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Abstract

Many modern applications need to process queries over potentially infi-

nite data streams to provide answers in real-time. This dissertation pro-

poses novel techniques to optimize CPU and memory utilization in stream

processing by exploiting metadata on streaming data or queries. It focuses

on four topics: 1) exploiting stream metadata to optimize SPJ query opera-

tors via operator configuration, 2) exploiting stream metadata to optimize

SPJ query plans via query-rewriting, 3) exploiting workload metadata to

optimize parameterized queries via indexing, and 4) exploiting event con-

straints to optimize event stream processing via run-time early termination.

The first part of this dissertation proposes algorithms for one of the

most common and expensive query operators, namely join, to at runtime

identify and purge no-longer-needed data from the state based on punctua-

tions. Exploitations of the combination of punctuation and commonly-used

window constraints are also studied. Extensive experimental evaluations

demonstrate both reduction on memory usage and improvements on exe-

cution time due to the proposed strategies.

The second part proposes herald-driven runtime query plan optimiza-
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tion techniques. We identify four query optimization techniques, design a

lightweight algorithm to efficiently detect the optimization opportunities at

runtime upon receiving heralds. We propose a novel execution paradigm

to support multiple concurrent logical plans by maintaining one physical

plan. Extensive experimental study confirms that our techniques signifi-

cantly reduce query execution times.

The third part deals with the shared execution of parameterized queries

instantiated from a query template. We design a lightweight index mecha-

nism to provide multiple access paths to data to facilitate a wide range of

parameterized queries. To withstand workload fluctuations, we propose

an index tuning framework to tune the index configurations in a timely

manner. Extensive experimental evaluations demonstrate the effectiveness

of the proposed strategies.

The last part proposes event query optimization techniques by exploit-

ing event constraints such as exclusiveness or ordering relationships among

events extracted from workflows. Significant performance gains are shown

to be achieved by our proposed constraint-aware event processing tech-

niques.
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Chapter 1

Introduction

1.1 Research Motivation

1.1.1 Stream Processing Applications

As sensor network and online processing technologies mature, more and

more modern applications need to process streaming data instead of per-

sistently stored data. Below we list some of such applications.

• Network analysis applications [87] process streams of network pack-

ets to monitor usage and to detect intrusions. A network analysis

application might execute a query that continuously monitors the

source-destination pairs in the top 5 percentile in terms of total traffic

in the past 20 minutes over a backbone link.

• Monitoring applications [93, 87] process data streams from sensor

networks to monitor storehouse temperature, road traffic or environ-

mental conditions. A storehouse temperature monitoring application
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might execute a query that reports the maximum temperature once

every hour in a warehouse.

• Transaction management applications [63] process streams of trans-

actions to control real-time inventory, recommend on-line discount

policies, etc. These applications might execute queries over trans-

action streams to report total sales of items or to provide purchase

recommendations to customers.

• Online auction applications [93, 94] process data streams of selling

items, bids and registered users to answer queries such as to con-

tinuously report the item(s) with the maximum number of bids or

monitor the average closing price once an hour.

In response, a lot of research efforts [12, 15, 29, 49, 78, 79] in data man-

agement have recently focused on query processing over real-time data

streams.

1.1.2 Motivation of Exploiting Metadata on Streaming Data

In the applications listed above, data is in the form of continuous streams

that are generated on the fly during query execution and thus are not avail-

able in its entirety until the end of query execution. Moreover, users often

ask long-running queries (called continuous queries [15]) and expect the re-

sults to be delivered in real-time. This renders traditional query evaluation

techniques ineffective because they tend to assume one-time queries over

finite persistent data with pre-built indexes and materialized views. The

main challenges are summarized as follows:
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1). The data streams are potentially infinite. Hence the stateful operators,

such as join, duplicate elimination, and aggregate operators, may

need to maintain unboundedly growing states of all historical data

in order to produce exact results [16, 93]. This potentially requires

infinite storage resources.

2). Most stream applications put stringent requirements on real-time re-

sponse. This requires stateful operators to maintain their state in

main memory. The available memory may be quickly used up when

faced with large volumes of fast-arriving data streams. Therefore,

strategies for shrinking operator states while assuring correctness of

query results are required.

3). Data streams are continuously generated on the fly. Hence the meta

knowledge about streaming data, such as data value arrival patterns,

is largely unknown at query compilation time. Rather it may become

available only at query execution time [93]. Worse yet the arrival pat-

terns of metadata is quite likely unpredictable. Therefore, the query

execution strategies determined at query compilation time may be-

come suboptimal at runtime. Accordingly, adaptive query execution

approach and adaptive usage of metadata are highly desired.

To tackle these challenges, new metadata semantics, named punctu-

ations [93], have been proposed. Stream providers may insert dynamic

metadata, such as punctuations, into data streams. A punctuation in a data

stream signals that tuples with certain attribute values will no longer occur

in this stream. Such information can be used by the stateful operators to



1.1. RESEARCH MOTIVATION 4

detect and then discard no-longer-useful data from the state.

An optimization example. We now use an example query in an online

auction application to briefly illustrate how the punctuations can be used

to optimize the query execution. Figure 1.1(a) shows two streams gener-

ated by an online auction application. Each auction is represented by a

tuple in the Auction stream. Each bid placed by a bidder is represented

by a tuple in the Bid stream. In both streams, tuples arrive in the order of

their timestamp, which represents their open auction time or bidding time,

respectively 1. When the open duration for a particular auction expires, a

punctuation can be derived and inserted into the Bid stream to signal the

end of bids for that auction. The punctuation <180, ∗, ∗> in the Bid stream

in Figure 1.1(a) indicates that no more Bid tuples arriving after this punc-

tuation will have “item id=180”. Notice that punctuations also have times-

tamps indicating the time when they are announced. In addition, since the

item id attribute is the key of the Auction stream, a punctuation can be

derived on this attribute following each tuple in this stream.

Let’s consider the query in Figure 1.1(b). This query asks for the to-

tal number of bids for each auction. One execution plan for this query is

shown in Figure 1.1(c). It contains an equijoin operator which joins streams

Auction and Bid on item id, and a group-by operator that groups tuples

in the output stream (Out1) of the join by item id and then evaluates the

aggregate function count(∗) on each group.

Without additional knowledge on when the bidding for each auction

1We follow the general assumption that all input tuples have their timestamp generated
by stream sources.
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Auction Stream

Select        A.item_id, Count (*)
From         Auction A, Bid B
Where       A.item_id = B.item_id
Group by  A.item_id

(b) Continuous Query(a) Punctuated Streams – Auction and Bid

Bid Stream

Joinitem_id

Auction Stream

Bid Stream Out1

(item_id)

Group-byitem_id(count(*))

(c) Query Plan

Out2

(item_id, count)

item_id seller_id start_price timestamp

180 jsmith 130.00 May-10-06 9:00:00

180 * * May-10-06 9:00:20

182 melissa 20.00 May-10-06 9:10:00

182 * * May-10-06 9:10:30

Tuple (in regular font)

Punctuation (in bold and italic font)

item_id bidder_id bid_price timestamp

180 pclover 175.00 May-14-06 8:27:00

182 smartguy 30.00 May-14-06 8:30:20

180 richman 177.00 May-14-06 8:57:00

180 * * May-14-06 8:58:00

Figure 1.1: Example Streams and Queries in Online Auction Application.

finishes (thus no more bids for this auction will be recorded), the join state

will have to maintain the data it has received for indefinitely long. For high-

speed input streams, the state of the join operator may quickly become too

huge to fit in the memory. To guarantee the precision of the result, part of

the state would need to be moved to secondary storage. As more and more

data are relocated, the real-time join processing efficiency may be severely

affected and potentially put into jeopardy due to the expensive I/O opera-

tions.

If we consider punctuations provided in data streams, a smaller state

can be achieved instead, as illustrated below. First, according to punctu-

ations in the Auction stream, each Bid tuple can only match at most one
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Auction tuple. Hence, a Bid tuple can be discarded immediately after it

joins with a matching Auction tuple. Second, when a punctuation on the

item id attribute is obtained from the Bid stream, the Auction tuple in state

that contains the same item id value can then be purged. This way the Auc-

tion tuples can be removed from the state once the auction has been closed.

Meanwhile, a punctuation regarding this item id value can be propagated

to the Out1 stream for the group-by operator to produce a result for this spe-

cific item. We can see that the state of the Auction stream only maintains

tuples that represent the open auctions. The state of the Bid stream only

maintains the tuples that haven’t joined with the matching Auction tuple

yet. Both states become very concise.

The following advantages can be brought to query execution by such

concise operator states. First, it helps to avoid the expensive I/O opera-

tions as the state shrunk by punctuations may fit into memory. Second, it

reduces the memory requirements for the query so that the saved memory

can be used for other important purposes, e.g., for evaluating other queries.

Third, it reduces CPU overhead as now fewer tuples in the state need to be

examined during the probing.

1.1.3 Motivation of Exploiting Metadata on Streaming Queries

While long-running continuous queries are common in some stream appli-

cations such as monitoring applications, in many other applications where

streaming data are generated such as transaction management, a large num-

ber of concurrent one-time user queries may be experienced. In these ap-

plications, not only the data are streaming, but also the queries form a high-
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speed stream. Below we show such an example.

Query 1 
SELECT categoryID, buyer_state, buyer_job, COUNT(*)
FROM    Bid_info
WHERE buyer_state = ‘MA’ and categoryID = electronic
GROUP BY categoryID, buyer_state, buyer_job
WINDOW 24 Hours

Query 2 
SELECT categoryID, buyer_state, buyer_job, COUNT(*)
FROM    Bid_info
WHERE buyer_state = ‘CA’ and categoryID = homegoods
GROUP BY categoryID, buyer_state, buyer_job
WINDOW 24 Hours

Query Template for Queries 1 and 2

SELECT categoryID, buyer_state, buyer_job, <agg-func-list>
FROM    Bid_info
WHERE  <selection-predicates>
GROUP BY categoryID, buyer_state, buyer_job
WINDOW <window-length>

Figure 1.2: Example Queries and Corresponding Query Template.

Consider an online purchase application where user transactions are

recorded as data streams. It may provide purchase recommendations based

on user interests. For example, a Massachusetts user that plans to buy a

TV may want to receive recommendations based on Query 1 in Figure 1.2,

while a California user who wants to buy some home goods may need rec-

ommendations based on Query 2 in Figure 1.2. Both are one-time queries

based on the transaction stream generated so far. Since many concurrent

users may require recommendations at the same time, the query system

may experience a high-speed stream of queries.

If each of these queries is processed individually, for data streams of

large volume, the query system may face scalability problems [71] as each
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query needs to maintain separate operator states and no processings of pos-

sibly common sub-tasks are shared. We observe that queries in these appli-

cations are often similar although not identical as they may be generated

through a common user interface. For example, the two example queries in

Figure 1.2 may be submitted by users through a GUI interface for “request

recommendation”. We can use a query template as an abstraction for these

similar queries. Each individual query is then treated as a customized in-

stantiation of the template. For example, the two example queries can be

instantiated from the query template in Figure 1.2 by filling in the selec-

tion predicate in the WHERE clause, the aggregate function in the SELECT

clause and the window specification in the WINDOW clause.

By employing such a query template, we can use a single query plan to

achieve the shared execution of a large number of parameterized queries

instantiated from a query template. This way the operator state and inter-

operator queues can be shared to avoid data duplication.

Since the actual filter predicates, aggregate functions and even the his-

torical data to be queried (i.e., window specification) may vary significantly

among the parameterized queries, one important problem that must be

solved is how to organize the historical data to best serve the query work-

load. On one hand, multiple access paths via indexes should be provided

to speed up data lookup based on varied or even disjoint sets of attributes.

On the other hand, to handle streaming data, the index maintenace costs

upon frequent data insertions due to arrival of new data and deletions due

to data expiration should be minimized.
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1.1.4 Motivation of Exploiting Metadata in Event Stream Process-

ing

Besides the applications that produce relational data streams, as automated

business processes become ubiquitous, many applications such as busi-

ness activity monitoring, supply chain management and anomaly detection

generate continuous event streams. Unlike relational streams that consist of

homogeneous data tuples, the data objects (i.e., events) in event streams

can be of different types and hence have different sets of attributes. Query

processing over event streams [101, 35] aims at detecting interesting event

patterns in event streams for quick detection and reaction to critical business

situations.

The event patterns specify complex temporal and logical relationships

among events. Consider the example event pattern EP1 below, in which

“SEQ” represents the temporal relationship between two events and [totalPrice>200]

is the predicate on the GenerateQuote event. This pattern monitors the can-

celled orders that involve the participation of both suppliers and remote

stocks, with quote’s price > $200. Frequent occurrences of such patterns

may indicate the need for an immediate inventory management, for exam-

ple.

Event Pattern EP1:

SEQ((SEQ(OrderFromSupplier,GenerateQuote[totalPrice > 200])

AND SEQ(UseRemoteStock,GenerateInvoice)),CancelOrder)

We observe that in practice, many business events do not occur ran-

domly. Instead they follow pre-defined business logic or rules, typically
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called a workflow model [54]. As consequence, various constraints may

exist among events in these event processing applications. In particular,

occurrence constraints, such as mutually exclusive events, and order con-

straints, such as one event must occur prior to the other event, can be ob-

served in all the applications listed above.

The availability of these constraints enables us to predict the non-occurrences

of future events from the observed events. Such predictions would help us

to identify which partial query matches are guaranteed not to lead to final

results. Further efforts in maintaining and evaluating these partial matches

can be prevented, resulting in significant savings in memory and CPU. Ex-

ample 1 below illustrates such optimization opportunities that remain un-

explored in the literature.

An optimization example. Assume the event stream is generated by the

online order transactions [80, 97] that follow a predefined workflow. We

assume each task in the workflow, if performed, will submit an event to

the event stream. Suppose the UseLocalStock and the UseRemoteStock events

are mutually exclusive. Also, suppose that any GenerateQuote event, if it

occurs, must be before the SendQuote event in a transaction.

Consider the example event pattern EP1 again. By exploiting the event

constraints, whenever a UseLocalStock event occurs, this transaction is guar-

anteed to not match the query because the UseRemoteStock event will

never occur in this transaction. Also, once a SendQuote event is seen in a

transaction, and no GenerateQuote event with totalPrice>200 has been ob-

served so far, the transaction will not match the query because no Generate-
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Quote event will happen after the SendQuote event. In either case, any par-

tial matches by these transactions need not be maintained and evaluated

further as they are guaranteed to never lead to a final result. If the query

processing of large numbers of transactions could be terminated early, a

significant amount of CPU and memory resources would be saved.

1.1.5 State-of-the-Art in Metadata-Aware Stream Processing

Using metadata to optimize queries has been extensively studied in tradi-

tional database, where it is called semantic query optimization [24, 30, 59, 70,

102]. Existing work focuses on employing integrity constraints and index

information to rewrite a query plan into another equivalent plan yet with

lower cost. The optimization techniques include join/select introduction,

join/select elimination and detection of unsatisfiable conditions. These op-

timizations are all conducted before query execution commences.

Metadata have also begun to be considered in the stream processing

context. The k-constraint-exploiting algorithm [16] exploits one-to-many join

cardinality and clustered data arrival patterns to detect and purge no-longer-

useful data to shrink the state of stateful operators. These clustered patterns

are statically specified, and hence only characterize restrictive cases of the

real-world data. If the actual data fails to obey these static constraints, the

precision of the join result may suffer due to the incorrect purge of tuples.

The punctuation model covers a wide class of constraints, including

the well-known static ones such as the unique key and the clustered arrival

of attribute values [16]. [93] provides punctuation-based pass, purge and

propagation invariants for algebra operators. However, no research work
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has been done to design query execution strategies by exploiting punctua-

tions, which is the focus of the first two parts of this dissertation.

The index selection problem has been extensively studied in static databases

[4, 28, 51, 65], in which data updates are rare compared to queries. Index

selection tools take a query workload as input and suggest a set of indexes

that can maximally benefit the given workload. Index adaptation due to

changes in workloads means inserting a new index or deleting an existing

index.

Indexing in stream contexts has not yet received much attention, possi-

bly due to the dynamic nature of the streaming data. [56] studies methods

for indexing a single attribute for individual streaming algebra operators

under the sliding window semantics. Index selection driven by workload

metadata of streams of queries has so far not yet been tackled in stream

contexts, which now is the focus of the third part of this dissertation.

For event stream processing, existing work [35, 101] focuses on query

model/language design and query algebra development. None of them

considers exploiting the common event constraints to optimize the memory

and CPU utilization during event query execution, which is the focus of the

last part of this dissertation.

1.2 Research Focus of This Dissertation

The research goal of this dissertation is to investigate the techniques for

exploiting metadata, either on streaming data or on queries, to optimize

the CPU and memory utilizations in query processing over data streams.
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1.2.1 Constraint-Aware Stream Query Operators

Research challenges. Punctuations are dynamic constraints that become

available only at runtime. Typically no prior knowledge on punctuation

arrival patterns is available at static query optimization phase. This re-

quires the punctuation-aware execution techniques to be lightweight and

runtime-adjustable in order to handle evolving punctuation arrival behav-

ior.

In addition, sliding windows are essential constraints in stream contexts

because they help to bound the size of the operator states and also instruct

the queries to provide results on recent data. The sliding window constrains

the query to only consider the “recent” portions of the streams [12]. Sliding

windows and punctuations are constraints about different aspects of the

streaming data, i.e., the timestamp and the application-specific attributes,

respectively. Both can be used to identify and purge no-longer-useful data

from operator states. In many cases the data sets invalidated according to

these two types of constraints respectively may overlap with each other.

An ill-designed operator execution algorithm that exploits both constraint

types may achieve minor gains in memory but incur a possibly doubled

probing overhead compared to the algorithms that only utilize one con-

straint type. Overall it may thus yield worse performance than exploiting

only one or none of the constraint types. Correspondingly, we must care-

fully design the algorithm.

We thus put forth the following goals for our design:

1). The query operators should be able to react to punctuations and con-
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duct appropriate optimizations. The operators should also be adap-

tive to handle fluctuating data and punctuation statistics.

2). If both punctuation and sliding window constraints are present, the

operator execution algorithm should achieve better performance re-

garding both memory overhead and result output rate compared to

the algorithms that exploit only one of the constraint types.

3). If no punctuations are provided for the data stream, the punctuation-

aware operator should achieve equivalent performance as punctuation-

unaware operators. That is, we wish to avoid any penalty of a poten-

tially more complex solution in the cases when the techniques cannot

lead to any gains.

Dissertation Contributions. In this dissertation task, we target SPJ

(Select-Project-Join) queries since SPJ operations are the core operations in

both continuous and static query languages. We focus on the design of Join

operators since Join is the only stateful operation in SPJ operations and

hence benefits from exploiting punctuations. We also equip other opera-

tors with constraint-aware abilities. Hence our approach support complete

SPJ queries. We made the following contributions in this dissertation task.

We develop the PJoin algorithm for the join operator to exploit punc-

tuations. We propose alternate strategies for the join operator to purge the

state and to propagate punctuations, including eager/lazy purge and ea-

ger/lazy propagation. We equip the PJoin algorithm with configurable

execution logic to dynamically apply appropriate purge and propagation

strategies so to achieve runtime-adjustable join solutions. We also explore
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the trade-off between different purge strategies regarding the memory over-

head and the data output rate experimentally, and trade-off between differ-

ent strategies with regard to the punctuation output rate.

We recognize the optimization opportunities enabled by punctuations

and by the interactions between the constraints of different dimensions,

i.e., the sliding window in the time dimension and the punctuation in the

attribute value dimension. We design the PWJoin algorithm that is able

to exploit not only punctuations but also sliding window constraints. For

PWJoin, we design a novel index structure for the join state and corre-

sponding state purge strategies to facilitate the optimizations based on the

two constraint types. We also propose early propagation technique by ex-

ploiting synergy of the two constraint types.

We design cost models for estimating the memory and the CPU costs

of the PJoin and the PWJoin solutions. We compare the performance of

these algorithms with corresponding metadata-unaware algorithms based

on these cost models.

We have implemented the PJoin and the PWJoin algorithms in the

CAPE stream processing system [83, 76] (see Section 1.3 for details). We

report on the extensive experimental studies we have conducted to explore

the effectiveness of these metadata-exploiting join solutions.

The PJoin and the PWJoin approaches can be applied to existing stream

processing systems [7, 1] to equip the equi-join operator with the ability of

exploiting punctuations to shrink the runtime join state.
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1.2.2 Constraint-Driven Runtime Stream Query Optimization

Research challenges. Dynamic constraints on streaming data values can

be utilized to optimize not only individual operator implementation but

also the query plan structure. Several challenges must be tackled when

exploiting dynamic constraints to optimize query plan structure due to the

following observations.

First, since constraints become available only at runtime, the query op-

timization must be conducted frequently at runtime upon receipt of each

constraint to assure prompt reaction to constraints.

Second, constraints may have their lifespans, i.e., the properties described

by a constraint may only be satisfied by a particular substream. Therefore,

respective optimizations driven by a constraint will be applicable only to

the corresponding substream and thus only for limited periods at a time.

Finally, one constraint defined for one stream may enable several dis-

tinct optimizations in collaboration with constraints from other streams.

Hence multiple distinct query plans optimized by constraints may be valid

at a time with partially overlapped scopes (i.e., the substreams that these plans

are applicable to may overlap with each other).

Therefore, first, the algorithm employed to find the optimized plans

given a set of constraints must be efficient so as to identify all beneficial

optimization opportunities. Second, the algorithm must be lightweight so

as to minimize the runtime optimization overhead. For execution, a query

execution paradigm must be designed so that 1) it supports the concurrent

execution of multiple logical plans on overlapping input substreams with-
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out duplication of data storage and costs, and 2) it can adaptively phase in

and out logical plans on substreams with negligible physical plan switch-

ing costs [38, 104].

Dissertation contributions. In this dissertation task, we identify four

semantic query optimization opportunities that can be enabled by heralds

(a constraint model extended from punctuation [93], as will be defined in

Section 11.1). The corresponding optimization techniques parallel the SQO

techniques found in traditional databases [31, 70].

To minimize the optimization overhead, we develop an efficient con-

straint reasoning algorithm named PredSAT based on classic satisfiability

reasoning theory. PredSAT is guaranteed to identify all four herald-driven

optimization opportunities incrementally at runtime.

Multiple concurrent SQO plans may be enabled by heralds for process-

ing different, potentially overlapping stream partitions. We propose a ver-

sioned minimum range model for generating multiple concurrent logical

plans based on the result of PredSAT.

To achieve multiple concurrent logical plans with one single physical

plan, we propose a novel query execution paradigm employing multi-modal

operators with runtime configuration logic. This paradigm eliminates any

replication of operator states or inter-operator queues, guarantees instanta-

neous application of herald-driven query optimizations, requires zero plan

migration effort, and naturally supports highly flexible adaptive execution.

We conduct an extensive experimental study in the CAPE system [83].

The experimental results confirm that our herald-driven optimization tech-

niques significantly reduce query execution time, up to 60% in our tested



1.2. RESEARCH FOCUS OF THIS DISSERTATION 18

scenarios.

Our techniques can be incorporated into the existing stream processing

systems [7, 1] to optimize SPJ queries with inequality select and/or join

predicates when dynamic constraints like heralds present.

1.2.3 Index Tuning for Parameterized Streaming Queries

Research challenges. In many stream applications, not only data is stream-

ing, but also queries form high-speed streams. As an example, for pull-

based continuous queries [9, 26], the requests for pulling the query results

may form a high speed query stream. To provide customized results when

they are pulled, the query stream may contain a large number of concur-

rent parameterized queries that are instantiated from a pre-defined query

template. Since different uses may have significantly different interests on

the results, these parameterized queries may have selective predicates con-

cerning diverse sets of attributes. The ability to efficiently select the data

to be applied more expensive operations such as join or aggregation to is

essential to achieving good query execution performance.

It has been well recognized that a proper index mechanism is needed

to speed up the data lookups [4, 28, 56]. The new challenge we face here

is that the data to be maintained for the query template is of large volume

and quickly evolving due to streaming data. In addition, the parameterized

queries may specify widely varied window sizes. Hence the history data

pertinent to each of these parameterized queries may be different. Further-

more, both data and query workload may fluctuate due to highly dynamic

streaming environments, thus requiring frequent index tuning.
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Therefore, the design of the index mechanism must meet the following

goals: First, the index should benefit the processing of a large number of

rather diverse queries. Second, the index structure should require mini-

mal maintenance effort when processing data updates. Third, the index

structure should be memory-efficient to be maximally maintained in main

memory. Lastly, the index should be lightweight to be easily migratable

when the workload experiences significant changes.

To withstand the fluctuations in data and query workloads, the query

system should be able to quickly observe the changes at runtime and then

tune the index accordingly. First, efficient index selection algorithms are

needed to identify the optimal or near-optimal index configurations within

realtime. Second, method for identifying the needs for index tuning must

be designed. Finally, effective index migration strategies need to be de-

signed to migrate from the current index configuration to a new configura-

tion deemed to be more efficient in an online fashion.

Dissertation contributions. In this dissertation task, we focus on pa-

rameterized groupby queries due to the following reasons. First, groupby

queries are popular in our targeted applications for analytical purposes.

Second, groupby (aggregate) operations are expensive. Therefore, efficiently

selecting data to be grouped and aggregated on is the first important step

leading to efficient execution of parameterized groupby queries. We made

the following contributions in this dissertation task.

First, we propose the PSGB query as an abstraction of a large number of

runtime instantiated queries. This formulation leads to efficient optimiza-

tion of these runtime queries, i.e., a single PSGB operator can be designed
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to achieve resource sharing among the queries instantiated from the PSGB

template without having to analyze them individually as they are instanti-

ated.

Second, we employ a lightweight IMP index solution to manage the

PSGB state for supporting efficient data lookups required by PSGB instanti-

ations with diversified selection conditions. While existing work in stream-

ing databases uses one-level hash-based indices for efficient state manage-

ment, we show in our experimental study that our proposed solution beats

existing solutions by a 9-fold performance improvement (without usage of

any additional memory space) for large window sizes.

Our key contribution lies in being the first to tackle the index tuning

problem in the streaming context. We design the EPrune index selection al-

gorithm that is guaranteed to find the optimal IMP configuration. By prop-

erly pruning candidates, the complexity and hence the execution time of

EPrune can be significantly reduced compared to exhaustive search, some-

times more than ten-fold.

To meet the efficiency needs that are more important for online index

tuning than its guaranteed optimality, we also design a time-efficient greedy

index selection algorithm named RGreedy and equip it with three alter-

native search heuristics. RGreedy is shown to find the near-optimal IMP

configuration with observed polynomial complexity even in large search

spaces.

Our experimental study conducted in the CAPE system [83, 76] shows

that the IMP index always wins over the state-of-the-art index methods.

RGreedy with PCL and Hybrid heuristics finds the optimal IMP config-
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urations in all of our extensive test cases. For large search spaces, when

EPrune takes hours to finish, RGreedy always terminates within seconds.

Moreover, the PSGB operator with runtime index tuning outperforms the

operator with a fixed index configuration.

Our techniques can be applied to the stream processing systems [9, 26]

that support the pull-based query execution to optimize the execution of

the group by queries. The techniques can also be applied to traditional

database systems to optimize parameterized groupby queries when data

updates are frequent.

1.2.4 Runtime Semantic Query Optimization for Event Stream

Processing

Research challenges. Detecting complex patterns in event streams has be-

come increasingly important for modern enterprises to react quickly to

critical business situations [37, 54, 80]. In many practical cases business

events are generated based on pre-defined business logics, such as a work-

flow model [54]. Hence constraints, such as occurrence and order con-

straints, often hold among such events. For example, in online order appli-

cations [80, 97], if UseLocalStock event occurs, the UseRemoteStock event

will not occur (i.e., occurrence constraint) in the same online order transac-

tion. Also, the GenerateQuote event, if it occurs, it must occur before the

SendQuote event (i.e., the order constraint) in the same online order trans-

action. We have observed that reasoning using these known constraints

enables us to predict the non-occurrences of certain future event types,
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thereby helping us to identify and then terminate long running query pro-

cesses that are guaranteed to eventually not lead to successful matches.

Several key challenges must be tackled to achieve efficient constraint-

aware query processing over event streams. One critical question we must

answer is how to identify unsatisfiable partial query matches at runtime.

As we will show in Section 26.3, unlike the query unsatisfiability analysis

in the static case where the occurrence and order constraints are indepen-

dent (Section 26.2), constraints of different types may be chained together

to infer new constraints at runtime. Hence it is non-trivial to identify all

possible optimization opportunities in a timely manner. In addition, there

may be thousands or even millions of concurrent business transactions that

generate events to be matched by the query. To assure the efficiency and

scalability, the runtime reasoning for each individual transaction must be

lightweight. Otherwise, the overhead of constraint reasoning may outweigh

its benefits.

Dissertation contributions. We made the following contributions in

this dissertation task. First, we identify the optimization opportunities in

complex event processing to terminate unsatisfiable query processing early

by exploiting occurrence and ordering event constraints.

Second, we propose a polynomial time, runtime query unsatisfiability

(RunSAT) checking procedure for detecting the unsatisfiable query pro-

cessing. The RunSAT checking is based on a formal logic reasoning using

the combination of event query, event constraints and partial event history.

To improve the RunSAT performance, first, we apply abductive reason-

ing [46, 47] to pre-compute query failure conditions. Second, we exploit the
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incremental properties at runtime for RunSAT reasoning.

To facilitate the integration of our techniques into state-of-the-art event

processing architectures [35, 101], we augment the event query with fail-

ure conditions. We identify three common constraints that enable constant

RunSAT checking costs.

We conducted an extensive experimental study in a prototype event

processing system. The experimental results demonstrate that significant

performance gains, i.e., memory savings up to a factor of 3.5 and CPU sav-

ings at a factor of 2, are achieved through our approach, with small over-

head spent on optimization itself .

Our technique can be easily plugged into existing event processing sys-

tems [101, 36] as a runtime semantic query optimization module to opti-

mize the memory usage and to improve the query execution time.

1.3 Overview of the CAPE System

The techniques we have designed to achieve the above research goals have

been implemented and tested in a prototype stream processing system named

CAPE [83, 76] which is built at WPI as a team effort to serve as the testbed

for our research designs for data stream processing. CAPE stands for Constraint-

Aware Adaptive Stream Query Processing Engine. The CAPE system is a

prototype stream processing system to evaluate queries over data streams

in highly dynamic stream environments. The system has been demon-

strated in VLDB 2004 (centralized version) and 2005 (distributed version)

conferences [83, 76]. The proposed strategies and algorithms in the first
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three parts of this dissertation have been built into the CAPE system to

equip it with the ability of exploiting constraint on data and queries to op-

timize query execution.

Figure 1.3: CAPE System Architecture.

The CAPE system architecture is depicted in Figure 1.3. The system is

built to be run on a single machine (centralized version) as well as across

multiple machines (distributed version) 2. Each machine (processor) can

run an instance of the query engine named the CAPE engine. If the system

is run on multiple machines, a distributed manager overlooks these mul-

tiple CAPE query engines and collects statistics from all of them to make

system-wide adaptation decisions. The key adaptive components in CAPE

2The proposed techniques in this dissertation are only applicable to the centralized ver-
sion of CAPE.
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are Operator Configurator, Operator Scheduler, Plan Reoptimizer and Dis-

tribution Manager. Once the Execution Engine starts executing the query

plan, the QoS Inspector component, which serves as the statistics monitor,

will regularly collect statistics from the Execution Engine at each sampling

point. This run time statistics gathering component is critical to continu-

ous query processing, as any adaptation technique relies on the statistics

gathered at run time to make informed decisions.

As mentioned earlier, this dissertation focuses on investigating constraint-

exploiting query optimization technologies in four aspects, including 1)

query operator optimization using streaming data constraints, 2) query

plan optimization using streaming data constraints, 3) query optimization

using query workload metadata, and 4) event query optimization using

event constraints from workflow. Among them, 1), 2) and 3) together cor-

respond to the Operator Configurator and Plan Reoptimizer components

in the CAPE architecture shown in Figure 1.3. All new designs and al-

gorithms in Part I, Part II and Part III of this dissertation are implemented

and experimented within the CAPE system. The optimization of event pro-

cessing using event constraints is developed in a separate event processing

prototype system, as will be detailed in Part IV.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows: The four research topics

are discussed in detail in Part I, Part II, Part III and Part IV in this disserta-

tion respectively. The discussions of each of the four research topics include
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the relevant research motivation, problem introduction, background, solu-

tion description, experimental evaluation and discussion of related work

respectively. Chapter 31 concludes this dissertation and Chapter 32 dis-

cusses possible future work.

Most materials in this dissertation have been published as conference

papers. The materials in Part I have been presented in [40, 44, 41]. The

materials in Part III have been presented in [43]. The materials in Part IV

have been presented in [39]. In addition, the materials in Part II have been

presented in a technical report [42].
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Part I

Punctuation-Aware Stream

Query Operators
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Chapter 2

Introduction

2.1 Stream Join Processing and Constraints

The processing of stateful operators such as join over data streams is re-

source intensive. These operators need to maintain the already-processed

data in their state to evaluate the data to be arriving in the future. Since

data streams are potentially infinite, the state of these operators may grow

indefinitely, thus requiring potentially unbounded storage. Many well-

known stream-oriented join solutions aim to tackle this problem, including

symmetric hash join [100], ripple joins [62], XJoin [95, 96], and hash-merge

join [81]. These operators may quickly consume a fairly large portion of

memory once execution starts. To avoid memory overflow, XJoin and hash-

merge join choose to move part of the state to secondary storage. As the

state continuously grows, the operator execution efficiency may drop dra-

matically due to expensive I/O operations. This is unacceptable for most

streaming applications where real-time response is required.
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It is clearly not practical to compare every tuple in one potentially in-

finite stream with all tuples in another also possibly infinite stream [8].

Recent work on window joins [2, 57, 68] has concluded that a significant

portion of queries in stream applications are only interested in joining data

from two or more streams that arrive relative to each other within a bounded

time period. We will show an example of such window joins in Section

1.1.4. Under the window join semantics, the join state can be bounded by

only keeping the data that reside in the current window.

However, windows cannot always be established for user queries as

they clearly affect the semantics of the query. This raises the question

whether there are alternate methods to aid us in bounding the size of the

operator state. One such alternative is based on the observation that data

streams may conform to some semantic constraints that can be utilized to

detect and thus purge no-longer-needed data from the runtime join state [16,

93]. For example, in an online auction application [94], once an auction for

an item is closed, it is guaranteed that no more bids will be received on this

item in the Bid stream. If itemID is the join attribute, such cluster-arrival

constraint can be utilized by the join operator to discard no-longer-needed

data in a timely manner. [93] propose to embed metadata, referred to as

punctuations, inside data streams to explicitly announce such termination

points of attribute values. Data streams that carry punctuations are referred

to as punctuated streams.
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2.2 Motivation Examples for Optimizing Joins over Punc-

tuated Streams

Let us examine the advantages to be gained in join processing by exploiting

punctuations. In a natural join over two relational streams S1 and S2 on a

common attribute att, when a punctuation on a join value val from S1 has

been received, the tuples from S2, either already-processed ones or future-

incoming ones, that contain the join value val will thus no longer be joining

with any future tuples from S1. Hence they can be removed from the state.

The same tuple purge rule applies to punctuations from S2. The join oper-

ator may also be able to propagate the punctuations it received to benefit

downstream operators [93], e.g., for them to purge their states respectively.

