB0.20.11.XXXXXX]

Keywords: three-dimensional displacement measurements; digital holography; image registration; multiplexed holography;

tympanic membrane.
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1 Introduction

The eardrum, or tympanic membrane (TM), transforms acoustic
energy in the ear canal (at its lateral side) into mechanical
motions of the ossicles (at its medial side: the middle ear).
The acousto-mechanical-transformer behavior of the TM is
determined by its shape, thickness, boundary conditions, and
mechanical properties. For a better understanding of hearing
mechanisms, full-field-of-view techniques are required to quan-
tify shape and nanometer-scale sound-induced displacement of
the TM in three-dimensions (3-D).'* Common 3-D displacement
measurement techniques require repeating the measurement at
least along three sensitivity directions, which rely on the
assumption of reproducibility (i.e., the observed specimen
behaves similarly when stimulated and measured several times).
Reproducibility is not applicable in cases where the measured
phenomena are of temporally varying nature, which is the case of
biological tissues such as the TM. Therefore, ideally, 3-D motions
of such membranes should be quantified simultaneously.

For in vive measurements,” reproducibility is affected by a
number of factors including changes in static pressure preload-
ing or slight changes in shape due to respiration, motion of the
subject, and the subject’s pulse. For measurements in cadaveric
specimens, although the reproducibility is typically better than
in live subjects, the response of the TM over time can also be

*Address all correspondence to: Morteza Khaleghi, E-mail: mkm@wpi.edu

affected, e.g., by the drying of the tissue. The motivations to
measure the 3-D motion of the TM in response to sound in
vivo potentially include the use of the results for a more accurate
diagnostic of TM and middle ear pathologies or to evaluate
middle ear surgeries.

In this paper, the development of a single-frame multiplexed
lensless holographic system is described in order to minimize
the measurement times to address the time-varying nature of
the TM. In this method, the hologram is simultaneously illumi-
nated with three incoherently superimposed pairs of reference
and object beams, such that the images corresponding to each
illumination direction are reconstructed at a different position on
the image plane because of the slightly different spatial carrier
frequency introduced by the incident off-axis angles of the
reference beams.*” Due to the differences in the position of
the reference beams and the wavelength of each pair of beams,
the reconstruction distance and magnification of each numeri-
cally reconstructed hologram corresponding to each sensitivity
vector are different. We, therefore, developed and implemented
a registration algorithm to accurately translate individual views
into a single global coordinate system. The registration method
uses phase-only correlation (POC)® and a swept cut-off filtering
to improve robustness. Three images obtained from three sen-
sitivity vectors in a reconstructed multiplexed hologram are

1083-3668/2015/825.00 © 2015 SPIE
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registered and, consequently, 3-D displacement components are
extracted. To validate the method, the 3-D motion of a synthetic
(time-invariant) membrane is measured with the presented
method and with a method involving sequential measurements
from multiple illumination angles. Once the accuracy of the
measuring system is verified, sound-induced 3-D motion of
human cadaveric TM samples are measured at different tonal
frequencies and the results are presented.

2 Methods

2.1 Off-Axis Digital Holography

In holography, the recorded intensity at the CCD (hologram)
plane, I(k, 1), is given by

Ik, 1) = |R(k. 1) + O(k, )2
= |R(k, )] + |O(k, )2 + R*(k, 1)O(k. 1)
+ R(k.DO (k. ). (1)

where R(k,!) and O(k,[) are the complex amplitudes of the
reference and object waves, respectively, k and [ are the coor-
dinates of the pixels in the CCD (hologram) plane, and * stands
for the complex conjugate. In an off-axis digital holographic
conf"lguraliong’|2 similar to the one shown in Fig. 1(a), the
CCD sensor is illuminated with a plane reference wave,
R(k,1) = R exp[i(2nfx)], at an angle @, and an object wave,
O(k, 1), so that the resulting interference has a fringe pattern

with equidistant spacing of'*'*
A
S — 2
" (@) @

where P is the period of the fringe pattern, 1 is the laser wave-
length, and @ is the off-axis angle. Therefore, the spatial fre-
quency of the interferogram, i.e., reciprocal of the Pg, can be
written as

2. /0
f(] = I sm (E) . (3)

The four terms of Eq. (1) are superimposed in the hologram
(spatial) domain. However, if the hologram is recorded in an

Reference wave

Object .
—
> (N
— %
—p £

Object wave

(a)

CCD sensor

T3: FIR"(k, DO(k, D]

off-axis geometry, these terms can be separated by taking the
Fourier transform, F, of the intensity to obtain

FlIk,1)] = F(|IR(k, D)*) + F(|O(k. D)
+ FIR* (k. DO(k.D)] + FIR(k. [)0* (k. I)].
4)

The spectrum of such an off-axis hologram is schematically
shown in Fig. 1(b). The central parts of the hologram spectrum,
F(R(k.D*) + F(|O(k,1)|*), lack the phase information and
contain only intensity values and are called the zero-order
diffraction (ZOD) terms. The other two terms, symmetrically
located from the origin, encode both intensity and phase and
are called the twin images.

Based on Wiener—Khinchin theorem, the Fourier transforms
(FTs) of the squared fields |R(k, )|* and |O(k,{)|?, termed T1
and T2 in Fig. 1(b), are equal to the autocorrelation of the FT of
wave fields R(k,/) and O(k,!) in the Fourier domain, respec-
tively, and the FT of the term R*(k,[)O(k,[) is the cross-
correlation of the FT of R* and O [and similarly for the
R(k,1)O*(k, 1) term]. It should be noted that the correlation inte-
gral, similar to the convolution integral, represents the scanning
of one function by another. The range of variables over which
the integral is nonzero is given by the sum of the widths of the
scanning and scanned signals. In the case of autocorelation, the
maximum extent is twice the width of the function being auto-
correlated.”” Therefore, considering an ideal plane reference
wave R(k,I) providing a single spatial frequency, the band-
widths of cross-correlation terms F(R*O) and F(RO*) are
half of the bandwidth of the autocorrelation term F{(|O[).
As shown in Fig. 1(b), assuming that the object wave field
has a bandwidth of B, the bandwidth of each of the cross-cor-
relation terms, T3 and T4, corresponds to the bandwidth of
the object’s wavefront and is equal to B, and the bandwidth of
the autocorrelation term T2, F(|O]?), is 2B.

To ensure that the information recorded by the off-axis
holography is resolvable and useful, two requirements should
be satisfied. First, the cross-correlation terms (conjugated data)
should be completely separate from the autocorrelation (ZOD)
terms; this requirement can be satisfied using a minimum
off-axis angle of the reference wave. Second, the CCD sensor
should be able to resolve the interference pattern, which can be

T1: F(|R(k, D)

T2: F(l0(k, D]?)

