
 

 
Process Optimization for Liquid-Liquid Extraction 

 

A Major Qualifying Project submitted to the faculty of 

WORCESTER POLYTECHNIC INSTITUTE 

In partial fulfillment of the requirements for the Degree of Bachelor of Science 

SUBMITTED BY 

Alan Cheung 

Kyle Gagnon 

Vinay Pai 

Sean Smith 

 

SUBMITTED TO 

Professor William Clark of Worcester Polytechnic Institute 

Robert Prytko and Kostas Saranteas of Sunovion Pharmaceuticals 

 

 

April 30, 2015 

This report represents the work of WPI undergraduate students submitted to the 

faculty as evidence of completion of a degree requirement. WPI routinely 

publishes these reports on its website without editorial or peer review. For more 

information about the projects program at WPI, please see 

http://www.wpi.edu/academics/ugradstudies/project-learning.html 

 

http://www.wpi.edu/academics/ugradstudies/project-learning.html


II  

 

I. ABSTRACT 

Experiments were designed to confirm the reliability of an Aspen Plus model simulating an 

active pharmaceutical ingredient recovery process for Sunovion Pharmaceuticals. The process 

includes a reaction between a triflate salt compound and potassium hydroxide, followed by a 

liquid-liquid extraction with methyl tert-butyl ether (MTBE). The experiments looked to verify 

the previous work, study the effects of pH above pKa on the reaction, and study the effects of 

temperature on the extraction. Other solvents were examined for feasibility in the process.  

It was concluded that potassium hydroxide was the best base tested for this process. Potassium 

carbonate resulted in a gel and, subsequently, an emulsion. Additionally, MTBE was found to be 

the safest and most efficient solvent. The temperature study concluded that raising the 

temperature to 35°C reduces MTBE usage by 16%. Regarding the simulation model, it was 

found that it was not always accurate. Aspen had issues predicting water solubility in MTBE.   
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III. EXECUTIVE SUMMARY 

The overarching goal of this project was to use a series of simulations and lab experiments to 

optimize an existing liquid-liquid extraction (LLE) process. The sponsor of this project, 

Sunovion Pharmaceuticals, had a multistep process for the formation and extraction of an active 

pharmaceutical ingredient (API). This project focused on the neutralization reaction and the 

initial solvent extraction of the API. The triflate salt compound is reacted with a base to form 

free base, the desired product. To extract the free base from the undesired products, an organic 

solvent is used with the reaction solution to form two immiscible phases – organic and aqueous. 

The free base favors the organic phase. The phases are separated, and the solvent in the organic 

phase is evaporated to leave only the desired product of free base.  

Sunovion Pharmaceuticals sponsored a previous project in the 2013-2014 academic year. The 

previous project established the foundation of this project by creating a simulation model in the 

Aspen Plus simulation program to represent the process. This model was used to determine that a 

three wash cycle of solvent was the optimal extraction process. This project continued upon their 

work of optimizing the process. The objectives of this project were to examine the effects of 

different parameters on the product yield: different bases, reaction pH, solvents, and extraction 

temperature. Each variable was independently examined in the Aspen Plus software and in 

laboratory experiments. DynoChem software was used to model the downstream solvent swap. 

BACKGROUND 

The goal of this project was to optimize an existing API LLE using simulation software and 

experimental results. In industry, the production of API begins at a lab scale. When the process is 

successful in the lab, it is developed into a pilot production, which will eventually be scaled up to 

a commercial process (Carbogen, 2014). Each step requires research and optimization. By 

efficiently optimizing at each step, the commercial process will be more robust as well as far 

more efficient. This can have a massive impact on production and operational costs.  

Optimizing on a lab scale as opposed to a full process scale not only saves costs and time but 

also allows for the examination and testing of chemistry and design criteria (Flapper et al., 2001). 

Similarly, there is great efficiency in using a software model to simulate the process. Software 

simulation reduces material and equipment costs while allowing for a wide variety of testing and 

analysis, such as material and energy balances, equipment sizing, cost analysis, and sensitivity 

analysis. In particular, the sensitivity analysis allows for examination of the effects of a variety 

of parameters (Papavasileiou et al., 2007). Using the data from the sensitivity analysis, the 

process parameters can be optimized for desired goals, such as minimal heating, maximum 

efficiency in yield, or maximum production. Additionally, the simulation does not involve any 

risk and can be scaled up in the software when necessary.  
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To model the three wash extraction, Aspen Plus v8.2 was used. Aspen Plus is currently the 

leading chemical process optimization software and is used by biochemical and polymers 

industries for operation, design, and optimization of manufacturing facilities (Aspen, 2015). 

DynoChem is an Excel-compatible process development and scale-up program that aims to help 

engineers and scientists in the pharmaceutical industry (Scale-up Systems, 2014). Their 

modeling software includes pH control, kinetics for different reactor types, solvent swap 

simulations, and acid-base equilibrium. 

METHODOLOGY 

The API process begins at the salt-split reaction with the triflate salt, provided by the sponsor, 

reacting with a base, potassium hydroxide (KOH). The salt split reaction forms free base 

(C9H13NOS), potassium triflate (K+CF3SO3
-), and water, as seen in Equation 1.  

𝐶9𝐻14𝑁𝑂𝑆+ ∙ 𝐶𝐹3𝑆𝑂−
𝑇𝑟𝑖𝑓𝑖𝑙𝑎𝑡𝑒 𝑆𝑎𝑙𝑡

+ 𝐾𝑂𝐻 → 𝐶9𝐻13𝑁𝑂𝑆𝐹𝑟𝑒𝑒 𝐵𝑎𝑠𝑒 + 𝐾+𝐶𝐹3𝑆𝑂3
− + 𝐻2𝑂 (1) 

After the reaction, methyl tert-butyl ether (MTBE) was added to form two immiscible phases – 

organic and aqueous. The free base favors the aqueous while K+CF3SO3
- and water favors 

aqueous phase. The organic phase was separated and the MTBE was evaporated to leave only the 

free base. The extraction and recovery of the free base was repeated three times with diminishing 

amounts of MTBE. This procedure was used as the base case conditions for all subsequent 

studies.  

The pKa of the triflate salt is 9.5, or the pH at which half the salt dissociates. In industry, it is 

believed that one pH unit above the pKa is sufficient to complete the reaction. The effect of pH 

of the reaction mixture on the product recovery was studied. Three different pH values of the 

reaction mixture were studied: 10.5, 11.5, and 12.5. Potassium carbonate (K2CO3) was used as 

the base instead of KOH to obtain lower pH values. 

The previous group’s Aspen model and experiments were replicated to verify their conclusions. 

Using the model, a temperature sensitivity analysis was then conducted to minimize the amount 

of MTBE used. Temperatures of 25°C, 30°C, and 35°C were studied. The optimal run that saved 

the most amount of MTBE was tested experimentally to verify the Aspen result. In addition to 

the optimal condition, experiments using three three-gram washes of MTBE were run at the three 

temperatures to determine the effects of temperature on product extraction. 

The DynoChem solvent swap model was used to simulate the downstream process. The goal of 

the simulation was to reach 1% of the upstream solvent and to switch the product to an 

acetonitrile based solution. Both put/take and constant feed methods were used. Properties of the 

solvents were taken from the DynoChem database. This generated spreadsheet data and a 

graphical representation of the data over time.  
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RESULTS AND CONCLUSIONS 

The Aspen model and base case conditions from the previous project were successfully 

replicated. However, it was noted that the Aspen model could only correctly predict the recovery 

of the free base product but not the water content in the organic and aqueous phases. This was 

also seen in the previous project’s results. 

The pH study was inconclusive. Using K2CO3 resulted in a gel due to the lower pH of the 

reaction solution compared to the base case. To prevent the gelling from occurring, the first wash 

of MTBE was added before the reaction step. While no gel formed when an organic phase was 

present, an emulsion occurred. To prevent an emulsion from forming during the pH study, KOH, 

instead of K2CO3, was used in one stoichiometric equivalence to the triflate salt. No gelling or 

emulsions occurred during these experiments, but the pH was not consistent. A statistical 

analysis of the experimental results showed that there was not enough evidence to prove 

correlation between the pH and recovery.  

The optimal base for the neutralization reaction was KOH. Sodium carbonate and bicarbonate 

both had low solubilities in water, so they were unusable in the experiments. Potassium 

carbonate formed either a gel or emulsion during the reaction step. 

The Aspen simulations showed that using three grams for all three washes would yield an 

appreciable difference in recovery between 25°C, 30°C, and 35°C. However, Aspen could not 

take into account the difference in the organic and aqueous phases. During the laboratory 

experiments, poor or no phase separation was seen during the extractions. It was concluded that 

the organic phases might have been small enough to dissolve in the aqueous phase.  

The temperature study concluded that, by elevating the temperature to 35°C, the MTBE usage 

could be reduced by 16% compared to the base case. Two out of five of the experimental runs 

had recoveries over 100%, which was concluded to be due to water present in the recovery flask 

used for the rotary evaporator.  

From a solvent study analysis, it was determined that MTBE provided the best recovery while 

posing the lowest health risks as a class 3 solvent. Chloroform, ethyl acetate, diethyl ether, and 

trans-1,2-dichloroethylene all provided similar recoveries, but were more dangerous class 1 or 2 

solvents. 

Using DynoChem, three different solvents were tested under both put/take and constant feed 

solvent swap conditions. The base solvent MTBE was used as well as toluene and isobutyl 

acetate. DynoChem did not have data for the solvents tested in the solvent study. MTBE proved 

to be the most efficient in both time and acetonitrile required.  As the boiling points of the 

solvent approached that of acetonitrile, the heating and amount of acetonitrile required increased.  

RECOMMENDATIONS   

Only the extraction was able to be modeled in Aspen, but it is recommended that the reaction 

also be modeled to simulate reaction parameters. KOH was the best base of the ones 
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investigated, but sodium hydroxide should be investigated. Different concentrations of KOH 

should also be studied. Additionally, a more precise study of pH should be conducted. Though 

alternative safe solvents have lower recoveries, it is recommended that the Aspen model is also 

verified for these alternative solvents. Mixing and settling times could be observed for effect on 

free base recovery. A cost analysis should be completed to investigate the value of increasing 

heating of extraction to minimize solvent usage. Future studies should examine inputting solvent 

data into DynoChem for further analysis of solvent swapping capabilities.  
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IV. NOMENCLATURE 

API – active pharmaceutical ingredient  

Aqueous phase – a liquid phase in an LLE that contains water and its solutes 

Aspen Plus – a comprehensive chemical process modeling system  

DynoChem – an Excel-based software used to model chemical processes  

Extraction – a chemical separation process  

Free base – the compound being extracted in the LLE process, 𝐶9𝐻13𝑁𝑂𝑆  

HPLC – high performance liquid chromatography 

K+CF3SO3
- - potassium triflate 

K2CO3 - potassium carbonate 

KHCO3 - potassium bicarbonate 

KOH - potassium hydroxide 

LC50 - lethal concentration at which 50% of the test population will die 

LLE – liquid-liquid extraction  

MQP - Major Qualifying Project 

MSDS - material safety data sheet 

MTBE – methyl tert-butyl ether  

Na2CO3 - sodium carbonate 

NaHCO3 - sodium bicarbonate 

NRTL – Non Random Two Liquid  

Organic phase – a liquid phase in an LLE that contains an organic solvent and its solutes  

p – p-value, or probability of rejecting the null hypothesis 

Rotovap - rotary evaporator  

Simulation – modeling of a chemical process using software  

Software – computer programs, such as DynoChem and Aspen  

Sponsor – Sunovion Pharmaceuticals  

Triflate salt – any salt compound containing a triflate group, 𝐶𝐹3𝑆𝑂3𝐻  

UNIFAC – UNIQUAC Functional-group Activity Coefficients  
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UNIQUAC – Universal Quasichemical  

Wash – an individual step in a liquid-liquid extraction process  

α – significance level 

ρ – Spearman correlation coefficient  
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1 INTRODUCTION  

Liquid-liquid extraction, or solvent extraction, is a physical process that separates “components 

of a solution by utilizing an unequal distribution of the components between two immiscible 

liquid phases” (Law & Todd, n.d.). Typically, the extraction process is conducted by mixing two 

immiscible liquid phases: an aqueous solution and an organic solvent. Some components 

dissolved in the aqueous solution transfer to the organic solvent, which has a higher affinity for 

those components. This transfer of components from one phase to the solvent phase is known as 

extraction (Law & Todd, n.d.).  

First largely applied in the 1920s and 1930s for the removal of aromatics from kerosene in the 

petrochemical industry, liquid-liquid extraction has many applications in industry today 

(Crowell, 1997) (Kirk-Othmer, 2007). The petroleum and petrochemical industries widely use 

solvent extraction for obtaining high-purity aromatic compounds, such as benzene and toluene, 

and for separating aromatic compounds from aliphatic ones. The pharmaceutical industry also 

extensively uses extraction. Many pharmaceutical intermediates and products cannot be treated 

by methods that involve high temperatures, such as distillation, since they are sensitive to heat. 

Some products include antibiotics and vitamins. The food processing industry uses solvent 

extraction in various ways, such as refining fats and oils and protein (Kirk-Othmer, 2007). 

