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Chapter 1

Introduction

A Radar system interrogates a target with a Radio Frequency (RF) pulse of energy

and receives a one-dimensional (1D) projection of a targets three-dimensional (3D) Elec-

tromagnetic (EM) Radar Cross Section (RCS). As time progresses, the Radar may collect

hundreds to thousands of these 1D projections. One receives the data in the form of a

complex reflection coefficient for each interrogation frequency and moment in time. The

range to the scatterer, the interrogation frequency and various EM characteristics of the

scatterer determine the value of this coefficient.

Figure 1.1: Radar Interrogating a Target: Red dots indicate locations of reflecting features

Given this backscattered energy returned by the target, our ultimate desire is to form a

descriptive representation of the target. Due to the possible complexity of the situation, the

RCS of the scattering features alone is often not enough to make critical decisions about the
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identity of the target. We often wish to also discover shape and size information from the

target’s signature[11]. This representation is then used as a tool for further characterization

and discrimination. These goals may be achieved by forming a one-dimensional (1D) range

versus time intensity (RTI) plot, a two-dimensional (2) “Linear Image”[43, 49], or if possible

a 2D or 3D “focused Image” to show scatterer locations (X, Y, Z) in a target centered

coordinate system[35]. Focused images are images that have been compensated for motion

of the target or Radar platform over the duration of the RTI.

The motion of a feature on a target may be expressed as simple sinusoids for target

rotation about one axis, or abstruse, non-sinusoidal and anharmonic functions for general

free body target motion. The highly desirable focused images may only be formed with

knowledge of this motion. Rudimentary methods currently exist to find this motion, but

they allow for non-physical motions as solutions. One example of a non-physical motion

would be a sudden change in orientation, but any motion requiring the action of a force

or torque on the object is disallowed for the free body target. Even what appear to be

correct motions, might truly be perturbed to some extent. This would cause undesirable

blurring or obfuscation of the image created using the acquired direction cosines as line of

sight values.

A motion estimation method with physics based constraints has the possibility of miti-

gating these issues by eliminating unwanted degrees of freedom in the estimation problem.

Forcing the system to be that of a force-free rigid body would do this, limiting the result-

ing motion to a definable spin, nutation, and precession. Furthermore, using values from

such a constrained method would allow for the estimation of additional motion parameters

describing the target’s shape to aid in more accurate characterization and discrimination.
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1.1 Problem Statement and Goal of Thesis

Rigid body targets in exo-atmospheric free fall undergo motions defined by classical

dynamics. Radar signatures provide a platform for estimation of various parameters relating

to the motion and scattering characteristics of the target. This thesis provides a Radar

based, physics constrained, estimator of the motion which generates these signatures. As

part of this analysis, it defines a motion model for a “nearly” axially symmetric target in

terms of its inertial parameters.

We show that the time-varying range to a point on the rigid body can be expressed in

the form of an amplitude and frequency modulated signal. The frequency decomposition

of this range function is used to estimate the target’s inertial parameters. This result has

immediate application as a tool to assist the Radar analyst in further target characterization

and constitutes an essential step to the full reconstruction of a target’s geometry from its

signature.

1.2 Contributions

The following contributions to this field are made in this work:

1. The analytic integration of the time varying precession function, as it appears to not

be readily available in the literature.

2. An analytic closed-form formulation of a point scatterer’s range path on an exo-

atmospheric free falling asymmetric rigid body.

3. A formulation of the motion parameters in terms of inertial deviation from axial

symmetry.

4. An amplitude and frequency modulation interpretation of the motion formulation.

5. A method for the estimation of inertial parameters.

6. A multi-body motion factorization extension to prior art based upon 2D image analysis

technique.
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1.3 Organization

Chapter 2 presents general information helpful for understanding the scope of the prob-

lem. It first introduces background pertaining to available sensors and the Radar ranging

problem. It then covers problematic issues with collected data such as coherence errors and

physical interference sources. Finally it introduces the mathematics for the rotation of a

force-free rigid body and treats the transformation of a description of a rotating body to

a description of what the Radar senses and collects as data. In particular, it covers the

analytic formulation of the range function for a freely moving asymmetric body.

Chapter 3 explores how asymmetry and initial angular velocities affect a target’s motion.

It also shows what rotation simplifications occur when the target is axially symmetric and

introduces rotation models for a “nearly” symmetric target. It then presents a harmonic

decomposition analysis of the target’s angular frequency spectrum and introduces a means

of estimating inertial parameters of a nearly symmetric target.

Appendix A shows an extension to modern spectral analysis useful for tracking and

categorizing reflecting features on a target. Appendix B contributes a collection of examples

of rotations, rotation rates, three dimensional positions of features, and range versus time

plots for various motions. Appendix C first reviews an alternative method for determining

some motion parameters and introduces a technique for separating and sorting tracks from

multiple bodies. It then acknowledges methods for finding discrete scatterer positions given

angular velocity information and tracked scatterers.
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Chapter 2

Background

In this chapter, the reader is provided a brief overview of the challenges one encounters

when attempting to analyze a target scene. First, the concept of super-resolution methods

are briefly introduced owing to their usefulness in many aspects of the Radar analysis

problem. The issues of coherence and imaging are then presented, as a motivation for

motion estimation. Finally, the foundation is laid for understanding the motion of a free

falling target.

2.1 Sensors and Bandwidth

There are many types of Radar sensors that can be used for target discrimination. This

section introduces two such sensor types that produce target data for which the analysis

within this work may be applied. Implementations of these Radars both reside at the

Reagan Test Site (RTS) in the Kwajalein Atoll, southwest of Hawaii.

The ARPA Lincoln C-Band Observables Radar (ALCOR) was constructed between 1968

and 1970. It supports both narrowband and wideband operating modes. The narrowband

(NB) mode uses 6 MHz of bandwidth to acquire and track the target. Once acquired, it

may switch to its wideband (WB) mode to collect signature data[1, 24, 7]. The wideband

waveform with 512 MHz of bandwidth provides a range resolution of approximately 0.5

meters.

The Millimeter Wave Radar (MMW) is a dual frequency (Ka- and W-Band) monopulse
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tracking Radar[3]. It has a signal bandwidth of up to 2 GHz yielding a range resolution of

0.014 meters. Operating at this bandwidth allows for a range window of 37.5 meters. At

times when a larger window is needed, the bandwidth may be reduced to 1000 MHz or 500

MHz. This in turn allows for an proportional increase in the sampling rate.

Table 2.1: Radar Signal Characteristics.

ALCOR MMW

Band(s) C Ka, W

WB Bandwidth(s) (GHz) 0.5 0.5, 1, 2

PRF 38-323 50-2000

Pulse Width(µsec) 10 50

Modulation Linear FM Chirp Linear FM Chirp

Various operating characteristics of these two Radars are summarized in Table 2.1. The

high PRFs may supply a large number of target interrogations. These interrogations will

capture the motion of the target as it moves over time.

2.2 The Radar Ranging Problem

When analyzing Radar data, one typically will use spectral analysis to identify the

range and Radar Cross Section (RCS) of each scattering feature. It is apparent that the

Radar ranging problem is equivalent to a spectral analysis problem when one decomposes

the, frequency and time dependent, complex reflection coefficient. The complex reflection

coefficient may be seen in Eq. 2.1. What is referred to here as RCS, the amplitude function,

is sometimes instead referred to as the complex reflection coefficient. In this work the

reflection coefficient shall include the range term as well.

γ(f, t) =

RCS︷︸︸︷
A e−j 4πf

c

range︷︸︸︷
r(t) (2.1)

The RCS is a complex valued constant for each scattering center. A scattering center

refers to the feature reflecting the signal. Its magnitude is an indication of the strength of
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the returned RF signal for the particular time at which the target was interrogated with

a given frequency and likewise its phase expresses any phase shift experienced during the

reflection process.

One can further expand the model to show the construction of the time varying range

function r(t) from object feature coordinates with respect to a body fixed (usually tar-

get centered) coordinate system and the view parameters connecting the canonical object

description with a particular orientation with respect to the Radar sensor.

The viewpoint may be represented as corresponding time-varying direction cosines with

respect to the line of sight vector that describe rotations of the target. The final range

function is obtained upon projection onto the line of sight vector. A list of direction cosines

represents a three element unit length vector pointing to a cartesian coordinate on the unit

sphere[47]. As shown in Eq. 2.2 through Eq. 2.4, each element of this vector may be written

in terms of cosines of angles from the three orthogonal axes to the line of sight vector.

Cx = cos(αc) (2.2)

Cy = cos(βc) (2.3)

Cz = cos(γc) (2.4)

Fig. 2.1 depicts the body fixed target coordinate system in relation to the Radar’s line of

sight and the corresponding direction cosines that arise in this representation.

The direction cosines change as functions of time as the target rotates. Eq. 2.5 defines

Cxyz as a symbolic representation of this vector.

Cxyz =

[
Cx(t) Cy(t) Cz(t)

]
(2.5)

A point, p, in the target fixed coordinate system has a three dimensional position as

determined by coordinates x, y, and z.

p =




x

y

z




(2.6)
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Figure 2.1: Scatterers positions are set in a target centered coordinate system. The direction
cosine representing the line of sight is relative to this coordinate system. The direction
cosines are the cosines of the angles αc, βc, and γc. These angles are between the axes x, y,
and z respectively and the line of size vector.
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The dot product of the direction cosine vector Cxyz, and the position of the point p on

the target as seen in Eq. 2.7, is the operation which forms the 1D range found in Eq. 2.8.

r(t) =

[
Cx(t) Cy(t) Cz(t)

]




x

y

z




(2.7)

γ(f, t) =

RCS︷︸︸︷
A e−j 4πf

c

range︷ ︸︸ ︷
[Cx(t)x + Cy(t)y + Cz(t)z] (2.8)

Multiple scattering centers will be represented via the index m applied to each scatterer’s

location and RCS as seen in Eq. 2.9 which represents the complete reflection coefficient of

a target. The complex coefficient may be conveniently represented as in Eq. 2.10 where

certain functional dependencies have been suppressed.

γ(f, t) =
∑
m

Ame−j 4πf
c

[Cx(t)xm+Cy(t)ym+Cz(t)zm] (2.9)

γ(f) =
∑
m

Ame−j 4πf
c

rm (2.10)

Spectral analysis may be used to find the range and RCS of each scatterer on the target

from the collected data. This can be shown using a Fourier Transform pair[35]. First, the

factor of two due to the round trip range can be separated from the 4π as seen in Eq. 2.11.

γ(f) =
∑
m

Ame−j2π 2f
c

rm (2.11)

Then, the factor involving frequency and speed of light can be replaced with a constant

k.

k =
2f

c
(2.12)

γ(k) =
∑
m

Ame−j2πkrm (2.13)

A transform pair exists for γ(k), showing that range to the mth scatterer can be repre-

sented by a zero width pulse of amplitude Am.

F−1{γ(k)} = γ(r) (2.14)

γ(r) =
∑
m

Amδ(r − rm) (2.15)
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Figure 2.2: Radar Data and the FFT : Frequency samples collected about time instant t1
are transformed using the FFT into discrete range bins, where red bins indicate features
scattering within given ranges

Spectral analysis, for the purpose of Radar Imaging, is traditionally performed using the

Fast Fourier Transform (FFT). Fig. 2.2 depicts an example of applying the FFT to data

collected for a target with three scattering centers to form discrete range values for the data

collected in a single pulse centered at time t1 to yield one time-slice of an RTI. This method

is appropriate when speed is required, as great attention has been spent on this algorithm

to achieve that end. Unfortunately, its range resolution is limited to a predetermined bin

size, and “spectral leakage” occurs when a scattering center is not centered in one Fourier

bin.

There are other spectral analysis methods classified as Modern Spectral Analysis (MSA),

or super-resolution methods, that offer benefits which are unattainable when using classi-

cal spectral analysis techniques such as the FFT. Some of these methods support super-

resolution estimation of range, phase, and frequency dependencies of each scatterer[19, 40].

The tractability of the exponential model estimation problem was determined by Golub

and Pereyra[16], who identified a general form of problems known as separable nonlinear

least squares of which MSA is a special case. This allows the problem to be separated into
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nonlinear estimation in a few parameters, followed by linear estimation of those remaining.

Precise knowledge of these scattering properties aid in multidimensional constructions,

tracking, and overall discrimination. A comparison of the outcomes of applying Fourier

processing and a particular MSA algorithm may be seen in Fig. 2.3. The Fourier results

are seen on the left side of the figure whereas the MSA results on seen on the right. This

figure shows RTI plots in which the time coordinate has been converted into the underlying

angular coordinates relating to the object’s aspect angle with respect to the Radar line of

sight vector. The side-lobes in the Fourier plot hide the true scattering ranges, whereas the

MSA plot displays highly resolved scattering center ranges.

2.2.1 State Space Technique

A particular form of range estimation that is used throughout this work is based upon

mathematics that was developed in the context of linear control theory[29]. Referred to as

a state-space technique, it is relatively concise to describe and produces the super-resolved

range estimates. This section will briefly describe the state space processing of the collected

data to obtain the ranges to each discrete scattering center. The n complex reflection

coefficients shall be represented as γi, where i = 1..n.

γi = γ(fi, t) (2.16)

They represent data collected using interrogation frequencies fi.

fi = f1 + (i− 1) ·∆f (2.17)
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Figure 2.3: Example RTI plots comparing Fourier Analysis and Modern Spectral Analysis
outcomes. Fourier Result on the left shows significant blurring as compared to MSA result
on the right. Color indicates scattering intensity in dB. Each aspect angle is processed
independently to find the scatterer ranges.
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For convenience, we will use F to denote a vector composed of fi ∀ i ∈ (1, n), and Γ for the

vector composed of γi ∀ i ∈ (1, n).

F =




f1

...

fn




(2.18)

Γ =




γ1

...

γn




(2.19)

The state-space estimator algorithm first forms the collected reflection coefficients, γi, into

a rectangular Hankel a× b matrix, H, as shown in Eq. 2.20.

H =




γ1 γ2 . . . γb

γ2 γ3 γb+1

...
. . .

...

γa γa+1 . . . γa+b−1




(2.20)

The rank N of this data matrix in the noiseless case is the number of signals, that is,

the number of scatterers, in the system. The rank of the system may be determined by

analyzing the singular-value spectrum of H[15]. As seen in Eq. 2.22, the diagonal elements

of Σ represent this spectrum.

If there is an estimate of the SNR for the overall Radar signal, one may find N by
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counting the number of singular values σ that lie above the SNR threshold.

svd{H} = UΣV H (2.21)

= U




σ1 0 0 0 0 0

0 σ2 0 0 0 0

0 0
. . . 0 0 0

0 0 0 σj 0 0

0 0 0 0 0 0

0 0 0 0 0 0




V H (2.22)

The approach of the state space method is to find a State Transition Matrix (STM) that

underlies the evolution of a linear state space model, for progressive interrogation frequen-

cies, of the received signal. The modal matrix of this STM will directly describe the ranges

of interest. Using this algorithm, we have a choice between two options for computing the

STM. The first option is referred to as the Observability approach. The second option is

referred to as the Controllability approach. The difference between these two options is

that the first approach uses the Hankel matrix range space to compute the STM, while the

second approach uses the null space. They provide similar results, and as such, either may

be used.

For the following section, a shorthand notation of a : b will be used to signify the ath row

or column of a matrix to the bth row or column following the MATLAB matrix processing

language’s method of designating submatrices. A colon without an a or b implies the

selection of all rows or columns. For example, ζ(1 : 3, :) selects the submatrix containing

the first three rows of ζ.

• Option 1: Observability Approach

1. Form the observability matrix, O, from the U and Σ matrices obtained with the

SVD.

O = U(:, 1 : N) ·
√

Σ(1 : N, 1 : N) (2.23)
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2. Form O+ and O− from O by deleting the first and last row, respectively.

O+ = O(2 : N, :) (2.24)

O− = O(1 : N − 1, :) (2.25)

3. Create the STM from the product of the O− pseudo-inverse and O+.

STM = O−† · O+ (2.26)

• Option 2: Controllability Approach

1. Form the controllability matrix, C, from the Σ and V matrices from the SVD.

C =
√

Σ(1 : N, 1 : N) · V (:, 1 : N)H (2.27)

2. Form C+ and C− from C by deleting the first and last columns, respectively.

C+ = C(:, 2 : N) (2.28)

C− = C(:, 1 : N − 1) (2.29)

3. Create the STM from the product of C+ and the C− pseudo-inverse.

STM = C+ · C−† (2.30)

We may then use an eigenvalue decomposition[17] to find the state transition matrix

complex eigenvalues, λi, and then multiply the polar angle of these eigenvalues, ∠λi in

Eq. 2.32, with the scale factor ks given in Eq. 2.31 to produce the range in meters to each

scatterer.

ks = − c

4π ·∆f
(2.31)

x(i) = ks · ∠λi (2.32)

The complex amplitudes associated with each scatterer may then be found with little

more computation by performing a least squares match of the model, now with known
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eigenvalues, to the collected reflection coefficients. The row vector L contains the polar

angles of the eigenvalues.

L =

[
∠λ1 ∠λ2 . . . ∠λn

]
(2.33)

The complex amplitude vector A is desired. It contains the RCS of each scatterer

A =




A1

A2

...

An




(2.34)

A matrix decomposition of the reflection coefficients in terms of the eigenvalues may be

seen in Eq. 3.124. The eigenvalue angles, L, and the frequencies, F , when fitted in a least

squares sense to the reflection coefficients, Γ, produce the vector, A. This result is shown

in Eq. 3.125.

Γ = e
j
“

F
∆f

L
”
A (2.35)

A =
[
e
j
“

F
∆f

L
”]†

Γ (2.36)

If the magnitude of the RCS has a frequency dependence, an extended formulation may

be used to acquire additional information regarding this dependence. Such a formulation is

briefly explored in Appendix A.

2.3 Target Isolation and Feature Tracking

Two important uses of super-resolution methods shall now be briefly reviewed. The

collected data may contain artifacts or other undesirable objects within the range window.

This unwanted data can present itself in either of two significant forms. The simplest case

to manage is that in which the artifacts are at ranges which do not interfere or cross over

the object of interest. In this case, they may easily be selected and removed from the data.
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The more difficult case, when the two objects cross at a series of ranges, as seen in Fig. 2.4,

is specifically well suited to super-resolution methods. When isolating a target with Fourier

methods, one may get as close as a single range bin, whereas a super-resolution method

allows for sub-range gate resolution, thus allowing a closer and cleaner isolation[4]. If the

analyst cannot determine if there is more than one object, but is able to track the scatterers,

it is possible to form a matrix decomposition problem which can identify tracks undergoing

different motions. Details of this novel algorithm developed during this research effort may

be found in Appendix C.1.

Figure 2.4: Isolation of Targets: The scene contains two targets, one red, one black. The
targets cross at approximately 8 seconds causing signal interaction.

Another useful attribute of these methods is that each scattering center is represented

as a single discrete range with an associated RCS, as opposed to an RCS value associated

with a fixed range bin. This makes it easier to track, or tag, a scatterer using either an

automated[5] or analyst assisted tracker. An example of scatterer tracking may be seen

in Fig. 2.5 and Fig. 2.6. Fig. 2.5 displays a complex target with many scattering centers.

After tracking selected features, untracked scatterers may be removed. Fig. 2.6 shows the

tracked scatterers color coded by feature number.
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Figure 2.5: Example Target with many scattering features

Figure 2.6: Four scatterers have been tracked and colored by feature: The nose tip (Blue),
the leading base edge (Green), the trailing base edge (Red), and a groove (black). All other
scatterers have been removed
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2.4 Coherence Errors

There are two errors commonly referred to as “coherence” errors. The first error is

related to the range. All of the scatterers found within a return may have a single range

offset, εr, which is a random variable with respect to the interrogation index.

The second error is in phase. A phase offset, εφ , may be shared for all scatterers which

is again a random variable with respect to the interrogation index.

γ(f) = A(f)e−j 4πf
c

[r+εr]ejεϕ (2.37)

One primary cause of range offsets, εr, may be attributed to “tracker” error. A tracker is

in this case refers to the signal processing algorithm which keeps the target within the range

window of the Radar. An example of tracking error may be seen in Fig. 2.7. Fig. 2.8 shows

an example of an RTI for three scatterers rotating on a rigid body. The effects of the range

offsets seen in Fig. 2.7 when applied to the data in Fig. 2.8 may be seen in Fig. 2.9. A tracker

may attempt to follow a single dominant scatterer. The problem is that a scatterer is not

necessarily fixed to any single point on the target. This is because the scatterer reflectivity

is a function of interrogation angle and some scatterers have no apparent motion as the

target rotates. Range offsets hinder scatterer tracking and obfuscate target rotations.

Phase offsets, εϕ, may be attributed to the Radar system’s internal clock errors as well

as atmospheric propagation delays. There are a few common phase correction methods [48].

They involve tracking phase evolution of the strongest scatterers, averaging over all range

bins, or sub-image analysis. This work, in its current state, does not handle unaligned range

estimates.

