POST QUANTUM CRYPTOGRAPHIC COMMUNICATION

A Major Qualifying Project
submitted to the faculty of
WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the
degree of Bachelor of Science

Authored by
Hamayel Qureshi

Advised by:
Professor Yarkin Doroz
WPI

May 10th, 2021

This report represents work of WPI undergraduate students submitted to the faculty as
evidence of a degree requirement. WPI routinely publishes these reports on its web site
without editorial or peer review.

Abstract

The advent and eventual proliferation of quantum computers will lead to many modern
encryption and digital signature algorithms being rendered obsolete. The most popular
public key/asymmetric cryptosystems (PKC) which include Diffie-Hellman, Elliptical Curve

Digital Signature Algorithm (ECDSA), RSA, etc, are based on discrete log problems and
integer factorization. This MQP examines modern cryptosystems and their susceptibility to
quantum attacks using tools like the Shor’s algorithm. It also implements the Nth Degree
Truncated Polynomial Ring Units (NTRU) post quantum cryptosystem in a web accessible
format which will be used to develop a post quantum communication progressive web

application (PWA) accessible on any range of devices.

Acknowledgements

[would like to thank Professor Yarkin Doroz for his guidance and support throughout this

MQP. His expertise on the subject matter was critical in accomplishing the goals of this

project.

Table of Contents

Abstract
Acknowledgements
Introduction

Background

Cryptography and Cryptographic Encryption
Symmetric Key Cryptography
Public Key Cryptography

Rivest-Shamir-Adleman (RSA) Key Generation, Encryption, Decryption
Quantum Computing and Its Effects On Cryptography

Shor’s Algorithm
NTRU and Quantum Resistant Cryptography
Key Generation
Encryption
Decryption

Methodology

The Tech Stack
Language
Database
Server
API Layer
Frontend
Cryptographic Libraries
The Protocol
Registration Process
Login Process
Add Friend Process
Accept Friend Process

Communication Process - Sending Messages
Communication Process - Receiving Messages

Database Design
User Interface Mockups

N oo U1 N m

12
15
18
20
22
24
25
26

27
27
27
27
27
28
28
29
30
30
32
33
35
36
37
38
39

Implementation
Server Side
Entities
Resolvers
Client Side

Results
NTRU Encryption Demo
Database
Register
Login
Chat

Conclusion and Future Work
Works Cited
Appendix A

Appendix B
User Entity
Chat Entity
Message Entity

Appendix C
User Resolver
Chat Resolver
Message Resolver

Appendix D
GraphQL Queries and Mutations

Appendix E
AES Substitution Box Implementation

41
41
41
42
47

55
55
56
58
60
63

68
69
72

73
73
74
76

77
77
81
85

89
89

92
92

Introduction

The protection of privacy is a growing concern in the modern world, with governments and
organizations across the world attempting to extrapolate information about people
constantly. Whether it is adversarial nations attempting to access the electronic

correspondences of each other’s government officials or social media giants like Google and
Facebook keeping track of their users constantly, the world is becoming less secure. It is
therefore necessary that the tools we use to keep our information safe and secure are up to

date and evolving alongside new technologies.

One such exciting and possibly world changing technology is quantum computing. It is
important to note that quantum computing will not be a replacement for classical
computing entirely, but will be able to solve certain subsets of computational problems
much, much faster than classical computers. Some of these problems may include: the
simulation of molecules to understand the biological interactions of medicines, thus leading
to breakthrough new treatments; optimizing logistics for all kinds of industries, such as
those of delivery companies; advancement of Artificial Intelligence and Machine Learning,

and many more.

However, the development of quantum computing also spells the end for many of the
systems that keep our data secure. Quantum computers will likely break many public key
cryptographic systems which are based on integer factorization and discrete logarithmic
problems. These problems are incredibly difficult and time consuming for classical
computers to solve, but easy for quantum computers. As a consequence, this will result in
much of our encrypted data being vulnerable to attacks by third parties. Thankfully, many
new cryptographic schemes have already been developed to exist in a ‘post quantum’
world. It is important then to test these cryptographic schemes and apply them in real
world applications, which this project aims to do. A promising candidate as a possible post
quantum cryptographic standard will be studied and implemented then applied to a web

application built from the ground up as a ‘proof of concept’ of applied post quantum

cryptography

Background
Cryptography and Cryptographic Encryption

To understand and integrate post quantum cryptography into a real world application, it is
first paramount to understand the basics of cryptography and some of the tools it uses to
achieve secrecy and privacy. At a basic level, cryptography can be defined as a practice for
secure communication in the presence of ‘adversaries’ or ‘third parties’ that may wish to
intercept communications [1]. In the modern world, it comprises study and development
from a wide variety of disciplines, including Mathematics, Physics, Computer Science,

Electrical and Computer Engineering, and more.

Because this project focuses primarily on the ‘encryption’ and ‘decryption’ of messages
using cryptographic algorithms, a very simple example of the application of cryptography in

modern communication is provided below:

Plain Text Cipher Text Plain Text

Encrypt [> “UeubhSUhEO" | »| Decrypt | > “HiBob!" |

Figure 1. Basic Cryptographic Encryption/Decryption Example

In the above example, Alice may wish to send Bob a message but does not want anyone
during the transit of that message to be able to tell what he said. She therefore leverages
some cryptographic algorithm to encrypt her ‘plain text’ message to produce a ‘cipher text’
message that she can send to Bob. Bob is then able to use aspects of this cryptographic
algorithm to decrypt the cipher text and get the plaintext message back. These aspects and

cryptographic algorithms will be discussed shortly; specifically, this paper will discuss

public key/asymmetric encryption, symmetric encryption, hashing (to a lesser extent), and

all of this in the context of a post quantum world. However, this example sets up some of the
very common nomenclature used in the discussion of cryptography. Namely, ‘plain text’
refers to the original message/data, ‘cipher text refers to the encrypted message/data, and

the names Alice and Bob refer to sender and receiver respectively.

Symmetric Key Cryptography

Much of cryptographic encryption is done with a secret key (or sometimes a pair of keys,
which will be discussed later) to encrypt and decrypt information. In symmetric key
cryptography, a single such key is established and exchanged to both decrypt and encrypt
information, hence the name ‘symmetric.’ As mentioned in Cryptography and
Cryptographic Encryption, the encryption process renders the plain text messages
unintelligible to any adversaries/third parties except for those with the symmetric key
(which must be kept private!). This secret symmetric key could be an agreed upon secret
code/password/phrase/etc., or as is more common a strong pseudorandom number/array

of numbers from a secure random number generator (RNG) [2].

There are two main types of symmetric algorithms:

Block Ciphers:

Plaintext is broken into fixed length blocks. Each block is encrypted as one entity with any
remaining data in a block being ‘padded’ with predetermined data (usually 0s) such that
the block is always of the fixed length. Ideal block ciphers would work with ‘massive key
lengths’ [3], though this is hardly practical and thus keys are scaled down for usability.

Most modern symmetric cryptographic algorithms are based on block ciphers [3].

Plain Text Plain Text Plain Text

v v i
Block Cipher Block Cipher Block Cipher
Encryption Encryption Encryption
applied to each block v v ¥
[Cipher Text] [Cipher Text] [Cipher Text]

Figure 2. Basic Block Cipher Chaining Example

Stream Ciphers:

Each bit/byte of plaintext data is encrypted individually in a ‘stream’, hence the name.

Stream ciphers can be thought of as finite state machines (FSMs) as each bit/byte is taken

in a ‘stream’ and cipher text symbols are produced in the same order [4]. In the most basic
sense, a stream cipher works by producing pseudorandom bits/bytes with a secret key and
a pseudorandom number-only-used-once (nonce) which form a ‘keystream’ that is XORed

with the plaintext, thus creating the cipher text.

Stream Cipher

\
Keystream]—>€9<—[Plain Text]

Y

[Cipher Text]

Figure 3. Basic Stream Cipher Example

Two of the most common types of symmetric algorithms are:

Data Encryption Standard (DES) / Triple Data Encryption Standard (3DES)

DES, also known as DEA (Data Encryption Algorithm), is a cryptographic algorithm based
on the Feistel Cipher [5]. It maps fixed length inputs to fixed length outputs, operating on
64 bit blocks with a key size of 56 bits. Each key has 8 parity bits for transmission error
detection. However, by modern standards, the 56 bit key is considered unsafe and
vulnerable to brute force attacks which is why DES is considered deprecated. In lieu of this
vulnerability, 3DES was chosen as a ‘replacement’ - it uses three 56 bit keys for a total of
168 bits, thus being considered safer than DES. However, 3DES operates on the same 64 bit

blocks, thus making it vulnerable to the sweet32 birthday attack [6]. NIST also rates 3DES

at only 80 bits of security (vs. the 112 bit minimum - more on this later), thus also

considered deprecated, though the federal government may still utilize it [7].

Advanced Encryption Standard (AES)

AES is by far the most popular symmetric cryptographic algorithm and will also be used
extensively throughout the project, as its 256 bit variant is considered quantum secure [8],
though there is a possibility of quantum algebraic attacks reducing AES to a problem of
boolean equation solving [13]. AES is based on the ‘Rijndael’ encryption algorithms and
works on a substitution-permutation network, with a certain number of rounds for the key
size provided. With a key size of 128 bits/16 bytes, AES will have 10 rounds; a key size of
192 bits/24 bytes will have 12 rounds; a key size of 256 bits will have 14 rounds - each
round will consist of four operations. Before moving onto the operations, it is important to
mention that AES, similar to DES, operates on ‘blocks’ of data organized as a 128 bit/16

byte 4 by 4 matrix known as a ‘state!

The four rounds of AES are:

1. AddRoundKey/Key Expansion

The Rijndael Key Schedule is used to derive subkeys from the given key to perform ‘key
expansion’ to generate a number of separate round keys for each round. The AddRoundKey

operation XORs the state with the round’s subkey.

a0.0 aU.l aU.Z aO.Q bU.U bl:l.l b0.2 b0,3
al.lZl a1 al a1.3 bl.U bl 1 b1 2

aZ Q a2. a2.2 2,2 bZ.U b 4

a3 o a}.l 32| Y33 b3.0 b 5

kl,z kl,;

s

LIy

I%.D k3.1| A] 3

Figure 4. AddRoundKey Process’

! https://en.wikipedia.org/wiki/Advanced_Encryption_Standard#Description_of the_ciphers

2. SubBytes/SBox Substitution

The substitution bytes (SubBytes) operation takes the current state (modified from the
previous AddRoundKey round) and performs SBox substitution for obfuscation. In a
nutshell, SBox substitution substitutes bytes from the state and replaces them with those in
a complex lookup table which makes decrypting/deciphering without a key impossible on

modern computers.

aD,D aU,l aU,2 a0,3 bl:l.l:l bl:l.l bﬂ.z bl:l,3
SubBvies
PR ER S A r A ER Y

1.0 1,1

' >
aE.D aE.] aEZE b:{.tl bz.]
- |

Figure 5. SubBytes Process*

As an example, given the following bitstream:

1100000100011001110011000010000010101100101000000001010010111000011
110100000110101101110011100010100111001101001010101000001110

we can perform SBox substitution using some Python code [wrote.

