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Abstract

This project expands the functionality of the Massachusetts Technology, Talent, and Eco-

nomic Reporting System (MATTERS) for the Massachusetts High Technology Council (MHTC),

a protechnology advocacy and lobbyist organization, through the addition of two new fea-

tures, namely, an Application Program Interface (API) and the Metric Builder. This API

defines a communication protocol between MATTERS and other computational-based sys-

tems. Extensive API documentation was developed. The Metric Builder is a tool that allows

users to create their own indices with custom rules out of existing MATTERS metrics. This

empowers them to track individual states’ performance using their own custom models.
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Executive Summary

Data is a large part of every industry in the business world and big data can help create

value in these industries by providing various analytics and performance measures that were

once not readily available. Gathering and analyzing this data can drive growth and lead

to better decision making across industries. The Massachusetts High Technology Council

(MHTC) actively works to maintain Massachusetts’ reputation as a competitive business

environment in technology based sectors. With this in mind, MHTC worked to create

MATTERS, the Massachusetts Technology, Talent, and Economic Reporting System, which

is a web dashboard designed that allows users to access and visualize data collected from

a large number of other sites. MATTERS allows users to compare economic, educational,

demographic and other aspects across states.

The goal of our project was to introduce two new features to MATTERS that would

allow for users to interact with the collected data in more ways than previously available.

The ability to display and analyze data in new ways would help to continue MHTC’s goal of

showing Massachusetts as a competitive state for businesses that are high tech. To achieve

this goal we completed the following:

• Create the Metric Builder to allow MHTC along with other registered users to create
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their own metric formula using the preexisting metrics stored in MATTERS

• Create a public facing API and corresponding documentation for the site to allow

developers a system-friendly way to access the data that MATTERS stores

• Test the features to ensure that they are easy to use for both technical and non-technical

users

Before the creation of the Metric Builder page, users could compare states and years by

looking at the preexisting metrics found in the MATTERS database. This limited the way

users could innteract with the data. MHTC wanted a way to store their own custom metrics

which led to the creation of the Metric Builder page. Using the Metric Builder, users now

have the ability to choose any number of metrics and assign different weights to indicate

how important each metric was compared to the others selected. The Metric Builder feature

would build the custom metric formula for the users and normalize the data values, allowing

users to visualize their custom metrics consistently just as they would any metric in the site

already. As a result of the creation of the Metric Builder, MHTC used our metric formula

tool to create four custom metrics that will be displayed on the home page of the MATTERS

site.

Meanwhile, the creation of the API helped to provide developers with a means of extract-

ing desired data values in a system friendly way. Previous to implementing a public facing

API, the only way to access the raw data would be through parsing the HTML. Having an

API for the site makes the data more widely available to the public and helps developers

save time and reduce errors by not having to scrap MATTERS for data. During this im-

plementation two things needed to be considered; a way to have users access all of the data
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securely and how developers would know how to send proper API requests. To make sure

the data was accessed securely, a common practice which we adopted was the creation of an

API key. Users will receive a specific API key identifier and this will give them access to the

data while also allowing us to keep track of who is accessing the data values at any time. To

make the API easy to use, API documentation was created following standard practices of

API documentation for sites.

With these new features now in place, users will be able to interact with the available

data in even more ways than previously available from both the user side and the system

side. This will continue to make MATTERS a useful tool for both MHTC and other users,

and continue to aid MHTC’s goal to make Massachusetts a competitive environment for

high-tech businesses.

Upon completion of this project, we have developed a set of recommendations for those

who will continue to work on MATTERS in the future. The recommendations are as follows:

• MATTERS system

1. Let users define more complex equations for their user metrics. User should not

be limited by simple weighted average formula.

2. Let users suggest corrections to data or even new data sources. Right now MAT-

TERS’ administrators and data management team are working on adding data.

By involving users in this process, MATTERS may have more complete, accurate

and up-to-date data.

3. Role management. Right now the system supports regular users and API users.

Each user metric must have one and only one author. It might be a good idea
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to merge these two user entities and introduce shared user metrics that are not

bound to specific users.

• Software development

1. Refactor the client side and server side code. Since the system has been developed

by a number of teams with different design patterns and approaches, there is a

significant technical debt. It might be worth spending some time rewriting parts

of the system according to the latest coding and technical standards.

2. Documentation. Right now there is a steep learning curve for new developers

who start working on the project. Good documentation would decrease the time

it takes for developers to start working on the project.
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1. Introduction

With the total amount of data in the world growing steadily at a fast rate, the need to

analyze large amounts of data in datasets, also called big data, is a key driver for productivity,

growth, and innovation [1]. Examples of data sets found throughout the web and stored in

databases include social media accounts, census data, medical records, and ticket sales [2].

Many valuable data sets are provided by official government sites and other organizations

as well. With this increase in information often freely available across the web, our society

will continue to provide a basis for the continued growth of data in the future. Data is a

part of every industry and business in today’s world from retail to government. Big data can

help to create value in these industries by making information more usable, showing more

accurate performance measures, and providing detailed analytics on this data that leads to

better decision making.

In this data-driven time, it is important to be able to make decisions quickly using the

data that is available. Big data visualization is an effective way to present the important

information amongst the large amount of data used and helps to drive complex analysis [1].

Big data analytics tools can make otherwise too large amounts of data meaningful to those

who are looking to interpret and derive insights from the data.
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The Massachusetts High Technology Council, or MHTC [3], is a group of technological,

professional and higher education executives across the state of Massachusetts. They are

comprised of higher education CEOs, senior executives from Massachusetts and more. For

over thirty-eight years, MHTC has advocated for policies and programs to create and keep

both a healthy and competitive business climate in Massachusetts. Their goal is to establish

and keep Massachusetts as a competitive place for successful business and talent building,

including in particular with a specific focus on the technology sectors. In part because of

the MHTC and its members, who are regarded as the region’s most venerable technology

association, Massachusetts is considered one of the top competitive areas for businesses that

are high tech [3].