In the 2013-2014 academic year, Sunovion Pharmaceuticals sponsored a Major Qualifying 

Project (MQP) to determine whether its liquid-liquid extraction system could be modeled by 

process simulation and to optimize the system. In this system, triflate salt reacted with potassium 

hydroxide (KOH) to form the free base from the reacted salt, and methyl tert-butyl ether 

(MTBE) was added to the mixture to extract the free base. The previous group concluded that the 

computer simulation program, Aspen Plus, could adequately simulate the liquid-liquid extraction 

process but not the reaction process and that three solvent washes was optimal for the extraction. 

They recommended for future projects to test the extraction system with different parameters, 

such as using different solvents, different bases, and higher temperatures (Caravella et al., 2014). 

Subsequently, Sunovion Pharmaceuticals sponsored this MQP to continue the study on the 

liquid-liquid extraction system. Different bases, reaction pH, solvents, and extraction 

temperature were studied. Each variable was independently examined in Aspen Plus and in 

laboratory experiments. The goal of this MQP was to optimize the extraction system with regard 

to these parameters. 

  

  



2  

 

 

2 BACKGROUND 

2.1 PROCESS OPTIMIZATION 

The goal of this project was to optimize an existing active pharmaceutical ingredient (API) 

liquid-liquid extraction using simulation software and experimental results. In industry, the 

production of API begins at a lab scale. When the process is successful in the lab, it is developed 

into a pilot production, which will eventually be scaled up to a commercial process (Carbogen, 

2014). Each step requires research and optimization. By efficiently optimizing at each step, the 

commercial process will be more robust as well as far more efficient. This can have a massive 

impact on production and operational costs.  

Optimizing on a lab scale as opposed to a full process scale saves costs and time but also allows 

for the examination and testing of chemistry and design criteria (Flapper et al., 2001). Similarly, 

there is great efficiency in using a software model to simulate the process. Software simulation 

reduces material and equipment costs while allowing for a wide variety of testing and analysis, 

such as material and energy balances, equipment sizing, cost analysis, and sensitivity analysis. In 

particular, the sensitivity analysis allows for examination of the effects of a variety of parameters 

(Papavasileiou et al., 2007). Using the data from the sensitivity analysis, the process parameters 

can be optimized for desired goals, such as minimal heating, maximum efficiency in yield, or 

maximum production. Additionally, the simulation does not involve any risk and can be scaled 

up in the software, when necessary.  

2.2 UPSTREAM PROCESS OF SEP-363592  

2.2.1 SALT SPLIT REACTION 

The first step of the process is to deprotonate the SEP-363592 compound, a triflate salt, through 

a salt split reaction. By using a base such as potassium hydroxide (KOH), the triflate salt splits 

into the isolated and deprotonated free base (C9H13NOS), potassium triflate (K+CF3SO3
-), and 

water. This can be seen below in Equation 1: 

𝐶9𝐻14𝑁𝑂𝑆+ ∙ 𝐶𝐹3𝑆𝑂−
𝑇𝑟𝑖𝑓𝑖𝑙𝑎𝑡𝑒 𝑆𝑎𝑙𝑡

+ 𝐾𝑂𝐻 → 𝐶9𝐻13𝑁𝑂𝑆𝐹𝑟𝑒𝑒 𝐵𝑎𝑠𝑒 + 𝐾+𝐶𝐹3𝑆𝑂3
− + 𝐻2𝑂 (1) 

The triflate salt has a pKa of 9.5, meaning that at a pH of 9.5 only half the salt dissociates. In 

industry, it is usually assumed that complete dissociation occurs at 1 pH unit above the pKa 

(Prytko, 2014). In this process, the goal is to completely dissociate the salt. This requires at least 

a stoichiometric amount of Lewis base to interact with the triflate salt. While high pH can be 

reached easily with excess base, this also increases the corrosive properties of the system 

(CCOHS, 2015). Processing and disposal costs are increased with basic wastes, so utilizing 

weaker bases could reduce costs. Other weaker bases such as potassium carbonate (K2CO3) and 

bicarbonate (KHCO3) can be used for reactions at lower pH. The reaction of the diprotic base is 

given in Equations 2 & 3 below: 
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𝐶9𝐻14𝑁𝑂𝑆+ ∙ 𝐶𝐹3𝑆𝑂−
𝑠

+ 𝐾2𝐶𝑂3𝑎𝑞
→ 𝐶9𝐻13𝑁𝑂𝑆𝑎𝑞 + 𝐾+𝐶𝐹3𝑆𝑂3

−
𝑎𝑞

+ 𝑲𝑯𝑪𝑶𝟑𝒂𝒒
 (2) 

𝐶9𝐻14𝑁𝑂𝑆+ ∙ 𝐶𝐹3𝑆𝑂−
𝑠

+ 𝑲𝑯𝑪𝑶𝟑𝒂𝒒
→ 𝐶9𝐻13𝑁𝑂𝑆𝑎𝑞 + 𝐾+𝐶𝐹3𝑆𝑂3

−
𝑎𝑞

+ 𝐻2𝑂𝑙 + 𝐶𝑂2𝑔
(3) 

2.2.2 LIQUID-LIQUID EXTRACTION 

After the salt split reaction, the free base is now in an aqueous solution. To extract the free base 

from the aqueous phase, liquid-liquid extraction (LLE) is used to transfer the free base into an 

organic phase. In LLE, a desired solute transfers from one solvent to a second solvent. To ensure 

a successful LLE, the solute must have a higher solubility in the desired phase. The specification 

for this extraction is to transfer 98% of the free base into the organic phase (Caravella et al., 

2014). In this process, methyl tert-butyl ether (MTBE) is used as the organic solvent. 

LLE can be performed in multiple stages usually in counter current flow. In each stage, it is 

assumed that the process reaches equilibrium, where a certain amount of solute in the aqueous 

phase transfers into the organic phase. Each wash counts as a new stage with a new feed of 

MTBE; each stage extracts additional, but decreasing, amounts. It is ideal to find the minimum 

amount of MTBE needed to extract the maximum amount of free base from the aqueous phase. 

Different solvents have different stabilities, reactivities, densities, costs, and solubilities for the 

solute (Caravella et al., 2014). In addition, the solubility of a solution increases with temperature, 

so operating at different conditions could improve the process.  

2.2.3 TEMPERATURE EFFECTS 

Temperature conditions can be manipulated to optimize the extraction process, and they must be 

considered for stability of biological products (Crowell, 1997). In solvent extraction from a solid 

matrix, increasing the temperature decreases the viscosity of the solvent and thereby allowing the 

solvent “to wet the matrix and solubilize the target analytes”; the increased thermal energy helps 

break the analyte-matrix bonds and increases diffusion of the analyte to the matrix surface 

(Thermo Scientific, 2013). 

The effect of temperature on solvent extraction of phenolics and oils from plants has been 

vigorously studied. Many studies have concluded that increasing the temperature increased 

product yield (Asoiro & Akubuo, 2011) (Herrero et al., n.d.) (Spigno et al., 2007) (Tan et al., 

2013) (Thoo et al., 2010). Although there are many studies of temperature effects of solvent 

extraction from solids, studies of temperature effects on liquid-liquid extraction could not be 

found. 

2.2.4 EMULSIONS 

An emulsion is defined as dispersion of small droplets of one liquid in another liquid (Esfeh et 

al., 2010).  In this particular extraction process, an emulsion causes issues in separating the two 

immiscible phases from each other without losing product. There are several known methods to 

breaking emulsions including increasing settling time, adding brine or another solvent to the 

mixture, altering pH, and heating (PSU, n.d.). As the reaction step prior is dependent on pH and 
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the solubility of solvents are dependent on heating, those are not viable options. Adding another 

solution results in additional extraction steps, which is not optimal in this case. Increasing 

settling time is slow and may not always break the emulsion. A study conducted at Zhejiang 

University in China showed that centrifugation could be used to break emulsions (He et al., 

2014). Additionally, increasing the rotations per minute improved the efficiency of breaking the 

emulsion. The Wilks Company claims that stirring the solvent and the emulsion phase will give 

better separation (Ashraf, 1995).  

2.2.5 SOLVENT SWAP 

Following extraction of the free base to the MTBE, a solvent swap is performed to transfer the 

free base to acetonitrile. First, the MTBE is distilled down to remove most of the volume from 

the solution. This is followed by a second vacuum distillation, a polish filtration, and a quick 

addition of MTBE. 

In the lab, the process is conducted by keeping the volume of the batch between a minimum and 

maximum volume by feeding the second solvent when the volume reaches the minimum. This 

method is referred as the “put/take solvent swap” method (scale-up Systems, 2014). An 

alternative would be to maintain a constant feed as the distillation occurs to tightly regulate the 

volume of the batch.  

The purpose of solvent swap is to transfer the free base from MTBE to acetonitrile, which is 

possible due to the different boiling points: 55°C and 82°C, respectively. This process is 

fundamentally a distillation procedure, except the desired product does not get transferred into 

the vapor phase, resulting in a transfer to the acetonitrile solution. Because of vapor-liquid 

equilibrium, the acetonitrile enters the vapor phase, requiring additional volume to be added. For 

this reason, it is possible to swap to a solvent with a lower boiling point, but it would be 

economically taxing due to the inefficiency.  

2.3 MODELING SOFTWARE 

2.3.1 DYNOCHEM 

DynoChem is an Excel-compatible process development and scale-up program that aims to help 

engineers and scientists in the pharmaceutical industry (Scale-up Systems, 2014). Their 

modeling software includes pH control, kinetics for different reactor types, solvent swap 

simulations, and acid-base equilibrium. The previous group evaluated that DynoChem was 

unable to model the known ternary diagrams of water, MTBE, and acetic acid correctly. After 

consulting with the Scale-Up Systems representatives, no known module was capable of 

modeling the LLE in DynoChem (Caravella et al., 2014). 

There are other uses for the DynoChem Software for this process. Although the software can not 

model the extraction step, it can model the downstream solvent swap step. The DynoChem 

solvent swapping module can predict the time, material, temperature, and many other variables 

for a batch process. 
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2.3.2 ASPEN MODELING OF THE SEP-363492 EXTRACTION WITH MTBE 

To model the three wash liquid-liquid extraction, Aspen Plus v8.2 was used. Aspen Plus is 

currently the leading chemical process optimization software and is used by biochemical and 

polymers industries for operation, design, and optimization of manufacturing facilities. Aspen 

utilizes the National Institute of Standards and Technology (NIST) database, the world’s largest 

database. It includes physical properties for 30,000 binary pairs and over 24,000 pure 

components, as well as parameter estimation which was used to model the free base after the salt 

split (Aspen, 2015).  

Aspen is capable of modeling various property methods and binary interactions. The UNIFAC, 

UNIQUAC (UNIversal QUAsiChemical), Wilson, and NRTL (Non Random Two Liquid) are 

several of these methods. The UNIQUAC Functional-group Activity Coefficients method 

(UNIFAC) was used for this project. UNIFAC is used to give information on liquid equilibrium, 

which is useful for reactor design, distillation, and for this extraction process. This is completed 

by using interactions of functional groups and binary interaction coefficients to calculate the 

activity of the solution. 

Aspen is not capable of modeling acid-base reactions, but the laboratory scale extraction could 

be simulated. The decanter block was used to model the separatory funnel. Three decanter blocks 

are inputted into Aspen to simulate three washes. The decanter block is able to simulate batch 

extraction process if the flow per time is replaced with batch charge. This is possible due to the 

identical solutions between batch and continuous decanters (Ralph, 2011). Each decanter block 

has one inlet stream and two product streams (aqueous phase and the organic phase). A mixer 

block simulates the recovery of all three organic phases, and the rotary evaporator is modeled by 

a Sep block, which removes MTBE from the free base. 

Aspen solves the extraction by limiting Gibbs free energy. Gibbs free energy can be calculated 

by several variables which include the molar composition of each component, the temperature of 

the system, and the ideal gas constant. A system has reached equilibrium when Gibbs free energy 

is minimized. For non-ideality correction, the UNIFAC model calculates activity coefficients for 

the components in the mixture. Aspen can then solve for the compositions that result in 

minimum Gibbs free energy.  

 

Figure 1: Three wash extraction and separation 
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2.4 SAFETY PRACTICES 

A deep understanding of safety is crucial before operating lab equipment and handling 

chemicals. Good laboratory habits include conducting experiments in a fume hood and wearing 

gloves, lab coats, and safety glasses. Loose clothing and jewelry chains should not be worn, and 

long hair should be tied back to prevent risks with the rotary evaporator’s moving parts. 

Material safety data sheets (MSDS) for all MTBE and KOH are located in Appendix C. KOH is 

an irritant upon skin or eye contact, and should not be ingested. The lethal concentration (LC50) 

for mosquito fish is 80 mg/L during an exposure of 24 hours. Due to the strength of the base, it 

should be safely disposed (ScienceLab, 2014). Proper use of gloves, goggles, and lab coats can 

minimize any risk from KOH. 

MTBE is a flammable liquid with an upper flammability limit of 15.1% and lower flammability 

limit of 2.5%. Within this concentration range, MTBE could ignite in the presence of an 

initiating spark. If combusted, carbon monoxide will form, which poses additional risks. Alcohol 

foam should be used for larger fires, but for small scale a dry chemical powder fire extinguisher 

should be used. The boiling point is 55°C and should be kept away from heat in a cool, ventilated 

area (ScienceLab, 2014).  

Like KOH, MTBE poses risks as an irritant upon contact with skin and eyes, or upon ingestion. 