T4: FIR(k, 1)0" (k, D)

—— f—>]

2B B

(b)

Fig. 1 Principles of the off-axis holographic configuration: (a) spatial carrier frequency is induced by
the off-axis angle of the reference wave with respect to the system’s optical axis; and (b) four terms in
the spectrum of the hologram that consists of two autocorrelation terms T1 and T2 and two cross-
correlation terms T3 and T4. The bandwidth of the cross-correlation terms IS half the bandwidth of

autocorrelation terms.
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obtained by limiting the off-axis angle to be less than the
Nyquist sampling limit, which requires at least two pixels per
fringe period.

2.1.1  Minimum off-axis angle

In order to separate useful data that contain phase information
(conjugated data) from the autocorrelation terms, which only
include intensity values (ZOD terms), a minimum off-axis
angle should be considered for the reference wave. To determine
this minimum angle, it is sufficient to determine the minimum
carrier frequency f,;, for which the autocorrelation and cross-
correlation terms are completely separated from each other. As
shown in Fig. 1(b), the minimum carrier frequency that produces
separated terms occurs when f,;, = 3B, resulting in a highest
spatial frequency of at least 4B and a total spatial bandwidth of
8B. Therefore, the optimum bandwidth of the hologram in the
case of the Fresnel approximation is adjusted to be 8§B.

It was demonstrated that for the case of Fresnel approxima-
tion in the scalar diffraction theory, the total bandwidth of the
hologram is equal to the sum of the bandwidths of the convo-
lution kernel (quadratic phase-factor) and the bandwidth of the
FT of the object field.!!” The spatial bandwidth of the convo-
lution kernel can be determined by taking a partial derivative of
the convolution kernel with respect to the two directions and can
be calculated with NAx/Ad and NAy/Ad, where N? is the num-
ber of pixels in the hologram plane, Ax and Ay are the pixel
sizes in the x and y directions, and 4 is the reconstruction dis-
tance. On the other hand, it can be geometrically shown that
the maximum bandwidth of the object can be calculated from

L./Ad and L,/)d, where L, and L, are the dimensions of the
object in the horizontal and vertlcal directions.'®'® Assuming
L,= L,=1L and Ax = Ay = Ap, the summation of these
two banﬂwidths defines the total bandwidth of the hologram
field and can be written as

_L+NAp
8B = FP R (%)

Therefore, the minimum spatial frequency of 3B can be cal-
culated with

3(L+ NAp)

> 3B = i
.flTlll'l— 8Ad

©)
hence, the minimum off-axis angle of the reference wave can be
obtained by combining Eqs. (3) and (6) and can be written as

3(L+ NAp)] . o

Oyin = 2sin~!

Therefore, a minimum angle of €,,;, should be considered to
avoid any overlapping of the twin images and ZOD terms.
However, in order for the CCD sensor to be able to resolve
the interference patterns, one needs to limit the maximum
off-axis angle.

2.1.2 Maximum off-axis angle

The achievable resolution for holographic reconstruction is
dictated mainly by the spatial carrier frequency of the reference
wave (which influences the fringe spacing) and the sampling
resolution of the CCD. Based on the Nyquist theorem, the

maximum spatial frequency of the interferogram that the
CCD can resolve is

1
Fmax = 2Ap° (8)

where Ap is the pixel size of the camera. Combining Eqgs. (3)
and (8) and considering the small angles for &, the maximum
angle can be obtained using

Opax = 2sin™! (ﬁ) (9)

Therefore, considering the points mentioned in Sec. 2.1 and,
in particular, Egs. (7) and (9), for a CCD sensor with
2048 x 2048 pixels of size of Ap = 3.45 um, an object size
of 1 cm, and an object-to-CCD distance of 10 cm, the allowable
off-axis angle should be within the range of 3.6 < @ < 6.5 deg.
These results are considered in the design of our experimen-
tal setup.

2.2 Off-Axis Multiplexed Lensless Digital
Holography

For 3-D displacement measurements using off-axis multiplexed
holography, three incoherently superimposed pairs of object and
reference beams are simultaneously recorded with the CCD sen-
sor. As shown schematically in Fig. 2(a), the object of interest is
illuminated concurrently with three object beams from different
directions to provide three sensitivity vectors that are required
for 3-D displacement measurements.'* The reference beams pro-
vide slightly different spatial carrier frequencies on the CCD to
enable single-frame phase extraction.”® The total intensity
recorded on the CCD detector, I(k, I), due to incoherent super-
position of three pairs of reference-object beams is®’

Zl,, (k1)

where k and [ are the coordinates of the pixels in the CCD (holo-
gram) plane, R, and O, are the n’th reference and object waves,
respectively, with n = 1, 2, 3. Similar to single sensitivity vector
off-axis holography, described in Egs. (1) and (4), Eq. (10) can
be expanded to

Z\R,, (kD) + 0,k D,

=1

(10)

3
(k1) =" ay(k.D) + ek, 1) exp2ai(fex + fryy)]

n=1

+ cplk. 1) exp[—2ai(frex + fy)]. (11)
where  a,(k,l) = Ri(k, 1)+ O3(k,1) and  c,(k 1) =
0, (k, )R, (k. 1) exp|i®@, (k,I)]. The two-dimensional (2-D) FT

of Eq. (11) is

FT{I(k l)} = ZAn(gv’T) + Cn(é:_fnf()'n_fiwﬁ)

+C:%r(‘§+fln§0-rl‘+fm]0)’ (12)

where the uppercase notation denotes the FT components. The
terms C,, and C;, describe the spatial frequency distribution of
the twin images components that are mathematically expressed
as complex conjugates of one another, each containing the
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Fig. 2 Multiplexed off-axis holography: (a) schematic of the recording procedure by simultaneous illu-
mination with three pairs of reference and object beams; (b) spectrum of the recorded multiplexed off-axis
hologram consisting of three incoherently superimposed interference patterns; and (c) representative
numerically reconstructed double-exposure multiplexed hologram that is used for 3-D displacement
measurements. The object of interest is a 1-cm diameter latex membrane, acoustically excited by
a tone of 1.5 kHz. Sound-induced concentric fringe patterns and four painted marks used to test regis-
tration algorithms are visible on each of the reconstructed images.

required phase information. As shown in Fig. 2(b), these terms
are shifted in the Fourier domain due to the off-axis angles of
the reference waves and can be separated from one another by
an appropriate calculation and the setting of carrier frequencies
Sneo and f,0, as described in Sec. 2.1.

