
 

i 

 

 
 

Stochastic Reserves for Life Insurance: 

Modeling the Impact of a Pandemic 
 

 

A Major Qualifying Project 

Submitted to the faculty of  

WORCESTER POLYTECHNIC INSTITUTE 

In partial fulfillment of the requirements for the degree of Bachelor of Science 

 

 

By: 

 Lindsay MacInnis  

Jessie White 

 

 

Date: 

December 8, 2020 

 

 

WPI Faculty Advisors: 

Professor Jon Abraham 

Professor Barry Posterro 

 

 

 

 

This report represents work of WPI undergraduate students submitted to the faculty as evidence of a 

degree requirement. WPI routinely publishes these reports on its web site without editorial or peer 

review. For more information about the projects program at WPI, see 

http://www.wpi.edu/Academics/Projects 

http://www.wpi.edu/Academics/Projects


 

ii 

 

Abstract 

 It is important to recognize the impact of the COVID-19 pandemic on different aspects of 

society and to analyze its effects to forecast future scenarios. The goal of this project was to 

analyze the impact of a pandemic on the reserves of a life insurance company. Reserve 

calculations were completed with pre-pandemic and post-pandemic factors to provide 

comparative data. The pandemic inputs impacted interest rates, mortality rates, infection rates, 

and lapse rates, and accounted for different regions of the US. 
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Chapter 1: Introduction 

The job of an actuary is to analyze and mitigate risk by studying past events and planning 

for future events. Actuaries are constantly looking to analyze outcomes and their effects on 

society or specific industries to better predict the future. However, there are some unexpected 

events that can simply never be predicted. A global pandemic is such an event, and it has 

affected many facets of society. The coronavirus pandemic has harmed many aspects of society 

from economics to public health. It is important to ask: what are the effects of a pandemic, how 

can they be measured, and how can we better plan for an event like this in the future? 

The life insurance industry is one of many that have been impacted by the global 

pandemic. Life insurance companies pay close attention to their actuarial reserves, which are the 

amount of money that the company must hold in order to pay all future claims. Reserve 

calculations utilize many different inputs and information that the life insurance company 

receives from each person that they insure. In order to analyze the effects of a global pandemic 

on reserve calculations, additional inputs can be brought into the calculations and compared to 

the original reserves. These inputs reflect the impacts of a pandemic on public health and the 

economy. 

The goal of this project was to analyze the impact of a pandemic on the reserves of a life 

insurance company. A model was developed in order to calculate stochastic reserves with 

variable inputs according to the disease and population being studied. The current COVID-19 

pandemic was used as an example pandemic in the model created. The results of the model 

allowed for statistical analysis on the impact of the pandemic on a life insurance company. This 

model also allows for studies of other pandemics with different inputs, statistics and other 

populations.  
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Chapter 2: Background 

2.1 Life Insurance Overview 

2.1.1 Life Insurance Fundamentals 

 The overall concept of life insurance must first be explained. Individuals purchase a life 

insurance policy from a company. The purchaser is the insured and the company is the insurer. 

The life insurance policy is an agreement or contract in which the insured makes payments to the 

insurer in exchange for a promise that a benefit will be paid to a named beneficiary upon the 

insured’s death. We will consider two main types of life insurance: term and whole life. Term 

insurance is a policy that expires after a set number of years, but these policies can be renewed. 

Whole life insurance policies last the entirety of the insured’s life span. 

There are several key pieces of information that a life insurance company needs to know 

about the insured. The first piece of information is the age of the person holding the policy when 

it was issued. The next element is the gender of the insured. Additionally, policyholders are 

generally grouped into different risk classes based on their health and lifestyle. Examples of risk 

classes are preferred, standard, or substandard. The gender, age, and risk class are used together 

to determine the specific mortality assumptions that are used for each policyholder. The next 

piece of information is the state or region in which the insured lives. The lifestyle and population 

density of certain regions gives the insurer information about how the policyholders’ 

environment affects their lives. The life insurance company would also need to be aware of the 

age of the policy and the current age of the policyholder. These figures tell the insurer when the 

policy was issued, how many years are left in the policy, and the age of the policyholder today. 

An insurance company may offer many different types of insurance including whole life 

insurance and various term insurance policies. A company may also offer different death benefits 
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such as $100,000, $500,000, and $1,000,000. The insured chooses the type and amount of their 

policy. Lastly, policyholders can choose to pay their premium with a single lump sum or an 

annual payment. All of these pieces of information are important for the insurance company’s 

records.  

2.1.2 Defining Premiums and Reserves 

The premiums of a life insurance policy are the payments that the insured pays to the 

company. The calculation of these premiums can be done with basic first principles and can be 

demonstrated with an example. A given policy offers $B upon the death of the insured and the 

coverage lasts for three years. The policyholder will pay a premium at the beginning of each year 

and the benefit will be paid at the end of the year of death if death occurs within the three year 

coverage period; otherwise, no benefit is payable. First, we will define some basic first 

principles.  

                                               𝑞𝑡 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐷𝑦𝑖𝑛𝑔 𝑖𝑛 𝑌𝑒𝑎𝑟 𝑡                                      (2.1) 

                                               𝑝𝑡 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐿𝑖𝑣𝑖𝑛𝑔 𝑖𝑛 𝑌𝑒𝑎𝑟 𝑡                                      (2.2) 

The discount factor for a cash flow is v. A cash flow is discounted one year when it is multiplied 

by the discount factor v. To calculate the present value of the death benefit in our example 

policy, we must multiply the death benefit cash flow by the probability that the person dies in a 

given year and then discount back to time 0. This is completed for each of the three years. This 

concept will be reflected in the following formula: 

𝐴𝑐𝑡𝑢𝑎𝑟𝑖𝑎𝑙 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒 (𝐵𝑒𝑛𝑒𝑓𝑖𝑡) = (𝐵 ∙ 𝑞1 ∙ 𝑣) + (𝐵 ∙ 𝑝1 ∙ 𝑞2 ∙ 𝑣2) + (𝐵 ∙ 𝑝1 ∙ 𝑝2 ∙ 𝑞3 ∙ 𝑣3)        (2.3)          
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Similarly, we can find the present value of the premiums paid where the premium amount equals 

P, shown in the equation below. The premiums being paid are contingent on the fact that the 

policyholder lives. 

𝐴𝑐𝑡𝑢𝑎𝑟𝑖𝑎𝑙 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒 (𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑠) = 𝑃 + (𝑃 ∙ 𝑝1 ∙ 𝑣) + (𝑃 ∙ 𝑝1 ∙ 𝑝2 ∙ 𝑣2)                               (2.4) 

The calculation of the premium is based on the following actuarial principle, combining the two 

prior formulas. 

𝐴𝑐𝑡𝑢𝑎𝑟𝑖𝑎𝑙 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒 (𝐵𝑒𝑛𝑒𝑓𝑖𝑡) = 𝐴𝑐𝑡𝑢𝑎𝑟𝑖𝑎𝑙 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒 (𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑠) 

(𝐵 ∙ 𝑞1 ∙ 𝑣) + (𝐵 ∙ 𝑝1 ∙ 𝑞2 ∙ 𝑣2) + (𝐵 ∙ 𝑝1 ∙ 𝑝2 ∙ 𝑞3 ∙ 𝑣3) = 𝑃 + (𝑃 ∙ 𝑝1 ∙ 𝑣) + (𝑃 ∙ 𝑝1 ∙ 𝑝2 ∙ 𝑣2)            (2.5) 

 

This principle indicates that you can solve for P by factoring out the P and dividing the present 

value of the benefit by the present value of the premiums. 

