

The Design and Implementation of Looping
Constructs for Robots

Project Team​​:

Rachel Hahn
Ian Johnson

Benjamin Mattiuzzi

rhahn@wpi.edu
icjohnson@wpi.edu
bmmattiuzzi@wpi.edu

gr-roboticlang@wpi.edu

Project Advisor:
Professor Michael A. Gennert

mailto:rhahn@wpi.edu
mailto:icjohnson@wpi.edu
mailto:bmmattiuzzi@wpi.edu

Abstract

Our goal is to make the job of programming WPI’s Atlas robot simpler for both the

experienced programmer and the new programmer. After meeting with the stakeholders of the
Atlas robot, we identified a few different options in order to achieve this goal. We used system
engineering tools to decide that creating a looping function was our best option. We then used
user stories, use cases, and test cases to help flush out what our function does and how it
operates. We finally implemented it and tested it with a sample of the Atlas code to ensure we
achieved our initial goal.

1

Acknowledgements

We would like to thank our project advisor who helped guide us through our project:

Professor Michael A. Gennert Project Advisor and Project Sponsor

We would also like to thank the following people who met with us in order to help us understand
the Atlas code:

Chris Atkeson Professor at Carnegie Mellon University
Benzun Pious Wisely Babu Ph.D. student in Robotics Engineering at WPI
Vinayak Jagtap Ph.D. student in Robotics Engineering at WPI

2

Executive Summary

We started off by gathering information about the history of WPI’s Atlas robot and the

difficulties that users have when writing code for it. We interviewed a number of people who had
written code for Atlas to find out where they believed the code base’s weaknesses lay. We heard
a lot of different, sometimes contradictory, ideas about the code base, but the one thing that was
universal was that the code was very hard to understand. It would take teams weeks or a few
months to fully understand the code well enough to start to make changes and add functionality.
With this in mind, we decided to create a library that could lay on top of the Atlas code and
abstract some of the less intelligible code into a more readable format, focusing on one of the
most prominent design patterns in robotics, loops.

Often, the high-level loop used in robotic programming will have a lot of complex logic
embedded in. For humans, it is natural to think that if we fail to pick up a hammer, we cannot
then use that hammer to pound in a nail, but that thought process often proves very hard to
implement. With this in mind, we created a suite of user stories and use cases to define the scope
of our project, and then a set of test cases to measure our achievement. Our goal is to have a
single looping function that would logically interpret a set of nested functions and loop through
them, jumping back or forward as necessary.

We decided to start from the most complex form and then simplify, so first we created a
version of the function that had all of the functionality we desired, but it was extremely verbose
and put a lot of the onus on the programmer. We then worked to iteratively improve the function,
giving it the ability to fill in fields that were left blank, and giving the user different options of
how to input data. When attempting to minimize the number of lines of code needed, we ended
up hitting some roadblocks in the nature of C++, causing our final product to not be as simplified
as we desired, while still being leagues simpler than writing the code without using our function.

We then ran some timing tests on our code to make sure that our added functionality did
not slow down code execution. We found that in cases of simple calculation, our code ran around
8 milliseconds slower than simply calling functions, and we concluded that this is negligible, as a
robot will often take more time than that to execute its movements.

3

Authorship

Rachel took a lead role in writing the Abstract, Methodology chapter, the Design and

Intent section in the Design and Examples chapter, and the User Guide. She also took part in
editing all parts of the paper after they were written. Rachel took lead in ensuring all interviews
and meetings were well documented while helping with the code.

Ian took a lead role in writing the Introduction chapter, Executive Summary, the
Implementation and Testing sections of the Analysis and Testing Chapter, and the User Guide.
He also took part in editing all parts of the paper after they were written. Ian took the role as the
main programmer while helping with interviewing.

Benjamin took a lead role in writing the Background chapter, the Interview Feedback
section in the Design and Examples chapter, the Deployment section in the analysis and testing
chapter, and the Conclusions chapter. He also took part in editing all parts of the paper after they
were written. Benjamin was the main point of contact for all interviewees while helping with
deployment of the code.

4

Table of Contents

Abstract 1

Acknowledgements 2

Executive Summary 3

Authorship 4

Table of Contents 5

Table of Acronyms 7

1.0 Introduction 8

2.0 Background 9
2.1 General Purpose Languages 9
2.2 Domain Specific Languages 10
2.3 Comparison of GPLs and DSLs 12
2.4 Our Platform 12

3.0 Methodology 13
3.1 Objectives 13
3.2 Interviews 13
3.3 Preliminary Design Review 13
3.4 Develop User Stories 13
3.5 Develop Use Cases 14
3.6 Develop Test Cases 14
3.7 Development and Testing of the Language 14

4.0 Design and Examples 15
4.1 Interview Feedback 15
4.2 Design and Intent 16

5.0 Analysis and Testing 19
5.1 Implementation 19
5.2 Testing 21
5.3 Deployment 21

6.0 Conclusions 22
6.1 Future Work 22
6.2 Conclusion 23

5

References 24

Appendix A: Our Preliminary Design Review 25
Project Objectives 25
Specifications and Challenges 25
Requirements 26

Appendix B: User Stories, Use Cases, and Test Cases 28
User Stories 28
Use Cases 28
Test Cases 30

6

Table of Acronyms
CDR Critical Design Review
CPU Central Processing Unit
DARPA Defense Advanced Research Projects Agency
DSL Domain Specific Language
GPL General Purpose Language
GPU Graphics Processing Unit
IDEA Intelligent Distributed Execution Architecture
NASA National Aeronautics and Space Administration
PDR Preliminary Design Review
ROS Robotic Operating System
RPL Reactive Plan Language
TDL Task Description Language
WARNER WPI’s Atlas Robot for Nonconventional Emergency Response
WPI Worcester Polytechnic Institute

7

1.0 Introduction
Currently it is the standard to use low level languages like C and C++ to interact with

robotic systems. Low level languages give programmers fine grain control of low level systems
such as memory management and direct access to hardware devices. Worcester Polytechnic
Institute’s (WPI) Atlas robot is currently programmed using C, however, there are some issues.