Our techniques are based on single-frame lensless digital
holography®'* in which reconstructions of the multiplexed
holograms are obtained by the Fresnel-Kirchhoff integral that
is efficiently computed with the 2-D FFT as
['(m,n) = FFT2[R(k, )h(k, )y (k, )], (13)
where I'(m, n) is the complex reconstructed hologram at coor-
dinates m and n in the reconstruction plane, R(k, ) is the com-
plex amplitude of the plane reference wave that is considered to
be one in the numerical reconstruction, and y/(k, 1) is the 2-D
chirp function defined with

w(k,l) = exp ;—’;(szxz + PAy?)|, (14)

where Ax and Ay are the pixels sizes of the CCD sensor, 4 is
the laser wavelength, and d is the reconstruction distance.
Additionally, the DC component can be mathematically
removed from the multiplexed hologram by recognizing that
the DC component in the Fourier domain is due to the low-
frequency spatial variation in the hologram, and it can thus be
isolated by applying a high-pass filter.'"!" Therefore, the optical
phase of the reconstructed hologram is obtained with

b

where 3 and 3t denote the imaginary and real parts of the com-
plex number I'(m, n). Thus, in one single frame of the camera,
optical phase information corresponding to all three sensitivity
vectors exists. With the use of double-exposure techniques, i.e.,
subtracting optical phases of two reconstructed holograms
corresponding to deformed and reference states of the object,
the 3-D motion components of the objects can be obtained
with the method of multiple sensitivity vectors in holographic

3(C(m, n)]

R([C(m,n)] 1)

@(x,y) = atan 2{
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interferometry.”* Considering the fact that the fringe-locus
function Q% i.e., the unwrapped optical phase difference
between the two states, is the scalar product of the sensitivity
vector, K(K,,K,.K_), with the object’s displacement vector,
d(d,.d,.d_), the 3-D displacements components are obtained by

d, , [KE K KT (g
d| = |K;i K K| x|Qf. (16)
d, T K} K) K? Q,

However, in the case of off-axis multiplexed holography, the
differences in the position of each reference beam and wavelength
of each pair of beams cause the position, reconstruction distance,
and magnification of each image corresponding to each sensitiv-
ity vector to differ. The translation between the images could be
computed analytically if the exact relative orientation and position
of the reference beams were known. However, such an approach
would require additional hardware, and small errors in the meas-
urement of the orientation could lead to large errors in the esti-
mate of the translation. It is thus more efficient to register the
resulting images in a postprocessing step. Therefore, for quanti-
fication of the 3-D displacement, an image registration algorithm
is required to position each image into a common global coordi-
nate system.

2.3 Registration of Multiplexed Holograms

In order to place the images in a common coordinate system,
prior to applying Eq. (16), a registration algorithm based on
POC has been developed and implemented.®?*?’ This algorithm
accounts for pure translation of the reconstructed images and an
intensity-invariant approach to compensate for slight differences
in the overall brightness and intensity of the images.

Considering two translated images f(n;, ;) and g(ny, n,) =
f(ny — 8,,ny — 8,), with relative separations of §; and &, in the
horizontal and vertical axes, respectively, their corresponding
FT images, F(k;,k,) and G(k, k,), are related to each other
through the shift theorem with

19 ‘252}

Gk, ky) = F(k. k) - o2 [ , (17)
where M and N are the number of pixels in the image, and k; and
ko are the coordinates in the frequency domain. Therefore, the
normalized cross-power spectram of F(k, k;) and Gk, k) is
F(ki k)G (ki ko) azj[fonitsn]

Al

—=e R
|F(ky. k2) G (ki ka)|

Riky. ky) — (18)

where * defines the corresponding complex conjugated functions.
By applying the inverse 2-D FFT to Eq. (18), the POC function,
r(ny, ny) is calculated with

r(ny,my) = F YRk, k2)} = 8(x + 8), y + &), (19)

with & being the Kronecker delta function having a single peak,
whose location defines the translation between the two images®
and can be computed with

[8,.8,] = argmax{r(ny,n,)}. (20)

The phase correlation, r [Eqgs. (19) and (20)] was calculated
from a series of subsets of R with regularly decreasing high-
frequency limit (equivalent to spatial filtering with regularly

decreasing low-pass cut-off frequencies). The translation between
two images is obtained by considering the most frequent peak of
the POC functions resulting from the calculation series.

2.4 Muiltiplexed Holographic System

In our experimental system, incoherent superposition of the
beams is implemented by using three different near-infrared
external cavity tunable laser sources with wavelengths centered
at 779.8, 780.2, and 780.6 nm. As shown in Fig. 3, the acousto-
optic modulators (AOMs) contained in each laser delivery sub-
system (LD1 to LD3) are used to switch the laser on/off to
enable stroboscopic measurement capabilities™>® (Herndndez-
Montes et al., 2011). A dual-channel function generator is
used with one of the channels sets to acoustically stimulate
the TM sample with a calibrated speaker, while the second chan-
nel is set to pulse mode to simultaneously drive all three AOMs.
The duty cycle of the pulse signal sent to the AOMs is typically
set to 2% to 5% of the period of the tonal stimulus; however,
the multiplexed holographic system (MHS) temporal resolution,
i.e., the system’s maximum detection bandwidth, is determined
by the 200-kHz limit of the AOMs used to strobe the phasic
illumination. As shown in Fig. 3, each laser is coupled into
single-mode polarization maintaining fibers and then split into
reference and object beams. The reference beams illuminate
the CCD in an off-axis configuration by a beam splitter and the
object beams concomitantly illuminate the sample from three
different directions to define the sensitivity vectors for 3-D dis-
placement measurements. In Fig. 3, the optoelectronic compo-
nents are shown for only one of the laser delivery subsystems;
however, all three laser delivery subsystems contain similar
components.

The computing platform performs multiple tasks that include
synchronizing the stroboscopic illumination of the lasers with
different stimulus phases, acquiring multiplexed holograms with
a 5 MPix CCD camera having a pixel size of 3.45 x 3.45 gm?,
and reconstructing the holograms in real time. A live 2-D FFT is
used to ensure that the components of the frequency spectrum of
the hologram do not overlap with each other.”

3 Validation of Measuring Capabilities

In order to validate the measuring capabilities of the MHS, the
results of an artificial membrane obtained with our MHS are
compared with the ones obtained with a documented repetitive
holographic interferometric method.”* The artificial sample is a
thin semispherical membrane mounted on a mechanical shaker
that can operate over a wide range of frequencies up to 150 kHz.
The results of the vibration of this sample at 25-kHz frequency
are shown in Fig. 4. Modulation and wrapped optical phase
images of both twin components are shown to illustrate how
the three pairs of complex conjugated reconstructed holograms
are distributed.

To determine the 3-D deformations of the membrane, the
POC image registration algorithm described in Sec. 2.3 is
used to place the wrapped optical phases in a common co-
ordinate system prior to unwrapping and applying Eq. (16).
Figures 5(a)-5(c) show the registered wrapped and correspond-
ing unwrapped optical phases of the artificial sample along three
sensitivity vectors K to K5 that are used to quantify 3-D dis-
placements of the membrane. Unwrapping of the optical phases
might add a constant phase value (DC) to the unwrapped data,
therefore, as shown in Fig. 5(c), a seed point at an area with no
deformation is selected and the value of this point is considered
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Fig. 3 Experimental system for simultaneous 3-D displacement measurements with multiplexed
holography. The solid lines denote the beam paths and the dashed lines the connections between
components. AOM is the acousto-optic modulator; RB and OB are the reference and object beams,
respectively; BS is the beam splitter; and TM is the tympanic membrane sample. Each of the three
laser delivery subsystems contains similar components.

as the DC, so that all the pixels’ values in this image are
subtracted from this DC. This step is repeated for all three
unwrapped phases so that the data are all normalized before
quantification of 3-D motion.