Contact with skin will result in itching, and blistering. Proper use of gloves, goggles, and lab 

coats will minimize these risks. However, MTBE is very volatile so inhalation can cause 

irritation in the respiratory tract. The LC50 for rats over a 4 hour exposure is 23,576 ppm. Effects 

on the lungs, nervous system, and mucous membranes can be seen from chronic exposure. 

MTBE should be kept in a fume hood at all times to prevent these risks, as the vapor is also 

denser than air. The compound is stable and non-corrosive, but can react with oxidizing agents 

(ScienceLab, 2014). MTBE could form peroxides which pose severe fire and explosion risks due 

to the presence of carbon and oxygen in the same compound. Peroxides also poses health risks 

from exposure (Canadian Centre for Occupational Health and Safety, 2015). While one of the 

weakest peroxide forming ethers, the reaction solution was checked for the presence of peroxides 

using test strips.   
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3 METHODOLOGY 

The overarching goal of this project was to use a series of simulations and lab experiments to 

optimize an existing product extraction process. Aspen Plus was used as the simulation software 

to model the solvent extraction. The process model was compared to laboratory runs to better 

understand the effects on the variables. The variables included pH of the reaction, bases used, 

temperature of the extraction, and solvents used. The reaction between the triflate salt and the 

base and the solvent extraction of the free base were focused on. This project continued a 

previous Major Qualifying Project (MQP) that had found that a three wash system for solvent 

extraction was ideal. The results of the previous project were taken to be the base conditions for 

the project. Although the three wash system was found to be optimal, the effects of elevating the 

temperature of the extraction and reducing the amount of the methyl tert-butyl ether (MTBE) 

were examined. The goal was to retain maximum recovery while reducing the amount of MTBE 

used. 

For the reaction step, the focus was on the pH dependence of the reaction. The pKa of the 

compound is 9.5. The previous method involved adding excess potassium hydroxide (KOH) to 

react with the triflate salt, resulting in a pH above 14, although it is believed that one pH unit 

above the pKa is sufficient to fully complete the reaction. Such a basic solution presents 

difficulty in materials of construction and disposal. The goal of examining the pH dependence 

was to reduce the pH of the reaction without compromising product yield. It is of note that Aspen 

could not model the reaction mechanism.  

3.1 REACTION 

Before attempting to optimize the process, the reaction must be understood. The triflate salt 

reacts with a base to form the desired free base.  

𝐶9𝐻14𝑁𝑂𝑆+ ∙ 𝐶𝐹3𝑆𝑂−
𝑇𝑟𝑖𝑓𝑖𝑙𝑎𝑡𝑒 𝑆𝑎𝑙𝑡

+ 𝐾𝑂𝐻 → 𝐶9𝐻13𝑁𝑂𝑆𝐹𝑟𝑒𝑒 𝐵𝑎𝑠𝑒 + 𝐾+𝐶𝐹3𝑆𝑂3
− + 𝐻2𝑂 (1) 

The freebase (C9H13NOS) was assumed to be in the organic phase while the potassium triflate 

(KCF3SO3), KOH, and water were assumed to only be in the aqueous phase. The base case runs 

were conducted with 10g of triflate salt and 20g of 2M KOH (2g solid KOH) – identical to the 

previous project’s runs.   

Table 1: Base case conditions for reaction 

Compound Weight (g) Molecular Weight (g/mol) Mole (mol) 

Triflate Salt 10 333.35 0.030 

KOH 2.018 56.11 0.036 
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A 0.006 mol excess of KOH was added to ensure the triflate salt completely dissociated. The pH 

was above 14. As the pH was well above the known pKa of 9.5, it was assumed that the reaction 

was complete.  0.030 mol of the free base was expected as a result. The free base has a molecular 

weight of 183.3 g/mol meaning that the product should have a weight of 5.5 grams. The reactants 

were mixed for five minutes using a magnetic stir bar.  

Nitrogen is only present in the triflate salt and the free base. A balance around nitrogen shows 

that the free base will result in the same number of moles as the triflate salt if the reaction is 

completed. 

Table 2: Expected maximum recovery of free base 

Compound Weight (g) Molecular Weight (g/mol) Mole (mol) Moles of Nitrogen (mol) 

Triflate Salt 10 333.35 0.030 0.030 

Free Base 5.5 183.3 0.030 0.030 

 

3.2 EXTRACTION 

To extract the free base, solvent extraction with MTBE was used. The free base was present with 

the MTBE in the organic phase while excess KOH and the formed KCF3SO3 were present in the 

aqueous phase. Based on the previous project, a three wash system was used. Table 3 shows the 

grams of MTBE used in each wash. 

Table 3: MTBE usage per extraction stage 

Wash 1 2 3 

MTBE Used(g) 22.2 15 11 

 

Wash 1 was mixed with the reaction products for five minutes and was allowed to settle for an 

additional five minutes. The organic phase was recovered while the aqueous phase was mixed 

with the next wash. This was repeated for the third wash, until all the organic phases were 

collected in a flask. The organic and aqueous phases were separated in a separatory funnel. The 

collected organic phases were run through a rotary evaporator to evaporate the MTBE. The 

rotary evaporator was run at 50°C with a vacuum of 400 mm Hg. The remainder of the organic 

phase after evaporating was the desired free base. The mass of the free base was recorded for 

each run. For the majority of experimental runs, the organic phases were collected and 

evaporated. For some of the later runs, the organic phases were evaporated individually and their 

mass recorded.  A detailed step by step procedure can be seen in Appendix A. 

3.3 ASPEN MODEL 

The Aspen model was rebuilt following the input file and notes from the previous report. The 

first step to constructing the model was to specify the components involved in the model 
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(Caravella et al., 2014). To simplify the interaction calculations, only three species were 

specified: water, MTBE, and free base. The first two components are listed in the database, but 

the free base product was constructed using the user define settings. The molecule was drawn, 

and National Institute of Standards and Technologies (NIST) ThermoData Engine was used to 

estimate properties, as seen below in Figure 2. The triflate salt could not be modeled using this 

engine. 

 

Figure 2: Molecule drawing tool for NIST approximation 

 

The properties of the free base were further defined by entering the molecular structure menu. 

The functional groups of the molecule were specified by Universal QuasiChemical Functional-

group Activity Coefficients (UNIFAC) notation. The methods for properties were chosen as 

UNIFAC, and the properties were run to confirm no errors.  

 

Figure 3: Molecule properties for UNIFAC group contribution approximation 
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Next, the model was constructed starting after the reaction. The product of the complete reaction 

entered into the first decanter block defined as WASH1. The second and third wash were 

modeled similarly, with additional MTBE entering as a second stream alongside the aqueous 

phase. The organics of each wash entered a mixer block to consolidate the organic phase into one 

stream. An additional block was used to simulate the rotary evaporator, separating the free base 

from the MTBE. The model can be seen in Figure 1 below. 

 

Figure 1: Aspen model process flow diagram 

The decanter blocks were defined at atmospheric pressure and 25˚C, as seen in Figure 4. To 

determine the phase split, the Gibbs free energy of the system was minimized. The phases were 

specified as a liquid-liquid system, with key components in each phase being specified to the 

correct stream. 

 

Figure 4: Decanter block configurations 

A sensitivity analysis was conducted to run multiple iterations. For a single analysis, multiple 

variables can be defined. In the temperature variation, all three washes were inspected at the 

same time. The variable, as seen in Figure 5, MTBE was specified and the range for the points 

were given. 
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Figure 5: Sensitivity analysis configurations per variable 

3.4 EVALUATING CURRENT OPTIMIZED PROCESS 

To validate the previous results including the Aspen model, the base case process conditions 

were executed. Base case was considered to be the original procedure. The operation followed 

the procedure established by the previous MQP. Subsequent experiments with changes to the 

variables were compared the base case results. 

3.5 PH STUDY 

The base case reaction was run at a pH of 14. The pKa is known to be 9.5. To understand the pH 

dependence of the reaction, a study was designed to run the process at 10.5, 11.5, and 12.5. It is 

believed that a pH unit above the pKa ensures that the reaction is complete. However, no 

previous results were available to confirm this notion. Although the original base was KOH, a 

different base had to be used for the pH study. To achieve lower pH’s with KOH, exorbitant 

amounts of water needed to be used. In practice, it is optimal to keep the aqueous and organic 

phases similar. 

Potassium carbonate (K2CO3) and bicarbonate (KHCO3) and sodium carbonate (Na2CO3) and 

bicarbonate (NaHCO3) were used in 2M solutions. One equivalence of one of the new bases was 

used to ensure that the triflate salt was the limiting reactant. A one equivalence of the 2M sodium 

base solutions was below a pH 10 while the 2M potassium base solutions were below a pH of 11. 

To reach the desired pH levels, KOH was titrated using a burette.  
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3.6 TEMPERATURE VARIATION 

The base case extraction was run at room temperature. Increasing temperature increases 

solubility in the solvent. Using the Aspen model, a series of experiments were found to show that 

increasing temperature and decreasing solvent amounts could still result in complete product 

recovery. 

The first series of experiments involved drastically reducing the MTBE usage and varying the 

temperature from 25, 30, and 35°C. According to the model, having a higher percentage of 

recovery shows less variation between the differing temperatures. The Aspen model indicates 

that using a three wash cycle of four grams of MTBE each will give approximately 75% 

recovery at 25°C. 

 

Figure 6: Small reactor with a heating water jacket 

To ensure accuracy of the temperature, the base case procedure was carried out in a small reactor 

with an impeller and an outer heating water jacket that was connected to a heating element. The 

temperature and the stir speed was controlled via the ReactorMaster software program. The base 

case procedure remained unchanged except that the stirring rpm was set to 500 for the reactor.  
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3.7 TEMPERATURE STUDY 

The second series of experiments was testing the optimal runs found on the Aspen model. The 

run with the minimum amount of MTBE used while maintaining maximum product recovery at 

35 °C was conducted in the lab. Table 4 shows the variation between the washes of the 

temperature experiment and the base case.  

Table 4: Aspen-predicted savings of MTBE for extraction at 35°C 

Wash 1 (g) 2 (g) 3 (g) Total (g) 

Aspen at 35°C 15.28 14.15 11.05 40.48 

Base Case 22.2 15 11 48.2 

 

This set of experiments was run similar to the previous set using the small reactor and 

ReactorMaster. 

3.8 SOLVENT ANALYSIS 

The previous team studied the optimal number of washes and amount of MTBE used for the 

washes. Their recommendation for future teams was to study the product recovery using 

different solvents. To determine the recovery of the product, several solvents were tested in 

Aspen using the base case. The classes of the solvent and boiling points were also considered. 

Low boiling points and a solvent class of 3 were desired. A solvent class of 1 should be avoided 

because they are hazardous or carcinogenic. A solvent class of 2 is more desirable, but are still 

toxic and should be limited in products. Class 3 solvents are lowest in toxicity and have a lower 

risk to health. Lower boiling points were desired for feasibility in the lab as well as for the ability 

to solvent swap with acetonitrile. 

3.9   SOLVENT SWAP ANALYSIS 

A solvent swap analysis was completed using DynoChem modeling software. The free base was 

present at 20°C in 9kg of MTBE. A feed tank of acetonitrile was used to begin the solvent swap 

procedure. A heating element with constant parameters was used for all simulations. The goal of 

the simulation was to reach 1% of the upstream solvent and to switch the product to an 

acetonitrile based solution.  

Both put/take and constant feed methods were used. The minimum volume of the vessel was 

designated as 15L and the maximum volume was 40L after converting rough estimates from the 

Sunovion flow sheet for their operation. Properties of the solvents were taken from the 

DynoChem database. This generated spreadsheet data and a graphical representation of the data 

over time.   
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4 RESULTS 

4.1 VERIFICATION 

To become acclimated with the equipment in the lab and to verify the results of the previous 

group and the Aspen model, two base case runs were completed.  

As seen in previous group’s data in Table 5, the Aspen model agreed with the experimental data 

(Caravella et al., 2014). The actual recovery was always slightly higher than the Aspen 

prediction because of human error and/or water in the product. Water dissolved in the organic 

phase may not have always evaporated off in the rotary evaporator. 

Table 5: Base case results from previous project (Caravella et al., 2014) 

Run Product Recovered (g) 

Actual Aspen % 

Difference 

1 5.965 5.326 11.3 

2 5.549 5.503 0.8 

3 5.553 5.39 3.0 

 

As seen in Table 6, the reproduced runs were similar to the previous group’s experimental data, 

verifying the previous group’s results and procedure. Both runs were close to 100% recovery 

with similar variance.  

Table 6: Yield for experimental verification 

Base Case 

Triflate Salt (g) Expected Free Base (g) Actual Recovered (g) % Recovered 

10.04 5.51 5.48 99.3 

10.05 5.51 5.85 106 

 

The product was slightly viscous, transparent, and yellow, as seen in Figure 7. 
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Figure 7: Free base product 

Using the previous group’s procedure for constructing the Aspen simulation, the model was 

reconstructed. The Aspen results by the previous group matched the results of the reconstructed 

model, verifying the procedure. In the model, it was expected that most of the water would be in 

the aqueous phase because the solubility of water in methyl tert-butyl ether (MTBE) was low. 

The solubilities were tested experimentally, and these results can be seen in Appendix B. It was 

found that a three wash cycle of MTBE contained 0.655 grams of water. The rotary evaporator 

was run at 40°C for these solubility runs to prevent water from boiling off. In experimental runs, 

it was assumed that most of the water present was boiled off since the rotary evaporator was at 

least 10°C higher than the solubility runs.   