The Massachusetts Technology, Talent, and Economic Reporting System, also known

as MATTERS [4], was developed by MHTC along with Worcester Polytechnic Institute

(WPI) and other institutions as a collaborative effort designed to aid users in understanding

a variety of public data in an act to help make Massachusetts the top location for high

technology businesses. MATTERS allows users to use this data collected to compare and

visualize desired information across all states. It provides policy makers and advocates with

easily accessible and search-able dynamic data to assist in their efforts regarding decisions

to help retain and grow business in the state. MATTERS integrates a wide range of talent,

cost, and economic metrics and state rankings from federal and state government sources,

non-profit organizations and media outlets into one location via a data warehouse for its

users [5].

In this effort, Worcester Polytechnic Institute is the technology partner of this col-

laboration, and the WPI undergraduate and graduate students have worked since 2014
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on the development of this MATTERS dashboard [6]. The full team can be found at

http://davis.wpi.edu/dsrg/PROJECTS/MATTERS/Members.html. Previously to our project,

WPI IQP, MQP and graduate student teams worked to develop the MATTERS dashboard

as it was when we began working. These previous projects are discussed in the Background

and Related Work Section.

The goal of our Major Qualifying Project (MQP) is to provide additional features to the

MATTERS website that gives our users advanced features to interact with the data and

metrics found within the site. These metrics are measures of quantitative assessments which

allow people to track performance and make comparisons on the specific data values [7]. One

key feature for our MQP team is to develop the Metric Builder as a means for the MHTC

to develop and then work with their own MATTERS indicators [8]. An indicator is a set

of statistics used to measure the current conditions of different sectors as well as examine

trends and predict future trends of the data [8]. In particular, MATTERS users will be

able to create an account on the MATTERS site, and proceed to design their own custom

indicator by developing a metric formula for ranking states from the preexisting metric data.

As a second core feature, targeted by our MQP project, we provided a programmatic

interface to the MATTERS site. The aim is that this way users will also be able to retrieve

any of the data points found throughout the site for their own personal use via a standard

API, which is ”a set of requirements that govern how one application can talk to another”

[9]. The API is an important tool to add convenience for developers who wish to access the

data in a programmatic fashion; avoiding the vicious cycle of having to scrap our MATTERS

web site for data, a process that is erroneous and tedious. Thus this can save users a lot of

time [9].
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In total, these new features will provide authorized users an opportunity to use and

share the data in even more innovative ways, aiding in the MHTC’s goal toward making

Massachusetts a leading state for high technology business. These two features provide fur-

ther access to our site’s data and additional ways to manipulate and visualize the data to

interpret it in new ways. These features also create an expanded user base for MATTERS.

Different privileges are offered to different types of users, such as the already existing admin-

istrative users, as well as general users who also would like to create their own indicators.

This report will go over the background and related projects that led to our MQP project

in Section 2. This also includes literature review on APIs, documentation, economic indi-

cators and how to normalize data. This is followed by the design processes and back-end

changes made to develop the Metric Builder, the API and the API Documentation in Section

3. After the designing of each feature, in Section 4 we discuss the evaluation process through

the use of user studies, and the resulting changes to our features. Section 4 also shows the

final results of both the Metric Builder and the API Documentation. Finally, Section 5

concludes the paper and provides recommendations for future work regarding MATTERS as

well as suggestions for future developers to further improve the site as a whole.



2. Background and Related Work

The creation of a Metric Builder page and an API for the MATTERS site must leverage

as well as seamlessly integrate with the overall MATTERS site, which has been created by

several prior project groups at WPI. These students established the initial features and the

design framework for MATTERS. The initial development of MATTERS in Spring of 2014

started with a team of eleven students composed of one undergraduate team completing their

Interactive Qualifying Project (IQP) and seven WPI graduate students. This team of IQP

students researched and came to the first core decisions regarding the front-end visualization

tools for the MATTERS dashboard [10]. This includes the inclusion of decisions regarding

colors, and visualization types such as charts and tables, that would be used to the represent

the data within the system in a manner that was both intuitive for the users and a quick way

to show analytics results. More importantly, the IQP team conducted a survey of the MHTC

board members to determine their familiarity and preferences concerning visual interaction

components of dashboards. In parallel, the graduate student teams developed the first back-

end version for MATTERS. They developed components to extract the desired data from

diverse websites, parse and clean this retrieved data, before then uploading it into a data

warehouse. This data would then be called upon to be shown in the various visual methods

17
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for the users [11].

Following this initial front-end and back-end design and implementation of the MAT-

TERS dashboard, a team of students working on their Major Qualifying Project (MQP) at

WPI improved the administration center and the data integration for the dashboard. This

involved the data integration Pipeline Manager, which allows for data to be downloaded from

sources and uploaded to the database in order to populate the MATTERS Dashboard with

this data. The pipelines require no coding experience to use and made it easy for MHTC

members to be able to add new data sources quickly [10]. In addition, the Administration

Center’s development to allow for MHTC and other administrators who had access to be able

to easily upload their desired data and metrics, as well as an intuitive way to view this data

on the administrative end. This MQP team was able to integrate 20 new data sources for the

MATTERS dashboard, make the Administration Center usable for non-technical users, and

improve upon the look-and-feel of the MATTERS dashboard as a whole [11]. Development

has continued throughout the past two years from 2014 until now, in the past supported by

various MHTC project partners such as: MITRE software engineering architects and Mesh

Corporation, a web design firm and consultant for the development of visual state profile

pages.