In addition, either windows or punctuations can be exploited to optimize

the join execution. As will be shown by the example below, in some cases,

these two types of constraints may be available simultaneously to the join

operator, e.g., when we evaluate a window join over punctuated streams.

The interaction of these two types of constraints may enable further op-

timizations. Below we use an example query from an online auction ap-

plication [94] to illustrate the optimization opportunities enabled by the

coexistence of punctuations and sliding windows.

Consider the auction application described in Section 1.1.4 and the query

below. This query is similar to the query in Figure 1.1 (Section 1.1.4). The

only difference is that there is a 24-hour sliding window applied to the Auc-

tion stream. Accordingly, a window join operator is applied for joining the

Auction and the Bid stream on the item id attribute. Therefore, regarding
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tuples from the Auction stream, only the ones whose open auction time is

within 24 hours prior to the bid time of the latest-received Bid tuple need to

be maintained. However, if many auctions are opened concurrently and for

each auction there are a large number of bids, the state of the join operator

may still be huge.

Select A.item_id, Count(*)

From Auction [Range 24 Hours] A, Bid B

Where A.item_id = B.item_id

Groupby by A.item_id

If we exploit punctuations as described in Section 1.1.4, the state size

can be further reduced from the state of the pure window join. In addition,

for those Auction tuples that represent the auctions whose open period is

longer than 24 hours, when it moves out of the 24-hour window, no more

join results will be produced for this auction, though further Bid tuples for

this auction may still arrive. Hence, any future Bid tuples for this auction

can be directly dropped without even being processed.

From the above example, we obtain the following observations that mo-

tivate our join algorithm that utilizes punctuations.

1). For potentially infinite data streams, the join state will grow unbound-

edly. Even for window join, for relatively long-lasting windows or

rapid data arrivals, the join state would typically contain a large num-

ber of tuples. In either case, by exploiting punctuations, the join state

can be effectively shrunk, thus improving the probing efficiency.
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2). A newly-received tuple may never need to be inserted into the state

if the punctuations have indicated that this tuple will no longer join

with any future-arriving tuples from the other stream. Then this tuple

can be simply discarded after it has been used to produce the result

based on the current state.

3). A join operator may be able to help downstream operators by propa-

gating punctuations, for instance, to unblock blocking operators such

as group-by. [93] defines formal punctuation propagation rules for

typical algebra operators.

4). Further optimization is achievable due to the interaction between

these two types of constraints. For example, with tuples being in-

validated by windows, some punctuations can be propagated much

earlier.

While these potentially huge benefits exist, to the best of our knowl-

edge, no prior work has considered the design of join operators to effec-

tively exploit the combined constraints of punctuations and sliding win-

dows.

2.3 Our Approach: Punctuation-Exploiting Join Algo-

rithms

In this dissertation task, we explore the join algorithms that exploit punc-

tuations. We first propose an algorithm named PJoin (for Punctuation-

exploiting Join) for joins without window specifications. Secondly, we pro-



2.3. OUR APPROACH: PUNCTUATION-EXPLOITING JOIN ALGORITHMS33

pose the Punctuation-exploiting Window Join (PWJoin) algorithm. The

two algorithms have been published in [44, 40] and [41] respectively. Our

contributions are summarized as follows:

1). We recognize the optimization opportunities enabled by punctua-

tions and by the interactions between the constraints of different di-

mensions, i.e., the sliding window in the time dimension and the

punctuation in the attribute value dimension. We develop the PJoin

and the PWJoin algorithms that are able to exploit punctuations in

non-windowed and windowed cases respectively.

2). For PJoin, we propose alternate strategies for the join operator to

purge the state and to propagate punctuations, including eager/lazy

purge and eager/lazy propagation. We explore the trade-off between

different purge strategies regarding the memory overhead and the

data output rate experimentally, and trade-off between different strate-

gies with regard to the punctuation output rate.

3). For PWJoin, we design a novel index structure for the join state and

execution strategies to facilitate the exploitation of the combined con-

straints. We also provide a generalized PWJoin solution to handle

multiway joins.

4). We provide the cost models for estimating the memory and the CPU

costs of the PJoin and the PWJoin solutions. We compare the per-

formance of these algorithms with corresponding constraint-unaware

algorithms based on these cost models.
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5). We have implemented the PJoin and the PWJoin algorithms in the

CAPE system. We report on the extensive experimental studies we

have conducted to explore the effectiveness of these constraint-exploiting

join solutions.
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Chapter 3

Background

3.1 Pipelined Join

The join algorithms we propose in this work extend the popular stream-

oriented join algorithm, namely symmetric pipelined join [100]. As shown

in Figure 3.1, the pipelined join maintains a state for each of its input streams.

As a tuple t arrives from S1, it is first inserted into the state of S1. Then it

is used to probe the state of S2 that has been constructed. For any match

found, a result tuple is produced. The processing of tuples from S2 is sim-

ilar. In summary, the join operator continuously performs the insert-probe

operation sequence for each input tuple. Each tuple is processed to com-

pletion before the processing of the next tuple starts.
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State of S1 State of S2

New Tuple from
Stream S1

New Tuple from
Stream S2

Output Join Results

Insert Probe Insert

Figure 3.1: Pipelined Join.

3.2 Punctuation

Punctuations [93] are dynamic constraints that are interleaved with the

streaming data. Under the relational data model, each data stream is as-

sociated with a fixed schema, i.e., a set of attributes. All tuples and punctu-

ations in a stream conform to the schema of this stream. According to [93],

a punctuation in a stream is expressed as a list of patterns, with each pat-

tern corresponding to an attribute in the schema of the stream. A tuple t is

defined to match a punctuation p if the value of every attribute of t matches

the corresponding pattern specified in p. The punctuation semantics spec-

ify that no tuple arriving after a punctuation will match this punctuation.

The following five patterns along with the values they match are defined

in [93].

• A wildcard, denoted as ∗, matches all values.

• A constant c, matches only c.
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• A range, denoted with [a, b] for inclusive ranges or (a, b) for exclusive

ranges, matches those values that fall in the given range.

• A list, denoted as {a, b, c}, that matches values in the list.

• The empty pattern, denoted as ∅, that does not match any value.

For example, given the Bid stream with schema <item id, bidder id,

bid price>, the punctuation <{1001, 2004}, ∗, ∗> describes that no bids on

items 1001 or 2004 will occur in this stream after this punctuation.

Table 3.1: Notation and Functions.
Notation Meaning

t A relational tuple

p A punctuation

tseti Set of all tuples received from stream Si so far

pseti Set of all punctuations received from stream Si so far

vpseti Set of all join values specified by punctuations received

from stream Si so far

Function Return Value

πatt(t) Value of attribute att of tuple t

πatt(p) Value of attribute att of punctuation p

Πatt(pset) Set of values from applying πatt(pi) to all pi in pset

match(t, p) True if t matches p

setMatch(t, pset) True if t matches any p in pset

setNomatchPset(tset, pset) All punctuations in pset that have no match in tset

[93] proposes the pass, keep (or the inverse, purge) and propagate invari-

ants for query operators to produce partial results, purge state and prop-

agate punctuations to the output stream. Below we show the purge and

propagate invariants for the natural join operator. The definitions of these

invariants and the invariants we propose later in Section 7.2 use the func-

tions listed in Table 3.1. Table 3.1 also lists the notation that will be used

throughout this work.
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Lemma 1 (Purge Invariant). In a natural join S1 ⊲⊳ S2 with a common attribute

att, the following tuples are no longer useful and can be purged from the state.

[t | t ∈ tset1∧setMatch(πatt(t),Πatt(pset2))]∪[t|t ∈ tset2∧setMatch(πatt(t),Πatt(pset1))]

Lemma 2 (Propagate Invariant). In a natural join S1 ⊲⊳ S2 with a common

attribute att, the punctuations on the following join values can be propagated to

the output stream. It is assumed that all input punctuations contain wildcards for

all non-join attributes [93].

[p|p ∈ setNomatchPset(tset1, pset1) ∨ p ∈ setNomatchPset(tset2, pset2)]

Besides the above invariants [93], we have derived the following punc-

tuation propagate invariant for regular joins (i.e., no window specified)

based on the punctuation semantics. We name it regular propagate invari-

ant to distinguish it from the propagate invariant proposed in [93] (Lemma

2). Both propagate invariants are designed for regular joins. They are also

applicable to window joins.

Lemma 3 (Regular Propagate Invariant). In a natural join S1 ⊲⊳ S2 with a

common attribute att, the punctuations on the following join values can be prop-
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agated to the output stream. Again, it is assumed that the input punctuations

contain wildcards for all non-join attributes.

[v|v ∈ vpset1 ∧ v ∈ vpset2]

Proof. If the punctuation on a join value v has been received from both

input streams, then no more future-arriving tuples will contain this join

value. Hence no more join results will contain this join value. Therefore,

a punctuations on join value v can be safely sent to the output stream to

announce this fact.

According to the above invariants, the following optimizations can be

achieved in the evaluation of a binary natural join on a common attribute.

1). In-state purge. A new punctuation received from one input stream

can be used to purge the matching tuples from the state of the other

stream.

2). On-the-fly purge. A new tuple received from one stream doesn’t need

to be inserted into the state if it matches a punctuation that has been

received from the other stream.

3). Propagation. A punctuation on a join value val can be propagated

to the output stream if a punctuation regarding this join value is re-

ceived from one stream and no tuple currently in the state of this

stream matches this punctuation. The propagated punctuations have

the same attribute set as the join results, and may hence be different
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from the attribute set of the input punctuations. For example, in a

join S1<A, B> ⊲⊳ S2<B, C>, the input punctuations from stream S1

and those from S1 both have two attributes (A and B, and B and C,

respectively). However, the propagated punctuations will have three

attributes, i.e., A, B and C.

3.3 Sliding Window Join

The sliding window constrains the query to only consider the “recent” por-

tions of the streams [12]. There are two types of sliding windows – time-

based windows and count-based windows. Below we provide the window

join semantics with the more commonly used window type, i.e., the time-

based window. The count-based window join will be described in Section

7.5.

The join S1 ⊲⊳ S2 with time-based sliding windows W1 on S1 and W2 on

S2 is defined as follows: each tuple from S1 (S2) with timestamp ts1 (ts2)

can only join with tuples from S2 (S1) that arrived within the last W2 (W1)

time units prior to ts1 (ts2).

The sliding window join algorithm extends the pipelined join algorithm

by discarding the tuples that have expired from the current window in a

timely manner. As a tuple t1 with timestamp ts1 arrives from S1, it is first

inserted into the state of S1. Second, t1 is used to remove tuples from the state

of S2 whose timestamp is less than (ts1–W2). Then t1 is used to probe the

state of S2 and the corresponding join results are produced for any matches.

In this algorithm, the expired tuples from one stream are purged according



3.3. SLIDING WINDOW JOIN 41

to the timestamp of the new tuple from the other stream. This cross invali-

dation strategy guarantees that no spurious duplicate results are produced

and no valid result is missing. In summary, the join operator continuously

performs the insert-invalidate-probe operation sequence to process each in-

put tuple.
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Chapter 4

PJoin: Punctuation-Aware

Streaming Join Operator

4.1 PJoin Execution Logic

4.1.1 Components and Join State

Components. Join algorithms typically involve multiple subtasks, includ-

ing: (1) probing the in-memory join state using a new tuple and produce

result for any match being found (memory join), (2) moving part of the in-

memory join state to disk when running out of memory (state relocation),

(3) retrieving data from disk into memory for join processing (disk join),

(4) purging no-longer-useful data from the join state (state purge) and (5)

propagating punctuations to the output stream (punctuation propagation).

The frequencies of executing each of these subtasks may be rather dif-

ferent. For example, memory join runs on a per-tuple basis, while state
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relocation executes only when memory overflows and state purge is acti-

vated upon receiving one or multiple punctuations. To achieve a fine-

tuned, adaptive join execution, we design separate components to accom-

plish each of the above subtasks. Furthermore, for each component we ex-

plore a variety of alternate strategies that can be plugged in to achieve op-

timization in different circumstances, as further elaborated upon in Section

4.1.2 through Section 4.1.5. To increase the throughput, several components

may run concurrently in a multi-threaded mode. Section 4.1.6 introduces

our event-based PJoin framework.

Join state. Being a pipelined join operator (Section 3.1), PJoin maintains

a separate state for each input stream. All the above components operate

on this shared data storage. For each state, a hash table holds all tuples that

have arrived but have not yet been purged. Similar to XJoin [95], each hash

bucket has an in-memory portion and an on-disk portion. When memory

usage of the join state reaches a memory threshold, some data in the memory-

resident portion will be moved to the on-disk portion. A purge buffer con-

tains the tuples which should be purged based on the present punctuations,

but cannot yet be purged safely because they may possibly join with tuples

stored on disk. The purge buffer will be cleaned up by the disk join compo-

nent. The punctuations that have arrived but have not yet been propagated

are stored in a punctuation set.

4.1.2 Memory Join and Disk Join

Due to the memory overflow resolution explained in Section 4.1.3 below,

for each new input tuple, the matching tuples in the opposite state could
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possibly reside in two different places: memory and disk. Therefore, the

join operation can happen in two components. The memory join compo-

nent will use the new tuple to probe the memory-resident portion of the

matching hash bucket of the opposite state and produce the result, while

the disk join component will fetch the disk-resident portion of some or all

the hash buckets and finish the left-over joins due to the state relocation

(Section 4.1.3). Since the disk join involves I/O operations which are much

more slower than in-memory operations, the policies for scheduling these

two components are different. The memory join is executed on a per-tuple

basis. Only when the memory join cannot proceed due to the slow deliv-

ery of the data or when punctuation propagation needs to finish up all the

left-over joins, will the disk join be scheduled to run. Similar to XJoin [95],

we associate an activation threshold with the disk join to model how urgent

it is to be scheduled for execution.

4.1.3 State Relocation

PJoin employs the same memory overflow resolution as XJoin, i.e., mov-

ing part of the state from memory to secondary storage (disk) when the

memory becomes full (reaches the memory threshold). The corresponding

component in PJoin is called state relocation. Readers are referred to [95] for

further details about the state relocation.



4.1. PJOIN EXECUTION LOGIC 45

4.1.4 State Purge

The state purge component removes data that will no longer contribute to

any future join result from the join state by applying the purge rules de-

scribed in Section 3.2. We propose two state purge strategies, eager (immedi-

ate) purge and lazy (batch) purge. Eager purge starts to purge the state when-

ever a punctuation is obtained. This can guarantee the minimum memory

overhead caused by the join state. Also by shrinking the state in an aggres-

sive manner, the state probing can be done more efficiently. However, since

the state purge causes the extra overhead for scanning the join state, when

punctuations arrive very frequently so that the cost of state scan exceeds

the saving of probing, eager purge may instead slow down the data output

rate. In response, we propose a lazy purge which will start purging when

the number of new punctuations since the last purge reaches a purge thresh-

old, which is the number of punctuations to be arriving between two state

purges. We can view eager purge as a special case of lazy purge, whose

purge threshold is 1. Accordingly, finding an appropriate purge thresh-

old becomes an important task. In Chapter 5 we experimentally assess the

effect on PJoin performance posed by different purge thresholds.

4.1.5 Punctuation Propagation

Besides utilizing punctuations to shrink the runtime state, in some cases the

operator can also propagate punctuations to benefit other operators down-

stream in the query plan, for example, the group-by operator in Figure 1.1

(c). According to the propagation rules described in Section 3.2, a join oper-
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ator will propagate punctuations in a lagged fashion, that is, before a punc-

tuation can be released to the output stream, the join must wait until all

result tuples that match this punctuation have been safely output. Hence

we consider to initiate propagation periodically. However, each time we

invoke the propagation, each punctuation in the punctuation sets needs to

be evaluated against all tuples currently in the same state. Therefore, the

punctuations which were not able to be propagated in the previous prop-

agation run may be evaluated against those tuples that have already been

compared with last time, thus incurring duplicate expression evaluations.

To avoid this problem and to propagate punctuations correctly, we design

an incrementally maintained punctuation index which arranges the data in

the join state by punctuations.

Punctuation index. To construct a punctuation index (Figure 4.1 (c)),

each punctuation in the punctuation set is associated with a unique ID (pid)

and a count recording the number of matching tuples that reside in the same

state (Figure 4.1 (a)). We also augment the structure of each tuple to add the

pid which denotes the punctuation that matches the tuple (Figure 4.1 (b)).

If a tuple matches multiple punctuations, the pid of the tuple is always set

as the pid of the first arrived punctuation found to be matched. If the tuple

is not valid for any existing punctuations, the pid of this tuple is null. Upon

arrival of a new punctuation p, only tuples with pid field being null need

to be evaluated against p. Therefore the punctuation index is constructed

incrementally so to avoid the duplicate expression evaluations. Whenever

a tuple is purged from the state, the punctuation whose pid corresponds

the pid contained by the purged tuple will decrement its count field. When
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the count of a punctuation reaches 0 which means no tuple matching this

punctuation exists in the state, according to Lemma 2 in Section 3.2, this

punctuation becomes propagable. The punctuations being propagated are

immediately removed from the punctuation set.
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Figure 4.1: Data Structures for Punctuation Propagation.

Algorithms for index building and propagation. We can see that punc-

tuation propagation involves two important steps: punctuation index build-

ing which associates a punctuation with each tuple in the join state, and

propagation which outputs the punctuations with the count field being zero.

Clearly, propagation relies on the index building process. Algorithm 1 be-

low shows the algorithm for constructing a punctuation index for tuples

from stream B (Lines 1-14) and the algorithm for propagating punctuations

from stream B to the output stream (Lines 16-21).

Eager and lazy index building. Although our incrementally constructed

punctuation index avoids duplicate expression evaluations, it still needs to

scan the entire join state to search for the tuples whose pids are null each
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Algorithm 1 Index-Build-B Procedure
ArrayList pIndexSet = new ArrayList();
/* Select all punctuations from B punctuation set PSB not used for indexing tuples. */
for pi in PSB do

if ! (pi.indexed) then
pIndexSet.add(pi);

end if
end for
/* Index all tuples in the B hash table HTb that have not yet been indexed. */
for bucketk in HTb do

for tj in bucketk do
if tj .pid == null then

for pi in pIndexSet do
if match(tj , pi) then

tj .pid = pi.pid; /* assign pid to matching tuple. */
continue;

end if
end for

end if
end for

end for

Algorithm 2 Propagate-B Procedure
/* Output and remove all punctuations whose count field is 0 in PSB . */
for pi in PSB do

if pi.count == 0 then
output(pi); /* Send pi to output stream. */
remove(PSB , pi); /* Remove pi from PSB */

end if
end for
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time it is executed. We thus batch the index building for multiple punctua-

tions in order to share the cost of scanning the state. Accordingly, instead of

triggering the index building upon the arrival of each punctuation, which

we call eager index building, we run it only when the punctuation propaga-

tion is invoked, called lazy index building. However, eager index building is

still preferred in some cases. For example, it can help guarantee the steady

instead of bursty output of punctuations whenever possible. In the eager

approach, since the index is incrementally built right upon receiving each

punctuation and the index is indirectly maintained by the state purge, some

punctuations may be detected to be propagable much earlier than the next

invocation of propagation.

Propagation mode. PJoin is able to trigger punctuation propagation

in either push or pull mode. In the push mode, PJoin actively propagates

punctuations when either a fixed time interval since the last propagation

has gone by, or a fixed number of punctuations have been received since

the last propagation. We call them time propagation threshold and count prop-

agation threshold respectively. On the other hand, PJoin is also able to prop-

agate punctuations upon the request of the down-stream operators, which

would be the beneficiaries of the propagation. This is called the pull mode.

4.1.6 Event-driven Framework of PJoin

To implement the PJoin execution logic described above, with components

being tunable, a join framework which incorporates the following features

is desired.
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1). The framework should keep track of a variety of runtime parameters

that serve as the triggering conditions for executing each component,

such as the size of the join state, the number of punctuations that ar-

rived since the last state purge, etc. When a certain parameter reaches

the corresponding threshold, such as the purge threshold, the appro-

priate components should be scheduled to run.

2). The framework should be able to model the different coupling al-

ternatives among components and easily switch from one option to

another. For example, the lazy index building is coupled with the

punctuation propagation, while the eager index building is indepen-

dent of the punctuation propagation strategy selected by a given join

execution configuration.

To accomplish the above features, we have designed an event-driven

framework for PJoin as shown in Figure 4.2. The memory join runs as

the main thread. It continuously retrieves data from the input streams and

generates results. A monitor is responsible for keeping track of the status

of various runtime parameters about the input streams and the join state

being changed during the execution of the memory join. Once a certain

threshold is reached, for example the size of the join state reaches the mem-

ory threshold or both input streams are temporarily stuck due to network

delay and the disk join activation threshold is reached, the monitor will in-

voke the corresponding event. Then the listeners of the event, which may

be either disk join, state purge, state relocation, index build or punctuation

propagation component, will start running as a second thread. If an event
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has multiple listeners, these listeners will be executed in an order specified

in the event-listener registry described below.

0HPRU\�-RLQ

3XQFWXDWLRQ
3URSDJDWLRQ

6WDWH
3XUJH

6WDWH
5HORFDWLRQ

0RQLWRU

3XQFWXDWLRQ
,QGH[�%XLOG

'LVN
-RLQ

Figure 4.2: Event-Driven Framework of PJoin.

The following events have been defined to model the status changes of

monitored runtime parameters that may cause a component to be activated.

1). StreamEmptyEvent signals both input streams run out of tuples.

2). PurgeThresholdReachEvent signals the purge threshold is reached.

3). StateFullEvent signals the size of the in-memory join state reaches the

memory threshold.

4). NewPunctReadyEvent signals a new punctuation arrives.

5). PropagateRequestEvent signals a propagation request is received from

down-stream operators.

6). PropagateTimeExpireEvent signals the time propagation threshold is reached.

7). PropagateCountReachEvent signals the count propagation threshold is reached.

PJoin maintains an event-listener registry. Each entry in the registry lists

the event to be generated, the additional conditions to be checked and the
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listeners (components) which will be executed to handle the event. The reg-

istry while initiated at the static query optimization phase can be updated

at runtime. All parameters for invoking the events, including the purge,

memory and propagation threshold, are specified inside the monitor and can

also be changed at runtime.

Table 4.1 gives an example of this registry. This configuration of PJoin

is used by several experiments shown in Chapter 5. In this configura-

tion, we apply the lazy purge strategy, that is, to purge state whenever the

purge threshold is reached. Also the lazy index building and the push mode

propagation are applied, that is, when the count propagation threshold

is reached, we first construct the punctuation index for all newly-arrived

punctuations since the last index building and then start propagation.

Events Conditions Listeners (Activated In Order)

StreamEmptyEvent Activation threshold is reached. Disk Join

PurgeThresholdReachEvent none State Purge

StateFullEvent C1* State Purge

StateFullEvent C2* State Relocation

PropagateCountReachEvent none Index Build, Propagation

C1*: There exists punctuations which haven’t been used to purge the state.

C2*: No punctuations exist that haven’t been used to purge the state.

Table 4.1: Example Event-Listener Registry.
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Chapter 5

Experimental Evaluation for

PJoin Operator

5.1 Experimental Setup

We have implemented the PJoin operator in the CAPE system [83]. Below

we describe the experimental study we have conducted to explore the effec-

tiveness of our punctuation-exploiting stream join optimization. The test

machine has a 2.4GHz Intel(R) Pentium-IV processor and a 512MB RAM,

running Windows XP and Java 1.4.1.01 SDK. We have created a benchmark

system to generate synthetic data streams by controlling the arrival pat-

terns and rates of the data and punctuations. In all experiments shown in

this section, the tuples from both input streams have a Poisson inter-arrival

time with a mean of 2 milliseconds. All experiments run a many-to-many

join over two input streams, which, we believe, exhibits the most general
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cases of our solution. In the charts, we denote the PJoin with purge thresh-

old n (i.e., maximum number of punctuations allowed between two consec-

utive purges) as PJoin-n. Accordingly, PJoin using eager purge is denoted

as PJoin-1.

5.2 PJoin vs. XJoin

First we compare the performance of PJoin with XJoin [95], a stream join

operator without a constraint-exploiting mechanism. We are interested in

exploring two questions: (1) how much memory overhead can be saved

and (2) to what degree can the tuple output rate be improved. In order to be

able to compare these two join solutions, we have also implemented XJoin

in our system and applied the same optimizations as we did for PJoin.

To answer the first question, we compare PJoin using the eager purge

with XJoin regarding the total number of tuples in the join state during the

length of the execution. The input punctuations have a Poisson inter-arrival

with a mean of 40 tuples/punctuation. From Figure 5.1 we can see that the

memory requirement for the PJoin state is almost insignificant compared

to that of XJoin.

As the punctuation inter-arrival increases, the size of the PJoin state will

increase accordingly. When the punctuation inter-arrival reaches infinity so

that no punctuations exist in the input stream, the memory requirement of

PJoin becomes the same as that of XJoin.

In Figure 5.2, we vary the punctuation inter-arrival to be 10, 20 and

30 tuples/punctuation respectively for three different runs of PJoin accord-
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Figure 5.1: PJoin vs. XJoin, Memory
Overhead, Punctuation Inter-arrival:
40 tuples/punctuation.
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Figure 5.2: PJoin Memory Overhead,
Punctuation Inter-arrival: 10, 20, 30
tuples/punctuation.

ingly. We can see that as the punctuation inter-arrival increases, the average

size of the PJoin state becomes larger correspondingly.

To answer the second question, Figure 5.3 compares the tuple output

rate of PJoin to that of XJoin. We can see that as time advances, PJoin main-

tains an almost steady output rate whereas the output rate of XJoin drops.

This decrease in XJoin output rate occurs because the XJoin state increases

over time thereby leading to an increasing cost for probing state. From this

experiment we conclude that PJoin performs better or at least equivalent to

XJoin regarding both the output rate and the memory resource consump-

tion.

5.3 State Purge Strategies for PJoin

Now we explore how the performance of PJoin is affected by different state

purge strategies. In this experiment, the input punctuations have a Pois-

son inter-arrival with a mean of 10 tuples/punctuation. We vary the purge
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Figure 5.3: PJoin vs. XJoin, Tuple Output Rates, Punctuation Inter-arrival:
30 tuples/punctuation.

threshold to start purging the state after receiving every 10, 100, 400, 800

punctuations respectively and measure its effect on the output rate and

memory overhead of the join.

Figure 5.4 shows the state requirements for the eager purge (PJoin-1)

and the lazy purge with purge threshold 10 (PJoin-10). The chart con-

firms that the eager purge is the best strategy for minimizing the join state,

whereas the lazy purge requires more memory to operate.
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Figure 5.5 compares the PJoin output rate using different purge strate-

gies. We plot the number of output tuples against time summarized over

four experiment runs, each run with a different purge threshold (1,100,400

and 800 respectively). We can see that up to some limit, the higher the purge

threshold, the higher the output rate. This is because there is a cost associ-

ated with purge, and thus purging very frequently such as using the eager

strategy leads to a loss in performance. But this gain in output rate is at the

cost of the increase in memory overhead. When the increased cost of prob-

ing the state exceeds the cost of purge, we start to lose on performance,

such as the case of PJoin-400 and PJoin-800. This is the same problem as

encountered by XJoin, that is, every new tuple enlarges the state, which in

turn increases the cost of probing the state.

5.4 Asymmetric Punctuation Inter-arrival Rate

Now we explore the performance of PJoin in terms of input streams with

asymmetric punctuation inter-arrivals. We keep the punctuation inter-arrival

of stream A constant at 10 tuples/punctuation and vary that of stream B.

Figure 5.6 shows the state requirement of PJoin using eager purge. We can

see that the larger the difference in the punctuation inter-arrival of the two

input streams, the larger will be the memory requirement. Less frequent

punctuations from stream B cause the A state to be purged less frequently.

Hence the A state becomes larger.

Another interesting phenomenon not shown here is that the B state is

very small or insignificant compared to the A state. This happens because
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Figure 5.6: Memory Overhead,
Asymmetric Punctuation Inter-
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punctuations from stream A arrive at a faster rate. Thus most of the time

when a B tuple is received, there already exists an A punctuation that can

drop this B tuple on the fly [44]. Therefore most B tuples never become a

part of the state.

Figure 5.7 gives an idea about the tuple output rate of PJoin for the

above cases. The slower the punctuation arrival rate, the greater is the

tuple output rate. This is because the slow punctuation arrival rate means

a smaller number of purges and hence the less overhead caused by purge.

Figure 5.8 shows the comparison of PJoin against XJoin in terms of

asymmetric punctuation inter-arrivals. The punctuation inter-arrival of

stream A is 10 tuples/punctuation and that of stream B is 20 tuples/punctuation.

We can see that the output rate of PJoin with the eager purge (PJoin-1) lags

behind that of XJoin. This is mainly because of the cost of purge associated

with PJoin. One way to overcome this problem is to use the lazy purge
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together with an appropriate setting of the purge threshold. This will make

the output rate of PJoin better or at least equivalent to that of XJoin. Fig-

ure 5.9 shows the state requirements for this case. We conclude that if the

goal is to minimize the memory overhead of the join state, we can use the

eager purge strategy. Otherwise the lazy purge with an appropriate purge

threshold value can give us a significant advantage in tuple output rate, at

the expense of insignificant increase in memory overhead.
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5.5 Punctuation Propagation

Lastly, we test the punctuation propagation ability of PJoin. In this ex-

periment, both input streams have a punctuation inter-arrival with a mean

of 40 tuples/punctuation. We show the ideal case in which punctuations

from both input streams arrive in the same order and of same granularity,
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i.e., each punctuation contains a constant pattern. PJoin is configured to

start propagation after a pair of equivalent punctuations has been received

from both input streams.

Figure 5.10 shows the number of punctuations being output over time.

We can see that PJoin can guarantee a steady punctuation propagation rate

in the ideal case. This property can be very useful for the down-stream

operators such as group-by that themselves rely on the availability of input

punctuations.
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Chapter 6

PWJoin: Exploiting Combined

Constraints in Join Processing

As the starting point, we consider evaluating an equijoin S1 ⊲⊳ S2 over two

relational, possibly punctuated streams S1 and S2, in which S1 and S2 have

exactly one common attribute att, and two time-based sliding windows W1

and W2 (0≤Wi<∞, i=1,2) are specified on S1 and S2 respectively. Later in

Chapter 7 we will explain how to extend our algorithm to handle multiway

sliding window joins.

6.1 Assumptions

For the discussion of PWJoin, we assume all punctuations have a constant

(single-value) pattern on the join attribute and a wildcard pattern on the

other attributes [93]. We focus on the single-value punctuations for the

ease of exposition of the core concepts. In addition, this is the most general



6.2. DESIGN GOALS 62

type in terms of discrete domains. The other types can be viewed as short-

cuts. For instance, punctuations with a list pattern or a range pattern can

be represented by a sequence of punctuations with a single-value pattern.

We also assume that no duplicate punctuations occur in a single stream

because they would certainly be redundant.

The following two assumptions utilized extensively in the literature [14,

57] will be used in this work. First, besides application-specific attributes,

such as item id, every tuple has a timestamp field ts that records the time

when this tuple is inserted into the stream. Second, all tuples (from all input

streams) have a global ordering on their timestamp and they are processed

according to this order.

For ease of presentation, we assume that the join state can always fit

into main memory. If this assumption does not hold, we would have to

either drop some input tuples (load shedding) [68, 91] or move part of the

state to the secondary storage (state relocation) [75, 77, 98]. However, these

techniques, which are being studied extensively in the recent literature, are

orthogonal to the problem we solve in this work.

6.2 Design Goals

Sliding window and punctuation are constraints about different aspects of

the data, i.e., the timestamp and the application-specific attributes respec-

tively. In many cases the data sets invalidated according to these two types

of constraints respectively may overlap with each other. An ill-designed

join algorithm that exploits both constraint types may achieve minor gains
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in memory but incur a possibly doubled search overhead compared to the

algorithms that only utilize one constraint type. Overall it may yield even

worse performance. Correspondingly, we must carefully design the algo-

rithm. We thus put forth the following goals for our design:

1). If both punctuation and sliding window constraints are present, the

join algorithm should achieve better performance regarding both mem-

ory overhead and result output rate compared to the algorithms that

exploit only one of the constraint types.

2). If no punctuations are available for the stream, our join algorithm

should achieve equivalent performance as pure sliding window joins.

That is, we wish to avoid penalty of a potentially more complex solu-

tion in the cases when the techniques cannot lead to any gains.

In the following, we present our PWJoin approach, the first punctuation-

exploiting window join algorithm.

6.3 Optimizations Enabled by Combined Constraints

Either punctuations or sliding windows by themselves can be exploited to

shrink the runtime state of the join operator, as explained in Sections 3.2

and 3.3 respectively. The example we discussed in Section 2.2 also shows

that if these two types of constraints are simultaneously available, their

interactions can enable further optimization opportunities for join process-

ing.
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Figure 6.1: Early Punctuation Propagation.

Potentially early punctuation propagation and tuple dropping. Con-

sider the example join execution in Figure 6.1. Punctuations p1 and p2 both

announce the end of the join value 180. Assume p1 is received before p2.

According to the propagate invariant for non-windowed joins (Lemma 2),

a punctuation on join value 180 can only be propagated after p1 and p2 have

both been received. However, by in addition considering sliding windows,

once the last S1 tuple containing join value 180 moves out of the window,

no more such tuple will appear in the state of S1. Even if p2 has not been

received yet, we would know that no more result with join value 180 will

be generated in the future. Therefore a punctuation on 180 can be prop-

agated at this point, with no need to wait for the arrival of p2. This new

propagation point would be earlier than the one that would be propagated

solely based on punctuations (by regular propagate invariant). Due to such

early propagation, the downstream operators may in turn be able to make

their optimization decisions earlier.

We have derived the following theorem that our proposed window-

assisted propagation is based on.

Theorem 1 Let t be the last tuple from stream Si (i=1,2) that contains join value
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val. Assume that t has expired from the sliding window of Si at time T. Then no

result tuples that contain join value val will be generated after time T.

Proof. We know that t is the last tuple from Si with join value val and it

has expired from the window at time T. Hence no tuple in the current state

nor future arriving tuples of Si will have the same join value. Therefore, no

result with join value val will be generated after T.

The window-assisted propagate invariant for PWJoin is stated as follows.

Lemma 4 (Window-Assisted Propagate Invariant). In a natural join S1 ⊲⊳

S2 with a common attribute att, the punctuations on the following join values can

be propagated at time T.

[p.att | p ∈ pseti∧p.ts < T∧(∀t ∈ tseti,match(t, p)→ t.ts < T−Wi), i = 1, 2]

Let’s now examine all cases in which a punctuation pout regarding a join

value val may be propagated. Assume that two punctuations regarding

join value val have been received from streams S1 and S2 at time T1 and T2

respectively, with T1 < T2.

1). If no tuple in S1 ever contained val, pout can be propagated at T1.

2). If at least one tuple in S1 contains val and assume the last tuple with

this join value in S1 arrives at T. Apparently T<T1. There are three

cases to consider.

a. If T+W1<T1, pout can be propagated at T1.
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b. If T+W1≥T1 and T+W1<T2, pout can be propagated at T+W1.

c. If T+W1≥T1 and T+W1≥T2, pout can be propagated at T2.

Cases (1), (2)(a) and (2)(c) use the propagate invariant based solely on

punctuations, assuming in-state purge and on-the-fly purge are conducted

properly. Case (2)(b) is based on the window-assisted propagate invariant.