Programming in low level languages can obscure the meaning of code and introduce
difficult to find bugs in software. In addition, many programming languages are a compromise
between ideals. A language that might be perfect for one use of the Atlas robot might be useless
for another. Many people have attempted to create robotic programming languages in the past.
However, because of the extreme variety in the design and purpose of robots, there is no
consensus on what a robotic programming language should do; some requirements want code
that is error-free, some want code that is adjustable on the fly, some want code that self-corrects.
A programming language’s requirements will have to be determined by the stakeholders of the
robot.

The goal of our project is to design and implement a programming language for the Atlas
robot. The language will have the intuitive structure and approachability of a high level
programming language without abstracting all of the lower level functionalities that a low level
language affords the programmer. A programmer using the final system should be able to:

● Develop systems that are robust and simple to debug;
● Develop systems that are easily maintainable and extensible;
● Interact directly with the hardware in the system in an straightforward and non-error

prone fashion; and
● Understand the syntax easily to ensure it does not prove to be a major barrier to entry.

We will achieve this goal by conducting in-depth interviews with the stakeholders of the
Atlas robot, develop a prototype of the language, gather feedback, and implement a flushed-out
version of the language that should run on both the simulation of the Atlas robot as well as the
robot itself. These objectives will allow us to better see what part of the robot should be
improved upon as well as allow the programmers to better interact with it.

8

2.0 Background
This section describes the information needed to understand the goals and objectives of

our project. We will discuss an introduction to general purpose and domain specific languages,
the key differences between them, and define what our platform is for this project.

2.1 General Purpose Languages
In the early days of computing, programs were written in low level languages that were

uncompiled and ran directly on bare hardware, such as assembly or machine code. The syntax of
these low level languages was difficult to read, difficult to write, and error prone. As computing
technology evolved, so did the languages we used to program them. In the late 1950’s, higher
level languages, such as Lisp, Cobol, and Fortran, were developed to allow programmers to more
easily and effectively write code while also making them easier to learn. C was released in 1972
followed by its successor C++, which was released in 1983. These two languages were
particularly popular because they both allowed low level functions, for example direct memory
management, while still being easy to read and write. C and C++ had the added benefit of being
less error prone and easier to debug than lower level languages. Later languages, such as Python,
Perl, C#, and Java, all draw certain design choices from C and C++, such as their object oriented
paradigms, and even share certain syntax elements. All of these languages are examples of
general purpose languages (GPLs). They all contain a wide variety of tools, structures, and
libraries for building programs to perform many tasks. Small code snippets are shown below to
highlight syntactic differences between C, Java, and Lisp when printing the message ​“Hello,
World!”​ to the console.

C : cout << "Hello, World!\n";

Java : System.out.println(“Hello, World!\n”);

Lisp : (print “Hello, World!\n”)

In the above example, Lisp uses open and closed parentheses to enclose its statements

whereas C and Java statements do not. In Lisp, printing is possible with the simple keyword
‘p​rint ​’​ while in Java, it is necessary to specify where the ​“​println” ​ keyword comes from,
specifically the package ​“​System.out. ​”​ In C, the printing is performed by directly putting the
output text onto the terminal line with the built in ​“​cout ​”​ reference and the ​“​<< ​”​ symbol. In
both Java and C, statements must be concluded with a semicolon whereas doing this in Lisp
would cause a syntax error preventing the code from functioning. Each of these three code
snippets perform the same task, so semantically they are nearly identical, but it is easy to see
their syntax varies significantly.

9

There are many programming languages used in academia and industry today, and each
one has strengths and weaknesses that make it more or less appropriate for certain tasks. The
lower level languages, for example assembly and machine code, allow the programmer to write
code that is run directly on the hardware. These types of languages are commonly used when
size and efficiency are a top priority since programs written in them are small and fast to run.
Slightly higher level languages, for example C and C++, are commonly referred to as system
programming languages since they allow the programmer to interact directly with the hardware
in a computer with higher level functions like loops and conditionals. Languages similar to these
are commonly used to program operating systems, low level computer drivers, and libraries for
higher level languages. High level languages, for example Java and C#, start to add features that
aid in building larger suites of software. These languages may include object oriented structures
such as classes, methods, and interfaces to help organize code, but they typically do not include
the direct hardware manipulation that lower level languages have. The highest level languages,
otherwise known as scripting languages, such as Perl and Python, are used for everything from
embedded projects running on Raspberry Pi to small personal servers and even large pieces of
corporate software. These languages are unfit to write low level code that would be necessary to
create an operating system, but they are well suited for creating web applications and smart home
or internet of things devices. Every programming language has strengths and weaknesses and it
is important to consider these when choosing a language for a project.

2.2 Domain Specific Languages
The powerful feature of a GPL is that it is general enough to encode many programs. One

can create a website, a piece of software, a database, and an operating system using nothing but
C. These tasks require very different parts of the language, and in each case there are likely to be
large swaths of unused libraries and functionalities of the language that still have to included in
the final product. This is where designing a domain specific language (DSL) can be a reasonable
option. A DSL is a small language, either designed on top of an existing one or built from the
ground up, that is used for a specific task. Syntactically, a DSL can take almost any form, since it
is up to the designers to create a language that best fits the needs of the project. It is not possible
to express as many different programs using a DSL, but the programs you can express are likely
to be more efficient and smaller overall.