2.1 System Architecture

The MATTERS Website consists of two subsystems - the data acquisition and management

admin panel and the visual-interaction dashboard. While the admin panel is used by admin-

istrators to work with data (basic create, read, update, and delete, or CRUD, operations),
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HTML

AJAX call
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platform

platform

request
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request

response

Figure 2.1: MATTERS System Architecture

in this project we focused on the dashboard subsystem. This subsystem follows the MVC

(Model-View-Controller) architecture to clearly separate data, business and presentation

logic [12]. You can see its visual structure in Figure 2.1. Communication between View

and Controller occurs through HTTP requests in JSON format. Controller talks to Model

through the stored procedures. View and Model never communicate with each other directly.

2.1.1 Model

The MATTERS’ data layer is built with the PostgreSQL database. The main tables are:

Statistics holds metrics’ data in the form of a year, state, metric and value tuple (see

Table 2.1).

States holds states’ metadata like name, abbreviation and if it is a peer state (see
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Table 2.3).

Metrics holds metrics’ metadata like description, trend and category (see Table

2.2).

The access to these tables is provided via stored procedures as a data access layer.

Column Name Type Sample Value

StateId INT 3
MetricId INT 14
Year INT 2013
Value DOUBLE 7000
DateAdded TIMESTAMP 2014-04-19 18:28:34.63874

Table 2.1: Statistics database relation sample data

Column Name Type Sample Value

Id INT 12
Name VARCHAR Capital Gains Tax Rate
Visible BOOLEAN TRUE
IsCalculated BOOLEAN FALSE
DatType VARCHAR percentage
DisplayName VARCHAR Capital Gains Tax Rate
URL VARCHAR KPMG/Tax Foundation
Source VARCHAR KPMG/Tax Foundation
DisplayOrder INT 7
TrendType VARCHAR reversed

Table 2.2: Metrics database relation sample data

2.1.2 Controller

The business logic of the system resides on a Java-based server [13]. The Spring framework

is used as a server architecture solution [14]. A front end request that comes to the system
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Column Name Type Sample Value

Id INT 21
Abbreviation VARCHAR MA
Name VARCHAR Massachusetts
IsPeerState BOOLEAN TRUE

Table 2.3: States database relation sample data

goes through controllers which, in turn, invoke services. Services query the data layer and

return data stored in models. These data models get pushed back to the front end.

2.1.3 View

The presentation layer is represented by the HTML based website. The client side generates

queries to the server via JavaScript AJAX calls, and then uses the returned data to generate

the content. The website has a significant amount of logic on the client side as it needs to

build tables, plots and charts. The two main JavaScript libraries used on the client side are

jQuery [15] and D3 [16]. jQuery makes it easy to manipulate DOM while D3 is used for

generating vector based plots and charts.

Visual representation and displays are based on the responsive Twitter Bootstrap 3 frame-

work [17], which is a collection of CSS classes and small JavaScript snippets.

2.2 Requirements

Before we could embark on creating an API for MATTERS as well as designing the Metric

Builder page for the site, we had to conduct research. This included to look into other

similar features of different sites, such as the New York Times sliders [18], and make decisions
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regarding implementation, design and security features for these aspects of the MATTERS

site.

2.2.1 API and Documentation

An API is an ”Application Programming Interface”. APIs are tools that allow other pro-

grams to interact with the software program that the API belongs to without having to give

someone complete access to your code base. In a sense they expose some of the internal

workings of software to the public but in a way that is limited by what the API chooses

to provide. APIs aid in providing a way to share a potentially large amount of data in an

efficient way. According to the chief data officer of Philadelphia, Mark Headd, APIs ”allow

a specific audience to use data more quickly, easily, and efficiently when they are looking

to do something specific with the information.” APIs are beneficial for not only keeping

certain aspects of code private, but also for saving users time. Even in cases of open source

programs where all of the code for a program is visible, the code base can be so large that

it is inefficient to search through the whole code base for specific data [19].

APIs are beneficial from both a business perspective and for programs that to aim share

information and research with many people. An advantage of an API being an automated

tool is that it can process a large number of requests without any added cost and work

from the developers of the initial site. APIs also present the data requested in a manner

that is useful and easily manipulated for the users’ purposes, especially if the users could

be programmatic access. For APIs whose goals are to share certain data across systems

there is a great benefit efficiency wise, as many manual procedures are cut out by the APIs

automatic generation. Developers can create code to send requests to a system’s API and
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receive the desired data. This system to system interaction can for example replace the need

to manually parse the HTML code for the information they are looking for. By interacting

from one computer to the other essentially, there is room for humans to be working on other

tasks [20]. When these tasks are done manually, they waste time and are both laborious

and repetitive, as well as being more prone to error; all of these things being costly on the

developer end. While it is more time consuming and costly to develop an API initially, the

overall benefit once it is developed is apparent and can be reaped long-term [19].

Additionally, APIs not only encourage innovation and the ability to manipulate and

extrapolate data by external collaborators, they provide a means to do so that is more

secure for the group creating the API. They reduce the risk of how and what data is obtains

and encourage good practice for how to properly manage the data available [21].

One important step to gaining the full benefit from an API is making sure that the API

is secure. This can be achieved through requiring authentication and authorization of users

before they gain access to the API’s features. It is good practice to ensure that the users

are who they say they are and that they are given permission before using data or parts of a

developer’s program. This also allows for a record of who is accessing the data, in the event

that there is an issue so that a specific user can be tracked down [22].