First, the input placed in a 4 by 4 matrix of hex values is represented as:

Oxcl 0x19 Oxcc 0x10
0x56 0x50 0x0a 0x5¢
0x3d 0x06 0xb7 0x38
Oxa7 0x34 Oxaa 0x0e

It is then run through the Python script available in Appendix E to produce the following
substituted output:

0x78 Oxd4 0x4b Oxca
0xb1 0x53 0x67 Ox4a
0x27 Ox6f 0xa9 0x07
0x5¢ 0x18 Oxac Oxab

2 https://en.wikipedia.org/wiki/Advanced_Encryption_Standard#Description_of the_ciphers
10

3. ShiftRows

Each row of the previously modified state is shifted by a certain value. The first row of the
state is unchanged. The second row is shifted one place to the left. The third row is shifted
two places to the left. The fourth row is shifted three places to the left. Each shifted row

‘wraps around. This step is a primary source of diffusion/obfuscation.

No
change Z0.0| F.1| Fo.2| F.3 0.0/ #0,1| Fo.2) &o.3
_ Shift Rowg
Shift 18 /8)8 3 83 21| = 2=y 8, o
b epet h.
Shift 384/ 55, iazz fz.; S5 =8l 25 o &3
el
Shift 38,5/ 85| 833 ?3.3 B3 83,0 F3.1| Bz.2

Figure 6. ShiftRows Process’®

4. MixColumns

The MixColumns operation is a linear transformation of the previous state. Each ‘column’ of
the state is multiplied by a 4 by 4 finite/Galois field with an output given as the inverse of

the input and output. This step is a primary source of diffusion/obfuscation. This is a highly

complex operation, and further reading on the matter is encouraged.

t:IIZI.I
bl:l.l.'. 0,2 bl:l,3
MixColurmng
bl.r. bl'l 1.2 b1.3
> b b
2,0 bE.l 2,2 2.3
b;j .2 b33
g 21

|81 C(X:}I

Figure 7. SubBytes Process®

There exist many more symmetric key cryptographic algorithms than the ones discussed
here. Some of these include: International Data Encryption Algorithm (IDEA), Blowfish
(which will be used for hashing purposes in this project), Rivest Cipher 4 (RC4 - a stream
cipher), RC5, RC6, and more.

3 https://en.wikipedia.org/wiki/Advanced_Encryption_Standard#Description_of the_ciphers
11

Public Key Cryptography

Public key cryptography, also known as ‘asymmetric’ cryptography, is based on
computationally complex and difficult problems using a private (secret) and a public
(shared) key. Both of these together form a key pair such that a message encrypted with a
public key is only decryptable by its associated private key. Public key cryptography solves
the issue of having to share keys, potentially insecurely, in order to establish
secret/encrypted communication. Anyone with someone’s public key can encrypt data, but
only the person with the associated private key is able to decrypt the information - thus,
public keys can securely be ‘publicly’ available without risk of eavesdropping. A private key
should never be used to encrypt data - unless used for digital signatures - and should be

kept private at all times [10].

As an example, consider Alice wants to send Bob a message. Bob will first need to generate
a key pair (public and private). To do this, he will first choose a large random number, feed
it through a key generation program, and then retrieve a public and private key.

Bob

Large Random Number

A

Key Generation Program

Public Key

Figure 8. Simple Key Pair Generation Process

He then gives the public key to Alice or makes it publicly known, but keeps the private key
secret. Alice is then able to use Bob’s public key to encrypt her message, send it to Bob as
cipher text so that no eavesdropper is able to decrypt the message, and finally Bob is able to

use his private key to decrypt the message.

12

Alice’s
Public Key

Encrypt

\ 4

6EHSbdewonsnd382In

Y

e
Decrypt

Bob

Figure 9. Public Key Encryption/Decryption Example

Public key cryptography also allows for ‘digital signatures’, where private keys are used for
authentication instead of encryption as a form of signatures [10]. This process requires one
to first hash the data and then encrypt it with the private key. Once the encrypted data

(encrypted with the receiver’s public key - one may choose not to encrypt the message but
only rely on a digital signature to verify authenticity) and encrypted hash are received, the

receiver can decrypt the encrypted hash using the sender’s public key and compare the
decrypted hash with a computed hash of the sent data [10]. The data is considered to be
‘signed’ if the hashed values are equal, and one can be reasonably certain that the sender is
who they claim to be [10], as long as the private key has not been compromised. However,

digital signatures will not be a factor in this project

Sign

Alice

Yy

Message: “Hi Bob!”
Encrypted hash: BE63D3L4SM

Alice’s
Public Key

A4

Verify

Bob

Figure 10. Digital Signature Example

13

Public key cryptography is slower than symmetric key cryptography due to the long key
lengths and the complexity of the encryption algorithm due to the use of two keys, one of
which is public [9]. In time sensitive applications, like real-time messaging, it is preferable

to combine the use of public key and symmetric key cryptography. Public key cryptographic
encryption, leveraging algorithms like RSA, can be used to securely transmit an AES
symmetric key [9]. This will be a major factor in the security and encryption protocol of the

post quantum communication application.

Some of the most popular and widely used public key cryptosystems include:

Diffie-Hellman Key Exchange: a public key protocol for securely exchanging keys over

public channels based on discrete logarithm problems. It is not quantum secure [11].

ElGamal: a public key encryption scheme built upon the Diffie-Hellman Key Exchange, thus

also not quantum secure.

Elliptic-curve Cryptography (ECDSA, ED25519, etc.): a public key cryptosystem based
on the symmetry of elliptic curves (y* = x* + ax + b). Because ECC can be condensed to an
integer factorization and discrete logarithm problem, it too is not quantum secure. A simple

visual representation may be helpful in understanding what ECC is based on:

—

AQW
_

Figure 11. Simple Elliptic Curve Symmetry Example*

* https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography /
14

In fact, the majority of widely used public key cryptosystems rely on integer factorization
and discrete logarithmic problems. To explore how these work, it is helpful to have a short
rundown on the RSA (Rivest-Shamir-Adleman) cryptosystem as an example, which relies

heavily on prime numbers.

Rivest-Shamir-Adleman (RSA) Key Generation, Encryption, Decryption

Key Generation

A public key is generated by choosing two large prime numbers: for the sake of simplicity,
choose 11 and 17, which will be referred to as p and q respectively. p and q must be kept
private, and are part of your private key. p and q are multiplied to generate one of the
public key numbers N which will be 11 * 7 = 187 [12]. The second public key number,
which will be referred to as e, is computed by first subtracting 1 from p and q such that we
get 10 and 16. These two values are multiplied to get the number 160 [12]. Now, e is
chosen as a prime number that does not share prime factors with the number 160 - the
prime factors of 160 are 2 and 5, so any prime number that is not one of those two values is
acceptable, however we will choose e = 7. We are left with p = 11, q= 17 as part of our
private key and N = 187 and e = 7 as part of our public key, though we must keep our

number 160, which is a part of our private key, handy as well.

Key generation

| Choose two prime numbers P
and Q (11 and 17 for example)

:

Multiply P and Q = 187 (call this N)

-) : . Subtract 1 from P and Q, multiply them:
Choose a second prime, 7 (call this e) 10+ 16 =160

Choose an e that does not share prime factors with 160 (2 or 5}

Figure 12. RSA Key Generation Example

15

Encryption

Create a message/data denoted by m - in this case the number m =99 (even non-numeric
data is represented as numbers by one’s computer after all). Retrieve the public keys N =
187 and e = 7. Raise the m to the power of e such that m® = 997. After computing that

value, we get a number greater than 93 trillion - this is where it starts getting extremely
difficult and incredibly time consuming (a range of billions of years) for classical computers
to attack public key cryptosystems, though in a real world scenario, much, much bigger
primes than 11 and 17 would be chosen. Now, we divide 997 by our N to receive the value
498,430,667,329 with a remainder of 176 [12]. This remainder, called the modulus, is what
we are interested in: it is the encrypted message. Only the person with the private key will

be able to decrypt it.

Encryption

Raise message, let's say 99, to e = 99’

Y

Then divide by N (997/187) =
498,430,667,329.9412

Y

Take remainder (modulus) = 176

Figure 13. RSA Encryption Example

16

Decryption

Now that we have our encrypted cipher text 176, we can use the private key (the numbers
p and q, with the associated computed value 160) to decrypt the message. First, we get a
number d which is computed by adding 1 to 160 to get 161. Now, 161 is divided by e (7) to

get the number d = 23. Now, the encrypted message 176 is raised to the power d => 176,
This value is divided by N (176> / 187) and the modulus (remainder) is found to be 99,

the original plain text message [12]. We have successfully decrypted our value.

Decryption

Get a number “d” remember 1607
Add1=>160+1=161.
Divide by 7 =>d = 161/7 = 23

\i

Take remainder 176 and raise to d => 176

Y

Divide 1762 by N (187)
176%/187 = 99!

Figure 14. RSA Decryption Example

This brings us to the issue of quantum computers and how they will likely break public key
cryptosystems based on prime factorization/integer factorization and discrete logarithm
problems in the future. Before discussing a potential solution this project is based on, a

quick rundown of quantum computers in the context of cryptography is helpful.

17

Quantum Computing and Its Effects On Cryptography

Quantum computers present a fundamentally different approach to computing and number
crunching. Classical computers run and compute values based on binary sequences of 1s
and Os called bits whereas quantum computers operate on ‘qubits’ (quantum bits). Qubits
can exist as either two states, written as |0) or |1), or some linear combination/proportion
of both states known as a ‘superposition. It is easiest to visualize the ‘state’ of a qubit using
the Bloch sphere where a qubit can be of value |0) or |1) at each pole of the sphere or some

value in between on the surface of the sphere [13].

1)

Figure 15. Bloch sphere, geometric representation of qubit values®

Quantum computers can take advantage of the physical properties of such qubits by
executing operations not only based on the binary states |0) and |1) but all possible
superpositions of those at the same time [13]. This allows quantum computers to be
incredibly efficient at certain tasks, though they are not a replacement for all applications
by any means. While an exciting technology with undeniable benefits for the near future,
the development and eventual proliferation of quantum computers is bad news for data
protection. This is especially true for many modern public key cryptosystems that, as
mentioned, are based on the inherent difficulty for computers to solve prime integer
factorization and discrete logarithm problems. It, for example, would be sufficient for a

quantum computer to decrypt data with no knowledge of the private key whatsoever [13].

> https://en.wikipedia.org/wiki/Qubit
18

Specifically, quantum computers are able to leverage algorithms like Grover’s algorithm and

Shor’s algorithm. For the purposes of this project, we will examine the latter shortly.

Cryptographic Algorithm Purpose Impact from large-scale
quantum computer
AES Symmetric key | Encryption Larger key sizes needed
SHA-2, SHA-3 | seeemmmeeeees Hash functions | Larger output needed
RSA Public key Signatures, key | No longer secure
establishment

ECDSA, ECDH Public key Signatures, key | No longer secure
(Elliptic Curve exchange

Cryptography)

DSA Public key Signatures, key | No longer secure
(Finite Field Cryptography) exchange

Figure 16. Impact of Quantum Computing on Popular Cryptographic Algorithms®

The above table from the U.S’s National Institute of Standards and Technology (NIST) gives
a rough outline of how most popular public key cryptographic algorithms will need to be
replaced with quantum-resistant ones, though symmetric key and hash protocols would

benefit from large key sizes or larger outputs.