There are many examples of DSLs. The popular children's toy LEGO Mindstorm is a
good example. LEGO Mindstorm is a simple, block based DSL that allows children and young
adults to program a robot by dragging and dropping color coded blocks into a work environment
to build up programs. The blocks each have a specific function, such as operating a motor,
checking the value on a sensor, or looping a command or sequence of commands a certain
number of times or until a sensor reads a specific value.

10

Fig 1. a simple example of the graphic, block based DSL used to program LEGO

Mindstorm Robots.

This kind of graphic DSL is easy to learn, but highly restrictive in its uses. Graphic DSLs

tend to be very small languages, offering only basic looping and conditional commands, and
often only allowing functional programming. These features are sometimes advantageous, but
sometimes can prevent a language from reaching widespread deployment. Another language that
is compatible with the LEGO Mindstorm product line is Lejos, a Java derivative that is
specifically designed to run on the LEGO Mindstorm systems. Lejos has more features than the
default Mindstorm language. It includes most of the Java.lang, Java.util, and Java.io packages
and supports error handling, many data types, and even synchronization. What makes this
derivative of the Java language a DSL, is that it can only be deployed on the Mindstorm System.

Another interesting user of DSLs is ​the National Aeronautics and Space Administration
(​NASA), which uses DSLs for many different projects. Some notable examples include
Intelligent Distributed Execution Architecture (IDEA), reactive plan language (RPL), and task
description language (TDL). IDEA is a model based planning and execution system that was
developed to help eradicate small bugs in systems at the planning, execution and diagnostic
layers caused by semantic differences in the model (Verma et al., 2005, p. 3). RPL is a fairly
fully featured language with a Lisp like structure that adds certain “policies” that are held true
during the extent of the execution of a program (Verma et. al 6). TDL is an extension of C++ that
adds support and commands for high level control of robots. It is translated with the Java
compiler into pure C++ and then compiled into an executable using any C or C++ compiler
(Verma et al., 2005, p. 7). TDL focuses on “high level control constructs like task

11

decomposition, task synchronization and coordination, execution handling and execution
monitoring, and distributed synchronization of multiple agents” (Verma et al., 2005, p. 7) to
create a powerful and robust language for the specific purpose of programming and controlling
robots.

2.3 Comparison of GPLs and DSLs
Given the breadth of DSLs and GPLs in existence, it is important to look at some of the

key differences to understand the advantages and drawbacks to each option. A DSL tends to be
smaller and more efficient since many extraneous features are removed in the design process.
GPLs tend to be more widely used, and remain relevant for longer in the general computing
community. Some GPLs like Fortran and Cobol have been in use since the late 1950’s and are
still in industry today, whereas no DSL has ever reached that level of widespread deployment. A
major drawback to using a DSL is that it must be designed and implemented before work on the
final product can begin. Creating a DSL takes careful domain analysis and planning,
implementation, and testing. These tasks can create a huge overhead for a project before the
work on the actual product can begin. On the other hand though, since a DSL has to be created
specifically for a project, the designers can choose to include certain critical features directly into
the language. The ability to include functionality directly into a language reduces extra code,
especially repetitive boilerplate type code, so that the final project can be more efficient and
smaller overall.

2.4 Our Platform
Atlas is a line of humanoid robots developed by Boston Dynamics. WPI was loaned an

Atlas, named WARNER (WPI’s Atlas Robot for Nonconventional Emergency Response), to
allow students and faculty to compete in the Defense Advanced Research Projects Agency
(DARPA) Robotics Challenge (Prato, 2016). At WPI, WARNER is primarily programmed using
C and C++. Atlas robots are a distributed systems of five main computers, four of which are
programmable by the faculty and staff, one of which remains a ‘black box,’ programmed by
Boston Dynamics when they released the robot to WPI. Much of the work on Atlas begins in
simulators, where developers are able to test changes to the programming in an environment
where the robot itself cannot get hurt. Once the simulations are tested and correct, the program
can be loaded onto Atlas and tested and further refined. Developing for the Atlas robot can be
very difficult, as any distributed system presents challenges to programming, and it can take a
new programmer days or weeks to learn how to create even a simple program to perform a task
like raising the robots arm. Using C to program Atlas presents advantages and disadvantages.
Since it is a lower level language than Python or Java, it allows the programmer to directly

12

access hardware on the robot but it also makes communicating between the different systems on
the robot more difficult.

13

3.0 Methodology
This section describes the steps that we took to achieve our goal. We used systems

engineering concepts such as a preliminary design review, throughout the process of our project
to ensure we were well prepared for implementation.

3.1 Objectives
The goal of our project is to create a programing language for the humanoid robot series,

Atlas, that will work on top of the existing C/C++ code. To achieve this goal, we had set the
following objectives:

1. Identify stakeholders’ needs through interviews;
2. Design a function through user stories, use cases, and test cases;
3. Implement and test our language.

3.2 Interviews
To help us better understand the scope of our project, we conducted three interviews with

graduate students, as well as the professors who have previously worked with the Atlas robot.
These interviews helped us understand the nature of programming WPI’s Atlas robot, while
helping us determine features that should be implemented in the language the we created. After
completing these interviews, we refined our project goal and used the information we gathered to
help us identify the stakeholder needs and requirements.

3.3 Preliminary Design Review
After establishing the background of knowledge relevant to our project, we created a

preliminary design review (PDR) to help us flush out our deliverables; see Appendix A for the
full review. A PDR is an assessment that helped us narrow down from multiple design concepts
to one that we developed further. The assessments looked at which concepts met the maximum
amount of requirements without going over on cost and time. We used this to help measure how
realistic our ideas were.