In addition to creating the API for a site, it is necessary to create good documentation

to accompany the API, to make the API as user friendly and simplistic as possible. API

Documentation thus must be provided to the developers that details everything that they

need to know in a concise manner in order to use the APIs features with other applications.

The API Documentation needs to contain the classes, functions and other important aspects

of the API [23]. The documentation guide allows developers to easily interact with a site’s
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API and their own code, as many developers style their code in their own unique way.

In order to get the data that is stored in MATTERS, the teams of developers labor to get

this data from over thirty different sites across the web. Some of these sites do not currently

have an API, which makes the process of getting the desired data much more difficult. For

these sites it takes extra effort just to get the data into the MATTERS site. As a result of

this issue seen when trying to interact with other data driven sites, we do not want our site

to give developers the same issues. An API will give other developers an easier means of

accessing the data stored by MATTERS rather than only seeing the data from the front end

of the site.

2.2.2 Metric Builder

The main service that is to be developed by our MQP team is the Metric number of the

metrics already available in the MATTERS database and combine their data using a custom

formula to Builder page. This service will be available for the registered users on the MAT-

TERS website only. A user will be able to select any create their own personal economic

”indicator”. The user can then use their created formula to display the states’ rankings based

on this indicator. This will allow users to see and evaluate states based on what they think

is most important as a whole or a combination of various factors, and interpret the data in

their own way in a simple manner. By enabling users to create their own data set from all

the metrics available and then provide their own weights to each of these data values, we are

allowing users to see the competitive advantage that each state has based on how important

these metrics are for the user’s purpose.

It is important to ensure that different data types can be combined to create one final
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index value. It is also important to consider the effect that certain data types will have on

the final value computed from the user’s indicator formula. For example, the MATTERS

database contains rankings, percentages, nominal values, and other data types. Certain data

types could end up dominating in a user-created indicator when combined with significantly

smaller value data types. There are also complexities involved with certain data types that

are represented in the differently than the majority of the data types. For example, both

rankings and some other data types use numerical values in which a lower value indicates

a better performance by the state, versus for the majority of other metrics the larger the

value is the better a state is performing in that area. This corresponds to the data type

incompatibility problem, requiring us to learn about data normalization and transformation.

Finally, there are many metrics that do not contain a value for every single year that

other metrics hold a value, the missing value problem. Situations where one metric being

used in the user’s Metric Builder equation does not contain values for years that another

metric being used in the same equation need to be considered. There needs to be a uniform

solution for what to do in these instances in a manner that does not deceive the users of

the indicator, as this would affect the calculations and subsequent visualizations across years

where these issues exist.

These factors need to be taken into consideration to provide accurate and understandable

visualizations, when users create their own indicator in the Metric Builder. It is for this

reason good to consider special handling or removal of certain data types, as well as potential

ways to normalize the final numerical values received from the formulas the users have created

in the Metric Builder.

Lastly, we researched various economic indicators in the literature and on other public
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sites to come up with an idea for how to allow our users to combine sets of data to use

for comparisons. One common approach in economic indicators is to use weighted averages

[24]. For example, one of the most popular economic indicators, CPI, or the Consumer

Price Index, uses weighted averages of data from hundreds of different consumer goods and

services to measure inflation and deflation. Each of the goods considered by the CPI is

weighted based on its importance [25].

Weighted averages work by taking each number in a given data set, and multiplying the

value by its given weight. This will give you a new value reflecting the product of the data

and its weight. Lastly, we then add all of these products together from the data set to get

the total value. Then, we add up the total of all the weights. Finally divide the total value

by the total weight in order to receive the weighted average of your data set. The weights are

used to show the importance that each specific item in a data set has in order to calculate

an overall value of all the data together [26].



3. Methodology of Added Features

3.1 Metric Builder

3.1.1 Back End

For the Metric Builder the first question we have to address is how to model, store and

compute a user metric. We distinguish between the following two options:

1. Precompute and then store the user metric value for each metric in the database

• Pros

– Fast to retrieve; no computation needed

• Cons

– Waste of space in the database

– User metric data remains static; update in the underlying data does not cause

an update in the user metric unless additional derivation logic for syncing

updates is developed

2. Store a user metric as a metadata only, in the form of a derivation formula, and compute

values on-the-fly (on-demand)

27
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• Pros

– Efficient use of the database space

– User metric data is always in sync with underlying data

• Cons

– Might be time-consuming to compute

Looking at the cons of each option, we evaluated how bad they are. Having n users each

creating m user metrics each of which has data for k years we have m ·n ·k · 50 entries in the

database. This data would be a snapshot, but it does not appear to be that huge. However,

if any data point in the metrics changes, user metrics would remain out of sync. The latter

is a more severe problem.

For the second option, it was difficult to estimate the time it would take to compute a

user metric as it depends on the server load and the number of metrics involved in the user

metric. For this reason we decided to prototype the second option to be able to benchmark

it with 3 users by focusing on the largest possible user metric (namely, one that involves

all metrics with all states selected). It took around 1.5 seconds to load all 3 user metrics.

Given that we do not expect many metrics, we opted to go with this. This drove our design

decision towards the second design decision - computing metrics on-the-fly.

3.1.1.1 Note on normalization and missing values

The basic formula for the user metric is

Vy =

∑
i∈I viy · ci

100
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where:

• Vy is the value of the user metric for the year y

• I is a set of metrics in the user metric

• viy is a value of ith metric for the year y

• ci is a user defined coefficient of ith metric (c ∈ [0, 100])

However, this does not account for the different magnitudes of different metrics. For

example, one metric could be a population and be measured in hundreds of millions, the

other one could be taxes, and be measured in percents. If we simply take the average of

values in these two metrics, it would not make sense as the value of the higher scale metric

(population) will take over the value of the lower scale metric (taxes).