2.5 Rigid Body Constraint

In the following discussion, the scatterers of interest in the target scene are considered

to be fixed to a rigid body. An example asymmetric body with diagrammatically indicated

scatterers may be seen in Fig. 2.10. All points on the body undergo the same motion relative

to a fixed point. This fixed point is defined as the Center of Gravity (CG). A rigid body

is assumed to never change size or shape[44]. The visible contribution of this assumption
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Figure 2.7: Truth Track (Red) compared with Estimated Track (Black): Error in estimation
given difficulties with tracker

Figure 2.8: Synthetic RTI containing 3 scatterers. Periodic behavior is apparent. Color
indicates feature number.
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Figure 2.9: Synthetic RTI with tracking error applied. Periodic behavior is disguised. Color
indicates feature number.

is that the relative distance from one point on the body to any other point will remain

constant[25].

Figure 2.10: Rigid Body with fixed Scatterers: The shape of the target can be arbitrary

A point-mass m located at distance r from the axis of rotation has a resistance to

rotational acceleration, or inertia, computed as the product of the mass and the distance

squared, as seen in Eq. 2.38.

I = mr2 (2.38)



24

A rigid body may be viewed as a collection of infinitesimal masses dm, or a continuous

mass distribution contained within a volume. The principle moments of inertia can thus

be represented in terms of a volume integral of the distance r and the spatial density

distribution ρ about three orthogonal axes in the cartesian coordinate system centered at

the target’s center of gravity. as seen in equations 2.39, 2.40, and 2.41.

Ix =
∫

(y2 + z2)ρ(x, y, z)dV (2.39)

Iy =
∫

(x2 + z2)ρ(x, y, z)dV (2.40)

Iz =
∫

(x2 + y2)ρ(x, y, z)dV (2.41)

The inertia Ī, seen in Eq. 2.42, is a symbolic representation of the principle moments of

inertia, Ix, Iy, Iz.

Ī =

[
Ix Iy Iz

]
(2.42)

For the purpose of the analysis, the relationship between the moments is defined as seen

in Eq. 2.43. The target coordinate system can always be rotated, and axis designated, such

that this expression is true.

Ix ≥ Iy ≥ Iz (2.43)

The moments of inertia serve as the principle description of the parameters of a rigid body

with respect to the description essential to dynamics of rotational motion.

2.5.1 Axial Symmetry

A special case arises when the first two moments are equivalent, as seen in Eq. 2.44. It

is referred to as axial symmetry about the z− axis. It will be shown in Chapter 3 that this

special case greatly simplifies the motion equations.

Ix = Iy ≥ Iz (2.44)

Table 2.2 presents inertia expressions[21] of some simple symmetric objects. In these

equations m, r, and h correspond to mass, radius and height respectively. All rotations are
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assumed to be about the object’s CG. Table 2.3 presents example inertia values for a cone

having a radius of 0.25 meters for various combinations of height and mass. An appreciation

for the typical sizes of these values as shown in their table for dimensions and masses of

objects that may be encountered as targets will prove useful for our later discussions.

Table 2.2: Example Moments of Inertia: Axially Symmetric Cone and Cylinder

Ix,Iy Iz

Cone 1
10mh2 + 3

20mr2 3
10mr2

Cylinder 1
12mh2 + 1

4mr2 1
2mr2

Table 2.3: Example Moments of Inertia. Each example uses a cone base radius of r = 0.25m.

Mass (kg) Height (m) Ix,Iy Iz

100 1 10.9 1.9

250 1 27.4 4.7

500 1 54.7 9.4

100 1.5 23.5 1.9

250 1.5 58.6 4.7

500 1.5 117.2 9.4

2.6 Motion of a Force-Free Rigid Body

Without restrictions on allowable target motions, there may not be a way to achieve

robust motion estimation or range offset correction. There are realistic assumptions we can

apply to the specific case of a target in exo-atmospheric free fall. We assert two primary

conditions. First, the target is a rigid body. This allows the application of a kinematic

constraint that has been previously found useful to form target representations. Second,

there are no external forces or torques acting upon the rigid body. This presents a previously

unassumed dynamic constraint, which will allow a complete representation of the feature

locations and their respective rotational motions.
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These assertions dictate that the rotational motions are determined by classical dynam-

ics of free bodies. Both Goldstein [14] and Wells [50] present some material helpful for

understanding the variables in the “rigid body” motion problem. As it will be seen, the

complete equations of motion for an asymmetric rigid target involve “Special Functions” in

their solution, complicating the solution expressions [41].

2.6.1 Rigid Body Rotations & Geometry

An RTI is ideally a projection of the trajectory of a point on the target as it undergoes

free body motion about its center of mass. The various rotations that apply to the tar-

get are now explored and then related to the target’s inertia, kinetic energy, and angular

momentum.

First, we define the location of the mth point scatterer, as seen in Eq. 2.45, located in a

cartesian coordinate system fixed to the rigid body.

pm =




xm

ym

zm




(2.45)

An Euler Angle rotation scheme is used in this thesis[42]. We may define rotations about

orthogonal axes y and z as seen in Eq. 2.46 and Eq. 2.47 which will be applied to the point

scatterer.

Ry{ϕ} 4
=




cos (ϕ) 0 − sin (ϕ)

0 1 0

sin (ϕ) 0 cos (ϕ)




(2.46)
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Rz{ϕ} 4
=




cos (ϕ) sin (ϕ) 0

− sin (ϕ) cos (ϕ) 0

0 0 1




(2.47)

As depicted in Fig. 2.11, the target’s location at any given time may be decomposed into

a spinning, nutating, and precessing motion completely described in terms of the rotations

in Eq. 2.46 and Eq. 2.47. These rotations, coupled with a line of sight vector, will allow

formation of the 1D projection of the scatterer’s range path. The motion of the target within

its own coordinate space may be represented by a series of rotations as seen in Eq. 2.48.

This series of rotations is one of many possible choices. Conversions between this Euler

rotations scheme (Z − Y − Z) and various others (Z −X − Z, X − Y − Z, etc.) may be

found in [38].

RT (t) = Rz{−φ(t)}︸ ︷︷ ︸
Precession

Ry{−θ(t)}︸ ︷︷ ︸
Nutation

Rz{−ψ(t)}︸ ︷︷ ︸
Spin

(2.48)

All possible rigid body positions may be achieved with the rotations constrained as in

Eq. 2.49 through Eq. 2.51[44].

0 ≤ ψ ≤ 2π (2.49)

0 ≤ θ ≤ π (2.50)

0 ≤ φ ≤ 2π (2.51)

In this thesis, both cos and sin may be represented in condensed form as c and s respec-

tively, as shown in Eq. 2.52 and Eq. 2.53.

cx = cos(x) (2.52)

sx = sin(x) (2.53)
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Figure 2.11: Precession, Nutation, and Spin: The scatterers on the target begin aligned to
a coordinate frame of (x1, y1, z1). They then precess to (x2, y2, z1), nutate to (x3, y2, z2),
and finally spin to (x4, y3, z2)[44].
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The complete spin, nutation, and precession rotation matrix may be seen in Eq. 2.54.

RT (t) =




cφcθcψ − sφsψ −cφcθsψ − sφcψ cφsθ

sφcθcψ + cφsψ −sφcθsψ + cφcψ sφsθ

−sθcψ sθsψ cθ




(2.54)

The motion of the mth point on the target at each moment in time is found forming the

series of products between the motion matrix RT and the points initial location pm, shown

in Eq. 2.55.

pm(t) = RT (t)pm (2.55)

Eq. 2.55 may be seen in full matrix form in Eq. 2.56. The matrix product is then

computed and shown in Eq. 2.56. It presents a complete descriptor of a point scatterers

position in a target-fixed coordinate system at each moment in time.

pm(t) =




cφcθcψ − sφsψ −cφcθsψ − sφcψ cφsθ

sφcθcψ + cφsψ −sφcθsψ + cφcψ sφsθ

−sθcψ sθsψ cθ







xm

ym

zm




=




xm(cφcθcψ − sφsψ) + ym(−cφcθsψ − sφcψ) + zmcφsθ

xm(sφcθcψ + cφsψ) + ym(−sφcθsψ + cφcψ) + zmsφsθ

−xmsθcψ + ymsθsψ + zmcθ




(2.56)

The data which the Radar observes is truly a 1D projection of this 3D motion with

respect to an arbitrary axis determined by the Radar position with respect to the target, as

seen in Fig. 2.12. As seen in this figure, the range to a particular scatterer is dependent upon

the position of the target and the Radar line of sight. Different Radar positions produce

different ranges for the same scatterers. It shows that for one position, the base scatterers

are the closest, and for another position, they are the furthest away.



30

Figure 2.12: Projection of Target: The two rays labelled Cxyz represent Radars interrogating
a target from two different line of sights. Each view resolves the same scatterers, but they
appear at different ranges.

To achieve the projection we shall choose a direction cosine pointing towards the target

down an arbitrary line of sight, as seen in Eq. 2.57. In the case of a moving Radar system

or frame of reference, Cxyz may be a function of time.

rm(t) = Cxyz




xm(cφcθcψ − sφsψ) + ym(−cφcθsψ − sφcψ) + zmcφsθ

xm(sφcθcψ + cφsψ) + ym(−sφcθsψ + cφcψ) + zmsφsθ

−xmsθcψ + ymsθsψ + zmcθ




(2.57)

Evaluation of the matrix products in Eq. 2.57 produces Eq. 2.58.

rm(t) = Cxxmcθcψcφ + Cyxmcθcψsφ − Czxmcψsθ − Cxxmsψsφ + Cyxmsψcφ

−Cxymcθsψcφ − Cyymcθsψsφ + Czymsθsψ − Cxymcψsφ + Cyymcψcφ

+Cxzmsθcφ + Cyzmsθsφ + Czzmcθ (2.58)
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2.6.2 Precession, Nutation & Spin

Now, knowing the mathematics that describe’s how the three rotations are applied to

each scattering center, it is necessary to discuss the makeup of the rotation arguments.

Each time-dependent rotation function includes a constant, κ, accounting for initial

conditions. These time functions are given in Eq. 2.59 through Eq. 2.61.

φ(t) = fφ(t) + κφ (2.59)

θ(t) = fθ(t) + κθ (2.60)

ψ(t) = fψ(t) + κψ (2.61)

Eq. 2.62 shows the mth track in an RTI, or analytic range function, generated by the

mth scatterer composed of the original 3D scatterer locations, spin, nutation, precession,

and the line of sight direction cosines related to the formation of the Radar’s 1D projection.

rm(t) = Cxyz
T Rz(−fφ(t)− κφ) Ry(−fθ(t)− κθ) Rz(−fψ(t)− κψ) pm (2.62)

As seen in, Eq. 2.63, a rotation whose argument is the sum of two values may be

equivalently represented as the product of rotations for each of those values. Furthermore,

as seen in Eq. 2.64, rotations on the same axis by ϕa and ϕb commute.

R(ϕa + ϕb) = R(ϕa)R(ϕb) (2.63)

= R(ϕb)R(ϕa) (2.64)

Applying the property found in Eq. 2.63 to Eq. 2.62 produces Eq. 2.65.

rm(t) = Cxyz
TRz(−κφ) Rz(−fφ(t)) Ry(−κθ) Ry(−fθ(t)) Rz(−fψ(t)) Rz(−κψ) pm

(2.65)

The constant value κψ is a time invariant rotation which we may take as operating to the

left on the direction cosine vector Cxyz. Thus the two quantities may be grouped and viewed

as a new Radar’s line of sight. Similarly, κφ is a time invariant rotation operating to the

left on the initial scatterer positions pm. So these quantities are grouped and viewed as a
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rotation applied to the initial positions. Thus Eq. 2.66 will be reparameterized as shown in

Eq. 2.67.

rm(t) = Cxyz
TRz(−κφ)︸ ︷︷ ︸
Cxyz

Rz(−fφ(t)) Ry(−κθ) Ry(f−θ(t)) Rz(−fψ(t)) Rz(−κψ) pm︸ ︷︷ ︸
pm

(2.66)

= Cxyz Rz(−fφ(t)) Ry(−κθ) Ry(−fθ(t)) Rz(−fψ(t)) pm (2.67)

A rigid body’s motion may be completely described given its principle moments of

inertia and initial angular velocities. The case of an arbitrary asymmetric rigid body may

be described using all three principle moments of inertia, Ī = (Ix, Iy, Iz), and three angular

velocities, ω̄ = (ωx, ωy, ωz) while an axially-symmetric rigid body is a simpler case. There

are only two unique moments of inertia, Ix and Iz as Iy = Ix. The moments of inertia and

the angular velocities are depicted in Fig. 2.13.

Figure 2.13: Principle Moments of inertia and angular velocities shown as vectors piercing
an object through its center of gravity

The equations of motion for a rigid body are displayed in Eq. 2.68, Eq. 2.69, and

Eq. 2.70. They involve the principle moments of inertia, the angular velocities, and the

principle moments of all external forces, Ḡ = (Gx, Gy, Gz), about the center of gravity.
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Fig. 2.14 depicts the major steps in the process of deriving the position of a point on a rigid

body versus time. A summary of this process will now follow. Further details related to the

origin of these equations may be found in Synge[44] and [13]. Information regarding effects

of external perturbations or thrusts may be found in additional supporting documents[8, 46].

Ixω̇x(t)− (Iy − Iz)ωy(t)ωz(t) = Gx (2.68)

Iyω̇y(t)− (Iz − Ix)ωz(t)ωx(t) = Gy (2.69)

Izω̇z(t)− (Ix − Iy)ωx(t)ωy(t) = Gz (2.70)

Since the rigid body in our study is in free fall, external moments Gx,Gy, and Gz are

all equal to zero. The integration of Eq. 2.71 through Eq. 2.73 may be found in Synge

[pp.377− 379].

Ixω̇x(t)− (Iy − Iz)ωy(t)ωz(t) = 0 (2.71)

Iyω̇y(t)− (Iz − Ix)ωz(t)ωx(t) = 0 (2.72)

Izω̇z(t)− (Ix − Iy)ωx(t)ωy(t) = 0 (2.73)

To simplify notation, the initial angular velocities may be defined as seen in Eq. 2.74

through Eq. 2.76. The initial angular velocities represent the body’s angular velocity at

time zero.

ωox = ωx(0) (2.74)

ωoy = ωy(0) (2.75)

ωoz = ωz(0) (2.76)

The kinetic energy, Eq. 2.77, and the total angular momentum, Eq. 2.78, may be defined

in terms of the three inertias and the three angular velocities.

T =
Ixω2

ox + Iyω
2
oy + Izω

2
oz

2
(2.77)

h =
√

I2
xω2

ox + I2
yω2

oy + I2
z ω2

oz (2.78)
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Figure 2.14: Derivation Flow: Time varying, orthogonal angular velocity rates are trans-
formed into spin, nutation, and precessions ultimately yielding a points 3D position on a
rigid body as time progresses.
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There are two major cases, due to an integration constraint, which occur based upon

relationships of the total angular momentum, kinetic energy and the second moment of

inertia.

h2

CaseI︷︸︸︷
> 2IyT (2.79)

h2 <︸︷︷︸
CaseII

2IyT (2.80)

After integration, the angular velocities may be written in terms of Jacobi Elliptic Sine

functions, total angular momentum and kinetic energy. All three ellptic sinusoids, sn, cn

and dn, may be defined in terms of trigonometric functions and A(u, k) where A is the

Jacobi Amplitude function. Jacobi sn and dn are plotted in Fig. 2.15 for various elliptic

moduli (the parameter k appearing in Eq. 2.81 through Eq. 2.83).

sn(u, k) = sin(A(u, k)) (2.81)

cn(u, k) = cos(A(u, k)) (2.82)

dn(u, k) =
∂A(u, k)

∂u
=

√
1− k2sn(u, k)2 (2.83)

The angular velocities that result upon solving the Euler equations may be seen in

Table 2.4. The major difference in this second case versus the first case is the swapping of

cn and dn.

Table 2.4: Angular Velocities of Orthogonal Axis

Angular Velocity Case I Case II

ωx αdn(pIt, kI) αcn(pIIt, kII)

ωy βIsn(pIt, kI) βIIsn(pIIt, kII)

ωz γcn(pIt, kI) γdn(pIIt, kII)

The constants α, β, and γ, which appear in the expressions in Table 2.4, are defined

in Eq. 2.84 through Eq. 2.87, and are defined solely in terms of the principle moments of
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Figure 2.15: Jacobi Elliptic Sinusoids: The first order effect of an Elliptic Modulus k increase
is an increase of the period.
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inertia, the kinetic energy and the angular momentum.

α =

√
h2 − 2IzT

Ix(Ix − Iz)
(2.84)

γ =

√
2IxT − h2

Iz(Ix − Iz)
(2.85)

βI =

√
2IxT − h2

Iy(Ix − Iy)
(2.86)

βII =

√
h2 − 2IzT

Iy(Iy − Iz)
(2.87)

The principle argument, or frequency, of the sinusoids are given in Eq. 2.88 and Eq. 2.89

for the two solution cases.

pI =

√
(h2 − 2IzT )(Ix − Iy)

IxIyIz
(2.88)

pII =

√
(2IxT − h2)(Iy − Iz)

IxIyIz
(2.89)

The k parameter, or elliptic modulus, determines the ellipticity of the Jacobi functions

and is given by Eq. 2.90 and Eq. 2.91 for the two cases. When k becomes zero, the angular

velocities degenerate to pure sinusoids.

kI =

√
(Iy − Iz)(2IxT − h2)
(Ix − Iy)(h2 − 2IzT )

(2.90)

kII =

√
(Ix − Iy)(h2 − 2IzT )
(Iy − Iz)(2IxT − h2)

(2.91)

We may now relate the angular velocity functions defined in Table 2.4 to the Euler

rotation angles. This relationship is given by a system of differential equations whose

partial solution is found in the literature.

ωx = sin(ψ)θ̇ − sin(θ) cos(ψ)φ̇ (2.92)

ωy = cos(ψ)θ̇ − sin(θ) sin(ψ)φ̇ (2.93)

ωz = cos(θ)φ̇ + ψ̇ (2.94)

Synge and Matsuni[33] show how this set of differential equations may be rearranged to

acquire two of the rotation angles without integration, thus giving us nutation, Eq. 2.96,
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and spin, Eq. 2.95. As part of our work we needed to integrate Eq. 2.97 to obtain an analytic

solution for the precession angle.

tan ψ =
Iyωy

Ixωx
(2.95)

cos θ =
Izωz

h
(2.96)

φ̇ =
ωy sinψ − ωx cosψ

sin θ
(2.97)

There are some difficulties in this integration. The equations for ωx and ωy contain

Jacobi Elliptic sinusoids, which although they are well defined special functions, when in-

tegrated yield Elliptic Integrals. Throughout the literature, the precession is found by

numerical quadrature[44] using the known nutation and spin or in terms of theta function

series expansions[51]. However, in our case an analytic solution is essential to the asymmetry

analysis.

2.6.3 Integration of the Precession Function

For completeness, the two possible cases for time-varying angular velocities must both

be considered in the process of finding the precession.

ψI = tan−1

(
−Iy(β1sn(p1, k1))

Ix(αdn(p1, k1))

)
(2.98)

θI = cos−1

(
Izγcn(p1, k1)

h

)
(2.99)

ψII = tan−1

(
−Iy(β2sn(p2, k2))

Ix(αcn(p2, k2))

)
(2.100)

θII = cos−1

(
Izγdn(p2, k2)

h

)
(2.101)

The first step in our effort to integrate Eq. 2.97 is to replace all of the Jacobi Elliptic

cn and dn functions with the sn function using their trigonometric-similar properties as

listed in [18]. The symbolic mathematics software package MAPLE was used to assist in

this simplification to produce Eq. 2.103 and Eq. 2.104 from Eq. 2.102.

φ̇(t) =
ωy sinψ − ωx cosψ

sin θ
(2.102)

φ̇I(t) =
−h(2Tsn(pt, k)2Ix − 2IzT − sn(pt, k)2h2 + h2)

(2sn(pt, k)2IxTIz − 2IxTIz + h2Ix − sn(pt, k)2h2Iz)
(2.103)
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˙φII(t) =
−h(−Iz + Ixsn(pt, k)2 + Iy − Iysn(pt, k)2)

(−Iysn(pt, k)2Iz + IyIx − IxIz + IzIxsn(pt, k)2)
(2.104)

Further variable rearrangement produces Eq. 2.105. This equation may be used to

represent both motion cases.

φ̇(t) =
h(Iz − Ixnsn(pt, k)2)
IxIz(nsn(pt, k)2 − 1)

(2.105)

The only difference between the two motion cases is the parameter n, as shown in

Eq. 2.106 and Eq. 2.107.

nI =
(2IxT − h2)Iz

(2IzT − h2)Ix
(2.106)

nII =
(Iy − Ix)Iz

(Iy − Iz)Ix
(2.107)

The next step is to perform a change of variables, replacing sn(pt, k) with ν[12].

φ̇(ν) =
h(Ix − Iznν2)
IxIz(1− nν2)

1
p
√

1− ν2
√

1− k2ν2
(2.108)

Eq. 2.108 may be reorganized to form Eq. 2.109.