                                  𝑃 =
(𝐵∙𝑞1∙𝑣)+(𝐵∙𝑝1∙𝑞2∙𝑣2)+(𝐵∙𝑝1∙𝑝2∙𝑞3∙𝑣3)

1+(𝑝1∙𝑣)+(𝑝1∙𝑝2∙𝑣2)
                                        (2.6)                                                       

 

 Actuarial reserves calculations are essential for any life insurance company. Actuarial 

reserves are the amount of money that the insurance company must have in order to pay all 

future claims. This amount is offset by the premiums that an insurance company expects to 

receive from policyholders in future years. One formula for actuarial reserves is as follows. 

𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑠 = 𝐴𝑐𝑡𝑢𝑎𝑟𝑖𝑎𝑙 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒 (𝐵𝑒𝑛𝑒𝑓𝑖𝑡) − 𝐴𝑐𝑡𝑢𝑎𝑟𝑖𝑎𝑙 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒 (𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑠)      (2.7) 

The reserves for time 0 would be equal to zero as shown in the premium calculations. At time 0, 

the present value of the benefit is equal to the present value of the premiums. However, the 

reserves can change as the policy ages and as such the reserves calculations are vital for 

insurance companies so they can be sure they have enough to pay all claims. Using the example 



 

5 

 

policy from above, the reserves at time 1, considering the remaining two years of benefits and 

premiums, are shown below. 

                                 𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑠 = (𝐵 ∙ 𝑞2 ∙ 𝑣) + (𝐵 ∙ 𝑝2 ∙ 𝑞3 ∙ 𝑣2) − (𝑃 + (𝑃 ∙ 𝑝2 ∙ 𝑣))                      (2.8)                                                        

Here is a numerical example showing how to solve for premium and reserves at time 1 for just 

one policy. The insured pays premium P at the beginning of each year and the benefit received at 

the end of the year of death is $1,000 and the interest rate is 5%. The following table gives the 

probability of dying and the probability of living through a given year. 

t qt pt 

1 .05 .95 

2 .06 .94 

3 .07 .93 

Table 1: Probability for sample benefit and reserves calculations 

To solve for the premium, we use formula 2.6: 

𝑃 =
(1000 ∙ 0.05 ∙ (

1
1.05)) + (1000 ∙ 0.95 ∙ 0.06 ∙ (

1
1.05)2) + (1000 ∙ 0.95 ∙ 0.94 ∙ 0.07 ∙ (

1
1.05)3)

1 + (0.95 ∙ (
1

1.05
)) + (0.95 ∙ 0.94 ∙ (

1
1.05

)2)
             (2.9) 

 

This calculation shows that P is equal to $56.48 and the insured pays this premium at the 

beginning of every year. Now we can calculate the reserves at time 1. Time 1 is now the starting 

point for picking p’s and q’s from the table. We can use formula 2.8: 

𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑠 = (1000 ∙ 0.06 ∙ (
1

1.05
)) + (1000 ∙ 0.94 ∙ 0.07 ∙ (

1

1.05
)2) − (𝑃 + (𝑃 ∙ 0.94 ∙ (

1

1.05
)))       (2.10)       

At time 1, the reserves are equal to $9.79. This is the amount of money the insurance company 

must have on hand to fund this individual policy. 
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2.1.3 Deterministic vs Stochastic Reserves 

There are different approaches to calculating actuarial reserves: deterministic and 

stochastic. Using a deterministic reserves method gives a single best estimate on the amount of 

money that should be on hand. Alternatively, the stochastic reserves approach provides a 

distribution of estimates. The statistics of this distribution allow an insurance company to 

analyze different outcomes, their probabilities and how they can best protect the company from 

catastrophic loss (Carrato, McGuire, Scarth 2016).  

Deterministic reserves can be calculated using one simple equation as shown above in 

Formula 2.7. Stochastic reserves calculations are a bit more complicated. A Monte Carlo 

simulation can be used to develop the stochastic reserves for each policy. The Monte Carlo 

process simulates an event many times in order to find the distribution of results. Each time the 

event is simulated, a random number is generated and is compared to the probability of a certain 

event occurring. If the random number is less than or equal to the probability of the event 

occurring, the event is recorded as a success. The outcome is recorded for each iteration to form 

a distribution of results. The average of these iterations can be found to compare the results to the 

single best estimate given by the deterministic reserves (Kenton 2020).  

2.2 Effects of the COVID-19 Pandemic on Life Insurance 

In order to demonstrate the model, the COVID-19 pandemic was used as an example. 

The effects of the COVID-19 pandemic have materialized within many different areas of society. 

In addition to the evident effects on citizens’ health, widespread economic effects have been 

observed throughout the United States as well. The direct outcomes of the pandemic can be 

linked to changes in the life insurance industry. Life insurance companies rely on steady interest 

rates, mortality rate and lapse rate studies, and economic stability to accurately predict the 
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reserves they need to have on hand to pay out their future claims. The COVID-19 pandemic has 

affected all of these aspects in various ways. 

2.2.1 Impact on Interest Rates 

The most important factor in the premium and reserving calculations that life insurance 

companies perform are the interest rates. All cash flows are discounted at a single chosen interest 

rate and it is important to pick a proper rate in these calculations. The COVID-19 pandemic 

ushered in a large drop in interest rates over the course of 2020. The benchmark Treasury rates 

fell nearly 100 basis points between February and March, which is about 1% (Schilling 9). These 

rates have not risen back to normal levels over the course of the Spring and Summer. As of the 

end of July, the 30-year, 20-year, and 10-year Treasury rates were down 77, 130, and 98 basis 

points respectively compared to the February rates (Schilling 9). These large drops in interest 

rates are direct effects of the coronavirus pandemic and should be taken into account by the life 

insurance industry. 

2.2.2 Impacts on Mortality due to COVID-19 Infection Rates 

Mortality rates play a large role in the premium and reserve calculations that life insurance 

companies perform as well. The health effects for those unfortunate enough to contract the 

disease include an increase in these mortality rates over the short-run, and adverse health-effects 

for the rest of their lives. The increase in mortality rates is driven by the infection rate of the 

disease. The infection rate is the probability of a person developing a disease. Once the person 

has been infected, the probability that they pass away increases. The number of people who have 

been infected and the people who have died from the disease are available on the CDC website 

and vary by age groups. This data is shown in the two tables below with the number of COVID-

19 cases and the number of COVID-19 deaths split by age groups. 
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Age Group Percentage Count 

0 - 4 Years 1.7 81,175 

5 - 17 Years 6.5 305,307 

18 - 29 Years 23.1 1,083,747 

30 - 39 Years 16.9 792,093 

40 - 49 Years 15.5 727,726 

50 - 64 Years 20.9 982,707 

65 - 74 Years 7.7 360,200 

75 - 84 Years 4.4 206,863 

85+ Years 3.3 156,341 

Table 2: COVID-19 Cases by age group, Retrieved September 13, 2020. Data from 4,868,895 

cases. Age group was available for 4,696,159 (96%) cases (CDC, 2020). 