3.4 Develop User Stories
Once we chose the design that we wanted to focus on, we created user stories based upon

the needs and requirements that we previously established (see Appendix B). A user story is a
short statement that describes what a user wants while using the system. We used these

14

statements as a base to help understand what actions a user might take on our function. This
helped us ensure that we are creating a function based on user requirements without going too
much into detail.

3.5 Develop Use Cases
Following the user stories that we developed, we created use cases which helped us flush

out how a user would interact with our function (see Appendix B). A use case is a set of
information that helps to define what should happen between an actor (or user) and a system
when achieving a goal. Each use case contains the primary actor (those who will interact with
our language), the arguments for the action, the triggers that start the action, the basic flow of the
action, and the end condition that tells the actor when the action is finished. These use cases
helped us understand how our system should operate while taking the user’s actions into
consideration.

3.6 Develop Test Cases
After we created a comprehensive set of use cases, we developed a set of test cases which

allowed us to measure if our goals are being met (see Appendix B). A test case is a set of
information that helps us to understand if the requirements are being met as well as ensuring that
a system is running correctly. Our test cases included a summary of an action, the procedure of
what the user did, the data that the user gave the function, and the expected result of that action
being run. These test cases were be run as we were developing the language and helped us avoid
writing useless code. Our test cases covered all the use cases we had previously defined. We also
created regression tests that checked if we removed any of the pre-existing functionality of the
language.

3.7 Development and Testing of the Language
Our next step was to fully develop the language. We completed development of our

function by using the language C++ and by using Git to help us collaborate. As we developed,
we were continuously testing to ensure we were achieving our initial goals. We also added new
tests and revised existing tests depending on the issues and new concepts that we discovered
throughout the process. To help a user understand how to use our function, we created a
supplemental user guide that describes how to implement and use our function with their code
base. Once we created a working version of the function, we attempted to deployed it to the
simulation of the Atlas robot.

15

4.0 Design and Examples
In this section we discuss how we used the feedback from our interviews to help design

our function. We also explain the flow of using our function through the flushed out user stories,
use cases, and test cases.

4.1 Interview Feedback
Over the course of our project we were able to interview many experts in the robotics

field and individuals who worked specifically on the ATLAS robot. They had some interesting
ideas and opinions. One common feeling among many of the people we interviewed is that they
believed that, in the future, C and C++ will be replaced as the primary robot language by higher
level more abstract languages. These higher level languages may have different paradigms than
C or C++ entirely, with different systems for very careful and specific error handling and safety
features to prevent unwanted outcomes such as falling over or breaking things. Some of the
individuals we interviewed were wary of domain specific languages (DSLs), something we were
considering as a good solution at the beginning of the project. While DSLs have their
advantages, they rarely reach widespread deployment because they are too specific.

Another idea that many of our stakeholders shared was that our initial design was too
ambiguous and grandiose in scale. Many of our stakeholders believed that the safety and error
handling in the program is a key feature that should be focused upon. One interesting idea that
was shared with us is that robots need to get bored, meaning that if a robot keeps performing an
action to a failure state, it should give up and try new things. This is putting a very human trait
into the robots, if you fail a bunch of times then maybe it is necessary to try performing the
action a different way or just not performing the action at all. Another similar view expressed by
some of our stakeholders was that human error is the largest issue facing robotics and the best
way to prevent robots from failing is to make it harder for humans to tell the robot to do
something that will result in failures. The idea of better error handling and safety mechanisms to
prevent the robot from doing things it knows will end in it crashing, while difficult to implement,
will be the best way to prevent accidents.

Other stakeholders had more hands on suggestions to things that needed to be worked on
in the ATLAS robot. The ATLAS robot is a distributed system that relies on multiple discrete
systems working together to function. Not all of the hardware on the ATLAS robot is accessible
by the programmers, some are unmodifiable black boxes programmed by Boston Dynamics.
Others cannot be programmed directly, any update in that part of the system must be transported
to it over the built in communication protocols between the discrete systems. This proposes a
challenge in and of itself, while the programmer is not directly responsible for communication
between each discrete system on the ATLAS bot they still need to understand how it works.

16

Furthermore, there is a whole suite of tools to work with the ATLAS robot, including command
line tools to communicate with the robot, tools to load programs to the robot, simulators to test
programs, and many more. All these things together create a system that can be difficult to work
with even with experience and can be almost unapproachable to a beginner. One stakeholder
expressed the need for an easier way to interface with the ATLAS robot, or if that is not possible,
at least good resources for beginners to more easily learn how to interface with the robot and
build programs. While this is not specifically what we are choosing to focus on in our project,
this could be an interesting jumping off point for future work.

4.2 Design and Intent
When programming a robot such as WARNER, the programmer must be able to run an

action multiple times to ensure success. For example, an action could be “pick up a hammer,”
which is made of a few sub-actions: open hand, extend arm, move arm above hammer, close
hand on hammer, and move arm up. Since these are sub-actions, they need to be run sequentially,
but if sub-action move arm over hammer fails, the robot should not start the entire action over.
The looping function we designed allows a programmer to run an action, or a list of sub-actions,
a specified amount of times or until success. Our function is designed to allow the programmer
the opportunity to design how they want the sub-actions to run by using breakpoints that are
placed between sets of sub-actions.

Looking back at our hammer example, we can look at the user story for it: I want action
pick_up_hammer​ with sub-actions (1) ​open_hand​, (2) ​extend_arm​, (3)
move_arm_above_hammer​, (4) ​close_hand_on_hammer​, and (5) ​move_arm_up​ to be run with
the grouping:

{​1, {2, 3, 4}, 5}​.