A quantifiable measure of security from cryptosystems is measured in ‘bits of security’
NIST defines ‘bits of security’ as “a number associated with the amount of work (that is, the
number of operations) that is required to break a cryptographic algorithm or system” [16].
That number of steps is defined as 2" where N is the bits of security, and 2" as the total
number of steps required to break the algorithm. All NIST approved algorithms must
provide at least 112 bits of security. The figure below , courtesy of TechBeacon [17],
gives a comparison for the bits of security RSA and AES provide on classical versus

quantum computers.

® https://nvlpubs.nist.gov /nistpubs /ir/2016/NIST.IR.8105.pdf
19

Type of Attack Symmetric Encryption Public Key Encryption
Bits of Bits of
Key Length Security Key Length Security
Classical AES-128 128 128| RSA-2048 2048 112
Computers AES-256 256 256| RSA-15360 15,360 256
Quantum AES-128 128 64| RSA-2048 2048 25
Computers AES-256 256 128| RSA-15360 15,360 31

Figure 17. Comparison of Bits of Security of AES and RSA on Quantum Computers [17]

While AES-256 remains viable according to NIST’s standards at 128 bits of security, both
RSA-2048 and RSA-15360 are rendered unusable at merely 25 and 31 bits of security
respectively. This brings us to a brief discussion on one of the tools quantum computers

may employ to break current public key cryptosystems.

Shor’s Algorithm

Shor’s algorithm consists of a number of highly complex operations that require an
intimate understanding of quantum computing and cryptography. Therefore, further
reading beyond this very short summary is encouraged. In the most basic sense, the
algorithm solves the problem of finding the prime factors of a number given an integer.
Compared to classical computers that solve this in sub-exponential time
O(e 20sV) 1/3(10g(1"g(7v))2/3) using tools like the general number field sieve’, quantum
computers using an algorithm like Shor’s could solve this in drastically less polynomial time
O((log(N) *(log(log(N))(log(log(log(N))))) [18] using quantum logic gates and the quantum

Fourier transform [19]. The algorithm consists of a classical part and a quantum part [19].

7 https://mathworld.wolfram.com/NumberFieldSieve.html
20

: : —1
0 I —|

) v’ Ho F - v —

Figure 18. Shor’s Algorithm Quantum Subroutine®

To crack RSA-2048, it would take a classical computer in the trillions of years whereas a
quantum computer with 20 million qubits using Shor’s algorithm could do this in 8 hours
[21]. However, successfully implementing Shor’s algorithm would require a quantum
computer with a number of qubits substantially greater than and an error rate much lower
than current quantum computers (for example, Google’s Sycamore quantum computer only

operates on around 50 qubits) [20].

Thankfully, current best estimates put such quantum computers at least 10-20 [20] years
away giving us ample time to develop, test, implement and transition over to quantum
resistant cryptographic algorithms. The issue, however, is that many popular modern
communication platforms are built using non quantum secure cryptosystems. Most popular
modern communication applications like Facebook’s Messenger, Instagram, and WhatsApp,
or even platforms lauded for their privacy features like Signal and Telegram are built on the
Signal Protocol developed by Open Whisper Systems, which is not quantum secure. This is
due to its use of ECDH (Elliptic Curve Diffie Hellman) 25519 key exchanges, which as
discussed, are not quantum secure [22]. Even though the communication aspect is
protected with AES-256 symmetric encryption, any adversaries with sufficient quantum
computing power could decrypt the symmetric keys with Shor’s algorithm during key

transfer or exchange [22].

8 https://en.wikipedia.org/wiki/Shor%?27s_algorithm# /media/File:Shor's_algorithm.svg
21

NTRU and Quantum Resistant Cryptography

The National Institute of Standards and Technologies (NIST) is in the process of evaluating
post quantum cryptosystems as candidates for standardization®. The third round finalists in
the standardization effort for public key cryptosystems include: Classic McEliece (code
based), CRYSTALS-KYBER (lattice based), SABER (lattice based), and NTRU (lattice based),

the subject of this section and the post quantum cryptosystem to be used in this project.

There are several different types of post quantum cryptography [22] which include:
e (ode based
e J[sogeny based
e Lattice based
e Multivariate

e Hash based
We will briefly cover the first three types.

Code based: based on error correcting codes. Data is encrypted into ‘code’ with secret
errors added [22]. The private key can be thought of as the code’s parameters. The public

key is a scrambled generator matrix [22].

Isogeny based: based on finding operations between elliptic curves called isogenies [22].
The elliptic curves themselves are part of the public key and the private key is the isogeny

between the curves.

Lattice based: as the name implies, it is based on mathematical lattices and the inherent
difficulty of the ‘shortest vector’ problem in high dimensional lattices [22]. A lattice is
defined as a set of points s, our secret key, and a public key p which is a scrambled version

of the lattice. Data is mapped onto a point on s with an error added such that the point is

9 https://csrc.nist.gov/news /2016 /public-key-post-quantum-cryptographic-algorithms
22

still closer to the original point on s than all other points on the lattice [22]. Decrypting

messages requires one to know the s so that the shortest vector to the point may be found.

The next few pages will take a somewhat detailed mathematical look into the NTRU

cryptosystem - if you wish to skip the technical details, please proceed to page 27.

ZIX

) with a

NTRU operations are based on objects inside a polynomial ring R =

polynomial degree at N - 1 such that: a, + a,x + a,x* +... + a, ,x"" [23]. To discuss NTRU
further beyond the simple definition of lattice based cryptography, we will use the

following parameters:

e N - polynomials in ring R with degree N-1 (non secret)

® (- large modulus to which each coefficient is reduced (non secret)
e p - small modulus to which each coefficient is reduced (non secret)
e f-a polynomial private key

® g-apolynomial used to generate public key h from f

e h - polynomial public key

e r-random ‘blinding’ polynomial

e d - coefficient

23

Key Generation

NTRU key generation can be explained in 3 steps:
Step 1: Alice chooses 2 secret polynomials fand g in R (ring of truncated polynomials) [22].
Each polynomial must have an inverse.
Step 2: Alice will compute the inverse of f mod q and f mod p such that the following
properties are satisfied:

o fxfqg ' =1modq

o f«fp l=1modp
Step 3: Alice will compute the product of the polynomials, h: 7 =p % ((fg) = g) mod q [22]

This results in the public key h and the private key f and fp.

Because this project will use NTRU for key generation, examples may help better
understand the process. Consider the parameters N, p, q, and d are chosen as 7, 3,41, and 2
respectively. We can then compute Bob’s private and public keys:
Step 1:

fx) = xb—x*+x3+x?-1

glx) = xO+xt—x?-x

Step 2:
fq(x) = f(x) " modq =8x%+26x° +31x*+21x > +40x % + 2x + 32 mod 41
fp(x) = f(x) " modp =x6+2x°+x3+x%+x+1mod3 (private key)

Step 3:
h(x) = p+fq+gmodq =20x5+40x°>+2x*+38x> +8x? +26x+30 mod 41 (public key)

24

Encryption

NTRU encryption can also be explained as a three step process:

Step 1: Alice converts message to polynomial m with coefficients mod p between —% and

£ (centered lift) [22]
Step 2: Alice chooses a polynomial r to obscure m [22]

Step 3: Alice encrypts the message ase: e = r+h +mmod q [22]

We can continue the example from the key generation process with parameters N, p, q, and
d as 7, 3, 41, and 2 respectively.
Step 1: Consider message m(x)
mx) = —x +x>+x?—x+1
Step 2: Consider r(x)

 _x +x-1

m(x) = x
Step 3:

e =rsxh +mmodq

e(x) = 31x®+19x° +4x * +2x° +40x 2+ 3x+25 mod 41 (encrypted message)

25

Decryption

NTRU decryption can also be explained as a three step process:

Step 1: Bob receives the message e from Alice. With the private polynomial f he finds a
polynomial a such that a = fx e + mod g where the coefficients of a are in an interval of
length q [22].

Step 2: Bob solves for a polynomial b such that b = a mod ¢q [22].

Step 3: Bob retrieves his private polynomial fp and finds the plain text message ¢ such that

¢ = fpsxbmodp

Continuing on from where the previous example let off, we can decrypt the message e:
Step 1:

a=fxe+ modgq
a =x°%+10x>+33x % +40x > +40x * + x+ 40 mod 41
Step 2: Centerlift modulo q such that

b=amodqg = x®+10x°-8x*—x>—x?+x—1mod3
Step 3: Reduce a(x) mod p and get ¢
c=fpxbmodp =2x°+x>+x>+2x+1 mod3
Center lift mod p to finally retrieve the decrypted plain text

m(x) = —xPHxdHxtox+1

This brings us to the crux of this project: developing a real-world application built on a
modern and accessible tech stack that utilizes post quantum cryptography to ensure
absolute privacy despite the eventual proliferation of quantum computers. In short, this
project is to be a proof of concept implementation of the NTRU protocol in a real time

communication application.

26

Methodology
The Tech Stack

‘Tech stack’ refers to the amalgamation of tools, frameworks, libraries, languages, and
technologies used to build the frontend, backend, and APIs (application programming
interfaces) that tie everything together for the application. This section will briefly cover

the choice of tech stack and tools being used to build this project.

Language

Both the front and back end systems are built using TypeScript, an open source language
built on top of JavaScript. TypeScript adds static type checking to JavaScript, turning it into

a statically typed language from a dynamically typed one®. It therefore allows one to catch
type errors as soon as they occur with strong IDE (integrated development environment)

support, unlike in plain JavaScript where type errors are common and hard to catch.

Database

The database used for this application is PostgreSQL, a relational database management
system. Although migrating over to a NoSQL database like MongoDB would be a viable
option in the future if the application is to be rapidly scaled up and readied for release.
Nonetheless, the table like format of relational databases makes it simpler to develop and
prototype as a proof of concept. The ORM (object-relational mapping) to interact with the
database is TypeORM, chosen for its strong integration with TypeScript.

Server
The server runs on Node,js, a “JavaScript runtime built on (Google) Chrome’s V8 JavaScript
engine”'!, The server framework is Express.js, the most popular server framework for

Node.js'z

10 https:/ /www.typescriptlang.org/
1 https://nodejs.org/
12 https://expressjs.com/

27

API Layer

Rather than a traditional REST (representational state transfer) AP], this application will
use GraphQL. GraphQL makes it simple to query data from a database with exactly the
shape and data the application requires. For example, if one wished to ask the database for

users but only wanted their unique id, username, and publicKey, the query would look like:

query GetUsers($uuid: String!) {

I
L

Figure 19. GraphQL getUsers Query Example

GraphQL will be integrated into the back and frontend with Apollo Server and Apollo Client
which provide excellent developer tools. TypeGraphQL will be used to make the interaction

between GraphQL and our database seamless.

Frontend

The frontend framework used is React. The goal of this project is to build a PWA
(Progressive Web Application) that is accessible on both desktop browsers and mobile
phones. It must, therefore, be ‘reactive’ to several different scenarios, screen sizes, etc.
React provides a number of tools that make this relatively simple. The UI library used will
be Material UI due to its extensive Ul components list, excellent documentation, and styling
capabilities. This will make prototyping and developing the Ul much, much faster than
manually writing all the CSS and React TypeScript code necessary to make good looking
and functional components. The application will be custom styled with a few theme settings

(dark mode is a must), but Material Ul can make this process much simpler.