The registered, unwrapped, normalized phases are used to
quantify 3-D deformation. To test and verify the validity of
the measurements obtained with MHS, the results are compared
with results obtained with a documented repetitive holographic
interferometric method.™ The results obtained with both meth-
ods are shown in Fig. 6. On visual inspection, the results of
both methods are almost indistinguishable from each other. A
point-by-point correlation measure indicates a Pearson correla-
tion coefficient of 97%, 96%, and 99% along the x-, y-, and z-
axes, respectively. It should be noted that since the resolution of
the results obtained from the two methods is different (in the
MHS the image resolution is 500 x 500 while in the regular
repetitive method the resolution is 1500 x 1500), the images
with higher resolution are first downsampled and then the cor-
relations are evaluated.

4 Representative Measurements of
Three-Dimensional Motions of
Human Tympanic Membrane

The cadaveric human TM of a female, 46-year-old donor was
prepared by removing the bony portion of the ear canal in
a lightly fixed temporal bone. The middle-ear space of the
sample was widely opened, which enabled assessment of the
normality of the TM and ossicles. The temporal bone was
immersed in Thiel embalming solution for several weeks before
the experiments to stop decay and eliminate potential patho-
gens.” Due to semitransparency of the mammalian TMs, the
sample was coated with a thin layer of zinc oxide to increase
the laser light reflection, as shown in Fig. 7(a). The effect of
coating on shape and deformation patterns has been studied
by several researchers and found to be negligible.’’*? The

temporal bone was held with an adjustable clamp and mounted
on a post in front of the holographic system. Figure 7(b) sche-
matically shows the simultaneous recording of a multiplexed
hologram of the cadaveric human TM. As shown in this figure,
the x-axis is along the superior-inferior direction and the y-axis
is along posterior-anterior direction, while the z-axis is perpen-
dicular to the tympanic ring plane and along the lateral side of
the TM. Figure 7(c) shows a representative example of wrapped
optical phase of sound-induced motion of the TM acquired
with a double-exposure multiplexed hologram of the TM sur-
face. The three fringe patterns show the similarities and
differences in their spatial arrangement and their optical phase
magnitudes.

Prior to stroboscopic measurements, the time-averaged
response of the TM at different tonal stimuli was monitored*?
and the excitation frequencies were chosen at the maximum
motion of the TM. At each stroboscopic phase, sound-induced
motions of the TM along three orthogonal axes x, y, and z are
calculated from the unwrapped optical phases, as described in
Sec. 2.2. Then, FFT algorithms are used to reconstruct magni-
tudes and phases of motions along all three axes® and the results
are shown in Fig. 8. The displacement patterns are simpler at
lower frequencies, and as the excitation frequency increases,
the complexity of the displacement maps also increases. At
0.8 kHz, one or two regions of large displacement are visible
with a relatively homogenous phase along all three axes. As
excitation frequency increases nodal lines appear, characterized
by lines of minimum magnitude corresponding to separations
between regions where the phase is different by 0.5 cycles, sug-
gesting that the number of areas on the surface of the TM that
are moving out-of-phase also increases. Such a phenomenon can
be clearly seen in TM’s motion patterns obtained with excitation
frequencies of 4.68 and 13.2 kHz, as shown in Fig. 8. An inter-
esting observation is that in low excitation frequencies, the mag-
nitude of motion along the x-axis is slightly greater than along
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Fig. 4 Stroboscopic measurements of a vibrating thin semispherical membrane clamped around its
perimeter: (a) and (b) are the modulation and wrapped optical phase of the real and conjugated recon-
structed multiplexed holograms. The excitation frequency is 25 kHz and the membrane is concomitantly
illuminated from three different directions to define the sensitivity vectors for 3-D measurements, which in
this case correspond to the difference in the motion of the membrane between two stimuli phases of
0 deg and 90 deg. The images for each of the three sensitivity vectors and their corresponding conjugates
(fuzzy images) are symmetrically arranged around the center of each figure panel.

the y-axis. Since the manubrium is located along the x-axis of the
measuring system [Fig. 7(b)], a possible interpretation is that the
TM, in response to sound, deforms more in the direction parallel
to the manubrium than in the direction perpendicular to it.
The presence of delay in the sound transfer of the middle
ear triggered the idea of the existence of traveling waves on

the surface of the TM and it was suggested by several research-
ers.”>** Although our data show that the majority of the TM
motions are modal, there are indications of a combination of
modal and traveling wave like motions on the surface of the
TM. Figure 9 shows the sound-induced motions of the TM
excited with a tone of 6.884 kHz at several instances of the
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Fig. 5 Registered optical phases corresponding to sound-induced displacement of an artificial mem-
brane: (a)-(c) wrapped and unwrapped optical phases corresponding to sensitivity vectors K to K3,
respectively. “+” in the unwrapped optical phase along K3 denotes the location of the seed point to
identify the DC of the unwrapped data. The color and grayscale coded wrapped and unwrapped phases
are in radians.
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Fig. 6 Validation of the results of three-dimensional (3-D) displacement measurements versus a
documented method:?® (a) displacement components along x, y, and z obtained using MHS; and
(b) displacement components along x, y, and z obtained with the method of repetitive holographic
interferometry. R is the Pearson correlation coefficient between the results obtained with the two
methods.
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Fig. 7 Simultaneous recording of a multiplexed hologram of a cadaveric human TM in order to acquire 3-
D sound-induced displacements: (a) the human temporal bone including the TM under investigations with
the location of speaker and microphone; (b) schematic of the recording of the multiplexed hologram illus-
trating simultaneous illumination of the three light sources on the TM samples from different sensitivity
vectors; and (c) acoustically induced wrapped optical phase corresponding to the stroboscopic meas-
urement of a human TM motion at a stimulus frequency of 6.884 kHz. The optical phases correspond to
the difference in the motion of the TM at two acoustic phases of 0 deg and 90 deg. Bright blurry regions
facing each of them on the opposite of the image’s center are the corresponding complex conjugates.

full-cycle vibration obtained from stroboscopic illumination at
different phases of the excitation signal. Two arrows shown in
Fig. 9 illustrate the main traveling waves’ paths. As shown in
this figure, the motion of the first traveling wave is initiated
from the posterior-inferior quadrant and travels in a semicircular
way toward the posterior-superior quadrants. The second one
circulates in the posterior-inferior quadrant. Considering the
excitation frequency and the travel distance, a wave speed of
21 m/s can be calculated.