This problem is solved with normalization - adjusting values measured on different scales

to a notionally common scale.

We used z-transform method to normalize data in the user metric. For each year and

metric, normalized piece has the following form.

valuenormalized =
valuedenormalized −mean

standard deviation

This way we can put together metrics of different scales.

The other decision we had to make was about missing values. Different metrics may have

values only for certain years. We decided to take the closest older value for the missing year.

If there are no values prior to the missing year, we use the oldest value.



3.1. Metric Builder 30

3.1.2 Front End

The main goals for the front end of the Metric Builder feature was to design a webpage

that was easy to use, easily accessible, intuitive, and consistent with the look and feel of the

other pages on the MATTERS site. The Metric Builder feature needed to be a tool that

allowed users with any level of technological background to easily build their metric formula

from preexisting metrics, assign weights to their chosen metrics, examine the impact of their

decisions easily in visual displays, and be able to make changes and/or to correct their metric

formula at any time.

The front end for the Metric Builder page was created through the use of HTML, CSS

and JavaScript. To make the page consistent with the rest of the site, code was reused from

the Data Explorer page. The Data Explorer page, as seen in Figure 3.1, within MATTERS

allows users to select preexisting metrics (from the left dropdown menus) to then visualize

this on the site in multiple different visual display types, including a bar chart, line graph,

heat map, or table, by selecting the display type on the right side of the black bar via an

icon. The framework for the Data Explorer was the page most similar to how we wanted

the Metric Builder to look like. Thus we opted to reuse and modify code from that page to

create our new feature.

The Data Explorer page allows users to select metrics and states that they would like

to view through the use of the left sidebar (See Figure 3.1). Because the intended users

for the Metric Builder feature are meant to be authorized users with experience using the

MATTERS Data Explorer, we used the sidebar from the Data Explorer as the basis for how

the users would select their metrics on the Metric Builder page as well. Since the Metric
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Figure 3.1: Data Explorer Page

Builder does not need a user to select states, that part of the sidebar was removed. We

also removed rankings from the metric selection column of the sidebar since rankings are

manipulations of various other metrics already found in the database. The Metric Builder

can be seen in Figure 3.2

Once a user selects the metrics they wish to use in order to create their own metric

formula, they have the ability to assign each of them different weights to decide how much

of a factor each of the metric’s data will be in the formula. To adjust the weight of a metric,

users can use the sliders that appear under each metric that they have selected. The sliders

work horizontally from left to right and allow a weight from zero (which would be the same

as not including the metric) to one hundred. We chose these values for the weight range to

make it easy for users weigh the importance of each metric chosen, and be able to understand
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Figure 3.2: Metric Builder In Use

how their weights were affecting the metric formula. Users can click on a section of the slider

to move to that weight, click and drag to a specific weight or use the arrow keys to move the

slider’s value up or down. The idea for the sliders came from a New York Times site which

allows users to interactively calculate their rent and other values using visual sliders, as seen

in Figure 3.3 [18]. The sliders are visually appealing and simple to use and understand.

The Metric Builder display offers options for the user to name her new custom metric,
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Figure 3.3: Example of New York Times’ Slider Showing Home Price

save her metric and also go back and edit or delete the metric she had previously created.

There is a simple to use button that says ”Remove” next to each chosen metric, making

it easy for users to change the metrics included in their formula. The input box to name

the custom metric and save the changes can be found below all of the chosen metrics and

sliders. This was done to help users and encourage them to properly weigh all the selected

metrics before leaving and then saving their custom metric formula, as users typically look

at a webpage from top to bottom.

Finally, above all of the metrics that were selected there is a box displaying the resulting

formula being composed by the selected sliders. As the users update metric selections and

their various weights, the formula will be continuously updated. It shows the basics of the

computation that is to be performed on the back end. This includes showing the users that

they are multiplying each data point by the chosen weight before adding each metric’s data
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values together, and that sum is being divided by the total weight as a weighted average

approach. As a result of the users weighing each metric, as described previously in Section

3.1.1, the data also goes through a Z-normalization on the back end. This part is not shown

in the box so as not to confuse the users, but the basics of the computation being done is still

shown to give them an idea. This is shown in a relatively simple fashion to make sure that

users can follow along and are aware of exactly what they are changing when they adjust

their formulas. Once content, each time a user saves and updates their formula they will

be prompted and subsequently directed to the Data Explorer page where they can begin

using their custom metrics and displaying the data with the various visualization options.

The Data Explorer page also has a link back to the Metric Builder in the sidebar so that

users can easily go back and forth between visualizing metrics and creating or editing custom

metrics at any time. All of the features of the Metric Builder went through testing and the

final design can be seen in Section 4.3.

3.2 API

Implementing an API, there are several design decisions to consider, including:

• Do we implement a closed API, which are in a controlled environment and serve a very

limited audience, or an open API, which are available to use by anyone who registers

for a key [27]? If closed, how do we implement authentication.

• Which methods do we support via this API?

• What is the syntax of the query string?
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• What is the output format?

3.2.1 Authentication

Although MATTERS system is a public resource, we decided we would like the ability to

track users of our API, how and how often. This requirement made us chose a closed API

option. Thinking of authentication, we had a few options, including:

• Bind to a particular user

• Simple API key (token) authentication

• Complex handshake mechanism

• Handshake mechanism with random value

Binding the API to a regular user would allow any registered user to access the API.

Although this kind of authentication is the easiest one to implement, we instead opted for a

separate API for users.

Simple API key authentication is equivalent to when API users are given a unique token

(long random string) which they need to provide with each request. Based on this token,

the system is able to accept or deny the connection and to track the individual users.