In Table 7, the amount of water in the organic phase of the Aspen model was above the 

experimentally determined solubility. Even though the model could not correctly predict the 

water distribution, it accurately predicted the free base recovery. This model was used for 

predicting the amount of free base recovery in the temperature variation and solvent studies.  

Table 7: Aspen extraction results for individual species 

Aspen Extraction Results 

 Solvent (g) Free Base (g) Water (g) 

Aqueous 0.17 0.07 9.69 

Organic 47.83 5.58 8.29 
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4.2 PH STUDY 

The purpose of the pH study was to determine the effects pH has on the recovery of the product. 

The bases considered were sodium bicarbonate (NaHCO3), sodium carbonate (Na2CO3), 

potassium bicarbonate (KHCO3), and potassium carbonate (K2CO3). A 2M solution of NaHCO3 

could not be created at room temperature due to insufficient solubility. NaHCO3 and Na2CO3 

were not used in order to maintain similar volumes of aqueous and organic phases. The more 

soluble K2CO3 and KHCO3 were chosen.  

K2CO3 was used for the three pH runs. A gel formed during the reaction, as seen in Figure 8. The 

gel was pliable and white with a tinge of yellow. The stir bar was not enough to break up the gel, 

so the gel was physically broken using a spatula and stirring rod. After consulting Robert Prytko, 

the sponsor, it was determined that the solubility of the gel was dependent on pH. The pH of the 

reaction mixture was 9.6, much lower than that of the base case pH of 14. This was because 

K2CO3, a weak base, was used for the reaction instead of potassium hydroxide (KOH), a strong 

base. The rest of the base case procedure for mixing, extraction, and evaporation was followed. 

 

Figure 8: Gel formed in reaction with K2CO3 

The three runs can be seen in Table 8. For the first two runs, a pH of 12.5 was the target, but the 

recoveries were vastly different. The first run had a recovery of 65%, while the second had a 

recovery of 110%. The pH run at 10.5 had a recovery of 102%. However, it was expected that 

there would be less product recovered with a lower pH.  
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Table 8: pH experimental results using K2CO3 

pH Study - Potassium Carbonate 

Expected Free Base 

(g) 

Actual Recovered 

(g) 

% 

Recovered 

pH Gel 

5.53 3.59 65.0 12.4 Yes 

5.53 6.08 110 12.7 Yes 

5.51 5.63 102 10.5 Yes 

 

The varying results were most likely due to the gel interfering with the reaction step. The post-

reaction mixture after breaking the gel was heterogeneous and still had very small clumps of gel, 

implying that the reaction might not have completed. Additionally, the heterogeneity of the 

solution would not result in a clean separation between the organic and aqueous phases. The 

products for the 12.5 pH runs were dissimilar, as seen in Figures 9 and 10. For the first run, the 

product was white, opaque, and viscous. The second run, the product was clear and light yellow, 

but was not viscous. The intensity of the yellow was less than the base case product.  

Figure 9: Product of first 12.5 pH run (Left) 

Figure 10: Product of second 12.5 pH run (Right) 

 

4.3 GEL AND EMULSION 

The base case and pH study procedures were originally carried out by adding the first wash of 

MTBE after the reaction. After consulting the sponsor, the procedure was modified to prevent 

gelling. In practice, the solvent is present in the reaction step. Subsequently, the remainder of the 

studies were completed with the first wash present during the reaction. 
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In the modified pH study procedure, the first wash was added to the base, and the triflate salt was 

added to the resulting solution. An emulsion formed after mixing the reactants. As seen in Figure 

11, the organic phase on top and the aqueous phase on the bottom were both clear. The middle 

phase was an emulsion and was cloudy. Extraction with a separatory funnel was impossible 

when an emulsion formed since there was uncertainty in the complete transfer of the free base to 

the organic phase. 

 

Figure 11: Emulsion formed after adding first wash of MTBE to reaction 

To determine whether the order that the material was added had an effect, the pH study 

procedure was altered again. Next, eight out of 22 grams of the first wash were added to the 

triflate salt before adding K2CO3. No emulsion occurred after the reaction, but when the 

remainder of the first wash was added and mixed, an emulsion occurred.  

The pH study procedure was modified a third time; K2CO3 was added to the salt and a gel began 

to form. MTBE was added slowly until the gel was dispersed. Four grams completely dispersed 

the gel and the reaction was completed. No emulsion occurred after the reaction, but again when 

the remainder of the first wash was added and mixed, an emulsion occurred.   

Another run was conducted where KOH was titrated to raise the pH to break the gel. In this run, 

the gel was physically broken up first and then was mixed for several minutes after every few 

milliliters of KOH. It was found that at a pH of 11.2, the gel was well dispersed. A summary of 

the gel and emulsion results can be seen in Figure 12. 



19  

 

 

 

Figure 12: Summary of gel and emulsion results 

 

The results show that when using K2CO3 as the base and mixing the first wash to the reaction 

mixture, an emulsion occurs. The pH variation study was discontinued since K2CO3 consistently 

resulted in a gel or an emulsion. The cause of the gel was due to the insolubility at lower pH. 

However, the cause of the emulsion was unknown. Recommended by the sponsor, another study 

was conducted using equivalent stoichiometry of triflate salt and KOH. 

4.4 EQUIVALENCE STUDY 

The purpose of these runs was to study the effect of fewer pH units above the pKa of 9.5 on 

recovery. Gels and emulsions were avoided by using 2M KOH with an initial pH of 14. To react 

0.30 mole of the triflate salt, 0.30 mole of KOH was used.  It was expected that there would be 

less recovery and a lower pH compared to the base case since no excess base would be present. 

KOH flakes of 85% purity were used. However, in the first run, the purity was not taken into 

account, meaning that less than one equivalence of base was used. This run had the lowest 

recovery in the equivalence study. A single pH was not consistently replicated throughout the 

study. The rest of the recoveries were all above 100% as seen in Table 9.   
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Table 9: Results for one equivalence experiments 

pH Study - 1 EQ of KOH 

Triflate Salt 

(g) 

Expected Free Base 

(g) 

Actual Recovered 

(g) 

% 

Recovered 

pH 

10.02 5.50 4.88 88.7 10.8 

10.01 5.50 6.60 120 12.5 

10.01 5.50 6.59 120 10.9 

10.01 5.50 6.63 121 12.6 

10.05 5.51 5.70 103 11.4 

10.01 5.49 7.67 140 13.1 

10.02 5.50 6.68 121 10.4 

 

From inspecting Figure 13, it seemed that there was no correlation between the pH of the post-

reaction mixture and the percent recovered of free base. The Spearman rank-order correlation 

test was performed to statistically support this conclusion. The first run with the miscalculation 

was not included either in Figure 13 or in the Spearman rank-order correlation test since it was 

not a true one-equivalence run. 

 

Figure 13: Percent recovery vs. pH 

 

The Spearman rank-order correlation test resulted in a Spearman correlation coefficient of 𝜌 =

0.441 and a p-value of 𝑝 > 0.10. The Spearman correlation coefficient indicated that there was a 

moderately weak positive association between pH and recovery. However, with a p-value greater 

than the significance level of 𝛼 = 0.05, the null hypothesis of no correlation between pH and 

recovery could not be rejected since there was not enough evidence. Future pH studies with more 

precision could show that there is a correlation between pH and recovery. 
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4.5 TEMPERATURE STUDY 

The procedure for the temperature study was determined by conducting a sensitivity analysis in 

Aspen Plus V8. The goal was to maintain the same recovery as the base case, but to minimize the 

amount of solvent used by increasing the temperature of the extraction. As seen in Table 10, 

Aspen determined that the optimal amount of solvent required at 35°C was 15.28g, 14.15g, and 

11g for the first, second, and third washes respectively. This came to a total of 40.43g of MTBE 

total for the process, which saved 7.57g, or 16%, of MTBE compared to the base case. 

Table 10: Expected savings in MTBE for heated extraction. 

Solvent Usage Comparison 

Washes 1st (g) 2nd (g) 3rd (g) Total (g) 

Base Case 22 15 11 48 

Temperature 

Study (35°C) 

15.28 14.15 11 40.43 

 

 The Aspen prediction was experimentally tested in the laboratory. In Table 11, the free base 

recovery per wash and the total recovery can be seen.  

Table 11: Temperature study experiments vs. Aspen results 

 Input (g) Wash 1 

Recovery 

(g) 

Wash 2 

Recovery 

(g) 

Wash 3 

Recovery 

(g) 

Total 

Recovery 

(g) 

Recovery 

(%) 

ASPEN 5.5 4.15 1.05 0.25 5.45 98.2 

RUN 16 5.5 5.94 0.39 -0.61 5.72 101 

RUN 17 5.5 - - - 6.37/5.40 98.0 

RUN 18 5.5 4.45 1.79 0.13 6.368 113 

RUN 29 5.5 6.15 1.36 -0.02 7.489 133 

RUN 30 5.5 4.91 1.39 -0.35 5.913 105 

 

Yields over 100% could be explained by water dissolved in the organic phase. This can be seen 

in the condensation in the product flask from the rotary evaporator in Figure 14. In most runs, the 

third wash had negative recovery, which could be due to water evaporating that had been 

collected in previous washes. The Aspen model did not match the per stage recovery. The 

previous project’s Aspen model could also not accurately predict the per wash recoveries 

(Caravella et al., 2014). 

In Run 17 the recovery was initially 6.37g. The flask was left uncovered in the fume hood 

overnight, and the product mass had decreased to 5.40g. However, according to the sponsor, 

leaving the flask uncovered was not acceptable practice as the content of the vapor is unknown 

and was not done for subsequent runs. Run 29 with 133% recovery was conducted with the 
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temperature of the rotary evaporator set to 40°C when it was usually 50°C. This resulted in a 

higher recovery than the other runs. Run 30 was conducted at 60°C and resulted in a more 

accurate recovery of 105%, indicating a larger presence of water that was not removed when 

evaporating at lower temperatures. Generally, with a higher temperature, solubility increases. It 

was believed that more water was present in the organic phase at 35°C than in the base case. 

 

Figure 14: Condensation on the product flask 

 

4.6 TEMPERATURE VARIATION 

The temperature variation study was also determined by an Aspen sensitivity analysis. The goal 

of this study is similar to the temperature study of minimizing MTBE usage, but also to 

determine the accuracy of Aspen. The temperatures studied were 25°C, 30°C, and 35°C. Aspen 

predicted a recovery of 75% if three washes of three grams were used. Two 25°C runs were 

attempted as seen in table 12. The first run resulted in a 203% recovery and the second run had 

no phase separation. The organic phase was too small for a phase separation and most likely 

dissolved into the aqueous phase. This indicated that Aspen could not accurately predict 

solubility issues with a smaller organic phase. 
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Table 12: Temperature variation results 

Experimental Results 

Triflate Salt (g) Expected Free Base 

(g) 

Actual Recovered 

(g) 

% 

Recovery 

Temperature 

(°C) 

10.01 3.986 8.10 203 25 

10.13 3.986 N/A N/A 25 

4.7 HPLC 

High-performance liquid chromatography (HPLC) was conducted by Robert Prytko on product 

samples from two separate runs to better understand the recovery percentages above 100%. The 

free base has a peak around 8.5-8.55. Two known impurities have peaks at 9.41 and 9.62. 

As seen in Figure 15, the organic phase of a one equivalence run, Run 20, displayed the expected 

peaks with an additional peak at 8.055. According to Prytko, this peak is not uncommon. Figure 

16 shows the aqueous phase of the same run. There were several peaks that are not the impurities 

or free base. Again according to Prytko, these are also not uncommon to see. The aqueous phase 

had a significant amount of free base which was not optimal for the process. A Karl-Fischer 

titration test was also conducted to determine water content. The test was conducted twice on 

each organic sample to ensure precision. The organic phase was found to contain 4.68% or 

3.17% water. These numbers were high but also had a large difference between duplicate runs. It 

was believed that there are issues with the third wash that cause a large amount of water to be 

present in the organic phase and a significant amount of free base in the aqueous phase. 

 

Figure 15: One equivalence organic HPLC 
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Figure 16: One equivalence aqueous HPLC 

Tests were conducted similarly on an organic sample from the 35°C temperature study. Results 

from Run 18 were used. Again, the HPLC chromatogram showed expected results, as seen in 

Figure 17. The Karl-Fischer test showed that the organic phase contains 1.91% and 1.37% water. 

Although this was lower than the one equivalence run, the spread between the two values was, 

again, higher than normal. It was possible that condensate mass on the flask was being weighed 

with the product mass, as even without impurities and Karl-Fischer water taken into account 

there is still excess mass. 

 

Figure 17: 35°C organic HPLC 
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4.8 SOLVENT STUDY 

The purpose of this solvent study was to find possible alternatives to MTBE. According to 

Aspen, trans-1,2-dichloroethylene would extract 100% of the product from the aqueous phase. 

However, trans-1,2-dichloroethylene is a class 1 solvent. The next best recoveries from Aspen 

were ethyl acetate and diethyl ether, which are both class 3 solvents. Diethyl ether was not tested 

because it is an ether that forms explosive peroxides. Ethyl acetate has a boiling point of 77.1°C, 

which is higher than desired due to the solvent swap downstream. It was concluded that the 

current solvent, MTBE was the optimum solvent out of the solvents researched. 