28

Cryptographic Libraries

A number of cryptographic libraries will be used in this project.

bceryptjs: the ‘hash’ and ‘compare’ modules are used on the server side to hash and verify

passwords. It is a JavaScript implementation of the Blowfish cipher®?,

scrypt-js: the ‘scrypt’ module form scrypt-js is used to hash passwords on the server side.
The ‘scrypt’ algorithm converts passwords into ‘fixed length arrays of bytes'** which is

necessary for encrypting private keys as we will discuss later on.

aes-js: several modules from this pure JavaScript implementation of the AES block cipher

algorithm will be used throughout the project.

NTRU: an open source WebAssembly implementation of the NTRU cryptographic protocol
with a JavaScript wrapper for ease of use in web applications. It was originally developed
by ‘Cyph’®, a company focused on encrypted communication and telehealth. Due to
development having been seemingly abandoned based on commit history, parts of it were
updated to bring it to a usable state. Please refer to the background section NTRU and
Quantum Resistant Cryptography and Appendix A for technical details on how NTRU
and the NTRU library works.

13 https://www.npmjs.com/package/bcryptjs
* https://www.npmjs.com /package/scrypt-js /v /2.0.4
15 https://www.cyph.com/

29

The Protocol

To implement the application, a protocol that plans and describes how each step of the
application works and encrypts information is necessary. For the following sections, ‘client’

refers to the frontend application that a user interacts with.

Registration Process

The client creates a ‘username’ and sends it to the server in plaintext - this information is
not hashed, as it would make displaying and retrieving usernames difficult for both the
frontend and server. It may be a good idea, in the future, to however store usernames as
unsalted hashes of the username to add an extra layer of obscurity. Continuing on, the
server checks if a user with that username does not already exist, and if not, sends back an

‘ok’ letting the client proceed.

- Username ok

1 1

Username

=

Client Server

Store Username

Figure 20. Registration Username Process

The client also chooses a password with some character and minimum length restrictions.
The client salts and hashes the password using scrypt to generate a 256 bit/32 byte hash.
The first half of this hash (the first 16 bytes) will be used as an encryption key and the
second half (last 16 bytes) is used as an authorization key (auth key) and sent to the server.
The authorization key is hashed once again using bcrypt on the server side to prevent

pass-the-hash attacks [24] and then stored in the database.

30

(Password ok ~— | —
I
1 —
Password
E Hash password
Client P Server

Last Half: auth key — Hash auth key — Store hashed auth key

Figure 21. Registration Password Process

The custom NTRU library is used to generate a quantum secure private key. This private key
is first encrypted with the authorization key and then sent to the server. It is necessary to
keep this information on the server side due to the nature of this application - it is designed

to run on browsers (or as a browser application on phones) which do not have permanent

storage capabilities.

Prvt key ok
-
L Password

" Hash password
Client P Server

First Half: encrypt private key Store encrypted private key
NTRU Key Gen

Private key

Figure 22. Registration Private Key Process

The NTRU library also produces a public key which is sent to the server in plaintext and

stored.

31

(4]

]— Pblc key ok 1 —
=

Client Server

Store public key

NTRU Key Gen

Public key

Figure 23. Registration Public Key Process

Login Process
The login process operates very similarly to the registration process. The username is sent

to the server, and the server checks if the user with that username actually exists:

=

l Server

Username
E I Check username

Client

Figure 24. Login Username Process

The password is again hashed using scrypt. The auth key section (last 16 bytes) are sent to

the server to check if the password is correct.

—

l Server

Password
\ Check auth key

Client
Hash password j
Last Half: auth key — Hash auth key

Figure 25. Login Password Process: Auth Key

32

The encryption key (first 16 bytes of the hashed password) is stored on the client side for
use later. If the authorization key was correct, the server generates a cookie with a JSON
Web Token (which will be used for validating a user’s session with the server) and sends it
back to the client for client storage along with the public key and encrypted private key. The
encrypted private key is then decrypted using the encryption key.

; =

{

Password

E [ﬁ If username & authkey correct

Client
r Hash password

First Half: encrypt key — Decrypt private key Get encrypted private key

I

RR

— Generate cookie

Get public key
Private key

Figure 26. Login Password Process: Encryption Key and Cookies + Key Pair

Add Friend Process

As mentioned in the background section, public key cryptography is often used for
establishing shared keys and safely transferring them between parties. The shared key is
then used for the purposes of communication using symmetric encryption due to its speed
and efficiency. The ‘add’ and ‘accept’ friend processes will establish and transfer symmetric

keys between two users.

If a user wishes to add a friend, they will search the database of existing users and check for

their public key.

33

[1]
I
—_— Friend Username
Client Server

» Check for pub key (friend)

Figure 27. Add Friend Check For Public Key Process

If the user exists, their public key is retrieved. The aes-js library is then used to establish a
symmetric key. The shared symmetric key is encrypted with the friend’s public key and

stored in the database as the friend’s encrypted symmetric key.

2]

= —

Client Server
Retrieve pub key (friend)

AES key gen
Public key (friend) Store encrypted friend

J —I—' symmetric key
Symmetric key (encrypt

Symmetric key with friend's public key)

Figure 28. Add Friend Symmetric Key Process Part 1

The shared symmetric key is also encrypted with the user’s encryption key and stored in

the database.

34

1 encryption key
C—= —

Client Server

Store encrypted user
Symmetrickey (encrypt [~ symmetric key
with user's encryption key)

AES key gen — Symmetric key

Figure 29. Add Friend Symmetric Key Process Part 2

Accept Friend Process

The user receiving the friend request may choose to deny the friend request. In this case, all
associated data (in particular the shared symmetric key) is deleted from the database.
However, if the user receiving the friend request chooses to accept the friend request, the
user’s encrypted symmetric key is retrieved from the database/server. The user is then able
to use their private key to decrypt the symmetric key, then encrypt it once more with their

encryption key and send and store that in the database. In this way, the shared symmetric

key is successfully transferred between users in a quantum secure manner.

User's private key

——= | _

Client Decrypt symmetric key Server

Get friend name +
Encrypt symmetric key encrypted symmetric key
with user's encryption key

User encryption key ——»

Storing:

Encrypted user symmetric key

Figure 30. Accept Friend Process

35

Communication Process - Sending Messages

Each user on their respective client will check for each other’s encrypted symmetric keys.

Send

'

Friend username

Server
E Check for encrypted
Client symmetric key

Figure 31. Communication Check For Symmetric Key Process

The symmetric key is then retrieved and decrypted using each user’s respective encryption

keys.

=
]

Encryption key

E Decrypt symmetric key Get friend encrypted

Client T symmetric key

Symmetric key

Figure 32. Communication Retrieve and Decrypt Symmetric Key Process

When the user has written a message and hits send, the client encrypts the message using
AES-256 from the aes-js library with the symmetric key. The encrypted message is then
sent to the server to be stored in the database. At no point does a plain text message ever

reach the server - all messages stored are encrypted.

R

Symmetric key

Server

E Store encrypted message
Client —I—
M je Encrypt message

Figure 33. Communication Send Message Process

36

Communication Process - Receiving Messages

Messages from both users (sent by the user themselves and those sent by the other user)
are retrieved from the database. The messages are all encrypted, so they must be decrypted
using the shared symmetric key at which point the plaintext messages are successfully

received.

Receive E

" |

Friend username

E » Get encrypted messages

Client Symmetric key

Decrypt messages

‘— Plain messages

Figure 34. Communication Receive Message Process

This protocol ensures that even if an adversary or third party were to somehow get access
to the whole database, they would not be able to tell nor decrypt the messages being sent in

between users. Because public and private keys are established using NTRU, this ensures
post quantum security. Essentially, this protocol achieves post quantum End-to-End (E2E)

encryption. Users’ passwords are also hashed twice, once on the client, and once again on
the server - this should prevent any password leaks or decryption from the database.
However, if a user’s password were to be compromised by, for example, the user sharing
their password online or keeping it stored in plaintext somewhere insecure, their
conversation history could be accessed by an adversary/third party. 2FA (two factor
authentication) would be a solid prevention tactic for this situation, though that is beyond

the scope of this project.

37

Database Design

Before implementing the database design into code, it is necessary to plan out the database
schema. The Entity Relationship Diagram below describes the data stored in each
‘entity’ /table. The rows, which represent the data being stored, are given self-explanatory
names for ease of understanding and implementation. However, as a quick overview, the
database consists of three primary entities: Users, Chats, and Messages. The Users table
stores information about the users, including their usernames, passwords, public and
encrypted private keys, etc. The Chats table stores information about the communication
between two users. The Messages table stores information about messages being sent
between users. A User may have many chats and a Chat may have two users and many

messages. The ‘chats_members_users’ is the table that ties all three of the primary tables

together.
<& public RN
5 users <> public
fj email 1 chats
¢ public
a password uuid —|—
] messages = =
U tokenVersion Ij createdAt
uuid =
[j username ﬁ updatedAt
B content
uuid + H lastMessage
j fromName ” =
]‘J encryptedPrivateKey [name
:j toName
f publicKey [pendingRequest
:} date ~
Ij sentByUuid
/P senderUuid _
[sentBySymKey
()f chatUuid 1
E acceptedBySymKey
A me
&> public
] chats_members_users
chatsUuid

usersUuid >'—

Figure 35. Database Entity Relationship Diagram

38

User Interface Mockups

It is generally a good idea to plan out a user interface before implementing it in code. The
next few images outline how the user interface should roughly look upon completion. The
design should be consistent between both desktop and mobile views, thus both a desktop

and mobile view is provided for each main screen.

Title
€& = ' f (htps:7pgchat.com)
Register
Register [email
[email] [username
[username] [password
[password]

Figure 36. Register UI Mockup

Title
€ = ' f (htps7pgchatcom)
Signin Sige
[username J
_voows]

Figure 37. Login UI Mockup
39

Title

€ = C M (htps:7pgchat.com

(Chats - username

Searchusers Q

username
message

username
last message

username
message

username
last message

username
last message

ame
message

Figure 38. Main Chat Application View

Chats - username =,

Search users

username
last message

username
last message

username
last message

40

Implementation

With the tech stack, protocol, database schema, and Ul mockups in place, the application
and all of its encompassing parts can start to take shape. This section will repeatedly
reference code available in the project’s GitHub repository linked in Appendix A, though
code from the repository will be presented often where appropriate. Parts of the
implementation, such as the server setup process or the styling of custom SVG icons will
not be discussed in this section. Please refer to the GitHub repository for a full breakdown

of how all parts of the project were implemented.

Server Side

Entities
‘Entities’ refer to each of the tables discussed in the section Database Design. Using

TypeORM and TypeGraphQL, we can represent each entity as a JavaScript class.

The User entity, for example, is set up as follows:

@0bject
@Entity ("users")
ss User extends BaseEntity {
ng)
@PrimaryGe 3 bylumn ("uuid™)

uuid: string;

@Field ()
@Column ("text", { nullable: true })

publicKey: string;

@Field ()
@Column ("text", { nullable: true })

encryptedPrivateKey: string;

@QField ()
@Column ("text", { unique: true })

username: string;

41

@Column ("text")

email: string;

QColumn ("text")

d: string;

n: number;

- [Message])

> Messag

@Field(() => [Chat])

@ManyToMany (() => Chat, (chat) =>
nullable: true,
onDelete: "CASCADE",

})

chats: Chat[];

The Chat and Message entities are set up similarly as well, mapping the fields in Figure 35
into TypeScript code. Using TypeORM, we can easily define the relationships between
tables, such as the many-to-many relationship between users and chats, given that a user
may have many chats and a chat may have one or more users. TypeORM takes care of
setting up foreign keys between tables and junction tables that tie everything together. The

full code for each of the entities is available in Appendix B.