φ̇(ν) =
h(Ix − Iz)

IxIz(1− nν2)p
√

1− ν2
√

1− k2ν2
− h

Izp
√

1− ν2
√

1− k2ν2
(2.109)

This new function, φ̇(ν), may be integrated directly to find φ(ν).

φ(ν) =
∫

φ̇(ν)dν (2.110)

φ(ν) =
h(Ix − Iz)

pIxIz
Π(ν, n, k)− h

pIz
F(ν, k) (2.111)

A complete description of the mathematical properties of the Incomplete Elliptic Inte-

grals of the First and Third kinds, F(u,k) and Π(u, n, k) respectively, may be found in [18].

As seen in Eq. 2.112 and Eq. 2.113, they are each defined in terms of an indefinite integral.

F(u, k) =
∫ u

0

1√
1− t2

√
1− k2t2

dt (2.112)

Π(u, n, k) =
∫ u

0

1
(1− nt2)

√
1− t2

√
1− k2t2

dt (2.113)
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One useful property of an Incomplete Elliptic Integral of the first kind was exploited to

simplify the equation for precession. The function, F(x,k), is the inverse of sn(x, k). The

final result is given by Eq. 2.114. A complete description of the three Euler rotations may

be seen in Eq. 2.114, Eq. 2.115, and Eq. 2.116. These three functions, ψ, θ and φ allow a

complete analytic description of a rigid body’s rotational motion.

φ(t) =
h(Ix − Iz)

pIxIz
Π(sn(pt, k), n, k)− ht

Iz
(2.114)

θ(t) = cos−1

(
Izωz

h

)
(2.115)

ψ(t) = tan−1

(
Iyωy

Ixωx

)
(2.116)

An example of synthetically generated rotations given this motion model may be found

in Fig. 2.16 and Fig. 2.17. Fig. 2.16 shows the rotations in radians. It shows a strong

linearly increasing component in the spin and precession, while the nutation does not grow

linearly with time. The target completes nearly 10 spin revolutions while precessing only 4

revolutions. Fig. 2.17 shows the rotational rates. These are only constant functions in the

case of a symmetric target. Additional examples may be found in Appendix B.
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Figure 2.16: Spin, nutation and precession: Ī = [150.0, 130.0, 30.0], ω̄ = [1.0, 1.0, 5.0]. This
plot shows the rotations of a target which is spinning faster than it is precessing.

Figure 2.17: Spin, nutation and precession rates: Ī = [150.0, 130.0, 30.0], ω̄ = [1.0, 1.0, 5.0].
This plot shows the three rotational rates of an asymmetric target. The sinusoidal per-
turbation of each rate is due to the target’s asymmetry. The nutation’s average rate is
zero.
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Chapter 3

Asymmetry Analysis

This chapter explores how asymmetry and initial angular velocities affect a target’s

motion. Section 3.1 shows how initial conditions affect the motion case selection and the

elliptic modulus, k. Section 3.2 shows the rotation simplifications that occur when the target

is axially symmetric. Section 3.3 introduces rotation models for a nearly symmetric target.

Section 3.4 presents a harmonic decomposition analysis of the target’s angular frequency

spectrum. Section ?? introduces a method for estimating the elliptic modulus of a nearly

symmetric target.

3.1 Asymmetric Target

As discussed in section 2.6.2, there are two motion cases which may occur. The motion of

a target is specified by similar, yet different, equations for each case. The rotation equations

for these two cases are specified in Eq. 3.1 through Eq. 3.6. As seen in Eq. 3.1 and Eq. 3.2

the precession is composed of the same functions for the two motion cases, differing only

by parameter values of, k, n and p.

φI(t) =
h(Ix − Iz)

pIIxIz
Π(sn(pIt, kI), nI , kI)− ht

Iz
(3.1)

φII(t) =
h(Ix − Iz)
pIIIxIz

Π(sn(pIIt, kII), nII , kII)− ht

Iz
(3.2)

The primary difference for the nutation and spin is the swapping of the Jacobi cn and
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dn functions, as seen in Eq. 3.3 through Eq. 3.6.

θI(t) = cos−1

(
Izγcn(pIt, kI)

h

)
(3.3)

θII(t) = cos−1

(
Izγdn(pIIt, kII)

h

)
(3.4)

ψI(t) = tan−1

(
βIsn(pIt, kI)
αdn(pIt, kI)

)
(3.5)

ψII(t) = tan−1

(
βIIsn(pIIt, kII)
αcn(pIIt, kII)

)
(3.6)

The transition between case I and case II occurs when Eq. 3.7 is satisfied.

h2 = 2IyT (3.7)

This relationship can be expanded to include the angular momentum, h, and the kinetic

energy, T , in terms of the inertia and initial angular velocities as shown in Eq. 3.8.

I2
xω2

ox + I2
yω2

oy + I2
z ω2

oz = Iy

(
Ixω2

ox + Iyω
2
oy + Izω

2
oz

)
(3.8)

Eq. 3.8 may be further simplified by expanding the Iy production on the right hand side

and removing the I2
y term from both sides as shown in Eq. 3.9 and Eq. 3.10.

I2
xω2

ox + I2
yω2

oy + I2
z ω2

oz = IxIyω
2
ox + I2

yω2
oy + IyIzω

2
oz (3.9)

I2
xω2

ox + I2
z ω2

oz = IxIyω
2
ox + IyIzω

2
oz (3.10)

Eq. 3.10 may then be solved for Iy as shown in Eq. 3.11 and Eq. 3.12. Note that the

relationship shown in Eq. 3.12 does not include ωoy.

I2
xω2

ox + I2
z ω2

oz = Iy(Ixω2
ox + Izω

2
oz) (3.11)

Iy =
I2
xω2

ox + I2
z ω2

oz

Ixω2
ox + Izω2

oz

(3.12)

As shown in Eq. 3.13 through Eq. 3.15, Iy and Iz may be expressed as fractional values

of Ix. This proves useful for illustrating the transition point between the motion cases.

Ix − Iy

Ix
=

(
Ix − I2

xω2
ox+I2

z ω2
oz

Ixω2
ox+ IzIx

Ix
ω2

oz

)

Ix
(3.13)

Ix − Iy

Ix
=

Izω
2
oz(Ix − Iz)

Ix(Ixω2
ox + Izω2

oz)
(3.14)
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Ix − Iy

Ix
=

Iz
Ix

ω2
oz

(
1− Iz

Ix

)

ω2
ox + Iz

Ix
ω2

oz

(3.15)

Eq. 3.15 may be plotted as in Fig. 3.1 for various inertia values with respect to Ix and initial

angular velocities. The axes values pertain to the fractional value of inertia with respect

to Ix. The x axis is the ratio of Iz to Ix, while the y axis is the ratio of the deviation of

Iy from Ix (ε)with respect to Ix. The region above each curve corresponds to h2 > 2IyT

whereas the region below corresponds to h2 < 2IyT .

Figure 3.1: Motion case transitions for various initial conditions. The region above a curve
corresponds to inertia values lending to case I motion, whereas the region below corresponds
to inertia values lending to case II motion. As ωz

ωx
increases, the region of inertia values

covered by case II increases.

The elliptic modulus, k, performs a strong role in the specification of the rotational

motion of the target. Surface plots for the elliptic modulus for various inertia values with

respect to Ix and initial angular velocities may be seen in Fig. 3.2 through Fig. 3.4. The

values of k for various faster spinning targets may be seen in Fig. 3.2. The color blue

corresponds to a small elliptic modulus, whereas green corresponds to a modulus of 0.5 and

the yellow to red colors a large modulus. The upper triangular region is empty due to the
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constraint that Iy must be greater than or equal to Iz.

Fig. 3.3 shows the modulus for targets whose ωz is at half the rate of that found in

Fig. 3.2. It shows that the range of inertia values producing a small k has reduced. Whereas

in Fig. 3.2 it was possible to have an elliptic modulus below 0.5 with an Iy deviation being

nearly 60% of Ix, this deviation may now only be as large as 40%. The final elliptic modulus

example, seen in Fig. 3.4, shows that for a slowly spinning target the modulus quickly spikes

to large value for small target deviations of Iy from Ix. In all three examples, k approaches

1 at the case transition point. These examples show that the angular velocities have an

important impact in defining the modulus for a given moment of inertia.

Figure 3.2: Values of k for ω̄ = [1, 1, 10]
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Figure 3.3: Values of k for ω̄ = [1, 1, 5]

Figure 3.4: Values of k for ω̄ = [1, 1, 1]



47

3.2 Axially Symmetric Target

If the assumption can be made that the target is axis-symmetric, Ix = Iy, the equations

can be reduced to much simpler functions of time, the inertial vector, angular momentum

and the kinetic energy [25][37]. In the angular velocities, the Jacobi elliptic functions sn,

cn, and dn, are simplified to standard trigonometric functions, as seen in Eq. 3.16 through

Eq. 3.18.

sn(u, 0) = sin(u) (3.16)

cn(u, 0) = cos(u) (3.17)

dn(u, 0) = 1 (3.18)

Also, the Incomplete Elliptic Integral of the third kind becomes an inverse sine.

Π(u, 0, 0) = sin−1(u) (3.19)

An axially symmetric target is always governed by the case II motion equations. This

can be verified using the case II relationship found in Eq. 3.20.

h2 < 2IyT (3.20)

I2
xω2

ox + I2
yω2

oy + I2
z ω2

oz ≤ Iy

(
Ixω2

ox + Iyω
2
oy + Izω

2
oz

)
(3.21)

A short proof begins by asserting the axial symmetry condition shown in Eq. 3.22 and

Eq. 3.23.

Iy = Ix (3.22)

I2
xω2

ox + I2
xω2

oy + I2
z ω2

oz < Ix

(
Ixω2

ox + Ixω2
oy + Izω

2
oz

)
(3.23)

Eq. 3.23 may be simplified by grouping ωox and ωoy.

I2
x(ω2

ox + ω2
oy) + I2

z ω2
oz < I2

x(ω2
ox + ω2

oy) + IxIzω
2
oz (3.24)

Dividing both sides by the expression on the right hand side of Eq. 3.24 forms Eq. 3.25.

The quantity on the left hand side is always less than one since I2
z is always less than IxIz.

I2
x(ω2

ox + ω2
oy) + I2

z ω2
oz

I2
x(ω2

ox + ω2
oy) + IxIzω2

oz

< 1 (3.25)
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The case II equations may be simplified using Eq. 3.16 through Eq. 3.19. Note that in

Eq. 3.30, θ is a constant, while in Eq. 3.28 and Eq. 3.33 both φ and ψ are linear functions

of time.

φ(t) =
h(Ix − Iz)

pIxIz
Π(sn(pt, k), n, k)− ht

Iz
(3.26)

=
ht(Ix − Iz)

IxIz
− ht

Iz
(3.27)

=
−ht

Ix
(3.28)

θ(t) = cos−1

(
Izγdn(pt, k)

h

)
(3.29)

= cos−1

(
Izγ

h

)
(3.30)

ψ(t) = tan−1

(
βsn(pt, k)
αcn(pt, k)

)
(3.31)

= tan−1

(
sin(pt)
cos(pt)

)
(3.32)

= pt (3.33)

With the elimination of the elliptic functions, there are now clear rates to be found. The

precession and spin rates may be seen in Eq. 3.34 and Eq. 3.35 respectively.

ωφ =
h

Ix
(3.34)

ωψ = p (3.35)

As seen in Eq. 3.36 through Eq. 3.38, the rotation time functions (Eq. 2.59 to Eq. 2.61)

are simpler in the axially symmetric case.

fφ(t) = ωφt (3.36)

fθ(t) = 0 (3.37)

fψ(t) = ωψt (3.38)

This allows for a reorganization of terms in Eq. 3.39, resulting in Eq. 3.40.

RT = Rz(−fφ(t))︸ ︷︷ ︸
Precession

Ry(−fθ(t)− κθ)︸ ︷︷ ︸
Nutation

Rz(−fψ(t))︸ ︷︷ ︸
Spin

(3.39)

= Rz(−ωφt) Ry(−κθ) Rz(−ωψt) (3.40)
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This leads a simplified range function shown in Eq. 3.41. It shows that the RTI for an

axially symmetric target may be expressed by a precession rate, a fixed nutation angle, a

spin rate, and a projection down some axis.

rm(t) = Cxyz Rz(−ωφt) Ry(−κθ) Rz(−ωψt) pm (3.41)

3.3 Nearly Symmetric Target

The complexity of a full asymmetric motion model may not be needed to represent the

signature of a near axially symmetric target sufficiently well to provide useful information to

the analyst. Instead, a model that extends the solutions from the axially symmetric case for

perturbative deviations of Iy from Ix may be a sufficient representation. Some parameters

in the complete motion model may be written in terms of a power series expansion about

symmetry while other functions may be modelled using simpler functions.

A nearly symmetric target shall be defined as a one having initial conditions such that the

case II motion equations are invoked, as found with the symmetric target, with an elliptic

modulus, k, smaller than 0.5. The inertial deviation from symmetry may be expressed in

terms of ε, as defined in Eq. 3.42.

Iy = Ix − ε (3.42)

It will be shown that each rotation may be expressed as the sum of a linear term

stemming from the target symmetry, some linear perturbation, and some sinusoidal per-

turbation. This new model reduces the dependency upon Jacobi Elliptic functions. These

new models present an intuitive view of the development of target motion behavior as the

target deviates from axial symmetry.

The first equations to review for the asymmetric motion simplification development are

the Jacobi elliptic sinusoids, (Eq. 3.43 and Eq. 3.44). The sn and dn functions can be

equivalently represented as sin and cos of an Elliptic Amplitude function A(u, k).

sn(u, k) = sin(A(u, k)) (3.43)

cn(u, k) = cos(A(u, k)) (3.44)
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In the instances where a function is approximated by a model, relative error shall be

used to evaluate the accuracy of the model. Percent relative error is defined as shown in

Eq. 3.45 where f is the function of interest and f̃ is the model.

error = 100
|f − f̃ |

f
(3.45)

A model of the Jacobi Amplitude function may be expressed in terms of K, the Complete

Elliptic Integral of the first kind.

K(k) =
∫ 1

0

1√
1− t2

√
1− k2t2

dt (3.46)

The parametric model for the Jacobi function we will introduce is based on its mean

value and the recognition that A(u, k) has a periodic component which is nearly sinusoidal.

We modelled it by the sum of a linear term (with respect to u) and a single sinusoid as seen

in Eq. 3.47 and found the coefficients c0, c1 and c2 to achieve the best match. As seen in

Eq. 3.48, approximating the function in this manner shows its internal structure in simpler,

more meaningful terms compared to its exact integral formulation.

Ã(u, k) = c0u + c1 sin(c2u) (3.47)

=
uπ

2K(k)
+

(2K(k)− π)
2π

sin
(

uπ

K(k)

)
(3.48)

This amplitude model shows that the function contains a dominant linear term in u and a

perturbing sinusoid. As k approaches zero, the sinusoid amplitude approaches zero and the

linear term becomes simply the argument u. This model, when used with the sn and cn

functions, forms an approximation with a maximum relative error of 0.062% for k = 0.5.

Relative error for various other elliptic modulus values may be seen in Fig. 3.5.

The dn function may be written in exact form as the derivative of A, as seen in Eq. 3.50.

dn(u, k) =
∂(A(u, k))

∂u
(3.49)

=
√

1− k2sn(u, k)2 (3.50)

For the purpose of our derivation, it is convenient to have it in the form of a linear term

plus a periodic term. This is due to the ultimately desired three term rotation formulations.
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Figure 3.5: Error in sn Model

This may be accomplished by instead taking the derivative of Ã, as seen in Eq. 3.52.

dn(u, k) ' ∂(Ã(u, k))
∂u

(3.51)

' π

2K(k)
+

(2K(k)− π)
2K(k)

cos
(

uπ

K(k)

)
(3.52)

The approximate Jacobi sinusoids used for the remainder of this work may be seen in

Eq. 3.53, Eq. 3.54, and Eq. 3.55.

s̃n(u, k) = sin
(

uπ

2K(k)
+

(2K(k)− π)
2π

sin
(

uπ

K(k)

))
(3.53)

c̃n(u, k) = sin
(

uπ

2K(k)
+

(2K(k)− π)
2π

sin
(

uπ

K(k)

))
(3.54)

d̃n(u, k) =
π

2K(k)
+

(2K(k)− π)
2K(k)

cos
(

uπ

K(k)

)
(3.55)

If a representation without any Jacobi functions is desired, K may be approximated as

a low order polynomial for small k. The relative error versus k for various orders of the K

function may be seen in Fig. 3.6.

K̃(k) =
π

2

[
1 +

1
4
k2 +

9
64

k4 +
25
256

k6 +
1225
16384

k8 + . . .

]
(3.56)
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Figure 3.6: Error in K(k) model, K̃(k)

3.3.1 Precession φ(t) Model

The precession, Eq. 3.57, may be written in the three term representation without an

Elliptic Integral. The first step is to rearrange the terms such that it is in the form of the

term generated by an axially symmetric body plus the nonlinear Elliptic term, as seen in

Eq. 3.58. Subtraction of pt allows the reorganization of terms such that term ht
Ix

stands

alone instead of ht
Iz

.

φ(t) =
h(Ix − Iz)

pIxIz
Π(sn(pt, k), n, k)− ht

Iz
(3.57)

=
−ht

Ix
+

h(Ix − Iz)
pIxIz

(Π(sn(pt, k), n, k)− pt) (3.58)

The second step is to replace the integral with a linear term and a periodic term. The

Elliptic Integral of the Third Kind, Π, may be written in this simpler form given small

values of n and k. This can be done using a multivariate Taylor expansion. Values of n for

various moments of inertia may be seen in Fig. 3.7. The integral degenerates into a scaled



53

inverse sine function with an additional nonlinear portion defined in the real domain for

−1 ≤ u ≤ 1. The error in this elliptic integral model for various order expansions for small

n and k may be seen in Fig. 3.8.

Π(u, n, k) ' sin−1(u) (1 + r)−
(

r +
3k4u2

32

)
u
√

1− u2 (3.59)

r =
9k4

64
+

k2

4
+

n

2
(3.60)

The contribution of n to the precession may also be interpreted through its contribution

Figure 3.7: Π: n Values for various Inertia. Most values of interest are smaller in magnitude
than 0.2.

to r, as seen in Fig. 3.9.

The domain restriction is not an issue, since as seen in Eq. 3.58 the argument u becomes

a Jacobi sinusoid whose values are always within the required bounds. The elliptic integral

with the Jacobi sinusoid argument may be seen in Eq. 3.61. Maximum relative error in the

model for various n and k values may be seen in Fig. 3.10.

Π̃(s̃n(u, k), n, k) = u(1 + r)
π

2K(k)
+ (1 + r)

(2K(k)− π)
2π

sin
(

uπ

K(k)

)

−
(

r +
3k4sn2(u, k)

32

)
sn(u, k)cn(u, k) (3.61)
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Figure 3.8: Error in Π(u, n = −0.2, k = 0.5) for Various Order Approximations

Figure 3.9: Values of r for various n and k
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Figure 3.10: Error in Π(sn(u), n, k) model, Π̃((̃sn)(u), n, k), for Various n and k

The substitution of Eq. 3.61 into Eq. 3.57 leads to a model of the precession function

without a time varying Elliptic Integral, as seen in Eq. 3.62.

φ̃(t) =
−ht

Ix
+

h(Ix − Iz)
pIxIz

(
ptπ(1 + r)

2K(k)
− pt + (1 + r)

(2K(k)− π)
2π

sin
(

ptπ

K(k)

))

+
h(Ix − Iz)

pIxIz
(r +

3k4sn2(pt, k)
32

)sn(pt, k)cn(pt, k) (3.62)

The function in a simpler form may be seen in Eq. 3.63. This function contains the

component a symmetrical body would generate, a small linear term, and an even smaller

periodic term inversely proportional to the spin rate. The introduction of asymmetry adds

a small sinusoidal “wobble”. The extent of the wobble is controlled by the amplitudes of
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the periodic terms.

φ̃(t) =
−ht

Ix︸︷︷︸
Ix=Iy

+
h(Ix − Iz)(π + πr − 2K(k))t

2IxIzK(k)︸ ︷︷ ︸
linear

+
h(Ix − Iz)

pIxIz
(1 + r)

(2K(k)− π)
2π

sin
(

ptπ

K(k)

)

︸ ︷︷ ︸
periodic

+
h(Ix − Iz)

pIxIz
(r +

3k4sn2(pt, k)
32

)sn(pt, k)cn(pt, k)
︸ ︷︷ ︸

periodic

(3.63)

3.3.2 Nutation θ(t) Model

The first step in reorganizing the nutation is to replace the Jacobi dn function found in

Eq. 3.64.

cos(θ(t)) =
Izγdn(pt, k)

h
(3.64)

Substituting Eq. 3.55 into Eq. 3.64 makes clear the contribution of the dn function. It

adds a constant offset and a periodic term.

cos(θ̃(t)) =
Izγ

h

(
π

2K(k)
+

(2K(k)− π)
2K(k)

cos
(

ptπ

K(k)

))
(3.65)

To arrange the nutation function in the three term representation, the component gen-

erated by an axially symmetric body, Izγ
h , needs to be a factor standing on its own. The

1
K(k) term may be viewed as a deviation from the value of 2

π for small k, so the Taylor series

expansion may be taken about k = 0. The relative error versus k for various orders of the

this expansion may be seen in Fig. 3.11.