Table 13: Recovery and important information for substitute solvents 

Solvent % Recovery BP   ͦC Class 

MTBE 98.69 55.2 3 

Chloroform 99.02 61.2 2 

Cyclohexane 13.21 80.74 2 

Diethyl Ether 98.45 34.6 3 

Ethyl Acetate 99.50 77.1 3 

Heptane 9.27 98.42 3 

Hexane 11.32 68 2 

Pentane 14.65 36.1 3 

Trans-1,2-

Dichloroethylene 100.00 48.5 1 

 

4.9 SOLVENT SWAP ANALYSIS 

Using DynoChem, three different solvents were tested under both put/take and constant feed 

solvent swap conditions. The base solvent MTBE was used as well as toluene and isobutyl 

acetate. 
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Table 14: Solvent swap DynoChem results 

Solvent 

Time to complete 

constant feed rate 

swap (hrs.) 

Amount of 

Acetonitrile 

Used in constant 

feed (kg) 

Time to 

complete min. / 

max swap (hrs.) 

Amount of 

Acetonitrile Used 

min. / max swap 

(kg) 

MTBE 2.612 27.212 3.184 34.648 

Isobutyl 

Acetate 
16.327 308.277 - - 

Toluene 8.816 66.767 10.776 87.277 

 

As seen in the table above, MTBE proved to be the most efficient in both time and acetonitrile 

required.  As the boiling points of the solvents approached that of acetonitrile, the heating and 

amount of acetonitrile required increased. In the case of isobutyl acetate, it could not complete a 

run in DynoChem under the conditions. 

It is key that if any alternative solvent is used, it must be compatible with this solvent swap step. 

The alternative solvent has to be below the boiling point of acetonitrile. As mentioned in the 

solvent study, the only alternative solvent that meets both conditions is diethyl ether. However, 

DynoChem only has select solvents in their database, so no simulations could be done with 

diethyl ether.  
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5 CONCLUSIONS & RECOMMENDATIONS 

The overarching goal of the project was to optimize the process using simulation and 

experimental analysis. The analysis focused on the effects of pH and bases on the reaction, and 

temperature and solvent on the extraction. 

5.1 REACTION 

Potassium hydroxide was the best tested base for the neutralization reaction step. Sodium 

carbonate and sodium bicarbonate could not form 2M solutions at room temperature. Potassium 

bicarbonate was not used because potassium carbonate (K2CO3) provided us with a low enough 

pH. However, K2CO3 resulted in a gel, and when the solvent was present in the reaction, an 

emulsion occurred. The equivalence study was inconclusive; however, the Spearman correlation 

coefficient hinted that there was a slight positive correlation between pH and recovery. 

Additional tests should be done to confirm this. These tests should be done by using a more 

precise analytical scale to measure one equivalent of triflate salt and base. Future projects should 

experiment with other bases, in particular sodium hydroxide, as well as different concentrations. 

It is also recommended that a computer model be built for the reaction step to allow for 

simulation of parameters.  

5.2 EXTRACTION 

The aspen simulation results were evaluated in the lab. The Aspen optimized wash cycle at 35°C 

showed a 16% reduction in solvent usage while maintaining maximum recovery. A cost analysis 

should be conducted to examine the benefits of reducing solvents versus detriments of increasing 

the temperature. Other temperatures, such as 25°C and 30°C, should be investigated in a similar 

manner.  

The temperature variation study used a series of small washes that were suggested by Aspen. 

However, the washes were so small that the extraction did not occur properly. Aspen predicted 

that the washes would show a 75% recovery, but experimentally they could not be completed. 

Another example of Aspen deviating from experimental results was the water content in the 

organic phase of the extraction. The model claimed that the organic and aqueous phases both 

have relatively equal amounts of water. In the lab, the organic phase only contained a small 

amount of water. The model correctly predicted the solvent and free base recovery but did not 

accurately predict the water content.  

To further optimize the effects of the liquid-liquid extraction on recovery, mixing and settling 

times should be investigated. Mixing and settling times were only five minutes in this procedure. 

This might not have been enough time for the phases to fully partition. 

Several solvents were tested in Aspen for their recoveries. Although some had higher recoveries 

than the current solvent, these solvents were not safe to use in the laboratory and in 
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pharmaceutical processes. Methyl tert-butyl ether was the best solvent for safety and extraction. 

Future studies should examine safer solvents at different temperatures to examine their 

recoveries.  

DynoChem was able to model the downstream process of solvent swap. As several solvents were 

not present in the DynoChem database, future studies should further examine the possibilities of 

adding solvent data to help model solvents examined in the solvent study.   

. 
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APPENDIX A: PROCEDURES 

PROCEDURE FOR PH EXPERIMENTAL RUNS 

This procedure details how to complete an entire experimental run including the rotary 

evaporator use, the salt split reaction step, and pH control. The details for weighing and the size 

of the beakers and flasks are best for the 10g of salt scale. Depending on the variable being 

tested, some of the masses might be changed in different experimental runs. 

Reactions 

𝐶9𝐻14𝑁𝑂𝑆+ ∙ 𝐶𝐹3𝑆𝑂−
𝑠

+ 𝐾2𝐶𝑂3𝑎𝑞
→ 𝐶9𝐻13𝑁𝑂𝑆𝑎𝑞 + 𝐾+𝐶𝐹3𝑆𝑂3

−
𝑎𝑞

+ 𝐾𝐻𝐶𝑂3𝑎𝑞
 (1) 

𝐶9𝐻14𝑁𝑂𝑆+ ∙ 𝐶𝐹3𝑆𝑂−
𝑠

+ 𝐾𝐻𝐶𝑂3𝑎𝑞
→ 𝐶9𝐻13𝑁𝑂𝑆𝑎𝑞 + 𝐾+𝐶𝐹3𝑆𝑂3

−
𝑎𝑞

+ 𝐻20𝑙 + 𝐶𝑂2𝑔
(2) 

𝐶9𝐻14𝑁𝑂𝑆+ ∙ 𝐶𝐹3𝑆𝑂−
𝑠

+ 𝐾𝑂𝐻𝑎𝑞 → 𝐶9𝐻13𝑁𝑂𝑆𝑎𝑞 + 𝐾+𝐶𝐹3𝑆𝑂3
−

𝑎𝑞
+ 𝐻2𝑂𝑙 (3) 

𝐾𝐻𝐶𝑂3𝑎𝑞
+ 𝐾𝑂𝐻𝑎𝑞 → 𝐾2𝐶𝑂3𝑎𝑞

+ 𝐻2𝑂𝑙 (4) 

Materials:  

2M KHCO3, 2M K2CO3, 2M KOH, Triflate Salt, MTBE, Dry Ice 

Equipment: 

(2) 50mL beaker, 400mL beaker, 100mL flask, Mass Scale, Separatory Funnel, Magnetic Stir 

Plate, Parafilm, Ring Stand, Rotary Evaporator, 10mL Pipette, pH Probe, 25mL Burette  

 Procedure: 

1. Clean all glassware used in the lab.  

Note: Acetone was used to clean the glassware, and was disposed of in a waste container. 

2. Place scale into fume hood. 

Caution! As a precaution the entire procedure should be done in a fume hood. Extra precaution 

should be given to steps involving MTBE. See MSDS for details. 

3. Measure the weight of the dry 100mL flask, and collection flask. 

Note: To weight the round-bottom flask a ring might be needed to place on the scale, and it 

should be weighed as well. 

4. Measure out 15g of 2M KHCO3 into a 50 mL beaker. 

5. Measure out 10g of triflate salt and place into a 400mL beaker. 

6. Pour the aqueous 2M KHCO3 into the salt beaker to ensure better transfer. 

7. Place the pH probe into the solution. 



33  

 

 

8. Place 25 mL of 2M K2CO3 into the burette. 

9. Titrate 2M K2CO3 drop wise until desired pH is reached. 

Note: Use 15g of K2CO3 and titrate with KOH for pH 12 and above. 

10. Place the solution on a magnetic stir plate, and mix for 5 minutes. 

11. Measure out 22g of MTBE into a 50mL beaker. 

12. Add MTBE to 400mL beaker with solution. 

13. Mix MTBE and free base solution for 5 minutes on the magnetic stir plate. 

Note: Covering the solution tightly with Parafilm will prevent MTBE evaporation. 

14. Place contents into a separatory funnel and cover with Parafilm. 

15. Let contents separate into organic (top) and aqueous (bottom) phase for 5 minutes. 

16. Drain the aqueous phase out of the separatory funnel back into the 400mL beaker. 

17. Drain the organic phase out of the separatory funnel into the 100mL flask.  

18. Repeat steps 8-14 twice: using 15g and then 10g of MTBE. 

Note: The organic phase should be collected in the same 100mL flask for all three washes. 

Individual isolations can be performed, but do not match aspen simulations. 

19. Place dry ice into the rotary evaporator condenser. 

20. Fill the bath with water. 

21. Place the recovered organic phase, 100mL flask, onto the rotary evaporator with clip. 

22. Ensure that the pump exhaust is released to the back of the fume hood. 

23. Configure valve near the condenser so that a vacuum can be pulled. 

24. Turn on hot water bath to 50°C. 

Note: Ensure that controller is accurately reaching the desired temperature. The current one 

should be set to ~40°C to reach the target temperature. 

25. Begin to rotate the flask between 50 to 100 RPM. 

26. Turn on vacuum pump to pull ~400 mmHg. 

27. Wait an adequate amount of time to allow complete evaporation of MTBE. 

28. Remove 100mL flask and measure the mass. 

29. Remove collection flask and measure mass. 

30. Dispose of products in designated waste containers. 

31. Clean glassware. 

32. Open the top of the condenser to allow dry ice to evaporate into the hood. 
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PROCEDURE FOR PH METER CALIBRATION 

The pH probe used in the laboratory requires a calibration before use, and every few hours. Due 

to the accuracy of the pH tests, the meter was tested in the buffer solutions to ensure accurate 

readings. The calibration below is done with three points, but it could be done with a pH of 9 and 

12.46. Then the probe could check for an accurate reading on the pH 11 buffer. It is important to 

note that the probe is only accurate in the range in which it is calibrated. 

Materials:  

pH 9 buffer, pH 11 buffer, pH 12.46 buffer, reference fluid 

Equipment: 

(2) 50mL beaker, pH probe, instrumentation device, storage fluid/container 

1. Fill the pH probe to the top with reference material by removing the seal at the top. 

Warning!: Make sure the probe does not dry out, or it may affect the accuracy of the device. 

2. Connect the pH probe to the instrumentation device. 

3. Turn on the device by pressing the power button in the middle. 

Note: Do not press any other buttons during power up, or it may generate an error. 

4. Remove the pH probe from the storage fluid, and place into the pH 9 buffer vessel.  

5. Press the calibrate button, chart with points, on the upper left corner of the device. 

6. Allowing the pH to stabilize, change the pH measured to read 009.00 by using the up 

arrow, down arrow, and the decimal switch button to the left of the arrows. 

7. Remove the pH probe from the buffer, and rinse with distilled water over a beaker. 

8. Place the pH probe in the pH 11 buffer container. 

9. Press the measure button, on the upper right corner of the device. 

10. Repeat step 6, but input the correct pH of 011.00. 

11. Pour the pH 12.46 buffer into the 50mL beaker, so it will submerge the pH probe. 

12. Repeat steps 8-10 for the pH 12.46 buffer, inputting the pH of 012.46. 

13. Clean the probe with distilled water. 

14. Dispose of the pH 12.46 buffer, and clean the glassware. 

15. Place the pH probe back into the storage fluid. 

16. Wrap the storage container with Parafilm to prevent the probe from drying. 
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PROCEDURE FOR TEMPERATURE VARIATION USING ASPEN 

A temperature variation study was done using Aspen to model on the effects of raising the 

temperature. It was decided that since the base case occurred at room temperature that Aspen 

simulations would be performed for two additional temperatures at 30°C and 35°C. Due to the 

approach to the boiling point we were advised to not go closer than 20°C to prevent loss of 

solvent. These Aspen simulations were modifications on the base case. To perform the analysis, 

the decanter blocks were set to the correct temperature that the extractions would be set at.  