 

Age Group Percentage Count 

0 - 4 Years < 0.1 31 

5 - 17 Years < 0.1 49 

18 - 29 Years 0.5 735 

30 - 39 Years 1.3 1,896 

40 - 49 Years 3.2 4,577 

50 - 64 Years 15.7 22,236 

65 - 74 Years 21.2 30,060 

75 - 84 Years 26.4 37,453 

85+ Years 31.6 44,875 

Table 3: Deaths due to COVID-19 by age group, Retrieved September 13, 2020. Data from 

141,926 cases. Age group was available for 141,912 (96%) cases (CDC, 2020). 
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The calculation of the mortality and infection rate for each age group is fairly simple. 

                                                  𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑟𝑎𝑡𝑒 =  
# 𝑜𝑓 𝑑𝑒𝑎𝑡ℎ𝑠

# 𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠
                                           (2.11) 

                                                  𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =  
# 𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑈𝑆 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
                                           (2.12) 

The older age groups see a larger increase in mortality, if the disease is developed. The infection 

rates for these age groups stay fairly steady, but are larger for the youngest and oldest age groups 

(CDC 2020). Although many people have recovered from COVID-19, long lasting effects have 

also been observed in patients. These lasting effects include damage to the heart and lungs, and 

they cause an increase in mortality over the long run (Rees 2020). All of these rates are taken 

into account within a life insurance company’s calculation. 

2.2.3 Impacts on Lapse Rates 

Lapse rates are also important in calculations performed by insurance companies. A 

policyholder lapses on their policy when they fail to pay the premium, and therefore, they forfeit 

the insured benefit.  It has been concluded that lapse rates vary with rates of unemployment and 

economic health. Adjmal Sirak concluded that the event of becoming unemployed “increases the 

lapse rate by over 75%” (Sirak 15). COVID-19 has caused many negative effects on the United 

States economy including a large spike in unemployment rates. Official unemployment tripled in 

the first month of the pandemic from 4.4% to 14.7%. The U-6 rate, which refers to the 

unemployment rate including all full-time and part-time workers rose from 8.7% to 22.8%. 

These rates have since decreased, but still remain very high at 11.1% and 18.0% respectively. 

The subsequent initial unemployment claims, meaning the new claims of unemployment, totaled 

54.1 million from March 14 to July 25 (Schilling 6). This increase in unemployment leads us to 
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conclude that the COVID-19 pandemic has caused an increase in the lapse rate for life insurance 

policies. 

2.2.4 Regional Impacts due to COVID-19 

Different regions of the US have different infection rates due to population density and 

social distancing guidelines. High population density is a large contributor to a greater infection 

rate because there are more people in a smaller area. When the pandemic first hit the US, it was 

more difficult to slow the spread in these areas with high population density, such as large cities. 

Some states have created different mandates and guidelines that affect the infection rates. State 

mandates, such as mask mandates, help to decrease the infection rate by slowing the spread 

between people. In the heat map below, distinct regions are visible based on the total cases for 

each state as of September 28, 2020. 

 

Figure 1: Heat map of COVID-19 cases by state (CDC 2020) 

The northwest region of the country is very light due to rather small population densities. The 

southeast region is darker, highlighting a higher population density and lenient distancing and 

mask mandates. Differing regions must be taken into account by insurance companies. 
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Chapter 3: Methodology 

3.1 Life Insurance Policy Block 

 In our model, the life insurance company has 5,000 policyholders. The development of 

the key characteristics of each policyholder is predominately random assignment; however, this 

was done on a stratified basis to ensure a reasonable mix across age groups, region, policy type, 

risk class, and benefit amount. The first column contains the age of the policyholder. The number 

of people in each age group were predetermined and then each policyholder in the group was 

assigned a random number between the two ages. 

Breakdown of Policy Block by Age Group 

20-30 31-40 41-60 61-80 81-90 

500 1000 1500 1500 500 

Table 4: Ages of Policy Block 

The next column contains the gender of the policyholder, male or female. Each policyholder was 

assigned a random number, either one for male or two for female.  

The next column contains the region in which the policyholder lives, and this was done 

similarly to gender, using a random number generator. The next column is the type of insurance 

that the policyholder has. There are four different types: whole life, 10-year term, 20-year term 

and 30-year term. Using random numbers and the index function, approximately 25% of the 

policyholders were assigned to each type. There are also some restrictions on types that can be 

sold to certain individuals. Policyholders over the age of 60 are not allowed to purchase 30-year 

contracts due to the unpopularity of these contracts with older individuals. The next two columns 

show the age of the policy and the current age of the policyholder. Our insurance company was 
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established eight years ago, so the age of each policy ranges between 0 and 8. Random number 

generators were used to assign a policy age to each policyholder.  

The benefit for each policy is shown next. There are three benefit amounts: $100,000, 

$500,000 and $1,000,000. A random number generator was used to assign each policyholder a 

benefit amount. The next column contains the risk class assigned to the policyholder. The three 

risk classes are standard, preferred and substandard, and these account for 70%, 20% and 10% of 

the population, respectively. The last two columns indicate the premium type that is being paid, 

whether it is an annual payment, or a lump sum paid at issue. The 10, 20 and 30-year term 

policies can only be paid for with annual premiums, however the whole life premium can be 

either annual payments or a lump sum payment. The payment type was assigned accordingly, 

using random number generators to assign either annual or a lump sum payment for the whole 

life policies. All of this information is vital to the premium and reserving calculations. 

3.2 Calculating Premiums 

The first step in building our model was to calculate the premium for each policy using 

first principles. The Actuarial Present Value includes the probability of death as well as the 

probability of the policy lapsing and uses a single interest rate of 5% to discount cash flows. For 

each policy, the mortality rates are determined by the age and gender of the policyholder. The 

mortality tables used are from the SOA website. In order to calculate the premiums, we used 

Excel VBA. We looped through each policy and calculated the discounting factor for the benefit 

and the discounting factor for the premiums to then calculate the premium amount.  
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The discounting factor for the benefit is calculated by completing the following process: 

𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 =   
𝑞1

1+𝑖
+

(1−𝑞1)(𝑞2)(1−𝑙2)

(1+𝑖)2 + ⋯ +

                                        
(1−𝑞1)(1−𝑞2)…(1−𝑞𝑡−1)(𝑞𝑡)(1−𝑙2)(1−𝑙3)…(1−𝑙𝑡)

(1+𝑖)𝑡                                              (3.1) 

 

The q is the mortality rate, l is the lapse rate, i is the interest rate, and t is the last year of the 

policy. For each year, the product was added together to get the overall discounting factor as 

shown in the equation above. The benefit is assumed to be payable at the end of the year in 

which the policyholder dies. In our model, the policyholder cannot lapse in the first year as the 

premium is paid at the beginning of the year. The lapse rates are not incorporated into the 

equations until year two. In the equation above, the l2 represents the policyholder lapsing in year 

two, therefore not paying their second premium. 