1
K(k)

=
2
π
− k2

2π
− 5k4

32π
− 11k6

128π
− 469k8

8192π
− . . . (3.66)

Substituting the model from Eq. 3.66 into Eq. 3.65 produces the desired form found in

Eq. 3.68. This function contains the component an axially symmetric body would generate,

a small constant term, and a periodic term.

cos(θ̃(t)) =
Izγ

h

[
π

2

(
2
π
− k2

2π
− 5k4

32π
− . . .

)
+

(2K(k)− π)
2K(k)

cos
(

ptπ

K(k)

)]
(3.67)

=
Izγ

h︸︷︷︸
Ix=Iy

− Izγ

h

(
k2

4
+

5k6

64
+ . . .

)

︸ ︷︷ ︸
constant

+
Izγ

h

(2K(k)− π)
2K(k)

cos
(

ptπ

K(k)

)

︸ ︷︷ ︸
periodic

(3.68)
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Figure 3.11: Error in 1
K(k) model

3.3.3 Spin ψ(t) Model

The final rotation parameter function to simplify is the spin, given in Eq. 3.69.

ψ(t) = tan−1

(
Iy

Ix

β

α

sn(pt, k)
cn(pt, k)

)
(3.69)

The expression in ε for Iy, from Eq. 3.42, may be substituted in to Eq. 3.69 to obtain

Eq. 3.70 as the first step towards expressing the spin in terms of deviation from symmetry.

ψ(t) = tan−1

(
(Ix − ε)

Ix

β

α

sn(pt, k)
cn(pt, k)

)
(3.70)

Only one of the three angular velocity scalars, β, contains Iy and as such it is the only one

which requires an expansion. As shown in Eq. 3.73, β degenerates to α when ε = 0. Each
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successive term in the expansion may be written as a product with α.

α =

√
h2 − 2IzT

Ix(Ix − Iz)
(3.71)

β =

√
h2 − 2IzT

Iy(Iy − Iz)
(3.72)

= α

[
1 +

2Ix − Iz

2Ix(Ix − Iz)
ε +

8I2
x − 8IxIz + 3I2

z

8I2
x(Ix − Iz)2

ε2 + . . .

]
(3.73)

Substituting Eq. 3.73 into Eq. 3.70 produces Eq. 3.74.

ψ̃(t) = tan−1


(Ix − ε)

Ix

α
[
1 + 2Ix−Iz

2Ix(Ix−Iz)ε + . . .
]

α

sn(pt, k)
cn(pt, k)


 (3.74)

As seen in Eq. 3.75, α cancels itself out of the equation leaving only the ε expansion

terms.

ψ̃(t) = tan−1

(
(Ix − ε)

Ix

[
1 +

2Ix − Iz

2Ix(Ix − Iz)
ε + . . .

]
sn(pt, k)
cn(pt, k)

)
(3.75)

The spin may be further simplified by introducing an inverse tangent model. The inverse

tangent of a tangent is simply the argument of the tangent. The inverse tangent of a constant

multiplying a tangent may be represented as the argument and an infinite sum of sinusoid

products, as seen in Eq. 3.76.

tan−1 (tan(x)c) = x + sin(x)cos(x)(c− 1)− sin(x)3 cos(x)(c− 1)2

−1
3

sin(x)3 cos(x)(4 cos(x)2 − 3)(c− 1)3 + . . . (3.76)

Example values of c may be seen in Fig. 3.12. When the value of the constant is near one,

the sum need only contain a small number of terms to express the function with a minimal

degree of error, as seen in Fig. 3.13. The value of the constant in this case is seen in Eq. 3.77.

Note how the value of c is solely dependent upon the inertia.

c =
Iy

Ix

β

α
(3.77)

=
Ix − ε

Ix

[
1 +

2Ix − Iz

2Ix(Ix − Iz)
ε + . . .

]
(3.78)

Applying the inverse tangent model to Eq. 3.74 forms Eq. 3.79.

ψ̃(t) = tan−1

(
sn(pt, k)
cn(pt, k)

)
+ sn(pt, k)cn(pt, k)(c− 1) + . . . (3.79)
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Figure 3.12: Values of c for various inertia. Most values of interest lie between 1 and 1.1

Figure 3.13: Error in tan−1 model
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As seen in Eq. 3.80, The inverse tangent of the Jacobi sinusoid ratio returns its argument,

the Jacobi Amplitude function.

ψ̃(t) = Ã(pt, k)

+s̃n(pt, k)c̃n(pt, k)
(

(Ix − ε)
Ix

[
1 +

2Ix − Iz

2Ix(Ix − Iz)
ε + . . .

]
− 1

)
+ . . . (3.80)

To see the three term representation, the Jacobi Amplitude function’s linear portion may

again be expanded about 1
K(k) for small k, as we did to arrive at Eq. 3.66. This function

contains the component an axially symmetric body would generate, a small linear term,

and a periodic term split into to components. The first component was contributed by the

Jacobi Amplitude function, while the second component was contributed by the inverse

tangent model.

ψ̃(t) = pt︸︷︷︸
Ix=Iy

− pt

(
k2

4
+

5k6

64
+ . . .

)

︸ ︷︷ ︸
linear

+
(2K(k)− π)

2π
sin

(
ptπ

K(k)

)

︸ ︷︷ ︸
periodic

+ s̃n(pt, k)c̃n(pt, k)
(

(Ix − ε)
Ix

[
1 +

2Ix − Iz

2Ix(Ix − Iz)
ε + . . .

]
− 1

)
+ . . .

︸ ︷︷ ︸
periodic

(3.81)

There is still a dominant linear term in the rotations contributing to average rotation

rates. These average precession and spin rates may be seen in Eq. 3.82 and Eq. 3.83

respectively.

ωφ =
h

Ix
− h(Ix − Iz)(π + πr − 2K(k))

2IxIzK(k)
(3.82)

ωψ =
pπ

2K(k)
(3.83)

3.4 Modulation Structure

The range function of a tracked scatterer may be analyzed using frequency decomposition

techniques. One finds that the asymmetric free body range functions have the structure of

an amplitude and frequency modulated signal. Furthermore, when the target has axially

symmetry there exists only the structure of an amplitude modulated (AM) signal. This

section will first present the simpler signal analysis of an axially symmetric target, followed

by the analysis of an asymmetric target.



61

3.4.1 Axially Symmetric Target

The range function rk generated by a scatterer on a force-free, rotating, axially sym-

metric target may be expressed in terms of an AM signal. The sinusoid functions may be

reorganized to make clear the contributions of each frequency found in the spectrum. An

example RTI and angular frequency spectrum may be seen in Fig. 3.14 and Fig. 3.15 respec-

tively. The motion of the scatterers in the RTI was generated using the motion equations

developed in Chapter 2. This angular frequency spectrum is of the tracked scatterer r3.

The spectrum plots contain values of the amplitude of a FFT with blue lines connecting

the points. A rectangle window was applied to the range function data before spectral

analysis. Only the positive frequencies are shown as the negative frequencies are simply

their conjugated values mirrored about DC. Modern Spectral Analysis amplitude estimates

are overlaid on the plot as red dots.

Figure 3.14: RTI: Ī = [150.0, 150.0, 10.0], ω̄ = [1.0, 1.0, 10.0], p1 = [0.00, 0.00, 1.00] (black),
p2 = [0.05, 0.05, 0.50] (red), p3 = [0.10,−0.10,−0.25] (blue)

The range function of the mth scatterer may be seen in Eq. 3.84. The precession φ and
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Figure 3.15: Angular Frequency Spectrum of r3(t) : Ī = [150.0, 150.0, 10.0], ω̄ =
[1.0, 1.0, 10.0]. The red dots are the MSA result; the blue curve is the Fourier Result.

spin ψ are linear functions of time, whereas the nutation θ is a constant.

rm(t) = (Cxxmcθcφ + Cyymcφ + Cyxmcθsφ − Cxymsφ)cψ

+(−Cxymcθcφ + Cyxmcφ − Cyymcθsφ − Cxxmsφ)sψ

−Czxmsθcψ + Czymsθsψ + Cxzmsθcφ + Cyzmsθsφ + Czzmcθ (3.84)

As seen in Eq. 3.85, the range of the mth scatterer may be written in terms of scaled

sine and cosine components.

rm(t) = (κ0cφ + κ1sφ)cψ + (κ2cφ + κ3sφ)sψ

+κ4cψ + κ5sψ + κ6cφ + κ7sφ + κ8 (3.85)

Each of the scale factors, shown in Eq. 3.86 through Eq. 3.94, may written in terms of the

scatterer position (xm, ym, zm), the Radar LoS vector (Cx, Cy, Cz) and the fixed nutation
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angle (θ).

κ0 = Cxxmcθ + Cyym (3.86)

κ1 = Cyxmcθ − Cxym (3.87)

κ2 = −Cxymcθ + Cyxm (3.88)

κ3 = −Cyymcθ − Cxxm (3.89)

κ4 = −Czxmsθ (3.90)

κ5 = Czymsθ (3.91)

κ6 = Cxzmsθ (3.92)

κ7 = Cyzmsθ (3.93)

κ8 = Czzmcθ (3.94)

(3.95)

The sine and cosine functions may be transformed into cosines with phase shifts using

a trigonometry property shown in Eq. 3.96[30].

A cos(x) + B sin(x) =
√

A2 + B2 cos
(

x− tan−1

(
B

A

))
(3.96)

Applying this property to Eq. 3.85 produces Eq. 3.97.

rm(t) =
√

κ2
0 + κ2

1 cos
(

φ(t)− tan−1

(
κ1

κ0

))
cos(ψ(t))

+
√

κ2
2 + κ2

3 cos
(

φ(t)− tan−1

(
κ3

κ2

))
sin(ψ(t))

+
√

κ2
4 + κ2

5 cos
(

φ(t)− tan−1

(
κ5

κ4

))

+
√

κ2
6 + κ2

7 cos
(

ψ(t)− tan−1

(
κ7

κ6

))
+ κ8 (3.97)

The final result is in the form of an Amplitude Modulated (AM) signal with additional

unmodulated carrier signals, cos (ψ(t)) and cos (φ(t)), and a DC component, κ8.

rm(t) = κ01 cos (φ(t) + ϕ01) cos (ψ(t))

+κ23 cos (φ(t) + ϕ23) sin (ψ(t)) (3.98)

+κ45 cos (φ(t) + ϕ45)

+κ67 cos (ψ(t) + ϕ67) + κ8 (3.99)
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Eq. 3.100 through Eq. 3.107 show κ01, κ23, κ45 and κ67.

κ01 =
√

κ2
0 + κ2

1 (3.100)

=
√

(Cxxmcθ + Cyym)2 + (Cyxmcθ − Cxym)2 (3.101)

κ23 =
√

κ2
2 + κ2

3 (3.102)

=
√

(−Cxymcθ + Cyxm)2 + (−Cyymcθ − Cxxm)2 (3.103)

κ45 =
√

κ2
4 + κ2

5 (3.104)

=
√

(−Czxmsθ)2 + (Czymsθ)2 (3.105)

κ67 =
√

κ2
6 + κ2

7 (3.106)

=
√

(Cxzmsθ)2 + (Cyzmsθ)2 (3.107)

Eq. 3.108 through Eq. 3.117 show simplifications of ϕ01, ϕ23, ϕ45 and ϕ67.

ϕ01 = −tan−1

(
κ1

κ0

)
(3.108)

= −tan−1

(
Cyxmcθ − Cxym

Cxxmcθ + Cyym

)
(3.109)

ϕ23 = −tan−1

(
κ3

κ2

)
(3.110)

= −tan−1

(−Cyymcθ − Cxxm

−Cxymcθ + Cyxm

)
(3.111)

ϕ45 = −tan−1

(
κ5

κ4

)
(3.112)

= −tan−1

(
Czymsθ

−Czxmsθ

)
(3.113)

= −tan−1

(
ym

−xm

)
(3.114)

ϕ67 = −tan−1

(
κ7

κ6

)
(3.115)

= −tan−1

(
Cyzmsθ

Cxzmsθ

)
(3.116)

= −tan−1

(
Cy

Cx

)
(3.117)
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A trigonometric property shown in Eq. 3.118 and Eq. 3.120 illuminates the occurrence

of two frequencies from the sinusoid products[31].

c1 cos(x) cos(y) =
c1 cos(x− y)

2
+

c2 cos(x + y)
2

(3.118)

=
c1

4
ej(x+y) +

c1

4
ej(x−y) +

c1

4
ej(y−x) +

c1

4
e−j(x+y) (3.119)

c2 sin(x) cos(y) =
c2 sin(x− y)

2
+

c2 sin(x + y)
2

(3.120)

=
c2

4j
ej(x+y) +

c2

4j
ej(x−y) − c2

4j
ej(y−x) − c2

4j
e−j(x+y) (3.121)

The sinusoid product portion of the signal produces a spectrum containing two positive

frequencies as seen in Eq. 3.122 and Eq. 3.123, with amplitudes seen in Eq. 3.124 and

Eq. 3.125.

ω1 = ωψ − ωφ (3.122)

ω2 = ωψ + ωφ (3.123)

A1 =

√
κ2

01 + κ2
23

4
e
j
“
ϕ01+ϕ23−tan−1

“
κ23
κ01

””
(3.124)

A2 =

√
κ2

01 + κ2
23

4
e
j
“
ϕ01−ϕ23−tan−1

“
κ23
κ01

””
(3.125)

The additional carriers produce positive frequencies found in Eq. 3.126 and Eq. 3.127,

with amplitudes seen in Eq. 3.128 and Eq. 3.129

ω3 = ωφ (3.126)

ω4 = ωψ (3.127)

A3 = κ45e
jϕ45 (3.128)

A4 = κ67e
jϕ67 (3.129)

This characterization of the frequency spectrum is important because it allows us to

identify amplitude contributions useful for parameter estimation. Example spectra may be

seen in Fig. 3.16 and Fig. 3.17. Both spectra were created using the same axially symmetric

target, Ī = [150, 150, 10], but with different initial angular velocities. Fig. 3.16 shows a

spectrum with the target spinning six times faster than it is precessing, while Fig. 3.17

shows one with the target spinning only slightly faster than it is precessing.
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Figure 3.16: Angular Frequency Spectrum of r3(t) : Ī = [150.0, 150.0, 10.0], ω̄ =
[1.0, 1.0, 10.0], fs = 10, t = 35. The red dots are the MSA result; the blue curve is the
FFT Result.

Figure 3.17: Angular Frequency Spectrum of r3(t) : Ī = [150.0, 150.0, 10.0], ω̄ =
[5.0, 5.0, 10.0], fs = 10, t = 35. The red dots are the MSA result; the blue curve is the
FFT Result.
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3.4.2 Nearly Symmetric Target

The periodic rotation components of the nearly symmetric model contribute additional

frequency components when evaluated in the range function of Eq. 3.130. The time depen-

dency of ψ, φ, and θ is suppressed to shorten the notation.

rm(t) = Cxxmcθcψcφ + Cyxmcθcψsφ − Czxmcψsθ − Cxxmsψsφ + Cyxmsψcφ

−Cxymcθsψcφ − Cyymcθsψsφ + Czymsθsψ − Cxymcψsφ + Cyymcψcφ

+Cxzmsθcφ + Cyzmsθsφ + Czzmcθ (3.130)

Each additional sinusoidal component and its frequency can be traced back to the par-

ticular terms and functions in Eq. 3.130 which generated it. To aid in the identification

process, similar terms in the rotation function are assigned a number, as found in Eq. 3.131

and Table 3.1. Each number represents a particular combination of spin, nutation, and

precession sinusoid evaluations. For the purpose of illustrating the frequency contribution

independent of the Radar line of sight and scatterer positions, the scalars in each rotation

component, identified in Table 3.1, shall suppressed.

rm(t) = Cyymcψcφ − Cxymcψsφ + Cyxmsψcφ − Cxxmsψsφ −→ 1

+Cxxmcθcψcφ + Cyxmcθcψsφ − Cxymcθsψcφ − Cyymcθsψsφ −→ 2

−Czxmsθcψ + Czymsθsψ −→ 3

+Cxzmsθcφ + Cyzmsθsφ −→ 4

+Czzmcθ −→ 5

The examples in this section show angular velocity spectra of signals which have been

sampled for an extended time period to fully resolve each frequency component. The signals

were constructed to have a spin rate ωψ of 10 rad
s and a precession rate ωφ of 1 rad

s . Various

other motion parameters used for the examples in this section may be seen in Eq. 3.131

through Eq. 3.133.

κθ = 0.5 (3.131)

c = 1.25 (3.132)

r = −0.08 (3.133)
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Table 3.1: Rotation Terms

Term # Scalars Sinusoid Products

1 +Cyym cψcφ

−Cxym cψsφ

+Cyxm sψcφ

−Cxxm sψsφ

2 +Cxxm cθcψcφ

+Cyxm cθcψsφ

−Cxym cθsψcφ

−Cyym cθsψsφ

3 −Czxm sθcψ

+Czym sθsψ

4 +Cxzm sθcφ

+Cyzm sθsφ

5 +Czzm cθ

Fig. 3.18 shows a plot of the angular frequency spectrum for this target. Note that in

addition to the four positive frequencies found in the case of an axially symmetric target,

there are seventeen additional positive frequencies found in this example. It is the intention

of the following sections to identify the origin of each of these additional frequencies.

Frequency Modulation Formulation

Before proceeding to the frequency identification, the precession and spin may be written

in a form that is appropriate for such analysis. They may each be written as linear rates

with sinusoidal perturbations composed of harmonics of the spin rate. This means that the

cosine and sine of these rotations take the form of Frequency Modulated (FM) signals. The

reorganization of each function required to obtain this form is now performed.

The first step to reorganizing the precession, as seen in Eq. 3.134, to fit this form involves
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Figure 3.18: Angular Frequency Spectrum: All terms, ωψ = 10, ωφ = 1, fs = 80, t = 2000

revisiting the elliptic integral approximation.

φ(t) =
h(Ix − Iz)

pIxIz
Π(sn(pt, k), n, k)− ht

Iz
(3.134)

To simplify notation, the scalars to the left of the elliptic integral will be grouped as one

variable, a0.

a0 =
h(Ix − Iz)

pIxIz
(3.135)

φ(t) = a0Π(sn(pt, k), n, k)− ht

Iz
(3.136)

The elliptic integral approximation of Eq. 3.137 may be expanded to form Eq. 3.138.

Π̃(s̃n(u, k), n, k) = u(1 + r)
π

2K(k)
+ (1 + r)

(2K(k)− π)
2π

sin
(

uπ

K(k)

)

−
(

r +
3k4sn2(u, k)

32

)
sn(u, k)cn(u, k) (3.137)

= u(1 + r)
π

2K(k)
+ (1 + r)

(2K(k)− π)
2π

sin
(

uπ

K(k)

)

−rsn(u, k)cn(u, k)− 3k4

32
sn(u, k)3cn(u, k) (3.138)
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The spin rate, ωψ, will be used to simplify notation.

ωψ =
pπ

2K(k)
(3.139)

Due to its negligible impact on the frequency spectrum, the sinusoidal perturbation

factor found within the Jacobi sinusoids is suppressed.

sn(pt, k) = sin
(

ωψt +
2K(k)− π

2π
sin (2ωψt)

)
(3.140)

= sin (ωψt) (3.141)

Applying the changes of Eq. 3.138 and Eq. 3.141 to Eq. 3.134 forms Eq. 3.142.

φ̃(t) =
−ht

Iz
+ a0ωψt(1 + r)

+a0((1 + r)
(2K(k)− π)

2π
sin (2ωψt))

−a0(r sin(ωψt) cos(ωψt)− 3k4

32
sin(ωψt)3 cos(ωψt)) (3.142)

The sinusoid products found in Eq. 3.142 may be simplified using the trigonometric

properties found in Eq. 3.143 and Eq. 3.144.

sin(x) cos(x) =
sin(2x)

2
(3.143)

sin(x)3 cos(x) =
sin(2x)

4
− sin(4x)

8
(3.144)

For simplified notation, the precession rate may be written as seen in Eq. 3.145

ωφ =
−h

Iz
+

hπ(Ix − Iz)(1 + r)
2IxIzK(k)

(3.145)

The scalars which multiply the sinusoidal components may be represented as βφ0 and

βφ1 such that φ̃(t) may be represented in the simplified form of Eq. 3.146.