Actions 2, 3, and 4 are grouped because they depend on each other; if ​close_hand_on_hammer
fails, it may be because ​extend_arm​ did not fully complete, or because
move_arm_above_hammer​ did not end up in the correct location. This allows the function to
jump back to sub-action 2 if sub-action 3 or 4 fails, instead of jumping all the way back to the
beginning.

Next, we will look at the use case for our hammer example:

Actor The programmer

Arguments The sub-actions need to be run with the grouping ​1, {2, 3, 4}, 5

Triggers A success on a sub-action

Basic Flow If a sub-action succeeds, move onto the next sub-action. If sub-action

17

fails, jump back to the last breakpoint.

End Condition Action ​pick_up_hammer​ is completed successfully

This use case shows a bit more information about how the user will interact with our function.
The programmer needs to specify the groupings of the sub-actions in order for the function to run
properly. It then shows how the function will operate on a high level given the user input. It also
shows that the function will run indefinitely until the full action is completed; this is the default
option of function but the user does have the option to specify how many times they would want
the sub-actions to run before termination of the action.

Lastly, we will look at a test case of the hammer example to show how we tested our
function to ensure it was working properly.

Summary I want action ​pick_up_hammer​ with sub-actions (1) ​open_hand​, (2)
extend_arm​, (3) ​move_arm_above_hammer​, (4)
close_hand_on_hammer​, and (5) ​move_arm_up​ to be run with the
grouping 1, {2, 3, 4}, 5

Test Procedure Call looping function with a list of sub-actions with the specified
grouping

Test Data sub-actions: (1) ​open_hand​, (2) ​extend_arm​, (3)
move_arm_above_hammer​, (4) ​close_hand_on_hammer​, (5)
move_arm_up
Grouping: 1, {2, 3, 4}, 5

Expected Result 1. Each sub-action will be attempted and if success, it will move
onto the next sub-action, or complete the action and exit the function
2. sub-action 1 will be attempted and if failure, it will jump to
sub-action 1 and repeat
3. sub-action 2, 3, and 4 will be attempted and if failure, it will jump
to sub-action 2 and repeat
4. sub-action 5 will be attempted and if failure, it will jump to
sub-action 5 and repeat

Test cases are used to show even more information about how exactly our function will operate
under certain conditions. More specifically, it shows how the function uses the specified
groupings to repeat sub-actions upon failure. The function uses breakpoints in order to set where
a sub-action should jump back to upon failure. For example, consider the grouping ​1, {2, 3,
4}, 5​ to action be a set of 3 groups: ​{1}, {2, 3, 4}, {5}​. Our function sets

18

breakpoints (b) to be at the beginning of each group: ​{b1}, {b2, 3, 4}, {b5}​; if any
sub-action in a group fails, the function will jump to the first sub-action in that same grouping.

19

5.0 Analysis and Testing
In this section, we discuss how a programmer would use our function, how we tested our

function to ensure it ran as we intended, as well as how we used our function to help simplify the
Atlas code.

5.1 Implementation

Our function operates by running through a list of ​ActionObject​, which contain a
pointer to a function that executes an action, as well as some metadata about the action such as
how far to jump back on failure, etc. The core code only takes in three arguments: a
std::list​ of ​ActionObject​ to be run, a ​std::list​ of indexes representing
breakpoints, and an enum that describes how to loop through these objects in different ways. All
other data is encapsulated within ​ActionObject​, which contains a pointer to a function to be
run, a minimum number of times the function should pass to be considered a success, and a list
of pairs of ints, with each pair representing what the looping function should do on a given
number of failures. For example, the list

{{1, 3}, {2, 4}, {2, 5}, {3, 10}}

indicates that on the first failure, the program should jump back 3 steps. If the function later fails
2 times, it should jump back four steps, then if it later fails an additional 2 times, it should jump
back 5 steps, etc.

In order to make the function more readable and easier to use, we added a number of
default options that drastically reduce the burden on the programmer. First, we assumed that
every action wants to jump back to the nearest breakpoint. This allows the programmer to
eschew manually creating breakpoint indexes, and instead structure the input in such a way that
the breakpoints can be logically inferred. For example the in the series:

{{A, B}, {C}, {D, {E, F} G}

The default will put breakpoints at A, C, D, and E. We did this by automatically putting
breakpoints at the beginning of each grouping, then setting the jumpback distance to be
arbitrarily large.
Second, we added a lot of syntactic sugar to our inputs. In its most detailed, our function can be
called by:

20

//Declare the pointers to functions

bool(*pointerToFunctionA)(); pointerToFunctionA = &FunctionA;

bool(*pointerToFunctionB)(); pointerToFunctionB = &FunctionB;

//Create pairs of failure-nums and jump-backs

PairInt pair1(2, 2);

PairInt pair2(4, 5);

//Create the list of pairs

std::list<PairInt> lpairs1 = { pair1, pair2 };

std::list<PairInt> lpairs2 = {};

//Create ActionObjects with a pointer to a function, a list of pairs, and

a minimum number of successes

ActionObject myObjectA(pointerToFunctionA, lpairs1, 3);

ActionObject myObjectB(pointerToFunctionB, lpairs2, 2);

//Create the list of ActionObjects

std::list<ActionObject> lActionObjects = { myObjectA, myObjectB };

//Call atlas loop with style Standard, the list of action objects, and an

empty list of breakpoints

atlasLoop(Standard, lActionObjects, std::list<int>{});

This method of calling is extremely verbose, but very powerful, allowing any desired

modifications to be made to the default actions. By adding a few interpretation helper functions,
we allowed our code to be called with this:

 //Declare the pointers to functions

bool(*pointerToFunctionA)(); pointerToFunctionA = &FunctionA;

...