5 Discussion

In this paper, we have shown the results of simultaneous 3-D
vibrometry of the human eardrum using MHS. The results
show great similarities with state-of-the-art multiple sensitivity
vectors holographic methods, while the recording time is dras-
tically reduced (decrease in the acquisition time by a factor of
3 in the case of a single frame and a factor of 12 in the case of
four phase-stepping techniques). The developed method has
promising applications in the experimental measurement of the

motion of biological membranes such as the TM. Simultaneous
3-D motion measurement is a crucial step toward holographic
measurements of live biological specimens.

5.1 Choice of the Registration Technique

The success of the registration depends on the similarities in
spatial patterns. In theory, if the motion of the measured object
is very different along the multiple sensitivity vectors, the regis-
tration might be less accurate. However, since the sensitivity
vectors are not orthogonal, the motions along all sensitivity
vectors are correlated. Moreover, the pattern made by nodes
(regions with no membrane motion) is likely to be similar
along several vectors since the displacement is equally zero
along the multiple directions. The choice of an FFT-based
method over a moving correlation method is motivated by its
lower computational load. Also, the FFT needs to be calculated
only once for spatial filtering and registration. An alternative to
use a posteriori registration would be the analytic computation
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Fig. 8 Magnitudes and phases of 3-D sound-induced displacements
of the human TM excited at three different frequencies obtained with
FFT-reconstruction algorithm along three orthogonal axes x, y, and z.
The displacements are normalized based on the sound pressure
level obtained from the microphone. The outline of the manubrium is
shown in white in all the figures.
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of the translation between the reconstructed images. In this case,
a very accurate measure of the position and orientation of all
elements of the optical system would be required. Such an
approach would not only be cumbersome, but small errors could
lead to large errors in the translation calculation. For these rea-
sons, the developed method is preferred.

5.2 Dynamics of Human Tympanic Membranes

Our previous studies have shown that the sound-induced
motions of the mammalian TMs follow several patterns (simple,
complex, ordered) at different stimulus frequency ranges.>"** It
was shown that at low excitation frequencies (up to 1 kHz), most
of the points (>90%) on the surface of the TM are moving
in-phase and the surface displacements are well described by
low-order modal motions without any nodal points.>*® As the
excitation frequency increases, the displacement patterns can
be described with a combination of higher-order modal dis-
placements (with multiple nodes) and traveling waves. The 3-
D results shown in this paper show similar types of dynamics
along all three axes, which are in the plane of the tympanic ring
(along the x- and y-axes) and normal to such a plane (along the
z-axis). The motion pattern is simple at 0.8 kHz (top 2 rows of
Fig. 8), complex at 4.68 kHz (middle 2 rows of Fig. 8), and
ordered at 13.2 kHz (bottom 2 rows of Fig. §) stimuli.

6 Conclusions

Due to the time-varying nature of biological tissues like the TM,
a unique method for 3-D displacement measurements based on
multiplexed holography is developed that allows for simultane-
ous holographic measurements along multiple sensitivity vec-
tors. The developed methodology is a critical step toward in
vivo measurements of 3-D TM motions. In our approach, the
hologram of an object of interest is recorded with three simul-
taneous incoherently superimposed pairs of reference and object
beams, such that the modulation image corresponding to each
illumination direction is reconstructed at a different position of

2
phase 270

Fig. 9 Responses of the human TM excited with a tone of 6.884 kHz at different acoustic phases sug-
gesting the presence of a combination of modal and traveling wave patterns. Black arrows shown in
the pattern of phase 45 deg indicate the main paths of the traveling waves.
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the image. An image registration algorithm based on the shift
theorem of the FT is implemented to register the images. The
displacement measurements are in good agreement (greater than
96%) with other documented methods, while simultaneous
acquisition of all three measurements reduces the effects of tem-
poral variations of the specimens. The time needed for a given
3-D displacement measurement is decreased at least threefold.
We demonstrate that the present method is a valid alternative to
repetitive holographic methods and offers promising perspec-
tives toward faster accurate displacement measurements of bio-
logical specimens.
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12. Paper F: Characterization of acoustically-induced
forces of the human eardrum

Overview

In this paper, accepted for publication in a proceedings volume of the Society for Experimental
Mechanics, acoustically-induced forces of the human TM are characterized to further expand the
knowledge on the dynamics of sound-induced energy transfer through the middle ear. Force-
sensing techniques are usually contact-based approaches and due to the viscoelastic properties of
the TM, any interaction between the probe and the TM may result in modification of its dynamic
properties by, potentially, squeezing the membrane, and in turn, inducing localized stresses in the
vicinity of the contact area. Furthermore, a biologic tissue like the TM exhibits relaxation and
creep behavior, such that the contact force may decrease over time (even to the point of loss of
contact between the probe and the TM). In this paper, efforts toward measurements of sound-
induced forces of the TM using minimally-invasive sensing methodologies are described. The
methodologies consist of integrating MEMS-based force sensors with the developed holographic
systems for simultaneous characterizations of kinematics and dynamics of the TM. The MEMS-
based force sensor consists of an actuator suspended by four folded springs attached to an outer
frame. Compressive or tensile forces applied to the probe in its axial-direction result in a relative
motion of the actuator and a set of capacitive electrodes, transducing motion into capacity
changes, which are read out by an analog integrated circuit. Sensors have sub-micro-Newton
resolution and are capable of measurements along a single axis on a localized area of 50x50 um?
on the TM surface. A computer-controlled 3D nanopositioner, with a resolution of 35 nm and
adjustable positioning rate, automatically places and scans the force sensor at several locations

on the TM that are critical for the transfer of energy from the outer ear to the inner ear.
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12.1. Capacitive force sensing approach

The MEMS-based (MicroElectroMechanical system) capacitive force sensors are suitable for a
range of biological studies with forces from picoNewton (102 N) to milliNewton (10° N).
Commercially-available MEMS-based capacitive sub-micro-Newton force probes FemtoTools
FT-S1000 are used to quantify the sound-induced forces of the TM. Capacitance is a measure of
the electrical charge between two conductors separated by an air gap. A load applied to the
sensor causes a defection. As the conductors are moved closer to or farther from one another, the
air gap changes, and so does the capacitance (Sun and Nelson 2007; Beyeler et al., 2012). An
electronic circuit converts the capacitance variations into DC-voltage variations. Figure 12.1

shows the details of the probe used to measure sound-induced forces of the TM.

sensor probe

%
a |
spring di| G ?) | synchronous Vour
To buffer amp il G @ demodulator
buffer amp |
sensor probe
3 = | W CLG
> s
= (1, ?
(b) (©)