φ̃(t) = ωφt + βφ0 sin(2ωψt) + βφ1 sin(4ωψt) (3.146)

βφ0 =
h(Ix − Iz)

pIxIz

(
(2K(k)− π)(1 + r)

2π
− 3k4

128

)
(3.147)

βφ1 =
h(Ix − Iz)

pIxIz

(−r

2
+

3k4

256

)
(3.148)
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The functions seen in Eq. 3.149 and Eq. 3.150 are both in the form of frequency mod-

ulated signals with a carrier frequency of ωφ, modulation frequencies of 2ωψ and 4ωψ, and

modulation indices of β0 and β1.

sin(φ̃(t)) = sin(ωφt + βφ0 sin(2ωψt) + βφ1 sin(4ωψt)) (3.149)

cos(φ̃(t)) = cos(ωφt + βφ0 sin(2ωψt) + βφ1 sin(4ωψt)) (3.150)

The spin, as seen in Eq. 3.151, may be reorganized into the desired FM form by revisiting

the inverse tangent approximation.

ψ̃(t) = Ã(pt, k)

+s̃n(pt, k)c̃n(pt, k)
(

(Ix − ε)
Ix

[
1 +

2Ix − Iz

2Ix(Ix − Iz)
ε + . . .

]
− 1

)
+ . . . (3.151)

The sinusoid products of Eq. 3.152 may be rewritten as sums of scaled sinusoids at dif-

ferent frequencies. This is illustrated by applying the trigonometric properties of Eq. 3.143

and Eq. 3.144 to Eq. 3.152 thus forming Eq. 3.153.

tan−1 (tan(x)c) = x + sin(x) cos(x)(c− 1)− sin(x)3 cos(x)(c− 1)2

−1
3

sin(x)3 cos(x)(4 cos(x)2 − 3)(c− 1)3 + . . . (3.152)

= x +
sin(2x)(c− 1)

2

+
(−2 sin(2x) + sin(4x))(c− 1)2

8

+
(3 sin(2x)− 3 sin(4x) + sin(6x))(c− 1)3

24
+ . . . (3.153)

As shown in Eq. 3.154, Eq. 3.153 may be written in a form that emphasizes each of the

sinusoid components occurring at unique frequencies.

tan−1 (tan(x)c) = x +
(

(c− 1)
2

− (c− 1)2

4
+

(c− 1)3

8
+ . . .

)
sin(2x)

+
(

(c− 1)2

8
+

(c− 1)3

8
+ . . .

)
sin(4x)

+
(

(c− 1)3

24
+ . . .

)
sin(6x) + . . . (3.154)

This formulation of the inverse tangent may be substituted into the spin function to
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produce Eq. 3.154.

ψ(t) = ωψt +
2K(k)− π

2π
sin(2ωψt)

+
(

(c− 1)
2

− (c− 1)2

4
+

(c− 1)3

8
+ . . .

)
sin

(
2ωψt +

2K(k)− π

2π
sin(4ωψt)

)

+
(

(c− 1)2

8
+

(c− 1)3

8
+ . . .

)
sin

(
4ωψt +

2K(k)− π

2π
sin(8ωψt)

)

+
(

(c− 1)3

24
+ . . .

)
sin

(
6ωψt +

2K(k)− π

2π
sin(12ωψt)

)
+ . . . (3.155)

For a nearly symmetric target, the value of c is below 1.5. Thus, for the purpose of the

modulation analysis, an order 3 inverse tangent approximation will be used. The analysis

may be done with higher order terms without introducing additional complexity, although

the number of modulation frequencies becomes cumbersome. Again, due to its negligible

impact on the frequency spectrum, the sinusoidal perturbation factor found within the

Jacobi sinusoids is suppressed. The simplified result may be seen in Eq. 3.156.

ψ̃(t) = ωψt +
2K(k)− π

2π
sin(2ωψt)

+
(

(c− 1)
2

− (c− 1)2

4
+

(c− 1)3

8

)
sin (2ωψt)

+
(

(c− 1)2

8
+

(c− 1)3

8

)
sin (4ωψt)

+
(

(c− 1)3

24

)
sin (6ωψt) (3.156)

Similarly to the precession case, the scalars which multiply the FM components may be

represented as βψ0 , βψ1 , and βψ2 such that ψ̃(t) may be represented in the simplified form

of Eq. 3.157.

ψ̃(t) = ωψt + βψ0 sin (2ωψt) + βψ1 sin (4ωψt) + βψ2 sin (6ωψt) (3.157)

βψ0 =
2K(k)− π

2π
+

(c− 1)
2

− (c− 1)2

4
+

(c− 1)3

8
(3.158)

βψ1 =
(c− 1)2

8
+

(c− 1)3

8
(3.159)

βψ2 =
(c− 1)3

24
(3.160)

The functions seen in Eq. 3.161 and Eq. 3.162 are both in the form of frequency mod-

ulated signals with a carrier frequency of ωψ and modulation frequencies of 2ωψ, 4ωψ, and
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6ωψ.

sin (ψ̃(t)) = sin(ωψt + βψ0 sin (2ωψt) + βψ1 sin (4ωψt) + βψ2 sin (6ωψt)) (3.161)

cos (ψ̃(t)) = cos(ωψt + βψ0 sin (2ωψt) + βψ1 sin (4ωψt) + βψ2 sin (6ωψt)) (3.162)

Bessel functions may be introduced to represent the spin and precession as traditional

FM signals[30]. Eq. 3.163 shows a FM signal, with a carrier frequency ωc and a modulation

frequency ω0. The formulation of this function in terms of Bessel functions may be seen

in Eq. 3.164. The nth integer harmonic generated by this modulation has an amplitude

specified by the Bessel function for a given β and index n. Fig. 3.19 shows the Bessel

function evaluated for various input parameters. Note how as β decreases, the value near

n = 0 increases and the value for large n decreases.

Figure 3.19: Bessel function of the first kind evaluated for various n and β

ejf1(t) = ej(ωct+β sin(ω0t)) (3.163)

=
∞∑

n=−∞
Jn (β) ej(ωct+nωmt) (3.164)
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The Fourier Transform of Eq. 3.164, found in Eq. 3.165, possesses an infinite number of

spectral line components located at ωc + nωm.

F
{

ejf1(t)
}

= 2π
∞∑

n=−∞
Jn (β) δ(ω − (ωc + nωm)) (3.165)

When there are multiple modulation frequencies, the signal may still be represented us-

ing Bessel functions. Each modulation frequency introduces an additional summation and

modulation index constant β. An example with two modulation frequencies may be seen

in Eq. 3.166 and Eq. 3.167

ejf2(t) = ej(ωct+β0 sin(ω0t)+β1 sin(ω1t)) (3.166)

=
∞∑

n0=−∞

∞∑
n1=−∞

Jn0 (β0) Jn1 (β1) ej(ωct+n0ω0t+n1ω1t) (3.167)

The Fourier Transform of Eq. 3.167, found in Eq. 3.168, possesses an infinite number of

spectral line components located at ωc + n0ω0 + n1ω1.

F
{

ejf2(t)
}

= 2π
∞∑

n0=−∞

∞∑
n1=−∞

α(n0, n1) δ(ω − (ωc + n0ω0 + n1ω1)) (3.168)

α(n0, n1) = Jn0 (β0) Jn1 (β1) (3.169)

Linear Rotation Components

The four positive frequency components generated by a rotating axially symmetric target

are also found when analyzing a rotating asymmetric target. If the periodic portions of each

rotation function are suppressed, these are the only visible frequency components. This can

be seen in Fig. 3.20 where the four frequencies corresponding to the linear components are

shown as a red trace overlaid on top of the complete spectrum in blue. Table 3.2 shows

which sinusoid products contribute to the four frequencies. It associates a particular set or

sets of these products as the generating function for each frequency or series of frequencies.

The first column denotes which rotation term is contributing the frequency components.

The first row denotes the frequency components of interest. An X denotes that the term

in that row contributes a frequency component in that column.
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Figure 3.20: Angular Frequency Spectrum: Linear Components Only, ωψ = 10, ωφ = 1,
fs = 80, t = 2000. The red trace is the linear component, the blue trace is composed of
both linear and suppressed components. Frequencies are found at ωφ, ωψ − ωφ, ωψ, and
ωψ + ωφ
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Table 3.2: Linear Component Angular Frequency Spectrum Contributions

ωφ ωψ ωψ ± ωφ DC

1 X

2 X

3 X

4 X

5 X

Precession Periodic Component

As seen in Fig. 3.21, the precession periodic component contributes harmonics of the

spin rate plus or minus the precession rate. The generation of these components can be

Figure 3.21: Angular Frequency Spectrum: Precession periodic component, r1,2,4
m , ωψ = 10,

ωφ = 1, fs = 80, t = 2000. The precession periodic component adds frequencies at nωψ±ωφ

better understood by reviewing the contributing terms in greater detail. The superscripts

1 → 5 signify the terms from the rotation function included from the range function rm.
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The 4th term, seen in Eq. 3.170 can be rewritten as having a single cosine of φ(t).

r4
m(t) = Cxzmsθcφ + Cyzmsθsφ (3.170)

= κφ3 cos(φ(t)) + κφ4 sin(φ(t)) (3.171)

=
√

κ2
φ3

+ κ2
φ4

cos
(

φ(t)− tan−1

(
κφ4

κφ3

))
(3.172)

= κφ34 cos(φ(t) + ϕ34) (3.173)

The amplitude and phase associated with the scalars of term 4 may be seen in Eq. 3.174

through Eq. 3.181.

κφ3 = Cxzmsθ (3.174)

κφ4 = Cyzmsθ (3.175)

κφ34 =
√

κ2
φ3

+ κ2
φ4

(3.176)

=
√

(Cxzmsθ)
2 + (Cyzmsθ)

2 (3.177)

=
√

z2
ms2

θ(C
2
x + C2

y ) (3.178)

ϕφ34 = − tan−1

(
κφ4

κφ3

)
(3.179)

= − tan−1

(
Cyzmsθ

Cxzmsθ

)
(3.180)

= − tan−1

(
Cy

Cx

)
(3.181)

The additional components can be seen by expanding Eq. 3.173 to include φ(t).

r4
m(t) = κφ34 cos(φ(t) + ϕ34) (3.182)

= κφ34 cos(ωφt + βφ0 sin(2ωψt) + βφ1 sin(4ωψt) + ϕ34) (3.183)

The Fourier Transform of Eq. 3.183 may be seen in Eq. 3.184.

F{r3
m(t)} = κφ34π

∞∑
n0=−∞

∞∑
n1=−∞

αφ(n0, n1)δφ(n0, n1) (3.184)

αφ(n0, n1) = Jn0 (βφ0) Jn1 (βφ0) (3.185)

δφ(n0, n1) = e−jϕ34 δ(ω + ωφ + 2n0ωψ + 4n1ωψ)

+ejϕ34 δ(ω − (ωφ + 2n0ωψ + 4n1ωψ)) (3.186)
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Figure 3.22: Angular Frequency Spectrum: Precession periodic component, r4
m, ωψ = 10,

ωφ = 1, fs = 80, t = 2000. Additional frequencies: ωφ(n0 = 0, n1 = 0), −ωφ + 2ωψ(n0 =
−1, n1 = 0), ωφ + 2ωψ(n0 = 1, n1 = 0), −ωφ + 4ωψ(n0 = −2, n1 = 0; n0 = 0, n1 = −1),
ωφ + 4ωψ(n0 = 2, n1 = 0;n0 = 0, n1 = 1), etc.
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The harmonics contributed by the precession FM component in term 4 may be seen in

Fig. 3.22.

The first and second terms may be seen in Eq. 3.187.

r1,2
m (t) = −Cxymcψsφ + Cyymcψcφ − Cxxmsψsφ + Cyxmsψcφ

+Cxxmcθcψcφ + Cyxmcθcψsφ − Cxymcθsψcφ − Cyymcθsψsφ (3.187)

As seen in Eq. 3.188, the scalars of each sinusoid product may be collected such that there

are only four sinusoid products.

r1,2
m (t) = (Cyym − Cxxmcθ)cψcφ + (−Cxym + Cyxmcθ)cψsφ

+(Cyxm − Cxymcθ)sψcφ + (−Cxxm + Cyymcθ)sψsφ (3.188)

The scalars may be represented in compressed notation as shown in Eq. 3.189 through

Eq. 3.192.

κp0 = (Cyym − Cxxmcθ) (3.189)

κp1 = (−Cxym + Cyxmcθ) (3.190)

κp2 = (Cyxm − Cxymcθ) (3.191)

κp3 = (−Cxxm + Cyymcθ) (3.192)

Applying this notation to Eq. 3.188 produces Eq. 3.193.

r1,2
m (t) = κp0 cos(ψ(t)) cos(φ(t)) + κp1 cos(ψ(t)) sin(φ(t))

+κp2 sin(ψ(t)) cos(φ(t)) + κp3 sin(ψ(t)) sin(φ(t)) (3.193)

Expanding Eq. 3.193 to reveal the spin and precession terms produces Eq. 3.194.

r1,2
m (t) = κp0 cos(ωφt + βφ0 sin(2ωψt) + βφ1 sin(4ωψt)) cos(ωψt)

+κp1 sin(ωφt + βφ0 sin(2ωψt) + βφ1 sin(4ωψt)) cos(ωψt)

+κp2 cos(ωφt + βφ0 sin(2ωψt) + βφ1 sin(4ωψt)) sin(ωψt)

+κp3 sin(ωφt + βφ0 sin(2ωψt) + βφ1 sin(4ωψt)) sin(ωψt) (3.194)
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The frequency components of Eq. 3.194 may then be found by applying the Fourier Trans-

form. The result may be seen in Eq. 3.195. It produces an infinite number of line contribu-

tions at the odd spin rate harmonic frequencies plus and minus the precession rate harmonic

frequencies. The harmonics contributed by the precession FM component in terms 1 and 2

may be seen in Fig. 3.23.

F{r12
m (t)} =

π

2

∞∑
n0=−∞

∞∑
n1=−∞

αφ12(n0, n1)δφ12(n0, n1) (3.195)

αφ12(n0, n1) = Jn0 (βφ0) Jn1 (βφ1) (3.196)

δφ12(n0, n1) = (κp0 + jκp1 + jκp2 − κp3) δ(ω + ωψ + ωφ + 2n0ωψ + 4n1ωψ)

(κp0 − jκp1 − jκp2 − κp3) δ(ω − ωψ − (ωφ + 2n0ωψ + 4n1ωψ))

(κp0 − jκp1 + jκp2 + κp3) δ(ω − ωψ + ωφ + 2n0ωψ + 4n1ωψ)

(κp0 + jκp1 − jκp2 + κp3) δ(ω + ωψ − (ωφ + 2n0ωψ + 4n1ωψ))

(3.197)

These harmonics and their generating functions are summarized in Table 3.3.

Table 3.3: Precession Periodic Component Angular Frequency Spectrum Contributions

N/A [1, 3 . . .]ωψ ± ωφ [0, 2, . . .]ωψ ± ωφ

1 X

2 X

3 X

4 X

5 X
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Figure 3.23: Angular Frequency Spectrum: Precession periodic component, r1,2
m , ωψ = 10,

ωφ = 1, fs = 80, t = 2000, Additional frequencies: −ωφ + ωψ, ωφ + ωψ, −ωφ + 2ωψ + ωψ,
ωφ + 2ωψ + ωψ, −ωφ + 4ωψ + ωψ, ωφ + 4ωψ + ωψ, etc.
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Spin Periodic Component

The spin periodic component contributes two different sets of harmonics. The first

harmonics are generated by term three. They occur at odd integer multiples of the spin

rate. The other harmonics are generated by terms one and two. They occur at integer

multiples of the spin rate plus and minus the precession rate. These harmonics may be seen

in Fig. 3.24.

Figure 3.24: Angular Frequency Spectrum: Spin periodic component, r1,2,3
m , ωψ = 10,

ωφ = 1, fs = 80, t = 2000

The 3rd term, seen in Eq. 3.198 can be rewritten as having a single cosine of ψ(t).

r3
m(t) = −Czxmsθcψ + Czymsθsψ (3.198)

= κφ5 cos(ψ(t)) + κφ6 sin(ψ(t)) (3.199)

=
√

κ2
φ5

+ κ2
φ6

cos
(

φ(t)− tan−1

(
κφ6

κφ5

))
(3.200)

= κφ56 cos(φ(t) + ϕ56) (3.201)

The amplitude and phase associated with the scalars of term 4 may be seen in Eq. 3.202
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through Eq. 3.209.

κφ5 = −Czxmsθ (3.202)

κφ6 = Czymsθ (3.203)

κφ56 =
√

κ2
φ5

+ κ2
φ6

(3.204)

=
√

(Czxmsθ)
2 + (Czymsθ)

2 (3.205)

=
√

C2
z s2

θ(x
2
m + y2

m) (3.206)

ϕφ56 = − tan−1

(
κφ6

κφ5

)
(3.207)

= − tan−1

(
Czymsθ

−Czxmsθ

)
(3.208)

= − tan−1

(
ym

−xm

)
(3.209)

The additional frequencies can be seen by expanding Eq. 3.210 to include ψ(t).

r3
m(t) = κφ56 cos(φ(t) + ϕ56) (3.210)

= κφ56 cos(ωψt + fψFM
(t) + ϕ56) (3.211)

fψFM
(t) = βψ0 sin(2ωψt) + βψ1 sin(4ωψt) + βψ1 sin(4ωψt)βφ1 sin(4ωψt)

+βψ2 sin(6ωψt) (3.212)

The Fourier Transform of Eq. 3.211 may be seen in Eq. 3.213.

F{r4
m(t)} = κφ56π

∞∑
n0=−∞

∞∑
n1=−∞

∞∑
n2=−∞

αψ(n0, n1, n2)δψ(n0, n1, n2) (3.213)

αψ(n0, n1, n2) = Jn0 (βψ0)Jn1 (βψ0)Jn2 (βψ2) (3.214)

δψ(n0, n1, n2) = e−jϕ56 δ(ω + ωψ + 2n0ωψ + 4n1ωψ + 6n2ωψ)

+ejϕ56 δ(ω − (ωφ + 2n0ωψ + 4n1ωψ + 6n2ωψ)) (3.215)

The harmonics contributed by the spin FM component in term 3 may be seen in Fig. 3.25.

The analysis of the spin periodic components contribution to terms one and two is

identical to the analysis of the precession periodic contribution from Eq. 3.170 to Eq. 3.193.
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Figure 3.25: Angular Frequency Spectrum: Spin periodic component, r3
m, ωψ = 10, ωφ = 1,

fs = 80, t = 2000, Additional frequencies: ωψ(n0 = 0, n1 = 0), ωψ + 2ωψ(n0 = 1, n1 = 0),
ωψ + 4ωψ(n0 = 2, n1 = 0;n0 = 0, n1 = 1), etc.

Expanding Eq. 3.193 to contain the spin and precession terms produces Eq. 3.216.

r1,2
m (t) = κp0 cos(ωφt) cos(ωψt + fψFM

(t))

+κp1 cos(ωφt) sin(ωψt + fψFM
(t))

+κp2 sin(ωφt) cos(ωψt + fψFM
(t))

+κp3 sin(ωφt) sin(ωψt + fψFM
(t)) (3.216)

The frequency components of Eq. 3.216 may then be found by applying the Fourier Trans-

form. The result may be seen in Eq. 3.217. Similarly to the precession periodic contribution,

it produces an infinite number of line contributions at the odd spin rate harmonic frequen-

cies plus and minus the precession rate harmonic frequencies. The difference between the

two contributions is the amplitudes at each harmonic. The frequency contributions are

summarized in Table 3.4. The harmonics contributed by the precession FM component in
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Table 3.4: Spin Periodic Component Angular Frequency Spectrum Contributions

N/A [1, 3, . . .]ωψ [1, 3 . . .]ωψ ± ωφ

1 X

2 X

3 X

4 X

5 X

terms 1 and 2 may be seen in Fig. 3.26.

F{r12
m (t)} =

π

2

∞∑
n0=−∞

∞∑
n1=−∞

∞∑
n2=−∞

αψ12(n0, n1, n2)δψ12(n0, n1, n2) (3.217)

αψ12(n0, n1, n2) = Jn0 (βψ0) Jn1 (βψ1) Jn2 (βψ2) (3.218)

δψ12(n0, n1, n2) = (κp0 + jκp1 + jκp2 − κp3) δ(ω + ωφ + ωψ + 2n0ωψ + 4n1ωψ + 6n1ωψ)

(κp0 − jκp1 − jκp2 − κp3) δ(ω − ωφ − (ωψ + 2n0ωψ + 4n1ωψ + 6n1ωψ))

(κp0 − jκp1 + jκp2 + κp3) δ(ω + ωφ − (ωψ + 2n0ωψ + 4n1ωψ + 6n1ωψ))

(κp0 + jκp1 − jκp2 + κp3) δ(ω − ωφ + ωψ + 2n0ωψ + 4n1ωψ + 6n1ωψ)

(3.219)
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Figure 3.26: Angular Frequency Spectrum: Spin periodic component, r1,2
m , ωψ = 10, ωφ = 1,

fs = 80, t = 2000
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Nutation Periodic component

Since the nutation is defined in terms of an inverse cosine, the contribution to the

frequency spectrum by the periodic component may be analyzed in two steps. The first

step is to analyze the case when the nutation is evaluated by a cosine, as seen in Eq. 3.220.