Resolvers

Resolvers are a collection of functions that act upon a database schema through a GraphQL
layer. Resolver functions can be of the type: query (to query for/retrieve data), mutations
(to update, insert, delete data), subscriptions (similar to queries, but useful for real time

updates), and more. There are several resolver functions necessary to make this application

42

function, but we will examine a few of them that may be of particular interest. The full code

for each of the resolvers is available in Appendix C.

User Resolver:

Two resolver functions from the user resolver of interest are the login and register
functions.
> Boolean)

email : string,
"username”) string,
) string,
“publickey’
ncryptedPrivateKey™)

= await User.fi
= await User.f

if (u
throw new Error("exist

1
J

try {

await User.insert({

return true;

Figure 39. User Resolver Register Function

The register function receives an email, username, password, public key, and encrypted
private key from a user. The password is hashed once more on the server side. If a user by
the same username or email already exists, an error is thrown to let the user know they

may need to use different credentials. If not, the information is stored into the Users table.

43

g)
throw new Error("invalid login (user does not exist)");

const valid = await co

"Invalid login attempt: ", username, p

"Valid login attempt™);

Figure 40. User Resolver Login Function

The login function receives a username and password from the client. If the user exists, it
compares the hash of the sent password with the hash stored in the database. If everything
checks out, the function creates an access token for the user and returns their encrypted
private key, public key, and the user object itself containing information about the user.
Unauthorized users cannot access the main chat application without having all of this

information sent back from the server, most importantly the access token.

44

Chat Resolver:
The Chat entity stores information about communication between two users, and as such, it
also stores the encrypted symmetric keys of each user. There are two resolver functions

here that are worth examining in further detail.

at(
‘memberIds”, () => [String]) memberIds: string[],
"userId") use : string,

string

{ uvuid:

(.1
return false;

Figure 41. Chat Resolver Create Chat Function
The createChat function is similar to the register function from the User resolver. Given
certain input parameters, it creates a chat as described in Figures 28 and 29. However, it

also has checks in place to make sure a chat between two people does not already exist.

45

await chatRepo

return true;

} catch (err

throw new Error("Error accepting request");

Figure 42. Chat Resolver Accept Request Function

If a user accepts a request, the newly encrypted symmetric key (encrypted with the user’s
encryption key) replaces the currently encrypted symmetric key in the Chat object/row. As

mentioned, the rest of code for all resolvers is mentioned in Appendix C.

Message Resolver:

The Message resolver is relatively straightforward and contains functions for
creating/sending messages and triggering updates to the server. Please refer to Appendix

C for a complete look.

This completes a high level look at some of the important logic being handled on the server.

46

Client Side

The client side code base consists of a plethora of functionality. It has both the logic to
encrypt and decrypt information, but also to render the User Interface. This section will
briefly outline some of the code integral to providing security. Please refer to the GitHub
repository available at Appendix A to view how the User Interface and its associated

styling was done. Client side GraphQL queries and mutations are available at Appendix D.

Client side code is organized as follows:

contexts

Figure 43. Client Side Code Organization

The folders ‘components’ and ‘views’ contain much of the User Interface design and the
associated logic (eg. what happens when you click a button). The ‘generated’ and ‘graphq!’
folders contain the client side GraphQL code for querying and mutating data in the

47

database. The folders ‘icons’, ‘contexts’, and ‘theme’ contain code pertaining to styling the
User Interface. There are two folders for helper functions: ‘hooks’ and ‘utils. The ‘utils’
folder contains several helper functions written to ensure security that integrate into the

User Interface and its associated logic. These functions are the subject of this section:

import { ntru } from "ntru”;
import { default as aesjs } from "aes-j!

export const air = async ()

any = await ntru.keyPai

air.privatekey;

aesjs.utils.hex.fromBytes(keyPair.publicKey);

return { privateKey

Figure 44. generateKeyPair Function

The generateKeyPair() function calls the ntru.keyPair() function to generate the NTRU
public and private key pair. Each of these key pairs is represented as an array of uint8
(unsigned integers of 8 bits). The public key, as it is to simply be stored as plaintext, is
converted to a hexadecimal string representation of the array to be sent to the server. It
returns the private key in its uint8 array form, and the publicKey in its hexadecimal string

representation form.

48

import { s

export const E rd: string): Promise<any> =>
const) nt8Array = new TextEncoder().e

const salt: Uint8Array = new TextEncoder().e

: Uint8Array = await sc

) e

Figure 45. scryptPassword Function

The scryptPassword() function breaks a plaintext password into an encryption key and an
authorization key as discussed in the protocol section. The plaintext password is encoded
into a uint8 array which is then hashed using the ‘scrypt’ function from the scrypt-js library.
The parameters for the scrypt function are outlined in the variable declaration for

hashedPassword.

import { default a: is } from "aes-js";

export c en: TP .
privateKey: Uint8Array,
encrirray: Uint8Array

I
L

encryptedPrivat

Figure 46. encryptPrivateKey Function

49

The encryptPrivateKey() function takes in the privateKey (a uint8 array) and the
encryption key (also a uint8 array) and uses the AES CTR (counter) module to encrypt the
private key. The encrypted private key is then converted into a hexadecimal string
representation and returned so that it can be sent back to the server.

import {4 default as aesjs } from “aes-js”;
L 4 S ¥ 3 3

E'}{FGF"E' CONns + AarrvuntDr -:._."."'a-i: E‘ =R
encrypted! y: string,
encrArray: Uint8Array

= new aes]js.ModeOfOperation.
' js.utils.hex.

Figure 47. decryptPrivateKey Function

The decryptPrivateKey() function essentially performs the opposite of the
encryptPrivateKey() function. Because the encryption key is essentially a symmetric key,
the AES CTR module is used to decrypt the encrypted private key with the encryption key.

The original uint8 array form of the private key is returned for local storage.

50

import {
import

‘Sym key", sy

friendPubli

Figure 48. generateEncryptedSymKeys Function

The generateEncryptedSymKeys() function generates a shared symmetric key and encrypts
it for the user sending a friend request and for the friend receiving the request. The shared
symmetric key is created using the ‘randomBytes’ function from the native library ‘crypto.
The randomBytes are of length 32 (or 256 bits) to ensure 128 bits of post quantum security
with AES-256. The shared symmetric key is encrypted using the friend’s public key and
returned as a hexadecimal string representation. The shared symmetric key is also

encrypted using the user’s encryption key and returned as a hexadecimal string

51

representation. This key (encrypted for the user and friend) is then sent to the server for

storage and later retrieval.

import { default as aesjs } from "aes-js";

export

n(“encrArray”)!)

ModeOfOperation.ctr(priva

aesClr.de

const enc

return er

i)

Figure 49. decryptEncryptSymKey Function

The decryptEncryptSymKey() function is called when a user accepts an incoming friend
request. Because the symmetric key was previously encrypted using the user’s public key,
the user must first decrypt it with their private key (which is grabbed from session
storage). The decrypted private key is then encrypted again using the user’s encryption key

and returned so that it may be stored server side.

52

import { default as aesjs } frc aes-js”;

= (sy 3+ Ui i e: -string) =>{
osjs.utils.utfs. t

sjs.Counter(5));

const encryptedl

return encry

Figure 50. encryptMessage Function

The encryptMessage() function is used to encrypt a message with a symmetric key. The

function takes in the symmetric key and the plain text message. The message is then

converted into a uint8 array, after which it is encrypted using the AES CTR module and

returned as a hexadecimal string representation.

L from "aes-js";

y: Uint8Array, string) =>

s.utils.hex.t

r

peration.ctr(s) ! aesjs.Counter(s));

gesCir.

Figure 51. decryptMessage Function

The decryptMessage() function converts ciphertext back into plaintext. It does this by

taking in a symmetric key and the ciphertext, feeding the symmetric key and ciphertext into

the AES CTR module and returning the decrypted plaintext as a string.

All of the aforementioned functions ensure E2E encryption is guaranteed and that

symmetric keys are at no point susceptible to attacks or leaks due to the use of NTRU

(barring a user leaking their own password due to negligence).

53

The following function is used during the logout process:

..[/accessToken";

} from

"accessToken™);
"useruuid”);
("userUsername”) ;
("ntruPublicKey™);
("ntruPrivateKey");

Figure 52. deleteStore Function

This function is called to remove all stored items from session storage upon a user logging
out. The log out process also informs the server that the user is logging out and invalidates

their access token.

To protect routes (eg. preventing access to the the chat section without being logged in), the
routes are guarded using a simple AuthGuard component:

: React.FC<GuardedRouteProps> = (pr
path-} = props;
("accessToken™);

if (auth && (path === "/login" || path
return <Redirect to="/chat" [>;

return

(auth ? <Component /> : <Redirect to="/login" />)}

Figure 53. AuthGuard Component
This component simply blocks a user from accessing certain paths/areas in the application

and forces them to login if they do not have a valid accessToken.

54

Results

With the methodology and design implemented into code, we can examine how the

application and its associates systems have taken shape.

NTRU Encryption Demo

Part of the implementation process included creating a demonstration of the NTRU
Encryption and Decryption protocol running on a browser to test and showcase the NTRU
JavaScript and WebAssembly library. This demo is available at the route ‘/ntru’ if you run

the application on a local machine.

Sawtooth

Entered plain text:

Sawtooth

Encoded array:

83, 97, 119, 116, 111, 111, 116, 104,
Encrypted array:

117,194, 174, 12, 222, 7, 219, 44,

151, 188, 33, 198, 40, 51, 89, 95,

140, 142, 25, 53, 189, 157, 138, 87,

244, 156, 0, 160, 19, 1, 2, 75, 102,

66, 159, 127, 136, 75, 120, 68, ..

Number of elements in encrypted array 1022

Figure 54. NTRU Encryption Demo

55

Any plaintext can be entered in the textbox; in the above example the plaintext message
“Sawtooth.” Was entered. The plaintext message is encoded into a uint8 array. Then, an
NTRU public and private key are generated, and the encoded message is encrypted using

NTRU, to produce the output under ‘Encrypted array’.

Decrypted array:
83, 97, 119, 116, 111, 111, 116, 104,
Decrypted plain text:

Sawtooth

Figure 55. NTRU Encryption Demo

The private key can then be used to decrypt the message and retrieve the encoded
plaintext. The encoded plaintext uint8 array can then be decoded to produce the original

plaintext message “Sawtooth.”

Database

Using the interactive terminal ‘psql’ for PostgreSQL, we can examine whether the code for
our entities described in the ‘Implementation’ section were successfully created. Using the

‘\d’ command, we can view the list of tables/entities and relations in the database.

List of relations

chats_members_users
messages
users

Figure 56. List of Relations In Database

56

Using the ‘\d’ command followed by the name of the table will list all the properties and

associated relations (foreign keys, restraints, etc.) of that table.