 

Figure 18: Temperature modification of decanter block 

Since the reaction is not modeled in Aspen, it is assumed again that 100% of the salt is converted 

into free base. A sensitivity analysis was done varying the amounts of MTBE in all three 

decanter blocks. This resulted in 3375 iterations, as 15 different conditions were set for each 

block. The upper limit of the MTBE usage was selected as the base case. This would mean only 

results that saved MTBE would be displayed, as high recovery at higher temperature and 

material usage can already be expected. The lower limit was set to 3g per wash, as the model was 

unable to correctly analyze the washes at very low amounts of MTBE. 
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Figure 19: Sensitivity analysis for MTBE 

The final iterations were then put into Excel where they were checked with the recovery 

requirement set by Sunovion. After determining which runs yielded over 98%, the remaining 

runs were organized by their total MTBE saved. The runs which saved the most materials were 

selected to be investigated by lab experiments. Below is a sample from the data sheet of the 

results for 35°C. This was also done for 30°C. 
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Table 15: Sensitivity analysis for 35°C, showing top 10 results out of 3375 

Row/C

ase 

Stat

us 

VARY   

1 

VARY   

2 

VARY   

3      

  

WASH    

1 MTBE2 MTBE3      

   MIXED MIXED      

   

METHY-

01 

METHY-

01      

   

MASSFL

OW 

MASSFL

OW KG     

  KG/HR KG/HR KG/HR 

Tota

l 

Save

d 

KMOL/

HR 

Recov

ery 

Above 

98% 

2235 OK 0.0152 0.0141 0.0110 

0.04

04 

0.00

76 

2.95E-

05 

0.9839

7 0.00397 

2249 OK 0.0152 0.0150 0.0104 

0.04

06 

0.00

74 

2.95E-

05 0.9841 0.0041 

2472 OK 0.0166 0.0150 0.0093 

0.04

09 

0.00

71 

2.95E-

05 

0.9839

9 

0.00398

67 

2445 OK 0.0166 0.0133 0.0110 

0.04

09 

0.00

71 

2.97E-

05 

0.9902

4 

0.01023

93 

2668 OK 0.0179 0.0133 0.0099 

0.04

11 

0.00

69 

2.97E-

05 

0.9901

2 

0.01011

96 

2459 OK 0.0166 0.0141 0.0104 

0.04

11 

0.00

69 

2.97E-

05 

0.9904

1 

0.01040

86 

2250 OK 0.0152 0.0150 0.0110 

0.04

12 

0.00

68 

2.97E-

05 

0.9906

3 

0.01063

44 

2864 OK 0.0193 0.0116 0.0104 

0.04

13 

0.00

67 

2.97E-

05 

0.9900

5 

0.01005

23 

2682 OK 0.0179 0.0141 0.0093 

0.04

14 

0.00

66 

2.97E-

05 

0.9902

6 

0.01025

94 

2655 OK 0.0179 0.0124 0.0110 

0.04

14 

0.00

66 

2.97E-

05 

0.9903

9 

0.01039

34 
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After determining the best washes, they were then input directly into the model. Since the 

sensitivity only output the total recovery, a per wash recovery was determined for the system. 

Table 16: MTBE and recovery per stage 

(°C
) 

Input 

(mol) 

Input 

(g) 

MTBE 1 

(g) 

Base 1 

(g) 

MTBE 2 Base 

2 

MTBE 

3 

Base 

3 

Total 

30 0.03 5.65 17.93 4.32 15.00 1.01 11.00 0.23 43.93 

30 0.03 5.65 20.64 4.47 13.29 0.86 10.43 0.22 44.36 

30 0.03 5.65 19.29 4.40 14.14 0.93 11.00 0.23 44.43 

          

35 0.03 5.65 15.21 4.25 14.14 1.05 11.00 0.25 40.36 

35 0.03 5.65 15.21 4.25 15.00 1.07 10.43 0.23 40.64 

35 0.03 5.65 16.57 4.34 15.00 1.00 9.29 0.21 40.86 

 

The final results of the temperature variation analysis are below. It was decided that the 

highlighted run would be modeled in the lab. This gave the highest amount of MTBE saved out 

of all the over 6000 runs performed in the sensitivity analysis. The per runs amount of recovery 

were 4.25g, 1.05g, and 0.25g for the three washes respectively.  

Table 17: MTBE saved and total recovery of higher temperature runs 

(°C) MTBE Saved (g) % Saved Base (mol) Recovery Base (g) 

30 4.07 0.92 0.03 0.98 5.56 

30 3.64 0.92 0.03 0.98 5.56 

30 3.57 0.93 0.03 0.98 5.56 

35 7.64 0.84 0.03 0.98 5.55 

35 7.36 0.85 0.03 0.98 5.56 

35 7.14 0.85 0.03 0.98 5.55 

 

PROCEDURE FOR SOLVENT SWAP USING DYNOCHEM 

DynoChem has a program capable of calculating the solvent swap between two solvents. It has 

the capability of calculating it in two ways: Either by keeping the volume of the batch between a 

minimum and maximum volume with a constant feed rate, or feeding to the maximum volume 

when the volume reaches the minimum.  



39  

 

 

The program ran with different solvents, and generated information in terms of volume of 

desired solvent to swap, and time it takes to complete the solvent swap. The effects of different 

solvents and temperatures upstream were examined, but this would give insightful information 

on the downstream process. While the washing steps might improve by changing solvents, it 

could increase costs in the solvent swap process. 

1. Input mass of solvent being swapped. 

2. Input temperature of the feed & batch. 

3. Input heat transfer coefficients for the heat exchanging device. 

4. Input minimum and maximum volumes 

 

Figure 20: DynoChem interface 

Assumptions: 

 Minimum volume is the volume of the batch at start (12.16L for 9kg of MTBE), and the 

maximum volume is minimum with the addition of 32L acetonitrile.  

 For constant feed, the minimum volume is 5L above the starting batch, and the maximum 

volume is 6L above. 

 Assumed to be a constant value of 9kg – weight of solvent unknown. 

 The batch runs at 20°C, and the feed was assumed to be at room temperature as well. 

 Kept at the default parameters of the file. 

PROCEDURE FOR CALCULATING PH CURVE USING DYNOCHEM 

DynoChem attempted to model the relationship of concentration of triflate salt and pH. Using the 

“Components distribution as a function of pH” model in the “Modelling of acid base equilibria 

and pH sensitive reactions” Knowledge Base. The only information needed to run the model was 

the reaction, the rate constant, and the equilibrium constant (Keq). We are not concerned with 

time dependency right now, so the rate constant was assumed to be very high and first-order 

(1*104 1/s) to give a fast reaction.  The equilibrium constant was calculated from the pKa (𝐾𝑒𝑞 =

10−𝑝𝐾𝑎 = 10−9.5 = 3.16 ∗ 10−10). One graph obtained from DynoChem was pH solution, 

amount of base added per minute, and amount of salt and free base versus time. The other graph 
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obtained was amount of salt and free base versus pH. The graphs obtained are shown below. 

According to the Henderson-Hasselbalch equation (𝑝𝐻 = 𝑝𝐾𝑎 + log (
[𝐴−]

[𝐻𝐴]
)), the salt and free 

base amount should intersect at the pH value equal to the pKa of 9.5, but the intersection point 

was around pH=12.1. This could be due to the limitations of the software or incorrect inputs. 

 

Figure 21: DynoChem titration curve over time 

 

 

Figure 22: DynoChem titration cruve 
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PROCEDURE FOR CONSTRUCTING ASPEN 

This will be a step by step guide to constructing the Aspen model. This appendix section will go 

into a more detailed description than the methodology. 

1. Specify the water and MTBE in Properties > Components > Specifications > selection > 

Find. 

 

Figure 23: Menu for step 1 & 2 

2. Click User Defined to specify Free Base. Specify Component ID hit Next.  

3. Click Draw/Import/Edit Structure to enter the NIST drawing window.  

4. Draw the Free Base and save. 

 

Figure 24: NIST drawing window 

5.  Click Next. Click Evaluate Now  next to evaulate using NIST TDE. 

6. Go to Properties > Components > Molecular Structure > Free Base.  

7. Enter UNIFAC Group numbers and occurrences in the functional group tab. 
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Figure 25: Menu for step 6 & 7 

8. Navigate to Properties > Methods > Specifications > Global. 

9.  Enter UNIFAC as the base method. 

10. Hit run to estimate properties. 

11. Construct the stages of the extraction using decanter blocks. 

12. Add all necessary streams. 

 

Figure 1: Three wash extraction and separation 

13. Navigate to the decanter blocks under Simulation > Blocks. 

14. Enter the decanter conditions and key components in Specifications. 

15. Select minimizing Gibbs free energy of system, and specify liquid-liquid phases. 
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Figure 26: Menus for Decanter Blocks 

16. Repeat the process for the multiple decanter blocks. 

Note: Ensure that the streams leaving the decanter block are not swapped. 

17. Specify conditions for the final reaction mixture. 

Note: This free base amount is the reacted free base, and not the triflate salt. 

18. Specify the wash amounts in the additional MTBE streams. The first wash should be in 

the reaction stream, or a MTBE1 stream should be added. 

For Sensitivity analysis: 

1. Go to Model Analysis tools > Sensitivity > New… 

2. In the Vary tab specify the manipulated variable. 

 

Figure 27: Main menu for sensitivity analysis 
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3. Select the values or range of test values for the variable. Enter the variable name in 

labels. 

4. Repeat this procedure for each tested variable for the study. 

Note: Be careful of the number of points evaluated. Iterations = (#Points)(#Variables)
. 

5. In the define menu select the variable that will be reported. 

Note: Only defined variables will show up on the sensitivity analysis study. 

SPEARMAN RANK-ORDER CORRELATION TEST 

The Spearman rank order correlation is a nonparametric statistical test to measure the association 

between two ranked variables (Lund & Lund, n.d.) (McDonald, 2014). This test was used to 

determine whether there was a correlation between pH of the post-reaction mixture and product 

recovery in the equivalence study. To rank the data, the raw data was inputted into an online 

website that computed the ranks from raw data (Lowry, n.d.). The website, VassarStats, was 

created by Richard Lowry, a professor of psychology emeritus at Vassar College. The website 

contained a free online textbook on inferential statistics and various statistical calculators. The 

ranks of the raw data can be found in Table 18. The data of first run were not included in the test 

since the run was not truly one equivalence. 

Table 18: Ranks of raw data 

pH % 

Recovered 

Rank of 

pH 

Rank of % 

Recovered 

12.5 120 4 2.5 

10.9 120 2 2.5 

12.6 121 5 4.5 

11.4 103 3 1 

13.1 140 6 6 

10.4 121 1 4.5 

 

The Spearman correlation coefficient was calculated using a premade spreadsheet for Microsoft 

Excel obtained from the online textbook, Handbook of Biological Statistics, by John McDonald, 

a professor of biological sciences at the University of Delaware (McDonald, 2014). To use the 

spreadsheet, the independent values (pH) and the dependent values (percent recovery) were 

inputted, as seen in Figure 28. The spreadsheet automatically plotted the data and calculated the 

Spearman rank-order correlation coefficient, degrees of freedom, and p-value. 
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Figure 28: Spearman rank correlation spreadsheet 

The Spearman correlation coefficient was calculated to be 𝜌 = 0.441 and the p-value to be 𝑝 >

0.10. The significance level was conventionally chosen to be 𝛼 = 0.05. 

 The Spearman correlation coefficient indicates the strength of association of the two variables. 

A coefficient value of 𝜌 = 1 indicates perfect correlation, a value of 𝜌 = 0 indicates no 

correlation at all, and a value of 𝜌 = −1 indicates perfect inverse correlation. Values of 0 < 𝜌 <

1 and −1 < 𝜌 < 0 indicate some degree of positive and negative correlation, respectively 

(GraphPad Software, Inc., 2015). The p-value indicates whether the association between the two 

variables are statistically significant. A p-value greater than the significance level means that 

there is not enough evidence to show that there is association between the two variables; this 

does not necessarily mean that there is no association. 

ASPEN INPUT FILES 

 

; 
;Input Summary created by Aspen Plus Rel. 28.0 at 09:41:19 Fri Apr 3, 2015 
;Directory R:\MQP\LLE.35Coptimized  Filename R:\MQP\lle.35coptimized.inp 
; 
 
IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 
        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 
        VOLUME=cum DELTA-T=C HEAD=meter MASS-DENSITY='kg/cum'  & 
        MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg'  & 
        MOLE-VOLUME='cum/kmol' HEAT=Gcal MOLE-CONC='mol/l'  & 
        PDROP=bar  
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DEF-STREAMS CONVEN ALL  
 
DESCRIPTION " 
    Chemical Simulation with Metric Units :  
    C, bar, kg/hr, kmol/hr, Gcal/hr, cum/hr.  
       