Figure 12.1. MEMS force sensor: (a) a solid model of the sensor; (b) schematic of the
internal structure of the sensor; and (c) block diagram of the sensor and its readout circuit
(adapted from Sun and Nelson 2007).
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As shown in Figure 12.1a, the sensor probe transmits forces axially, which in turn, causes
deflection of the unidirectional compliant front springs. As shown in Figure 12.1b, this
deflection displaces the inner movable capacitor plates (2), so that with a force applied along the
positive x-axis, plates (2) move away from plates (1) and closer to plates (3). An AC signal is
applied to the outer capacitors (plates (1) and (3)), and a voltage divider is formed, as shown in

Figure 12.1c. The resulting output signal can be obtained by

\Y —V( Cl) V( CZ) (12-1)
T =\, +¢,) C\c +¢,/7

where C; and C, are the capacitances of the two capacitors and can be calculated with

Ay

Cl = KSO_ ) (12_2)
dy
A, (12-3)

Cz =K€0d_ )
2

where K is the relative permittivity of the dielectric material between the plates (i.e., equal to one

for air), and g, is the vacuum permittivity and equal to &, = 8.8541 X 1072 F/m.

dqi+d;

Considering the nominal plate spacing d, = , and the spacing between the plates

d, =dy+Ad and d, =d,— Ad, the output voltage that is linearly proportional to the
displacement can be obtained with

Ad
Vour = Vsd— ) (12-4)
0

By considering the two front springs as one spring constrained on both ends with a point load
applied in the middle, the force-deflection relation of this single spring can be obtained with

FI3

= 12-5
4Ew3t’ ( )

Ad

where F is the applied force, E=100 GPa is the Young’s modulus of P-type (1 0 0) silicon, I, w,

and t are the spring length, width and thickness, respectively (Sun and Nelson 2007).
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12.2. Compensation for the stress relaxation of TM

One of the challenging issues in the measurements of sound-induced forces at a point involves
viscoelastic stress relaxation phenomena produced by a constant strain load induced by the
MEMS probe. As illustrated in Figure 12.2a, there is a gradual stress reduction in time when a
constant strain is applied. Thus, during experimental measurements, the preloading force has to
be monitored and maintained at a constant level. Therefore, the MEMS-based force sensor
shown in Figure 12.1, is mounted on a computer-controlled 3D nanopositioner having a
resolution of 35 nm and operating in closed-loop control to maintain a constant DC force level

on the order of 250 uN during the time window of acoustic excitations.
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Figure 12.2. Viscoelastic properties of the TM exhibiting stress relaxation: (a) stress
relaxation as a function of time under constant strain; and (b) Generalized Maxwell Model
(adapted from Zhang et al., 2007).

to

In order to determine appropriate constant DC force level, analyses similar to those provided by
the Generalized Maxwell Model need to be carried out. Such model, shown in Figure 12.2b, can
be used to predict viscoelastic properties as well as the time constant needed in the closed loop
control of the 3D nanopositioner. Additional models have also been obtained by other

researchers (Hoffman and Grigg 2002; Duenwald et al., 2009; Aernouts et al., 2012).
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In this Chapter, the frequency-domain transfer function of the sound-induced forces at several
points on the surface of the TM are experimentally obtained with frequency sweep of tonal
stimuli (harmonic stresses). However, to minimize the acquisition time, the measurements can
also be done in transient mode, where the forces are measured by applying either an impulse or a
Pseudorandom Gaussian white Noise (PGN) stress input to the specimen, and measuring the

resulting strain (Hoffman and Grigg 2002).
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ABSTRACT

Human eardrum or Tympanic Membrane (TM) is a thin structure located at the boundary between outer and middle ears.
Shape, deformations, and thickness of the mammalian TMs have been studied by several groups; however, sound-induced
forces of the TM, and the question of “how large the forces produced by acoustic waves are along the manubrium at the input
to the middle-ear ossicular system?” have not been fully answered. In this paper, sound-induced forces in the human TM are
measured at different tonal frequencies and at several points on its surface. A calibrated force sensor with a resolution of 0.5
uN is used with a 3D nano-positioner, enabling accurate placing of the sensor at points of interests on the TM surface. A
closed-loop control system is designed and implemented in order to realize constant preload of the sensor at all the measuring
points. Concomitant to the force measurements, time-averaged and three-dimensional stroboscopic holographic
interferometry are used to compare the modal shape of the sound-induced motion of the TM before and after the presence of
the force sensor. The preliminary results show that the maximum sound-induced forces at the umbo occurs at frequencies
between 1.5 to 2.3 kHz, whereas the maximum forces for locations on the surface of the TM occurs at around 5 to 6 kHz.

Keywords: Digital holographic interferometry; Human eardrum; Micro-scale force measurements; Sound-induced motions.

1. Introduction

interferometry [2] are used to compare the modal
vibrational patterns of the sound-induced motion of the
TM before and afier the presence of the force sensor to

Mammalian eardrums or Tympanic Membranes (TM) are
thin structures (with thickness varying from 20 to 120 pm

[1]) located at the boundary between outer and middle
ears. Shape, deformations, and thickness of the terrestrial
vertebrate TMs have been studied by several groups
including our group [2-4]; however, characterization of
sound-induced forces in the middle ear have been always
challenging and, to the best of our knowledge, there are
little or no reports or publications in this field. Some of
the challenging issues relating to such force
measurements include the dimensions and location of the
TM and its viscoelastic properties with relaxation and
creep behavior during loading [4]. We have developed a
micro-force measuring system to quantify sound-induced
forces in the human TM at different tonal frequencies and
at several points on its surface. The measuring system
uses a MEMS force sensor integrated with a 3D
nanopositioner to perform automatic force compensation
to account for the TM’s relaxation by a closed-loop
control. Concomitant to the force measurements, time-
averaged and three-dimensional stroboscopic holographic

monitor how the force sensor is changing the kinematics
of the TM motions, and more importantly, to relate the
sound-induced displacements data to the measured force
data in order to develop constitutive equations. One
important outcome of this work is a test of the suggestion
that prosthetic replacement eardrums can be improved if
they maintain the normal curvature and the material
properties of a healthy TM.