To achieve this propagation, we simply keep track of the expiration of the

last tuple that contains each distinct punctuated join value.

In addition, when a window-assisted propagation occurs (suppose it is

due to the expiration of a tuple from S1), tuples containing this join value

may still arrive from stream S2. However, these tuples can then be directly

dropped without being processed because they will not find any matches

in the state of S1. This way the join workload can be reduced. The invariant

for dropping tuples driven by the window-assisted punctuation propaga-

tion is defined below.

Lemma 5 (Tuple Drop Invariant). In a natural join S1 ⊲⊳ S2 with a common

attribute att, the following tuples can be dropped given that punctuation p is prop-

agated by the window-assisted propagate invariant (Lemma 4) at time T due to the

expiration of a tuple from stream Si.

[t | t ∈ tsetj ∧ j 6= i ∧match(t, p) ∧ t.ts > T ]
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6.4 PWJoin State Design

To exploit punctuations and sliding windows, the PWJoin algorithm must

include three search-based operations: (1) probe, that searches the state for

matching tuples to produce join results, (2) purge, that removes no-longer-

joining tuples according to punctuations and (3) invalidate, that discards

expired tuples based on sliding window semantics. To distinguish the

purge of tuples by sliding windows from that by punctuations, henceforth

we will use the terms invalidate and purge to name these two operations

respectively.

Traditional data structures for maintaining the state for natural joins,

such as a chronologically linked list or a hash table, only favor the search

in one dimension. For example, maintaining tuples in a chronological list

is good for finding expired tuples by window semantics, while managing

tuples in a hash table is effective for detecting no-longer-useful tuples by

punctuations. Neither of them is appropriate for the exploitation of both

constraints. Therefore, we now propose a state design that will effectively

serve the needs of PWJoin.

Two-dimensional storage structure. Figure 6.2 shows the storage struc-

ture of the PWJoin state. For space reasons we only show the time list for

stream S1. We use a linear list to link all tuples from one stream in chrono-

logical order (newest tuple at the end), named time list. The head and the

tail of the time list are indicated by the WindowBegin and the WindowEnd

pointers respectively. As the window moves, tuples are in turn removed

from the head of the time list. Moreover, each set of tuples containing the
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Figure 6.2: PWJoin State Structure.

same join value are linked into a value list (also in chronological order). In

short, all tuples in the state form a single time list and multiple value lists.

Each tuple participates in the time list and exactly one of the value lists.

For example, in Figure 6.2, tuples from input stream S1 compose a single

time list <8, 10, 8, 8, 10, 4, 8>, and three value lists <8, 8, 8, 8>, <10, 10>

and <4>. A linked list node, which we call the T-Node (for Tuple-Node in

short), is employed to contain the reference (tRef) to the tuple inserted into

the state. All tuples in the state are stored in a central storage named tuple

pool. To optimize for the storage, each tuple in the tuple pool only con-

tains necessary fields for later computations. For example, the join value

of each tuple is removed since it can be found in the corresponding I-Node

(to be explained below). To keep the figure less cluttered, in Figure 6.2 we

didn’t show the tuple pool. Instead we display the join value of each tuple

in the corresponding T-Node. Each T-Node contains two additional point-



6.4. PWJOIN STATE DESIGN 69

ers: NextTimeListTNode that points to the next T-Node in the same time list,

and NextValueListTNode that points to the next T-Node in the same value

list. This way data are organized along both time dimension and attribute

value dimension.

Inter-stream cluster index. To facilitate the search by the join value, we

create an index node, named I-Node, for each distinct join value to cluster

the corresponding value lists from both input streams. Each I-Node con-

tains the following fields:

1). Key: join value represented by the I-Node;

2). Headi, Taili (i=1,2): pointers to the head and the tail T-Nodes of the

value list for stream Si respectively;

3). pCount: number of streams from which the punctuation on Key has

been received;

4). pRef: pointer to the punctuation on Key in the propagation schedule

(will be explained later);

For a particular punctuation type, we can use a customized indexing

method for organizing I-Nodes. For single-valued or list-valued punctu-

ations, we use a hash-based index while for range-valued punctuations

we usually employ a tree-structured index. Since we only focus on single-

valued punctuations in this work, the I-Nodes in Figure 6.2 are maintained

in a hash table, which we call the I-Node index. Most importantly, as will

be seen later in Chapter 7, this index structure is easily extendible for ef-

fectively handling more generalized join operations. In particular, it is
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memory-efficient for the multiway join cases since only one index node

is created for each distinct join value, regardless of the number of input

streams.

Under the above state design, the probe and the purge operations will

search the I-Node index to find the matching value list while the invalidate

operation will check the head of the time list to detect the expired tuples.

Therefore, all three operations perform efficiently because they directly ob-

tain the tuples that they are interested in while the access of irrelevant tu-

ples is avoided. In addition, only two pointers (Head and Tail) are main-

tained in the I-Node for each distinct value per stream. Thus little cost for

maintaining the index structure is incurred as tuples dynamically enter and

leave the state.

To achieve window-assisted propagation, the PWJoin state also main-

tains a propagation schedule. Each item in the schedule contains two fields:

1). Key: the join value announced by an already-received punctuation.

2). PropT ime: the time a punctuation on Key can be propagated based

on the window-assisted propagation invariant.

All items in the propagation schedule are sorted in ascending order of

their propagation time. This is to facilitate the window-assisted propaga-

tion. When a punctuation is received from a stream Si (i=1,2), if no item

with Key=val exists in the propagation schedule, a new scheduling item

with Key=val will be created and inserted into the propagation sched-

ule. The position of this item in the schedule depends on the PropT ime
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value this item, which is computed based on the timestamp of the last tu-

ple t with join value val received from Si and the window length Wi of Si

(PropT ime = t.ts + Wi). The last-received tuple with join value val from

Si can be located at the tail of the value list corresponding to Si that is asso-

ciated with the I-Node on val. Otherwise, if the propagation schedule has

contained a scheduling item with Key=val, a punctuation on the same join

value must have been received from the other stream previously. Then the

punctuation on this join value can be propagated according to the regular

propagate invariant (Lemma 3). The corresponding scheduling item can

then be removed from the schedule. An existing propagation scheduling

item can also be deleted when the window-assisted propagation condition

is satisfied.

In Table 6.1, we list the functions we have designed for accessing all

information found in the PWJoin state. These functions will be used in the

pseudo-code for the PWJoin algorithms described later on.

6.5 PWJoin Algorithm

Being aware of punctuations, the PWJoin algorithm needs to process two

types of objects – regular streaming data (tuples) and punctuations. Since

PWJoin conducts symmetric execution logic, we illustrate the processing

of data and punctuations from one input stream, say S1. The pseudo-code

is shown in Algorithms 3–6.

Processing data. Once a new tuple t is received from S1, its times-

tamp is first used to invalidate expired tuples from the time list of stream
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Table 6.1: PWJoin State Management Functions.
Functions for PWJoin State

GetWindowBegin(i): Get beginning T-Node of time list from stream Si

GetWindowEnd(i): Get ending T-Node of time list from stream Si

CreateINode(key): Create an I-Node with key key

DeleteINode(key): Delete an I-Node with key key

GetINode(key): Get I-Node with key key

GetPropSchedule(): Get propagation schedule

InsertTuple(t, i, inode): Insert tuple t from stream Si into corresponding

value list associated with inode and time list

Functions for I-Node

GetHeadTNode(i): Get T-Node at head of value list from stream Si

GetTailTNode(i): Get T-Node at tail of value list from stream Si

PurgeValueList(i): Purge the value list corresponding to stream Sj (j 6=i)

ClearValueLists(): Delete all tuples from every associated value list

GetPropScheduleItem() Get propagation scheduling item referenced by I-Node

Functions for T-Node

GetTuple(): Get tuple referenced by tupleRef field

GetNextTimeListTNode(): Get T-Node next in same time list

GetNextValueListTNode(): Get T-Node next in same value list

Functions for Propagation Schedule

GetItemAtPos(pos): Get scheduling item at position pos

AddNewItem(p): Add a new schedule item based on punctuation p

DeleteItem(key): Delete schedule item with key key

DeleteItemAtPos(pos): Delete scheduling item at position pos

S2 (Algorithm 4, Lines 3–14). This process stops when the first unexpired

tuple is encountered, which then becomes the new beginning of this time

list. Second, the timestamp of t is used to check whether any values in the

propagation schedule can be propagated (Algorithm 4, Lines 15–23). The

corresponding propagation scheduling items are then deleted from the list.

Meanwhile, the pRef pointer of the I-Node representing this value will be

set to null. This is for dropping tuples later on.

After the invalidation is done, the join value of t is used to probe the

I-Node index. If the matching I-Node is not found, a new I-Node will be
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created for this join value and t will be associated with this I-Node (Algo-

rithm 5, Lines 3–8).

If the matching I-Node inode is found, the value of pCount and pRef

will be checked to achieve optimizations enabled by punctuations (Algo-

rithm 5, Lines 9–15). There are three cases to consider:

1). pCount=0, which means that no punctuation regarding this join value

has been received from either stream. Then t is inserted into the state

of S1.

2). pCount>0 and pRef 6= null, which means that a punctuation regard-

ing this join value has been received from stream S2. But this punctu-

ation has not been propagated yet. The join results are then produced

by joining t with all tuples in the value list pointed by the Head2

pointer of inode (Lines 16–21). t is discarded afterwards (on-the-fly

purge).

3). pCount>0 and pRef=null, which means that a punctuation regarding

this join value has been received from stream S2, and it has already

been propagated by the window-assisted propagation (Lemma 4). In

this case, t is dropped without being processed.

Processing punctuations. When a new punctuation p on a join value

val is retrieved from S1, punctuation-related optimizations are conducted

(Algorithm 6). First, p is used to probe the I-Node index. If the matching I-

Node inode is not found, no tuple ever in either of the input stream has con-

tained the join value val. A punctuation regarding join value val is prop-
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agated. Then a new I-Node inode is created with Key=val and pCount=1.

This is used to drop the future arriving S2 tuples containing join value val.

If the matching I-Node inode is found, all tuples in the value list for

S2 are deleted. This is based on the purge invariant (Lemma 1) defined in

Section 3.2. Then the pCount field of inode is checked and the following

cases are considered.

1). If pCount=0, a punctuation on the same join value hasn’t been re-

ceived from the other stream yet. Then pCount is incremented by 1.

A new propagation scheduling item with Key=val is created. We re-

trieve the timestamp of the tail tuple in the associated value list for

S1, assuming it’s ts1. We set the PropT ime of the new scheduling

item to be (ts1+W1). Then this item is placed in the proper position

in the propagation schedule. The pRef pointer of inode is pointed to

this item.

2). If pCount>0 and pRef 6=null, the regular propagate invariant (Lemma

3) is satisfied. A punctuation regarding join value val is propagated

and the item in propagation schedule pointed to by the pRef of inode

is deleted. inode is deleted from the I-Node index afterwards because

no more tuple containing this join value will arrive from either input

stream.

3). If pCount>0 and pRef=null, the regular propagate invariant is sat-

isfied. However, a punctuation regarding this join value has already

been propagated by the window-assisted propagation. So we simply

delete inode.
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Algorithm 3 BINARY-PWJOIN

1: if a tuple t is received from stream Si then
2: INVALIDATE(t, i)
3: PROBE(t, i)
4: else if a punctuation p is received from stream Si then
5: PURGE(p, i)
6: end if

Algorithm 4 BINARY-PWJOIN-INVALIDATE

1: Input: Tuple t, Number sid

2:
3: for every stream ID i in {1, 2} and i 6= sid do
4: tnode := state.GetWindowBegin(i)
5: while tnode 6= null do
6: tHead := tnode.GetTuple()
7: if tHead.ts + Wi < t.ts then
8: tnode.tRef := null
9: tnode := tnode.GetNextTimeListTNode()

10: else
11: break
12: end if
13: end while
14: end for
15: propschedule := state.GetPropSchedule()
16: item := propschedule.GetItemAtPos(0)
17: while item.propTime < t.ts do
18: propagate a punctuation on item.key
19: inode := state.GetINode(item.key)
20: inode.pRef := null
21: PropSchedule.DeleteItemAtPos(0)
22: item := propschedule.GetItemAtPos(0)
23: end while

In this algorithm, the purge operation is triggered by the arrival of

punctuations. For data streams carrying no punctuations, the purge op-

eration will never be performed, thus causing zero overhead. In addition,

the cost of on-the-fly purge is minimized because it is accomplished as a

side effect of the probe operation, i.e., by checking pCount and pRef fields

of the matching I-Node. Therefore, we expect that our design enables the
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Algorithm 5 BINARY-PWJOIN-PROBE

1: Input: Tuple t, Number sid

2:
3: inode := state.GetINode(t.att)
4: if inode = null then
5: inode := state.CreateINode(t.att)
6: state.InsertTuple(t, sid, inode)
7: return
8: end if
9: if inode.pCount > 0 then

10: if inode.pRef = null then
11: return
12: end if
13: else
14: state.InsertTuple(t, sid, inode)
15: end if
16: tnode := inode.GetHeadTNode(k) /* k 6= sid */
17: while tnode 6= null do
18: s := tnode.GetTuple()
19: join t and s and send the result to output stream
20: tnode := tnode.GetNextValueListTNode()
21: end while

Algorithm 6 BINARY-PWJOIN-PURGE

1: Input: Punctuation p, Number sid

2:
3: inode := state.GetINode(p.att)
4: if inode = null then
5: inode := CreateINode(p.att)
6: inode.pCount ++
7: propagate a punctuation on p.att
8: return
9: end if

10: if inode.pCount > 0 then
11: if inode.pRef = null then
12: state.DeleteINode(inode.key)
13: else
14: propagate a punctuation on p.att
15: state.GetPropSchedule().DeleteItem(inode.key)
16: state.DeleteINode(inode.key)
17: end if
18: else
19: inode.pCount ++
20: inode.PurgeValueList(sid)
21: state.GetPropSchedule().AddNewItem(p)
22: end if
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PWJoin to achieve almost the same performance as the pure window join

for non-punctuated streams. In dealing with punctuated streams, on-the-

fly purge may provide huge gains by avoiding unnecessary tuple inser-

tions and deletions. In-state purge can also help to effectively shrink the

state and hence to improve the probe efficiency. So PWJoin is expected to

perform better than the pure window join in most cases, as shown later by

our experimental study (Chapter 8).

6.6 State Maintenance

Similar to other stream join algorithms, the PWJoin algorithm involves fre-

quent operations for inserting tuples into and deleting tuples from the state.

These operations must guarantee that both the time list and the value lists

are updated correctly.

Tuple insertion. Inserting a new tuple t into the state of S1 follows two

steps:

1). A new T-Node tnode is created to contain the reference to tuple t

and tnode is appended to the end of the time list (pointed to by the

WindowEnd1 pointer). Then the WindowEnd1 pointer is adjusted to

point to the new window end, i.e., tnode. This can be done within

constant time.

2). The join value of t is used to probe the I-Node index. If the matching

I-Node inode exists, the NextV alueListTNode pointer of the tail T-

Node on the value list for S1 is pointed to tnode. The Tail1 pointer of
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inode is now updated to point to tnode, the new tail of the value list.

Else if inode does not exist, a new I-Node is created and both Head1

and Tail1 pointers of this I-Node point to tnode.

Tuple deletion. To delete a tuple t from the state of S1, two cases must

be considered: (a) the tuple is deleted by the invalidate operation, (b) the

tuple is deleted by the purge operation. Assume that t is represented by a

T-Node tnode. In case (a), we first remove tnode from the head of the time

list by pointing the WindowBegin1 pointer to the next T-Node in the time

list. Then we need to adjust the Head1 pointer (sometimes also the Tail1

pointer) with the corresponding I-Node that is currently pointing to tnode.

However, this will incur an extra probe on the I-Node index to locate the

I-Node. And it may become a significant overhead because it happens for

every tuple that is invalidated from the time list.

In response, we propose a lazy T-Node deletion strategy. After a tuple is

removed from the time list by the invalidate operation, we don’t immedi-

ately adjust the pointers of the corresponding T-Node. Instead we only set

tRef of the T-Node to null. Next time when the probe operation accesses

the value list associated with this I-Node, all the T-Nodes that contain a null

tRef , which can all be located at the head of the value list, will be removed

from the value list.

Similarly, in case (b), when the purge operation deletes all the T-Nodes

from a value list, we only set tRef of these T-Nodes to null. Next time

when the time list is probed by the invalidate operation, all the T-Nodes

containing a null tRef will be removed from the time list.
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In our Java-based implementation, we employ a T-Node recycle bin to

recycle the T-Nodes that have been deleted both from the time list and from

the value list.

Tuple dropping. When a window-assisted propagation is initiated (as-

suming it is due to a punctuation from S1 being invalidated from the win-

dow), we will not remove the corresponding I-Node from the state of S1

immediately. Instead, we simply set the pRef pointer of this I-Node to

null. Since the tuples with this join value may still arrive from S2 but

they are guaranteed to not be joinable with any future S1 tuples, we keep

this I-Node in order to drop these S2 tuples. This I-Node will be removed

only when the matching punctuation arrives from S2, i.e., when the regular

propagation condition is satisfied (Lemma 3). According to the FcR prop-

erty to be described in Section 6.7, an I-Node will be removed when the

lifespan of the corresponding join value ends.

6.7 Cost Analysis

By exploiting punctuations in addition to sliding windows, the PWJoin

algorithm can achieve a more compact state than the pure window join.

This is useful when processing queries with large windows over rapid data

streams. Now we apply the unit-time-basis cost model [68] to derive the

formulas for estimating the memory and CPU costs of PWJoin. We then

use these formulas to compare the execution cost of PWJoin with the pure

window join algorithm.

Before explaining our formulas, we introduce an important property,
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named Finite Occurrence Range (FcR) property, that as we discuss below is

assumed by most punctuation-based stream processing applications. In

Definition 1, the lifespan of a value v for an attribute att in a stream Si,

denoted as Lv,i, is defined to be the time range [T start
v,i , T end

v,i ]. T start
v,i is the

time when a tuple with att=v occurs in Si for the first time and T end
v,i is

the time when a punctuation on att=v is announced for Si. The unioned

lifespan of two lifespans L1=[T start
v,1 , T end

v,1 ] and L2=[T start
v,2 , T end

v,2 ], i.e., L1∪L2,

is defined to be a lifespan [T start
v , T end

v ] with T start
v =min(T start

v,1 , T start
v,2 ) and

T end
v =max(T end

v,1 , T end
v,2 ).

Definition 1 Finite Occurrence Range (FcR) Property. Let SS={S1, ..., Sn}

be a set of streams that have a common attribute att. The attribute att is said

to have the finite occurrence range property over SS if every value v of att has a

finite unioned lifespan over all streams in SS. That is, for every value v of att,

(max(T end
v,1 ,... T end

v,n ) – min(T start
v,1 , ... T start

v,n )) is a finite value.

The Auction and the Bid streams in the auction application described

in Section 1.1.4 have the FcR property on the item id attribute because the

unioned lifespan of each item id value over the two streams equals the lifes-

pan of the corresponding auction. Most transaction-based applications, in

which punctuations typically arise, have the FcR property in their streams

because the lifespan of a transaction is usually finite.

In response, to simplify our discussion, our cost formulas described be-

low assume the FcR property for the input streams of the join operator.

Moreover, to assure predictive behavior, like prior work, we assume an

input-limited mode [100], i.e., the join operator can always keep up with the
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workload. Hence at any time T , the number of tuples that have been pro-

cessed equals the number of tuples that have arrived thus far. This is a

reasonable assumption because otherwise the query system would be in

an unstable state [11]. We will use the notations defined in Table 6.2 in our

cost analysis.

Table 6.2: Additional Notations Used in Cost Analysis.
Notation Meaning

λi # of tuples arriving from stream Si within a time unit (i=1,2)

λpi # of punctuations arriving from stream Si within a time unit (i=1,2)

Wi time window for stream Si

Lt,i state lifespan of a tuple from stream Si

Lv,i lifespan of a distinct join value in stream Si

|B| # of hash buckets in hash table

M # of tuples from all streams that have same join value in a window

CE cost of conducting an equality match

Ct
I cost of inserting a T-Node into a linked list

Ct
D cost of deleting a T-Node from a linked list

C
p
I cost of inserting a punctuation into propagation schedule

C
p
D cost of deleting a punctuation from propagation schedule

CJ average cost of producing join result using a new tuple

Memory overhead. We now analyze the memory required by the PWJoin

state in terms of the number of tuples to be maintained in the join state (also

called the state size). Since PWJoin has a symmetric execution logic, with-

out loss of generality, here we show the state size corresponding to stream

S1, denoted as |JS1|. The state size corresponding to stream S2 can be esti-

mated similarly.

First we define the average state lifetime of a tuple t from a stream Si

(i=1,2), denoted as |Lt,i|, to be the average time duration a tuple spends in

the state. |JS1| then equals λ1|Lt,1|. In sliding window joins, |Lt,i| equals Wi

(for i=1,2) because each tuple will expire from the window after Wi units.
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Hence |JS1| equals λ1W1.

(γ1–1) |Lv,1| ≤ W1 ≤ γ1 |Lv,1|, 0<γ1 ≤ 1 γ1 |Lv,1| ≤ W1, 0<γ1≤ 1

γ1 |Lv,1| ≤ W1, γ1 > 1

Tv,1
start Time

(γ1-1) |Lv,1| ≥W1, γ1 > 1

(γ1–1) |Lv,1| ≤ W1 ≤ γ1 |Lv,1| , γ1> 1

γ1 ≤ 01 2

3 4

65

Tp TpTv,1
end Tv,1
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end

TpTv,1
start Tv,1

endTpTv,1
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end

TpTv,1
start Tv,1

end TpTv,1
start Tv,1
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Legend lifespan of value v in stream S1

sliding window of stream S1 at time Tp

Punctuation on value v from stream S2

Figure 6.3: Cases of Localized Occurrence.

By considering punctuations, the window-based |Lt,i| may be short-

ened because a tuple may be removed from the state by punctuations be-

fore it expires from the window. There are six different cases to consider re-

garding the relationship between the arrival time of the punctuation from

stream S2 and the lifespan of the matching join value 1 in stream S1, as il-

lustrated in Figure 6.3. In the figure, we use Tp to represent the arrival time

of the corresponding punctuation from stream S2. We show the window

of stream S1 at time Tp, with length W1. We use |Lv,1| to denote the length

1Under the FcR property, each join value has a limited lifespan. If this property doesn’t
hold, not all join values will correspond to a punctuation. Then in the worst case the state
size equals the state size of the pure window join.



6.7. COST ANALYSIS 83

of lifespan Lv,1. |Lv,1| then equals (T end
v,1 –T start

v,1 ). We use γ1 to denote the

punctuation lagging rate, which is defined to be
Tp−T start

v,1

|Lv,1|
.

Equation 6.1 computes |Lt,1| for the six cases. Cases 1 and 2 are the

worst and the best cases respectively. In the best case, no S1 tuple ever

needs to be maintained in the state. In the worst case, the state size equals

the state size of the pure window join. i.e., λ1W1. In the other four cases,

|Lt,1| < W1, thus resulting in certain memory cost reduction by exploiting

punctuations. We can see that the state size has a positive correlation with

γ1 and a negative correlation with W1. This is because the earlier the punc-

tuation is received, the less time the matching tuples from the other stream

need to spend in the state. Moreover, the bigger the window is, the more

memory cost may be potentially saved.
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γ1W1 −
W 2

1

2·|Lv,1|
, (γ1 − 1)|Lv,1| ≤W ≤ γ1|Lv,1|, 0 < γ1 ≤ 1

γ1|Lv,1|
2 , γ1|Lv,1| ≤W, 0 < γ1 ≤ 1

γ1W1 −
1
2(

W 2

1

|Lv,1|
− (γ1 − 1)2|Lv,1|), (γ1 − 1)|Lv,1| ≤W ≤ γ1|Lv,1|, γ1 > 1

(γ1 −
1
2)|Lv,1|, γ1|Lv,1| ≤W,γ1 > 1

(6.1)

Another interesting observation is that the state size is independent of

the punctuation arrival rate. This is because even if punctuations arrive

at high speed, if all tuples they can purge have already expired from the
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window, then no memory can be saved.

CPU cost. Next, we estimate the unit time CPU cost of the PWJoin al-

gorithm, i.e., the CPU time used to process tuples and punctuations that

arrive within a time unit. Again, due to the symmetric execution logic, we

only show the cost formula related to stream S1.

We first compute the cost for processing a single tuple from stream S1,

denoted as CPW
t,1 . It includes the cost for probing the state for matching

tuples from stream S2, and the insertion and the deletion cost of the S1

tuple. The state probing incurs a hash lookup in the I-Node index, which

is a hash table that contains I-Nodes. Since each I-Node corresponds to a

distinct join value, if they are |B| hash buckets in the I-Node index and in a

window, on average M tuples from all streams having same join value, the

average hash bucket size of the I-Node index is |JS1|+|JS2|
|B|M . Since the hash

lookup can stop once the matching I-Node is found, the average number of

I-Nodes being accessed for each hash lookup is |JS1|+|JS2|
2|B|M .

In addition, each T-Node representing a tuple participates in two linked

lists, i.e., the time list and the value list. Hence double insertion and dele-

tion costs are incurred for tuples that must be inserted into the state, i.e.,

the tuples that don’t satisfy the on-the-fly purge condition. We use α1 to

denote the probability for a tuple from stream S1 to be purged on the fly.

α1 equals max(0, 1-γ1) when γ1≥0, i.e., when the punctuation from stream

S2 arrive after the lifespan of the matching join value in stream S1 has starts.

α1 equals 1 otherwise.

Finally, the cost for producing joined results using the matching tuples

should be included. Since this cost remains the same for different join al-
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gorithms, we simply represent it by CJ . Equation (6.2) computes the single

tuple processing cost of PWJoin related to stream S1.

CPW
t,1 =

|JS1|+ |JS2|

2|B|M
CE + 2(1 − α1)(C

t
I + Ct

D) + CJ (6.2)

Secondly, we consider the cost for processing a single punctuation from

stream S1, denoted as CPW
p,1 . The processing of a punctuation incurs a hash

lookup in the I-Node index. Among punctuations received from both input

streams on each distinct join value, only one of them incurs the insertion

and deletion effort. We use β1 to represent the probability for a punctuation

from stream S1 to cause the insertion and deletion costs. Since we assume

that a single stream contains no duplicate punctuations (Section 6.1), we

have 0≤β1≤1. Equation (6.3) computes the unit punctuation processing

cost of PWJoin related to stream S1.

CPW
p,1 =

|JS1|+ |JS2|

2|B|M
CE + β1(C

p
I + C

p
D) (6.3)

Equation (6.5) computes the unit time CPU cost of PWJoin, i.e., CPW
1 .

CPW
1 = λ1C

PW
t,1 + λp1C

PW
p,1

= (λ1 + λp1)
|JS1|+ |JS2|

2|B|M
CE + λ1(2(1 − α1)(C

t
I + Ct

D) + CJ)

+λp1β1(C
p
I + C

p
D) (6.4)

(6.5)

Now let’s compute the unit time CPU cost of a hash-based window join
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operator [68]. Again we consider the popular window join algorithms that

employ a separate hash table to maintain the state for each input stream. To

facilitate the invalidation of tuples based on sliding windows, we assume

that tuples in each hash bucket are linked in chronological order. The hash

lookup for processing a tuple from stream S1 needs to access all tuples in a

hash bucket of the state for stream S2. Since the state for stream S2 will con-

tain λ2W2 tuples on average, the cost is λ2W2

|B| ·CE , assuming that the hash

table contains |B| buckets. In addition, every tuple incurs a single inser-

tion and deletion cost, and the cost for producing joined results. Equation

(6.6) computes the CPU cost of hash window join for processing tuples and

punctuations from stream S1 that arrive within a time unit, i.e., CHW
1 .

CHW
1 = λ1 · (

λ2W2

|B|
· CE + Ct

I + Ct
D + CJ) (6.6)

When comparing the cost of PWJoin with the cost of the hash window

join, we note that the PWJoin has an additional cost for processing punctu-

ations. In addition, for each tuple that doesn’t satisfy the on-the-fly purge

condition, more insertion and deletion costs are incurred. However, punc-

tuations usually occur much less frequent than regular tuples. If γi is less

than or equal to 0.5, e.g., as could be achieved by cases 2, 3 and 4 in Fig-

ure 6.3, the insertion and deletion costs of PWJoin will be no greater than

the hash window join. More importantly, the dominating cost for process-

ing tuples is the hash lookup cost. When M is large and |JSi| is small,

i.e., when the number of distinct join values is small in a window, the hash

lookup cost of PWJoin would be much lower than that of the hash window
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join. Therefore, in most cases, we expect PWJoin to yield better perfor-

mance than hash window join. Our experiment results reported in Chapter

8 using various tuple/punctuation workloads indeed confirm the behavior

estimated here.
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Chapter 7

Generalized PWJoin Algorithm

Chapter 6 dealt with the base case, i.e., a binary join with time-based win-

dows. We now generalize our PWJoin solution to handle a large variety of

streaming join queries. In particular, we will generalize our solution in the

following two aspects:

1). Instead of limiting the number of input streams to be 2, we now ex-

plore constraint-exploiting strategies for n-way joins with n ≥ 2.

2). Besides time-based windows, we want to incorporate the support

for other important window types, in particular, count-based win-

dows [12].

We describe our multiway PWJoin solution in Sections 7.1–7.4, and our

solution to support count-based windows in Section 7.5.
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7.1 Multiway Join Operator

In many cases a continuous query may contain a multiway join [14, 57, 98].

Consider the following query from the online auction application. For each

category, it reports the total number of bids on all the items that belong to

this category within 24 hours of each item’s opening. This query contains a

three-way join, Auction ⊲⊳ Bid ⊲⊳ Category, on a common attribute item id.

Select C.category id, C.category name, count(*)

From Auction A [Range 24 Hours], Bid B, Category C

Where A.item id = B.item id And B.bidder id = C.item id

Group by C.category id

There are many ways of evaluating an n-way join query. The two ex-

treme choices are (1) using a tree of binary joins and (2) employing a single

n-way join operator. Clearly, query plans can also be designed to be com-

posed of a mixture of both binary and multiway join operators based on a

cost model. Prior research [98] has shown that in certain cases a multiway

pipelined join operator produces outputs sooner than any trees composed

of binary joins. This is because the multiway join operator treats its inputs

symmetrically. Hence, a new tuple from any input stream can be used to

generate and propagate results in a single step, without having to pass the

intermediate results through a multi-stage binary execution pipeline. This

symmetric execution also enables flexible join ordering, thus reducing the

need for expensive runtime plan reorganization [104]. In response, we now

extend our design of the constraint-exploiting strategies to cover not only
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binary joins but also multiway joins. With more streams involved in the

join, additional care needs to be taken to guarantee the safe state purge

and correct punctuation propagation. We also show that state purge can

be done more efficiently in such a mega operator than being applied sepa-

rately to several binary joins.

In summary, we consider evaluating the join S1 ⊲⊳ ... ⊲⊳ Sn over n rela-

tional, possibly punctuated streams S1, ... Sn, in which the n input streams

have exactly one common attribute att, and n time-based sliding windows

W1, ..., Wn (0<Wi<∞, 1≤i≤n) are specified on the n streams respectively.

We consider this join scenario because it covers the most commonly occur-

ring join queries, i.e., joining on a common key or a foreign key, such as

the example provided above. In addition, we have observed that a great

optimization opportunity exists for this type of queries, as will be shown

in Section 7.2. If a multi-join query contains joins on different attributes, we

can always group joins based on the common join attributes and then use

the proposed multiway PWJoin operator to process each of the join groups.

7.2 Issues and Solutions for Evaluating Multiway Joins

The generalization of the PWJoin algorithm includes the solutions to sev-

eral new problems that arise in the evaluation of multiway sliding window

joins over punctuated streams.

Improving probing efficiency. The existing multiway join approaches [57,

98] employ a hash table or a linear list as their state structure to maintain

tuples from each input stream. Thus compared to a binary join, an n-way
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join may incur (n-1) times the probing cost for finding matching tuples in

processing a new input tuple. When the join selectivity is low, a lot of ac-

cesses to irrelevant tuples may occur.

To gain an insight into this problem, we now show an example execu-

tion of a 4-way hash join in Figure 7.1. A new tuple with join value 8 from

stream S4 will probe the hash tables for streams S1, S2 and S3. It then joins

with the matching tuples in the corresponding hash buckets in these three

hash tables. In this example let’s assume it is hash bucket k. Hence the pro-

cessing of this tuple costs 3 hash lookups (for locating the hash bucket k in

the hash tables for streams S1, S2 and S3) and 12 tuple accesses, including

8 accesses of irrelevant tuples. This can clearly be inefficient.
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Figure 7.1: MultiWay Hash-Based Join.

The cluster index we have proposed for the binary PWJoin in Section

6.4 helps to solve this problem. To handle an n-way join, we extend the I-

Node structure to contain n Head pointers and n Tail pointers that are used

to locate the head and the tail of the n value lists (for n input streams) asso-

ciated with this I-Node. This way the processing of each input tuple only

incurs one hash lookup since the matching tuples from all input streams

can be located by the same I-Node.
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Early failing stragegy. In addition, we add a vCount field into each

I-Node to record the number of non-empty value lists associated with this

I-Node. This field enables the early failing strategy that avoids further probes

that won’t produce any result. This strategy works as follows. When a new

tuple t is received from stream Si, it is first inserted into the state of Si.

Second, the join value of t is used to retrieve the matching I-Node from

the I-Node index. Then the vCount field of this I-Node is checked. If its

value is less than n, i.e., the number of input streams, this means that at

least one input stream Sj (j6=i, because Si has tuple t currently in the join

state) does not have matching tuples currently in the state. In this case, the

probe operation can be skipped because we know that at this time, no join

result can be produced using ti. The vCount value is updated whenever

an empty value list associated with this I-Node becomes non-empty or vice

versa.

If the number of input streams is large, the probe cost of the PWJoin

using the cluster index can be much lower than using a separate index

for each stream. The probe efficiency can thus be significantly improved.

Moreover, the vCount field helps us to immediately detect the probes that

won’t produce any result. Otherwise, in the processing of a new tuple,

a significant effort may have already been made in assembling partial re-

sult tuples before the join detects that the answer set will be empty (be-

cause some later-probed streams don’t have matching tuples in their cur-

rent states). Hence, the vCount field helps to completely avoid the probing

that will lead to an empty answer set. Accordingly, it eliminates the need

for determining the probe sequence based on the join selectivity [57, 98].
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Generalizing punctuation-based purge and propagate invariants. To

exploit punctuations in multiway join processing, the purge and the prop-

agate invariants need to be generalized. For example, in a binary join, a

punctuation received from one input stream can be used immediately to

purge the matching tuples from the state of the other input stream. How-

ever, in an n-way join where n>2, a punctuation received from one input

stream cannot be used alone to safely purge any tuples from other streams.

Additional conditions have to be satisfied to ensure a safe purge. Other-

wise some join results may be missed. We have designed the following

purge and propagate invariants for multiway joins. They are the respective

generalizations of the three invariants described in Section 3.2 for binary

joins, i.e., we can derive those invariants for binary joins by setting n=2.

These invariants hold regardless of the presence of the window.

Lemma 6 (Purge Invariant for N-Way Join). In an n-way join S1 ⊲⊳ ... ⊲⊳ Sn

with a common attribute att, the following tuples are no longer useful and can be

discarded from the state.