    Property Method: NRTL  
       
    Flow basis for input: Mole  
       
    Stream report composition: Mole flow  
    " 
 
DATABANKS 'APV82 PURE28' / 'APV82 AQUEOUS' / 'APV82 SOLIDS' /  & 
        'APV82 INORGANIC' / NOASPENPCD 
 
PROP-SOURCES 'APV82 PURE28' / 'APV82 AQUEOUS' / 'APV82 SOLIDS' & 
         / 'APV82 INORGANIC' 
 
COMPONENTS  
    WATER H2O /  
    METHY-01 C5H12O-D2 /  
    FB  
 
ADA-SETUP  
    ADA-SETUP PROCEDURE=REL9  
 
SOLVE  
    RUN-MODE MODE=SIM  
 
FLOWSHEET  
    BLOCK B1 IN=RXN+MTBE OUT=AQ1 ORG1  
    BLOCK B2 IN=AQ1 MTBE2 OUT=AQ2 ORG2  
    BLOCK B3 IN=AQ2 MTBE3 OUT=AQ3 ORG3  
    BLOCK B4 IN=ORG3 ORG1 ORG2 OUT=ORGTOT  
 
PROPERTIES UNIFAC  
    PROPERTIES NRTL  
 
STRUCTURES  
    UNIFAC FB 1010 2 / 1005 1 / 1600 1 / 1710 1 / 3760  & 
        1  
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ESTIMATE ALL  
 
PROP-DATA PCES-1 
    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 
        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 
        VOLUME=cum DELTA-T=C HEAD=meter MASS-DENSITY='kg/cum'  & 
        MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg'  & 
        MOLE-VOLUME='cum/kmol' HEAT=Gcal MOLE-CONC='mol/l'  & 
        PDROP=bar  
    PROP-LIST RKTZRA  
    PVAL FB .2344427150  
 
PROP-DATA TDE-1 
    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 
        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE='N/sqm' TEMPERATURE=K  & 
        VOLUME=cum DELTA-T=C HEAD=meter MASS-DENSITY='kg/cum'  & 
        MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg'  & 
        MOLE-VOLUME='cum/kmol' HEAT=Gcal MOLE-CONC='mol/l'  & 
        PDROP=bar  
    PROP-LIST OMEGA / ZC / VC / PC / TC / MW / TB / SG / & 
        VLSTD  
    PVAL FB 0.60398 / 0.263 / 0.4762 / 3568527.9 / 778 /  & 
        183.27 / 550.5 / 1.309 / .1402000000  
 
PROP-DATA USRDEF 
    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 
        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 
        VOLUME=cum DELTA-T=C HEAD=meter MASS-DENSITY='kg/cum'  & 
        MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg'  & 
        MOLE-VOLUME='cum/kmol' HEAT=Gcal MOLE-CONC='mol/l'  & 
        PDROP=bar  
    PROP-LIST MW  
    PVAL FB 188.17  
     
;TDE Aly-Lee ideal gas Cp 
;  "Heat capacity (Ideal gas )"  
     
 
PROP-DATA CPIALE-1 
    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 
        MOLE-HEAT-CA='J/kmol-K' HEAT-TRANS-C='kcal/hr-sqm-K'  & 
        PRESSURE=bar TEMPERATURE=K VOLUME=cum DELTA-T=C  & 
        HEAD=meter MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol'  & 
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        MASS-ENTHALP='kcal/kg' MOLE-VOLUME='cum/kmol' HEAT=Gcal  & 
        MOLE-CONC='mol/l' PDROP=bar  
    PROP-LIST CPIALEE  
    PVAL FB 85471.03 469447.8 -1120.756 256582.5 500.4814 0  & 
        8.31447 200 1000  
     
;TDE Watson equation for heat of vaporization 
;  "Enthalpy of vaporization or sublimation (Liquid vs. Gas )"  
     
 
PROP-DATA DHVLTD-1 
    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 
        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=K  & 
        VOLUME=cum DELTA-T=C HEAD=meter MASS-DENSITY='kg/cum'  & 
        MOLE-ENTHALP='J/kmol' MASS-ENTHALP='kcal/kg'  & 
        MOLE-VOLUME='cum/kmol' HEAT=Gcal MOLE-CONC='mol/l'  & 
        PDROP=bar  
    PROP-LIST DHVLTDEW  
    PVAL FB 18.4679 0.5461876 0.1617902 -0.2728796 778 4 255  & 
        778  
     
;TDE expansion for liquid molar density 
;  "Density (Liquid vs. Gas )"  
     
 
PROP-DATA DNLEXS-1 
    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 
        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=K  & 
        VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum'  & 
        MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol'  & 
        MASS-ENTHALP='kcal/kg' MOLE-VOLUME='cum/kmol' HEAT=Gcal  & 
        MOLE-CONC='mol/l' PDROP=bar  
    PROP-LIST DNLEXSAT  
    PVAL FB 2.100053 4.778674 1.464926 0.1756092 -0.07657542  & 
        0 0 778 6 240 778  
     
;ThermoML polynomials for liquid thermal conductivity 
;  "Thermal conductivity (Liquid vs. Gas )"  
     
 
PROP-DATA KLTMLP-1 
    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 
        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=K  & 
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        THERMAL-COND='Watt/m-K' VOLUME=cum DELTA-T=C HEAD=meter  & 
        MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol'  & 
        MASS-ENTHALP='kcal/kg' MOLE-VOLUME='cum/kmol' HEAT=Gcal  & 
        MOLE-CONC='mol/l' PDROP=bar  
    PROP-LIST KLTMLPO  
    PVAL FB 0.2156676 -0.000222956 0.000000256662 -2.877521E-10  & 
        4 200 700  
     
;ThermoML polynomials for vapor thermal conductivity 
;  "Thermal conductivity (Gas )"  
     
 
PROP-DATA KVTMLP-1 
    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 
        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=K  & 
        THERMAL-COND='Watt/m-K' VOLUME=cum DELTA-T=C HEAD=meter  & 
        MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol'  & 
        MASS-ENTHALP='kcal/kg' MOLE-VOLUME='cum/kmol' HEAT=Gcal  & 
        MOLE-CONC='mol/l' PDROP=bar  
    PROP-LIST KVTMLPO  
    PVAL FB -0.004558092 0.00001715581 0.0000000823644  & 
        -3.56068E-11 4 560 1160  
     
;PPDS9 equation for liquid viscosity 
;  "Viscosity (Liquid vs. Gas )"  
     
 
PROP-DATA MULPPD-1 
    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 
        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=K  & 
        VISCOSITY='N-sec/sqm' VOLUME=cum DELTA-T=C HEAD=meter  & 
        MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol'  & 
        MASS-ENTHALP='kcal/kg' MOLE-VOLUME='cum/kmol' HEAT=Gcal  & 
        MOLE-CONC='mol/l' PDROP=bar  
    PROP-LIST MULPPDS9  
    PVAL FB 0.00002578544 1.971326 2.013121 925.5743 -25.46359  & 
        296 770  
     
;ThermoML polynomials for vapor viscosity 
;  "Viscosity (Gas )"  
     
 
PROP-DATA MUVTML-1 
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    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 
        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=K  & 
        VISCOSITY='N-sec/sqm' VOLUME=cum DELTA-T=C HEAD=meter  & 
        MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol'  & 
        MASS-ENTHALP='kcal/kg' MOLE-VOLUME='cum/kmol' HEAT=Gcal  & 
        MOLE-CONC='mol/l' PDROP=bar  
    PROP-LIST MUVTMLPO  
    PVAL FB -0.000000796883 0.0000000238910 -1.501594E-12  & 
        -6.475801E-16 4 560 1160  
 
PROP-DATA SIGDIP-1 
    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 
        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 
        VOLUME=cum DELTA-T=C HEAD=meter MASS-DENSITY='kg/cum'  & 
        MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg'  & 
        MOLE-VOLUME='cum/kmol' HEAT=Gcal MOLE-CONC='mol/l'  & 
        PDROP=bar  
    PROP-LIST SIGDIP  
    PVAL FB 86.10518210 1.222222220 1.28658805E-9 -1.4446487E-9  & 
        5.7385765E-10 277.3500000 489.2900000  
     
;TDE Wagner 25 liquid vapor pressure 
;  "Vapor pressure (Liquid vs. Gas )"  
     
 
PROP-DATA WAGN25-1 
    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 
        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE='N/sqm' TEMPERATURE=K  & 
        VOLUME=cum DELTA-T=C HEAD=meter MASS-DENSITY='kg/cum'  & 
        MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg'  & 
        MOLE-VOLUME='cum/kmol' HEAT=Gcal MOLE-CONC='mol/l'  & 
        PDROP=bar  
    PROP-LIST WAGNER25  
    PVAL FB -9.252672 2.853329 -5.430383 -4.391381 15.08766  & 
        778 240 778  
 
PROP-DATA NRTL-1 
    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 
        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 
        VOLUME=cum DELTA-T=C HEAD=meter MASS-DENSITY='kg/cum'  & 
        MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg'  & 
        MOLE-VOLUME='cum/kmol' HEAT=Gcal MOLE-CONC='mol/l'  & 
        PDROP=bar  
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    PROP-LIST NRTL  
    BPVAL WATER METHY-01 0.0 1106.976400 .3000000000 0.0 0.0  & 
        0.0 52.37000000 100.2000000  
    BPVAL METHY-01 WATER 0.0 686.1436000 .3000000000 0.0 0.0  & 
        0.0 52.37000000 100.2000000  
 
STREAM MTBE2  
    SUBSTREAM MIXED TEMP=25.00000000 PRES=1.000000000  
    MASS-FLOW METHY-01 0.01415  
 
STREAM MTBE3  
    SUBSTREAM MIXED TEMP=25.00000000 PRES=1.000000000  
    MASS-FLOW METHY-01 0.01108  
 
STREAM RXN+MTBE  
    SUBSTREAM MIXED TEMP=25.00000000 PRES=1.000000000  
    MASS-FLOW WATER 0.018 / METHY-01 0.01528 / FB 0.00565  
 
BLOCK B4 MIXER  
    PARAM PRES=1.000000000 NPHASE=1 PHASE=L  
    BLOCK-OPTION FREE-WATER=NO  
 
BLOCK B1 DECANTER  
    PARAM TEMP=35. PRES=1.000000000 LL-METH=GIBBS  & 
        L2-COMPS=METHY-01 FB L2-CUTOFF=0.3  
    BLOCK-OPTION FREE-WATER=NO  
 
BLOCK B2 DECANTER  
    PARAM TEMP=35. PRES=1.000000000 LL-METH=GIBBS  & 
        L2-COMPS=METHY-01 FB L2-CUTOFF=0.3  
    BLOCK-OPTION FREE-WATER=NO  
 
BLOCK B3 DECANTER  
    PARAM TEMP=35. PRES=1.000000000 LL-METH=GIBBS  & 
        L2-COMPS=METHY-01 FB L2-CUTOFF=0.3  
    BLOCK-OPTION FREE-WATER=NO  
 
EO-CONV-OPTI  
 
SENSITIVITY MTBE  
    DEFINE OUTPUT MOLE-FLOW STREAM=ORGTOT SUBSTREAM=MIXED  & 
        COMPONENT=FB  
    TABULATE 1 "OUTPUT"  
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    VARY MASS-FLOW STREAM=RXN+MTBE SUBSTREAM=MIXED  & 
        COMPONENT=METHY-01 LABEL="WASH" "1"  
    RANGE LOWER=".003" UPPER="0.022" NPOINT="15"  
    VARY MASS-FLOW STREAM=MTBE2 SUBSTREAM=MIXED  & 
        COMPONENT=METHY-01  
    RANGE LOWER=".003" UPPER="0.015" NPOINT="15"  
    VARY MASS-FLOW STREAM=MTBE3 SUBSTREAM=MIXED  & 
        COMPONENT=METHY-01  
    RANGE LOWER=".003" UPPER=".011" NPOINT="15"  
 
PROPERTY-REP PCES  
 
DISABLE  
    SENSITIVITY MTBE  
; 
; 
; 
; 
; 
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APPENDIX B: DATA 

DATA FOR EXPERIMENTAL RUNS 

Table 19: Overview of the data and resulting recoveries 

 

  

Experiment: Reproduce Results

Exp Number Date Washes Wash Amounts Salt Used Recovery

1 41922 3 22.00/15.00/11.00 10.0445 5.479

2 41943 3 22.00/15.00/11.00 10.045 5.851

No runs 19 or 23 due to lack of other materials (still massed salt)

Experiment: Property

Exp Number Date Washes Wash Amounts Salt Used Recovery Property

3 11/5/2014 3 22.00/15.00/11.00 1.0255 0.046 Un-Reacted Salt Solubility

25 3/18/2015 1 44g 0 0.372 Water Solubility in MTBE

26 3/18/2015 3 22.00/15.00/11.00 0 0.655 Water Solubility in MTBE

Experiment: pH Variation

Exp Number Date Washes Wash Amounts Salt Used Recovery Base Used pH Gel

4 11/19/2014 3 22.00/15.00/11.00 5.01 N/A Sodium Bicarbonate N/A No

5 12/5/2014 3 22.00/15.00/11.00 10.074 3.593 Potassium Carbonate 12.4 Yes

6 12/8/2014 3 22.00/15.00/11.00 10.07 6.077 Potassium Carbonate 12.7 Yes

7 12/8/2014 3 22.00/15.00/11.00 10.03 5.628 Potassium Carbonate 10.5 Yes

8 1/20/2015 3 22.00/15.00/11.00 10.034 Emulsion Potassium Carbonate 9.7 No

9 1/21/2015 3 22.00/15.00/11.00 10.049 Emulsion Potassium Carbonate N/A No

10 1/21/2015 3 22.00/15.00/11.00 10.0116 Emulsion Potassium Carbonate 12.4 No

11 1/22/2015 3 22.00/15.00/11.00 10.003 Emulsion Potassium Carbonate 10.5 No

12 2/15/2015 3 22.00/15.00/11.00 10.0129 N/A Potassium Carbonate 11.2 Yes

15 2/20/2015 3 22.00/15.00/11.00 10.0194 4.881 Potassium Hydroxide 10.8 No

21 3/2/2015 3 22.00/15.00/11.00 10.028 N/A Potassium Hydroxide N/A No

20 3/2/2015 3 22.00/15.00/11.00 10.01 6.6 Potassium Hydroxide 12.5 No

22 3/3/2015 3 22.00/15.00/11.00 10.014 6.59 Potassium Hydroxide 10.9 No

24 3/16/2015 3 22.00/15.00/11.00 10.013 6.63 Potassium Hydroxide 12.6 No

27 3/18/2015 3 22.00/15.00/11.00 10.046 5.699 Potassium Hydroxide 11.4 No

28 3/19/2015 3 22.00/15.00/11.00 10.0081 7.673 Potassium Hydroxide 13.1 No

Expieriment: Temperature

Exp Number Date Washes Wash Amounts Salt Used Recovery Temperature

13 2/17/2015 3 3.00/3.00/3.00 10.0108 8.101 25  ͦC

14 2/17/2015 3 3.00/3.00/3.00 10.127 N/A 25  ͦC

16 2/21/2015 3 15.28/14.15/11.05 10.017 5.724 35  ͦC

17 2/23/2015 3 15.28/14.15/11.06 10.04 6.369 / 5.401 35 °C

18 2/26/2015 3 15.28/14.15/11.07 10.0136 6.368 35°C

29 3/19/2015 3 15.28/14.15/11.08 10.048 7.489 35°C

30 3/24/2015 3 15.28/14.15/11.08 10.0056 5.913 35°C
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Table 20: Overview of results from all runs 