This function contains a cosine whose frequency is twice the spin rate and the average

nutation angle κθ .

cos(θ(t)) =
Izγ

h

(
π

2K(k)
+

(2K(k)− π)
2K(k)

cos
(

ptπ

K(k)

))
(3.220)

The second step is to analyze the case when the nutation is evaluated by a sine, as seen in

Eq. 3.221. This function is more complicated as it involves a square root.

sin(θ(t)) =

√
1−

(
Izγ

h

(
π

2K(k)
+

(2K(k)− π)
2K(k)

cos
(

ptπ

K(k)

)))2

(3.221)

The contributions of the nutation periodic component may be seen in Fig. 3.27.

Figure 3.27: Angular Frequency Spectrum: Nutation periodic component, r2,3,4,5
m , ωψ = 10,

ωφ = 1, fs = 80, t = 2000

As seen in Eq. 3.222, the fifth term is the simplest term involving a cosine of the nutation
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function.

r5
m(t) = Czzm cos θ(t) (3.222)

To make this relationship apparent, Eq. 3.222 must first be expanded to include θ(t) as

shown in Eq. 3.223 and Eq. 3.224.

= Czzm
Izγ

h

(
π

2K(k)
+

(2K(k)− π)
2K(k)

cos
(

ptπ

K(k)

))
(3.223)

= Czzm
Izγ

h

π

2K(k)
+ Czzm

Izγ

h

(2K(k)− π)
2K(k)

cos
(

ptπ

K(k)

)
(3.224)

To simplify notation, the average nutation angle, κθ, may be represented as seen in

Eq. 3.225. Also, twice the spin rate may be represented as seen in Eq. 3.226.

κθ =
Izγ

h

π

2K(k)
(3.225)

2ωψ =
ptπ

K(k)
(3.226)

Substituting the relationships found in Eq. 3.225 and Eq. 3.226 into Eq. 3.224 produces

Eq. 3.227.

r5
m(t) = Czzmκθ + Czzmκθ

(2K(k)− π)
π

cos (2ωψt) (3.227)

The Fourier Transform of Eq. 3.227 may be seen in Eq. 3.228. It contains three spectral

impulses located at 0, 2ωψ, and −2ωψ. The single positive harmonic generated by the

nutation periodic component in term five may be seen in Fig. 3.28.

F{r5
m(t)} = 2Czzmκθπ δ(0)

+Czzmκθ
(2K(k)− π)

π
π δ(ω − 2ωψ)

+Czzmκθ
(2K(k)− π)

π
π δ(ω + 2ωψ) (3.228)

The other term involving a cosine of the nutation function, shown in Eq. 3.229, is term

two.

r2
m(t) = Cxxmcθcψcφ + Cyxmcθcψsφ − Cxymcθsψcφ − Cyymcθsψsφ (3.229)
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Figure 3.28: Angular Frequency Spectrum: Nutation periodic component, r5
m, ωψ = 10,

ωφ = 1, fs = 80, t = 2000

The relation found in Eq. 3.230 will be used to further compress the notation.

κθk = κθ
(2K(k)− π)

π
(3.230)

Expanding Eq. 3.229 to include the nutation produces Eq. 3.231. Distributing the

direction cosine and position scalar term into the parenthesis produces Eq. 3.232.

r2
m(t) = Cxxm (κθ + κθk cos (2ωψt)) cos(ωφt) cos(ωψt)

+Cyxm (κθ + κθk cos (2ωψt)) cos(ωφt) sin(ωψt)

−Cxym (κθ + κθk cos (2ωψt)) sin(ωφt) cos(ωψt)

−Cyym (κθ + κθk cos (2ωψt)) sin(ωφt) sin(ωψt) (3.231)

r2
m(t) = (Cxxmκθ + Cxxmκθk cos (2ωψt)) cos(ωφt) cos(ωψt)

(Cyxmκθ + Cyxmκθk cos (2ωψt)) cos(ωφt) sin(ωψt)

(−Cxymκθ − Cxymκθk cos (2ωψt)) sin(ωφt) cos(ωψt)

(−Cyymκθ − Cyymκθk cos (2ωψt)) sin(ωφt) sin(ωψt) (3.232)
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The scalars may be collected as shown in Eq. 3.233 through Eq. 3.240.

κt0 = Cxxmκθ (3.233)

κt1 = Cyxmκθ (3.234)

κt2 = −Cxymκθ (3.235)

κt3 = −Cyymκθ (3.236)

κt4 = Cxxmκθk (3.237)

κt5 = Cyxmκθk (3.238)

κt6 = −Cxymκθk (3.239)

κt7 = −Cyymκθk (3.240)

Expanding Eq. 3.232 and replacing the scalars with the simplified terms of Eq. 3.233

through Eq. 3.240 produces Eq. 3.241.

r2
m(t) = κt0 cos(ωφt) cos(ωψt) + κt4 cos (2ωψt) cos(ωφt) cos(ωψt)

κt2 cos(ωφt) sin(ωψt) + κt5 cos (2ωψt) cos(ωφt) sin(ωψt)

κt3 sin(ωφt) cos(ωψt) + κt6 cos (2ωψt) sin(ωφt) cos(ωψt)

κt4 sin(ωφt) sin(ωψt) + κt7 cos (2ωψt) sin(ωφt) sin(ωψt) (3.241)

The Fourier Transform of Eq. 3.241 reveals the frequencies to be found in the angular

frequency spectrum. If κt4 through κt7 are zero, then Eq. 3.242 becomes a part of the

symmetric target spectrum. The four positive frequencies may be seen in Fig. 3.29.

F{r2
m(t)} =

π

4
(2κt0 − 2κt1 + 2jκt2 + 2jκt3 + κt4 + jκt5 + jκt6 − κt7) δ(ω + ωφ − ωψ)

+
π

4
(2κt0 + 2jκt1 − 2jκt2 + 2κt3 + κt4 − κt5 − jκt6 − jκt7) δ(ω − ωφ + ωψ)

+
π

4
(2κt0 − 2jκt2 − 2jκt1 − 2κt3 + κt7 + κt4 − jκt6 + jκt5) δ(ω − ωφ − ωψ)

+
π

4
(2κt0 + 2jκt1 + 2jκt2 − 2κt3 + κt4 − jκt5 + jκt6 + κt7) δ(ω + ωφ + ωψ)

+
π

4
(κt4 + jκt5 + jκt6 − κt7) δ(ω + 3ωψ + ωφ)

+
π

4
(κt4 + jκt5 − jκt6 + κt7) δ(ω + 3ωψ − ωφ)

+
π

4
(κt4 − jκt5 − κt6 − jκt7) δ(ω − 3ωψ − ωφ)

+
π

4
(κt4 − jκt5 + jκt6 + κt7) δ(ω − 3ωψ + ωφ) (3.242)



91

Figure 3.29: Angular Frequency Spectrum: Nutation periodic component, r2
m, ωψ = 10,

ωφ = 1, fs = 80, t = 2000

Terms three and four both involve evaluating the sine function with the nutation argu-

ment, as shown in Eq. 3.243.

sin(θ(t)) =

√
1−

(
Izγ

h

(
π

2K(k)
+

(2K(k)− π)
2K(k)

cos(2ωψ)
))2

(3.243)

The computation of the Fourier Transform for Eq. 3.243 may be found in Appendix D.

It is shown that the angular frequency spectrum is similar to that of an FM signal. The

Fourier amplitudes, hn, of the first seven spectral line components located at 2nωψ are

computed.

The third term may be seen in Eq. 3.244 through Eq. 3.246.

r3
m(t) = −Czxmsθcψ + Czymsθsψ (3.244)

= (−Czxmcψ + Czymsψ)sθ (3.245)

= (κsn2cφ + κsn3sφ)sθ (3.246)
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The scalars of Eq. 3.246 are shown in Eq. 3.247 and Eq. 3.248.

κsn2 = −Czxm (3.247)

κsn3 = Czym (3.248)

The frequency components of Eq. 3.246 may then be found by applying the Fourier

Transform. The result may be seen in Eq. 3.249. It produces an infinite number of line

contributions at the odd spin rate harmonic frequencies. The harmonics contributed by the

nutation FM component in term 3 may be seen in Fig. 3.30. The frequency contributions

of the nutation periodic component are summarized in Table 3.4.

F{r3
m(t)} =

π

2

∞∑
n1=−∞

hn1δθ3(n) (3.249)

δθ3(n) = (jκsn2 − κsn3) δ(ω + ωψ + 2n1ωψ)

+(−jκsn2 + κsn3) δ(ω + ωψ − 2n1ωψ)

+(−jκsn2 − κsn3) δ(ω − ωψ − 2n1ωψ)

+(jκsn2 + κsn3) δ(ω − ωψ + 2n1ωψ) (3.250)

The fourth term may be seen in Eq. 3.251 through Eq. 3.253.

r4
m(t) = −Cxzmsθcφ + Cyzmsθsφ (3.251)

= (−Cxzmcφ + Cyzmsφ)sθ (3.252)

= (κsn0cφ + κsn1sφ)sθ (3.253)

The scalars of Eq. 3.253 are shown in Eq. 3.254 and Eq. 3.255.

κsn0 = −Cxzm (3.254)

κsn1 = Cyzm (3.255)

The frequency components of Eq. 3.253 may then be found by applying the Fourier

Transform. The result may be seen in Eq. 3.256. It produces an infinite number of line

contributions at the even spin rate harmonic frequencies plus and minus the precession rate
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Figure 3.30: Angular Frequency Spectrum: Nutation periodic component, r3
m, ωψ = 10,

ωφ = 1, fs = 80, t = 2000

harmonic frequencies. The harmonics contributed by the nutation FM component in term

4 may be seen in Fig. 3.31.

F{r4
m(t)} =

π

2

∞∑
n0=−∞

hn0δθ4(n0) (3.256)

δθ4(n0) = (jκsn0 − κsn1) δ(ω + ωφ + 2nωψ)

+(−jκsn0 + κsn1) δ(ω + ωφ − 2nωψ)

+(−jκsn0 − κsn1) δ(ω − ωφ − 2nωψ)

+(jκsn0 + κsn1) δ(ω − ωφ + 2nωψ) (3.257)

Table 3.6 reviews all of the frequencies found in a rigid body’s angular frequency spec-

trum. It is broken down into the contribution of each sinusoid term from each of the rotation

function’s periodic component.
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Figure 3.31: Angular Frequency Spectrum: Nutation periodic component, r4
m, ωψ = 10,

ωφ = 1, fs = 80, t = 2000

Table 3.5: Nutation Periodic Component Angular Frequency Spectrum Contributions

N/A 2ωψ [1, 3, . . .]ωψ 3ωψ ± ωφ ωψ ± ωφ [0, 2, . . .]ωψ ± ωφ

1 X

2 X X

3 X

4 X

5 X
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Table 3.6: All Angular Frequency Spectrum Contributions: The first column states which pe-
riodic component contributes the frequencies for a given term. For example, θ3 refers to the
term three nutation periodic component.

N/A 2ωψ [1, 3, . . .]ωψ ωψ ± ωφ 3ωψ ± ωφ [1, 3 . . .]ωψ ± ωφ [0, 2, . . .]ωψ ± ωφ

φ1 X X X

φ2 X X X

φ3 X

φ4 X

φ5 X

θ1 X

θ2 X X

θ3 X

θ4 X

θ5 X

ψ1 X X X

ψ2 X X X

ψ3 X

ψ4 X

ψ5 X
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3.5 Inertial Parameter Estimation

A force-free rigid body’s dynamics are determined by five parameters. These five pa-

rameters, the principle moments of inertia, the angular momentum magnitude and the total

kinetic energy, are thus desirable quantities to determine. If five or more equations in terms

of these unknown parameters were available, an estimation problem could be formed to

uniquely identify their values.

Two such equations are readily available from a Fourier analysis of the objects RTI.

The spin and precession rates, ωψ and ωφ, are found by estimating the locations of the

line components in the angular velocity spectrum. Using the linear terms from the nearly

symmetric spin and precession models, each of these rates may be written in terms of the

five unknown parameters.

ωψ =
pπ

2K(k)
(3.258)

=
π

2K(k)

√
(2IxT − h2)(Iy − Iz)

IxIyIz
(3.259)

=
π

2K
(√

(Ix−Iy)(h2−2IzT )
(Iy−Iz)(2IxT−h2)

)
√

(2IxT − h2)(Iy − Iz)
IxIyIz

(3.260)

ωφ =
h

Ix
− h(Ix − Iz)(π + πr(Ix, Iy, Iz, k)− 2K(k))

2IxIzK(k)
(3.261)

=
h

Ix
−

h(Ix − Iz)
(
π + πr(Ix, Iy, Iz, k)− 2K

(√
(Ix−Iy)(h2−2IzT )
(Iy−Iz)(2IxT−h2)

))

2IxIzK
(√

(Ix−Iy)(h2−2IzT )
(Iy−Iz)(2IxT−h2)

) (3.262)

If more equations were known, one may be able to solve directly for Ix, Iy, Iz. The complex

spectral magnitudes corresponding to the various line components are defined by 5+2+3m

unknowns for m scatterers. Five of the unknowns are the five parameters of interest, two

originate from the independent direction cosine components, and 3m originate from the 3D

scatterer position coordinates. The magnitude of each line component may be written in

terms of these 5 + 2 + 3 = 10 unknowns. Each scatterer generates a spectrum with 6 first

order line components. Analyzing the frequency spectrum, in particular the line component

magnitudes, provides ∼ 6m equations in addition to the 2 equations given the known spin

and precession rates.
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For example, three scatterers fixed to a free body would generate spectra with 5 + 2 +

3 ∗ 3 = 16 unknowns. Analysis of these spectra provides ∼ 6 ∗ 3 + 2 = 20 equations.

This presents an over-determined nonlinear estimation problem, as it yields 20 equations to

estimate 16 unknowns. Table 3.7 shows the number of unknowns and equations provided

when there exist up to 5 scatterers. While complicated, estimation of all unknowns may be

Table 3.7: Estimation of Inertial Parameters: Nonlinear Estimation Unknowns & Equations

# # Unknowns # Equations

1 10 8

2 13 14

3 16 20

4 19 26

5 22 32

possible given more than one scatterer.

3.5.1 Intermediate Result: Parameter Elimination

Given ωψ, ωφ an expression may be formed using elimination in terms of four of the five

unknown parameters. The elimination forms a four parameter implicit function, f(Ix, Iy, Iz, h)

or f(Ix, Iy, Iz, T ), in terms of the three moments of inertia and either the angular momentum

magnitude or the kinetic energy.

ωψ =
π

2K(k)

√
(2IxT − h2)(Iy − Iz)

IxIyIz
(3.263)

ωφ =
h

Ix
− (h(Ix − Iz)(π + πr(Ix, Iy, Iz, k)− 2K(k))

2IxIzK(k)
(3.264)

If one additional equation could be provided, such as for the elliptic modulus, an implicit

function could be defined involving only the three moments of inertia.

k =

√
(Ix − Iy)(h2 − 2IzT )
(Iy − Iz)(2IxT − h2)

(3.265)

This represents a reduction to the dimensionality of a surface, as neither the kinetic en-

ergy nor the angular momentum are involved. A method for the estimation of the elliptic
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modulus, k, may be found in Appendix E. The complete form of the implicit function of

the three unknown moments of inertia may be found in Appendix F. Fig. 3.32 shows a

plot of the 3D implicit function, f(Ix, Iy, Iz) = 0, derived from the RTI of a single tracked

scatterer.

The parameter values used for the examples in this section are found in Table 3.8. If the

Figure 3.32: Surface of Implicit Inertial Function

Table 3.8: Example Parameters for Estimating Moments of Inertial: Ī = [150, 130, 10]

Surface Color ω̄ k ωφ ωψ

Green [0.1, 0.3, 10] 0.0209 0.71823 9.28191

Red [0.1, 0.3, 5] 0.0438 0.77827 9.28521

Blue [0.1, 0.6, 10] 0.0830 0.9171 9.29681
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same object is viewed while it is undergoing different motions, another implicit function may

be formed using data collected from each associated RTI. The intersection of the surfaces

defined by the several implicit functions provide the inertial parameter values. This is

similar to an idea presented in [34], where parameter ambiguity is reduced by perturbing the

motion of an object by collisions with targeted projectiles to induce multiple observations.

Only three different observations would be needed to uniquely determine the moments of

inertia. Fig. 3.33 shows a plot of the 3D implicit functions for three observations. Note

that the intersection occurs at correct parameter values of Ix = 150, Iy = 130, Iz = 10 for

the example found in Table 3.8.

Figure 3.33: Intersecting Surfaces of Implicit Inertial Function: Each surface represents
data collected for multiple initial angular velocities given the same body.
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Chapter 4

Conclusions

This thesis introduced a physics based analysis of the Radar signature with respect to

a target’s physically allowed free-body rotational motion parameters. In Chapter 2, the

motion of a free-body was developed. To form an analytic closed form range function for

scatterers fixed to this body, the motion was defined as a series of rotations including spin,

nutation, and precession. The spin and nutation time functions were readily available in

literature, but the precession was only found expressed as a time derivative. The precession

time derivative was thus integrated to form the elliptic integral form of the precession time

function.

In Chapter 3, a motion model was developed for the case of a nearly symmetric target.

This formulation is expressed in terms of inertial deviation from axial symmetry. It was

shown that the angular frequency spectrum of a nearly symmetric target can be expressed

as an amplitude and frequency modulated signal, while an axially symmetric target is

expressed as simply an amplitude modulated signal. The contribution of each periodic

rotation parameter function to the angular frequency spectrum was derived by applying

an analytic Fourier decomposition. The complex amplitudes of the Fourier line spectra are

then shown to contain information regarding the target inertial parameters, the scatterer

positions and the Radar’s line of sight.

A range-matrix factorization technique is presented in Appendix C.1. This technique

extracts useful information about the target scene given only the ranges of tracked scatter-
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ers. In particular, it can determine how many different free bodies are represented by the

collection of scatterers and to which body each scatterer belongs.

A means of estimating target inertial parameters using measurements from the angular

frequency spectrum and the nearly symmetric model was presented in Section 3.5. An

intermediate result shows how observing the same target under different motion conditions

may allow the unique determination of the moments of inertia of the rigid body. The

importance of this result is an added capability to characterize and identify a target given

the range function of a single scatterer for each observation. The result of this work finds

immediate application in analyzing aligned range functions of spinning and precessing rigid

bodies.
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4.1 Future Work

The complex amplitudes of the various line components in the spectrum of a range

function provide additional equations towards estimating the moments of inertia given the

observation of a target undergoing rigid body motion. The formulation of this estimation

problem and its application towards field data would be an important step towards target

identification. Extending this analysis to the case of unaligned range functions should be

considered. Performing correlations in the range dimension for each return could possibly

mitigate the range alignment problem by removing all range offsets. Certain Fourier compo-

nents derived from this correlated range function reference the same motion contributions.

It would be pertinent to form an analytic Fourier decomposition of a correlated range func-

tion. This would provide the needed equations to estimate the inertial parameters from

unaligned ranges. Other techniques to relieve corruption of range estimates should also be

explored.

One ultimately desires to take Radar collections from all available sensors and use that

data to provide as much discriminatory information as required to identify the target. The

addition of multiple sensors could also improve the estimation of the various free body

parameters. The position and inertial parameter estimation problem may be reformulated

to incorporate data collected by multiple sensors and their possibly diverse viewing an-

gles coverage. In general the multi-sensor data fusion concept has seen a fair amount of

exposure[20, 32, 36, 28, 54], but few have explored the possibility of multiple Radar, physics

constrained, scatterer position and inertial estimation.
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Appendix A

Scatterer Frequency Dependence

Some scatterers are best represented using a more descriptive model than one which

simply represents the RCS as being constant for all frequencies. For specific interrogation

frequencies, their RCS magnitude exhibits frequency dependence according to the Geomet-

ric Theory of Diffraction (GTD)[27]. Some common GTD values are exhibited in Table A.1.

Furthermore, finding scattering frequency dependencies may also be useful as typing char-

acteristics for a tracking algorithm. The effect of GTD on the collected complex coefficient,

γ(f), in the scatterer model is shown in Eq. A.1.

γ(f) =
∑

k

Akf
αke−j 4πf

c
rm (A.1)

The model may be extended to a generalized polynomial of frequency as seen in Eq. A.2.

γ(f) =
∑

k

∑
m

ckmfme−j 4πf
c

rm (A.2)

The polynomial form may be more appropriate in some instances where ultra-wideband

bandwidths are available, as the GTD model estimate will fit a single α to the dependence,

which may be an over simplification.

One direct method for determining the parameters of either frequency dependent model

is called Parametric Scattering Law Identification (PSLI) [22]. This algorithm provides

characterization of both the complex amplitude envelope and the ranges for each scatterer.

Some nonlinear methods for finding the same parameters were investigated in [39][11]. An
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Table A.1: GTD-predicted α for Various Features.