Similarly, the discounting factor for the premium was calculated by completing the 

following process: 

𝑝𝑟𝑒𝑚𝑖𝑢𝑚 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 = 1 +
(1−𝑞1)(1−𝑙2)

1+𝑖
+

(1−𝑞1)(1−𝑞2)(1−𝑙2)(1−𝑙3)

(1+𝑖)2 + ⋯ +

                                 
(1−𝑞1)…(1−𝑞𝑡−1)(1−𝑙2)…(1−𝑙𝑡)

(1+𝑖)𝑡−1                                                                                             (3.2) 

 

The q is the mortality rate, l is the lapse rate, i is the interest rate, and t is the last year of the 

policy. The premiums are collected at the beginning of the year, as opposed to the death benefits 

that are given at the end of the year. The probabilities for each year are discounted back to time 0 

using the discount factor v, with the first premium collected at time 0. 

After we calculate the two discounting factors, the discounting factor for the benefit is 

then multiplied by the benefit amount for the policy. The policies in our policy block have either 

lump sum premium payments at the beginning of their policy period or annual premium 
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payments for each year of their policy. For lump sum payments, the premium is calculated using 

formula 3.3. 

                                    𝑃𝑟𝑒𝑚𝑖𝑢𝑚 = 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 ∗  𝑏𝑒𝑛𝑒𝑓𝑖𝑡                            (3.3) 

 

 For annual premium payments, using formula 2.4 from section 2.1.1, the premium is 

calculated using formula 3.4. 

                                     𝑃𝑟𝑒𝑚𝑖𝑢𝑚 =
𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 𝑏𝑒𝑛𝑒𝑓𝑖𝑡

𝑝𝑟𝑒𝑚𝑖𝑢𝑚 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟
                              (3.4) 

 

3.3 Calculating Deterministic Reserves 

 The second step in building our model was to calculate the deterministic reserves for each 

policy using first principles. The code for the deterministic reserves was also written in excel 

VBA, similar to the premium calculations. Each policy was assigned a policy age at the start of 

our model, which tells us how long ago the policy was issued. The reserves are then calculated 

for the remaining years of the policy. As opposed to the premium calculation, which looped 

through each year of the policy starting at when it was issued, the reserves calculation loops 

through the remaining years starting at the policy age. Since we receive premiums at the 

beginning of the year, we calculated the reserves right after receiving the premium for the year of 

the policy age. This means the premium that was just received is not considered within the 

reserves. Similar to the premium code, in VBA, we looped through each policy and calculated 

the discount factor for the benefit and the discount factor for the premium.  
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The discounting factor for the benefit is calculated using the same process as for the 

premium calculation except the policy age is now time 0. Formula 3.5 shows the process below. 

𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝑞𝑛+1

1+𝑖
+

(1−𝑞𝑛+1)(𝑞𝑛+2)(1−𝑙𝑛+2)

(1+𝑖)2 + ⋯ +

                              
(1−𝑞𝑛+1)(1−𝑞𝑛+2)…(1−𝑞𝑡−𝑛−1)(𝑞𝑡−𝑛)(1−𝑙𝑛+2)(1−𝑙𝑛+3)…(1−𝑙𝑡−𝑛)

(1+𝑖)𝑡−𝑛                                 (3.5) 

 

The q is the mortality rate, l is the lapse rate, i is the interest rate, t is the last year of the policy, 

and n is the policy age.  

The premium discounting factor is calculated similar to the premium calculation. We 

looped through each year of the policy, with policy age equal to time 0. Formula 3.6 shows the 

process below. 

𝑝𝑟𝑒𝑚𝑖𝑢𝑚 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 =  0 +
(1−𝑞𝑛+1)(1−𝑙𝑛+2)

1+𝑖
+

(1−𝑞𝑛+1)(1−𝑞𝑛+2)(1−𝑙𝑛+2)(1−𝑙𝑛+3)

(1+𝑖)2 + ⋯ +

                                    
(1−𝑞𝑛+1)…(1−𝑞𝑡−𝑛−1)(1−𝑙𝑛+2)…(1−𝑙𝑡−𝑛)

(1+𝑖)𝑡−𝑛−1                                                                (3.6) 

 

The q is the mortality rate, l is the lapse rate, i is the interest rate, t is the last year of the policy, 

and n is the policy age. In this equation, the premium discounting factor for the first year is 0 

because we are calculating the reserves right after we have received the premium for the current 

year.  
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After we calculate the two discounting factors, the discount factor for the benefit is 

multiplied by the benefit amount for this policy and the discount factor for premium is multiplied 

by the premium calculated for the policy. For lump sum payments, since we have already 

received the only payment for the policy, the reserves are equal to the benefit multiplied by the 

benefit discounting factor, as shown in formula 3.7. 

                      𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑠 = 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 ∗  𝑏𝑒𝑛𝑒𝑓𝑖𝑡                              (3.7) 

 For annual premium payments, following the logic of formula 2.7 from section 2.1.2, the 

reserves are calculated using formula 3.8 below.  

𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑠 = (𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 𝑏𝑒𝑛𝑒𝑓𝑖𝑡) − (𝑝𝑟𝑒𝑚𝑖𝑢𝑚 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 𝑝𝑟𝑒𝑚𝑖𝑢𝑚)   (3.8) 

Although the deterministic calculations will not be used directly in the analysis of this 

project, they were essential and serve as the baseline for the stochastic runs. In order to 

determine the correct amount of iterations for the stochastic runs, we compared the sum of the 

deterministic reserves to the sum of the stochastic reserves. We wanted to ensure that the percent 

difference between the deterministic and stochastic was less than 0.5%. We also did this 

comparison for each policy. On the individual policy level, we wanted to ensure that the percent 

difference was less than 15%. By doing this, we determined that one million was the necessary 

amount of iterations for our stochastic reserves. 

3.4 Stochastic Reserves 

 After coding for the deterministic reserves, the next step was to build a stochastic model 

for reserves. A Monte Carlo simulation was used to calculate the reserves for each policy. The 

simulation was built in excel VBA, similar to the premium and deterministic reserves 

calculations. The code loops through each policy and runs the Monte Carlo simulation a 

specified number of iterations to determine an average outcome. 
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 The simulation models what could happen with the life insurance policy beginning at the 

current time and looping through each year until the policy expires or another event causes the 

simulation to end. Each year, the simulation begins by generating two random numbers. The first 

random number is compared to the probability of the policyholder lapsing on the policy based on 

their age and the duration of their policy. If the random number is less than or equal to the given 

probability, the policy lapses and the simulation ends for that iteration. When a policy lapses, no 

death benefit is paid, so the present value of the death benefit is zero. If the policy does not lapse, 

the simulation continues, and the next random number is compared to the mortality rate based on 

the policyholder’s age, gender, and risk class. If the random number is less than or equal to the 

mortality rate, the insured dies, and the simulation ends. In this case, the death benefit is paid out 

and is discounted back to time 0, which is the policy age. 