[t | t ∈ tseti ∧ ∀j ∈ [1, n] ∧ j 6= i, setMatch(t, psetj)]

Lemma 7 (Propagate Invariant for N-Way Join). In an n-way join S1 ⊲⊳ ...

⊲⊳ Sn with a common attribute att, the punctuations on the following join values

can be propagated.

setNomatchPset(tset1, pset1) ∪ ... ∪ setNomatchPset(tsetn, psetn)
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Lemma 8 (Regular Propagate Invariant for N-Way Join). In an n-way join

S1 ⊲⊳ ... ⊲⊳ Sn with a common attribute att, the punctuations on the following join

values can be propagated.

[v| ∀i ∈ [1, n], v ∈ vpseti]

In addition, similar to the binary PWJoin, if sliding windows are spec-

ified on punctuated streams, further optimizations including potentially

early punctuation propagation and tuple dropping can be achieved by mul-

tiway joins. The window-assisted propagate invariant for multiway joins is

same as for binary joins. We can also define the following Purge-and-Drop

invariants for multiway joins.

Definition 2 Purge-and-Drop Invariant for Multiway Join. If at time T, a

punctuation p is propagated by the window-assisted propagate invariant due to the

expiration of a tuple from stream Si, the following tuples can be purged from the

state.

[t | t ∈ tsetj ∧ j 6= i ∧match(t, p) ∧ t.ts ≤ T ]

In addition, the following tuples can be dropped with no probing and insertion

attempts being necessary.

[t | t ∈ tsetj ∧ j 6= i ∧match(t, p) ∧ t.ts > T ]
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Conducting timely window-assisted punctuation propagation. In bi-

nary joins, for a particular join value val, window-assisted punctuation

propagation can only happen when (1) only one punctuation on this value

has been received from an input stream and (2) the last tuple t that contains

join value val from this stream has expired from the window. When a sec-

ond punctuation on join value val is received from the other stream before

t expires from the window, the regular punctuation propagation condition

will be satisfied (Lemma 3). Then window-assisted punctuation propaga-

tion for this join value will not occur. Therefore, an item in the propagation

schedule is created when the first punctuation on this join value is received

and its propagation time will remain unchanged during its lifetime in the

schedule.

However, in a multiway join, this is not always the case. Before a

window-assisted propagation can happen for a join value val, more than

one punctuation on val may have arrived from different streams. Again, a

propagation scheduling item for val will be created upon receiving the first

punctuation on val. However, its propagation time may be brought for-

ward upon receiving a punctuation on val from another stream, depend-

ing on the arrival time of the last tuple containing val and the length of the

sliding window (recall that sliding windows on different streams may last

for different time durations). For example, suppose the last tuple ti from

stream Si that contains join value val is received at time Ti and the last tuple

tj from stream Sj (j6=i) that contains the same join value val is received at
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time Tj . Then ti and tj will expire at times Ti+Wi and Tj+Wj respectively.

Given different values of Ti, Wi, Tj and Wj , either one of these two tuples

may expire earlier than the other one. If we keep the first computed prop-

agation time unchanged, the opportunity for conducting propagation and

tuple dropping earlier may be missed. As a consequence, more processing

overhead may be incurred.

In order to conduct window-assisted propagation and tuple dropping

at the earliest possible time, we adjust the processing of punctuations in the

multiway PWJoin algorithm as follows. As a punctuation p on a join value

val is received from stream Si, we first find the I-Node with key val in the

I-Node index. Then we check this I-Node. If 0<pCount<n-1 and pRef is

not null, the punctuation regarding this join value has arrived from at least

one of the other streams. But the regular propagate invariant (Lemma 8)

is not satisfied. We get the last tuple in Si with join value val by following

the Taili pointer of the I-Node and compute its expiration time as the new

potential propagation time of this join value. Then we check the recorded

propagation time of this join value by following the pRef pointer of the

I-Node. If the recorded propagation time is later than the newly computed

propagation time, we update it by the new time and move this punctua-

tion to the appropriate place in the propagation schedule. Recall that items

in propagation schedule are ordered by their propagation time. In all the

other cases, the operations remain same as in the binary PWJoin algorithm.

The inter-stream cluster index also facilitates the optimizations enabled

by the constraints, i.e., to purge and to drop useless tuples. When the

window-assisted propagation is conducted for a specific join value val, we
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obtain the corresponding I-Node and delete all the tuples associated with

this I-Node. Then the vCount value of this I-Node is set to 0 and the pRef

pointer is set to null. These help to drop any future-arriving tuples contain-

ing this join value.

Managing I-Nodes. In the inter-stream cluster index structure, each

I-Node represents a distinct join value. Tuples that contain the same join

value are associated with the same I-Node. The creation of an I-Node

is triggered by the arrival of the first tuple that contains a particular join

value. If the join attribute distributes over a wide domain, the I-Node in-

dex will maintain a large number of I-Nodes. However, in many cases, only

a subset of these I-Nodes are active at a time. For example, some I-Nodes

may be detected to be no longer useful since no more tuples containing

those join values will arrive in the future. Then keeping these I-Nodes will

cost extra memory and also affect the probe efficiency of the index. There-

fore, we aim to detect and eliminate the inactive I-Nodes from the I-Node

index in a timely manner.

The current implementation of the multiway PWJoin applies a conser-

vative I-Node deletion policy. According to the Propagate Invariant II for

Multiway Join (Definition 8), when the punctuation on a particular join

value has been received from all input streams, it is guaranteed that no

more tuples containing this join value will arrive in the future. Then the

corresponding I-Node will be removed from the I-Node index. We can see

that this condition is fairly restrictive since it requires that all input streams

contain punctuations on the join value. There are other approaches avail-

able too. For example, as tuples are being expired from sliding windows,
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some I-Nodes may be associated with zero tuples. We call such I-Node the

loner. We can keep track of the loners. If they keep being loners for a suffi-

ciently long time, it may be beneficial to delete them from the I-Node index.

Studying alternate I-Node deletion policies remains as future work.

7.3 Multiway PWJoin Algorithm

The pseudo code of the multiway PWJoin algorithm is shown in Algo-

rithms 7 and 8. We only present the procedures that contain changes to the

binary PWJoin algorithm. These changes are underlined in the code.

Algorithm 7 MULTIWAY-PWJOIN-PROBE

1: Input: Tuple t, Number sid

2:
3: inode := state.GetINode(t.att)
4: if inode = null then
5: inode := CreateINode(t.att)
6: state.InsertTuple(t, sid, inode)
7: return
8: else if inode.vCount < n then
9: if inode.pCount > 0 and inode.pRef = null then

10: return
11: else
12: state.InsertTuple(t, sid, inode)
13: return
14: end if
15: end if
16: output results from joining t with all tuples associated with inode
17: if inode.pCount < n-1 then

18: state.InsertTuple(t, sid, inode)
19: end if
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Algorithm 8 MULTIWAY-PWJOIN-PURGE

1: Input: Punctuation p, Number sid

2:
3: inode = state.GetINode(p.att)
4: if inode = null then
5: inode := state.CreateINode(p.att)
6: inode.pCount ++
7: propagate a punctuation on p.att
8: return
9: end if

10: if inode.pCount = n-1 then

11: if inode.pRef = null then
12: state.DeleteINode(inode.key)
13: else
14: propagate a punctuation on p.att
15: state.GetPropSchedule().DeleteItem(inode.key)
16: state.DeleteINode(inode.key)
17: end if
18: else
19: inode.pCount ++
20: t := inode.getTailTNode(sid).getTuple()

21: newPropTime := t.ts + Wsid

22: ScheduleItem it := inode.GetPropScheduleItem()

23: if it.PropTime > newPropTime then

24: it.PropTime := newPropTime

25: end if
26: end if
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7.4 Cost Analysis

As described in Section 7.2, the punctuation-driven purge in the multiway

PWJoin is different than in the binary PWJoin. Specifically, in a binary join,

a punctuation can be used to purge tuples from the other stream as soon as

it has been received. However, in multiway joins, the purge of tuples from

a stream needs to wait until either a matching punctuation expires from the

window (purge scenario 1), or the matching punctuation has been received

from all the other streams (purge scenario 2).

Equation 6.1 can still be used to compute the tuple lifespan for the mul-

tiway PWJoin. However, the definition of γi needs to be modified. In terms

of the purge scenario 1, Tp in Figure 6.3 should be replaced by the earliest

time a punctuation on the corresponding join value (with lifespan Lv,1) ex-

pires from the window. That is, Tp = Api + Wi, with Api being the arrival

time of the expired punctuation (assuming it is from stream Si and i 6= 1).

In terms of purge scenario 2, Tp in the figure should be replaced by the

arrival time of the last punctuation on the corresponding join value (with

lifespan Lv,1).

The unit time CPU cost of the multiway PWJoin can be derived in a

similar manner as the binary PWJoin, as shown in Equation 7.1. Note that

α1 needs to be computed using the new γ1 value.



7.5. HANDLING COUNT-BASED WINDOWS 101
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7.5 Handling Count-Based Windows

Besides time-based windows, another type of window, namely count-based

windows [12], also appear commonly in the streaming applications. For ex-

ample, the following query continuously reports the total number of bids

for each of the last 10 opened auctions.

Select A.item id, count(*)

From Auction A [Rows 10], Bid B

Where A.item id = B.item id

Group by A.item id

The count-based sliding window join is defined as follows. The join S1

⊲⊳ ... ⊲⊳ Sn with count-based sliding windows Ci on Si (0≤Ci<∞, 1≤i≤n)

is defined as follows: a tuple t from Si can only join with the last Cj tuples

from Sj (1≤j≤n, j6=i) that arrived prior to t.

In a time-based window join, whether a tuple belongs to the current

window depends on the relationship between its timestamp and the times-

tamp of the latest tuple received from other streams. Hence the number

of tuples that reside in a window may vary over time under varying data



7.5. HANDLING COUNT-BASED WINDOWS 102

arrival rates. In count-based windows, however, the number of tuples in

a window remains constant. Due to this difference, the following changes

need to be made to the time-based PWJoin algorithm in order to correctly

process count-based window joins.

Invalidation. The time-based PWJoin algorithm uses cross invalidation

(see Section 3.3), i.e., a new tuple from one input stream is used to invali-

date tuples from other streams that have expired from the current window.

To deal with the count-based window, self purge should be applied instead.

That is, whenever a new tuple is received from an input stream, the oldest

tuple in the time list of the same stream is removed.

Avoiding window sliding disorder problem. When considering punc-

tuations in addition to sliding windows, some tuples may be purged from

the state before they expire from the window. This doesn’t cause any prob-

lem for the time-based window join because these tuples won’t contribute

to join results anyway. However, this may introduce a new problem for the

count-based window join. This is because the tuple count within the state

may be affected prematurely by such a punctuation-driven purge, thereby

producing spurious join results.

As illustrated in Figure 7.2, assume both streams have a count-based

window of 10 tuples and at time T12, tuples b4 and b7 have been purged by

punctuations. The correct window of stream Sb at this time should contain

tuples b3 through b12. However, if we don’t remember the fact that b4 and

b7 have been purged and blindly maintain 10 tuples for each of the streams,

tuples b1 and b2 will be mistakenly kept in the current window. This may

produce incorrect results. We call this the window sliding disorder problem.
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Figure 7.2: Example of Window Sliding Disorder With Count-Based Win-
dow.

To avoid this problem, we adjust the PWJoin algorithm as follows. Each

time a new tuple is received, it is used to invalidate tuples from the time list

of the same stream. As explained before, exactly one tuple from this stream,

which is referenced by the T-Node pointed to by the WindowBegin pointer,

is invalidated. There are two cases to be considered.

1). If tRef of this T-Node is not null, which means that the tuple being

referenced hasn’t been purged by any punctuation yet. We will delete

this tuple and set tRef to null. Then we point WindowBegin to the

next T-Node in the time list. We still keep this T-Node due to the lazy

T-Node deletion policy described in Section 6.6.

2). If tRef of this T-Node is null, which means the tuple being referenced

has already been purged by a punctuation, we will put this T-Node to

the T-Node recycle bin (Section 6.6) and then point the WindowBegin

pointer to the next T-Node in the time list.

In addition, if a newly-received tuple satisfies the on-the-fly purge condi-

tion, it won’t be inserted into the state. However, we still keep a T-Node in



7.5. HANDLING COUNT-BASED WINDOWS 104

the time list for this tuple as a place holder. This T-Node does not reference

to any tuple and it won’t be inserted into any value list.
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Chapter 8

Experimental Evaluation for

PWJoin Operator

8.1 Experimental Setup

We have implemented the PWJoin algorithm in the CAPE system [83] to

execute the sliding window join. We now report on an extensive experi-

mental study we have conducted to explore the effectiveness of the constraint-

exploiting join optimization strategies. Below we show some of the main

results obtained from this study. Our testing machine has a 733 MHz In-

tel(R) Celeron(TM) processor and a 512MB RAM, running WindowsXP and

Java 1.4.2.05 SDK. We compare the PWJoin algorithm with other stream

join solutions in the literature, including PJoin [40] that exploits solely punc-

tuation constraints, binary sliding window join [68] and multiway slid-

ing window join [57]. We have implemented the hash-based version of
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all these algorithms in our system. According to their design, these algo-

rithms employ a separate hash table to maintain the current state of each

input stream. For ease of presentation, we will use the terms PJoin, WJoin

and MWJoin to refer to these three algorithms respectively. In addition, we

use the term PWJoin to refer to the binary PWJoin and use MPWJoin to

denote our new multiway PWJoin solution.

8.2 Experimental Study of Binary PWJoin

First, we compare the performance of PWJoin with WJoin. In this experi-

ment, we explore (1) how much the memory overhead is saved by PWJoin

in comparison with WJoin, (2) how much the throughput of PWJoin is im-

proved and (3) how the performance of PWJoin is affected when it faces

with useless punctuations. We evaluate the join operators over a pair of

punctuated streams, with λ
λp

= 100. That is, there are on average 100 tu-

ples between any two consecutive punctuations. The inter-arrival time of

tuples from each stream conforms to a Poisson distribution with a mean of

2 milliseconds. We vary the window size for input streams in different runs

and record the total number of tuples in the join state and the total number

of tuples output up to each sampling point. Within the same experimental

run, we apply the same window size to both input streams.

PWJoin vs. WJoin, memory overhead and tuple output rate. In Figure

8.1 we show the result of three runs regarding the total number of tuples

in the PWJoin state and in the WJoin state, both with the time window

being 1, 5, and 15 seconds respectively. Accordingly, we denote PWJoin in
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these 3 runs as PWJoin-1, PWJoin-5 and PWJoin-15 in the figure. The same

notation applies to WJoin. We can see that as the window becomes larger,

the memory savings by PWJoin become more and more significant. This is

consistent with the memory cost estimation in Section 6.7.
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Figure 8.1: Memory Overhead, PWJoin vs. WJoin.

For these experimental runs, we also plot the number of output tuples

of PWJoin and WJoin for each run. Figure 8.2 shows the number of output

tuples of these two join solutions up to each sampling point in 2 runs, with

a 5-second window and a 15-second window on both input streams respec-

tively. We observe that when the window is small, since the number of tu-

ples purged by each punctuation is small, the cost by maintaining PWJoin

state and by punctuation-driven operations exceeds the saving in probing.

Therefore, WJoin performs slightly better. As the window becomes larger,

the gains in probing by employing constraint-exploiting techniques gradu-

ally take over. Thus the PWJoin begins to perform better than WJoin.

PWJoin vs. WJoin, useless punctuations. Now we turn to observe the

overhead required for the PWJoin operator to handle useless punctuations,
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Figure 8.2: Tuple Output Rate, PWJoin vs. WJoin, Window: 5 secs, 15 secs.

i.e., punctuations that enable no optimizations. In terms of data streams

without punctuations, the cost of PWJoin is almost the same as WJoin be-

cause the operations caused by purge and propagation are only triggered

by the arrival of punctuations. If punctuations never happen, no extra cost

would be incurred in PWJoin.
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Figure 8.3: Tuple Output Rate, PWJoin vs. WJoin, Useless Punctuations.
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Let us now consider the worst case in which all punctuations are use-

less, i.e., the punctuation does not match any tuples in state so that no tu-

ples would ever be purged. However, PWJoin still tries to search for tuples

that can be purged for each newly-arriving punctuation. This will cost ex-

tra time. Figure 8.3 shows the number of output tuples by PWJoin and

WJoin over two punctuated streams ( λ
λp

=30), however, with all punctua-

tions being useless instead. We can see that even in this case, the PWJoin

still performs better than the WJoin. This is due to the following reasons.

First, the cost for processing a useless punctuation equals the cost of prob-

ing a hash table for a matching I-Node. This is even less than the cost of

processing a tuple because it does not incur the overhead of forming join

results. Moreover, punctuations normally arrive much more infrequently

than the actual tuples, in this case, 30 times less frequent. In addition, the

PWJoin achieves more performance gains by exploiting constraints. Hence

we conclude that in most cases, the cost of handling punctuations is trivial

compared to the potential advantages it may offer.

Synergy of punctuation and window constraints. Finally, we consider

the synergy of punctuations and windows, i.e., the optimization enabled

by the interactions of the two constraint types. As we discussed in Section

6.3, early punctuation propagation and early tuple dropping can be poten-

tially achieved. We run PWJoin and PJoin over two punctuated streams

( λ
λp

=30). Both streams have Poisson tuple inter-arrival time with a mean

of 2 milliseconds. For PWJoin, a 1-second window applies to both input

streams. We can see from Figure 8.4 that PWJoin has an overall higher

punctuation output rate. This is due to the window-assisted early propa-
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gation and hence the tuple droppings that occur in the PWJoin execution.

Notice that such semantic tuple droppings do not affect the precision of the

join result (see Section 6.3).
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Figure 8.4: Punctuation Output Rate, PWJoin vs. PJoin, Window: 1 sec.

8.3 Experimental Study of Multiway PWJoin

We now show some results from the experiments that explore the effective-

ness of the multiway PWJoin (MPWJoin) algorithm. In all the experiments

shown in this section, we execute a 4-way join query over four streams S1,

..., S4 on a common attribute att. We compare the performance of MPWJoin

with MWJoin.

We first consider the case in which no tuple dropping enabled by the

window-assisted propagation occurs. We begin with a 4-way join query

over four punctuated streams. λi=100 tuples/second and λ
λp

=10 for i=1..4.

In the query, a 10-second sliding window is applied to each stream. There-

fore, a window of each stream contains on average 1000 tuples. In addition,
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Figure 8.6: MPWJoin vs. MWJoin, Tuple Output Rate, Relatively Low Join
Selectivity.

a tuple from any input stream will join with on average 10 tuples in each of

the other three streams. This is a relatively high join selectivity compared

to the join selectivity used in existing work on multiway joins [98].

Figure 8.5 shows the total number of join results output by the MP-

WJoin and the MWJoin respectively up to each sampling point (per 10

seconds). We can see that the MPWJoin performs slightly better than the

MWJoin.
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We then reduce the join selectivity such that a tuple from any one in-

put stream will join with on average 2 tuples in each of the other three

streams. As shown in Figure 8.6, MPWJoin yields a much higher output

rate than MWJoin. This is because in processing each new tuple, MPWJoin

only conducts one hash lookup to find the matching I-Node. Afterwards,

if no join result is expected, the vCount field of the I-Node helps prevent

further probe operations. All tuples being accessed will contribute to the

join result. However, to process a new tuple, MWJoin needs to conduct n

hash lookups if the join is successful. Otherwise, the hash lookup will stop

whenever a failed lookup occurs. So the number of hash lookups is at least

1. Therefore, under the lower join selectivity, the efforts made by MWJoin

on probes that lead to no join result will become more significant. Then

MPWJoin should provide better output rates than MWJoin.

In addition, with an increase in the number of input streams, the more

performance gains can be achieved by the inter-stream cluster index of MP-

WJoin because it only needs one hash probe for retrieving the correspond-

ing I-Node and hence to locate matching tuples from all streams. Since

highly selective join predicates are very common such as the key to foreign

key join, the MPWJoin state design becomes a preferred solution for such

cases.

Next, we study the performance gains from tuple dropping that are

enabled by the interaction of the window and punctuation constraints for

multiway joins (see Section 6.3). We evaluate the MPWJoin and the MWJoin

over four input streams. One of them is a punctuated stream with λ
λp

=10.

The other three streams don’t contain punctuations. The tuple arrival rate
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Figure 8.7: MPWJoin vs. MWJoin, Tuple Output Rate, with 40% Tuple
Dropping.

of all the four streams is 100 tuples/second and a 10-second window is ap-

plied to all streams. In addition, approximately 40% of the input tuples

satisfy the tuple dropping condition.

Figure 8.7 shows the tuple output rate of the MPWJoin and the MWJoin.

We can see that due to the workload reduction caused by tuple dropping,

MPWJoin achieves a much better output rate than the MWJoin. In addi-

tion, the MPWJoin consumes nearly 35% less memory than the MWJoin

due to the more compact state, which is not shown here.
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Chapter 9

Related Work

9.1 Related Work

As query evaluation over continuous data streams receives increasing at-

tention, several data stream management systems have been built to ex-

plore the solutions for tackling the challenges arising in this new context.

These systems include Aurora [2], CAPE [83, 84], STREAM [82], TelegraphCQ [25],

NiagaraCQ [29], to name a few.

Specific to join processing, the first well-known pipelined join solution

is the symmetric hash join [100]. XJoin [95, 96], hash-merge join [81] and RPJ

(Rate-based Progressive Join) [90] are extended pipelined joins designed for

special optimization purposes, i.e., to produce the first results as soon as

possible and to finish the remaining joins at a fast rate. However, all these

join algorithms face the problem of potentially unbounded runtime join

state as data continuously streams in.

To bound the memory requirement by the stateful operator, a lot of
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work has been done in designing or detecting constraints that can help the

stateful operators, include the join, to discard no-longer-needed data from

the runtime operator state in a timely manner. [68] investigates the binary

join algorithms under the time-based constraints, i.e., sliding windows. It

also propose strategies for maximizing the join results in various scenar-

ios. In addition, it also provide a unit-time-basis cost model for analyzing

the performance of these algorithms. We adopt this cost model in analyzing

the memory overhead of our PWJoin algorithm. The storage structures and

indexing methods for sliding windows to improve the execution efficiency

of operators, including the join, are also studied [56]. The state design of

PWJoin operator extends from this work. [64] researches the shared exe-

cution of multiple window join operators. It provides alternative strategies

that favor different window sizes. [33] tackles the problem of approximat-

ing sliding window joins over data streams in a stream processing system

with limited resources. Different from these work, we focus on the execu-

tion strategy of a single join operator and we aim to deliver exact query

results.

Value-based constraints have also been considered in the stream query

optimization. The k-constraint-exploiting algorithm [16] exploits clustered

data arrival patterns to detect and purge expired data to shrink the join

state. These clustered patterns are statically specified in most cases, and

hence only characterize restrictive cases of real-world data. If the actual

data fails to obey these static constraints, the precision of the join result

may suffer due to the incorrect purge of tuples. Moreover, this work mainly

focuses on utilizing value-based constraint instead of exploring the inter-
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action between window and value-based constrains, as done in our work.

Punctuations [93] are dynamic constraints embedded inside data streams.

Static constraints such as unique key and clustered arrival of attribute val-

ues can also be modeled by punctuations. Therefore, punctuation covers

a wide class of constraints that may help with continuous query optimiza-

tion. [93] provide pass, purge and propagate rules enabled by punctuations

for algebra operators. [74] employs punctuations to assist in the execution

of window aggregate queries. We are the first to develop the punctuation-

exploiting join algorithms [40, 41, 44].

Due to the existence of a large number of multi-join queries, the de-

sign of multiway join operators has received increased attention. Viglas

et al. [98] propose an multiway join algorithm, namely MJoin, as well as

the strategies for handling memory overflow and for choosing the optimal

probing sequence. [57] studies the sliding window multiway join opera-

tor and proposes join ordering heuristics to minimize the processing cost

per unit time. [14] provides the algorithms for adaptively caching the in-

termediate results for multiway join queries. The multiway PWJoin algo-

rithm we propose in this work completely prevents the unnecessary join

probings, hence eliminating the need for choosing the optimal probing se-

quence. In addition, the inter-stream cluster index we have designed for

the PWJoin state lessens the requirements for materializing intermediate

results.
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Part II

Herald-Driven Runtime Stream

Query Plan Optimization
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Chapter 10

Introduction

10.1 Exploiting Metadata in Stream Processing

Many modern applications, including supply chain management [52], Web

data search [95] and IP network management [33], need to process long-

running (lasting for hours or days) or even continuous queries over large

volumes of real-time data. In these applications, data arrives as high-speed

streams. Queries over those streams need to be processed in an online fash-

ion to enable real-time responses. Since data in these applications are gen-

erated on the fly, no meta knowledge about cardinality and data value ar-

rival patterns may be available at query compilation time to be used for

query optimization. Also, no pre-built index is available to be exploited

for query processing. Therefore, traditional query optimization strategies,

which heavily rely on these information, become largely inapplicable. The

query system may face scalability problems when processing hundreds or

even thousands of concurrent queries over high-speed streams, as often
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experienced by the above applications [64, 91].

It has been observed that in these applications meta knowledge on data

values may become available as streaming data are generated [16]. As

an example, consider the online sales management application [52]. Sales

records may be periodically propagated to the central management sys-

tem by each store. Therefore, the transaction records of each store within

a reporting period will tend to be clustered together in the merged data

stream. Correspondingly, metadata regarding such clustered data arrival,

e.g., declaring that the next 5000 tuples will have storeID=101, could be pro-

vided along with the actual data received by the query system.

Besides being provided directly by the applications, such metadata on

data values could also be derived by a query system itself [86]. As an ex-

ample, query systems often employ a buffer to collect input data. Data in

the buffer may be processed for a variety of reasons, including being sorted

to correct out-of-order arrivals [86] or to perform load shedding [91]. Such

data pre-processing could easily annotate the data with relevant metadata.

While such pre-processing incurs overhead, the metadata it provides could

thereafter potentially benefit a large number of queries.

Motivating example. We now use an example to illustrate how such

runtime metadata on data values could be exploited to optimize query ex-

ecution. Consider our sales management application again in which the

sales of each store are reported to the central information system through a

store hierarchy at an hourly basis. Each store reports sales data to the state

information center, which reports to the regional center, which reports to

the national center, which finally reports to the central system. Therefore,
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in the final sales stream, data may be clustered based on storeID, stateID,

regionID and countryID. A metadata tuple could then be easily inserted

immediately before each such cluster to indicate the attribute values satis-

fied by tuples in the cluster. We refer to such metadata as herald because it

serves as a “messenger” indicating the properties that a particular chunk

of data (i.e., a substream) following it must satisfy.

Sales (S2)Sales (S1)

GBY s1.storeID, count(*)

Join s1.quantity < s2.quantity

σ storeID >= 100 ~ storeID < 400 σ storeID >= 3000 ~ storeID < 3200

O1 O2
O3

O4

Figure 10.1: Query Plan for Example Query Q1.

Consider the example query Q1 below defined on the Sales stream with

schema <storeID, date, category, quantity>. Suppose the stores in each state

have IDs within a particular range. For example, the stores in Massachusetts

have IDs within the range of [200, 400) and in California have IDs within

the range of [3000, 3200). Query Q1 compares the hourly sale quantities of

MA stores with CA stores. For each MA store, the query reports the num-

ber of CA stores such that the sales quantity of the MA store is less than the

quantity of the CA store. The query execution plan is shown in Figure 10.1,

consisting of two Select, one Join and one Group By operator.

Example Query Q1:

SELECT s1.storeID, count(∗)
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FROM Sales s1, Sales s2

WHERE s1.storeID >= 200 and s1.storeID < 400

and s2.storeID >= 3000 and s2.storeID < 3200

and s1.quantity < s2.quantity

GROUP BY s1.storeID

Assume a herald <storeID = [200, 400), date = ∗, category = ∗, quan-

tity = ∗; count, 5000> is received by operator O1, which indicates that the

next 5000 sales tuples all satisfy the condition storeID ∈ [200, 400), i.e.,

they are all MA store sales data. Then these 5000 tuples could bypass

the evaluation against the predicate of operator O1 since they are guar-

anteed to satisfy this predicate. Let’s further assume that before report-

ing data, each store partitions the hourly sales data into three partitions

with 0≤quantity<1000, 1000≤quantity<5000 and quantity>5000 respec-

tively. Given a herald <storeID = [200, 400), date = ∗, category = ∗, quantity

= [5000,∞); count, 5000> received by operator O1, the data conforming to

this herald can bypass O1. Second, at operator O3, these data don’t even

need to be joined with any data tuples from the other stream that belong

to the partitions 0≤quantity<1000 or 1000≤quantity<5000 since they are

guaranteed not to produce any join results. That is, the processing of these

partition pairs could use a much more efficient query plan (i.e., with the

join eliminated) than the one selected without considering heralds. Clearly,

such herald-driven optimization could result in significant savings in query

execution costs.
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10.2 Challenges in Herald-Driven Optimization

Several important observations can be made regarding herald-driven query

optimization. First, heralds become available only at runtime. Hence query

optimization must be conducted at runtime.

Second, heralds have their lifespans, i.e., the properties described by a

herald are only satisfied by a particular substream. In other words, respec-

tive optimizations driven by a herald will be applicable only to the corre-

sponding substream and thus only for limited periods at a time.

Finally, one herald defined for one stream may enable several distinct

optimizations in collaboration with heralds from other streams. For exam-

ple, the herald <storeID = [200, 400), date = ∗, category = ∗, quantity =

[1000, 5000)> from stream S1 enables us to eliminate the join if combined

with the herald <storeID = [3000, 3200), date = ∗, category = ∗, quantity

= [5000, ∞)> from S2, and makes the join unsatisfiable if combined with

the herald <storeID = [3000, 3200), date = ∗, category = ∗, quantity = [1000,

5000)> from S2. Hence multiple distinct query plans optimized by heralds

may be valid at a time, with partially overlapped scopes (i.e., the substreams

that these plans are applicable to may overlap with each other).

The above properties raise serious challenges in designing new query

optimization and execution techniques for exploiting heralds. For query

optimization, first, the algorithm employed to find the optimized plans

given a set of heralds must be efficient so to identify all beneficial opti-

mization opportunities. Second, the algorithm must be lightweight so to

minimize the runtime optimization overhead. For execution, a query ex-
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ecution paradigm must be designed so that 1) it supports the concurrent

execution of multiple logical plans on overlapping input substreams with-

out duplication of data storage and costs, and 2) it can adaptively phase in

and out logical plans on substreams with negligible physical plan switch-

ing costs [38, 104].

10.3 State-of-the-Art in Stream Processing

Semantic query optimization (SQO) [31, 70], which utilizes semantic in-

formation about the input data for query optimization, has been consid-

ered in static database systems where data updates are infrequent, ranging

from relational [31], object-oriented [59], to XML databases [88]. The pro-

posed techniques include join/select elimination, join/select introduction,

and detection of empty answer sets. They are based on schema-level in-

formation, i.e., integrity constraints, assumed to be known at query com-

pilation time in such static systems. Query optimization itself is thus also

conducted at query compilation time. In all cases, one single optimized

plan is produced. We clearly face a different problem in that 1) the meta-

data to be exploited have scopes (i.e., may be valid only for a subsequence

of the input data) and 2) they only become available at query execution

time. Clearly, lightweight constraint reasoning techniques that can react to

runtime metadata changes in an incremental fashion are needed.

The punctuation [93] metadata model has been proposed for streaming

data to declare that the data that follows will not satisfy certain properties.

One class of existing work focuses on the optimization of execution logic of
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individual operators such as join or aggregate [40, 41, 74]. Our work now

is the first to target the query plan level, i.e., to optimize the overall plan

structure to minimize execution costs.

Present works on runtime query optimization for streaming data [13,

57] focus on the traditional query rewriting problem of reordering joins or

filters using selectivity statistics. No semantic knowledge has been consid-

ered thus far.

In summary, existing work on SQO and on stream query optimization

have been separate efforts. We are the first to combine them to conduct

herald-aware query optimization.

10.4 Our Contributions: Herald-Driven SQO

Our contributions of this work are summarized as follows:

1). We are the first to explore stream query optimization at query plan

level by exploiting dynamic metadata on data values, namely heralds

(Section 11.1). In particular, we identify four semantic query opti-

mization opportunities that can be enabled by heralds, which parallel

the SQO techniques found in traditional databases [31, 70].

2). To minimize the optimization overhead, we develop an efficient con-

straint reasoning algorithm named PredSAT based on classic satis-

fiability reasoning theory. PredSAT is guaranteed to identify all four

herald-driven optimization opportunities incrementally at runtime.

3). Multiple concurrent SQO plans may be enabled by heralds for pro-
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cessing different, potentially overlapping stream partitions. We pro-

pose a versioned minimum range model for generating multiple con-

current logical plans based on the result of PredSAT.

4). To achieve multiple concurrent logical plans with one single phys-

ical plan, we propose a novel query execution paradigm employ-

ing multi-modal operators with runtime configuration logic. This

paradigm eliminates any replication of operator states or inter-operator

queues, guarantees instantaneous application of herald-driven query

optimizations, requires zero plan migration effort, and naturally sup-

ports highly flexible adaptive execution.

5). We conduct an extensive experimental study in the CAPE stream pro-

cessing system [83]. The experimental results confirm that our herald-

driven optimization techniques significantly reduce query execution

time, up to 60% in our tested scenarios.
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Chapter 11

Background

11.1 Herald Model

Heralds are metadata interleaved within streaming data. A herald de-

scribes constraints on the attribute values of a sequence of tuples imme-

diately following it. We adopt the punctuation model [93] (Section 3.2) to

represent attribute constraints and adapt it for modeling heralds. Same as

the punctuation, a herald contains 1) a sequence of attribute patterns, each

corresponding to an attribute in the stream schema, indicating a range in

the domain of that attribute, and 2) a timestamp that records the time when

the herald becomes effective. In addition, each herald is associated with

a lifespan which denotes the scope of validity of the herald. The lifespan

can be count-based (i.e., covering a certain number of tuples following the

herald) or time-based (i.e., covering a time range starting from the herald’s

timestamp). Similar to the punctuation model, we assume that all tuples

and heralds in the same input stream are received in their timestamp order.
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Tuples arriving within a herald’s lifespan must conform to it, i.e., they must

match the attribute patterns specified by the herald. We also assume that

heralds in the same stream don’t have overlapped lifespans, i.e., no con-

tradicting constraints are specified. Thus logically, for any input stream, at

most one herald is valid at any time. A tuple not described by any herald

is called a free tuple.

Two important differences exist between the punctuation [93] and our

herald model. First, a punctuation signals that the data following it will

not match the given attribute patterns (i.e., negative predicates), while a

herald indicates that the data following it will match the attribute patterns

(i.e., positive predicates). Second, the punctuation model is prohibitively

strict, i.e., every punctuation has an implicit (and in fact infinite) lifespan

extending from its announcement time to the end of the stream. Instead,

a herald has an explicitly specified lifespan, either bounded (which is the

more realistic scenario in practical applications) or unbounded (specified

as∞), starting from its announcement.

In the following, we will denote a herald as below. ptni (1 ≤ i ≤ n) is an

attribute pattern for the ith attribute Ai. lifetype is the type of the lifespan,

with keyword count denoting the count-based lifespan and time denoting

the time-based lifespan. lifeval is the value of the lifespan. The time-based

lifespan is in milliseconds.