Next, the handshake mechanism with a random value involves the following steps:

• Client sends in a username (not password)

• Server responds by sending back a unique random number

• Client encrypts using user’s password plus number as key
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• Client sends hashed or encrypted value back to server

• Server encrypts using the user’s same password plus number as key

• Server compares two hashed or encrypted values, if same then grant access

Given that the main purpose of the API being closed is to track user activities for

statistical purposes, API key authentication was deemed sufficiently secure and thus was

chosen for implementation. The user has to apply for this key separately of creating a

regular account. The key will uniquely identify the user. If user forgets the key, he or she

can recover it through the email.

3.2.2 Methods of the API

The main method implemented in the API is ” api/data? ”. This method returns all data

points for the requested metrics, states and years.

Since api/data? needs specific IDs as arguments, there is a need for supporting meth-

ods which show information about metrics and states. So we also implemented api/metrics?

and api/states? as two additional commands. Each method is explained in Section

3.2.4.

3.2.3 Query string and output format

There are two common options for constructing a query string [28], namely:

• api/method?argument1=value1&argument2=value2&...

• api/method/value1/value2/...
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To make our API user-friendly, we chose to implement the first option since it clearly

shows which value corresponds to which argument. Furthermore, these argument-value pairs

may be in any order. Lastly, arguments that have no value can be omitted. If omitted, you

will get only the data specifically requested.

The final query strings are given in Listing 3.1. See Appendix A for an extensive docu-

mentation of the API.

Listing 3.1: API Methods Examples

1 /* method */

2 /api/data?metric=<value>&state=<value>&year=<value>&apiKey=<value>

3 /* example */

4 /api/data?metric={16,32}&state=MA&year=*&apiKey=key

5

6 /* method */

7 /api/metrics?apiKey=

8 /* example */

9 /api/metrics?apiKey=key

10

11 /* method */

12 /api/states?apiKey=

13 /* example */

14 /api/states?apiKey=key

The output format JSON (JavaScript Object Notation) was chosen as it both compact

and human- and computer-readable. See Listing C.1 in Appendix C for the example of API

method output.
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3.2.4 Documentation

In order for the developers to know how to make proper API calls, it was necessary to

create the API Documentation page for MATTERS. The documentation provides users with

information on the MATTERS API, including how to use it as well as examples of valid API

calls and the output that each call would return. It is important to ensure that the API

Documentation is easy to read and free of code sample errors, as this tool is what developers

unfamiliar with using the API rely on to understand how to properly access and extract data

[29].

In order to make the documentation easy to follow, the documentation was divided into

sections. The main sections of the API Documentation were: an overview, the methods, the

parameters, and examples. The layout of the MATTERS API Documentation was based

on the API Documentation of Tradestation, which was simple and easy to follow [30]. The

Tradestation documentation provided a summary, path, parameters, and examples of both

an API call and what it would return. An example of their documentation can be found

at: http://tradestation.github.io/webapi-docs/en/users/accounts/ [30]. For the MATTERS

API, it was necessary to include information on how to retrieve a user’s API key. Further we

described the proper format to get the data desired for different, years, states, and metrics.

The API Documentation sections are explained in the following sections below. The final,

complete API Documentation can be found in Appendix A

3.2.4.1 Overview of the API

The API Documentation begins with a summary about what the MATTERS API is and what

data points the API tool gives users access to. This section also includes an interactive table
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of contents which allows users to quickly navigate to a specific section of the documentation

to look for information. This allows users to easily find what they are looking for without

having to scroll through the entire documentation page. It provides a brief overview of

everything that follows.

3.2.4.2 API Key Subsection

Developers without authorization do not have the ability to use the MATTERS API until

they have been given an API key. These users are directed to the ”Contact Us” page of the

MATTERS site in order to send an email request to become an authorized user with their

own key. This section also explains that the API key is used in all API calls in order to

validate the user’s request.

3.2.4.3 States Subsection

In this section, users are instructed on the proper format needed to retrieve a single state,

list of states, or all states. If a user does not know any other information regarding the states

in the MATTERS system, they are shown where to find the relevant information needed via

an API request.

3.2.4.4 Metrics Subsection

In this section, users are given the proper format in order to request data for a single metric,

list of metrics or all metrics in the MATTERS data warehouse. The documentation explains

that in order to access data from metrics, the metric parameter values must be the proper

metric’s ID number. The user is also given the path to all information regarding the metrics,
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which will give the user the metric names, ID numbers and details.

3.2.4.5 Years Subsection

Users are given the proper format to request data from specific years. Users may request

data for a single year, range of years or all years in the MATTERS data warehouse.

3.2.4.6 Examples of API Calls

Following the parameters and methods of the MATTERS API, the documentation provides

the users with two examples of valid API requests and the data each would return. The

example requests include the proper format of the parameter values and the various different

types of calls the users can make to request specific data. Under the path name showing an

API request there is the option to display the return value of that specific example. Users

can view this to see the return data as well as the JSON format it would be given.

3.3 Changes to the database

We added two new tables to the database - APIUser and User Metric. See Tables 3.1

and 3.2.

For the APIUser relation, Id gets autoincremented for each new user. Name does not

have any restrictions and ApiKey is a maximum of 160 symbols string. The value of ApiKey

column is a user-unfriendly hash-like string generated by the system.