2. Methods

The experiments include the use of continuous tonal
sound stimuli with measurements of the shape and 3D
sound-induced motion before and after the use of the
force sensor at various locations on the TM surface. The
combinations of these force and motion measurements
under the different stimulus conditions  with
measurements of shape and thickness will define: (a) How
sound energy is transferred to different locations on the
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TM [5]; (b) What is the timing relation (possible phase
lags) of force and motion in the TM surface; (¢) Whether
the tent-like shape of the TM acts as a lever which
concentrates force at the TM rim and ossicular
connections while allowing large motions of the region
between the TM rim and its center; and (d) How the
thickness and stiffness and viscous moduli of the TM vary
over its surface.
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Fig. 1. FemtoTools FT-S1000 force sensor
used to characterize sound-induced forces in
the human TM: (a) an image of the force
sensor showing characteristic dimension; (b)
the geometry of the tip of the sensor showing
its sensitive direction; (c) a microscopic
image of the tip of the sensor and its comb
structure. The maximum allowable axial
deflection of the sensor is 1.5 um; and (d) the
internal structure of the sensor. Forces are
measured based on capacitive changes
induced by motion of the tip [7].
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2.1 Force Measurements
A commercially-available single-axis MEMS-based force
sensor (FemtoTools FT-S1000 [6]), shown in Fig. 1, with
a measuring range of 1000 uN and a resolution of 0.5
uN is used. The sensor is selected based on both its
measuring range and dynamic response that has a flat
frequency response from DC up to 10 kHz. Both
compressive and tensile forces are measured using a
differential capacitive readout mechanism that results in

Sensitivity vector
Ki= K, =Ky

system

CCD sensor

*~ Tympanic ring

umbo

Force sensor

Fig. 2. Schematic of the developed holographic system for shape, sound-induced 3D displacement and forces of
the human TM. The force sensor is mounted on a 3D nano-positioner with a resolution of 35 nm. The
Holographic system is used to both show the position of the force sensor on the membrane and also to gather
shape and 3D displacements data before and after the presence of the force sensor.
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Fig. 3. Closed-loop control scheme to compensate for relaxation of the TM during the measurements: (a)
schematic of the closed-loop control; and (b) representative comparisons showing the ability of the developed

closed-loop control to maintain constant preloading.

low sensitivity to changes in the environmental
conditions. The sensor consists of an actuator suspended
by four folded springs attached to an outer frame. A force
applied to the probe in its axial-direction results in a
relative motion of the actuator and a set of capacitive
electrodes to transduce motion into capacity changes,
which are read out by an analog integrated circuit [7].
Capacitance is a measure of the electrical charge between
two conductors separated by an air gap. A load applied to
the sensor causes a deflection and as the conductors are
moved closer to or farther from one another, the air gap
changes, and so does the capacitance. The change in
capacitance is converted into an output voltage by the
readout electronics. Due to the single-crystalline silicon
structure of the sensor, the results are highly repeatable
and the sensors are less likely to degrade over time.

2.2 Development of the Experimental System
Full-field-of-view, 3D, sound-induced displacements of
the TM are measured with the method of multiple
illumination directions in holographic interferometry,
which have been described in detail in [2]. In order to
measure the three components of the displacement
vector, d, at least three independent measurements with
different sensitivity vectors are required. In our approach,
and to minimize experimental errors, optical phase maps
are obtained with four sensitivity vectors to form an over
determined system of equations that is solved with the
least-squares error minimization method with

{d} = [[sI"[s1] " x { [sI"{a} . (M

where [S]is the sensitivity matrix containing all the
sensitivity vectors K;, and {1} is the fringe-locus function
vector.

Mechanics of Biological Systems and Materials

The sensor has a 3 mm long silicone probe that is
positioned on the umbo and other points on the medial
and lateral surfaces of the TM preparation. This device is
mounted on a 3D positioner that can be remotely
controlled along three axes with a resolution of 35 nm and
integrated with the holographic system, as shown in Fig.
2. Due to the delicate structure of the TM, the
approaching and positioning of the force sensor on the
TM and the force measurements should be automated in
order to avoid any potential damage to the membrane.
Furthermore, due to the viscoelastic properties and
relaxation of the TM, the preloading of the force sensor
has to be such that it remains constant during the
measurements while also preventing separation from the
TM during acoustic loading. Therefore, a closed-loop
control is designed and implemented to realize first,
automatic approach, and second, constant preloading
throughout entire force measurements cycles. As shown
in Fig. 3, the target preloading, DC T, and its tolerance,
DC tol, are specified by the user in a developed
LabView-based  program. The  nanopositioner
automatically moves the force sensor to maintain a
preloading within DC_T + DC_tol during force-
displacements measurements.

3. Results
3.1 Artificial membrane

Before application of this force measuring system on real
biological samples such as human TM, the sound-induced
forces of an artificial sample are measured. The sample is
a circular latex membrane with a radius of 5 mm and
clamped around its perimeter. While the force sensor is
approaching to the membrane, the object is monitored
with holographic system in Double-Exposure mode, i.e.,

@ Sprlnger Proceedings of the Society of Experimental Mechanics, June 2015

153



15t mode

-5 o7
(a) 06
Without the i
Force Sensor o3
02
01

5 0

mm  fi= 1445 Kz
Af = 62 Hz

-5 05
(b) L
With the 5

0
Force Sensor

'
o
o
W

(©)

3" mode

04 04
03 03
02 02

f>=222kHz
Af = 82 Hz

fs=2.967 kHz
Af =20 Hz

)
w»
n
o
wn

(d)

Fig. 4. Sound-induced displacement measurements of a circular latex membrane having a diameter of 10 mm
and approximate thickness of 20 um with and without the presence of the force sensor: (a) and (b) first, second,
and third modes of vibration of the membrane before (top) and after (bottom) the presence of the force sensor,
respectively. In (b) the location of the sensor is distinguishable. The effects of the force sensor include an
increase of the modal frequencies by 1 to 4% and a reduction in the amplitude of displacements by
approximately 15% for an applied preload of 250 uN; (c¢) and (d) modulation and wrapped optical phase of a
reconstructed double exposure hologram corresponding to deformations of the membrane produced by
preloading. The applied preload of the membrane is 250 uN producing a displacement of 1.6 pm.

the subtraction of the reconstructed hologram from a
reference reconstructed hologram. As shown in Fig.4,
once the tip of the force sensor reaches to the latex
membrane, the holographic fringes are produced,
indicating the contact of the sensor with the membrane.
Then, sound-induced forces and full-field motion of the
membrane are measured and the results are compared for
both cases of with and without the presence of the force
sensor. As shown in Fig. 4b the presence of the force
sensor increases the apparent stiffness of the membrane,
which causes an increase (1-4%) of its modal frequencies.

3.2 Human Tympanic Membrane
A cadaveric human TM of a male, 53 year-old donor was
prepared by removing the bony portion of the ear canal.
As shown in Fig. 5, the incus and stapes of the middle ear
ossicular chain have been also removed in order to enable
positioning of the force sensor on different points on the
medial side of the TM. Due to semi-transparency of the
mammalian TMs, the sample was coated with a thin layer

@ Springer
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of zinc oxide to increase the laser light reflection. The
effect of coating on shape and deformation patterns have
been studied by several researchers and found to be
negligible [8-10]. The temporal bone was held with an
adjustable clamp and mounted on a post in front of the
holographic system. As was described in Section 2, the
force sensor is mounted on the 3D nano-positioner, which
is remotely controlled with a computer to place the sensor
at different points of interest on the TM.