(< ptn1, ptn2, ..., ptnn >;< lifetype, lifeval >)

Below is an example substream with a herald (in bold) and subsequent
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tuples that conform to this herald. The herald indicates that for the next

300 tuples following it, the values of storeID will be within the range of

[200, 400) and the value of category will be fruit.

schema: storeID, date, category, quantity

(<[200, 400), *, fruit, *>: count, 300) – herald

(<201, 2008-02-01, fruit, 40>)

(<202, 2008-02-01, fruit, 20>)

...

11.2 Our Targeted Query

Definition 3 Targeted Query. We consider single block conjunctive queries

specified as follows 1.

SELECT <select-list>

FROM <list-of-streams>

WHERE <where-conditions>

[WINDOW <window-specification>]

The where-conditions are p1 ∧ p2 ∧ ... ∧ pn in which 1) pi = z1θz2 (1≤i≤n);

2) zj (j = 1, 2) is either an attribute or a constant, but z1 and z2 cannot both be

constants; 3) θ is =, < or≤. Each predicate pi is called an inequality predicate [60],

though θ could be “=”.

1Henceforth we assume queries have no WINDOW specified. We discuss issues for
handling windowed queries in Chapter 13.
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We differentiate between selection predicates (i.e., with one constant operand)

and join predicates (i.e., with two attribute operands) in a query. The query

Q1 in Section 10.1 is an example of our targeted query and it has selection

predicates such as (S1.storeID > 200) and join predicates such as (s1.quantity

< s2.quantity).
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Chapter 12

PredSAT: Predicate

Satisfiability Reasoning

Algorithm

12.1 Herald-Driven Optimization Strategies

We have identified four query optimization cases enabled by heralds that

are guaranteed to always lead to a reduction in query execution costs, as

described below. This implies that no cost-based decision needs to be made

on whether to apply our proposed optimizations.

Select data skipping (SDS). If any selection predicate cannot be satis-

fied by the input data, the entire conjunctive query cannot be satisfied by

the data. Expression (12.1) below shows an example unsatisfiable selection

predicate.
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(A > 1000 ∧A < B)q ∧ (A < 800)d |= False (12.1)

In the expression, we denote the ranges signaled by a herald, i.e., the

inequalities that are already satisfied by the data, by subscript d. The query

predicates (thus yet to be enforced by the query) are denoted by subscript

q.

If any unsatisfiable selection predicate is identified based on the cur-

rently valid heralds, the corresponding data can be skipped by the select

operation.

Join data skipping (JDS). Similarly, whenever an unsatisfiable join pred-

icate is detected based on heralds, the corresponding data can be skipped

by the join operation. Expression (12.2) below shows an example with a

join query over two input streams A and B.

(A > 800 ∧A < B)q ∧ (B < 800)d |= False (12.2)

Select elimination (SE). If a selection predicate is known to always

evaluate to true over the input data that conforms to a herald, it is a redun-

dant predicate regarding the data. These data can then be directly passed

through corresponding part of the query that was to evaluate this now re-

dundant predicate. Expression (12.3) shows an example in which A > 1000

is a redundant selection predicate.

(A > 1000 ∧A ≤ B)q ∧ (A > 1200)d |= (A ≤ B)q (12.3)
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Join simplification (JS). Similar to the select elimination, any redun-

dant join predicate regarding a certain herald need not be evaluated over

each individual tuple that conforms to this herald. Instead, a Cartesian

product can replace the join predicate to simply combine the tuples with-

out first having to execute this redundant join predicate. Expression (12.4)

shows an example in which A < B is a redundant join predicate.

(A < 800 ∧A < B)q ∧ (B > 1000)d |= True (12.4)

12.2 Extent of Query Optimization

The above four optimization strategies are based on predicate satisfiability

as will be formally defined in Section 12.3. Select/Join data skipping are

due to unsatisfiable Select/Join predicates, while Select elimination and Join

simplification are due to satisfied Select/Join predicates respectively.

Evaluation Result

True False Unknown

Select Select Elimination Query Pause Regular Eval.

Join Join Simplification Query Pause Regular Eval.

Table 12.1: Query Optimization Opportunities.

According to Definition 3, predicates in our targeted queries can only

be selection or join predicates. For each predicate, the result from evaluat-

ing an input must be either true (satisfied), false (unsatisfiable) or unknown

(yet to be evaluated), as shown in Table 12.1. Therefore, the above four op-

timization cases compose a complete set of semantic query optimizations
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based on predicate satisfiability. Most importantly, each of these optimiza-

tions, once identified, ensures performance gains. This eliminates the need

for a complex cost-based query optimizer. Instead, a lightweight mecha-

nism for identifying these optimizations can be employed.

Among the four optimization techniques, select/join data skipping and

select elimination parallel the cases covered by existing SQO techniques,

namely, detecting an empty answer set and predicate elimination respec-

tively [31, 70]. Join simplification is the runtime version of join elimination

(JE) [31, 70]. They both are based on the identification of a redundant join

predicate. Join is composed of the functionality of Cartesian product and

predicates. JE identifies the join predicates for which both the Cartesian

product and the predicates are redundant. Since Cartesian product deter-

mines the schema of the intermediate results, its necessity would not be

affected by metadata on attribute values such as heralds. Therefore, at run-

time join elimination becomes join simplification, which simply concate-

nates tuples from the two inputs without evaluating the predicates.

12.3 Satisfiability Reasoning

The identification of the applicability of any of the four herald-driven opti-

mization strategies outlined above can be mapped to the classic satisfiabil-

ity (denoted as SAT ) and implication (denoted as IMP ) problems [60]. Be-

low we first introduce the definitions of the classic SAT and IMP problems

(Definitions 4 and 5) and the corresponding reasoning algorithms. Based

on these we then define our herald-driven SAT and IMP problems (Defini-
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tion 7) and derive our incremental reasoning algorithm for identifying the

four herald-driven SQO opportunities (Section 12.4).

Definition 4 Satisfiability Problem (SAT). Given a conjunctive formula S

composed of a set of inequality predicates, the SAT problem is to check whether at

least one assignment for S exists such that S evaluates to true under the assigned

values. If yes, S is said to be satisfiable. Otherwise, S is said to be unsatisfiable,

denoted as S |= False.

Definition 5 Implication Problem (IMP). Given two conjunctive formulae S

and T, both composed of a set of inequality predicates, the IMP problem is to check

whether every assignment that satisfies S also satisfies T. If yes, S is said to imply

T, denoted as S → T .

For both integer and real domains, one of the most effective SAT/IMP

reasoning algorithms proposed in the literature is the real minimum range

algorithm [60], henceforth referred to as the RMin algorithm.

The RMin algorithm has |S| time complexity for solving the satisfiabil-

ity problem and |S|2 + |T | time complexity for the implication problem for

our targeted queries (Definition 3 in Chapter 11). Here |S| and |T | denote

the number of predicates in formulas S and T respectively.

We now review RMin as our work extends RMin to make it employable

for runtime query optimization (Section 12.4). RMin utilizes the inequality

graph defined below (Definition 6) for representing the set of predicates.

Definition 6 Inequality Graph. An inequality graph for a conjunctive inequal-

ity formula S, denoted as GS = (VS , ES), is a directed graph. Each node X in VS
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one-to-one corresponds to a distinct attribute X in S. Each directed edge from node

X to node Y in ES , labeled with⊗ and denoted as (X, Y,⊗), one-to-one corresponds

to an inequality (X ⊗ Y) ∈ S. The label ⊗ is either < or ≤.

S2.B

S3.C

S4.D

S1.A

500

100

(100, ∞) (-∞, ∞)

Query Predicate:
A>100 and A<B and B<C and B<D and C>500

(a) Minimum Range (-∞, ∞)

(500, ∞)

S2.B

S3.C

S4.D

S1.A

500

100

(100, ∞) (100, ∞)

(b) Real Minimum Range

(500, ∞)

(100, ∞)

Figure 12.1: Computing Real Minimum Ranges.

Figure 12.1(a) shows an example of the inequality graph for predicate

S1.A>100 and S1.A<S2.B and S2.B<S3.C and S2.B<S4.D and S3.C>500. We

use a circle to denote a variable and a square to denote a constant. The label

of the edge, if not shown, is assumed to be <. Otherwise it’s ≤.

We call a node Y a parent node of a node X (and X a child of Y) if X can

reach Y via a directed edge. We denote the set of all parent nodes of a node

X as parents(X) and the set of all children nodes of a node X as children(X).

For two nodes X and Y in GS , if X can reach Y via directed path and

Y can also reach X via directed path, X=Y is implied by S by transitivity.

All such variables and the edges among them are said to form a strongly

connected component, or SCC. As an example, predicate A≤B and B≤C and

C≤A corresponds to an SCC. By transitivity, it equals to A=B and B=C and

C=A. We use GSc
to denote the collapsed inequality graph after collapsing

each SCC in GS into a single node. Sc denotes the collapsed inequality formula
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from S.

The RMin algorithm then works as follows. For an attribute X, let CX
up =

min(Cj ) for all constants Cj such that X ≤ Cj ∈ Sc. And let CX
low = max(Ci)

for all constants Ci such that X ≥ Ci ∈ Sc. The closed range [CX
low, CX

up]

is called the closed minimum range for X. These minimum ranges can be

derived from the query in a straightforward manner. For example, consider

a query with predicate A>100 and A<B and B<C and B<D and C>500, the

minimum ranges for the attributes are shown in Figure 12.1(a).

The minimum range can be further refined to be the real minimum range

[AX
low, AX

up] in which AX
low and AX

up denote the real lower bound and the real

upper bound of the attribute X respectively, computed as below. First, at-

tributes in Sc are sorted in their topological order. Then attributes are se-

lected in Sc one by one according to their topological order in Sc. For an

attribute X, AX
low = max(Ci, CX

low) for all Ci such that Ci = AXi

low. Here Xi is

X’s child, if the edge from Xi to X is labeled with ≤; or Ci = AXi

low + 1 if the

edge for Xi to X is labeled with <.

Next, we select attribute X one by one according to the inverse topolog-

ical order of Sc. AX
up = min(Cj , CX

up) for all Cj such that Cj equal to A
Xj
up .

Here Xj is X’s parent, if the edge from X to Xj is labeled with ≤; or Cj =

A
Xj
up -1 if the edge from X to Xj is labeled with <.

As shown in Figure 12.1(b), the real lower bounds of attributes S2.B and

S4.D are refined to be 100 instead of -∞ because these attributes are forced

to be greater than S1.A, whose real lower bound is 100.

The reasoning of the classic SAT and IMP problems using the real min-

imum ranges are based on Theorem 2. The proof of this theorem can be
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found in [60].

Theorem 2 S is satisfiable iff 1) no SCC in GS contains an edge labeled < and 2)

for each attribute X in S, AX
low ≤ AX

up.

In addition, if S is satisfiable, S → T iff 1) for any (X ≤ Y) ∈ T there exists

a path from X to Y in GSc
, or AX

up ≤ AY
low; 2) for any (X < Y) ∈ T there exists

a path from X to Y in GSc
with at least one edge of the path labeled with <, or

AX
up < AY

low; 3) for any (X ≤ C) ∈ T, C ≥ AX
up; and 4) for any (X ≥ C) ∈ T, C ≤

AX
low.

In the example in Figure 12.1, all predicates are satisfiable and no pred-

icate can be implied by other predicates.

12.4 PredSAT Algorithm

Herald-driven query optimization can be abstracted to the following satis-

fiability and implication problems.

Definition 7 Herald-Driven Satisfiability (H-SAT) and Implication (H-

IMP) Problems. Given a set of inequality query predicates PQ expressed by a

query Q and a set of inequalities PD satisfied by input data D,

1). H-SAT: if
∧

pi∈(PQ∪PD)

|= False, select/join data skipping by pi can be ap-

plied for data D;

2). H-IMPS : for a selection predicate ps in PQ,

if
∧

pk∈(PQ∪PD−ps)

→ ps, select elimination can be applied to the predicate ps;
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3). H-IMPJ : for a join predicate pj in PQ,

if
∧

pk∈(PQ∪PD−pj)

→ pj , join simplification can be applied to the predicate

pj .

Here ∪ and− denote the set-based union and difference operations respectively.

Heralds are interleaved with streaming data. Hence they dynamically

become valid at runtime. To identify possible optimization opportunities

enabled by heralds, the RMin algorithm needs to be invoked each time a

new herald is received. Since the number of inequalities increases as more

heralds are received, a significant reasoning overhead may be incurred.

However, we observe that each herald only refers to a single attribute. Thus

running the RMin algorithm over all inequalities may trigger redundant

reasoning. Therefore, we now propose an incremental SAT/IMP reason-

ing algorithm based on RMin, which we call the PredSAT (for Predicate

SATisfiability reasoning) algorithm, that limits the reasoning scope to only

relevant inequalities. The relevant inequalities are the ones that could en-

able any of the four optimization strategies (Section 12.1) if combined with

the given new herald.

We now describe the PredSAT algorithm. When a continuous query is

registered into the system, the PredSAT algorithm constructs the inequal-

ity graph with real minimum ranges as induced by the query, same as the

RMin algorithm [60]. During query execution, the PredSAT algorithm fur-

ther refines the real minimum ranges according to the current heralds. The

refined minimum ranges are called herald minimum ranges.
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If a herald h with predicate X ≤ C is received, it’s obvious that only the

real upper bound of the node X and all the nodes that are descendants of

X may possibly be affected, i.e., further tightened. The PredSAT algorithm

starts from node X. If AX
up ≤ C , the algorithm stops. Otherwise, a refined

upper bound C can be computed for X. The algorithm then proceeds to

check X’s children nodes in a breadth-first manner. The traversal termi-

nates when an examined node has a real upper bound already smaller than

C.

When computing herald minimum ranges, the algorithm checks the op-

timization opportunities as follows:

1). Unsatisfiable query. PQ is unsatisfiable if there exists a variable X in Sc,

AX
up < AX

low.

2). Redundant selection predicate. For ps: X < Cq,
∧

pi∈(PQ−{ps})∪{h}

→ ps if
∧

PQ−{ps}

is satisfiable and AX
up > C (i.e., C <

Cq). Therefore, ps is redundant.

3). Redundant join predicate. For pj : X < Y,
∧

pi∈(PQ−{pj})∪{h}

→ pj if PQ − {pj} is satisfiable and Y ∈ parent(X))

and AY
low > C . Therefore, pj is redundant

The proof is straightforward,

Similarly, given a herald h: X ≥ C , we determine

1). PQ is unsatisfiable if AX
up < AX

low.

2). For ps: X > Cq,
∧

pi∈(PQ−{ps})∪{h}

→ ps if PQ − {ps} is satisfiable and

AX
low < C (i.e., Cq < C).
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3). For pj : X > Y ,
∧

(PQ−{pj})∪{h}

→ pj if PQ − {pj} is satisfiable and Y ∈

children(X)), AY
up < C .
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A>100 and A<B and B<C and B<D and C>500
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Figure 12.2: Example of PredSAT Reasoning.

For query predicate A>100 and A<B and B<C and B<D and C>500, the

real minimum ranges computed from the predicate are shown in Figure

12.2(a). When a herald indicating S2.B < 300 is received from S2, the real

upper bounds of attributes S1.A and S2.B are updated from∞ to 300. Since

the real upper bound of S2.B (300) is now less than the real lower bound of
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S3.C (500) (Figure 12.2(b)), based on PredSAT algorithm, the join predicate

S2.B < S3.C now becomes redundant for processing substreams described

by this herald and the output of evaluating selection on stream S3. As

shown in Figure 12.2(e), from the original query predicate, when a herald

indicating S1.A < 50 is received, the real upper bound of attribute S1.A

is updated to be 50, which is lower than its real lower bound (100). This

indicates that the predicate S1.A > 100 is unsatisfiable for the substream

described by this herald. Similarly, Figures 12.2(c) and (f) show the cases

of redundant select predicate and unsatisfiable join predicates respectively,

based on the PredSAT algorithm.

12.5 Mapping Reasoning Results to a Logical SQO Plan

Once an optimization opportunity is identified for a set of substreams dur-

ing the reasoning, an SQO plan can be generated to process these particular

substreams. The remaining substreams would continue to be serviced by

the default plan. Figure 12.3 shows such an example. When the herald

h with A<500 is received, the join predicate S1.A < S2.B is identified to

be redundant regarding the substream described by h. Therefore, an SQO

plan with the join operator replaced with a Cartesian product operator is

produced to process the substream described by h and the S2 stream. The

results of these two plans are then merged to produce the complete final

result for the query.

The SQO plan generation follows the rules described in Equations 12.5

– 12.8. In the equations, ∪ represents union all. Sh, Sh1 and Sh2 represent the
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S2

Query Predicate: S1.A<S2.B and S2.B>1000

Cartesian
Product

S1

Join A<B

Select B>1000

A<500 A = *B = * B = *

Merge
Join A<B

S2

Select B>1000

S1

A<500

A = * B = *

Select B>1000

S2S1

(a) Regular Plan (b) SQO Plan

Figure 12.3: Mapping Reasoning Result to SQO Plans.

substreams described by heralds h, h1 and h2 respectively. σp, ⊲⊳p and ×

denote the select operation with predicate p, the join operation with predi-

cate p, and the Cartesian product respectively.

Select elimination for Sh:

σp(S1 + Sh) = σp(S1) + Sh if ∀t ∈ Sh, σp(t) |= TRUE (12.5)

Select data skipping for Sh:

σp(S1 + Sh) = σp(S1) if ∀t ∈ Sh, σp(t) |= FALSE (12.6)
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Join simplification for (Sh1, Sh2):

(S1 + Sh1) ⊲⊳p (S2 + Sh2) = S1 ⊲⊳p Sh2 + S2 ⊲⊳p Sh1

+S1 ⊲⊳p S2 + Sh1 × Sh2

if ∀(t1 ∈ Sh1, t2 ∈ Sh1), ⊲⊳p (t1, t2) |= TRUE

(12.7)

Join data skipping for (Sh1, Sh2):

(S1 + Sh1) ⊲⊳p (S2 + Sh2) = S1 ⊲⊳p Sh2 + S2 ⊲⊳p Sh1

+S1 ⊲⊳p S2

if ∀(t1 ∈ Sh1, t2 ∈ Sh1), ⊲⊳p (t1, t2) |= FALSE

(12.8)



144

Chapter 13

Generating Logical Plans

During query execution, multiple heralds on the same attribute of a stream

may be received over time. In addition, a single herald may enable mul-

tiple optimizations by being combined with different heralds from other

input streams. Thus we must handle possibly overlapping validity scopes

of multiple concurrent SQO plans.

Query Predicate:
S1.A<S2.B and S2.B>1000

Timeline

[h4] B<1500

0

S1

S2

[h3] B>2000

[h1] A>2000 [h2] A<500

Join A<B

S2.[h3]S1.[h1]

Cartesian
Product

S2.[h3]S1.[h2]

Join A<B

S2.[h4]

S1.[h2] Select B>1000

Figure 13.1: Query Plans with Scopes.

Figure 13.1 shows an example. Consider the query over two input

streams S1 and S2 with predicates S1.A < S2.B and S2.B > 1000. Assume

that the data received from the input stream S1 are described by two her-
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alds in sequence – h1: A > 2000 and h2: A < 500. Also, the data received

from stream S2 are described by two heralds in sequence – h3: B > 2000

and h4: B < 1500. The lifespans of these heralds are marked by the rectan-

gles enclosing the substream of tuples directly below the herald predicate

(in left bottom of Figure 13.1). We denote the substreams that conform to

these heralds as S1.[h1], S1.[h2], S2.[h3] and S2.[h4] respectively. We ob-

serve that the following optimizations are applicable to the given input

substreams: select elimination (B>1000) of S2.[h3] and join simplification

(S1.A<S2.B) for (S1.[h2], S2.[h3]), join data skipping for (S1.[h1], S2.[h4]).

For the substream pair (S1.[h2], S2.[h4]), no herald-driven optimization is

applicable. Therefore, for the input streams received so far, potentially four

distinct query plans may need to be constructed to best serve each of these

four cases. We call these plans the SQO logical plans. We define the scope of

an SQO logical plan to be the set of substreams that need to be processed

by the plan.

We can see that herald h1 contributes to the formation of two SQO logi-

cal plans, one by itself and one by being combined with another herald h2.

To capture all possible herald-driven optimization opportunities based on

all currently valid heralds, we propose the notion of a versioned real mini-

mum range.

We call the real lower and upper bounds for each attribute X computed

solely based on query predicates query lower bound and query upper bound re-

spectively, denoted as QX
low and QX

up. Obviously, each attribute has a single

query minimum range. The query upper and lower bounds of an attribute

may be further refined by heralds received at runtime. Since multiple her-
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alds may be received for a single attribute, an attribute may be associated

with multiple lower and upper bounds respectively. They are called herald

lower bounds and herald upper bounds respectively. We denote the ith herald

lower and upper bounds as AX
low,i, AX

up,i respectively. The herald lower and

upper bounds are maintained in two lists respectively associated with the

attribute.

During query execution, each time a new herald is received, if a lower

or upper herald bound can be tightened due to the herald, a new lower or

upper bound is created and appended to the end of the corresponding list.

Whenever such change occurs, the optimization reasoning is conducted.

During the reasoning, all herald bounds of the attributes that are being

visited are examined and multiple SQO logical plans may be achieved.

Handling windowed query. For query with windows, the PredSAT al-

gorithm and the mapping strategy can still be applied. Moreover, PredSAT

can be further optimized to purge the minimum ranges once the lifespans

of the associated heralds have moved out of the window.
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Chapter 14

Runtime-Configurable

Execution Paradigm

Given that input streams containing heralds, multiple SQO logical plans

may be concurrently applicable to different sets of substreams. That is,

multiple query plans with different scopes may exist at a given time. In ad-

dition, the scopes of different SQO plans may share common substreams.

Therefore, we cannot default to a traditional single-plan solution, which

employs an online plan migration technique [104] to switch from the cur-

rent plan to one other (more efficient) plan in the middle of the query exe-

cution,

Consider the example in Figure 13.1 (Chapter 13). The join simplifi-

cation is applicable to substreams (S1.[h2], S2.[h3]). However, we can only

guarantee correctness of the plan with join simplification when it is applied

to the S1 state containing only tuples from S1.[h2]. This is impossible be-
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cause tuples in S1 that arrive before S1.[h2], i.e., S1.[h1], have already been

inserted into the S1 state and may remain there until the end of the query

execution. This causes a dilemma.

Therefore, we must support multiple concurrent query plans. How-

ever, to physically maintain multiple query plans and route tuples to the

corresponding query plans may incur significant data duplication in both

operator input queues and operator states since different plans may share

many common input substreams and intermediate substreams.

In view of this, we now propose a new query execution paradigm that

supports multiple concurrent logical query plans by physically maintain-

ing only one single plan. Our new execution paradigm consists of five key

components.

1). Data partitioning. We partition data based on heralds so that different

substreams can logically be served by the same execution logic.

2). Multi-modal operators. We design powerful query operators with con-

figurable execution logic so that they apply customized algorithms to

process data from different stream partitions, as guided by the query

optimizer.

3). Lightweight control table. We design a control structure that enables the

application of customized execution logic for particular partitions by

simply toggling a flag in the control table.

4). Isolated operator tuning. The configuration of the operator logic is in-

ternal to the operator itself, without affecting other operators in the
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query plan. So it is complementary to other optimizations that may

be applied to the query plan.

5). Partition propagation. Each operator is equipped with the ability to

propagate data partition information so to make any downstream op-

erators configurable without requiring any re-partitioning effort.

Our fine-tuned execution paradigm has significant advantages. First, it

avoids data duplication by physically maintaining a single plan. Second,

it avoids duplicate computations for tasks such as state insertion or purg-

ing or due to multiple logical plans working on overlapping input sub-

streams. Third, it reduces system overhead by avoiding context switching

among the otherwise much larger set of operators and even between differ-

ent plans. Lastly, it is flexible to revert back to the default herald-unaware

plan. All it needs is to toggle a flag. No plan structure change is needed.

14.1 Herald-Driven Data Partitioning

Our data partitioning scheme partitions streams based on heralds. A par-

tition could be a source partition or an intermediate partition. Source par-

titions are obtained by partitioning source streams. There are two types of

source partitions: 1) the herald partition that contains tuples described by

a single herald, and 2) the anonymous partition that contains tuples not de-

scribed by any herald. Intermediate partitions are produced as output of

select or join operators. An intermediate partition generated by a join may

contain tuples from two source partitions, or from a source partition and
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an intermediate partition, or from two intermediate partitions. Therefore,

an intermediate partition can also be a herald partition, containing tuples

described by m (m≥1) herald(s), or an anonymous partition.

Each source partition is assigned a stream-wise unique ID. The default

partition ID 0 is reserved for the anonymous partitions, while each new

herald source partition is assigned the next available partition ID. The par-

tition ID of an intermediate partition is the concatenation of the partition

IDs of its component partitions.

14.2 Multi-Modal Operators

To assure agility of operators, we equip our herald query operators with

multiple distinct execution modes that are configurable at runtime. That is,

the operator processes every batch of data described by a herald in its most

efficient manner as determined by the optimizer. This achieves multiple

SQO logical plans within one single physical plan.

To configure its execution logic at runtime, each operator is equipped

with a control table containing instructions on how to process the received

herald partitions. Each time a new herald partition is received, the operator

will use the herald associated with the partition to probe the control table

and get the corresponding instruction. Based on the instruction, the opera-

tor will apply the appropriate execution strategy to the current data parti-

tion. For instance, a select operator may either directly output the partition

(select elimination), drop the partition (select data skipping) or evaluate the

partition using regular predicate checking.
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The control table is probed each time a new herald partition is received.

Thus it needs to be probe-efficient. We implement the control table as a

hash table with the partition ID as hash key, as further explained below.

This way, if instructions for a given partition are available, they can be re-

trieved with a single lookup.

The control table is dynamically updated at runtime by the operator con-

figurator, one of the key components of the herald-driven semantic query

optimizer (Section 15.1). The new entries are added into the control table as

new herald-driven SQO opportunities are identified. To prevent the con-

trol table from growing unboundedly, existing entries are removed when

corresponding partitions have been processed.

14.2.1 Multi-Modal Select Operator

The select operator differentiates between three types of partitions: 1) Pass

partition in which all tuples are guaranteed to satisfy the selection predicate;

2) Skip partition in which all tuples are guaranteed to not satisfy the selection

predicate; and 3) Unknown partition for which it is unknown if any of its

tuples will satisfy the selection predicate or not.

The select operator directly propagates any pass partition to its output

stream (due to select elimination) and discards any skip partition (due to

query pause) without evaluating any of their tuples. Tuples in the unknown

partitions will be evaluated against the selection predicate as done by the

regular select operator. This design enables one single operator to achieve

three distinct query plans by applying three distinct logics to process its

input data.
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In the control table of the select operator, each hash entry contains a

list of <PartitionID, ActionFlag> pairs. The action flag can be one of three

values: 0 means to pass (for Pass partitions), 1 to skip (for Skip partitions)

and 2 means to evaluate (for Unknown partitions).

During query execution, when an input partition is received, the select

operator first checks whether it is an anonymous partition (i.e., with par-

tition ID 0). If yes, which means there is no herald associated with this

partition, the select operator evaluates tuples in this partition as done by

the regular select operator. Otherwise, the partition ID is used to probe

the control table. If a match is found, the corresponding action flag will be

used to trigger the suitable execution logic to be applied to the tuples in the

partition.

14.2.2 Multi-Modal Join Operator

The multi-modal join operator is associated with two control tables corre-

sponding to its two input streams respectively. Similar to the control table

of select, each control table for the join operator is hashed on the partition

ID. Each hash entry contains a list of <LeftPID, RightPID, ActionFlag>

triples indicating whether the corresponding pair of partitions should be

passed (due to join simplification), skipped (due to join data skipping), or

evaluated.

When a new partition p is received from the left input stream, the join

operator first checks its partition ID to see whether it is an anonymous par-

tition. If yes, the join operator will process tuples in this partition as the

regular join does (i.e., no optimization is done). Otherwise, the partition ID
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is used to probe the control table for the right input. If a match is found,

the <LeftPID, RightPID, ActionFlag> triples in the list are enumerated. For

each triple, the join logic indicated by action is applied to the left-side par-

tition with ID LeftPID and the right-side partition with ID RightPID. The

processing of partitions received from the right input stream is similar.

Consider the example shown in Figure 13.1. Suppose the partitions cor-

responding to heralds h1, h2, h3 and h4 have partition IDs 1, 2, 3 and 4

respectively. Then the control table of the select operator has one entry (3,

Pass). The control table for the left input of the join operator, which is S1,

has two entries with keys being partition IDs 1 and 2 respectively. The en-

try with partition ID 1 contains a list with one element (1, 4, DROP). The

entry with partition ID 2 contains a list with one element (2, 3, PASS). Cor-

respondingly, the control table of the right input of the join operator, which

is the output of the select operator, has two entries with keys being parti-

tion ID 3 and 4 respectively. The entry with partition ID 3 contains a list

with one element (3, 2, PASS) and the entry with partition ID 4 contains a

list with one element (4, 1, DROP).

14.3 Partition ID Propagation

The herald-driven data partitioning is initially conducted for source input

streams. For the proposed semantic optimization to be applied to non-leaf

operators as well, the partition IDs associated with source stream partitions

need to be propagated through the query plan.

We first discuss the propagation rules for the select operator. Each Pass
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partition is sent to the output stream of the select operator with its current

partition ID. For each Unknown partition, if at least one tuple satisfies the

selection predicate, a result partition is created with the current partition ID

and it will contain all tuples in the input partition that satisfy the selection

predicate.

The join operator each time processes a new partition from one of its in-

puts, joining it with all existing partitions in the state of the other input. For

each pair of partitions that may produce join results, the operator creates a

result partition with the partition ID being the combination of the partition

IDs of the two input partitions.
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Chapter 15

Experimental Evaluation

15.1 System Implementation
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Figure 15.1: Herald-Aware Stream Engine.

Figure 15.1 shows the framework of our herald-aware stream process-

ing engine. The arrows in the figure represent the communications between

the corresponding components. When a query is registered into the stream
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engine, first, the static query optimizer is invoked to find the optimal or near-

optimal query execution plan without considering any heralds. Then the

execution plan is sent to the query execution engine to be executed. The run-

time query optimizer dynamically optimizes the query during execution. The

runtime optimizer includes both the statistics-based optimizer and the herald-

driven semantic query optimizer. The statistics-based optimizer adjusts the

query plan shape based on statistics about operator selectivities [57] gath-

ered by the statistics collector.

The herald-driven optimizer, which is the focus of this work, is composed

of two modules – optimization reasoner and operator configurator. Each time a

herald is received, the herald-driven optimizer is invoked. During each of its

runs, the reasoner is invoked to identify any newly applicable optimization

opportunities and figures out the (potentially multiple) SQO logical plans.

Then the operator configurator configures the control table of the correspond-

ing operators to realize the SQO logic plans.

The stream receiver feeds the data streams to the query execution engine,

and forwards the heralds to the metadata manager. The metadata manager

maintains both static constraints such as integrity constraints and runtime

heralds. It is consulted by the static and the runtime query optimizers.

15.2 Experimental Setup

We have implemented the techniques proposed in this work in our Java-

based continuous query system named CAPE [83]. We have conducted an

extensive experimental study to explore the effectiveness of herald-driven
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query optimization. The test machine has a 2.66GHz Intel(R) Pentium 4

processor and a 448MB RAM, running Windows XP and Java 1.6.1 01 SDK.

We have created a benchmark system to generate synthetic data streams by

controlling the data distributions and arrival rates.

The experiments to be presented in the following compare the query

execution time when using herald-aware optimization (called the herald ap-

proach) with herald-unaware techniques (called the regular approach). We

configure 1GB virtual memory for JVM. This is large enough to keep all

data structures, including operator control tables for the herald approach

and join states, in memory for all experiments presented here.

In our experiments, we vary the following parameters to evaluate the

performance of our herald-driven techniques in a wide range of circum-

stances.

1). Average partition size. This is defined to be the average number of

tuples in each herald partition. The partition size follows Uniform

distribution.

2). Operator selectivity. The selectivity of the select operator is defined

to be Nout

Nin
in which Nout and Nin denote the total number of output

and of input tuples respectively. The selectivity of the join operator

is Nout

N1∗N2
in which Nout, N1 and N2 denote the total number of output

tuples, of left input tuples and of right input tuples respectively.

3). Partition pass/drop rate. The partition pass (or drop) rate of the select

operator is defined to be
Ppass

Pin
(or

Pdrop

Pin
). Here Ppass (or Pdrop) denotes

the number of partitions that produce full (or no) select results. Pin
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denotes the number of partitions. The partition pass (or drop) rate

of the join operator is defined to be
Ppass

P1∗P2
(or

Pdrop

P1∗P2
). Ppass (or Pdrop)

denotes the number of partitions pairs that produce full (or no) join

results. P1 and P2 denote the number of partitions from the left input

and from the right input respectively.

In our experiments, we use the example query shown in Figure 13.1.

The query plan contains a select and a join operator. The select operator

takes one source stream as input and the join operator takes the output of

the select operator and another source stream as inputs, and outputs the

result for the query. Such a query plan is a common component of a large

number of real application query plans [64, 94].

We compare the total query execution time of using the herald and

the regular approach respectively. Each input stream contains 50 herald

partitions, with varying partition sizes. The regular approach is executed

against the same input streams, however, with heralds removed. There-

fore, the regular approach has no herald-related costs. The execution time

of using the herald approach includes the overhead of runtime optimiza-

tion and herald-aware execution.

15.3 Evaluating Join Optimizations

We first evaluate the join optimization strategies, i.e., query pause by join

and join simplification.

Varying partition drop rate. In the first experiment, we evaluate how

the join data skipping would affect the query execution time. We vary the
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partition drop rate to control the frequency of join data skipping. In the

result shown in Figure 15.2, the partition drop rate of the join ranges from 0

to 1 by 0.1. We set the average partition size to be 50 tuples, the selectivities

of the select and the join operators to be 0.2 and 0.1 respectively.
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Figure 15.2: Par. Size:50, σSelect=0.2, σJoin=0.1.

The result in Figure 15.2 shows that as the partition drop rate increases,

the execution time using the herald approach quickly decreases while no

significant change in execution time is observed when using the regular

approach. When the drop rate reaches 0.9, the herald approach has more

than 80% reduction on execution time compared to the regular approach.

This result is promising because with just a small partition size (i.e., 50

tuples) and low selectivity of the underlying select operator (i.e., when only

10% of its input data actually reaches the join), the herald approach already

achieves significant performance gains.

Varying partition sizes. Next, we investigate what role the average par-

tition size plays in affecting the performance gains by herald-driven SQO

by studing scenarios with different partition sizes, namely, 20, 50 (as done
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already above) and 100. We first set the average partition size to be 20

tuples. All the other configurations remain the same as in the previous

experiment. From the results shown in Figure 15.3, we can see that with

such a reduced partition size, the herald-driven approach has only 10% to

15% better performance than the regular approach when drop rate is lower

than 0.4 (recall this includes optimization overhead). However, when drop

rate becomes relatively high, the herald-driven approach again achieves

significant performance gains, for example, more than 50% reduction on

execution time when the drop rate is 0.9.
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Figure 15.3: Par. Size:20, σSelect=0.2, σJoin=0.1.

Second, we now set the average partition size to be higher, i.e., 100 tu-

ples. The result is shown in Figure 15.4. This time, we can see that the trend

is similar to the case when the average partition size is 50 tuples. However,

the gains at each point are significantly larger. This is because the amor-

tized optimization overhead is reduced by batching more data each time.