Table "public.users"
Type | Collation | Nullable
e e e e

not
not
not

text | |
| |
| |
| not |
| |
| |
| |

password text
tokenVersion integer

|

|

| 0
username text |

|

|

|

uuid_generate_vi()

uuid uuid not
encryptedPrivateKey text
publicKey text
Indexes:
"PK_951b8f1dfc9U4acld@301alub7el" PRIMARY KEY, btree (uuid)
"UQ_feB®bb3f6520eebU6950U521e710" UNIQUE CONSTRAINT, btree (username)
Referenced by:
TABLE "messages" CONSTRAINT "FK_39bdf5ecd7fc006102715b33e9f" FOREIGN KE
Y ("senderUuid") REFERENCES users(uuid)
TABLE "chats_members_users" CONSTRAINT "FK_571eld59a81lel76794U4f72U430ee"
FOREIGN KEY ("usersUuid") REFERENCES users(uuid) ON DELETE CASCADE

Figure 57. Users Table In Database

Table "public.chats"
| Collation | Nullable

uuid_generate_vi()
createdAt timestamp without time zone now()
updatedAt timestamp without time zone now()
lastMessage character varying
name character varying
pendingRequest boolean true
sentByUuid character varying
sentBySymKey character varying
acceptedBySymKey character varying
Indexes:
"PK_U7Ule8cblU6af785df55U407dbcb" PRIMARY KEY, btree (uuid)
Referenced by:
TABLE "messages" CONSTRAINT "FK_7c2c1970d7a191422fUbcdc3306" FOREIGN KEY ("chatUuid") REFERE
NCES chats(uuid)
TABLE "chats_members_users" CONSTRAINT "FK_996d0c@5aa3ba7UlabaeceaB82952" FOREIGN KEY ("chatsU
uid") REFERENCES chats(uuid) ON DELETE CASCADE

: :character varying
: :character varying

Figure 58. Chats Table In Database

57

"public.messages"

Column | Collation Nullable Default

not null | uwuid_generate_vi()
fromName
toName
date
senderUuid
chatUuid
me
Indexes:
"PK_6aaade3b9853deldda3f6lcal7ic5" PRIMARY KEY, btree (uuid)
Foreign—key constraints:
"FK_39bdf5ecd7+c006102715b33e9f" FOREIGN KEY ("senderUuid") REFERENCES users(uuid)
"FK_7c2c1970d7a191422f4bcdc3306" FOREIGN KEY ("chatUuid") REFERENCES chats(uuid)

=]
=]
=
~
e

timestamp without time not null
uuid
uuid
boolean not null

|
+
|
content |
|
|
|
|
|
|

—— e — — o —

Figure 59. Messages Table In Database

Table "public.chats_members_users"
Column | Type | Collation | Nullable | Default
——————————— PR e R e
chatsUuid | uuid | | not null |
usersUuid | wuid | | not null |
Indexes:

"PK_9017c2b62b115460cfel27e0090" PRIMARY KEY, btree ("chatsUuid", "usersUuid")
"IDX_571e1d59a81e17679UuUf72U30e" btree ("usersUuid")
"IDX_996d0c@5aa3ba7ilabaeead295" btree ("chatsUuid")

Foreign—key constraints:
"FK_571eld59a81e176794uf72U30ee” FOREIGN KEY ("usersUuid") REFERENCES users(uuid) ON DELETE CASCADE
"FK_996d0c05aa3ba7ulabaeea82952" FOREIGN KEY ("chatsUuid") REFERENCES chats(uuid) ON DELETE CASCADE

Figure 60. Chat Table In Database

As seen in the above figures, the database was successfully set up with all the tables and
relations described in Figure 35. The ‘messages’ table will be referred to to double check

all messages being received and stored are encrypted.

Register

The register page was successfully created with the planned User Interface between both
desktop and mobile views. Moreover, all of the associated logic such as storing hashed

passwords and the key pair (with the private key being encrypted) was implemented.

58

Register

averagejoe@joecubed.com

averagejoe

Figure 61. Register Desktop View

Register

averagejoe@joecubed.com

averagejoe

Figure 62. Register Mobile View

59

If a user attempts to create an account with an insecure password, they receive the

following message:

Figure 63. Register Insecure Password

If a user chooses an email or username that is already taken, they receive the following

message:

vith that username or email alr

Figure 64. Register Username/Email Taken

If all credentials are chosen properly, the information is sent back to the server for storage.

Login
The login page is very similar to the register page in its layout. For demonstration purposes,

a default user with the username ‘demo’ and password ‘Password!123’ is provided.

60

Figure 65. Login Desktop View

Use username demo and password
Password!123

Figure 66. Login Mobile View

61

If a user logs in with incorrect credentials, either due to an invalid username or password,

they are presented with the following message:

Incorrect username or password. Try again.

Figure 67. Login Incorrect Credentials

However, if the user does use the correct credentials, the server sends the client the user’s
access token, public key and encrypted private key. The client uses the encryption key
(extrapolated from the user’s password) to decrypt the private key. This and other relevant

information is stored in session storage and the access token is stored in local storage:

(x O El s Console Application
Select an element in the page to inspectit Ct
Key
userlUsername
encrhrmay
privateKey 5 ; P s [
userUuid 9a; »-3ab5-461e-a132-...

publicKey [1,3,0,6,16,219,145,249,249,2...

Figure 68. Session Storage With User Info

62

Application

Select an element in the page to inspect it Cf

Key Value
settings {'compact”false,"direction”;...
accessloken eyIhbGaQulUzITNilsinR5cCl...

Figure 69. Local Storage With Access Token

The client is then redirected to the main chat view.

Chat

As mentioned, upon successful login, users are brought to the main chat view.

Chats demo o

Q

Figure 70. Desktop Chat View

63

On mobile phones, the left side panel is hidden with the option to show the panel by

pressing the menu button in the top left corner of the screen.

Chats demo

Q

Figure 71. Mobile Chat View

To search for a user to add as a contact/friend, a user must use the search bar with the
search icon. A user may enter an empty space for all users registered on the platform, or
search for a specific user. To add someone as a friend, they must then click on the user in

the list of users. The friend request will then show as ‘pending.

64

Chats demo Chate demo

Q | Q average

Contacts
profmughal averagejoe
clancy
profdoroz e Chats demo
kyle
hamayel

averagejoe
Request pending

Figure 72. User Search & Friend Request View

This will create a row in the Chats table with pendingRequest set to to true and the

encrypted symmetric key.

pendingRequest 7 sentByUuid & sentBySymKey 2 acceptedBySymKey
boolean & character varying ! character varying character varying

true Qaabd235-3ah5-467e-a., 4cb43a897fcd?2cD1a%96... 42e5db4ib04381cb9..

Figure 73. Friend Request - Chat Created

The user receiving the request can accept or deny the friend request. If the friend request is
denied, the row in the Chats table is deleted. If it is accepted, pendingRequest is set to false
and the ‘acceptedBySymKey’ is replaced with the newly created symKey. The chat between

the two users is then successfully established and they may message each other.

pendingRequest 7 sentByUuid . sentBySymKey acceptedBySymKey p
boolean character varying character varying i character varying
false 9aabd235-3ab5-467e-a.. 4ch43a897fcd2c071a96... ald4d5558b8a3c7alz..

Figure 74. Friend Request - Chat Accepted

65

Chats averagejoe @

Figure 75. Friend Request Accept/Deny View

Assuming the friend request is accepted, the users will be presented with the following
screens (note the user on the right is on a phone and using a ‘Light’ theme with rounded
edges turned on - to change themes and settings a user needs to click the settings icon).

Chats averagejoe =4

Q search users
hamayel

kyle

Figure 76. Request Accepted View

The users may now send each other E2E encrypted messages that will be kept secret even

with the proliferation of quantum computers.

66

To send messages to each other, the users must simply type their messages into the

message box at the bottom and hit enter or the send icon. Messages sent by the user are

shown on the right in the theme’s primary color and messages sent from the friend are

shown on the left in the theme’s secondary color.

Chats demo

Q

averagejoe

profmughal

dancy

averagejoe

hi demo! how's it going?

averagejoe

oh yeah, who are you listening to?

demo
Hey averagejoe!

minutes a

averagejoe
hi demo! how's it going?

demo
im alright, just listening to music
averagejoe
oh yeah, who are you listening to?
demo
BIPP by SOPHIE!

Figure 77. Chat Between Two Users

To double check that the messages are indeed E2E encrypted, we need to make sure the

server does not receive and store the plaintext version of the messages at any point. We can

simply query the messages table and check the data in the ‘content’ column.

| uuid
4 [PK]uuid 4

99d94521-f4

Tc56eebl-57...
a05ac9ff-d42 .
858c4a53-d3..
1d973375-bf..

o o A W N =

04659e81-64.

content
text

46c0356d

d4ad14d77c365a6a3eB880efefc8f8d

f4a14d93782d50397f8704e3b4998c632742988212e1eeb2

f5a54d967132567379b47b4f99fdf7e730e969e0feae7342a2¢46decdalc970a3bb04

f3a04d8e7821573479803fbb38bde6731b90985be3e02e302e08c3cce 7847 1bfed

deB13da73d2246380ca03bdcdaaf8d

fromName

text

demo
demo
averagejoe
demo
averagejoe

demo

toName

text
[null]
[null]
[null]
[null]
[null]

[null]

date
timestamp without time zoﬁ{

2021-05-09 20:43:06.636946
2021-05-09 20:44:54.385898
2021-05-09 20:45:02.228027
2021-05-09 20:46:59.946508
2021-05-09 20:47:07.736843
2021-05-09 20:47:45.074704

Figure 78. Messages Table With Encrypted Messages

senderUuid
uuid 4
9aabd235-3ab5-..

9aabd235-3ab5-..
d6fcBc03-41a5-..

9aabd235-3ab5-..

d6fc8c03-41a5-...
9aabd235-3ab5-..

chatUuid
uuid 4
de949ef8-d3d3-..

3eeb168f-53eb-

3eeb168f-53eb-...
3eeb168f-63eb-...
3eeb168f-53eb-..
3eeb168f-53eb-...

67

As seen in the content field, all of the messages are hexadecimal string representations of
the encrypted message. At no point does the server receive the plaintext message. If any
hackers or adversaries were to gain access to the database, conversations between users
would be fully protected. Most importantly, quantum computers utilizing tools like the

Shor’s algorithm would not be able to break the encryption protocol, at least in any

reasonable amount of time, thus achieving the objective of this project.

Conclusion and Future Work

This project set out with the goal of implementing a web accessible version of the NTRU
cryptosystem and utilizing it in a PWA chat application as a proof of concept. Doing this
required careful study of existing cryptographic systems and a deep understanding of how
they functioned and could be utilized in a modern tech stack. The project began with a
thorough planning of all the systems (database schema, user interface design, etc.) that
would need to be built to make this application come to fruition. Then, these designs were
implemented in code and tested in an iterative process, figuring out what worked and what
could be improved. All of this resulted in one of the first implementations of post quantum
encryption using NTRU in an E2E encrypted PWA chat application. The project did come
with challenges, a few of which were related to learning some of the technologies chosen
for the project, such as GraphQL and TypeScript. There are also many opportunities for
future MQPs to build upon the project in its current state. Some of these include:

e Implement end to end testing with frameworks like Jest.

e Implement ‘forgot password’ functionality, thus utilizing the email field.

e Implement new symmetric key creation after a certain number of messages.

e Implement initialization vectors to provide further obfuscation in cipher text.

e Implement two factor authentication to protect data if passwords are compromised.

e Move to WebSockets for updates instead of frequent polling. This would drastically

decrease the resource use both on the server and client.
e Scale the application up and move systems off from a local machine to the cloud

using AWS, Azure, or another cloud platform.

68

Works Cited

[1]

[2]

[10]

[11]

[12]

Ronald L. Rivest, (1990). "Cryptography". In J. Van Leeuwen (ed.). Handbook of
Theoretical Computer Science

Crane, Casey. “Symmetric Encryption Algorithms: Live Long & Encrypt.”
Hashed Out by The SSL Store™, 14 Jan. 2021,
www.thesslstore.com/blog/symmetric-encryption-algorithms/.