For the User Metric relation, Id and Name follow the same rules as in the APIUser

relation. Value column is an arbitrarily long string which represents JSON array of pairs -
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Name Type Comment Reference

Id INT Unique auto-incremented identifier none
Name VARCHAR API user’s name none
ApiKey VARCHAR(160) Unique random string; used for authentication none

Table 3.1: API User database relation

Name Type Comment Reference

Id INT Unique auto-incremented identifier none
Name VARCHAR User metric’s title none
Value TEXT JSON formatted list of metric id - coefficient none
UserID INT Id of a user - author of the user metric Id in User relation

Table 3.2: User Metric database relation

metric identifier and corresponding coefficient. An example of Value in User Metric rela-

tion:

["metricId":"131","coefficient":10,"metricId":"504","coefficient":30]

UserID column is a foreign key referencing the Id column in the Users relation and repre-

sents the owner of the user metric.

All columns are not nullable meaning that they have to have a valid value. This decision

was made to keep the database consistent.



4. Evaluation Via User Studies

After the back end code and the initial front end of the Metric Builder, API and API

Documentation features were complete, our team conducted user studies to receive feedback

on our design. We created a two part user study: The first was designed to test the usability,

intuitiveness, and simplicity of the Metric Builder’s user interface. The second was designed

to evaluate the clarity and completeness of the API Documentation. Our aim was to make

sure there are no errors in the code examples given or the natural language text within the

documentation.

4.1 User Testing Procedure

The user studies involved thirteen college-aged undergraduate students. All of the users

were from WPI. The users varied in the major they were studying. These majors included:

computer science, robotics engineering, actuarial mathematics, chemistry, and biomedical

engineering. It was important to have a variety of different majors as we could test more

technical and less technical type users. They were asked to complete the user tasks on

a laptop provided by our team. Even though the users in our study are not the typical

expected users of the MATTERS site, we believe that their input is valuable. If the features
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of the site are easy to use for users inexperienced with the MATTERS site, then we should

expect the features to be easy for the authorized users in the future as they can be expected

to be somewhat more experienced with the MATTERS site or with developing APIs. After

completing the tasks of the user study, the users filled out a survey asking them to rate

the easiness of different aspects of the tasks on a scale of one to five. While the users were

completing their tasks, our team was also there observing their actions in order to gain a

better insight into their clicking behavior and thought processes while navigating the site.

We also recorded the operating system and browser the users were utilizing in this study to

note any important differences this may bring about.

4.1.1 User Tasks

The user tasks were given to the users in the order as indicated below. They were printed

on a sheet of paper so that the users could reference the task details at any time:

User Study Tasks: Part 1, Metric Builder feature

1. Navigate to the Metric Builder feature

2. Please create your own metric formula, which includes Unemployment Rate, Corpo-

rate Income Tax Rate and Median Household Income, with weights 10, 5, and 22

respectively.

3. Name your new metric ”My Metric” and save it.

4. Please find and select your created metric on the Data Explorer page.

5. Edit your metric formula so that Unemployment Rate is no longer a part of the metric

and Median Household Income has a weight of 15.

6. Save your changes to My Metric.
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7. Please delete My Metric

8. You will now receive a short survey about your experience using the Metric Builder.

User Study Tasks: Part 2, API feature and documentation

1. Navigate to the API Documentation page

2. Your API Key is ”secret”

3. Please get the data for the metric Unemployment Rate for Massachusetts and Florida

for the year 2012 using the API tool and the documentation as a guide

4. You will now receive a short survey to complete about your experience using the API

and API Documentation.

The survey that the users completed at the end of each part of the user study can be

found in Appendix B.

4.2 Results

Thirteen users completed the user study and filled out the subsequent surveys. Most users

performed the tasks on Google Chrome or Safari. All users performed the tasks on either a

Mac Operating System or Windows Operating System. All of the data collected from the

user studies can be found in Appendix B.

Table 4.1 shows the average of the users’ ratings on a scale of one to five for each question

on the survey regarding the Metric Builder feature. Users rated all the tasks high (above our

standard of at least an average score of 3). This proved that along with our observations and
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Survey Question Average User Rating

How easy was it to find the Metric Builder? 4.385
How easy was it to select the metrics ”Unemployment Rate”, ”Cor-
porate Income Tax Rate”, and ”Median Household Income” in the
Metric Builder?

4.308

How easy was it to weigh the metrics accordingly? 4.615
How easy was it to name and save your metric? 5.000
How easy was it to find My Metric on the Data Explorer page? 4.231
How easy was it to edit My Metric to make the appropriate
changes?

3.846

How easy was it to remove My Metric? 5

Table 4.1: Average ratings for the user study on the Metric Builder

Survey Question Average User Rating

How easy was it to find the API Documentation? 3.250
How useful is the API Documentation? 4.167

Table 4.2: Average ratings for the user study on the API Documentation

initial design planning, that the Metric Builder feature was made to be intuitive for both

technical and non-technical users alike.

Table 4.2 shows the average of the users’ ratings on a scale of one to five for each question

on the survey regarding the API Documentation.

Our team considered an average rating of above four to be a good score, meaning that

the specific task was easy to perform with our user interface. The only tasks that did not

score above our desired rating was for How easy was it to edit ’My Metric’ to make the

appropriate changes? and How easy was it to find the API Documentation?. User feedback

on the open ended survey responses, as well as observations made by our team during the user

studies confirmed that these two tasks were the most difficult or confusing. This feedback
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also provided insight as to how to improve it.

For the Metric Builder, users noted that they wanted an option to allow them to edit

their metric from the Data Explorer page. Our observations confirmed that while on the

Data Explorer page, users were actively searching for an edit button while they were viewing

their custom made metric. Many times the users would find the ”Create new metric” link

quickly. However, this link, once clicked would bring the user to the Metric Builder page

where they could also edit their metric. However, they were hesitant to click the link because

they were not interested in starting over with a new metric. The resulting changes can be

found in Section 4.3.