 If the policy does not lapse and no death benefit is paid in a given year, the policy 

continues onto the next year. The term policies expire after a given number of years from issue, 

10, 20, or 30, and the whole life expires after the policyholder is 120-years old specified by the 

mortality tables. The loop tests mortality and lapse random numbers against the probabilities and 

continues until a death or lapse occurs, or the policy expires. If the policy does not lapse in a 

given year, the premium is discounted back to time 0 and is added onto the previous years’ 

premiums. The process is the same for each year except for the current year, the first year of the 

loop. Since reserves are calculated right after the premium is collected, there is no premium 

discounted back in the first year of the loop. The reserves are calculated after the simulation is 

complete, using formula 2.7. 

At the end of each iteration, the value for the reserves is calculated and are added 

together. After the given number of iterations is complete, the sum of reserves is divided by the 
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number of iterations to find the average reserves. This number is directly compared to the 

deterministic reserves that were calculated. With a large enough quantity of iterations, the 

stochastic reserves average value will converge to the deterministic value.  

3.5 Deterministic Reserves with Pandemic Inputs 

 The COVID-19 pandemic had large impacts on the inputs for reserve calculations 

performed by life insurance companies. Our model works to predict these impacts of a global 

pandemic on the reserves based on what has happened with COVID-19. 

3.5.1 Impacts on Interest Rates 

 The economic effects of the pandemic are just as important to analyze as the health and 

safety impacts. Interest rates plummeted in March and have continued to stay low over the 

course of 2020. Our model includes a decreased interest rate for two years following the 

introduction of the disease into society. We predict that the duration of the pandemic is two 

years. We expect that the interest rate will rise back to normal levels as the economy heals. The 

decreased interest rate is 100 basis points below the interest rate used in the premium 

calculations as the US has seen drops of approximately 100 basis points in various interest rates 

in 2020 (Schilling 9).  

3.5.2 Impacts on Mortality due to COVID-19 Infection Rates 

 The model also includes an increase in mortality for the duration of the pandemic. For 

each age group, the mortality rate was calculated given that a policyholder has contracted the 

disease based on CDC data. To incorporate this mortality rate into our model, we created a 

mortality rate multiplier for each age group. First, the average mortality of all the values 

pertaining to the given age group in the standard tables was found. Then, the mortality rates 
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calculated from CDC data were divided by the average found from the tables. The result is the 

multiplier used to increase mortality for policyholders who contracted the disease in the first year 

of the pandemic. In the second year, the mortality rate is multiplied by the multiplier and divided 

by two. Due to the fact that hospitals have become more equipped to handle COVID-19 cases 

and new treatments have been used to treat the disease, the extra mortality used in year one was 

decreased in year two. It is easily deduced that a person who contracts COVID-19 now is more 

likely to live than someone who contracted the disease in March, which accounts for the decrease 

in extra mortality in the second year.  

The infection rate of the disease was an important input for our model and was coupled 

with the mortality rate. The mortality multiplier was factored in for policyholders that contract 

the disease, so the probability that a policyholder gets the disease must be accounted for.  In our 

deterministic model, the regular mortality taken from the table and the mortality with the given 

multiplier are weighted together. The infection rate is multiplied by the mortality with the 

multiplier and is added to one minus the infection rate multiplied by the regular mortality. This 

weighted mortality is used for the first year. In the second year the same process is used, but the 

mortality with the multiplier is divided by two to account for the improvement in care for 

Coronavirus patients. 

Figure 2: Infection & Mortality Inputs in Excel Model 

Although our age groups do not line up exactly with the age groups from the CDC data, we 

generalized the infection and mortality rates to even age groups that made sense for our policy 

block. Since the COVID-19 pandemic is just used as an example in our model, the data does not 
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have to be exact. The data was generalized to account for drastically changing data of the 

COVID-19 pandemic. 

After two years, there is an extended mortality multiplier to account for long-lasting 

conditions caused by COVID-19. About 30% of people that contract COVID-19 experience 

damage to the heart or lungs or develop a lasting condition (Rees 2020). Some of these 

conditions include Myocarditis and other heart conditions. Based on the prognosis for 

Myocarditis given by Kühl, U., & Schultheiss, we determined the mortality for these conditions 

to be 40% (Kühl, U., & Schultheiss 2012). This extended mortality is the probability that there 

are lasting effects, 30%, multiplied by the mortality of the lasting effects, 40%. In our model, 

after the first two years the normal mortality rate from the table and the mortality with the 

extended mortality multiplier are weighted together. This method is used for all years after the 

pandemic to account for the lasting effects of COVID-19. 

 

Figure 3: Long Term Effect Inputs in Excel Model 

3.5.3 Regional Impacts on Infection Rates 

Throughout the United States, different regions, states, and even cities have introduced 

different COVID-19 guidelines and rules based on population densities and political opinions. 

The differing amount of social distancing and population density have resulted in varying levels 

of success in stopping the spread of the disease. For example, the low population density and 

strict travel and social distancing restrictions in Maine have interrupted the spread of coronavirus 
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within the state. Maine has seen the second lowest amount of COVID-19 cases overall since 

March 2020. Other states with larger population densities and lenient social distancing guidelines 

have seen much larger numbers of the COVID-19 cases, such as Texas and Florida (CDC, 2020). 

In our model, the policyholders are split into four different regions. These regions vary in 

population density, social distancing measures, and guidelines. An infection rate multiplier was 

used for each region, either less than one to decrease the infection rates or greater than one to 

increase the infection rates. It was important to take into account the varying levels of infection 

throughout the country.  

 

Figure 4: Regional Inputs in Excel Model 

3.5.4 Impacts on Lapse Rates 

The last input for our model was a multiplier for the lapse rates. The pandemic ushered in 

a large increase in the unemployment rate in the United States. The official unemployment 

almost tripled at the start of the COVID-19 pandemic in March of 2020, going from 4.3% to 

14.7%. The event of becoming unemployed increases a policyholder's probability of lapsing on 

their policy by 75% (Sirak 15). Taking the increase of unemployment, 10.3%, and multiplying 

by 75%, we get 7.725%. This percentage becomes our lapse rate multiplier within the model, 

increasing the lapse rates during the two year duration of the pandemic by 7.725%. To illustrate 

further, if we have 1,000 policyholders at the start of the pandemic, we would expect 103 or 

10.3% to become unemployed. Of those 103 we would expect 77 or 75% of them to lapse on 

their policy because they have become unemployed. Overall, we expect an extra 77 out of 1000 
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policyholders to lapse due to COVID-19 effects on the economy.  In our model, the lapse rates 

will be multiplied by 1.07725, which is the lapse rate multiplier calculated in this section. 