Varying operator selectivity. In the third set of experiments, we study

how the selectivity of the underlying operator affects the performance gains



15.3. EVALUATING JOIN OPTIMIZATIONS 161

0

1000

2000

3000

4000

5000

6000

7000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Partition Drop Rate - Join

T
ot

al
 E

xe
cu

tio
n 

T
im

e 
(m

ill
is

ec
on

ds
)

Herald Regular

Figure 15.4: Par. Size:100, σSelect=0.2, σJoin=0.1.

by herald-driven approach. The selectivity of the underlying operator,

which in our experiment is the select operator, determines the number of

tuples to be processed by the join operator. In the previous experiments,

the selectivity of the select operator is set to be 0.2. In this experiment, we

set the selectivity of the select operator to be 0.1 and 0.4 respectively. The

average partition size is 50 tuples and the join selectivity is 0.1. The results

are shown in Figures 15.5 and 15.6 respectively.
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Figure 15.5: Par. Size:50, σSelect=0.1, σJoin=0.1.
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Figure 15.6: Par. Size:50, σSelect=0.4, σJoin=0.1.

We can see that as the selectivity of the select operator increases, the

performance gains by the herald-driven SQO also increases. This is because

when the selectivity of the select operator increases, more data needs to

be processed by the join operator. Bigger performance gains can thus be

achieved by employing herald-driven optimization.

Performance impact by pass rate. Finally, we evaluate the performance

impact of the pass rate. We fix the average partition size to be 50 tuples, the

selectivities of the select and the join operators to be 0.2 and 0.1 respectively.

We then vary the partition pass rate from 0 to 1 by 0.1.

The result shown in Figure 15.7 shows that similar to the drop rate,

the herald approach has significantly increased performance gains as the

partition pass rate increases.
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Figure 15.7: Par. Size:50, σSelect=0.2, σJoin=0.1.

15.4 Evaluating Select Optimizations

Next, we evaluate the performance impact achievable by the select opti-

mizations. We now show the experimental results from varying the parti-

tion drop rate, i.e., to test the optimization of select data skipping.

We first set the average partition size to be 50 tuples, the selectivity

of the select operator and the join operator to be 0.1 and 0.1 respectively.

No performance gains can be observed by the herald approach. We then

increase the average partition size to be 100 tuples. Again, the curve of the

herald approach meets the curve of the regular approach at each point. We

further increase the average partition size to be 200 tuples, and also reduce

the selectivity of both the select and the join operators to be 0.01. This time

we observe a reduction in execution time by the herald approach, as shown

in Figure 15.8.

The reason for no significant performance gains by select data skipping

for relatively small partition sizes and moderate select and join selectivities



15.4. EVALUATING SELECT OPTIMIZATIONS 164

0

100

200

300

400

500

600

700

800

900

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Partition Drop Rate - Select

T
ot

al
 E

xe
cu

tio
n 

T
im

e 
(m

ill
is

ec
on

ds
)

Herald Regular

Figure 15.8: Par. Size:200, σSelect=0.01, σJoin=0.01.

is because in these cases, the cost of the join operations is dominant. Hence

the performance gains by eliminating some of the operations by the select

operator is shadowed by the dominating join operations.

Next, we proceed to measure the execution time of the select operator in

isolcation. This allows us to observe that the reduction in select execution

time by using the herald approach is proportional to the partition drop rate.

Also, the performance gains of the select operator by select elimination are

proportional to the partition pass rate.

Summary of observations. We observe significant performance gains

by using our herald-driven optimization techniques when partition drop/pass

rate is medium or high. Also, the performance gains by the herald ap-

proach increase as the partition drop/pass rates increase, as the selectivi-

ties of the underlying operators increase, and as the partition sizes increase.

In addition, all experiments include the optimization reasoning overhead

which is shown to be negligible.
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Chapter 16

Related Work

Using metadata to optimize queries has been extensively studied for tra-

ditional databases [31, 70], commonly called semantic query optimization

(SQO). Existing work focuses on employing schema knowledge and in-

tegrity constraints that are available at query compilation time to select the

most efficient query plan for execution. In these works, optimization is

conducted at query compilation time. The direct equivalent in the stream

contexts [16] is to employ the integrity constraints to optimize the memory

usage by purging operator states in a timely manner. Rather than integrity

constraints, we instead focus on metadata about attribute values. In most

stream applications, such metadata is largely unavailable during compila-

tion time. The new challenge that we thus must tackle is to conduct efficient

query optimization at runtime. In addition, since the metadata we consider

is interleaved with the actual data and has diversified lifespans, the opti-

mized query plans may have different yet overlapped application scopes.

Therefore, instead of using a single execution plan during the entire query
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execution, we must devise a scheme to support multiple concurrent SQO

plans, each employing differently tuned execution logic for different data

substreams.

Our herald metadata model (Section 11.1) extends from the punctuation

model [93]. Heralds can be practically obtained in many cases, e.g., by em-

ploying a stream buffer and a preprocessor, without relying on the applica-

tions to provide them. Existing work utilizing punctuations focuses on the

design of execution algorithms of query operators such as joins [40, 41] or

the compile-time detection of the “unsafe” queries that may need to main-

tain unbounded operator states [74]. [74] exploits punctuations to mark the

sliding window boundary to handle disorder. We instead focus on query

optimization at the query plan level and propose the configurable execu-

tion logic for the common SPJ operators.

As stream applications proliferate, much research has focused on run-

time query optimization. [13, 57, 104] exploit runtime statistics on operator

selectivities to adaptively reorder the operators in the query execution plan.

Unlike our work, at any point in the query execution, only a single logical

plan is set up for execution.

In the execution paradigm of Eddies [10, 38], individual tuples are adap-

tively routed through the operator network instead of using one or even

a few query paths determined at compilation time. This achieves fine-

grained query execution adaptation. Our work differs from Eddies in two

aspects. First, the adaptation of Eddies is selectivity driven while our adap-

tation is semantics driven. Second, we achieve adaptations by employing

embedded operator control logic while Eddies would instead require to im-
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plement three different (join) operators with three customized logics and

then the physical routing would end up actually mimicing the multiple

logical plans. Thus a tuple may need to be routed to three versions of a join

operator. In this sense, we achieve a more lightweight plan adaptation.

Similar to [18], we employ different plans for different data. In [18],

for different data, only the operator execution orders are different. This

follows the traditional idea of (syntactic) query optimization. In our work,

to process a particular batch of data, some operators may be skipped while

other operators may be executed in a more efficient way.
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Part III

Index Tuning for Parameterized

Streaming Groupby Queries
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Chapter 17

Introduction

17.1 Groupby Queries in Stream Applications

Groupby queries with aggregate functions are extensively used in data

stream applications to provide statistical summaries for monitoring and

real-time analysis.

Network monitoring applications run groupby queries over network

packet data to monitor network traffic or to measure network performance

[87, 103]. As an example, Query 1 in Figure 17.1 monitors the total traffic of

source-destination pairs in the past 20 minutes over link B.

Online transaction systems conduct groupby queries over transaction

records to provide real-time recommendations to users. Query 2 (Figure

17.1) in online auctions [87, 94] computes the number of bids placed in the

past 24 hours grouped by auction category, buyer’s state and occupation.

Real-time business intelligence (BI) applications [50] where data ar-

rives in a data warehouse or OLAP system via a trickle feed, continuously
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Query 1 (Network Traffic Monitoring)
SELECT srcIP, destIP, SUM(len)
FROM    Packets
WHERE  collectorID = ‘B’
GROUP BY srcIP, destIP
WINDOW 20 Minutes

Query 2 (Auction Recommendation)
SELECT categoryID, buyer_state, 

buyer_job, COUNT(*)
FROM    Bid_info
GROUP BY categoryID, buyer_state, 

buyer_job
WINDOW 24 Hours

Figure 17.1: Example Streaming Groupby Queries.

or every few minutes, also use groupby queries extensively.

Query 2.1 
SELECT categoryID, buyer_state, buyer_job, COUNT(*)
FROM    Bid_info
WHERE buyer_state = ‘MA’ and categoryID = electronic
GROUP BY categoryID, buyer_state, buyer_job
WINDOW 24 Hours

Query 2.2 
SELECT categoryID, buyer_state, buyer_job, COUNT(*)
FROM    Bid_info
WHERE buyer_state = ‘CA’ and categoryID = homegoods
GROUP BY categoryID, buyer_state, buyer_job
WINDOW 24 Hours

difference

Figure 17.2: Similar (Not Identical) Groupby Queries.

These applications often experience a large number of concurrent users

that desire the results of similar but not identical groupby queries [71]. For

example, a Massachusetts user that plans to buy TV may want to receive

recommendations based on Query 2.1 in Figure 17.2, while a California

user who wants to buy home goods may need recommendations based on

Query 2.2 in Figure 17.2. These two queries differ only in their WHERE

clauses. To execute large numbers of such similar but different queries sep-
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arately faces scalability and performance problems because the selection

operations cannot be shared and overlapping states may be maintained.

In addition, the user preferences are potentially changing with users’

current needs. A user may at one time require recommendations on home

goods because she is moving to a new house, but at another time needs

recommendations on toys because she is expecting a child. For large num-

bers of users, such changing needs may result in the frequent addition of

new queries and removal of existing queries, thus incurring significant and

repetitive query optimization costs.

It has been observed that in many applications including the ones men-

tioned above and the applications where users use resource-limited de-

vices, such as PDAs, users prefer to see the aggregate results on demand

rather than being continuously interrupted and overwhelmed by contin-

uous query result updates triggered by the arrival of every new tuple in

the input stream [9, 26]. For example, users may want to see the recom-

mendations based on queries in Figure 17.2 whenever they log into the

auction system or when they synchronize their PDA. Such on-demand out-

put model is resource-efficient, potentially saving significant CPU time on

continuously updating the aggregate results, and the bandwidth and server

load on transmitting those possibly never-accessed results. These resources

can instead be devoted to provide high-quality and quick responses upon

user requests.

Such on-demand query output model also provides a natural way to

specify diversified user-specific query parameters on a common groupby

query. In other words, a query template would enable users to conve-
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niently specify, for instance, the group selection when they request results.

17.2 Parameterized Streaming Groupby Query

It has been recognized that an abstraction in the form of a parameterized

query not only facilitates multi-query optimization but also fosters the op-

timized execution by maximal sharing of computations and operator state

[27]. In this spirit, we propose the notion of a Parameterized Streaming

Groupby Query (or PSGB query) that represents a potentially infinite num-

ber of (i.e., non-parameterized) groupby queries that are instantiated at

runtime by user requests. We design a PSGB operator to achieve the shared

execution of a large number of PSGB instantiations without having to an-

alyze them when they are instantiated by runtime user requests. In par-

ticular, by employing the PSGB operator, the memory for maintaining the

groupby state and the CPU time for organizing the groupby state to facil-

itate the construction and the retrieval of the groups can be shared among

all PSGB instantiations.

PSGB Query that incorporates Query 1 in Figure 1

SELECT srcIP, destIP, <agg-func-list>: SUM(len)
FROM    Packets
WHERE  collectorID = ‘B’ and <predicates-on-grouping-attr>
GROUP BY srcIP, destIP
WINDOW <window-length>: 60 Minutes

User Request:[srcIP=216.239.37.4; 20 Minutes]

Figure 17.3: Example PSGB Query and User Request.
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A PSGB query has a basic structure to be specified at query registration

time, and dynamic parameters to be specified at runtime by user requests.

Figure 17.3 shows an example PSGB query with dynamic aggregate func-

tions (SUM(len) by default), selection predicates and window lengths (60

minutes by default), and a user request specifying the additional selection

predicate srcIP=216.239.37.4, and a 20-minute suffix window that overrides

the default window length.

17.3 Issues with PSGB Query Processing

The PSGB operator differs from the regular groupby operator in that it

needs to additionally conduct the selection operation that picks up the user-

desired data based on dynamic selection predicates. In our targeted appli-

cations, large and quickly-evolving groupby states (caused by rapid data

arrivals), and high volumes of user requests with selective predicates con-

cerning diverse sets of attributes can be observed. Hence, to efficiently

perform the selection operation is essential to achieving good PSGB query

performance.

Since we focus on equality selections in PSGB instantiation, a hash-

based index appears to be a good fit for organizing the groupby state [58].

A traditional one-level hash index, be it on a single attribute or on multiple

attributes, are only appropriate in the special case when the hash keys form

a subset of the search keys, i.e., the attributes involved in selection predi-

cates. Otherwise a full scan of the groupby state is required. Hence it is not

flexible enough to support widely-varying dynamic selection predicates. A
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more powerful yet lightweight index method is needed.

In traditional databases, to expedite the aggregation, certain aggregate

results may be pre-computed and materialized [61, 66]. Prior work in

stream contexts [103] has studied how to share the aggregate results among

statically specified groupby queries differing only in their grouping at-

tributes. In our problem, due to the quickly-evolving groupby state, and

large diversity of selection predicates and aggregate functions potentially

involved in user requests, most aggregate results tend to be not used fre-

quently enough to justify the pre-computation. Even if they are chosen to

be pre-computed, an index is still needed to expedite the search over the

pre-computed results based on selection predicates.

In summary, an index mechanism that can effectively organize the quickly

evolving groupby state to support efficient lookup of the data based on dy-

namic selection predicates is a critical technology to be developed for PSGB

query processing. Moreover, to withstand the fluctuations in data and

query workloads, the groupby operator should be able to quickly observe

the changes at runtime and then tune the index accordingly. In streaming

data processing, the index solution must be amendable to enable efficient

on-line migration [104] from one index structure to another. To the best of

our knowledge, no existing work has focused on index design and tuning

for streaming groupby operators. In this work, we propose the first solu-

tion to this problem.
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17.4 Our Approach: Groupby Index Tuning

Our index tuning approach involves the interleaved execution of three

modules – index selection, index assessment and index migration. During query

execution, the index assessment module is periodically executed. In each

run, it first invokes the index selection module to derive the optimal or

near-optimal index configuration based on the up-to-date workload statis-

tics collected at runtime [34]. Then the cost of using the new configuration

is compared with the cost of using the current one, both based on the new

workload. If the new cost plus the potential migration cost is lower than the

current cost, the index migration module is invoked to migrate the groupby

state to the new index structure.

In this work, we focus on the problem of index selection, the first and

most critical step in index tuning. As observed by our experiments (Chap-

ter 22), the query performance may degrade significantly if an inappropri-

ate index strategy or an inefficient index configuration algorithm is used.

Our contributions of this work are:

1). We propose the PSGB query as an abstraction of a large number of

runtime instantiated queries. This formulation leads to efficient op-

timization of these groupby queries, i.e., a single PSGB operator can

be designed to achieve resource sharing among these queries without

having to analyze them individually as they are instantiated.

2). We employ a lightweight IMP index solution to management PSGB

state for supporting efficient data lookups required by PSGB instan-
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tiations with diversified selection conditions (Section 19.2). While ex-

isting work in streaming databases uses hash-based indices for effi-

cient state management, we show that our proposed solution beats

existing solutions by a 9-fold performance improvement (without us-

age of any additional memory space) for large window sizes.

3). Our key contribution lies in tackling index tuning in streaming con-

text. We design the EPrune index selection algorithm that is guar-

anteed to find the optimal IMP configuration. By properly pruning

candidates, the complexity of EPrune can be significant reduced com-

pared to exhaustive search, sometimes more than ten-fold (Section

20.3).

4). To meet the efficiency needs that are more important for online index

tuning than guaranteed optimality, we also design a time-efficient

greedy index selection algorithm named RGreedy and equip it with

three alternative search heuristics. RGreedy is shown to find the near-

optimal IMP configuration with observed polynomial complexity even

in large search spaces (Section 20.4).

5). Our experimental study conducted in the CAPE stream processing

system [83] shows that the IMP index always wins over the state-

of-the-art index methods. RGreedy with PCL and Hybrid heuristics

finds the optimal IMP configurations in all of our extensive test cases.

For large search spaces, when EPrune takes hours to finish, RGreedy

always terminates within seconds. Moreover, the PSGB operator with

runtime index tuning outperforms the operator with a fixed index
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configuration (Chapter 22).
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Chapter 18

Background

18.1 PSGB Query

In this work, we consider the processing of PSGB queries as shown in Fig-

ure 18.1. The dynamic parameters are underlined, while all other query

constructs are statically specified. The WINDOW clause specifies a suffix

window that ends at the current time [9]. It indicates the length of the data

history to be queried. If a user request doesn’t specify a window, the default

window which is the largest allowed window is assumed [9]. The predi-

cates in the WHERE clause are selection predicates. The dynamic selection

predicates are conjunctive equality conditions on the grouping attributes, i.e.,

they select the groups to be produced aggregate results. If the user request

doesn’t specify the grouping attributes, a default set of grouping attributes

will be used. Any user-specified grouping attributes must belong to the

default grouping attributes.

Consider the example PSGB Query in Figure 17.3. Suppose at time T
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SELECT <group-attr-list>, <agg-func-list>: default-agg-funcs
FROM <stream-name>
WHERE <static-preds> and <dynamic-preds>
GROUP BY <group-attr-list>: default-group-attr-list
WINDOW <window-length>: default-window-length

Figure 18.1: PSGB Query Specification.

during the execution, tuples in the current groupby state belong to three

groups: (1) (srcIP = 216.239.37.4, destIP = 216.239.2.3), (2) (srcIP = 216.239.37.4,

destIP = 216.239.5.8), and (3) (srcIP = 216.239.23.10, destIP = 216.239.6.1).

Assume a user request [ – ; srcIP = 216.239.37.4; – ] is received at time T

(– denotes that no values are specified). Since it specifies no condition on

destIP, the two aggregate results respectively on groups (1) and (2) will be

returned. That is, the above user request selects two aggregate results from

the complete result set of Query 1 (Figure 17.1) at time T that match the

dynamic predicates specified in the request.

The PSGB operator is used to handle 1) the dynamic selection predi-

cates to dynamically filter out the groups not of interest to the user, and

2) the groupby operations to produce the aggregate results for the selected

groups. Our goal is to propose the index design and index selection ap-

proach for the PSGB operator to minimize its processing costs for a given

query workload.
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18.2 Execution of PSGB Operator

The PSGB operator uses the following execution logic. It maintains a state

to hold all tuples residing in the current suffix window. There are two tasks

for the operator: 1) process input data tuples and 2) process user requests.

As a new tuple t is received, it is first inserted into the state. Then, if the

window is time-based, the timestamp of t is used to purge the tuples in the

state that have expired from the window (we assume the input tuples are

received in the order of their timestamps). If the window is count-based,

the oldest tuple in the state will be removed. As a user request is received,

the groupby state is probed and the aggregate results are produced based

on matching tuples. If the aggregate results had been pre-computed, those

pre-computed values would be retrieved and output. In the following, we

first assume the typical setting that no aggregate results are pre-computed.

Later (Section 21.2) we discuss how our proposed techniques can be nat-

urally generalized to support the scenario of pre-computed aggregate re-

sults.
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Chapter 19

Index Design for PSGB

Operator

19.1 Requirements on Index Design

As discussed in Section 17.3, traditional one-level hash index is not capable

of handling selections that involve varied or even disjoint sets of attributes.

On the other hand, to build multiple indexes over this shared state for dif-

ferent subsets of attributes also suffers from serious difficiencies. First, each

tuple would require multiple references, causing potentially high mem-

ory overhead. The groupby state should be maximally kept in memory

to achieve real-time query responses [12]. Thus memory is a highly pre-

cious resource. Also, the maintenance cost of multiple indexes regarding

streaming data would likely be considerable. Therefore, we need a new

index solution that carefully balances query processing with index mainte-
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nance costs, i.e., that meets the contradictory demands of being lightweight

(for index maintenance and evolution) yet efficient (for query processing).

The following design guidelines apply:

1). The index should benefit the processing of a large number of rather

diverse requests.

2). The index structure should require minimal maintenance effort when

processing data updates.

3). The index structure should be memory-efficient to be maximally main-

tained in main memory.

4). The index should be lightweight to be easily migratable when the

workload experiences significant changes.

19.2 IMP: Importance-Based Partition Index

In view of these requirements, we employ a multi-level prioritized hash

index as shown in Figure 19.1. We name it IMP index (for IMportance-based

Partition index).

The IMP index divides tuples in the groupby state into 2B partitions

and uses a B-bit string to represent the address of each partition. B is

derived from memory constraints on the index structure. Each attribute

Ai (1≤Ai≤N) is assigned bi contiguous bits such that 0≤bi≤B and
∑

i

bi=B.

Then Ai corresponds to 2bi partitions. Henceforth, we use the vector <

b1, b2, ..., bN > to represent the bits assigned to the N attributes A1, ... AN .
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A B C

dcba

hashA(a) = 7 = 00111
hashB(b) = 3 = 11
hashC(c) = 2 = 010
partition_addr = 0011111010= 250

dc*a

hashA(a) = 7 = 00111
hashB(b) = 00 ~ 11
hashC(c) = 2 = 010
partition_addr1 = 0011100010= 226
partition_addr2 = 0011101010= 234
partition_addr3 = 0011110010= 242
partition_addr4 =0011111010= 250

A tuple

A query

Partition 0 Partition 1023

…

Address Book

…
0

1023

Figure 19.1: IMP Index.

We name it the IMP configuration. The attributes corresponding to non-

zero bits are called indexed attributes.

A hash function is used to map the values of each indexed attribute into

a bit string of the desired length. For an input tuple, its values of all the in-

dexed attributes are used to compute the address of the single partition it

should be placed into. Within each partition, tuples are ordered chrono-

logically to facilitate the invalidation of tuples based on sliding window

semantics (i.e., tuples that have expired from the largest window should

be removed). For a user request, without any wildcards, i.e., all attributes

are specified, only a single partition needs to be probed to obtain all tuples

that match the query. If it contains one or more wildcards, while several

partitions need to be probed, it still tends to be a small subset of partitions

compared to a full scan. Figure 19.1 shows an example IMP configuration
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and the partition address computation for a tuple and a request respec-

tively. This request doesn’t specify attribute B. Since attribute B occupies 2

bits, 22=4 partitions need to be probed to answer the request.

19.3 Advantages of IMP Index

First, the IMP index is lightweight. It only stores the addresses to all par-

titions in a hash table. The partition addresses are computable with a very

simple formula. Hence it is memory-efficient and easy-to-maintain, espe-

cially compared to tree-structured indexes [58]. It is also easily-migrated,

with no need to rebuild any auxiliary structures.

Second, the IMP index simplifies the index selection process since it

unifies the two decisions on which attributes to index and then how to

index them into a single decision on how many address bits to give to each

attribute. If an attribute is assigned 0 bits, this attribute is not indexed.

The most important feature of the IMP index is that the address bit

allocation among the indexed attributes affects query performance non-

trivially. The more bits are assigned to an attribute, the smaller the number

of partitions to be probed to answer the requests that specify conditions

on this attribute. Therefore, intuitively we should assign more bits to fre-

quently queried attributes (i.e., important attributes) to reduce the overall

processing cost.

We use an example to illustrate how the IMP index configuration af-

fects the query performance. Assume a PSGB query with two attributes A

and B. Suppose 60% of the requests only specify a selection condition on
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attribute A and 40% of the requests only specify a selection condition on

attribute B. Assume we use a 10-bit partition address (210=1024 partitions

in total). Let’s compare two IMP configurations. The first configuration

assigns 6 bits to attribute A and 4 bits to B. Then we need to examine 16

partitions to answer the requests involving A and 64 partitions to answer

the requests involving B. On average 0.6 · 16+0.4 · 64=36 partitions need to

be examined to answer a single request. The second configuration assigns

4 bits to attribute A and 6 bits to B. On average 0.6·64+0.4·16=45 partitions

need to be checked to answer a single request. Since attribute A is queried

more frequently than B, assigning more bits to A achieves a smaller overall

probe cost.

19.4 IMP Index Cost Analysis

We use unit processing cost (UPC) [68] as the measurement of IMP config-

urations. UPC is defined to be the cost for processing the data tuples and

the user requests received within a time unit. Clearly the IMP configuration

with the minimum UPC for the given workload is the optimal index config-

uration. Henceforth, we use the terms processing cost and unit processing

cost interchangeably.

Equation 19.1 computes the UPC. It includes the tuple processing cost

CT and the request processing cost CR. CT includes the cost for hashing

the indexed attributes (Chash,T ), inserting tuples into the index (Cinsert) and

deleting tuples from the index (Cdelete). CR includes the cost for hashing the

indexed attributes specified in the requests (Chash,R), probing the resultant
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partitions (Cprobe) and generating aggregate results (Cagg).

C = Chash,T + Cinsert + Cdelete + Chash,R + Cprobe + Cagg (19.1)

Among these costs, Cinsert, Cdelete and Cagg are independent of the IMP

configuration. Hence the index selection should only consider the IMP-

relevant cost (denoted as CV ). CV is the sum of Chash,T , Chash,R and Cprobe,

as computed by Equation 19.2 using the notations defined in Table 19.1.

Notation Meaning

rk a user request

pi a selection pattern

λd # of tuples received within a time unit

λr # of user requests received within a time unit

Ch average cost for computing a hash function

Cc average cost for conducting a value comparison

NA # of indexed attributes

NA,rk
# of indexed attributes specified in request rk

Wrk
window length (in # of time units) of request rk

Brk
# of bits assigned to all attr. specified in request rk

NA,pi
# of indexed attributes specified in pattern pi

Wpi
window length of pattern pi

Bpi
# of bits assigned to all attr. specified in pattern pi

Fpi
frequency of pi

Table 19.1: Notations.

CV = Chash,T + Chash,R + Cprobe

= λdNACh + λr

∑

rk∈R

(NA,rk
Ch +

λdWrk

2Brk

Cc) (19.2)

For an incoming tuple t, NA hash operations need to be conducted to
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find the exact partition to insert t. Hence Chash,T equals λdNACh. For a

user request rk, its associated hash cost depends on the number of indexed

attributes specified in rk. As rk ranges over R, the set of all user requests

that arrived within a time unit, Chash,R equals λr

∑

rk∈R

NA,rk
Ch. The prob-

ing cost associated with rk equals the total number of partitions probed,

2B−Brk , times the average number of tuples to be probed in each partition,

λdWrk

2B , and then times the value comparison cost Cc. As rk ranges over

R, Cprobe equals λr

∑

rk∈R

λdWrk

2
Brk

Cc. Since in our targeted applications, the

streaming data arrival rate (λd) and the request window length (Wrk
) are

both usually high, then
∑

rk∈R

NA,rk
Ch <<

∑

rk∈R

λdWrk

2
Brk

Cc. Hence CV can be

approximated by Equation 19.3.

CV ≈ λdNACh + λr

∑

rk∈R

λdWrk

2Brk

Cc (19.3)

19.5 Selection Pattern

We can see that the parameters that affect the processing cost and vary be-

tween different workloads are λd, λr and Wrk
. Also, which attributes are

frequently queried by user requests instead of what particular values are

specified for these attributes is relevant to the processing cost. We thus

define the concept of selection pattern as an abstraction of all dynamic selec-

tion predicates (or DSP) that involve the same set of attributes. For ease of

presentation, we assume an order for all attributes in the stream schema.

In a selection pattern, the attributes involved in DSP are denoted by their

respective names. They are also called specified attributes. Any attribute not
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involved in DSP is represented by a wildcard ∗. Consider the PSGB query

in Figure 17.3 and two user requests with DSP being “srcIP = 216.239.37.4”

and “srcIP = 207.46.250.19” respectively. Both DSPs match selection pat-

tern <srcIP, ∗>. Given N attributes, they are in total 2N distinct selection

patterns. P denotes the set of all possible selection patterns.

For cost analysis purposes, we define the frequency and the window length

of selection patterns.

Definition 8 The frequency of a selection pattern pi in a workload D, de-

noted as Fpi
, equals L

|R| , with L being the number of user requests in D with

selection pattern pi and |R| being the total number of user requests in D.

Definition 9 The window length of a selection pattern pi in a workload D,

denoted as Wpi
equals

∑

Wrk

|Rpi
| , with rk ranging over all requests in D and |Rpi

|

being total number of user requests with selection pattern pi.

Based on these definitions, we derive that
∑

rk∈R

Wrk
=
∑

pi∈P

Wri
Fpi

, and

Brk
= Bpi

if the user request rk’s selection predicate matches pattern pi.

Given statistics on selection pattern frequencis and window lengths in a

workload D, CV can instead be approximated by Equation 19.4.

CV ≈ λdNACh + λr

∑

pi∈P

λdWpi
Fpi

2Bpi

Cc (19.4)
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Chapter 20

Index Selection Algorithms

20.1 Index Selection Algorithms

20.2 Index Selection Problem Definition

The appropriate configuration of the IMP index is the key to achieving

good PSGB processing performance. We hence define our index selection

problem in Definition 10.

Definition 10 Given a query with N attributes Ai (1≤i≤N) and B address bits

(i.e., 2B partitions) assumed by memory constraints, the Index Selection Prob-

lem is to find an IMP configuration that minimizes the cost for processing the

given groupby workload with the following parameters (all are average values):

• data arrival rate λd;

• request arrival rate λr;

• selection pattern frequencies Fpi
(1 ≤ i ≤ 2N );
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• selection pattern window length Wpi
(1 ≤ i ≤ 2N ).

According to Equation 19.4, for each selection pattern pi, Fpi
and Wpi

to-

gether affect the IMP index cost. For simplicity, thereafter we assume Wpi

is a constant for all pi, i.e., all PSGB instantiations use the default window.

Also we assume the grouping attributes are fixed in the PSGB query. If the

aggregate results are not pre-computed, CV is not affected by grouping at-

tributes in PSGB instantiations. The extensions for handling pre-computed

aggregate results are discussed in Section 21.2.

Search space. Given N attributes and B address bits, any IMP con-

figuration that has ≤Min(N, B) attributes to share B bits is a potential in-

dex solution. To index k (1≤k≤Min(N, B)) attributes, the total number of

distinct IMP configurations equals the total number of ways to place (k-1)

marks among (B-1) positions to divide a B-bit string into N pieces, which

is









B − 1

k − 1









. There are









N

k









ways to select k attributes out of N at-

tributes. Hence the search space can be computed by Equation 20.1. As N

and B grow, the search space will grow exponentially. For example, when

B=16 and N=4, there are in total 969 candidates. However, as N approaches

to 10, the search space contains 2,042,975 candidates.

SearchSpace(N,B) =

Min(N,B)
∑

k=1









N

k

















B − 1

k − 1









(20.1)

Next, we propose two index selection algorithms that are suitable for

different index selection and tuning scenarios.
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20.3 EPrune: Pruned Exhaustive Search

The EPrune algorithm is guaranteed to find the optimal IMP configuration

by conducting a cost-based search. The algorithm is composed of two tasks:

(1) candidate construction that constructs candidate IMP configurations, and

(2) cost evaluation that evaluates the given candidates and returns the one

with the minimum processing cost. To be memory-efficient, the algorithm

iteratively generates each IMP configuration and directly feeds it to the cost

evaluation module, i.e., in a pipelined fashion. In other words, these two

tasks are interleaved.

We construct all possible IMP configurations by progressively including

more attributes. Figure 20.1(a) depicts the process. The y axis represents the

attributes included and the x axis represents the number of bits assigned to

the respective attribute sets. Entry (i, j) contains all possible IMP config-

urations < b1, b2, ..., bN > satisfying the following conditions: 1) 0≤bk≤B

for 1≤k≤j; 2) bm=0 for j<m≤N; and 3)
j
∑

z=1
bi=i. Therefore, all IMP config-

urations over attribute set <A1, A2, ..., AN> using B bits can be found at

entries (B, k) with 1≤k≤N. Candidates in these entries achieve the finest

partition by using all B bits. This is a prerequisite to achieving minimum

processing cost under the B-bit constraint. Hence, only these candidates

will be evaluated by the cost evaluation module.

The arrow in the figure indicates the order in which these candidates

are generated. To construct candidates for (B, j) (0<j≤N), all candidates of

(p, j-1) (0≤p≤B-1) are iterated over and bj in each of them is set to be (B–p),

as shown by the shaded blocks in Figure 20.1(a).
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Figure 20.1: Algorithm Search Spaces.

The cost evaluation module evaluates the processing cost for each con-

structed IMP configuration using Equation 19.4 and keeps the optimal IMP

configuration found thus far.

Pruning strategy. If an attribute is queried infrequently enough so that

the overhead for indexing it exceeds the gained probe cost reduction, this

attribute will not be included into the index. An extreme case is that an at-

tribute never appears in the selection predicate of any user request. If those

attributes can be detected and pruned before the search starts, the search

space may be significantly shrunk. We achieve this goal by employing a

benefit function.

By indexing an attribute A, the maximum probe cost reduction is λr

∑

pi∈PA

λdWpi
Fpi

(1−

1
2N )Cc (assuming A is assigned N bits). PA represents the set of patterns in

which A is specified. The increased hash cost is (
∑

pi∈PA

Fpi
λr+λd)Ch. Hence

the maximum benefit of A, denoted as MB(A), can be computed by Equa-

tion 20.2. The attributes with negative MB values can be pruned.
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MB(A) = λr

∑

pi∈PA

λdWpi
Fpi

(1−
1

2N
)Cc −

∑

pi∈PA

(Fpi
λr + λd)Ch (20.2)

Theorem 3 The IMP configuration output by the EPrune algorithm achieves

minimum UPC (i.e., optimal).

Proof. The MB funtion estimates the maximum pure gains from index-

ing an attribute. If the MB value of an attribute is negative, it can not be

beneficial to index this attribute. Hence the pruning won’t prune any at-

tribute that will eventually be indexed by the optimal IMP configuration.

Since EPrune conducts exhausive search after pruning, it is guaranteed to

find the optimal IMP configuration.

The pseudo code of EPrune is shown in Algorithm 9.

Algorithm 9 EPrune Algorithm
Input: Attribute set SA, integer B, request pattern set SR

Output: An IMP configuration with minimum cost

optimal config := < 0, ..., 0 >; /* no attr. is indexed. */
optimal cost := Cost(optimal config, SR);
SA.Remove NonBeneficial Attr();
Initialize candidate construction module cc by SA and B;
while cc.Has More Configs() do

new config := cc.Get Next Config();
new cost := Cost(new config, SR);
if new cost < optimal cost then

optimal config := new config;
optimal cost := new cost;

end if
end while
Return optimal config;

Complexity. In this work, we define the complexity of an index se-

lection algorithm to be the total number of IMP candidates examined by
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the algorithm. By employing the pruning strategy, with M attributes being

pruned, the complexity of EPrune can be computed by Equation 20.3.

Min(N−M,B)
∑

k=1









N −M

k

















B − 1

k − 1









. (20.3)

The pruning can lead to huge search savings. For example, when B=16

and N=10, the complexity of EPrune is 2,042,975. Suppose M=2, the com-

plexity is reduced to 245,157, by a factor of 10.

For a fixed B value (e.g., assume B=16), when Nr=N-M is small, the

optimal IMP configuration can be quickly found by EPrune. However,

as the value of Nr increases, the complexity increases precipitously. Then

EPrune may take hours or even days to finish. In streaming environments,

data/request statistics may often experience unpredictable changes. There-

fore, it is not practical to spend major time to search for an optimal in-

dex configuration that may become sub-optimal shortly after. Rather time-

efficient algorithms are needed to quickly find a near-optimal configuration

even in large search spaces, as introduced next.

20.4 RGreedy: Greedy Algorithm

It is clearly acceptable to trade the optimality for timeliness in many stream

applications for which real-time answers are critical. We thus design RGreedy,

a heuristic-based greedy algorithm, that doesn’t guarantee the optimality

but is shown to be useful for a huge variety of practical cases.