For the API Documentation, many users commented on their difficulty in finding the link

for the API Documentation page. Ultimately, twelve out of the thirteen users did not have

much of an issue eventually navigating to the API Documentation link found on the ”How

to use MATTERS” page as seen in Figure 4.1. However, it was more time consuming than

it should have been and clearly this info is hidden in a lot of text. Many users clicked on

multiple other links before navigating to the correct page. The users who stated that they

did not know what an API was mainly looked for the API Documentation link in the main

drop-down menu of the site before navigating to the ”About” page, followed by clicking on

the link to ”How to use MATTERS” and finally finding the API section which led them

to the documentation. This corresponds to three levels of navigation, which is a hindrance.

Most of the users who were aware of what an API was, ultimately navigated to the API

Documentation page the same way. However, many of them scrolled to the bottom of the

home page of the site first looking for a link similar to the ”Developers” links found at the

bottom of many webpages. The resulting change in location of the API Documentation link
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Figure 4.1: Initial Location Of The API Documentation Link

can be seen in Section 4.3.

4.3 Changes Made

As a result of the user evaluation study, comments and our observations made while com-

pleting the user study tasks, we made a few front end changes to make our features easier to

use and easier to find. This included adding a link to the API Documentation in the footer

of the site in addition to the link on the ”How to use MATTERS” page. This can be seen

in Figure 4.2. Also, shown in Figure 4.3, we changed the ”Create new metric” link on the
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Figure 4.2: Footer

Data Explorer page to mention that the link would also allow users to edit their metric.

These changes led to the final design of the front end of the Metric Builder and API

Documentation. The final design can be seen in the figures below. Namely, Figures 4.4

and 4.5 show the Metric Builder page when a user first visits the page and after a user has

selected and assigned weights to some of the metrics from the Metric Selection column of

the sidebar. Once the user has decided to save their metric formula, if they choose to go

back and edit any part of it, the ”Save” button will be replaced by an ”Update” button.

Options are added to ”Cancel” any changes or remove the custom metric completely. These

additional options can all be seen in Figure 4.6.

Finally, there were no changes that needed to made to the API Documentation itself as a

result of the user testing. Figure 4.7 shows the API Documentation page as it appears when

a user first navigates to the page from either the footer or the ”How To Use MATTERS”

page.
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Figure 4.3: Data Explorer Sidebar With Edit Link
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Figure 4.4: Metric Builder Welcome Page

Figure 4.5: Metric Builder’s Canvas
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Figure 4.6: Save Menu

Figure 4.7: API Documentation Page



5. Conclusion

In this project we have built two important services for the MATTERS site that enhances

its capabilities and thus value. The API provides a way for other computer-based systems to

work with the MATTERS system. Specifically, it is now possible to query MATTERS data

directly via a software program bypassing the presentation layer. This is extremely useful

because it now empowers MATTERS’ data warehouse to serve as a portal for important

aggregated economic data. The other feature is the Metric Builder. This service allows

users to create their own personalized metrics based on the existing metrics. This is useful

as before users could only visualize the data of preexisting metrics, and MHTC and other

users can now easily use their own personal idicators. Users are able to work with their

custom metrics seamlessly in the Data Explorer as if they were just regular ones.

5.1 Recommendations

Recommendations for other teams, either MQP or other teams, working on improving the

MATTERS system in the future are as follows:

• MATTERS system
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1. Let users define more complex equations for their user metrics. User should not

be limited by simple weighted average formula.

2. Let users suggest their own data or data sources. Right now MATTERS’ admin-

istrators and data management team are working on adding data. By involving

users in this process MATTERS may have more complete, accurate and up-to-

date data.

3. Role management. Right now the system supports regular users and API users.

Each user metric must have one and only one author. It would be useful to merge

these two user entities and introduce shared user metrics that are not bound to

specific users.

• Software development

1. Refactor the client side and server side code. Since the system has been developed

by a number of teams with different design patterns and approaches, there is a

significant technical debt. It might be worth spending some time rewriting parts

of the system according to the latest coding and technical standards.

2. Documentation. Right now there is a steep learning curve for new developers who

start working on the project. Good documentation would dramatically decrease

the time it takes for developers to start working on the project.
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A. API Documentation

API Documentation can be found in the Appendices folder under the name API Documen-

tation.pdf.
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B. User Study

User study consent form can be found in the Appendices folder under the name User Study

Consent Form.pdf.

Script for investigators can be found in the Appendices folder under the name Script For

Investigators.pdf.

Survey can be found in the Appendices folder under the name Survey.pdf.

Full user survey results and comments can be found in the Appendices folder under the

name User Results.xlsx.
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C. API Output Sample

Listing C.1: API Data Method Output Sample

1 GET: api/data?state={AL,MA,NH}&metric={18}&year=2012&apiKey=secret

2

3 [

4 {

5 "state" : "Alabama",

6 "metrics" :

7 [

8 {

9 "MetricName" : "Total Tech Employment",

10 "Data" :

11 [

12 {

13 "Year" : 2012,

14 "Value" : 209044.0

15 }

16 ]

17 }

18 ]

19 },

20 {

21 "state" : "Massachusetts",

22 "metrics" :

23 [

24 {
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25 "MetricName" : "Total Tech Employment",

26 "Data" :

27 [

28 {

29 "Year" : 2012,

30 "Value" : 508666.0

31 }

32 ]

33 }

34 ]

35 } ,

36 {

37 "state" : "New Hampshire",

38 "metrics" :

39 [

40 {

41 "MetricName" : "Total Tech Employment",

42 "Data" :

43 [

44 {

45 "Year" : 2012,

46 "Value" : 74200.0

47 }

48 ]

49 }

50 ]

51 }

52 ]