//Create the array of objOrLists

ool arrayOfObjOrList[] = {

ool(pointerToFunctionA),

ool(pointerToFunctionB, pointerToFunctionC)

ool(pointerToFunctionD)};

//Call looping function with size of list

atlasLoop(arrayOfObjOrList, 3);

This code does the same thing as the code above, with more flexibility and power, in

fewer lines. This is done by making some assumptions about the way the programmer inputs
information to our function. The array that is passed into the ​atlasLoop ​contains at each
index an ​objOrList ​(called an “​ool​” for brevity) that was created with either a single

21

function pointer, or a number of comma-seperated function pointers. Internally, when
atlasLoop ​is passed an array of type ​objOrList​, it runs two desugaring functions, first to
“flatten” the array into a lone array of pointers to functions, and second to turn those pointers to
functions into ​ActionObjects​, each with appropriate jumpback values and breakpoints.

Of course, it is also possible to use a combination of the two input styles. Any values that
are not manually specified, the function will attempt to fill in.

5.2 Testing

In order to test that our code was not significantly slower than a manual loop, we wrote
10 functions that each created 50,000 arrays that were 50,010 elements long, then iterated
through each array to assign each element to the value of the index. We then wrote two testing
functions: our baseline function would call each of the 10 functions once, and our looping
function would call one large loop with the 10 functions in it once. We ran each of these testing
functions 30 times and averaged the results. On average, the baseline code took 50.2495 seconds
to run on a group member’s computer, while the looping code took 49.9661 seconds, making our
code slight ​faster​ than simply writing a custom loop. However, the standard deviations of this
run were 0.179035 and 0.49882, respectively.This means that the slight time difference is
completely insignificant. To look for a more significant difference, we changed our 10 functions
to create 500 arrays that were 510 elements long, and instead ran this code 300 times to get more
data points. This showed that the baseline code took 0.00541667 seconds to run while our code
took 0.0134767. This is more in line with our expectations, as the ~8 milliseconds small time
differential is likely due to the more complete edge cases that our looping code handles. The
standard deviations of this run were 0.0087 for both cases.

5.3 Deployment
The Atlas robot is made of many interworking parts and our function runs in conjunction

with the actual program that runs on the Atlas robot. The Atlas robot uses the Robotic Operating
System (ROS) to operate. ROS programs are made of many nodes of different types that
communicate with each other during the execution of a program. Each of these nodes can be
written in C++ (among other languages) and can therefore be rewritten using our system.

Unfortunately we were unable to fully deploy our system to the Atlas robot due to some
hardware constraints. In order to fully run the Atlas robot simulation, it is necessary to have a
computer running Ubuntu natively (a virtual machine will not suffice) and that system needs a
large amount of RAM, a fairly high end central processing unit (CPU) and, probably most
importantly, a discrete graphics processing unit (GPU). In order to truly run the simulation, a
discrete GPU is required for the OpenGL library, for both the rendering and the actual simulation
of the distributed system on the Atlas robot.

22

One solution we discussed with some of our stakeholders would be to run the simulations
without any of the ‘extra’ or computationally expensive systems. While this may have worked, it
was brought to our attention that there are no ‘extra’ systems on the robot and that it is overall a
very complex system and its difficult to turn off the unused parts. Even if we could, our
hardware would still be incapable of fully running the system because we still lacked a discrete
GPU.

One solution we explored briefly was to simulate a simpler system, using the Turtlebots,
a system used for an undergraduate course at WPI. The system is fairly simple and we could
have obtained the starter code with ease and began work transitioning parts of the existing code
to use our structure. We ultimately ran out of time to perform this exploration and left it as a
suggestion for future work.

6.0 Conclusions
In this section, we discuss how our project could be extended in the future.

6.1 Future Work

While we made many strides forward in creating a cleaner looping structure, there is
plenty of room for future groups to improve our system. A few key assumptions we made are
that functions took no parameters and returned only booleans. This is a large assumption, but it is
easily remedied. C++ allows the programmer to create pointers to any function, but it is
necessary to provide the type of all of the input variables and to provide the type of the return
value. These are easily created, and creating a set of general use function pointers would be fairly
easy. By creating a larger set of function pointers future groups could rewrite many different
existing programs using our looping tools.

A second opportunity for future work would be to create a new syntax for the looping
structure. Currently, it is necessary to write multiple lines to create function pointers, and then
fill them with the necessary input and output types. A future group could create a set of macros
using C++ or another language such as Racket or Lisp to create functions that take in the
requisite information and expands the input into the proper function pointers. One issue that we
faced was that C++ does not allow arbitrary strings to be executed as code, as this poses a major
security hazard. Racket and Lisp have built in functions for creating macros and code expansion
that could be used to perform this functionality, the difficult part would be then converting the
expanded Racket or Lisp into C++. We leave this execution to future groups.

Another opportunity for future projects would be to complete extensive tests using the
robot Atlas. We designed the function to run with any code base, but with Atlas specifically in
mind. That being said, we were not able to run any tests on the physical robot Atlas; we only ran
some tests on the simulation of Atlas. We believe that the function would be much more robust

23

and tailored to Atlas after it went through extensive testing with the physical robot. Additionally,
in order to show the generality of our system and how any pre-existing robot can be rewritten
using our structure, future groups could also perform similar testing on WPI’s turtlebots. These
are smaller, easier to use robots that could act as a very realistic small scale test before upgrading
to the full sized Atlas robot.

6.2 Conclusion

Through the extent of the project, it became painfully clear that there is no simple or easy
solution to creating more readable and extensible code. While a DSL is good solution for one
system, they rarely pose a realistic solution for more general problems as we originally had
hoped. Building libraries in C++ to help create more readable and easier to write code works
well but can be just as extensive as the robots program itself. Striking a balance between robust
and brief code is quite difficult and we have done just this. Our system works in many cases
within .5% as quickly as normally structured C++ code but is easier to read and maintain.