The basic idea of RGreedy is to first rank each attribute by the benefit
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that may be obtained from indexing that attribute (i.e., the importance of the

attribute). Then the algorithm progressively considers the attribute with

the next highest ranking for inclusion into the index. At each step, RGreedy

constructs the new IMP candidates, assuming all attributes considered at

this step are being indexed. If the best IMP configuration among these

new candidates achieves less cost than the best IMP configuration derived

from all previous steps, the algorithm continues. Otherwise, the algorithm

terminates and the IMP configuration found to be best thus far is returned.

The intuition is that if it is not beneficial to index an attribute, to index a

less important attribute is unlikely to achieve cost savings. Algorithm 10

shows the pseudo code of RGreedy.

Algorithm 10 RGreedy Algorithm
Input: Attribute set SA, integer B, request pattern set SR,
heuristic H
Output: An IMP configuration with enumerated minimum cost

optimal config := <0, ..., 0>;
optimal cost := Cost(optimal config, SR);
LA := Rank(H, SA); SI := ∅;
while LA.Has More Attr() do

SI := SI + LA.Get Next Attr();
SC := Generate Candidates Greedy(SI , B);
while SC .Has More Configs() do

new config := SC .Get Next Config();
new cost := Cost(new config, SR);
if new cost < optimal cost then

optimal config := new config; optimal cost := new cost;
else

Return optimal config;
end if

end while
end while
Return optimal config;

Complexity. The RGreedy algorithm progressively considers attributes.

It only searches through the IMP configurations in which all considered at-
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tributes are indexed. Hence RGreedy has a significantly lower complexity

than EPrune, as shown in Figure 20.1(b). Equation 20.4 shows the worst

case complexity of RGreedy, with M denoting the number of attributes

being pruned by the pruning strategy proposed for EPrune. This is ex-

ponential only when (N-M) is significantly smaller than B. In addition,

since RGreedy stops whenever no further cost reduction can be achieved

by considering one more attribute, we find that in practice the complex-

ity of RGreedy is usually much lower than the worst case complexity (see

Section 22.3).

WorstCase Complexity(RGreedy) =

Min(N−M,B)
∑

i=1









B − 1

i− 1









(20.4)

Measuring attribute importance. The effectiveness of the RGreedy al-

gorithm clearly relies on the order in which the attributes are being con-

sidered. Such order is determined by a function for ranking the attribute

importance. This order determines how fast the algorithm terminates. Fur-

ther, since the hash cost increases with more attributes being included into

the index, an ill-designed importance measure may cause the algorithm to

stop before the important attributes are being considered. Therefore, the

order can affect the quality of the configuration found by the algorithm.

We have designed several ranking heuristics to estimate the attribute im-

portance. Below we introduce two single-criterion heuristics and a hybrid

heuristic.
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20.4.1 Occurrence Weight Leading Heuristic

Our first heuristic ranks the importance of each attribute by its occurrence

weight, as defined in Definition 11. Hence it is named the occurrence weight

leading (OWL) heuristic.

Definition 11 The occurrence weight of a selection pattern pi, denoted as

OW(pi), is defined to be Wpi
Fpi

in which Wpi
and Fpi

represent the window length

and the frequency of pi respectively. The occurrence weight of an attribute A,

denoted as OW(A), is defined to be the sum of the occurrence weights of all selection

patterns in which A is specified.

According to Equation 19.4 (Section 19.4), if we assign relatively more

bits, i.e., large Bpi
values, to the selection patterns with large Wpi

Fpi
val-

ues, the usually dominating probe cost will be reduced. Hence, to index

attributes with high occurrence weights is likely more beneficial.

Since the probe cost is usually the dominating cost, in all examples we

show henceforth we only compare the probe costs of candidate IMP config-

urations. We use the average number of partitions to be probed for process-

ing a single request as the indicator of the probe cost of each IMP configu-

ration. For ease of exposition, we assume all user requests use the default

window length W .

Example 1. Consider the request statistics in Table 20.1. The occurrence

weights of attributes A, B and C are 0.5W, 0.4W and 0.2W respectively. As

shown in Table 20.2, attribute A is considered in the first iteration since it

has the highest occurrence weight. A single IMP configuration is available.

In the second iteration, attribute B is included. Considering both A and B,
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three configurations are produced and <3,1,0> has the lowest probe cost.

In the third iteration, attribute C is included. Again, three candidates arise

and <2,1,1> is the best. Now that all the three attributes have been consid-

ered, the algorithm stops and returns configuration <2,1,1>. It corresponds

to the optimal configuration found by the EPrune algorithm. While EPrune

needs to examine 15 candidates, the RGreedy with OWL finds the optimal

configuration by only checking 7 candidates,

Selection Pattern Frequency Occurrence Weight

<A, ∗, ∗> 0.4 0.4W

<A, B, ∗> 0.1 0.1W

<∗, B, ∗> 0.3 0.3W

<∗, ∗, C> 0.2 0.2W

Table 20.1: Example 1 – Request Statistics.

Step Next Attr. IMP Config. Probe Cost

1 A <4,0,0> 8.5

2 B <1,3,0> 7.1

<2,2,0> 6.14

<3,1,0> 6.5

3 C <1,1,2> 6.8

<1,2,1> 6.2

<2,1,1> 5.8

Table 20.2: Example 1 – OWL Execution.

However, OWL may miss the optimal configuration in some special

situations when some frequently queried attributes such as Aj always co-

occur with other frequent attributes say Ai in the user requests. In this case,

if Ai has been included into the index, to additionally include Aj won’t ben-

efit more queries, while instead raising the hash cost. Then the algorithm

would terminate before considering other attributes that in this case could
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possibly be more beneficial. We call this the frequent correlation effect. Below

we construct such a worst case example.

Example 2. Consider the statistics in Table 20.3. Attribute A has the

highest occurrence weight. So it is included first and the only configura-

tion is <4,0,0>. Then B is considered and the optimal configuration for

including A and B is <2,2,0>. Since B completely correlates with A in user

requests, including it will cause A to be assigned less bits than before. As

a consequence, the processing of requests with pattern <A, ∗, ∗> will now

need to probe more partitions. The probe cost for other requests remains

unchanged. Moreover, the hash cost becomes higher by indexing more at-

tributes. Hence the algorithm will stop and return <4,0,0>. The optimal

configuration <3,0,1> is missed.

Request Pattern Frequency Occurrence Weight

<A, ∗, ∗> 0.3 0.3W

<A, B, ∗> 0.4 0.4W

<∗, ∗, C> 0.3 0.3W

Table 20.3: Example 2 – Request Statistics.

20.4.2 Pattern Coverage Leading Heuristic

In view of the above shortcoming of the OWL heuristic, we propose an-

other heuristic, namely pattern coverage leading (PCL), that instead considers

the pattern coverage of the attributes, as defined in Definition 12. The in-

tuition is that the index is likely to be beneficial by indexing the attributes

that together cover a majority of requests.

Definition 12 A selection pattern p is said to be covered by an index if at least
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one attribute specified in p is included in the index. The remaining pattern

coverage of an attribute A, denoted as RPC(A), is defined to be the sum of the

occurrence weighs of all patterns that are not covered by the index and specify a

non-wildcard value on A.

While the attribute occurrence weights are static, the remaining pattern

coverage of an attribute must be recomputed as additional attributes are

included into the index.

Table 20.4 shows the execution of the RGreedy algorithm using PCL

given the statistics in Example 2. We see that while OWL missed the opti-

mal configuration, PCL finds it.

Step RPC Next IMP Config. Probe

Attr. Cost

1 A: 0.7W, B: 0.4W, C: 0.3W A <4,0,0> 5.5

2 C: 0.3W, B: 0 C <1,0,3> 6.2

<2,0,2> 4

<3,0,1> 3.8

Table 20.4: Example 2 – PCL Execution.

The PCL heuristic works well for the cases when frequently queried at-

tributes are completely correlated with each other. Hence it overcomes the

shortcomings of OWL. However, it still does not guarantee to always find

the optimal IMP configuration. It fails when a frequent attribute correlates

with both frequent and infrequent attributes and is shadowed by the infre-

quent attributes in terms of pattern coverage. Example 3 below illustrates

this scenario.

Example 3. Consider the statistics in Table 20.5. Attribute B is a frequent

attribute. It co-occurs with both A (frequent) and C (infrequent). During
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the search, after A is included, RPC(B) is reduced from 0.65W to 0.25W so

it becomes less than RPC(C), which is 0.3W. Therefore, C will be consid-

ered next with best configuration <3,0,1>. After C is included, RPC(B) is

reduced to zero. Then B is never considered by the algorithm. However,

the optimal configuration is <2,2,0> since including B instead of C actu-

ally benefits more queries. Interestingly, OWL is able to find this optimal

configuration that PCL missed.

Request Pattern Frequency

<A, ∗, ∗> 0.3

<A, B, ∗> 0.4

<∗, B, C> 0.25

<∗, ∗, C> 0.05

Table 20.5: Example 3 – Request Statistics

20.4.3 Hybrid Heuristic

It can be seen that the OWL and the PCL heuristics complement each other.

We hence propose a heuristic that combines them, named Hybrid heuristic.

The basic idea is to run the greedy search once using the OWL heuristic

and then using the PCL heuristic. After that we compare the final configu-

rations suggested by these two runs. The one with the smaller cost will be

selected as final decision. By applying the Hybrid heuristic, we are able to

find the optimal configurations for Examples 2 and 3, while either OWL or

PCL will miss one of them respectively.

Optimization by reusing cost computations. If we blindly run the al-

gorithm with OWL once and PCL once and then compare their results, we
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may repeat many computations. First, the two heuristics always consider

the same attribute in the first iteration because in this iteration the OW

value of each attribute equals its RPC value. In later iterations, the two

heuristics may also consider the same sets of attributes. Example 1 is an

extreme example here since both OWL and PCL would consider the three

attributes in the same order. Hence running one of them would be enough.

To reuse computations for applying the Hybrid heuristic, we first check

the attribute consideration orders of OWL and PCL. If the two orders are

same, we only run RGreedy with OWL. Otherwise, we first run RGreedy

with OWL and keep the optimal IMP configuration for each iteration with

its cost into a hash table. The hash key is the ID of the attribute set. Then

we run RGreedy with PCL. In this run, in each iteration, we first check the

hash table to see whether the given attribute set has been considered in the

first run. If yes, we skip the evaluation and use the result directly.

Analysis. Without reusing computations, the complexity of using the

Hybrid heuristic equals (Complexity(OWL) + Complexity(PCL) - 1). By

reusing computations, it becomes the worst case complexity only when the

two heuristics consider totally different sets of attributes. In the best case

when OWL and PCL consider the attributes in the same order, the three

heuristics have the same complexity.
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Chapter 21

Generalizations

21.1 Dealing With Narrow Attribute Domains

The EPrune and RGreedy algorithms implicitly assumed that the number

of distinct values of any indexed attribute Ak is at least equal to 2bk with

bk being the number of bits assigned to Ak. However, this is not always

the case. For example, the gender attribute only corresponds to two val-

ues, male and female. Hence it should be assigned at most one bit. If the

gender attribute is queried very often, it may be assigned more than one

bit by the algorithms described so far. This may lead to non-optimal index

configurations [6]. Below is such an example.

Example 5. Consider Example 1 in Section 20.4.1 again. The optimal

configuration found when assuming no partition limits is <2, 1, 1>. Now

suppose the domain of attribute A only corresponds to two values. Then

one address bit will never be used. Tuples in the state only occupy 8 instead

of 16 partitions. The average number of tuples being probed for processing
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a single request becomes c1 = 3.8 · λdW
8 = 0.475λdW . If the algorithm takes

the narrow attribute domain into consideration, the optimal configuration

then becomes <1, 2, 1> with cost c2 = 6.2 · λdW
16 = 0.388λdW . Given that

the groupby state usually contains large numbers of tuples (i.e., a large

λdW value), c2 should be significantly lower than c1 most of the time.

To solve this problem, we set the upper limit on the number of bits as-

signed to each attribute Ai (1≤i≤N) to be bmax
i = xlog2DViy. DVi denotes

the number of distinct values of Ai. We revise EPrune and RGreedy algo-

rithms to construct the IMP candidates subject to these limits. According to

Theorem 4, the optimality of the EPrune algorithm is still guaranteed. The

proof of this theorem is straightforward.

Theorem 4 Given N attributes A1, ... AN , B address bits and statistics on DVi

for Ai (1≤i≤N), the IMP configuration output by the revised EPrune algorithm

has the lowest UPC among all possible IMP configurations.

21.2 Supporting Pre-computed Aggregates

The algorithms described so far assume that no aggregate results are pre-

computed, which is a common setting as discussed in Section 17.3. How-

ever, in the special situation that the request arrival rate is significantly

higher than the data arrival rate and most requests are not selective, it may

be worthwhile to pre-compute some aggregate results. Similar to the aggre-

gate processing in prior works [66, 103], decisions on whether and what to

pre-compute are based on the cost-benefit analysis. While the above is an

orthogonal issue, once the pre-computation decision has been made, our
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approach can easily be extended to incorporate this option, as discussed

below. The implementation and evaluation of this extension remains our

future work.

Given N possible grouping attributes, the grouping attributes speci-

fied in PSGB instantiations could be any of the 2N attribute combinations.

Therefore, similar to the Cube queries [66], aggregate results for differ-

ent subsets of grouping attributes in the PSGB query and different aggre-

gate functions may need to be pre-computed and maintained. We use a

PSGB sub-state to maintain the aggregate results for each distinct groupby-

aggregate setting chosen for materialization and then construct the IMP

index over each sub-state.

Therefore, we apply a two-step decision making based on the data/query

statistics (Section 20.2). First, we decide what aggregate results to pre-

compute and how many PSGB sub-states to maintain. For this, we apply

the work in [66] and use our cost model extended to also include the ag-

gregate maintenance cost for streaming data. Second, we select the IMP

configuration for each PSGB sub-state. To achieve this, the probe cost com-

putation should be changed. Each entry in hash partitions now represents

the aggregate result for a particular group (more advanced data structures

may be used for each entry, such as the techniques in [9]) instead of a reg-

ular data tuple. The search within each partition would stop once the

matching entry is found so the average search cost per partition now is

half number of the entries in the partition. Using this revised cost model,

the proposed index selection algorithms remain applicable with no further

modifications.
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Chapter 22

Experimental Evaluation

22.1 Experimental Setup

We have implemented the PSGB operator with index tuning in the CAPE

system [83]. We conduct an extensive experimental study to explore the ef-

fectiveness of the index selection and tuning. The test machine has a 3GHz

Intel(R) Pentium-IV processor and a 1GB RAM, running Windows XP and

Java 1.5.0 06 SDK.

In the experimental study, we focus on exploring the answers to three

questions: 1) Is IMP index a suitable solution for organizing the PSGB op-

erator state? 2) Is RGreedy an effective index selection algorithm regarding

both efficiency and quality? 3) How does the index tuning affect the query

performance when the query or data workload changes?

Workload. To extensively test our approach regarding the above ques-

tions, we have created a large variety of streaming data and PSGB request

workloads by varying key factors. We generate two types of request work-
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loads: 1) random request workloads in which the frequencies of selection pat-

terns conform to either normal distribution or Zipf distribution, and 2) ex-

treme request workloads in which the frequencies of selection patterns are

specially designed for four extreme cases, namely, Uniform, Asc, Desc and

Exclusive. In the Uniform workload, all possible request patterns have the

same occurrence weight ( 1
2N ). N represents the total number of attributes.

In the Asc workload, the requests that specify only the first attribute oc-

cupy 50% of requests. The other request patterns all have same occurrence

weight ( 1
2×2N ). The Desc workload is the opposite to the Asc workload,

i.e., the requests that specify only the last attribute occupy 50% of requests.

The Asc and the Desc workloads will affect the performance of EPrune be-

cause EPrune considers the attributes in a fixed order, regardless of request

statistics. In the Exclusive workload, each request specifies only one at-

tribute and all involved request patterns have same occurrence weight ( 1
N

).

We also create the workload according to the examples used in this work

(Section 20.1).

The occurrence weight of selection patterns, i.e., Fpi
Wpi

, can be viewed

as a single factor in the IMP index cost model. Without loss of generality, in

all experiments, we assume a default window length for all requests in each

request workload D. We vary only the selection pattern frequencies within

the workload. The default window lengths are varied across different work-

loads. We also vary the number of address bits, the number of attributes

and the ratio of data arrival rate to request arrival rate. All factors and their

values used in our experiments are listed in Table 22.1.
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Factor Values

B (# of address bits) 16

N (# of attributes) 3, 8, 10
λd

λr
0.01, 0.1, 1, 10, 100

Default Window Length (# of tuples) 100000, 200000, 1000000

Normal Distribution Variance 2, 4, 8, 16, 32, 64, 128

Zipf Skew Factor (α) 0.7, 0,8, 0.9, 1.0, 1.1

Table 22.1: Experiment Setup - Factor/Value Used.

22.2 Comparing Alternating Index Methods

The first set of experiments explores whether the IMP index is the most

efficient solution for organizing the PSGB operator state compared to the

index methods employed by the existing work on streaming data process-

ing [56]. We run the groupby operator using three different hash index

approaches – IMP index, 1-Attr-Hash index with hash function h1(attr) in

which attr is the attribute with the highest occurrence weight, and M-Attr-

Hash index with hash function hM (attr1, ..., attrm) in which attr1, ..., attrm

are the attributes occurring in the most frequent request pattern. We test

the groupby operator using all workloads created according to Table 22.1.

In these experiments, the operator using the optimal IMP index always

achieves the equivalent or in more than 80% of the cases significantly bet-

ter performance than the other two approaches.

We now show the results of one such experiment for λd

λq
= 1 and B=16.

We emphasize the ratio because we conduct the stress test (corresponding

to the CPU-limit mode in [100]) such that the PSGB operator is never idle.

For tuples, the values of each attribute conform to a uniform distribution

with 2048 distinct values. We conduct 6 runs, each over a workload con-
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Figure 22.1: Comparing Proposed IMP Index With Traditional Hash Index
Solutions.

taining 200,000 tuples and 200,000 requests. i.e., each tuple followed by a

request in time. In these runs, we use 3 different request statistics that are

respectively specified in Examples 1 (Table 20.1), 2 (Table 20.3) and 3 (Table

20.5) in Section 20.4. Table 22.2 summarizes the experimental parameters.

We record the total execution time of the groupby operator in each of these

runs (Figure 22.1).

Run # Request Load Window Size (# Tuples)

1 Example 1 100,000

2 Example 1 200,000

3 Example 2 100,000

4 Example 2 200,000

5 Example 3 100,000

6 Example 3 200,000

Table 22.2: Parameters for Experiment 1.

We can see from Figure 22.1 that in all these runs, the groupby with the
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IMP index speeds up the query processing by at least 50%, in some cases

even more than 90% compared to using existing index methods. The gains

increase with the window size. As expected, as the groupby state becomes

larger, by properly balancing the partition factors among all attributes, the

IMP index tends to gain more probing cost savings compared to the other

two approaches.

22.3 Comparing Index Selection Algorithms

The second set of experiments compares our proposed index selection al-

gorithms regarding how fast each algorithm terminates (i.e., efficiency) and

how close each of their decisions approaches the optimal configuration (i.e.,

optimality).

We run the four algorithms – EPrune, RGreedy with OWL, PCL and Hy-

brid heuristics respectively over all workload cases generated according to

Table 22.1. We can observe that first, the execution times of both EPrune

and RGreedy increase with query window length and normal distribution

variance, and decrease with Zipf skew factor. This is because more skewed

selection pattern frequencies provide more opportunities for pruning at-

tributes. For the same selection pattern statistics, the larger window creates

the need for indexing more attributes. Second, for large window lengths,

e.g., with 1,000,000 tuples, and high N values (e.g., N=10), if no attributes

can be pruned, EPrune takes hours to finish. However, RGreedy always fin-

ishes within minutes, and most of the time within seconds. Third, RGreedy

with each of the three heuristics finds the optimal IMP configuration for all



22.3. COMPARING INDEX SELECTION ALGORITHMS 211

the extreme workloads. This is because the extreme cases fit their logic

perfectly. For the random workloads, while RGreedy with PCL and hence

Hybrid heuristics finds the optimal IMP configuration for all the test cases,

RGreedy with OWL misses about 50% of them. This is due to the frequent

correlation effect discussed in Section 20.4.1. Hence PCL appears to be a

very effective heuristic. Also, in more than 50% of the test cases, by reusing

computations, RGreedy employing Hybrid heuristic has moderate and in

many cases even trivial extra search overhead compared to using either of

the other two heuristics. This indicates that RGreedy with Hybrid heuris-

tic should be the suggested algorithm for large search spaces since Hybrid

heuristic combines the advantages of OWL and PCL.

Normal Dist. Execution Time Normal Dist. Execution Time

Variance (seconds) Variance (seconds)

2 2.6×102 32 3.67×103

4 5.3×102 64 7.0×103

8 9.8×102 128 1.3×104

16 1.9×103 256 1.3×104

Table 22.3: EPrune Complexity - Random WorkLoad.

We now show the result of one experiment in which the PSGB query has

8 attributes, a one-million-tuple window is assumed and λd

λq
=10. Table 22.3

shows the execution time of EPrune under the random request workloads,

with 8 different variances. Figure 22.2 compares the three heuristics of the

RGreedy algorithm under these random workloads regarding complexity,

execution time and UPC 1.

We see that while EPrune takes hours to finish for large normal variance

1In Figures 22.2 and 22.3 Lines that connect points are used only to reveal the trend.



22.3. COMPARING INDEX SELECTION ALGORITHMS 212

values, RGreedy always terminates within seconds. Also, RGreedy with

PCL and therefore Hybrid finds the optimal configuration in all 8 cases.

However, OWL misses all the optimal configurations in this experiment.
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Figure 22.2: Complexity of RGreedy Heuristics - Random WorkLoad.

The comparisons of the three RGreedy heuristics under the extreme

workloads are shown in Figure 22.3. They achieve the optimal IMP con-

figuration for all extreme workload cases.
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22.4 Runtime Index Tuning

Finally, we test how the runtime index tuning affects the query perfor-

mance. In the experiment shown below, we use a workload with 600,000

tuples and 600,000 requests such that λd

λq
=1. The first, middle and the last

200,000 requests are generated respectively according to the request statis-

tics specified in Examples 2, 1 and 3 in Section 20.4. Hence the groupby

execution is composed of three stages, each processing 200,000 tuples and

200,000 requests.

We then run the groupby operator two times, both in CPU-limit mode

[100]. In the first run, the operator is forced to conduct instant migra-

tion that rehashes every tuple in the state after it finishes processing every

200,000 requests. It uses the optimal IMP configuration for each of the three

stages. In the second run, the operator never conducts migration. That is,

it always uses the IMP configuration that is optimal for the first stage. We

then record the total execution time of the groupby operator, including the

time for index assessment and migration.

Figure 22.4 shows the results for two settings, using two different win-

dow sizes respectively. In the figure, we use three different colors to mark

the three execution stages.

The groupby operator with index tuning achieves more than 50% re-

duction on the execution time compared to the one without tuning. The

migration time for the tuned groupby operator is invisible in the figure

because it is too small to be seen. In both sets of experiments, the time

for each migration is within seconds. This is promising because it shows
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Figure 22.4: Tuned vs. Not Tuned IMP Index.

little migration overhead for a relatively large groupby state (containing

100,000 and 200,000 tuples respectively). This indicates that the runtime

index tuning overall is worthwhile, as the tuning cost is small compared to

the potential saving achievable by the tuning.
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Chapter 23

Related Work

The index selection problem has been extensively studied in static databases [4,

28, 51, 65], in which data updates are rare compared to queries. Index se-

lection tools take a query workload as input and suggest a set of indexes

that can maximally benefit the given workload. Index adaptation due to

changes in workloads means inserting a new index or deleting an existing

index. We instead tackle the index selection problem in the stream context

where not only data updates but also query requests may arrive at high

rates. We maintain a single index structure to minimize the memory over-

head and the index maintenance cost. Our index tuning essentially adjusts

the configuration of the single index.

Indexing in stream contexts has not yet received much attention, possi-

bly due to the dynamic nature of the streaming data. [56] studies methods

for indexing a single attribute for individual streaming algebra operators

under the sliding window semantics. Index selection driven by workloads,

as is the focus of our work, is not tackled.
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Our work relates to the work on processing groupby or aggregate queries

over streaming data. Existing work mainly focuses on sharing aggregate re-

sults. Their targeted query types and assumed output models are summa-

rized in Table 23.1. [103] studies aggregate sharing among a set of stream-

ing groupby queries that differ only in their grouping attributes. This is a

direct extension of the work in static databases [66].

[9, 71, 73] focus on computation methods for streaming aggregate queries

without groupby operations, i.e., one single result is produced per window.

[73] proposes techniques for sharing aggregate results among consecutive

sliding windows of a single aggregate query by breaking windows into

time slices. [71] generalizes this idea by slicing tuples into partitions based

on window and selection predicate overlaps. The computation of aggre-

gate functions over such partitions just puts them together into a combined

aggregate value. All of these works assume 1) queries to be statically spec-

ified and 2) continuous output model, i.e., the result updates are produced

each time a new input tuple is received. [9] investigates shared execution of

aggregate queries (no groupby) using an on-demand output model. In this

work, besides the window length, no other parameters in the query can be

dynamically specified. We differ from these prior works in that we focus on

processing groupby queries using the on-demand output model and with

dynamic parameters not being limited to window lengths, but also includ-

ing selection predicates, aggregate functions and grouping attributes.

[6] also employs a hash-bit method similar to our IMP index to an-

swer partial-match selection queries over a record file. This work consid-

ers a simplistic model in which each attribute is independently specified in
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Query Exec. Model Dynamic Feature Related Work

Groupby continuous no [103]

Aggregate continuous no [71, 73]

Aggregate on demand dynamic window [9]

Table 23.1: Related Work on Shared GB/AGG Exec.

queries. This simplification enables a linear time optimal bit assignment

method. We instead consider a more general and practical model in which

the frequencies of selection patterns are given. Our model incorporates

both the independent query model [6] and the correlated query model,

which makes the index selection problem much harder (exponential). The

statistics on selection pattern frequencies that we work with can easily be

extracted from query workload [34].



218

Part IV

Runtime Semantic Query

Optimization for Event Stream

Processing
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Chapter 24

Introduction

24.1 Constraint-Aware Event Stream Processing

As automated business processes, such as Web services and online transac-

tions [37, 54, 80], become ubiquitous, unprecedented volumes of business

events are continuously generated and recorded as event streams. Com-

plex Event Processing (CEP), which aims to detect interesting event patterns

in event streams, is gaining adoption by enterprises for quick detection and

reaction to critical business situations. Common CEP applications include

business activity monitoring, supply chain management, and anomaly de-

tection. Major database vendors have recently taken significant efforts in

building event-driven architectures [17, 32].

The event patterns in CEP specify complex temporal and logical relation-

ships among events. Consider the example event pattern EP1 below, in

which “SEQ” represents the temporal relationship between two events and

[totalPrice>200] is the predicate on the GenerateQuote event. This pattern
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monitors the cancelled orders that involve the participation of both suppli-

ers and remote stocks, with quote’s price > $200. Frequent occurrences of

such patterns may indicate the need for an immediate inventory manage-

ment.

Event Pattern EP1:

SEQ((SEQ(OrderFromSupplier,GenerateQuote[totalPrice > 200])

AND SEQ(UseRemoteStock,GenerateInvoice)),CancelOrder)

State-of-the-art CEP systems employ automata for event pattern match-

ing [35, 101]. When there are large numbers of concurrent business pro-

cesses, many partial query matches may be kept in automata states. Events

arriving later need to be evaluated against all these partial matches to pro-

duce query results. Also, event streams tend to be high-speed and poten-

tially infinite. To provide real-time responses, as often required by applica-

tions to take prompt actions, serious challenges in CPU and memory uti-

lization are faced by CEP.

In this work, we target an important class of event queries, namely alert

queries [101]. Alert queries correspond to key tasks in business activity

monitoring, including detection of shoplifting, large/suspicious financial

transactions, or other undue business actions like orders cancelled for cer-

tain reasons (see example above). These queries detect exceptional cases

to the normal business flows and are thus expected to be highly selective.

Keeping large numbers of partial matches that do not lead to any query

results can cause a major drain on available system resources.

We observe that in practice, many business events do not occur ran-
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Figure 24.1: Online Order Fulfillment Workflow.

domly. Instead they follow pre-defined business logic or rules, such as a

workflow model [54]. Below we list a number of such CEP applications.

1). Business activity monitoring: an online retailer may want to detect the

anomalies from its order processing transactions. In this case, the

events are generated from a BPEL workflow engine [20], a business

rule engine [21] or simply a customized program.

2). Manufacturing monitoring: a manufacturer may want to monitor its

stream-line production process [67]. The process events correspond

to pre-defined procedures.

3). ClickStream analysis: a shopping website may want to monitor the

click stream [37] to discover the user navigation pattern. Here the

user click events depend on how the website is structured.

As consequence, various constraints may exist among events in these

CEP applications. In particular, occurrence constraints, such as mutually

exclusive events, and order constraints, such as one event must occur prior

to the other event, can be observed in all the applications listed above. A
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recent survey [45] shows that the majority of the software design patterns

exhibit such constraints as well.

The availability of these constraints enables us to predict the non-occurrences

of future events from the observed events. Such predictions would help

identify which partial query matches will definitely not lead to final results.

Further efforts in maintaining and evaluating these partial matches can be

terminated, thus resulting significant savings. Example 1 below illustrates

such optimization opportunities that remain unexplored in the literature.

Example 1 Assume the event stream is generated by online order transactions [80,

97] that follow the workflow in Figure 24.1. We assume each task in the workflow,

if performed, will submit an event to the event stream. We can see that both oc-

currence and order constraints can be inferred from this workflow. For example,

the UseLocalStock and the UseRemoteStock events are mutually exclusive. Also,

any GenerateQuote event, if it occurs, must be before the SendQuote event in a

transaction.

Consider the example event pattern EP1 again. By exploiting the event con-

straints, whenever a UseLocalStock event occurs, this transaction is guaranteed to

not match the query because the UseRemoteStock event will never occur in this

transaction. Also, once a SendQuote event is seen in a transaction, and no Gen-

erateQuote event with totalPrice>200 has been observed so far, the transaction

will not match the query because no GenerateQuote event will happen after the

SendQuote event. In either case, any partial matches by these transactions need

not be maintained and evaluated further as they are guaranteed to never lead to

a final result. If the query processing of large numbers of transactions could be
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terminated early, a significant amount of CPU and memory resources would be

saved.

Several observations can be made from the above example. First, al-

though the event constraints are known at query compilation time, the real

optimization opportunities only emerge at runtime based on the partial

workflow executed so far (i.e., what events have been observed). For exam-

ple, although the UseLocalStock and the UseRemoteStock events are known

to be exclusive, only when one of them occurs, can we infer that the other

one will not be seen in the same transaction. Second, both occurrence and

order constraints can be exploited to short-cut query execution.

24.2 State-of-the-Art CEP Techniques

Most existing works in CEP focus on syntax and semantics of event queries [17,

35, 101]. Initial results on event query processing techniques such as event

instance partitioning and predicate pushdown [101] have also been pre-

sented. However, the above identified event constraints, which can be seen

as schema knowledge, remain unexploited in CEP.

Semantic query optimization (SQO), i.e., using schema knowledge to

optimize queries, has been extensively studied for traditional databases [24,

69]. Major techniques focus on optimizing value-based filtering or match-

ing operations, including join and predicate elimination and introduction.

They remain applicable in CEP for identifying efficient query plans at com-

pilation time. However, the relational and the object-oriented data models

targeted by these techniques are unordered, thus lacking in support for
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expressing temporal relationships among data. Hence, these techniques

have not focused on the unique optimization opportunities arising in CEP

driven by the temporal event constraints. In addition, the existing SQO

techiques are mainly designed for static query optimization. They may be

inappropriate for runtime use. SQO has also been studied for optimizing

queries over streaming XML documents [89]. In CEP, we are faced with

event data from possibly thousands or millions of concurrent processes in-

terleaved, and thus huge numbers of potential partial matches (one for each

process) at runtime. Also, more types of constraints can be observed in

business processes than in XML schemata. All these pose stringent require-

ments on scalability, generality and extensibility on exploiting constraints

in CEP.

On the other hand, significant research effort has been devoted on spec-

ifying and verifying business processes, such as workflow analysis [92] and

formal process verification [45]. In this existing research area, the process

instances, which can be seen as data, are not taken into consideration.

In summary, existing work on CEP [17, 35, 101] and on business pro-

cesses [45, 92] focus respectively on data and schema. No effort so far ex-

ploits the schema knowledge of business processes to optimize CEP. This

now becomes the focus of our work, which is constraint-aware CEP or C-

CEP.
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24.3 Our Approach

Several key challenges must be tackled to exploit constraints for CEP. One

critical question is how to identify unsatisfiable partial query matches at

runtime. In addition, there may be thousands or even millions of concurrent

business processes. To assure the efficiency and scalability, the runtime rea-

soning for each individual transaction must be lightweight. Otherwise, the

overhead of constraint reasoning may outweigh its benefits. In this work,

we propose the first general framework to address the above challenges

for constraint-aware CEP (C-CEP). The main contributions are summarized

below:

1. We propose a polynomial time, sound and complete runtime query

unsatisfiability (RunSAT) checking algorithm for detecting unsatisfiable query

matches. This algorithm is based on classic logic reasoning considering

the event query, the partial event history and the event constraints such as

workflows (Chapter 26).

2. To improve the RunSAT performance, we propose a general pre-

processing mechanism (based on abductive inference [46, 47]) to pre-compute

query failure conditions. Further, we identify a set of simple yet common

event constraints that allow constant time RunSAT (Chapter 27).

3. We propose to realize the above techniques based on augmenting

event queries with pre-computed failure conditions. This facilitates the in-

tegration of our techniques into state-of-the-art CEP architectures [35, 101]

(Chapter 28).

4. Our experimental study demonstrates that significant performance
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gains, i.e., memory savings up to a factor of 3.5 and CPU savings at a factor

of 2, are achieved through our approach, with a very small almost negligi-

ble overhead for optimization itself (Chapter 29).
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Chapter 25

Background

25.1 Event Model

An event (or event instance), denoted as lower-case letter ei, is defined to be

an instantaneous, atomic (happens completely or not at all) occurrence of

interest. We assume a discrete time domain T , and each time point repre-

sented by a non-negative integer. An event type, denoted as the correspond-

ing upper-case letter Ei, defines the properties that all the event instances ei

must have. The properties of an event instance ei include a set of attributes

ei.A1, ..., ei.An, and a timestamp ei.t of its occurrence.

We assume that the input to the CEP system is a stream of events (“event

history”) ordered by their timestamps. Out of order events can be handled

by sorting the most recent K tuples [22], which is orthogonal to our prob-

lem. We assume that the event history can be partitioned into multiple

sub-sequences based on certain criteria, such as transactions ids, session

ids, RFIDs, etc. Thereafter we call each partition of the event history a trace
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h.

25.2 Event Constraints

Software and workflow models exhibit certain order and occurrence con-

straints (Section 24.1). CEP queries also need to capture these occurrence

and order between events (defined later). These constraints can be ex-

pressed using a subset of a general event language L.