Scattering Geometries Power Law

Discontinuity of curvature on edge −4/2

Cone tip −2/2

Curved-edge diffraction −1/2

Doubly curved surface, straight edge 0/2

Singly curved surface (cylinder) 1/2

Corner reflector, plate 2/2

Groove, duct 3/2

Rayleigh scattering 4/2

example of PSLI applied to a cone shaped target may be seen in Fig. A.1. The power-law

values of 0, −1
2 , and 3

2 were correctly identified for the sphere tip, base edges, and grooves,

respectively.

The addition of this parameter to the model has illuminated an interesting occurrence.

If the rank of the Hankel matrix is misjudged as a higher value than the truth, a pole

multiplicity occurs for scatterers of α other than zero. Furthmore, Wilkinson[52] observed

that multiple roots of polynomials explode symmetrically with the introduction of noise. An

explosion in this case means a movement in the complex plane away from a root’s original

position. As the noise is increased, the roots into which a multiple root explodes, radiate

symmetrically outward. The cluster average turns out to be near the original location.

Methods have been developed to recover root multiplicity by clustering the perturbed roots

[9] [53] [26]. Unfortunately, these clustering methods are not robust. Clusters and singlet

roots due to nearby scatterers cannot in general be separated. The key to avoiding this

problem is to estimate the rank as closely as possible.
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Figure A.1: RTI based upon PSLI algorithm which exploits power law representation of
GTD behavior
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Appendix B

Torque-Free Motion Examples

The rotational motion of a rigid body can produce some interesting trajectories for

the affixed scatterers. Even for the same body, as defined by its moments of inertia, the

trajectories can be quite different for various initial angular velocities. Table B.1 and

Table B.2 list the four examples to be explored in this section. Table B.1 shows the initial

conditions for each example and the elapsed time. Table B.2 shows various parameters

calculated using the initial conditions

Table B.1: Motion Example - Initial Conditions: Ī, ω̄, t

# Ī
[
kg ·m2

]
ω̄

[
rad
s

]
t[s]

1 150, 150, 30 1.0,1.0,0.1 75

2 150, 150, 30 1.0,1.0,5.0 15

3 150, 130, 30 1.0,1.0,5.0 15

4 150, 90, 30 1.0,1.0,5.0 15

The first and second targets are both axially symmetric. The difference is that the

initial condition of ωz is varied. The first case resembles a quickly precessing, or tumbling,

target. This occurs because ωz is set smaller than both ωx and ωy. The second case is a

quickly spinning target, as the value of ωz is set significantly larger than ωx and ωy. Due

to the symmetry, both of these cases have values of zero for k and n. The third and fourth
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Table B.2: Motion Example - Parameters: h, T , k, n, c, ωψ, ωφ

# h
[

kg·m2

s

]
T [J ] k n c ωψ

[
rad
s

]
ωφ

[
rad
s

]

1 212.2 150.2 0.00 0.00 1 0.08 1.41

2 259.8 525.0 0.00 0.00 1 4.00 1.73

3 248.8 515.0 0.26 -0.04 1.02 3.91 1.79

4 230.4 495.0 0.50 -0.20 1.02 3.51 2.12

examples are of spinning asymmetric targets. They have similar spin and precession rates

as example three, but have nonzero k and n values. The fourth target has more asymmetry

than the third target as it has a k value which has nearly doubled. The figures will be

viewed by category. The five categories are rotation angles, rotation rates, 3D position and

RTI.

B.1 Rotation

In this section the rotations functions, shown in Eq. B.1 through Eq. B.3, are evaluated

and plotted for the four examples. The precession φ(t) is colored red, the nutation θ(t) is

green, and the spin ψ(t) is blue.

φ(t) =
h(Ix − Iz)

pIxIz
Π(sn(pt, k), n, k)− ht

Iz
(B.1)

θ(t) = cos−1

(
Izωz

h

)
(B.2)

ψ(t) = tan−1

(−Iyωy

Ixωx

)
(B.3)
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Figure B.1: Spin, nutation and precession: #1, Ī = [150.0, 150.0, 30.0], ω̄ = [1.0, 1.0, 0.1].
This plot shows a target precessing almost 20 times faster than it is spinning. This is
sometimes referred to as a tumbling motion. The rotations are perfectly linear with time
as the target is axially symmetric.

Figure B.2: Spin, nutation and precession: #2, Ī = [150.0, 150.0, 30.0], ω̄ = [1.0, 1.0, 5.0].
This plot shows a target spinning more than twice as fast as it is precessing. This is
sometimes referred to as a spinning motion. The rotations are again perfectly linear with
time as this target is also axially symmetric.
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Figure B.3: Spin, nutation and precession: #3, Ī = [150.0, 130.0, 30.0], ω̄ = [1.0, 1.0, 5.0].
This plot shows a target similar to that found in example 2, although it has some axial
asymmetry. It has minor sinusoidal perturbations to each rotation which are difficult to see
on this plot.

Figure B.4: Spin, nutation and precession: #4, Ī = [150.0, 90.0, 30.0], ω̄ = [1.0, 1.0, 5.0].
This plot shows a target similar to that found in examples 2 and 3, although it has more
axial asymmetry. The sinusoidal perturbations are slightly more apparent on this plot.
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B.2 Rotation Rate

In this section the rotation function derivatives, shown in Eq. B.4 through Eq. B.6, are

evaluated and plotted for the four examples. The precession rate φ̇(t) is colored red, the

nutation rate θ̇(t) is green, and the spin rate ψ̇(t) is blue.

φ̇(t) =
h

Ix
− h(Ix − Iz)

pIxIz

(
p

1− nsn(pt, k)2
− p

)
(B.4)

θ̇(t) =
−Izω̇z

h
√

1− I2
z ω2

z
h2

(B.5)

ψ̇(t) =
−IxIy(ω̇xωy − ω̇yωx)

I2
xω2

x + I2
yω2

y

(B.6)

Figure B.5: Spin, nutation and precession rates: #1, Ī = [150.0, 150.0, 30.0], ω̄ =
[1.0, 1.0, 0.1]. This plot shows that all three rotational rates are constant for all elapsed
time. As expected from Fig. B.1 the precession rate is larger than the spin rate, and the
nutation rate is zero.
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Figure B.6: Spin, nutation and precession rates: #2, Ī = [150.0, 150.0, 30.0], ω̄ =
[1.0, 1.0, 5.0]. This plot shows that all three rotational rates are constant for all elapsed
time. As expected from Fig. B.2 the spin rate is larger than the precession rate, and the
nutation rate is again zero.

Figure B.7: Spin, nutation and precession rates: #3, Ī = [150.0, 130.0, 30.0], ω̄ =
[1.0, 1.0, 5.0]. This plot shows that for the asymmetric target all three rotational rates
are no longer constant. They all have a periodic perturbation of approximately 1

4
rad
s .
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Figure B.8: Spin, nutation and precession rates: #4, Ī = [150.0, 90.0, 30.0], ω̄ =
[1.0, 1.0, 5.0]. This plot shows for another asymmetric target that the three rotational rates
are not constant. This target has more asymmetry than that found in the third example,
and as such has a larger periodic perturbation of nearly 1rad

s
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B.3 Scatterer Position

In this section the rotation matrices are evaluated and applied to point scatterers, as

shown in Eq. B.7 and Eq. B.8, for the four examples.

pm(t) =




cψcθcφ − sψsφ cψcθsφ + sψcφ −cψsθ

−sψcθcφ − cψsφ −sψcθsφ + cψcφ sψsθ

sθcφ sθsφ cθ







xm

ym

zm




(B.7)

=




xm(cψcθcφ − sψsφ) + ym(cψcθsφ + sψcφ)− zmcψsθ

xm(−sψcθcφ − cψsφ) + ym(−sψcθsφ + cψcφ) + zmsψsθ

xmsθcφ + ymsθsφ + zmcθ




(B.8)

These examples all use three point scatterers whose initial positions pk are specified by

< x, y, z > triplets as seen in Eq. B.9 through Eq. B.11. In each example, the first scatterer

is colored black, the second scatterer is red, and the third scatterer is blue.

p1 = < 0.00, 0.00, 1.00 > (B.9)

p2 = < 0.05, 0.05, 0.50 > (B.10)

p3 = < 0.10,−0.10,−0.25 > (B.11)
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Figure B.9: 3D Scatterer Positions: Colored by scatterer: #1, Ī = [150.0, 150.0, 30.0],ω̄ =
[1.0, 1.0, 0.1]. This plot shows the tumbling target. The black scatterer follows a perfectly
circular trajectory due to its location on the z − axis. The circle is not close because the
target does not complete a full spin revolution.

Figure B.10: 3D Scatterer Positions: Colored by time: Red indicates start of time, blue
indicates end of time; #1, Ī = [150.0, 150.0, 30.0],ω̄ = [1.0, 1.0, 0.1]. This plot shows an
alternate representation of example 1. The scatterer’s color depicts elapsed time instead of
scatterer number. Red indicates the start of the elapsed time, blue indicates the end.
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Figure B.11: 3D Scatterer Positions: Colored by scatterer: #2, Ī = [150.0, 150.0, 30.0],ω̄ =
[1.0, 1.0, 5.0]. This plot shows an axially symmetric spinning target. The black scatterer
again follows a circular trajectory, but is not on the same plane as the other scatterers.

Figure B.12: 3D Scatterer Positions: Colored by scatterer: #3, Ī = [150.0, 130.0, 30.0],ω̄ =
[1.0, 1.0, 5.0]. This plot shows an asymmetric spinning target. The nutation is causing the
circular trajectories to become slightly bowed towards the negative z − axis.
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Figure B.13: 3D Scatterer Positions: Colored by scatterer: #4, Ī = [150.0, 90.0, 30.0],ω̄ =
[1.0, 1.0, 5.0]. This plot shows the other asymmetric spinning target. The nutation is causing
the circular trajectories to become significantly bowed towards the negative z − axis.
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B.4 Range versus Time

In this section the 1D projection, shown in Eq. B.12, is evaluated and plotted for the four

examples. The projection is taken at Cxyz = [0.1098, 0.1098, 0.9879] for these examples. In

each example, the first scatterer is colored black, the second scatterer is red, and the third

scatterer is blue.

rm = Cxyzpm(t) (B.12)

Figure B.14: Range versus Time:#1, Ī = [150.0, 150.0, 30.0], ω̄ = [1.0, 1.0, 0.1]. This plot
shows the amplitude modulated range functions for each scatterer given the constant spin
and precession rates of the tumbling motion. The black scatterer has periodicity given
solely by the spin rate due to its location on the z − axis.
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Figure B.15: Range versus Time:#2, Ī = [150.0, 150.0, 30.0], ω̄ = [1.0, 1.0, 5.0]. This plot
shows the amplitude modulated range functions for each scatterer given the constant spin
and precession rates of the spinning motion.

Figure B.16: Range versus Time:#3, Ī = [150.0, 130.0, 30.0], ω̄ = [1.0, 1.0, 5.0]. This plot
shows the amplitude modulated and slightly frequency modulated range functions for each
scatterer given the sinusoidally perturbed spin and precession rates of the spinning motion.
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Figure B.17: Range versus Time:#4, Ī = [150.0, 90.0, 30.0], ω̄ = [1.0, 1.0, 5.0]. This plot
shows the amplitude modulated and frequency modulated range functions for each scatterer
given the sinusoidally perturbed spin and precession rates of the spinning motion.
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Appendix C

Scatterer Position Estimation

There are two methods of interest for finding scatterer positions given range-only infor-

mation. The first method performs a matrix factorization of a tracked scatterer matrix.

It has properties well suited to separating multiple bodies. The second method applies a

physics-based rotations constraint using knowledge of the rotational rates.

C.1 Track Factorization Method

There exist methods for joint estimation of the target’s motion and the positions of each

scattering center. These methods may make the assumption of one or more rigid bodies

existing within the target scene although they apply no motion dynamics constraints. The

first algorithm to be discussed describes how to determine scatterer positions given tracked

scatterers residing on a single body. The second algorithm is a novel extension to a pre-

existing multiple shape factorization technique for a rotating body.

C.1.1 Single Body

Methods are known for the determination of a motion solution of a rigid body with

limited restriction of the domain of feasible solutions. One method exploits a matrix fac-

torization of tracked data. This has been explored in the 2D image domain[45] and has also

been considered in the context of 1D interpretation[6]. It is the 1D algorithm which is par-

ticulary suited to the Radar problem. It is possible to find a 3D reconstruction of a tracked
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scatterer system using a Singular Value Decomposition (SVD) of a series of scatterer ranges

arranged into a rectangular matrix.

A benefit of this algorithm is that not only do we not need to know the line of sight

at each return, but the returns need not be consecutive nor evenly spaced in time. This

is convenient if the Radar has a variable pulse repetition frequency (PRF). However, all

scatterers must be rigidly attached to the object, or undergoing identical rotational motions,

else a false solution will be generated.

A scatterer track matrix R may be decomposed into two factors as seen in Eq. C.1. The

first factor is an array of the scatterers affixed to the object in a target fixed coordinate

system. The second is an array of direction cosines for each return signifying the rotation

at each moment in time.

R =




Cx0 Cy0 Cz0

Cx1 Cy1 Cz1

...
...

...

Cxn Cyn Czn







x1 x2 · · · xm

y1 y2 · · · ym

z1 z2 · · · zm




(C.1)

=




Cx0x1 + Cy0y1 + Cz0z1 · · · Cx0xm + Cy0ym + Cz0zm

Cx1x1 + Cy1y1 + Cz1z1 · · · Cx1xm + Cy1ym + Cz1zm

...
. . .

...

Cxnx1 + Cyny1 + Cznz1 · · · Cxnxm + Cynym + Cznzm




(C.2)

The results of an SVD on this tracked range matrix may be used to find the motion

and positions. The rank determines the complexity of the motion[45]. A rank of two would

signify a 2D, or planar motion, whereas a rank of three implies a full 3D rotation space.

R = UΣV H (C.3)

= Uαζ>V H (C.4)
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The positions and direction cosines may then be found from Eq. C.5 and Eq. C.6.



x1 x2 · · · xm

y1 y2 · · · ym

z1 z2 · · · zm




= −V ζ (C.5)




Cx0 Cy0 Cz0

Cx1 Cy1 Cz1

...
...

...

Cxn Cyn Czn




= Uα (C.6)

The parameter α is found by applying the fact that the product of a direction cosine

row [CxCyCz] with its transpose is one. This implies that the diagonal of a matrix product

of direction cosines, each cosine vector forming a row, with its transpose is all ones. This

product is shown in Eq. C.7. This may be used in the solution for α by asserting that the

diagonal of UααT UT need also be ones[6, 45]. A system of equations may be composed to

assert this fact. Given α, the value of ζ may be found by computing Σα†. Further discussion

of implementation details and performance of this algorithm may be found in [45].




Cx0 Cy0 Cz0

Cx1 Cy1 Cz1

...
...

...

Cxn Cyn Czn







Cx0 Cx1 . . . Cxn

Cy0 Cy1 . . . Cyn

Cz0 Cz1 . . . Czn




=




1 ? ? ?

? 1 ? ?

? ?
. . . ?

? ? ? 1




(C.7)

A 2D example RTI and resulting < x, y > solutions of this position estimation technique

may be seen in Fig. C.1 and Fig. C.2. The initial positions of the scatterers and estimated

values are listed in Table C.1.
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Figure C.1: RTI - 1 Body, 5 Scatterers: All scatterers follow the identical trajectory.

Figure C.2: Position Estimation - 1 Body, 5 Scatterers: The initial positions are depicted
by the blue circles, whereas the estimated positions are shown as red + signs.
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Table C.1: Position Estimation Example. x and y are truth positions, x′ and y′ are estimated
positions.

x y x′ y′ |x′ − x| ∗ 10−5 |y′ − y| ∗ 10−5

0.6096 -0.8723 -0.6095 -0.8723 5.608 3.919

0.8110 0.8735 -0.8111 0.8734 -5.616 5.214

-0.6617 0.1605 0.6617 0.1605 -1.032 -4.254

-0.7233 0.0329 0.7233 0.0329 -0.212 -4.650

0.2211 0.7128 -0.2211 0.7128 -4.583 1.422

C.1.2 Multiple Bodies

The target scene need not be limited to one containing a single object. When multiple

objects occupy a region of space, making it difficult to determine which scattering centers

belong to which object, a preprocessing step is needed in order to continue the motion

estimation problem. A novel extension to the Radar multiple body problem is found by

applying the concept of shape interaction matrix discussed in length by Kanade[10] to

separate the tracks of their respective bodies.

This step requires the same tracked scatterer input as the previously discussed SVD

factorization method, but can identify and separate the rigid bodies motions and their

corresponding tracked scatterers. The algorithm is also based upon an analysis originally

composed using 2D images for motion estimation of scenes containing multiple moving

objects.

As previously mentioned, the rank of the tracked scatterer matrix determines the number

of degrees of freedom, or the total motion dimension. When multiple bodies are present,

the rank may be larger than three. For example, if the rank is five, then there possibly

exists two rigid bodies, one having a 2D motion and the other a 3D motion.

The shape interaction matrix, Q, given in Eq. C.8, shows the number of objects and the

dimensionality of the motion for each object.

Q = V V H (C.8)
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It is found by forming a product of the shape space matrix, defined in Eq. C.3, V with its

hermitian. The shape space matrix is comprised of linear combinations of each rigid body

sub space and can be permuted in such a way as to separate each sub-space into blocks

in a block diagonal matrix Q[45]. Costeira and Kanade have shown that formation of this

matrix is possible by simply sorting the columns or rows of the initial tracked scatterer

matrix R such that the total off diagonal energy of Eq. C.8 is minimized. The algorithm

may be summarized as follows:

1. Form Q matrix.

2. Sort the first column or row by magnitude.

3. Find all “large” values. The columns which contained these values correspond to the

tracks of the nth body.

4. Remove these tracks from the V matrix.

5. Repeat until all tracks are assigned to a body.

An example set of crossing tracks from three bodies may be seen in Fig. C.3. For this

example, the scatterers lie in the same 2D plane. Their positions were arbitrarily chosen.

The three bodies are rotating about the plane at three different rates. The position of

each of the scatterers and how many rotation periods they progress in the sampled window

may be found in Table C.2. The original Q matrix, graphically depicted in Fig. C.4, has no

visible block structure. The process of block diagonalization determines which tracks belong

to which body. The block diagonalized Q matrix for this example may be seen in Fig. C.5.

The newly separated tracks, seen in Fig. C.6, may then be processed independently for

motion and parameter estimation.
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Figure C.3: RTI - 3 Bodies, 12 Scatterers: It is difficult to visually separate the overlapping
tracks.

Figure C.4: Q-Matrix: There is no initial apparent structure
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Figure C.5: Q-Matrix, Block Diagonalized: The structure shows that there are three bodies,
the first has 5 scatterers, the second has 3, and the third has 4.

Figure C.6: RTI - Separated Bodies: The tracks from each body may now be independently
processed.
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Table C.2: Multi-body Identification Example.

Body # # Rotation Periods x y

1 2 0.6096 -0.8723

0.8110 0.8735

-0.6617 0.1605

-0.7233 0.0329

0.2211 0.7128

2 1 -0.0690 0.2976

0.4791 0.0813

0.1925 -0.8936

3 0.5 -0.3322 0.1059

-0.6568 -0.8295

0.2498 0.1025

-0.0871 -0.2220
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C.2 Rate Constrained

If an estimate of the rotation rates is available, such as from the frequency decomposition

of a range track, the position estimate problem may be constrained to use these rates. This

differs from the matrix factorization technique by requiring that the target rotates in a

particular manner, not simply that it rotates. The first section briefly covers the simpler

problem of a planar rotation. It shows how the estimation of the scatterers position may

be posed as a least squares problem. The following section briefly covers the solution of

parameters for a spinning and precessing target. This problem is posed as a nonlinear

estimation problem.

C.2.1 Planar Motion

A special case is that of a 2D planar rotation, or a tumble. This motion has a single

rate of rotation, reducing the complexity of the problem to two dimensions of movement for

each scatterer. Given the ranges to tracked scatterers across multiple known angles of look,

one may setup a linear system of equations, seen in Eq. C.10, to solve for the position of

each scatterer. The scatterers need to be tracked to extract this information. This system

is solved with a single least squares fit of a sparse matrix to the range data[23]. It requires

a single matrix pseudo-inverse.

rm(t) = rm cos(ωψt + ϕ) (C.9)

= xm cos(ωψt) + ym sin(ωψt) (C.10)

The following equations represent blocks within a sparse matrix which is fit to the

tracked scatterers. The constraint of each scatterer undergoing a sinusoidal motion at a

fixed rate is constructed by forming a two column block for each scatterer consisting of sin
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and cos evaluations of the rate times the collection time.

ρ =




cωψt0 sωψt0

cωψt1 sωψt1

...
...

cωψtn sωψtn




(C.11)

Each range track is formed using a corresponding coordinate, as seen in Eq. C.12.

σm =




xm

ym


 (C.12)

The ranges of the mth tracked scatterer, rm, are stacked in a column.

rm∗ =




rm(t0)

rm(t1)

...

rm(tn)




(C.13)

The system of equations may be seen in Eq. C.27.

Ax = b (C.14)


ρ 0 0 0

0 ρ 0 0

0 0
. . . 0

0 0 0 ρ







σ1

σ2

...