 

Figure 5: Economic Inputs in Excel Model, Lapse Rate Multiplier, and Interest Rates 

3.6 Pandemic Inputs in Stochastic Reserves  

 The next step was to create the stochastic model with the pandemic inputs. The model 

with inputs is similar to the original stochastic code with no pandemic inputs.  Each year, the 

simulation begins by generating three random numbers. The first random number is used to 

determine if the policyholder lapses in the given year. The random number is compared to the 

probability that the policyholder lapses. If the random number is less than or equal to the 

probability, the policy lapses that year and the simulation ends. The second random number is 

used to determine if the policyholder has contracted the disease. The random number is 

compared to the infection rate for the policyholder’s given age group. If the random number is 

less than or equal to the probability of infection, the policyholder is labeled as an infected 

policyholder and is treated differently throughout the rest of the simulation. The third random 

number is used to determine if the policyholder dies in the given year. The random number is 

compared to the mortality rate for that year, and if the random number is less than or equal to the 

probability of death, then the policyholder dies. This mortality rate depends on if the 

policyholder is infected and in what year of the policy it is in. 
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 In the first year of the loop, the model checks if the policyholder is infected using the 

infection random number as mentioned. If the policyholder is infected, they are labeled as an 

infected policyholder and the mortality random number is compared to the mortality rate times 

the mortality rate multiplier if infected as mentioned in section 3.4. If the policyholder is not 

infected, the mortality random number is compared to the normal mortality rate for the 

policyholder. In the first year, we assume the premium has just been paid, so the policyholders 

cannot lapse, similar to the model without pandemic inputs. 

 The second year of the loop has a similar process as the first, however we also checked if 

the policyholder lapsed. First, the lapse random number is compared to the lapse rate times the 

lapse rate multiplier mentioned in 3.4. If the random number is less than or equal to the modified 

probability of lapsing, then the model exits the loop and starts the next iteration. If the 

policyholder does not lapse, the model checks if the policyholder was infected in the previous 

year. If so, the mortality random number is compared to the modified mortality rate for year two, 

which is the mortality rate times the mortality rate multiplier divided by two. This will determine 

if the policyholder dies or continues to the next year. If the policyholder was not previously 

infected, the infection random number is compared to the infection rate. If this determines the 

policyholder is infected, then it follows the same process and compares the mortality random 

number to the modified mortality rate for year two. Lastly, if the policyholder has not been 

infected in year one or year two, the mortality random number is compared to the normal 

mortality rate for the policyholder.  

 For the rest of the years in the policyholder’s term, the process is the same. First, the 

lapse random number is compared to the normal lapse rate. No lapse rate multiplier is applied 

after the two-year duration of the pandemic. Next, the model checks if the policyholder was 
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infected during years one or two. If so, the mortality random number is compared to the 

mortality rate times the extended mortality multiplier mentioned in section 3.4 to take into 

account the lasting effects of the disease. If the policyholder has not been infected, the model 

compares the mortality random number with the normal mortality rate for the policyholder.  

 In any year, if the policyholder lapses, there is no death benefit, and the loop is exited. If 

the policyholder dies, the death benefit is discounted back to current time and the loop is exited. 

When the loop is exited due to a policy lapse, death or expiration, the iteration is complete, and a 

new iteration begins. At the end of each iteration, the value for the reserves is calculated and are 

added together. After the given number of iterations is complete, the sum of reserves is divided 

by the number of iterations to find the average reserves. The total iterations can be chosen within 

our model, and we used one million iterations. The one million iterations are completed for each 

of the 5,000 policyholders and an average number of reserves is returned within the excel sheet. 

In our model, we seeded the random numbers in order to get the same random numbers 

every time we run the code for stochastic reserves with inputs. This method ensures that we get 

the same outcome every time in order to accurately compare pre-pandemic and post-pandemic 

runs. After we built our stochastic model with the pandemic inputs, we ran the model once with 

all of the inputs as expected and discussed earlier in section 3.5. We also ran our model with 

inputs that will not affect the reserves. For example, the following placeholder inputs were used. 

The infection rate was set to zero so that no one would be infected with the disease. The 

pandemic interest rate was set to the normal 5% interest rate. The mortality and lapse rate 

multipliers were all set to one so that they would not affect the mortality and lapse rates. With all 

these inputs, the model runs what would happen if the pandemic did not happen. Due to the 
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seeding of the random numbers, the same random numbers are used when the model is run with 

the pandemic inputs and with the placeholder inputs, so the values are comparable.  

Chapter 4: Findings and Analysis 

 The overall goal of this project was to assess how the pandemic inputs affect the 

stochastic reserves of a life insurance company. It was important to first assess the accuracy of 

our model. To do this, we used comparisons from the stochastic results to the deterministic 

results. Next, we looked to assess how the pandemic inputs affected the stochastic reserves. The 

pandemic caused an increase in mortality, lower interest rates, higher lapse rates and lasting 

health effects. There are many ways to analyze how the inputs of the pandemic are affecting 

individual policies, as well as groups of policies with similar characteristics. In this chapter, we 

will look in depth at the accuracy of our model and how the stochastic reserves are changing due 

to the COVID-19 pandemic. 

4.1 Accuracy of Model 

Assessing the accuracy of our model was vital in order to analyze the overall results. 

Manipulating the number of iterations completed in the stochastic reserves code improved the 

accuracy of these reserves when compared to the deterministic results. The first run of stochastic 

reserves was completed with just 10,000 iterations. These runs proved not to be accurate enough. 

The percent differences between the stochastic and deterministic reserves on the policy level 

ranged from 0 - 220%. A similar range of percent differences between deterministic and 

stochastic occurred with and without the pandemic inputs applied.  

The mean and standard deviation for the percent difference between stochastic and 

deterministic reserves for pre-pandemic runs with 10,000 iterations were 11.55% and 22.38% 
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respectively. Similarly, the post-pandemic runs had a mean percent difference of 11.56% and 

standard deviation of 22.70%. The large mean and standard deviation help to further demonstrate 

the inaccuracy of using only 10,000 iterations. 

To ensure greater accuracy, the amount of iterations for stochastic reserves was increased 

to 1,000,000. The increase in iterations drastically decreased the range of percent differences 

seen on the policy level to 0 - 15%. The mean percent difference between stochastic and 

deterministic reserves decreased from 11.55% with 10,000 iterations to 0.68% with 1,000,000 

iterations for pre-pandemic runs. A similar drop was seen for post-pandemic runs, from 11.56% 

to 0.97%. There is also a decrease in the standard deviation proportionate to the decrease in the 

mean. For pre-pandemic runs, the standard deviation dropped from 22.38% with 10,000 

iterations to 1.08% with 1,000,000 iterations. Similarly, the standard deviation dropped from 

22.70% to 1.15% for post-pandemic runs. The decrease in mean and standard deviation help to 

emphasize the improved accuracy with 1,000,000 iterations. 

The comparison of stochastic reserves with 10,000 iterations and 1,000,000 iterations can 

be seen in the graph below. The percent difference for each policy with 10,000 iterations is 

overlaid with the percent difference for each policy with 1,000,000 iterations. The orange bars 

are the 10,00 iterations and the blue bars are the 1,000,000 iterations. The large range for 10,000 

iterations can be easily seen in Figure 6, compared to the smaller range for the larger number of 

iterations. 
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Figure 6: Percent Difference Between Pre-Pandemic Deterministic and Stochastic Reserves with 

10K Iterations and 1M Iterations 

 Although there is a large increase in accuracy from 10,000 to 1,000,000 iterations, there 

are still policies with percent differences from deterministic to stochastic as large as 15%. These 

larger differences are not concerning in the context of the model. All of these differences are due 

to random variation and are occurring in policies with younger policyholders. These 

policyholders have relatively small values of reserves. A small change in the present value of 

premiums or benefit can cause a large percent difference between stochastic and deterministic 

reserves. This concept is more easily explained with an example. Policyholder 327 is a 26-year-

old female with a $100,000 policy and is in a standard risk class. The policyholder makes annual 

payments and is in the first year of a 10-year term policy. The deterministic reserves are $24.45, 

and the stochastic reserves are $20.67. The percent difference in stochastic and deterministic 

reserves is 15.58%, however, there is only a $4 difference in the reserves. Overall, this percent 
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difference seems large on the policy level, but the $4 compared to our total reserves is extremely 

small. It is 0.0000017% of the total stochastic reserves. 