We also considered the many groups and individuals that our project would have an
impact on. In the small scale, our project will hopefully improve the lives and productivity of
programmers working on Atlas, and on many other robotic platforms that this project can be
deployed to. Atlas has many inherent safety protocols such as always being on a tether, having
and emergency stop, and always having two people present when in use. It is important to us that
our project would not impede the execution of these protocols, and hopefully it can help make
these protocols safer in the future. In the longer term, we hope this project enables others to
better achieve their goals and improve the world.

24

References
Atkeson, Chris. Personal Interview. 17 September 2018.
Babu, Benzun Pious Wisely. Personal Interview. 24 September 2018.
Jagtap, Vinayak. Personal Interview. 18 September 2018.
Prato, C. (2016, January 28). WPI Home for WARNER. Retrieved September 26, 2018, from

https://www.wpi.edu/news/wpi-home-warner
V. Verma, A. Jonsson, R. Simmons, T. Estlin, R. Levinson, (2005) “Survey of Command

Execution Systems for NASA Robots and , Spacecraft’, “Plan Execution: A Reality
Check” Workshop at The International Conference on Automated Planning & Scheduling
(ICAE’S)

25

Appendix A: Our Preliminary Design Review

Project Objectives
Our project goal is to create a system to simplify or improve the experience of working

with WPI’s Atlas Robot. This system could take many forms, such as a library that adds
commonly used features to make writing programs simpler, or a synchronization or type system
change to improve the workflow with programming the robot. Some of the ideas we considered
are listed below. Each of these systems has its own specifications, challenges, and requirements.

● Type Systems and Type Inference
● Synchronization
● Error and Exception Handling systems
● Control Systems, such as looping and branching statements
● Safety Systems

Specifications and Challenges
Type systems​​ are an important part of many languages. Most languages that are higher

level than assembly and machine code have some sort of type systems. Some languages, like
OCaml and Haskell, use their own type system, in addition to their type inference system, to
express aspects of the language beyond simple things such as integers and strings. OCaml and
Haskell use their type systems to express asynchronous code and error/exception handling.
Currently, since WPI’s Atlas robot is programmed mostly in C, this type of expression is not
possible. Implementing a system like this for the robot could decrease run time errors in code.

Synchronization​​ is an important functionality in WPI’s Atlas Robot, since it has
multiple discrete systems that must communicate with each other in order to make it function. If
we were to implement new synchronization systems, the primary goal would be to create an
easier way to program the robot, while not sacrificing the expressiveness of the language.

Error and exception handling systems​​ in C/C++ are clunky, and can be difficult to
understand. If we were to improve the error and exception handling systems, our main objectives
would be to create a better way to show errors and exceptions. Some secondary objectives would
be to implement ‘safe states,’ where, if the robot happened to experience an error or exception, it
would enter a state where it prevents self harm. This prevention could be avoiding falling over or
avoiding self collisions. This potential objective pairs nicely with the safety system objective,
and could be implemented beside it.

26

Control systems​​, while a broad category, do impose some interesting challenges to
programming WPI’s Atlas robot. Looping and conditional statements are frequently used, and
offer no built in functionality to care to robotic programming. New looping structures could be
developed to offer the programmers a finer built in control of how to loop and what to do in the
case of an error. For example, if three items, A, B, and C, need to be looped in a particular order,
or with a particular grouping; a custom looping structure can make it easier for the programmer
to follow these constraints. Custom loops can also natively include certain safety and error
handling measures, such as performing certain actions in the event of an error to prevent harm to
the robot.

Safety systems ​​can accompany many of the previously described systems. The primary
objectives in a safety system are to create protocols to prevent the robot from harming itself in
any situation where something has caused an error within the primary system. A safety system
can be thought of as a background system that the primary system can start in any kind of
emergency or error situation. This objective would pair particularly well with the control system.

Requirements
Implementing a new ​type system ​​would require us to change the existing type system.

Once the type rules have been developed and mathematically analyzed, we will develop a type
checker for our language based on our type rules. This could take many forms, one could be part
of a compiler or as a system beside a semantic analyzer built on top of the existing C code. Once
the type checker has been implemented, we will have to either design new code in our type
system that is compatible with older C code, or we will have to retrofit all the existing C code.

Synchronization ​​requires that our product be able to safely and repeatedly run code in an
asynchronous manner. The system may be built with native C/Unix constructs such as
semaphores and system/user level threads. The system will have to be compatible with the Atlas
robot’s current synchronization system and its communication system. Since one of the
computers running on the robot is not (re)programmable, our synchronization system must be
able to interface with it.

Error and exception handling systems​​ require an extensive set of robust and
descriptive exceptions. These will require careful definitions and class hierarchy setup. After the
library of exceptions is created, a system similar to the Java try/catch block will be implemented
in order to obtain the most out of the new exception hierarchy system; errors will follow a
similar pattern. In either case, a two path execution system, whereby one path of execution
corresponds to correct and error free executions, while the other path corresponds to a path that
has ​any ​errors along its executions. This second path can then later report the error to the user.

Control systems​​ must be easily integratable with existing code. It must also be fully
featured to express things like failure specific execution loops.

27

Safety systems​​ must be easily implementable and easy to switch into and out of. A safety
system must allow programmers to create routines that prevent harm and damage, but also allow
control of the system to be returned to the primary execution system once the danger has been
avoided.