Prior to stroboscopic measurements, time-averaged
response of the TM at different tonal stimuli was
monitored [3, 11] and the excitation frequencies were
chosen at the maximum motion of the TM. At each
stroboscopic phase, sound-induced motions of the TM
along three orthogonal axes x, y and z are calculated from
the unwrapped optical phases. Then, a numerical rotation
matrix is used to calculate the motion components tangent
and normal to the local plane of the TM [2, 12].
Definitions of in-plane and out-of-plane motion
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Fig. 5. The force sensor is located at different
locations of the TM: (a) schematic of TM
showing the locations of all three target
points; (b) to (d) shows, respectively, the
images  corresponding  to  automatic
positioning of the force sensor on position 1
(at the umbo), position 2 (in the inferior-
posterior) and position 3 (in the posterior-
superior).
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(at the umbo)

Position 3

©
o

Position 2

Inferior

Posterior

(a)
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Fig. 6. Sound-induced in-plane and out-of-plane motions of a human TM for two different frequencies before
and after the presence of the force sensor as measured with stroboscopic holographic interferometry. In-plane
1 and 2 are displacement components tangent, and out-of-plane, perpendicular to the plane of the TM. The
presence of the force sensor at the umbo reduces the amplitude of vibration by less of 10% and changes in the
deformation patterns. Magnitudes of displacements are less than 300 nm produced by a sound pressure of 105

dB SPL
components have been described in detail in [2]. In-plane the local plane of the TM (i.e., along the local normal
components are the ones tangent to the local plane of the vector to the shape of the TM). As shown in Fig. 6, the
TM, whereas the out-of-plane components are normal to presence of the force sensor reduces the maximum
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Fig. 7. Normalized sound-induced forces at three different locations on a human TM at different excitation
frequencies. The maximum force value for the umbo is at excitation frequency of 1800 Hz, whereas forces at
locations on the TM surface have peaks at higher frequencies. Measuring repeatability is within +3%.

amplitude of vibration of the TM by less than 10%. This
phenomenon can be explained by the fact that the
presence of the force sensor increases the overall stiffness
of the system, which in turn, decreases the amplitude of
vibration.

Figure 7 shows measured sound-induced forces generated
at three different locations on a human TM surface at
different tonal frequencies from 300 Hz to 10 kHz. As
shown in Fig. 7, the frequency-dependent measured forces
are also spatially-dependent. For instance, the sound-
induced forces at the umbo (position 1 - shown with
circular markers) have a maximum value at around 1.8
kHz, whereas sound-induced forces at points on the
surface of the eardrum (position 2 and 3) have their
maximum values at higher frequency ranges, i.e., 6.2 and
4.7 kHz for positions 2 and 3, respectively.

Conclusions

We have developed a micro-force measuring system
capable of characterizing sound-induced forces in the
human TM at different tonal frequencies and at several
points on its surface. A close-loop control system is
developed to compensate the relaxation and creep
behavior of the TM and in order to realize a constant
amount of preload in all the measuring points. The force
measuring capabilities are combined with digital
holographic measurements of shape and true 3D
displacements to help expand our knowledge of the
hearing processes. The results show that frequency-
dependent forces in the middle ear, and in particular the
TM, are also spatially dependent. The effects of the force
sensor on the dynamic response of the TM will be further
investigated as part of our future work. To the best of our
knowledge, our force measurements are one of the first
attempts to experimentally characterize the sound-induced

Mechanics of Biological Systems and Materials

forces on the human TM toward understanding their
coupling into the ossicular chain.
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13. Conclusions and Future Work

We have developed laser holographic interferometric systems to quantify shape and
sound-induced motions of the mammalian TMs at a new level of detail needed for more
accurate investigations of middle ear mechanics. 3D Shape and 4D (space and time)
sound-induced motion of TM samples of several species have been characterized using
these new holographic systems with spatial resolution of more than one million points on
the surface of the TM and a temporal resolution of >100 kHz for tonal stimuli.  Sound-
induced motion measurements are combined with shape measurements to enable
characterization of tangential and normal sound-induced motion components. The
motion measurements can be done either in repetitive scheme, where sound-induced
motions are quantified by a series of consecutive measurements along different sensitivity
vectors; or using an optical multiplexed approach, where the motions are quantified
simultaneously in one single frame of the camera. Furthermore, sound-induced forces at
the umbo and other well-defined positions on the surface of the human TM have been
measured by a closed-loop control force measuring system capable of compensating for
the relaxation of the TM.

A general conclusion is that the tangential (in-plane) motion components are 8 to
20 dB smaller than the normal motion components, and hence, the probabilities of the
involvement of such in-plane motions in acousto-mechanical energy transformation of
the TM are low. Preliminary force measurements data show that frequency-dependent
forces in the middle ear, and in particular the TM, are also spatially dependent. For

instance, the maximum sound-induced forces at the umbo occur at frequencies between
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1.6 to 2.3 kHz, whereas the maximum forces for locations on the surface of the TM

occurs at around 4.8 to 6.5 kHz.

These developments will lead to new discoveries in the mysteries of hearing, and

encourage and inspire industrial sectors in optics, lasers, and imaging systems to develop

new instruments and package such imaging modalities for clinical applications. The

following points should be considered as future work and road map to further improve

the applicability of this system.

Comprehensive constitutive equations by combining different datasets: One of
the most important things that should be considered is how to combine these three
datasets (shape, 3D sound-induced motion, and force) with currently-existing
models in order to come up with comprehensive constitutive equations and
mechanical models that fully characterize the mechanics of the middle ear, and in
particular the TM. Such a combination should elucidate the factors that influence
the coupling of sound from the ear canal to the inner ear, which in turn, should
lead to insights on how to improve the surgical outcomes observed after more
complex middle ear reconstructions. On the other hand, these measurements are
great tools to test, verify, and improve the accuracy and applicability of currently-
existing Finite Element Models.

Optical Coherence Tomography: In terms of the experimental setup, currently the
system can measure shape, 3D sound-induced motions, and forces of the TM;
however the system can be modified to have another great capability (i.e., full-
field thickness measuring measurements). For doing so, optical coherence

tomography capability can be achieved by coupling a low-coherence light source
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to the fibers and mounting the reference mirror on a micro-positioner, enabling
scanning of the reference beam. The system should be miniaturized and packaged
to enhance the maneuverability and become portable in order to enable its
application in the clinics.

Full-field 3D Force measurements: In terms of the measurements, the force
measurements should be expanded significantly, so that instead of having the
measurements at a few points, a 2D grid of points on the surface of the TM should
be specified and the force sensor should scan all those points in order to provide
the full-field sound-induced force of the TM. Furthermore, currently the system
can measure only 1D sound-induced forces (i.e., along the single sensitivity axis
of the force sensor), however, the same force sensor can be positioned differently
(at least along three different orientations) in order to provide the capabilities of
3D force measurements, which in turn, will enable a more comprehensive

understanding of the stress-strain state of the TM.
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