Dawn M. Turner, Peter Smirnoff. Symmetric key Encryption - why, where, and how
it's used in banking. CRYPTOMAThIC, 2019
https://www.cryptomathic.com/news-events/blog/symmetric-key-encryption-wh
y-where-and-how-its-used-in-banking

Khalid, Ayesha, et al. Domain Specific High-Level Synthesis for Cryptographic
Workloads. Springer Nature, 2019.

Nachef, Valerie, et al. Feistel Ciphers Security Proofs and Cryptanalysis. Springer
International Publishing, 2017.

Bhargavan, Karthikeyan and Leurant, Gaetan, Sweet32: Birthday attacks on 64-bit
block ciphers in TLS and OpenVPN, https://sweet32.info/

Barker, Elaine (January 2016). "NIST Special Publication 800-57: Recommendation
for Key Management Part 1: General" (PDF) (4 ed.). NIST.

Bonnetain, X, Naya-Plasencia, M. and Schrottenloher, A. 2019. Quantum Security
Analysis of AES. IACR Transactions on Symmetric Cryptology. 2019, 2 (Jun. 2019),
55-93. DOL:https://doi.org/10.13154 /tosc.v2019.i2.55-93.

Eric Conrad, Seth Misenar, Joshua Feldman, Chapter 4 - Domain 3: Security
Engineering (Engineering and Management of Security), CISSP Study Guide (Third
Edition), Syngress, 2016, Pages 103-217

Thomas W. Edgar, David O. Manz, Chapter 2 - Science and Cyber Security, Syngress,
2017,1SBN 9780128053492,

De Feo, Luca; Jao; Plut (2011). "Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies" PQCrypto 2011

Smith, Belinda. “Prime Numbers Keep Your Encrypted Messages Safe.” ABC News,
ABC News, 19 Jan. 2018,
www.abc.net.au/news/science/2018-01-20/how-prime-numbers-rsa-encryption-
works/9338876.

69

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

C. Cid, Information Security Group, University of London, Algebraic Analysis of AES,
https://www.cosic.esat.kuleuven.be/ecrypt/AESday/slides/AES-Day-CarlosCid.pd
f, October 2012.

OLEJNIK, Lukasz, and Thomas ZERDICK. “Quantum Computing and Cryptography.”
European Data Protection Supervisor, European Union,
edps.europa.eu/sites/default/files /publication/07-08-2020_techdispatch_quantu
m_computing_en_0.pdf.

National Institute of Standards and Technology (2016). Report on Post-Quantum
Cryptography. (Computer Security Resource Center), 04/28/16: NISTIR 8105
(Final) https://nvlpubs.nist.gov/nistpubs/ir/2016/NISTIR.8105.pdf

National Institute of Standards and Technology (2012). Recommendation for
Applications Using Approved Hash Algorithms (Computer Security Division)
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-107r1.p
df

Martin, Karen. Waiting for Quantum Computing: Why Encryption Has Nothing to
Worry About. 22 Jan. 2019,

techbeacon.com/security /waiting-quantum-computing-why-encryption-has-nothi
ng-worry-about

Shor, Peter W. “Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer.” SIAM Journal on Computing, vol. 26, no. 5,
1997, pp. 1484-1509., doi:10.1137/s0097539795293172.

Beckman, David, et al. “Efficient Networks for Quantum Factoring.” Physical Review
A, vol. 54, no. 2, 1996, pp. 1034-1063., doi:10.1103 /physreva.54.1034.

Garisto, Dan. “Quantum Computers Won't Break Encryption Just Yet.” Protocol,
Protocol - The People, Power and Politics of Tech, 8 Apr. 2021,
www.protocol.com/manuals/quantum-computing/quantum-computers-wont-bre
ak-encryption-yet.

Emerging Technology from the arXiv. “How a Quantum Computer Could Break
2048-Bit RSA Encryption in 8 Hours.” MIT Technology Review, MIT Technology
Review, 2 Apr. 2020,

www.technologyreview.com/2019/05/30/65724 /how-a-quantum-computer-coul
d-break-2048-bit-rsa-encryption-in-8-hours/.

Duits, Ines. “The Post-Quantum Signal Protocol: Secure Chat In A Quantum World.”
University of Twente, University of Twente, 2019, pp. 1-84.

70

[23] Maheshwari, Anil. “NTRU Cryptosystem and Its Analysis.” School of Computer
Science, Carleton University
http://people.scs.carleton.ca/~maheshwa/courses/4109/Seminar11/NTRU_pres
entation.pdf

[24] Ewaida, Bashar. “Pass-the-Hash Attacks: Tools and Mitigation.” SANS Institute,
SANS Institute, 2021, pp. 2-35.

71

Appendix A

The GitHub repository for this project is at: github.com/hamayelq/MQP-Post-Quantum

72

Appendix B

User Entity

import { Field, ObjectType } from "type-graphql";
import {

Entity,

PrimaryGeneratedColumnn,

Column,

Basekntity,

OneToMany,

ManyToMany,

} from "typeorm";
import { Chat } from "./Chat";

from "./Message";

@0bjectType ()

@Entity ("users")

export class User extends BaseEntity {
QField (() > String)
@PrimaryGeneratedColumn ("uuid")

uuid: string;

@Field ()
@Column ("text", { nullable: true })

publicKey: string;

@Field()
@Column ("text", { nullable: true })

encryptedPrivateKey: string;

QField ()
@Column ("text", { unique: true })

username: string;

@Field ()
@Column ("text")

email: string;

@Column ("text")

password: string;

@Column ("int", { default:

tokenVersion: number;

@Field(() => [Message])
@OneToMany (() => Message, (messages)
nullable: true,
onDelete: "CASCADE",
}

messages: Messagel];

@Field(() => [Chat])

@ManyToMany (() > Chat, (chat) > chat.members, {
nullable: true,
onDelete: "CASCADE",

1)

chats: Chatl];

Chat Entity

import { Field, ObjectType } from "type-graphql";

import {
Column,
Entity,
PrimaryGeneratedColumnn,
BaseEntity,
CreateDateColumn,
UpdateDateColumn,
OneToMany,
JoinTable,
ManyToMany,
from "typeorm";

{ Message } from "./Message";

User } from "./User";

y ("chats™")
export class Chat extends BaseEntity ({
@Field(() => String)
@PrimaryGeneratedColumn ("uuid")

uuid: string;

@Field(() => String)
@QColumn ({ nullable: true })

name: string;

@Field(() => Message)

@OneToMany (() => Message,

nullable: true,
onDelete: "CASCADE",
})
@JoinTable ()

messages: Messagel];

@QField (() => [User])
Q@JoinTable ()
@ManyToMany (() => User, (member) => member.chats, { onDelete: "CASCADE" })

members: User[];

@Field(() => String)
@Column ({ nullable: true })

lastMessage: string;

@Field(() => Boolean)
@Column ({ default: true })

pendingRequest: boolean;

@Field(() => String)
@Column ()

sentByUuid: string;

@Field(() => String)
@QColumn ({ default: ""

sentBySymKey: string;

@Field(() => String)
@Column ({ default: "" })

acceptedBySymKey: string;

QField (() => Date)
@CreateDateColumn ({ name: "createdAt" })

"createdAt": Date;

@Field(() => Date)
@UpdateDateColumn ({ name: "updatedAt" })
"updatedAt": Date;

Message Entity

import { Field, ObjectType } from "type-graphqgl";
import {
Entity,
PrimaryGeneratedColumnn,
Column,
BaseEntity,
CreateDateColumn,
ManyToOne,
} from "typeorm";
import { Chat } from "./Chat";

import { User } from "./User";

@0bjectType ()

@Entity ("messages")

export class Message extends BaseEntity {
@Field(() => String)
@PrimaryGeneratedColumn ("uuid")

uuid: string;

QField (() > User)
@ManyToOne (() => User,

sender: User;

@Field(() => Chat)
@ManyToOne (() => Chat, (chat) => chat.messages)

chat: Chat;

@Field ()
@Column ("text", { nullable:

fromName: string;

@Field()
@Column ("text", { nullable:

toName: string;

@Field()
@Column ("text", { nullable:

content: string;

@Field()
@Column ("boolean", { default: false })

me: boolean;

@Field(() => Date)
@CreateDateColumn ({ name: "date" })

"date": Date;

Appendix C

User Resolver

import {
Arg,
Ctx,
Field,

Mutation,

Object

Query,

‘r\/pe 4

Resolver,

UseMiddleware,

from "type-graphqgl";

{
{
{
{
{
{
{
{

"

User } from "../entity/User";

hash, compare } from "bcryptjs";

MyContext } from "../MyContext";

createAccessToken, createRefreshToken } from "../auth/auth";
isAuth } from "../auth/isAuth";

sendRefreshToken } from "../auth/sendRefreshToken";
getConnection } from "typeorm";

verify } from "jsonwebtoken";

class LoginResponse {

@Field()

ssToken: string;

@Field()

=> User)

export type contextType = {

ser:

}:

User;

@Resolver ()

export class UserResolver {

Query (() > String)

@UseMiddleware (isAuth)

e (@C

tx() { payload }: MyContext) {

return "Your user id is: ${payload!.uuid} " ;

@Query (() => [User])
async getUsers (@Arg ("uuid") uuid: string) {
const user = await User.findOne ({ where: { uuid: uuid } });

if (l'user)

return [];

console.log (
‘getUsers request made by user with uuid ${uuid ? uuid : "NULL"}"

) 7
const users = await User.find();

const filteredUsers: User[] = users.filter((user) => user.uuid !== uuid);

return filteredUsers;

@Query (() => User, { nullable: true })

me (ACtx () context: MyContext) ({

const authorization = context.reqg.headers.authorization;

i1f ('authorization) {

return null;

try {

const token = authorization.split("™ ")I[1];

const payload: any = verify(token, process.env.ACCESS TOKEN SECRET!) ;

context.payload = payload as any;
return User.findOne (payload.userId);
catch (err) {

console.log(err);

return null;

@Mutation (() > Boolean)
async revokeRefreshTokensForUser (
QArg ("userId", () => String) userId: string
) |
await getConnection ()
.getRepository (User)

.increment ({ uuid: userId }, "tokenVersion", 1);

return true;

@Mutation (() => LoginResponse)

async login (
@Arg ("username") username: string,
QArg ("password") password: string,
@QCtx () { res }: MyContext
Promise<LoginResponse> {

const user = await User.findOne ({ where: { username } });

if ('user) {

throw new Error ("invalid login (user does not exist)");

const valid = await compare (password, user.password);

(!valid) {

"

console.log("Invalid login attempt: ", username, passwo

throw new Error ("invalid login (incorrect password)");

(valid) {

console.log("Valid login attempt");

sendRefreshToken (res, createRefreshToken (user));

encryptedPrivateKe ser.enc edPrivateKey,
publicKey:

user,

@Mutation (() > Boolean)

async logout (@Ctx () { res }: MyContext) {

try {

sendRefreshToken (res, "");

return true;

} catch (err) {

rd) ;

console.log(err) ;

return false;

@Mutation (() => Boolean)
async register (
@Arg("email") email: string,

@Arg ("username") username: string,

@Arg ("password") password: string,

@Arg ("publicKey") publicKey: string,

@Arg ("encryptedPrivateKey") encryptedPrivateKey: string

{

const hashedPassword = await h pa sieel, 12) 2
userByName = await User.findOne ({ where:

userByEmail = await User.findOne ({ where:

(userByName || userByEmail) {

throw new Error ("exists");

try {

await User.insert ({
username,
email,
password: hashedPassword,
publicKey,
encryptedPrivateKey,

}) i

catch (err) {

console.log(err);

return false;

return true;

Chat Resolver

import {
Arg,
Field,
Mutation,
ObjectType,
Query,
Resolver,
from "type-graphgl";
getRepository } from "typeorm";

n

User } from "../entity/User";

Chat } from "../entity/Chat";

type contextType = {

User;

@0bjectType ()
class GetChatSymKeyResponse {
@Field(() => String)

encryptedSymKey: string;

QResolver ()
ChatResolver {

@Mutation (() => Boolean)

async createChat (
QArg ("memberIds", () => [String]) memberIds: string[],
QArg ("userId") userId: string,
QArg ("sentBySymKey") sentBySymKey: string,
@Arg ("acceptedBySymKey") acceptedBySymKey: string
{
try {

const user = await User.findOne ({ where: { uuid: userId }

throw new Error ("getChats: user not authorized");

(memberIds.length == 1) {

const userRepo = await this.getUserRepo (userld) ;

for (let chat of userRepo.
if (chat.members.length
const chatExist = chat.members.filter (
(member) => member.uuid == memberIds[0

(chatExist.length >= 1) return true;

b)Y

’

Object (memberIds) ;

(oo
userld,
sentBySymKey,
acceptedBySymKey
) ;
catch (err) |
console.log(err) ;

return false;

@Mutation (() => Boolean)
async createNewChat (
members: User|[],
userId: string,
sentBySymKey: string,
acceptedBySymKey: string
{
try {
const chat = Chat.create ({
members: [...members],
lastMessage: ""
sentByUuid: userId,
sentBySymKey,
acceptedBySymKey,
1)
await chat.save():;
return true;

catch (err) {

console.log ("Save Chat FAILED\n");

console.log(err);

return false;

@Mutation (() => Boolean)
async acceptRequest (
@Arg ("chatId") chatId: string,
@Arg ("encryptedSymKey") encryptedSymKey:
) |
try {
const chatRepo = getRepository(Chat);

undefined = await chatRepo.

const chatToUpdate: Chat

where: { uuid: chatId },

if (!chatToUpdate) throw new Error ("Could not find chat to update");

chatToUpdate.pendingRequest = false;

chatToUpdate.acceptedBySymKey = encryptedSymKey;

await chatRepo.save (chatToUpdate) ;

return true;
catch (err) {
console.log(err) ;

throw new Error ("Error accepting request");

@Mutation (() => Boolean)
async denyRequest (QArg ("chatId") chatId: string)
try {
const chatRepo = getRepository (Chat) ;
const chatToUpdate: Chat | undefined = await chatRepo.findOne ({
where: { uuid: chatId },
})

if (!chatToUpdate) throw new Error ("Could not find chat to update");

await chatRepo.remove (chatToUpdate) ;
return true;

catch (err)

{
console.log (err) ;

throw new Error ("Error deleting request");

@Query (() => GetChatSymKeyResponse)
async getChatSymKey (
QArg ("chatId") chatId: string,
@Arg ("userId") userId: string
it
try |

const chat = await Chat.findOne ({ where: { uuid: cha

const symKey =
chat?.sentByUuid === userlId
? chat.sentBySymKey

chat?.acceptedBySymKey;

return { encryptedSymKey: symKey };

catch (err) {

console.log(err) ;

throw new Error ("Error getting chat symkey");

@Query (() => [Chat])
async getChats (@Arg ("userId") userlId: string) {
try {

const user = await User.findOne ({ where: { uuid: userId } });

if ('user) throw new Error ("getChats: user not authorized");

const userRepo = await this.getUserRepo (userld) ;
const chats = | 2
for (let chat of userRepo.chats) ({
if (chat.members.length == 1) {

await chat.remove () ;

else 1f (!chat.name) {

const member = chat.members.filter (

(member) => member.uuid !== user.uuid

) [0];

chats.push({ ...chat, name: member.username });

else {

chats.push (chat) ;

return chats;
catch (err) {
console.log(err);

return []

’

@Query (()

async getUserObj string[]) {

const members = await Promise.all (
memberIds.map (async (memberId) => {

const user = await User.findOne ({ uuid: memberId });

return user;

return members as User|[];

{

tRepository (User) ;

const user = await userRepo.find ({
relations: ["chats", "chats.members"]
where: { uuid: userId },

1)

return user[0];

Mutation,
ObjectType,
Query,
Resolver,
"type-graphqgl";
PubSub, withFilter } from "apollo-server-express";

getRepository } from "typeorm";

Message } from "../entity/Message";

"

User } from

{
{
{ Chat } from "../entity/Chat";
{
{

../entity/User";

type contextType = {

User;

@ObjectType ()
class GetMessageResponse {
@Field(() => String)
uuid: string;
@Field(() => String)
lastMessage

QField (() => Date)

string;

createdAt: Date;
@Field(() => Date)
updatedAt: Date;
@Field(() > [User])
members: User[];
@Field(() => [Message])

messages: Messagel];

QResolver ()

export class MessageResolver ({

@Mutation (() => Boolean)

async createMessage (
@Arg ("chatId") chatlId: string,
@Arg ("content") content: string,
QArg ("userId") userId: string
{

const user = await User.findOne ({ where: { uuid: userId } });

if ('user) {

throw new Error ("createMessage: user unauthorized");

const chat: Chat | undefined = await Chat.findOne ({ uuid: chatlId });
if (!chat) {

throw new Error ("createMessage: can't find chat");
}

chat.lastMessage content;

const await this.createNewMessage (content, user, chat);

try {
await chat.save();
} catch (err) {

console.log(err);

return this.triggerSubscription (chatId, newMessage) ;

@Mutation (() => Message)
string, user: User, chat: Chat) {
const message = Message.create ({
content,
sender: user,
fromName: user.username,
chat,
});
try {
await message.save () ;
} catch (err) {
console.log(err);
}

return message;

@Mutation (() => Boolean)
async triggerSubscription(chatId: string, message: Message) {

try {

pubSub.puD;ishIGET7CHAT75UB, { getNewMessages: S¢ je, chatId }):;

return true;
catch (err) {
console.log(err);

return false;

@Arg ("chatId") chatId: string,

("userId") userId: string

const user = await User.findOne ({ where: { uuid: userId } });

if ('user) {

throw new Error ("getMessage: user unauthorized");

chats: Chat[] = await this.getChatRepo (chatId) ;

(!chats[0] .members.some (({ uuid }) => uuid === userId)) {

throw new Error ("getMessage: user unauthorized");

let messages:

try {
messages = chats[0] .messages.map ((message) => {
if (message.sender.uuid === user.uuid) return {
return { ...message, me: false };

}) s

messages.sort ((a: any, b: any) => +new Date(b.date)
catch (err) {

console.log(err) ;

return { ...chats[0], messages };

@Query (() => Chat)

async getChatRepo (chatId: string) {

const chatRepo = getRepository (Chat);

return await chatRepo.find ({

..message, me: true };

- +new Date (a.date));

relations: ["members", "messages", "messages.sender"],

where: { uuid: chatId },

});

= "GET_ CHAT SUB";

PubSub () ;

88

Appendix D

GraphQL Queries and Mutations

mutation Register (
Semail: String!
Susername: String!
Spassword: String!

SpublicKey: String!

SencryptedPri “eKey: String!

{
register (
email: $
username: Susername
password: Spassword
publicKey: S$publicKey

encryptedPrivateKey: $encryptedPrivateKey

mutation Login (sername: String!, St word: String!) {
login (username: S$username, password: S ; I {
accessToken
encryptedPrivateKey
publicKey
user {
uuid

username

mutation Logout ({

logout

mutation Creat

SmemberIds: [String!]!

SuserId: String!

SsentBySymKey: String!

SacceptedBySymKey: String!

{

createChat (
memberIds: $memberIds
userId: $userId
sentBySymKey: S$sentBySymKey

acceptedBySymKey: SacceptedBySymKey

query GetUsers (Suuid: String!) {
getUsers (uuid: Suuid) {
uuid
username

publicKey

query GetChats (SuserId: String!) {
getChats (userId: Suserld) {

uuid
name
sentByUuid
lastMessage
pendingRequest
sentBySymKey
acceptedBySymKey
updatedAt
members {

uuid

username

publicKey

query GetChatSymKey ($chatId: String! userId: String!) {
getChatSymKey (chatId: $chatId,

encryptedSymKey

&

mutation Accep quest ($chatId: String!, S$encryptedSymKey: String!) {

acceptRequest (chatId: SchatlId, encryptedSymKey: S$encryptedSymKey)

mutation DenyRequest (SchatId: String!) {

denyRequest (chatId: SchatId)

mutation CreateMessage (SchatId: String!, S$content: String!, SuserId: String!) {

createMessage (chatId: SchatId, content: S$content, userId: S$SuserId)

query GetMessages (SchatId: String!, SuserId: String!) ({
getMessages (chatId: S$chatId, userId: SuserId) {

uuid

uuid

u rname

91

Appendix E

AES Substitution Box Implementation

def hex2binary(hexlist):

binaryList = []

for hexnum in hexlist:
item = bin (int (hexnum, 16)) [2:
binaryList.append (item)

return binaryList
def hex2decimalaccess (hexlist):

accessDecimals = []

for hexnum in hexlist:
decimalVals = []

for hexvalue in hexnum[2:]:
decimalVals.append (int (hexvalue, 16))

accessDecimals.append(decimalVals)
return accessDecimals

class AES:
def init (self, input, SBOX) :
self.input = input

self.SBOX = SBOX

convert2eight (self) :
eightbitlist = textwrap.wrap(self.input,

return eightbitlist

convert2hex (self) :

hexlist = []
for eightbits in self.conve
converted = hex (int (eightbi
if(len(converted) == 3):
converted = "Ox" + converted[2:].

hexlist.append (converted)

hexlist.append (converted)

return hexlist

sboxSubstitution (self) :

hex2decimalacce

essList
convertedLis
for
in range (1) :

hex (self.S acces

= "Ox" +

convertedList.a

return convertedList

substitutedBinary (self) :

= m\p"

final

= hex2binary (self.sboxSu

output

final = final.Jjoin (output)

return final

AES (bi SBOX)
S.convert2eight ()))

S.convert2hex()))

("\\nH . L
", "3
.sboxSubstitution()))

substitutedBinary())

0x6b,
0xd7,

0x82,

Oxfe,
[Oxca, 0x59,

0x9c, Oxa4,

[0xb7,

0x71, 0xds8,

0xdl, 0x00,

0x58,

Oxed,
Oxcf],

0xfb,

Ox4a, 0Ox4c,

Oxef, Oxaa, 0x4d,
0x9f,

0x40,

[0xdO,

0x50, O0Ox3c, Oxa8],
[0x51,
0x10, Oxff,

[Oxcd,

Oxa3, 0x9d,
0x£f3,
0=0e,

5d,

1f.

convert2hex())

bstitution())

0x30,
Oxad,
0x34,
0x07,
0x52,
Ox6a, Oxbe,
0x45, 0x02,
Oxda,

Oxbc,

Oxc4,

0x2b,

0x

a

’

94