28

Appendix B: User Stories, Use Cases, and Test Cases

User Stories
1. I want action a with sub-actions a​1​, a​2​, ...a​N​ to be run X times, or until success.
2. I want action a with sub-actions a​1​, a​2​, ...a​N​ to be run X times, switching to action b upon

success.
3. I want to do sub-actions a​1​, a​2​, ...a​N​ sequentially X times, skipping back the lesser of

either Y step(s) or to a​Z​ upon failure.
4. I want to do sub-actions a​1​, a​2​, ...a​N​ sequentially X times, skipping back a variable number

of steps depending on type of failure.
5. I want action a with sub-actions a​1​, a​2​, ...a​N​, to be run X times, skipping back Y steps(s)

upon failure, but never skipping past a​z​. (breakpoint/savepoint)
6. I want action a to be run X times, switching to action b after Y failures, then to c after Z

more failures.
7. I want action a to be run X times or until success, then I want action b to be run Y times,

where Y is dependent on the number of loops of a.

Use Cases

Actor The programmer

Preconditions Actions ​a​1​, a​2​, ...a​N​ ​that need to be run X times each

Triggers A success on an action

Basic Flow If action a​n​ succeeds move on to action a​n+1

End Condition Action ​a​N​ ​is completed successfully.

Actor The programmer

Preconditions Actions ​a​1​, a​2​, ...a​N ​that needs to be run X times each

Triggers A failure on action ​a​n

Basic Flow After a Failure on action ​a​n ​go back to previous action ​a​n-i

End Condition After some number of failures on the same action, exit loop with an error.

29

Actor The Programmer

Preconditions Actions ​a​1​, a​2​, ...a​N ​that needs to be run X times each

Triggers A Failure on action ​a​n

Basic Flow After a failure on action ​a​n​ ​begin execution on action ​b

End Condition Action ​a​N​ ​completes or action ​b ​completes.

Actor The Programmer

Preconditions Actions ​a​1​, a​2​, ...a​N ​that needs to be run X times each and a state ​a​m ​that
the program will not go further back than

Triggers A failure on one action ​a​n

Basic Flow If action ​a​n​ fails, go back to action ​a​n-i ​unless that action is less than ​a ​m​,in
which case go to ​a​m

End Condition Action ​a​n ​is reached or an error is thrown

Actor The Programmer

Preconditions Actions ​a​ ​that needs to be run X times each, a separate action ​b​, and a
number of times Y to fail action ​a​.

Triggers Failure on action a

Basic Flow Run action ​a​ until it fails, then repeat action ​a​ until it has failed Y times.
Then after ​a​ has failed Y times run ​b

End Condition Either action ​a ​or ​b​ passes fully and successfully.

30

Test Cases

Summary I want action ​a ​with sub-actions ​a​1​, a​2​, ...a​N​ to be run X times, or
until success.

Test Procedure Call looping function with an action and with a number

Test Data Action: move arm
Number: 5

Expected Result 1. Action will be attempted 5 times and if no success, an error
message will appear and the action will be terminated.
2. Action will be attempted 5 times and if success, the arm will have
moved and the function will be exited.

Summary I want action ​a ​with sub-actions ​a​1​, a​2​, ...a​N​ to be run X times,
switching to action ​b ​upon success.

Test Procedure Call looping function with a primary action, a number, and a
secondary action

Test Data Primary action: make a fist
Number: 5
Secondary action: punch

Expected Result 1. Fist action will be attempted 5 times and if no success, an error
message will appear and the action will be terminated.
2. Fist action will be attempted 5 times and if success, it will move
on to the punch action and the function will be exited.

Summary I want to do sub-actions ​a​1​, a​2​, ...a​N​ sequentially X times, skipping
back Y step(s) upon failure.

Test Procedure Call looping function with an action composed of sub-actions and
two numbers

Test Data Action: make a fist
Sub-actions: (1) close pinky finger, (2) close ring finger, (3) close
middle finger, (4) close pointer finger, (5) close thumb
Number X: 5
Number Y: 2

31

Expected Result 1. Each sub-actions will be attempted 5 times and if no success on
sub-actions 3-5, jump back 2 sub-actions and try again.
2. Each sub-action will be attempted 5 times and if no success on
sub-actions 1-2, jump back to sub-action 1 and try again.
3. Each sub-action will be attempted 5 times and if success on all,
the robot will have a fist and the function will be exited.

Summary I want to do sub-actions ​a​1​, a​2​, ...a​N​ sequentially X times, skipping
back to ​a​Y​ upon failure.

Test Procedure Call looping function with an action composed of sub-actions and
two numbers

Test Data Action: make a fist
Sub-actions: (1) close pinky finger, (2) close ring finger, (3) close
middle finger, (4) close pointer finger, (5) close thumb
Number X: 5
Number Y: 1

Expected Result 1. Each sub-actions will be attempted 5 times and if no success,
jump back to sub-action 1 and try again.
2. Each sub-action will be attempted 5 times and if success on all,
the robot will have a fist and the function will be exited.

Summary I want action ​a​ to be run X times, switching to action ​b​ after Y
failures.

Test Procedure Call looping function with two actions and two numbers

Test Data Action a: make a fist
Action b: move arm
Number X: 6
Number Y: 3

Expected Result 1. Fist action will be attempted 6 times and if it failed 3 times, arm
action will be run.
2. Fist action will be attempted 6 times and if success without 3
failures, the arm will have moved and the function will be exited.

Summary I want action ​a​ to be run X times, switching to action ​b​ after Y
successes.

32

Test Procedure Call looping function with two actions and two numbers

Test Data Action a: clap hands
Action b: move arms up
Number X: 6
Number Y: 3

Expected Result 1. Clapping action will be attempted 6 times and if it failed 4 or
more times, an error message will appear and the action will be
terminated.
2. Clapping action will be attempted 6 times and if success 3 times,
arm action will be run.

33