  There are also slightly larger mean and standard deviations between stochastic and 

deterministic reserves for post-pandemic runs. The pandemic inputs provide more variation in 

the possible outcomes for the stochastic reserves. The code generates 3 random numbers, 

however, in the pre-pandemic reserve calculations the random number generated to determine 

infection is not used. In the post-pandemic reserve calculations, all 3 random numbers are used, 

creating the possibility for larger variation on the policy level and accounts for the slightly larger 

values appearing for post-pandemic runs. 

4.2 Impacts of the Pandemic 

With the pandemic modifications, we expected the stochastic reserves to increase, both 

on the policy level and the total reserves for the company. The total stochastic reserves for the 

company with no pandemic inputs was found simply by adding all the reserves for each policy 

together. The total stochastic reserves pre-pandemic is $216,795,901. After applying inputs and 

using the seeded random numbers, we found the total stochastic reserves post-pandemic are 

$224,512,830. The stochastic reserves increased by $7,716,929 or 3.6%. On the policy level, 

there was an increase in reserves for every policy.  

In order to see how the stochastic model was working on an individual policy level, we 

printed out each iteration for one policy from the stochastic pre-pandemic and the stochastic 

post-pandemic reserves. Below are histograms that show each of the 1,000,000 iterations for 

policyholder 23 in our policy block. This policyholder is a 32-year-old standard female with 6 

years left on her 10-year term coverage. The benefit amount is $100,000 and premium payments 

are annual. This policyholder was chosen because the percent increase post-pandemic for this 
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policy was similar to the average of the percent increase for all 5,000 policies. The percent 

increase for this policy was 5.26% and the average for all policies was 5.12%. This average of 

5.12% is larger than the overall percent increase of 3.6% because it does not take into account 

the weights associated with policy amount. Examining the totals in each bin of the histograms, it 

can be seen that there is a slight shift of reserves to the right. For example, in the pre-pandemic 

histogram, the -10K-0 bin contains 937,862 iterations. This bin in the post-pandemic histogram 

decreases by 4,675 to 933,187 iterations. The iterations are shifting from negative to positive 

reserves and show that there are more benefits being paid out post-pandemic. Each bin after the -

10K-0, increases from pre-pandemic to post-pandemic. For example, the last bin of 90K-100K 

increases from 511 to 527 for pre-pandemic to post-pandemic, respectively. 

 

Figure 7: Histograms of Pre-Pandemic and Post-Pandemic Stochastic Reserve Iterations 
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Another way to show the impact of the pandemic inputs is through a deterministic 

waterfall. This waterfall effect is shown when specific inputs are layered on one by one. In our 

case, we started by adding the mortality and infection rate first, as we predicted it would have the 

largest impact. Next, we added in the infection rate multiplier. Then, the lapse rate multiplier 

followed by the change in interest rate, and lastly the extended mortality. The change in reserves 

from one input to the next for one specific policyholder are shown in figure 8. This policyholder 

was chosen because the pandemic inputs caused a large increase in their reserves. Policyholder 

2877 is a 65-year-old preferred female living in region four with three years left on her 10-year 

term policy. The benefit amount is $500,000 and annual premium payments are made. The 

overall percent increase in reserves post-pandemic for this policy is 18.34%. The pre-pandemic 

reserves are $3,746 and the post-pandemic reserves are $4,433. Overall, this is an increase of 

$687, but it is more interesting broken down by the layering of the inputs. For example, by just 

layering in the mortality and infection rate, the reserves increased by $411. There was also a 

$205 increase by layering in the infection rate multiplier. This policyholder lives in region four 

which had the largest infection rate multiplier, so we expected a large percent increase from this 

input. For this policy, the reserves are increased each time by layering in another input, except 

for the lapse rate multiplier. It is important to note that the lapse rate multiplier actually causes a 

decrease in reserves. This is due to the fact that more policies are lapsing. Although we are not 

receiving premium payments, we are also not paying out as many benefits, so this causes a 

decrease. 
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Figure 8: Deterministic waterfall for policyholder 2877 with layered pandemic inputs 

Next, Policyholder 50 is examined for changes in reserves from one input to the next. 

This policyholder is dissimilar to policyholder 2877 shown in figure 8 in that the pandemic 

inputs had very little effect on the value of the reserves. Policyholder 50 is a 28-year-old 

standard female living in region 3 with 2 years left on a 10-year term policy. The benefit is 

$100,000 and annual payments are made. The overall percent increase in reserves post-pandemic 

for this policy is 0.95%. The pre-pandemic reserves are $40.41 and the post-pandemic reserves 

are $40.79. Figure 9 shows how each input affects the reserves. Policyholder 50 had a much 

smaller percent difference in pre-pandemic and post-pandemic reserves than policyholder 2877, 

despite similarities in many attributes. Both participants are preferred females with a small 

number of years left on their 10-year term policies, however there is one difference that accounts 

for the much smaller percent change in Policyholder 50’s reserves. 



 

32 

 

 The difference in the two policyholders that is causing Policyholder 50 to have a much 

smaller percent increase in reserves is the age. The mortality rates in the tables are smallest for 

the youngest policyholders and increase as the age of the policyholder increases. Also, the 

mortality multiplier that is applied if the disease is contracted is largest for the policyholders 

between 61-70, which means the largest multiplier is applied to policyholder 2877. The smallest 

mortality multiplier is applied to ages 20-30, which means the smallest multiplier is applied to 

policyholder 50. This accounts for the much smaller increase in reserves for Policyholder 50. 

 

 
Figure 9: Deterministic Waterfall for Policyholder 50 with layered pandemic inputs 

 

 

4.2.1 Policy Type 
There are many factors to consider when looking at the overall results. The first is the policy 

type. The model has four different types of policies: 10-year term, 20-year term, 30-year term, 
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and whole life. Figure 10 shows the average percent increase for the policies of each type. 

 

Figure 10: Average Percent Increase in Reserves by Policy Type 

We see the largest increase for the 10-year term policies with an average of 7.16%. As 

the length of the policy increases, the impact of the pandemic decreases. This is due to the inputs 

that mainly affect the first two years. The infection rates, added mortality, and the lapse rate 

multiplier affect the two years of the pandemic and the largest changes occur during that time. 

For the 10-year term policies, there is less time for the reserves to converge back to pre-

pandemic levels. The changes in the first two years do not impact the total reserves as severely 

for policies with many years left. 