 

  

Experiment: Property

Results Exp Number

Prefers Aqueous Phase / does not disolve in only MTBE 3

Recovery of mass with only water and MTBE 25

Higher recovery from multiple washes without salt 26

Experiment: pH Variation

Details / Results Exp Number

Sodium could not form a 2 mol solution at room temperature 4

5

6

7

added MTBE of 1st wash to salt reaction mixture while reacting 8

added MTBE of 1st wash to salt reaction mixture while reacting 9

added some of MTBE to salt and then add K2CO3 10

added salt to K2CO3 and then add some MTBE 11

Determined pH to break Gel 12

Used 85% purity KOH for the 1 eq 15

Flask fell off rotary arm: Run Terminated 21

6.29112 after taking 4.62% water out from the KF 20

5.63612 after taking out water from KF 22

24

27

lowered Rotovap temp to 40 C 28

Expieriment: Temperature

Details/ Results Exp Number

13

No Phase Seperation from First Wash 14

16

After allowing to sit in the hood mass went down 17

6.2463 after taking 1.91% water out from the KF test 18

29

30
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REPRODUCTION: RUNS 1 – 2 

Table 21: Reproduction runs 

Run 1  2 

mass of ring (g) 3.56   

Mass of flask and ring (g) 138.281   

Mass of Flask (g) 131.028   

Mass of Salt (g) 10.002  10.0045 

Mass of 2M KOH (g) 20.06  20.0097 

pH of reaction 14.3  14 

T of reaction (C) 19.3   

mass of beaker (g) 31.3284   

Mass of MTBE 1 (g) 21.9982  21.9967 

Mass of 400ml beaker & aq phase 1( g) 193.8   

Mass of MTBE 2(g) 14.991  15.078 

Mass of 100ml beaker & aq phase 2 (g) 73   

Mass of MTBE 3(g) 11.0052  11.0047 

Mass of 100ml beaker & aq phase 3 (g) 72.6215  WASH 1 WASH 2 WASH 3 

Mass of flask, ring, and product 143.76  145.764 144.9 144.132 

Mass of product 5.479  7.483 6.619 5.851 

 

Notes: 5 minutes may not be enough for reaction. The pH of product: 11-12 
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UNREACTED SALT SOLUBILITY: RUN 3 

Table 22: Unreacted salt solubility 

initial salt (g) 1.029 

water (g) 15.1791 

MTBE (g) 19.993 

mixing time (min) 5 

settling time (min) 5 

initial roto flask + ring (g) 138.15 

roto flask+ring+org phase 

(g) 156.718 

final roto flask + ring + salt 

(g) 138.196 

initial beaker for aq phase 

(g) 50.1683 

aq phase (g) 16.1178 

salt recovered (g) 0.046 

% recovery 4.47036 

 

Notes: salt did not dissolve in solely MTBE when mixed for ~2 minutes. Salt completely 

dissolved in water/MTBE mixture when mixed for 5 minutes. 

PH STUDY: RUNS 4-7 

Table 23: Run 4 with bicarbonate solution. 

 Theoretical Calc. NaHCO3 Prep Actual Soln Amt 

Salt (g) 5   

Salt (mol) 0.01499925   

NaHCO3 (mol) 0.01499925 0.1 0.100019046 

NaHCO3 (g) 1.260041998 8.4007 8.4023 

NaHCO3 aq (mol/L) 1 1 0.999660624 

Water (L) 0.01499925 0.1 0.100053002 

Water (g) 14.99880006 99.997 100.05 

pH  8.5 9 
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Notes:  

Sodium bicarbonate could not form the solution at room temperature. Run was terminated. 

 

Table 24: Runs 5-7 of the pH study at a pH of 12.5 and 10.5 

Run 5 6 7 

Mass of flask+ring (g) 138.15 138.15 138.185 

Mass of Salt (g) 10.074 10.065 10 

Mass of K2CO3 (g) 18.228 18.22 18.2117 

KOH volume (mL) 12.2 13 7.8 

Mass of MTBE1 (g) 22.007 21.98 21.9702 

Mass of MTBE2 (g) 14.99 14.998 15.0312 

Mass of MTBE3 (g) 11.006 11.012 10.99 

Mass of Product,Flask,Ring 

(g) 141.743 144.227 143.813 

Mass of Product 3.593 6.077 5.628 

pH 12.4 12.7 10.5 

 

Notes (5):  

When salt and K2CO3 soln mixed, salt clumped up and was gel-like 

after breaking up the clump and mixing for a bit, solution became cloudy and white 

after mmixng for +20 minutes, solution became a clear, yellow and there were no 

clumps 

pH was 9.6 after mixing salt and 2M K2CO3 

pH was 9.7 after adding 1 drop of KOH 

Product was white, opaque, and viscous 

 

Notes (6):  

Product is clear and pale yellow and not viscous 
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Notes (7):  

When salt and 2M K2CO3 mixed, salt clumped and was gel-like. After mixing for +10 

minutes, clump was gone, but 2 liquid phase formed: white-opaque layer on top and yellow 

viscous layer on bottom 

Initial pH after mixing salt and 2M K2CO3 was 9.6 

Titrations for Runs 5-7 

Table 25: Titration for Run 5 

initial 2M KOH 

(ml) 

final 2M 

KOH(ml) 

amounted 2M KOH added 

(ml) pH 

22.2 25 2.8 10 

15.5 22 6.5 10 

12.3 12.5 0.2 10.5 

12.5 15.2 2.7 12.4 

 TOTAL 12.2  
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Table 26: Titration for Run 6 

Amount of KOH (ml) pH 

0 9.8 

2 10 

4 10.4 

6 10.7 

8 10.7 

10 11.1 

12 11.7 

13 12.9 

added 1 ml of DI water 12.8 

2 ml DI 12.8 

3 ml DI 12.8 

4 ml DI 12.7 

5 ml 12.7 
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Table 27: Titration for Run 7 

initial 2M KOH 

(ml) 

final 2M 

KOH(ml) 

amounted 2M KOH added 

(ml) pH 

0 0 0 9.6 

10.5 10.6 0.1 9.7 

10.6 11 0.4 9.8 

11 12.5 1.5 9.9 

12.5 12.9 0.4 9.9 

12.9 13.4 0.5 10 

13.4 15 1.6 10.1 

15 16 1 10.2 

16 16.6 0.6 10.4 

16.6 17.7 1.1 10.6 

17.7 18.3 0.6 10.5 

 

GEL AND EMULSION: RUNS 8-12 

Table 28: Data for the emulsion and gel solving runs 

Run 8 9 10 11 

2M K2CO3  added(g) 18.236 18.2174 18.2033 18.2032 

Salt Added (g) 10.0024 10.0355 10.0116 10.003 

MTBE Wash 1 (g) 22.007 22.006 21.99 22.157 

MTBE added to reaction mixture from Wash1 

(g) 0 0 8 4 

 

Notes (8):  

Emulsion formed after mixing 1st MTBE wash, salt, and K2CO3. There were 3 separate phases: 

top was clear, middle was murky, and bottom was clearer 
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After mixing  again for 5min, emulsion was still present 

After adding 5 ml of 2M KOH and mixing for 5 min, emulsion was still present 

After letting emulsified mixture sit overnight, emulsion did not disappear. Nothing noticable 

changed 

Run terminated 

Notes (9):   

Emulsion formed after mixing 1st MTBE wash, salt, and K2CO3. There were 3 separate phases: 

top was clear, middle was murky, and bottom was clearer 

Run terminated 

Notes (10):  

No emulsion present after mixing some with mbtbe. 2 phases: yellow clear layer on top, clear 

transparant layer on bottom  

Emulsion appears after adding the rest of the first wash and mixing for 5 minutes. There were 3 

phases: a clear transparant top phase, a yellow translucent middle phase, and a clear translucent 

bottom phase 

Run terminated 

Notes (11):  

Gel formed when Salt added to K2CO3 

Gel disappeared when 4g MTBE added 

After adding 8.5 ml of KOH and mixing for  5 minutes, an emulsion formed. Top layer is clear, 

middle layer is yellow and translucent, and bottom layer is clear 

Run terminated 
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Table 29: Data for pH of gel solubility 

2M K2CO3 (g) Salt Added (g) EXP NUM 

18.237 10.0129 12 

initial 2M KOH 

(ml) 

final 2M 

KOH(ml) 

amounted 2M KOH added 

(ml) 

pH of top 

layer 

pH of bottom 

layer 

0 0 0 10.4 10.4 

0 2 2 10.1 10.1 

2 4 2 10.2 10.2 

4 6 2 10.3 10.3 

6 8 2 10.7 10.7 

8 10 2 11 11 

10 11 1 11.2 11.2 

 

Notes (12):  

At 11.2 the gel appeared well dispersed in the solution. 
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TEMPERATURE STUDY: RUNS 13-14 

Table 30: Runs at 25°C and low solvent amounts 

EXP NUM 13 14 

Flask+Ring mass (g) 138.22 138.21 

Salt mass (g) 10.0108 10.127 

2M KOH mass (g) 20.013 20.01 

MTBE 1 mass (g) 3.006 3.006 

ORG1 mass (g) 7.841 N/A 

MTBE 2 mass (g) 3.0033 N/A 

ORG2 mass (g) 7.737 N/A 

MTBE 3 mass (g) 3.005 N/A 

Flask, Ring, Product mass 

(g) 146.321 N/A 

Product mass (g) 8.101 N/A 

 

Notes (13):  

Long phase separation times with poor boundaries. 

Large amounts of aqueous seemed present in organic streams. 

Notes (14):  

No phase separation in first wash. 

Run Terminated. 
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TEMPERATURE VARIATION: RUNS 16-18 & 29-30 

Table 31: Temperature variation runs 

EXP NUM 16 17 18 29 30 

Flask+Ring mass (g) 138.194 138.183 138.181 138.181 138.152 

Salt mass (g) 10.017 10.045 10.0136 10.048 10.0056 

2M KOH mass (g) 20.01 20.153 20.0537 20.02 20.038 

MTBE 1 mass (g) 15.22 15.2856 15.21 15.29 15.2132 

ORG1 mass (g) 5.94 - 4.449 6.1539 4.909 

MTBE 2 mass (g) 14.19 14.152 14.149 14.145 14.145 

ORG2 mass (g) 6.329 - 6.235 7.509 5.948 

MTBE 3 mass (g) 11.001 11.021 11.056 11.031 11.005 

Flask, Ring, Product mass 

(g) 143.918 144.552 144.549 145.67 144.065 

Product mass (g) 5.724 

6.369 / 

5.401 6.368 7.489 5.913 

 

Notes (30): 

Water bath set for ~60C to ensure only product remains after rotary evaporator.   
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EQUIVALENCE STUDY: RUNS 15, 20-22, 24, 27, 28 

Table 32: One equivalence run data 

EXP NUM 15 20 21 22 24 27 28 

Flask+Ring mass 

(g) 143.023 138.146 - 138.253 138.155 138.212 138.117 

Salt mass (g) 10.0194 10.028 - 10.014 10.013 10.046 10.0081 

2M KOH mass 

(g) 

1.683 

(Flakes in 

14.59 H20) 15.95 - 15.886 15.8606 15.857 15.864 

Organic pH 10.8  - 10.9 12.6 11.2 11.2 

Aqueous pH 10.8  - 10.9 12.6 11.4 13.1 

MTBE 1 mass (g) 22.197 22.32 - 22.43 22.002 22.158 22.159 

ORG1 mass (g)   - 2.224 3.753 3.821 3.635 

MTBE 2 mass (g) 15.012 15.18 - 15.092 15.027 14.999 15.01 

ORG2 mass (g)   - 5.161 5.747 4.603 5.897 

MTBE 3 mass (g) 10.999 11.0147 - 11.01 11.01 10.99 11.038 

Product mass (g) 4.881 N/A - 6.59 6.63 5.257 6.743 

 

Notes (20): 

Rotary Evaporator arm fell off, resulting in flask entering distilled water of rota-vap.  

Experiment Terminated. 

Notes (21): 

The reaction vessel valve was open, and the experiment solution was compromised. 

Experiment Terminated. 
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WATER SOLUBILITY STUDY: RUNS 25, & 26 

Table 33: Water solubility runs 

EXP 25 26 

water (g) 18.08 18.101 

MTBE Wash 1 

(g) 22.21 43.828 

MTBE Wash 2 

(g) 15.05 N/A 

MTBE Wash 3 

(g) 11.01 N/A 

1st wash (g) 0.732 0.372 

2nd wash (g) 0.57 N/A 

3rd wash (g) 0.655 N/A 

% water in 

MTBE 1.357% 0.849% 
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APPENDIX C: MATERIAL SAFETY DATA SHEETS 

POTASSIUM HYDROXIDE 
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METHYL TERT-BUTYL ETHER 
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POTASSIUM CARBONATE 
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SODIUM BICARBONATE 
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