σm




=




r1∗

r2∗

...

rm∗




(C.15)
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This problem is in the form of a traditional Ax = b Least Squares problem. A pseudo-

inverse is required due to the systems rectangular dimensions.

Ax = b (C.16)

x = A†b (C.17)

If the rotation rate is known and the scatterers are tracked, but there is range offset ξ

occurring at each moment in time, a similar algorithm may be used to find the scatterer

positions.

rm(t) = xm cos(ωψt) + ym sin(ωψt)− ξ(t) (C.18)

The range offset can be represented in multiple ways. It can be arbitrary for each

return, or approximated as a polynomial of some order. Arbitrary offsets add n additional

unknowns, whereas polynomial offsets would only add an unknown for each degree of time.

The polynomial offset is represented by a series of column vectors raising t to values up to

the polynomial order.

tε =




t01 t11 . . . to1

t02 t12 . . . to2

...
...

...
...

t0n t1n . . . ton




∈ R(n+1)×(o+1) (C.19)

The arbitrary offset is represented by an identity matrix. This signifies that each time

instant has its own corresponding range offset.

tε = I ∈ R(n+1)×(n+1) (C.20)

The result of the least squares fit of the new A matrix seen in Eq. C.21 to the tracked

scatterer ranges produces x, y pairs and either polynomial coefficients when using Eq. C.19
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or a list of range offsets using Eq. C.20.

A =




ρ 0 0 0 tε

0 ρ 0 0 tε

0 0
. . . 0 tε

0 0 0 ρ tε




(C.21)

C.2.2 Spinning and Precessing Motion

Given knowledge of the spin and precession rates, and assuming an amplitude modula-

tion model, a nonlinear constrained estimation problem may be composed to estimate range

offsets, the average nutation angle, and the fixed scatterer positions. The range offsets are

with respect to the target’s center of gravity, relative to the current zero range. There is one

range offset for each return, creating n unknowns. The nutation angle and scatterer loca-

tions in the target’s coordinate system remain constant for the collections duration adding

1 + 3m more unknowns. The line of sight direction cosine adds an additional 3 unknowns.

Using the scatter coordinates, the three Euler rotations defined in Chapter 2, as well

as the two Radar line of sight rotations for looking down the z-axis, one may construct an

equation that would produce the RTI, as seen in Eq. C.22.

rm(t) = Cxyz Rz(ωψt) Ry(κθ) Rz(ωφt) pm (C.22)
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The rotations and direction cosines of Eq. C.22 may be evaluated to form Eq. C.23.

rm(ωφ, ωψ, t, xm, ym, zm, κθ, Cx, Cy, Cz, ξ) = Cxxm cos(κθ)[cos(ωφt) cos(ωψt)]

−Cyxm cos(κθ)[cos(ωφt) sin(ωψt)]

+Cxym cos(κθ)[sin(ωφt) cos(ωψt)]

−Cyym cos(κθ)[sin(ωφt) sin(ωψt)]

−Cxzm sin(κθ)[cos(ωψt)]

+Cyzm sin(κθ)[sin(ωψt)]

+Czxm sin(κθ)[cos(ωφt)]

+Czym sin(κθ)[sin(ωφt)]

−Cxxm[sin(ωφt) sin(ωψt)]

−Cyzm[sin(ωφt) cos(ωψt)]

+Cxym[cos(ωφt) sin(ωψt)]

+Cyym[cos(ωφt) cos(ωψt)]

+Czzm cos(κθ)− ξ (C.23)

The equation may be organized into products of known variables with unknown vari-

ables, as seen in Table C.3. Since one knows the two rotation frequencies, ωφ and ωψ, as

well as the scatterer range for each moment in time, we may solve for the scatterer locations

in two phases. The first phase involves performing a linear least squares fit of the RTI data

to the sin and cos evaluations of the the rates and corresponding times. The results of this
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Table C.3: Motion Decomposition: Unknown and known terms.

Unknown Known

Cxxm cos(κθ) + Cyym cos(ωφt) cos(ωψt)

Cyxm cos(κθ)− Cxym −cos(ωφt) sin(ωψt)

Cxym cos(κθ)− Cyxm sin(ωφt) cos(ωψt)

Cyym cos(κθ) + Cxxm −sin(ωφt) sin(ωψt)

Cxzm sin(κθ) −cos(ωψt)

Cyzm sin(κθ) sin(ωψt)

Czxm sin(κθ) cos(ωφt)

Czym sin(κθ) sin(ωφt)

Czzm cos(κθ) 1

fit is a vector, σ, containing the functions of unknowns.

σk =




Cxxm cos(κθ) + Cyym

Cyxm cos(κθ)− Cxym

Cxym cos(κθ)− Cyxm

Cyym cos(κθ) + Cxxm

Cxzm sin(κθ)

Cyzm sin(κθ)

Czxm sin(κθ)

Czym sin(κθ)

Czzm cos(κθ)




(C.24)

Contained within these functions are the scatterer positions as well as the direction

cosines and the average nutation angle. The second phase involves nonlinear estimation of
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these remaining variables from this vector of functions.

Least Squares

A system of equations may be generated of the form Ax = b, where A is formed from

the known rotation rates and time, x is the vector unknowns for each scatterer and b is a

vector of tracked scatterer ranges. To aid in the formation in the matrix A, a sub-matrix

ρ is formed. This matrix, seen in Eq. C.25, contains the evaluations of the sin and cos

functions for each moment in time.

ρ =




cωφt0cωψt0 −cωφt0sωψt0 sωφt0cωψt0 −sωφt0sωψt0 −cωψt0 sωψt0 cωφt0 sωφt0 1

cωφt1cωψt1 −cωφt1sωψt1 sωφt1cωψt1 −sωφt1sωψt1 −cωψt1 sωψt1 cωφt1 sωφt1 1

...
...

...
...

...

cωφtncωψtn −cωφtnsωψtn sωφtncωψtn −sωφtnsωψtn −cωψtn sωψtn cωφtn sωφtn 1




(C.25)

The system of equations may be seen in Eq. C.27, where again x may found using a

pseudo-inverse of A.

Ax = b (C.26)


ρ 0 0 0

0 ρ 0 0

0 0
. . . 0

0 0 0 ρ







σ1

σ2

...

σm




=




r1

r2

...

rm




(C.27)

Range offsets may be handled in a similar fashion as in the 2D case for this least squares

problem using Eq. C.19 and Eq. C.20.
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Nonlinear Estimation

The second step requires nonlinear minimization because of the sin and cos evaluations

of the nutation angle. Nonlinear minimization also allows application of the unit magnitude

constraint for the direction cosine elements. A small number of iterations using Newton’s

method for a nonlinear system of equations produces each of the unknowns of Eq. C.24[2].

The iterative formula for Newton’s method may be seen in Eq. C.28. The variable x is a

vector containing the unknowns, f(x) is the function of the unknowns, and J{f(xi)} is the

Jacobian of the function of unknowns.

xi+1 = xi − J{f(xi)}† ∗ f(xi) (C.28)

The only additional work needed for this algorithm is to determine the vector’s Jacobian

J(σ). This Jacobian is too large to legibly illustrate in this thesis. Instead, the Jacobian of

the sub-vector σk is shown in Eq. C.29. The derivative order is Cx, Cy, Cz, xm, ym, zm, κθ.
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J(σk) =




xmcκθ
ym 0 Cxcκθ

Cy 0 −Cxxmsκθ

−ym xmcκθ
0 Cycκθ

−Cx 0 −Cyxmsκθ

ymcκθ
−zm 0 0 Cxcκθ

−Cy −Cxymsκθ

xm ymcκθ
0 Cx Cycκθ

0 −Cyymsκθ

zmsκθ
0 0 0 0 Cxsκθ

Cxzmcκθ

0 zmsκθ
0 0 0 Cysκθ

Cyzmcκθ

0 0 xmsκθ
Czsκθ

0 0 Czxmcκθ

0 0 ymsκθ
0 Czsκθ

0 Czymcκθ

0 0 zmcκθ
0 0 Czcκθ

−Czzmsκθ




(C.29)

An initial estimate vector must be supplied to begin the iteration sequence. The tracked

scatterer factorization method is appropriate for providing initial position estimates. Since

this could take an infinite number of iterations we set a tolerance factor, ε, to which we

compare the norm of the error.

ε > ‖xi+1 − xi‖2 (C.30)

Once this tolerance is achieved, the estimation is completed.
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Appendix D

Frequency Decomposition: sin(θ(t))

The nutation function, as shown in Eq. D.1 has a non-trivial frequency spectrum due

to its definition in terms of an inverse cosine.

θ̃(t) = cos−1

(
Izγ

h

π

2K(k)
+

Izγ

h

(2K(k)− π)
2K(k)

cos
(

ptπ

K(k)

))
(D.1)

The function as an argument to sine may be written in the form shown in Eq. D.2.

sin(θ̃(t)) =

√
1−

(
Izγ

h

π

2K(k)
+

Izγ

h

(2K(k)− π)
2K(k)

cos(
ptπ

K(k)
)
)2

(D.2)

Eq. D.2 shall be written in the compressed notation of Eq. D.3. The quantity of |a± b|
must be less than one to keep Eq. D.3 real.

sin(θ̃(t)) =
√

1− (a + b cos(ωmt))2 (D.3)

a =
Izγ

h

π

2K(k)
(D.4)

b =
Izγ

h

(2K(k)− π)
2K(k)

(D.5)

ωm =
ptπ

K(k)
(D.6)

As shown in Eq. D.7, the form of the transform is similar to that of a typical FM signal

as it possesses an infinite number of spectral line components located at nω. An example

spectrum is shown in Fig. D.1. The Fourier Transform, written as the integral shown in

Eq. D.8, can not be directly computed. It instead is computed as a series expansion about
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b = 0.

F{sin(θ(t))} =
∞∑

n=−∞
hn δ(ω − nωm) (D.7)

hn =
∫ 2π

0
e−jnωt

√
1− (a + b cos(ωmt))2 (D.8)

Figure D.1: Angular Frequency Spectrum: sin(θ(t)). Parameters: ωm = 20, a = 0.5,
b = 0.2, fs = 80, t = 2000

To acquire the Fourier amplitudes, the integral must be computed independently for

each harmonic. The amplitudes of harmonics from first to seventh order b expansion are



140

shown in Eq. D.9 through Eq. D.15.

h1 = c1((700a2 + 175 + 280a4)b7 + (−160a2 − 400a4 + 320a6 + 240)b5)

+c1(2304a4 − 1536a6 + 384− 1536a2 + 384a8)b3

+c1(1024a12 − 6144a10 + 1024 + 15360a8)b

+c1(15360a4 − 6144a2 − 20480a6)b (D.9)

h2 = c2((180a2 + 120a4 + 15)b6 + (128a6 + 64a2 − 224a4 + 32)b4)

+c2(128a8 + 128− 512a6 − 512a2 + 768a4)b2) (D.10)

h3 = c3((168a4 + 420a2 + 105)b7 + (160a6 − 80a2 − 200a4 + 120)b5)

+c3(128a8 + 128− 512a6 − 512a2 + 768a4)b3) (D.11)

h4 = c4((24a4 + 36a2 + 3)b6 + (16a6 − 28a4 + 8a2 + 4)b4) (D.12)

h5 = c5((56a4 + 140a2 + 35)b7 + (32a6 − 40a4 − 16a2 + 24)b5) (D.13)

h6 = c6(1 + 12a2 + 8a4)b6 (D.14)

h7 = c7(5 + 20a2 + 8a4)b7 (D.15)

The coefficients c1 through c7 may be seen in Eq. D.16 through Eq. D.22.

c1 =
−aπ

c(1− 6a2 + 15a4 − 20a6 + 15a8 − 6a10 + a12)1024
(D.16)

c2 =
−πc

(1− 6a2 + 15a4 − 20a6 + 15a8 − 6a10 + a12)512
(D.17)

c3 =
acπ

(−1 + 7a2 − 21a4 + 35a6 − 35a8 + 21a10 − 7a12 + a14)1024
(D.18)

c4 =
−cπ

(1− 6a2 + 15a4 − 20a6 + 15a8 − 6a10 + a12)256
(D.19)

c5 =
acπ

(−1 + 7a2 − 21a4 + 35a6 − 35a8 + 21a10 − 7a12 + a14)1024
(D.20)

c6 =
−cπ

(1− 6a2 + 15a4 − 20a6 + 15a8 − 6a10 + a12)512
(D.21)

c7 =
acπ

(−1 + 7a2 − 21a4 + 35a6 − 35a8 + 21a10− 7a12 + a14)1024
(D.22)

c =
√

1− a2 (D.23)
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Appendix E

Elliptic Modulus Estimation

The elliptic modulus, (Eq. E.1), provides a measure of asymmetry for a nearly symmetric

target.

k =

√
ε

Ix − ε− Iz

(h2 − 2IzT )
(2IxT − h2)

(E.1)

Estimation of this parameter would thereby present an analyst with an additional metric

useful for the characterization of a target. This section shows how the modulus may be

determined using the angular frequency spectrum along with estimates of the Radar line

of sight, the scatterer position, and the average nutation angle. Each of these parameters

may be estimated using a method such as the one described in Appendix C. As shown

in section 3.1, the elliptic modulus is determined by the moment of inertia and the initial

angular velocities. When the target is axially symmetric, the elliptic modulus is zero. In

section 3.3, a nearly symmetric target was defined as having a modulus of less than 0.5.

Two important time-constant parameters describing the motion of an axially asymmetric

object are its spin and precession rates, found in Eq. E.2 and Eq. E.3, which have units of

angular velocity, radians per second.

ωψ =
pπ

2K(k)
(E.2)

ωφ =
h

Ix
− h(Ix − Iz)(π + πr − 2K(k))

2IxIzK(k)
(E.3)

In the following, we will examine the relationship between these two rates and the asym-

metry of the target as characterized by its elliptic modulus. A visual aid for this discussion
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appears in Fig. E.1. The figure describes the Fourier component frequencies of the range

function for a given set of targets, Ī = [150, 150 → 60, 10], for which the initial body-fixed

angular velocities are ω̄ = [1, 1, 10]. This sweeping of Iy away from Ix increases the target’s

axial asymmetry, thereby increasing the elliptic modulus. The spin and precession rates

are indicated in the graph by dots which provide the associated rate value on the angular

frequency axis and the magnitude of the Fourier components of the range function on the

dependent axis. The target asymmetry, and thus the elliptic modulus, is denoted by the

color of the dots. For values of k ranging from 0 to 0.5, the colors transition from black to

a light beige. The dots representing the first spin harmonic instead transition from blue to

red, as these are the angular frequencies of immediate interest in the discussion that follows.

As shown in the modulation analysis, (section 3.4.2), the spin harmonic is generated by

the nutation periodic component of the fifth rotation term. The Fourier Transform of this

term may be seen again in Eq. E.4. It contains three spectral impulses located at 0, 2ωψ,

and −2ωψ.

F{r5
m(t)} = 2Czzmκθπ δ(0)

+Czzmκθ
(2K(k)− π)

π
π δ(ω − 2ωψ)

+Czzmκθ
(2K(k)− π)

π
π δ(ω + 2ωψ) (E.4)

The magnitude of the positive frequency spin harmonic may be seen in Eq. E.5. The

function is simplified in Eq. E.6 and Eq. E.7.

υ(k) = Czzmκθ
(2K(k)− π)

π
π (E.5)

= Czzmκθ(2K(k)− π) (E.6)

= 2CzzmκθK(k)− πCzzmκθ (E.7)

Solving Eq. E.7 for the Complete Elliptic Integral of the First Kind, K(k), produces

Eq. E.8. Values of K(k) for various k are shown in Fig. E.2.

K(k) =
υ(k) + Czzmκθπ

2Czzmκθ
(E.8)
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Figure E.1: Angular Frequency Spectrum for various k: Ix = 150, Iy = 150 → 60, Iz = 10,
ω̄ = [1, 1, 10]. The color denotes k value. The arrows indicate the direction toward which
the measured rate travels as the elliptic modulus is increased.
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Figure E.2: K(k) versus k

The value of k can be determined by evaluating the inverse of K(k). As an analytical

inverse was not available, a table of values is used to compute the value of k given an

estimate of K(k). This table was generated by evaluating k values ranging from 0.00 to

0.75, spaced apart by 0.0005 with the K(k) function.

An example angular frequency spectrum to be used for elliptic modulus estimation may

be seen in Fig. E.3. The magnitude of the spin harmonic frequency component is found from

the figure to be −46.63dB, or 0.0047. Substituting this magnitude into Eq. E.8 produces

a K(k) value of 1.6179. Evaluating this in the inverse K(k) function produces an elliptic

modulus of 0.3349, whereas the truth value is 0.3390.

Results of estimating the elliptic modulus for various input parameters may be seen in

Fig. E.4. This plot shows the average magnitude of the elliptic modulus estimation error

for various Cz and z. For each combination of Cz and z, there were 45 trials sweeping the

value of k from 0.05 to 0.5. There were 625 combinations of Cz and z tested. The values of

Cz ranged from −1 to 1 while z ranged from −4 to 4. The initial conditions are summarized

in Table E.1.
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Figure E.3: k Estimation Example: Angular Frequency Spectrum. Cxyz = [0.71, 0.58, 0.43],
pxyz = [2.92, 1.62, 1.52], κθ = 0.48

Table E.1: Parameters for k Estimation Trials

Parameter Values

Ix 150

Iy 150, 148, 146, . . . , 64, 62, 60

Iz 10

ω̄ [1, 1, 10]

Cz −1.0000,−0.9625,−0.9250, . . . , 0.9250, 0.9625, 1

z −4.0000,−3.6667,−3.3333, . . . , 3.3333, 3.6667, 4.000

The results shown in Fig. E.4 indicate that on average, the value of k was estimated with

an error of less than 0.05 for Cz and z values larger than 0.25. As these values increase, the

estimation error decreases. To estimate k, the values of Cz, zm and κθ must not be near

zero, else the magnitude of the first harmonic is too small to accurately measure. Fig. E.5

illustrates the region on the direction cosine unit sphere where the magnitude of the second
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harmonic is negligible.

Figure E.4: Error in the estimation of k: |k − kest|. For each Cz and z trial there is a dot
whose color denotes the average elliptic modulus estimation error.
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Figure E.5: Direction Cosine constraint: The rainbow colored band represents values of Cz

in the target fixed coordinate system near zero. A range function that is generated using
a line of sight which pierces this region would not generate a harmonic magnitude large
enough to accurately measure.
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Appendix F

Elimination: 3 Parameter Implicit

Function

Elimination may be applied to reduce the number of unknown parameters in the esti-

mation of the inertial values. In this particular case, three equations are known, so two

parameters may be eliminated.

ωψ =
π

2K(k)

√
(2IxT − h2)(Iy − Iz)

IxIyIz
(F.1)

ωφ =
h

Ix
− (h(Ix − Iz)(π + πr(Ix, Iy, Iz, k)− 2K(k))

2IxIzK(k)
(F.2)

k =

√
(Ix − Iy)(h2 − 2IzT )
(Iy − Iz)(2IxT − h2)

(F.3)

The result is an implicitly defined function in terms of the three principle moments of

inertia.

f(Ix, Iy, Iz) = 0 (F.4)

f(Ix, Iy, Iz) = k −
√

nq(Ix, Iy, Iz)
dq(Ix, Iy, Iz)

(F.5)

(F.6)
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The various variables used in Eq. F.4 may be seen in Eq. F.7 through Eq. F.25.

nq = c1 (γ1 + γ2 + γ3) (F.7)

dq = c2 (γ4 + γ5 + γ6) (F.8)

c1 = Iz (Ix − Iy) ωφ
2 (F.9)

c2 = Ix (Iy − Iz) Iy ωψ
2 (F.10)

γ1 = −πIx2y + πIx2y − 4Ix2yK(k) + 4
Ix2y

π
K(k)2 + πIx2yr

2 (F.11)

γ2 = 2πIx2yr − 4Ix2yrK(k) + Iyz2r
2 + 2Iyz2r + Iyz2 + Ix2z − Ixz2 (F.12)

γ3 = −2πIxyzr
2 − 4πIxyzr + 4IxyzrK(k)− 2πIxyz + πIxyz + 4IxyzK(k) (F.13)

γ4 = 4K(k)
(
−Ix2r − Ix2 +

Ix2

π
K(k) + Ixz + Ixzr − Ixzπr

K(k)

)
(F.14)

γ5 = 2π
(−Ixzr

2 + Ix2r − Ixz + Iz2r
)

(F.15)

γ6 = π
(
Ix2r

2 + Iz2r
2 + Ix2 + Iz2

)
(F.16)

Ix2 = I2
xπ (F.17)

Iz2 = I2
z π (F.18)

Ixy = IxIyπ (F.19)

Ixz = IxIzπ (F.20)

Ixyz = IyIzIxπ (F.21)

Ix2y = IyI
2
xπ (F.22)

Iyz2 = IyI
2
z π2 (F.23)

Ix2z = IzI
2
xπ2 (F.24)

Ixz2 = IxI2
z π2 (F.25)
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