4.2.2 Regions 

 Another characteristic to examine was the region in which the policyholders lived. There 

are four regions, each assigned an infection rate multiplier based on population densities and 

political opinions. Figure 11 shows the average percent increase for policies in each region. 
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Figure 11: Average Percent Increase in Reserves by Region 

These results are exactly what we expected based on the multipliers assigned to each 

region. The first region has the smallest bar, indicating that policies associated with region one 

showed the smallest average percent increase in reserves. This region also had the smallest 

infection rate multiplier at 0.5. It is also seen that region four has the largest bar, indicating that 

policies associated with region four showed the largest average percent increase in reserves. This 

region had the largest infection rate multiplier at 1.5. It is clear that as the infection rate 

multiplier increases, the average percent increase in reserves also increases. This input is 

important in order to distinguish regions in which the pandemic is being handled differently and 

regions that would naturally be impacted more by the pandemic. 
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4.2.3 Current Age and Year Left in Policy  

Another characteristic to analyze is the age of the policyholders. The percent difference 

for each age group must be categorized again by the number years left in the policy to account 

for the construction of the policy block. No one over the age of 60 was allowed to obtain a 30-

year policy and this is reflected in the percent differences between stochastic and deterministic 

for each age group. Figure 12 shows the percent increases by number of years left in the policy 

and by age group. 

 

 

Figure 12: Percent Increase in Reserves by Number of Years Left on the Policy and Current Age 
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The graph shows that the policies with a lower number of years left are impacted more by 

the pandemic inputs. This is largely due to the pandemic inputs impacting the first two years 

after the pandemic begins. The policies with a larger amount of years left are able to recover 

after the impacts of the first two years. These results are consistent with the results seen in Figure 

10, showing that the policy types with larger numbers of years are impacted less harshly by the 

pandemic inputs. 

 The graph also illustrates how the pandemic inputs affect each age group. These results 

are exactly as expected based on the mortality multipliers used for each age group. The 

multipliers increase mortality rates in policyholders who have contracted the disease. It is 

expected that the multipliers will increase the reserves. The largest multiplier was applied to the 

60-70 age group. The bar representing 60-year old policyholders in each color is the largest, 

showing the largest percent increase for policyholders in the 60-70 age range. The multipliers 

increase steadily over the first five age groups and then steadily decrease back down over the 

remaining three age groups. This trend can be seen in each color in Figure 12.  

4.2.4 Annual vs Lump Sum Premium 

 The last interesting characteristic to investigate is the payment form of the policy. All 

policies either pay premiums annually or as a large lump sum at the time they purchase the 

policy. Figure 13 shows the average percent increase after the pandemic inputs are applied to 

each group. 
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Figure 13: Percent Increase in Reserves by Premium Type 

 The pandemic inputs have a much larger impact on reserves for the annual payments than 

the lump sum payments. This result is consistent with the actuarial reserves equation. The 

impacts of the pandemic affect the present value of the benefit and the premiums in the reserves 

calculation. For policies with annual payments, the impact of the pandemic increases the present 

value of future benefits and decreases the present value of future premiums. For policies with 

lump sum premium payments, the impact of the pandemic only affects the present value of future 

benefits, so there is a lesser impact on reserves. 

4.3 New Premium 

 After examining the effects of the pandemic on the life insurance company, we created a 

solution for the company to protect itself from the global pandemic. To account for the increase 

in reserves, the company could increase premiums when the policy was sold. The premium 

calculations described in section 3.1 were completed again, this time with the pandemic inputs 
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built in. We assume that we know when the pandemic will hit and how far along each policy is 

into their term. This new premium calculation is completed for each policy, starting with normal 

inputs at time 0 and adding the pandemic inputs when the pandemic hits at each policy age. After 

following this process, the average increase in the new premium from the old premium is 1.22%.   

 The goal of this new premium is to bring the value of the total reserves down to pre-

pandemic levels while using pandemic inputs. The deterministic and stochastic reserves 

calculations were run again, using pandemic inputs and the new premium. Although the total 

reserves did decrease with the new premium, it was still larger than the pre-pandemic reserves. 

To account for larger post-pandemic reserves, we took the extra premium received in each year 

and deposited it into a bank account that accumulates until the pandemic hits. To find the 

account balance for each policy, we took the difference between the new premium and old 

premium and accumulated it to the policy age using the pre-pandemic interest rate of 5%. These 

amounts were totaled to find the current value of the bank account. At the time of the pandemic, 

we withdrew the money and subtracted it from the reserves as it was money that we have already 

collected. 

After completing this process, the final value of deterministic reserves is 

$218,069,444.84 and is only 0.52% larger than the pre-pandemic deterministic reserves. The 

total stochastic reserves is $218,851,260.63 and is only 0.88% larger than the pre-pandemic 

stochastic reserves. This method of increasing premiums and accumulating excess premiums in 

an account was successful in decreasing post-pandemic reserves. In using this method, the 

company would help protect itself from loss due to a pandemic. Without this protection, the 

company’s reserves would increase by 3.56%. This process ensures an increase of only 0.88%. 
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Chapter 5: Conclusion 

 It is essential to analyze the impacts of events that occur in today’s society to better 

predict the future and minimize risk associated with random events. The coronavirus pandemic 

has affected many aspects of society and it is important to investigate the significance of the 

impacts on unique industries. The model created and explained in this paper allows for the study 

and analysis of the effects that COVID-19 has had on the life insurance industry.  

The overall goal was to create a stochastic model that could use inputs from any 

pandemic to estimate the reserves for a life insurance policy block with differing types of 

insurance. The COVID-19 pandemic is a great example of how many different factors can cause 

changes in life insurance reserves. We used the COVID-19 statistics to show how this model 

works. However, there are other past pandemics and possibly future pandemics in which this 

model can be used. It is a great tool to have and use in order to fully understand the impacts of a 

pandemic and which factors can impact the reserves the most.  

In the analysis chapter, we discussed each input and factor on its own as well as layered 

one by one to show the true impact. All of the COVID-19 inputs impacted the reserves as 

expected. The increase in mortality coupled with the infection rate of the disease caused the 

largest increase in reserves out of all the inputs. Overall, the pandemic inputs increased the 

reserves amount for every policy. The overall results for the 5000 policies are shown in table 5. 

Pre-Pandemic Post-Pandemic Difference % Difference 

$216,486,831.99 $224,512,830.06 $7,716,928.63 3.6% 

Table 5: Overall Reserve Results 

 After analyzing the impacts of the pandemic on the reserves, we produced a possible 

solution to this problem. In order to protect the life insurance company from a pandemic, we 
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introduced a new premium calculation to ensure the reserves do not increase as drastically when 

a pandemic hits. We increased each policy's premium by implementing the same pandemic 

inputs as used in the reserve calculations into the premium calculations.  Table 6 shows the 

results of using the process explained in section 4.3. 

Increase in Total Post-Pandemic Stochastic Reserves 

Old Premium New Premium 

3.6% 0.88% 

Table 6: New Premium Method Results 

 Actuaries are always looking to analyze the outcomes of events and their effects on 

society or specific industries to better plan for the future. Pandemics, specifically the COVID-19 

pandemic, are a good example of unexpected events that are difficult to plan for in an insurance 

company. From public health to the economy, COVID-19 affected society as a whole. This 

model can be implemented with other statistics or populations in order to better plan for the 

future despite other unexpected events that may occur. 
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