Definition 13 An event language L contains a set of event types Ei, denoted as

E , a variable h denoting the event history, a binary function <, logic connectives

(∧, ∨, ¬,→), quantifiers (∃ and ∀). A formula of L is either:

1). Ei[h], iff an event instance ei ∈ h of type Ei exists;

2). Ei[h] < Ej [h], iff event instances ei, ej ∈ h of type Ei and Ej , respectively,

with ei.t < ej .t;

3). Any formula built upon the above two atomic formulas by means of the log-

ical connectives and ∃h and ∀h.

The two atomic formulas correspond to the occurrence and order prop-

erties of events. The constraint languageL essentially corresponds to monadic

logic (with monadic predicate Ei[h]) plus a binary function (<). This can

easily simulate full predicate calculus, which in general is undecidable [19].

Hence, L and its derivatives have been used in the literature to describe the
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semantics of various applications. Since L is very general, in many practi-

cal scenarios, only subsets of L are considered. In this work, we focus on

the following two types of constraints that allow polynomial time reason-

ing under both static and runtime case. These constraints may be explicitly

given by the business rules or they can be extracted from a given work-

flow model [54]. We denote C as a conjunction of a set of event constraints,

which contains order constraints Ct and occurrence constraints Co, defined

as below.

• ∀he,¬(Ej [he] < Ei[he]), called order constraints, denoted as f t;

• Horn clauses built upon Ei[he] and ∀he, called occurrence constraints,

denoted as f o.

Here he denotes the entire trace, indicating that the constraint must hold

w.r.t. the scope of the entire trace. Such global semantics (i.e., tracewise) is

common [45].

1. prior(Ei, Ej , he) := ∀he,¬(Ej [he] < Ei[he])

2. exclusive(Ei, Ej , he) := ∀he, Ei[he]→ ¬ Ej [he]

3. require(Ei, Ej , he) := ∀he, Ei[he]→ Ej[he]

Table 25.1: Constraints that Allow Constant-time Runtime Reasoning

However, even polynomial time runtime reasoning is not always satis-

factory, especially if it is potentially more costly than executing the initial

CEP query itself. One of our contributions is the identification of three

common constraints (Table 25.2), which even allow constant-time runtime

reasoning. This assures negligible runtime reasoning overhead and thus
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has the potential to significantly improve the CEP performance.

25.3 Event Query

In this work, we do not provide a new CEP language as this is already

the focus of a number of existing works [17, 35]. Instead we focus on how

the core common to most CEP languages can be optimized by exploiting

commonly available constraints. Similar to a number of existing works [17,

35, 101], an event query is specified as follows:

EVENT <event expression>

WHERE <equal-id> [<predicates>]

The EVENT clause specifies the event expression that expresses the inter-

ested event pattern.

• SEQ(E1, E2, ..., En)(ts, te) := ∃ts1 ≤ te1 < ts2 ≤ te2 < ... < tsn ≤ ten, such

that E1(t
s
1, t

e
1) ∧ E2(t

s
2, t

e
2) ∧ ... ∧ En(tsn, ten). And ts = ts1 and te = ten.

• AND(E1, E2, ..., En)(ts, te) := ∃ts1, t
e
1, t

s
2, t

e
2, ..., t

s
n, ten, E1(t

s
1, t

e
1)∧E2(t

s
2, t

e
2)

∧... ∧ En(tsn, ten). And ts = min(ts1, t
s
2, ...t

s
n) and te = max(te1, t

e
2, ...t

e
n).

• OR(E1, E2, ..., En)(ts, te) := ∃ts, te, E1(t
s, te)∨E2(t

s, te)∨...∨En(ts, te).

We refer to the output of these operators as a composite event. While the

event instance (called primitive event) has a point-in-time semantics, ei.t, the

composite event has an interval semantics, where ts and te are the times-

tamp of the first and the last event in the event expression, respectively.
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The above definitions adopt this interval semantics and support the arbi-

trary nesting of these operators. As a special case, when Ei is a primitive

event type, ts equals te.

The WHERE clause contains an equality condition on some common at-

tributes across multiple event types in the query, which is typical for moni-

toring applications [17, 101]. Examples include transaction ids, session ids,

RFIDs, etc. Based on the value of those ids, the event history is partitioned

into subsequences. Each subsequence corresponds to one trace he that is

defined previously. The query is then evaluated against each he. There

might be additional predicates over the other attributes as well. The out-

put of the query contains the concatenation of all matching event instances.

While customized output results can be further accomplished [17, 35], this

is independent of the work presented here.

For ease of presentation, we use an acyclic directed graph G(Q) = <N,V >

to represent an event query Q. Each node is either an event type or one of

the two special types of nodes, namely, the start (ANDS) and end (ANDE) of

the AND operator. Each edge represents the ordering relationship between

event types in the query. Since query Q is well nested, the correspond-

ing start and end of AND nodes are paired as well. Figure 25.1 depicts an

example.

Unsatisfiability-preserving translation. The event query is translated

into the formula in L that preserves unsatisfiability without considering

the predicates on other attributes, or assuming they are always satisfiable).

For any conjunctive event query Q, the corresponding formula in L is:

∃he,
∧

{Ei[he]}
∧

{Ej [he]<Ek[he]}, for any Ei ∈ Q and for any Ej , Ek ∈ Q
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Figure 25.1: A Sample Query Graph G(Q) for A Query Q

which have a order relationship in Q. For any disjunctive event query Q,

we can rewrite it into disjunctive normal form and translate each conjunc-

tive term. Through this translation, we can reason between C and Q to

check its unsatisfiability.
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Chapter 26

Query Unsatisfiability

Checking

26.1 Overview

As motivated in Example 1, given an event query Q, event constraints C

and a partial trace hp observed at runtime, we want to determine whether

a query match may exist in the complete trace he with hp being a prefix of

he (denoted as hp ⊆ he). We refer to this problem as the runtime query unsat-

isfiability (RunSAT) problem. There is an extreme case of this problem, i.e.,

given an event query Q and event constraints C, does a query match exist

in any trace he. We refer to this extreme case as the static query unsatisfia-

bility (SunSAT) problem. In this section, we will describe these problems in

detail.
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26.2 Static Query Unsatisfiability

We formalize the static query unsatisfiability (SunSAT) problem in Defini-

tion 14.

Definition 14 Static Query Unsatisfiability (SunSAT) Given a query Q and

event constraints C, Q is said to be statically unsatisfiable iff there does not exist a

trace he which is consistent with C and matches Q.

Static satisfiability checking is to check whether C∧Q �⊥. This involves

two parts, namely, the occurrence consistency checking and the temporal con-

sistency checking, based on the constraint-based translation of Q.

Occurrence consistency makes sure that all the event instances required

in the query can indeed occur together. This is achieved by checking whether

the following boolean expression is satisfiable:
∧

{Ei[he]}
∧

Co, for all Ei ∈

Q. When the query is conjunctive and Co contains only Horn clauses, the

checking can be done in polynomial time [85]. Unfortunately, if Co contains

any arbitrary constraints, then this becomes a NP-Complete problem [85].

Temporal consistency means that each event instance required in the

query could occur in the desired order. This is to check
∧

{Ej [he] < Ek[he]}
∧

Ct,

for all Ej , Ek that have order relationship in Q. The expression is not sat-

isfiable iff at least one ¬(Ej [he] < Ek[he]) can be inferred from Ct. This

involves the computation of the closure on Q and Ct, which can also be

done in polynomial time.
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26.3 Runtime Query Unsatisfiability

As stated before, RunSAT checking differs from SunSAT checking in that

RunSAT checking considers a partial trace observed so far. In this sense,

SunSAT checking can be considered as a special case of RunSAT checking,

i.e., with empty partial trace. Since event data becomes available to the CEP

engine in the order of occurrences, the partial trace hp is always a prefix of

the entire trace he. Definition 15 formalizes the RunSAT problem.

Definition 15 Runtime Query Unsatisfiability (RunSAT) Given a query Q,

event constraints C and a partial trace hp, Q is said to be runtime unsatisfiable iff

there does not exist a trace he that is consistent with C and contains a match to Q,

where hp is prefix of he.

Next, we consider RunSAT for conjunctive queries, while in Section 26.4,

we will discuss disjunctive queries.

Matching and Remaining Sub-Query. Given a partial trace hp, the

matching sub-query Qm can be defined as follows. A query node Ei is

contained in Qm iff the sub-graph that contains Ei and all the nodes that

can reach Ei in G(Q) has a match over hp. The remaining query Qm contains

all the unmatched query nodes Ei. The AND nodes are included in Qm if

not all of its branches are matched. Figure 26.1 depicts a query Q, partial

trace hp, matching sub-query Qm and remaining sub-query Qm.
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Figure 26.1: Matching, Remaining Sub-Query

Lemma 9 Given a partial trace hp and event constraints C, if there does not exist

a remaining trace hp = he − hp that contains a match to Qm, then Q is runtime

unsatisfiable.

Our goal is then to check the unsatisfiability of Qm, which will lead

to the unsatisfiability of Q. This naturally leads to the next issue to find

the constraints that must hold true for the remaining trace hp, referred to

as dynamic constraints. To distinguish, the initially given event constraints

(Chapter 25) are called static constraints. The dynamic constraints are de-

rived from the static constraints and hold true for the future data.

Dynamic Constraints. The constraints that the remaining trace hp must

satisfy evolve as the partial trace hp grows. Intuitively, the event instances

in hp serve as facts. New constraints can be inferred based on these addi-

tional facts and the static constraints. The facts provided by hp, denoted as

Fhp
, include:

•
∧

{Ei[hp]}, for any ei ∈ hp of type Ei

•
∧

{¬Ej [hp]}, for any E − {Ei} above
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The dynamic constraints Cd(hp) can be evaluated as follows.

Cd(hp) = C
∧

Fhp
= C
∧

{Ei[hp]}
∧

{¬Ej [hp]} (1)

The evaluation of Exp.(1) differs from the traditional propositional logic

resolution, which basically removes two opposite literals from two clauses [85],

in that first C also contains order constraints Ct, and second each constraint

has its own scope.
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Figure 26.2: Constraint Resolution

Figure 26.2 depicts the resolution rules for constraints with scopes. The

constraints above the line entail the constraint below the line. We assume

that each occurrence constraint f o is in the form of a disjunction of atomic

literals and negation only applies to the atomic literals. First, from rule T1,

we see that while the order constraints are independent of the occurrence

constraints in the static case, they become related in the dynamic case. That

is, an occurrence constraint can be derived at runtime through an order

constraint. Second, the logical resolution needs special care when each con-

straint has a valid scope (O1−O3). O1 states that when the two literals have



26.3. RUNTIME QUERY UNSATISFIABILITY 238

the same scopes, the classic resolution rule can be applied [85]. O2 can be

generalized to any hp that is a subsequence of he. O3 shows that the resolu-

tion of the constraints with different scopes may need additional evidence

from the partial trace hp. Example 2 illustrates a sample scenario for apply-

ing these rules.

Example 2 Assume two event constraints, f t
1 = ¬(E1[he]<E2[he]) and f o

2 =

E3[he]→E1[he]. When e2 ∈ hp, i.e, E2[hp], we can infer ¬E1[hp] from f t
1 by rule

T1. However, whether we can further infer ¬E3[he] from f o
2 depends on whether

E1[hp] is false or not (by rule O3).

Theorem 5 Given a query Q, static event constraints C and a partial trace hp, Q

is runtime unsatisfiable iff the remaining query Qm is statically unsatisfiable w.r.t.

the dynamic constraints Cd(hp).

Proof: “⇐”: Follow Lemma 1. “⇒”: We prove by contradiction. That is,

we assume Qm is satisfiable and there exists a sequence hQm
that matches

Qm. However, for any hp where hQm
is a subsequence of hp (not necessarily

contiguous), C ∧ Fhe=hp+hp
�⊥, i.e., Q is not satisfiable.

We start from considering hp = hQm
, i.e., C ∧ Fhe=hp+hQm

is not satisfi-

able. Given the fact that C ∧Fhp
∧Qm is satisfiable, the only reason for such

unsatisfiablity is due to one or more ¬Ei[he], while C∧Fhp
∧Qm entails that

these Ei must occur in he. Without loss of generality, we assume that this is
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due to ¬E1[he]. We show that we can find an appropriate position in hQm

where E1 could occur while satisfying C.

First of all, E1 could occur, otherwise C ∧ Fhp
∧ Qm � ¬E1[he] ∧ E1[he]

and is thus not satisfiable. Next, E1 could occur after hp, otherwise by rule

O3 in Figure 26.2, C ∧Fhp
∧Qm is not satisfiable. Lastly, as long as the prior

relationship graph in Ct does not contain cycle, we can find a position in

hQm
for the occurrence of E1 without violating the order constraints in Ct.

By repeatedly adding all the required events into hQm
, we obtain an event

history he such that it contains a match to Q and C ∧ Fhe
is satisfiable. �

Hence, RunSAT checking for a given prefix trace hp involves two tasks.

First, we derive the dynamic constraints Cd(hp) that hold true for the remain-

ing trace hp, as shown in Exp.(1). Then RunSAT reasoning checks whether

the remaining query Qm is unsatisfiable by Cd(hp) ∧ Qm. Note that if Q is

statically satisfiable, then only occurrence consistency needs to be checked.

There is no need to re-check the temporal consistency for remaining query.

Based on the above discussion on matching sub-query and dynamic

constraints, we can evaluate the following to check whether the remaining

query is unsatisfiable or not. This is a SunSAT problem.

C ∧ Fhp
∧Qm =Cd(hp) ∧ Qm (2)

Cd(hp) ∧ Qm = Cd(hp)
∧

{Ej [hp]}, Ej ∈ Qm (2)

The evaluation of Exp.(1) and (2) both utilizes the resolution rules in

Figure 26.2. Since these rules add a constant scope checking cost to the

classic resolution rules, it can be done in polynomial time for Horn clauses.
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Effective Dynamic Constraints. Assume that the original conjunctive

query Q is statically satisfiable. Based on Exp.(2), the only dynamic con-

straints that can fail Qm must be in the form of a disjunction of negated

atomic literals, such as ¬ Ei[he] ∨ ¬Ej[he] or ¬Ek[hp]. We refer to these

constraints as effective dynamic constraints, Crd(hp), where Cd(hp) |= C
r
d(hp).

This leads us to goal driven derivation of these specific dynamic constraints

(Chapter 27).

26.4 RunSAT for Disjunctive Queries

In this section, we consider RunSAT for disjunctive queries. As mentioned

in Section 26.2, SunSAT for an arbitrary disjunctive query is NP-Complete.

While a potentially exponential transformation into its disjunctive normal

form may be acceptable in the static case when the size of the query is typ-

ically small, such exhaustive approach may not be appropriate to be used

at runtime for the dynamic case. Rather an efficient, even if incomplete,

algorithm for handling disjunctive queries is needed.

The basic idea is to break the original query into several non-overlapping

conjunctive partitions. Starting from the OR operator that does not contain

any other nested OR operator, each branch of this OR operator is marked

as a conjunctive partition. This OR operator is then replaced by a single

virtual node that represents a disjunction of several partitions. Similarly,

we apply this mechanism to the rest of the OR operators in the query until

all the OR operators are replaced.

OR-query-graph
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Figure 26.3: A Disjunctive Query and Query Graph
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Figure 26.4: Partitioning Disjunctive Query

Figure 26.4 depicts an example for the event query in Figure 26.3. As

can be seen, each OR branch is a conjunctive partition. These partitions form

a partition hierarchy as also shown in the figure. The RunSAT technique de-

scribed in Section 26.3 is applicable to each of these six partitions. C6 is a

conjunctive partition with two special nodes (C1 ∨C2 and C3 ∨C4 ∨ C5). In-

tuitively, if all the partitions within the same special node are unsatisfiable,

the current partition is also not satisfiable. The number of conjunctive par-

titions generated by this method is linear in the query size. This technique

however is incomplete. For example, after we fail the partitions C1, C3,

and C4, the query may have failed already since C2 ∧ C5 may be statically

unstatisfiable already.
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Chapter 27

Towards Efficient RunSAT

To achieve earliest possible detection of the runtime query unsatisfiabil-

ity, RunSAT checking should be conducted each time when hp grows, i.e.,

whenever a new event instance is received. In other words, the dynamic

constraints derivation, Exp.(1), and RunSAT reasoning, Exp.(2), have to

be performed for each event instance. Unfortunately, on first sight this

appears to be much more expensive than simply processing the original

query. In this section, we will address this performance issue for RunSAT.

We will focus on conjunctive queries, as disjunctive queries are also han-

dled based on their conjunctive components (Section 3.4).

27.1 Abductive Inference

As hp grows from hp1
to hp2

, even an incremental method for deriving

Cd(hp2
) from Cd(hp1

) may not be satisfactory. The reason is that first we

may have to store some constraints in Cd(hp1
) in order for incremental rea-
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soning, and second we may derive many dynamic constraints that are not

useful to fail the query at all.

Fortunately, given the fact that only the effective dynamic constraints

could fail the query, we thus propose an abduction-based [46, 47] method

to pre-compute the conditions when those effective dynamic constraints will

become true. If any of the conditions are met at runtime, which presumably

are cheap to monitor, we know some effective dynamic constraints begin to

hold. Abductive inference can be formally defined as follows [46, 47]. For

a given effective dynamic constraint fd, p is called an explanation of fd if C

and p are consistent with each other and together entail fd.

1) C ∧ p � fd;

2) C ∧ p is satisfiable.

Here p has to be a conjunction of Ei[hp] and/or ¬Ej[hp], since these are

the only facts we can draw from the prefix trace hp. Our goal is to find all

such explanations
∨

{p}.

To infer the non-occurrence of Ei in the remaining trace, the following

three expressions compute its possible explanations.

Ct ∧ p1 � ¬Ei[hp] (3)

Co ∧ p2 � ¬Ei[he] (4)

Co ∧ Ct ∧ p3 � ¬Ei[he] (5)

First, by using order constraints Ct alone, we can only derive ¬Ei[hp]

from Rule T1 in Figure 26.2. Hence, p1=Ej [hp] if Ct � ¬(Ei[he] < Ej [he]).

Next, from rules O1-O3 in Figure 26.2, we know that there are two al-

ternative ways that ¬Ei[he] can be inferred, namely, from occurrence con-

straints Co only or from both occurrence Co and order constraints Ct. Solv-
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ing Exp.(4) is the classic propositional abductive inference problem [46, 47].

Lastly, solving Exp.(5) needs aid from Rule O3 in Figure 26.2. For any

order constraint ¬(Er[he] < Es[he]), given the fact that ¬(Er[he] < Es[he])

∧ Es[hp] ∧ ¬Er[hp] → ¬Er[he], we rewrite Exp.(5) into (6) below, which

replaces the order constraint by the occurrence constraints it can possibly

imply. Then p3 = Es[hp] ∧ ¬Er[hp] ∧ p′.

Co ∧ Es[hp] ∧ ¬Er[he] ∧ p′ � ¬Ei[he] (6)

Although abductive inference for Exp. (5) and (6) is NP-Complete in

general (details in [46, 47]), since it is a one-time cost compared to the long-

running event query, the abduction cost may be still acceptable. However,

note that the explanations can contain multiple positive events, such as

E1[hp]∧E2[hp]∧E3[hp] or E4[hp]∧E5[hp]. In fact, monitoring all such com-

plex explanations could be more expensive than just executing the event

query itself and thus becomes infeasible. Hence, a cost-based approach, i.e.,

monitoring only those explanations that will provide the best cost benefit,

is necessary. This remains our future work. In this work, instead we show

that when the explanations contain a single positive event for the common

yet simple constraints in Table 1, they can be monitored in constant time.

27.2 Incremental RunSAT Reasoning

The second performance issue with RunSAT is that we still have to perform

the RunSAT reasoning Exp.(2) for Crd(hp1
) and Crd(hp2

), respectively. In other

words, we need to store the constraints Crd(hp1
) in order to check whether

they would fail the new remaining query. In fact, we find that for monotonic
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queries, this is not necessary.

Definition 16 Monotonic Query. Assume two prefix traces hp1 and hp2 where

hp1 is a prefix of hp2. The matching sub-queries for a given query Q under these

two prefix traces are Qm1 and Qm2, respectively. Query Q is monotonic if and

only if Qm1 is a subquery of Qm2.

Queries with SEQ, AND operators are monotonic.

Lemma 10 Incremental RunSAT Reasoning. Assume that the prefix trace

grows from hp1 to hp2. For a conjunctive query Q, we assume that the remaining

queries are Qm1
and Qm2

, and the effective dynamic constraints are Crd(hp1) and

Crd(hp2), respectively. If Q is a monotonic query, then Crd(hp1
)∧Qm1

is satisfiable

→ Crd(hp1
) ∧Qm2

is satisfiable.

To summarize, to improve the RunSAT performance, first, the deriva-

tion of effective dynamic constraints can be precomputed through abduc-

tion. Second, when the query is monotonic, there is no need to reconsider

the previously derived dynamic constraints. These two techniques pave

the way for integrating RunSAT into the event query engine.
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Chapter 28

Integrating RunSAT into CEP

Engine

In this section, we describe how we apply the theoretical results of RunSAT

checking as efficient optimization techniques for event query processing.

Our C-CEP engine employs the commonly-used automata model (i.e.,

NFA) since it has been shown to be a natural fit for event pattern match-

ing [35, 53, 101]. When registering an event query into the C-CEP engine,

the engine first checks whether this query is statically satisfiable w.r.t. event

constraints C. Then it uses the abductive inference to precompute the fail-

ure conditions. The original event query is augmented with these failure

conditions as Event-Condition-Action rules. During query execution, these

failure conditions are efficiently monitored. If any of these failure condi-

tions are met, the current trace is unsatisfiable to the query and any partial

matches are removed.
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28.1 NFA Query Execution Model

For query execution, we adopt and extend the commonly-used NFA model [35,

53, 101] to also support the AND operator. Using this common execution

model assures that our work can be easily integrated into existing CEP sys-

tems as a semantic query optimization module.

Our NFA model includes two types of states, namely, regular states and

logical states, and it can be easily generated from the query graph in Fig-

ure 25.1. Each node Ei in the query corresponds to a regular state in the

NFA. At runtime, the event instances that match these states are kept in

the memory in order to generate the final output. The ANDE corresponds

to logical state, which is activated only when all the input transitions have

been triggered. There is a self-loop of ∗ transition over those nodes which

have non-ǫ output transitions in order to capture the temporal following se-

mantics. For example, the query in Figure 25.1 is translated into the au-

tomaton in Figure 28.1.
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Figure 28.1: NFA for Query in Figure 25.1
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28.2 Augment Query with Fail Conditions

Our query engine exploits the constraints in Table 1 for optimizing the

event query. We will show that supporting these constraints does not re-

quire a cost-based optimization since the extra overhead is small. While

developing a cost-based optimization framework for the more complex

constraints remains our future work, our performance evaluation for these

simple constraints also indicates when such optimization is beneficial, which

provides the basis for cost estimation.

The effective dynamic constraints that could fail the query are ¬Ei[he] and

¬Ei[hp]. ¬Ei[he] is called global since it holds for the entire trace and is

independent of the query matching status. ¬Ei[hp] is called local since it

only holds for the remaining trace. Hence whether ¬Ei[hp] can be used to

fail the query depends on whether the remaining query contains Ei or not.

28.2.1 Managing Global Failing Conditions

We first discuss how to augment the query with global failing conditions.

For each Ei in the query, we derive all failing conditions for ¬Ei[he]. By

solving Exp.(4), we have the failing conditions p2 = Ej[hp] if Co � (Ej [he]→

¬Ei[he]). By solving Exp.(5), which is rewritten into Exp.(6), we have the

failing conditions p3 = Ej [hp] ∧ ¬Ek[hp] if Co � (Ek[he] → Ei[he]) and Ct �

¬(Ek[he] < Ej [he]).

These failing conditions can be organized into a simple data structure

depicted in Figure 28.2. We use an array with the size equal to the number

of distinct event types. The ‘+’ symbol at Ei means that Ei[hp] is a failing
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condition of the query. For each entry Ej marked as ‘−’, we associate a bit

array. For any Ek with the bit being 1 in that bit array, Ej [hp] ∧ ¬Ek[hp] is a

failing condition of the query.

–……+…–

..0001..1..100.. … …

E1 Ei En

Figure 28.2: Global Failing Conditions

At runtime, given an event instance of Ei, we check if the correspond-

ing entry in the global failing condition is marked as ‘+’. If so, we terminate

the processing of this trace. Any partial results or active states for this trace

can be removed. If the entry is marked as ‘−’ and there is a bit array associ-

ated with it, we perform a bit-AND with a runtime bit array whose entries

indicate the occurrence of Ei in hp (1 denotes non-occurrence). If the output

of this bit operation is not zero, we can fail the matching for this trace.

28.2.2 Managing Local Failing Conditions

Since the local failing conditions are tightly coupled with the particulars of

the current query matching status, we build them into the NFA by intro-

ducing a special state labeled “F” (for “Failed”). All transitions triggered

by local failing conditions are directed to this “Failed” state.

For each Ei in the query graph, by Exp.(3), we compute the local failing

conditions {p1} for any Ej that is reachable from Ei in the query graph. We
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implement the failing conditions in NFA as the additional transitions of Ei.

These failing conditions are valid only when none of these transitions out

of Ei have been matched yet. Hence there is a special runtime issue, i.e.,

once the NFA transition from Ei to the next state is made, the local failing

conditions at Ei need to be deactivated. Intuitively, the query matching sta-

tus is changed, which breaks the assumption that none of Ei’s descendant

states have been matched. Such NFA state deactivation can be efficiently

supported using a flag. Obviously, both global and local failing condition

checking can be done in constant time. Figure 28.3 depicts the augmented

query for event pattern EP1 in Section 24.1. The SendQuote event is the

local failing condition.
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ε

Figure 28.3: Augmented Query for EP1

28.2.3 Handling Disjunctive Queries

The forementioned failure condition management concerns conjunctive queries.

For disjunctive queries, each failure condition for Ei needs to be associated

with the partition ID to which Ei belongs. At runtime, the failing status
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of each partition is monitored based on the partition hierarchy described in

Section 3.4. When a partition Ci fails, all its descendant partitions also fail.

Then we check Ci’s parent node. If it is a different partition, it fails as well

and propagates the failure further up the hierarchy. If it is an OR node and

all its other child partitions have failed already, we propagate the failure

further up this OR node. The entire query for this transaction fails once the

root node fails. This failure checking cost per event instance is bounded by

the number of partitions in the query, which is typically much smaller than

the number of events in the query. Note that for a given event instance, we

may simultaneously fail multiple partitions.

Once a partition fails, its partial matches will be removed. The NFA

will also associate with each state its corresponding partition ID. If the cor-

responding partition fails, these states will remain inactive for the rest of

the transaction.
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Chapter 29

Experimental Evaluation

29.1 Experimental Setup

We have implemented the proposed techniques in a Java-based CEP sys-

tem. We developed an event generator that creates event streams based on

the workflow in Figure 24.1 with the following parameters: 1) event at-

tributes: 5 attributes (besides timestamp) per event, including three integer-

type and two string-type; 2) number of allowed values of each event attribute,

used to control the selectivity of the query predicates. The values con-

form to uniform distribution; 3) probability distribution of exclusive choice

construct, used to control the query selectivity; and 4) number of concurrent

traces (1000). The events of concurrent traces are interleaved in the event

stream. To achieve this, we maintain a list of concurrent transactions. To

generate a new event, we randomly select a transaction from the list and

generate the next event in that transaction. Once a transaction is finished,

we immediately activate a new transaction. Lastly, we fix the number of
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loops on GenerateQuote in the workflow to be 3. The test machine has an

Intel(R) Pentium 1.8G processor and a 1GB RAM, running Windows XP

and Java 1.5 SDK.

We compare the performance of C-CEP, with regular CEP, denoted as

R-CEP. For both C-CEP and R-CEP, we apply immediate selection predi-

cate evaluation, i.e., selection push-down. For R-CEP, each time a trace is

finished, i.e., whenever a CancelOrder, RejectOrder or FinishOrder event is

received, any partial matches and automata states associated with this trace

can be removed. For C-CEP, we augment the query with RunSAT failing

conditions. Whenever a RunSAT failing condition is satisfied, C-CEP can

remove the data. We run both C-CEP and R-CEP in CPU-limit mode [100],

i.e., events arrive to the CEP system at a rate such that the query process-

ing never needs to wait for data. This way the optimization cost is also

included in the total execution time. We measure 1) total number of NFA

probes (for event matching), 2) total execution time for processing the given

event stream, and 3) peak number of events maintained in all NFA states,

which reflects the peak memory usage. This number is collected after sys-

tem warm-up, i.e., after 1000 traces are processed. For C-CEP, the execution

time includes the RunSAT checking cost. The input event stream contains

400K events from 20,000 traces for all the experiments below.

29.2 Results on Sequence Queries

We first compare the performances of C-CEP and R-CEP on sequence queries.

We show the experimental results for Query Q1 below, which monitors
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those expensive orders that uses remote stocks (rare case). The global fail-

ing condition for this query is the UseLocalStock event, and the local failing

condition for the GenerateInvoice event is the SendInvoice event.

EVENT SEQ(CheckInventory,UseRemoteStock,GenerateInvoice)

WHERE GenerateInvoice.price>200

In the first experiment, we vary the matching probability of the UseRe-

moteStock event in the query from 0% to 90%. We achieve this by varying

the probability distribution of the exclusive choices on UseLocalStock and

UseRemoteStock. We define the fail ratio of an event E in the query to be

(1–σE ) with σE being the matching probability of E. The results are shown

in Figure 29.1(a).

0

200

400

600

800

1000

0 30 60 90

Fail Ratio (%)

T
ot

al
 E

xe
cu

tio
n 

T
im

e 
(M

ill
is

ec
on

ds
)

C-CEP R-CEP

0

200000

400000

600000

800000

1000000

1200000

0 30 60 90

Fail Ratio (%)

T
ot

al
 #

 o
f P

ro
be

s

C-CEP R-CEP

0

500

1000

1500

2000

2500

3000

0 30 60 90

Fail Ratio (%)

M
ax

 #
 o

f E
ve

nt
s 

in
 

S
ta

te

C-CEP R-CEP

(a) Fail Query Early (at UseRemoteStock Event)

0

200

400

600

800

1000

0 30 60 90

Fail Ratio (%)

T
ot

al
 E

xe
cu

tio
n 

T
im

e 
(M

illi
sS

ec
on

ds
)

C-CEP R-CEP

0

200000

400000

600000

800000

1000000

1200000

0 30 60 90

Fail Ratio (%)

T
ot

al
 #

 o
f P

ro
be

s

C-CEP R-CEP

0

500

1000

1500

2000

2500

3000

0 30 60 90

Fail Ratio (%)

T
ot

al
 #

 o
f E

ve
nt

s 
in

 
S

ta
te

C-CEP R-CEP

(b) Fail Query Late (at GenerateInvoice Event)

Figure 29.1: Sequence Query Performance – Query Fail Point.

Two observations are made from the results. First, as the fail ratio in-

creases, both the total number of probes (and hence total execution time)

and peak memory usage decrease. For 90% fail ratio, significant savings in
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memory (60%) and in execution time (32%) compared to R-CEP are achieved.

This promising result suggests that C-CEP is especially attractive for those

targeted alert queries. Note that the savings in execution time by C-CEP are

not precisely proportional to the savings in NFA probes. The reason is that

after a trace is determined to be unsatisfiable, for every event in the rest of

the trace, a single check is needed to determine whether this event belongs

to a failed trace. Second, for zero fail ratio (i.e., all traces have matches to

the query), which can be seen as the worst case for C-CEP since no evalu-

ations can be terminated early while extra cost has to be paid for RunSAT

checking, the execution time of C-CEP is only negligibly higher than R-

CEP. This is also promising, indicating that even in the worst case, C-CEP

has comparable performance with R-CEP.

Next, we test how the query fail point affects the C-CEP performance.

In the previous experiment, the query fails always due to no match for the

UseRemoteStock event. We now test the case in which the query fails al-

ways due to no match for the GenerateInvoice event with price>200. We

call this the “fail late” case while the previous case the “fail early” case

because the UseRemoteStock event is before the GenerateInvoice event in

the event query. We vary the matching probability of the GenerateInvoice

event to be from 0% to 90%, while fixing the matching probability of UseR-

emoteStoack to 100%. We achieve this by controlling the value range of

the price attribute of the GenerateInvoice event. The results are shown in

Figure 29.1(b).

In the “fail late” case, for 90% fail ratio, the memory saving is 54% and

execution time saving is 21%. C-CEP still gains in both memory and ex-
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ecution time compared to R-CEP. Since failing late incurs more execution

overhead, the gains are less than those achieved in the “fail early” case (Fig-

ure 29.1(a)). However, it still provides significant memory savings for alert

queries and is thus useful when the memory is a stringent resource.

29.3 Results on AND Queries

Next, we compare the performances of C-CEP and R-CEP on AND queries.

We are seeking answers for two questions: 1) for relatively complex AND

queries, can more performance gains be achieved compared to the sequence

queries? and 2) how would the interactions between AND branches in the

query affect query performance? The query is given below. The global fail-

ing conditions for this query are the UseLocalStock and the CancelOrder

event, and the local failing condition for the GenerateQuote event is the

SendQuote event.

EVENT SEQ(AND(SEQ(OrderFromSupplier, GenerateQuote),

SEQ(UseRemoteStock, GenerateInvoice)),FinishOrder)

WHERE GenerateQuote.price>200

We conduct two sets of experiments. First, we fix the matching prob-

ability of the first AND branch (i.e., SEQ(OrderFromSupplier, Generate-

Quote)) (more specifically, the GenerateQuote event) to be 50% and vary

the matching probability of the UseRemoteStock event to be from 0% to

90%. The results are shown in Figure 29.2(a). Second, we fix the matching

probability of the second AND branch (i.e., SEQ(UseRemoteStock, Gener-

ateInvoice)) to be 50%, while varying the matching probability of the Gen-
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erateQuote event to be from 0% to 90%. Since 3 loops are involved for Gen-

erateQuote event in the workflow, the failure on matching the first AND

branch will be detected rather late compared to that for the second AND

branch. This may result in performance difference between these two sets

of experiments. The results are in Figure 29.2(b).
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(b) Varying Fail Ratio of Branch SEQ(OrderFromSupplier, GenerateQuote)

Figure 29.2: AND Query Performance – Interaction of AND Branches.

Two observations are made from this experiment. First, much more per-

formance gains can be achieved compared to the sequence query Q1. As

can be seen in Figure 29.2(a), for 90% fail ratio, the gains in peak memory

usage and in execution time are 72% and 51% respectively. This is because

Query Q2 is more complex than Query Q1, thereby rendering bigger partial

matches. This causes higher event matching costs and memory overhead

in R-CEP. The C-CEP on the other hand, can terminate the query execution

as soon as one branch is found to be unsatisfiable. Another important ob-

servation is that the performance gains by C-CEP are determined by the
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AND branch that provides the most performance gains. The second AND

branch, by failing early, enables much noticeable performance gains as fail

ratio increases (Figure 29.2(a)). In contrast, the first AND branch, by failing

late, enables much less performance gains until the fail ratio is very high

(Figure 29.2(b)).

29.4 Results on OR Queries

Finally, we test the C-CEP performance for OR queries. We modify Query

Q2 above by replacing the AND operator by the OR operator and use the

new query in this experiment. This query contains three conjunctive par-

titions: 1) SEQ(OrderFromSupplier, GenerateQuote), 2) SEQ(Use- Remote-

Stock, GenerateInvoice), and 3) the entire query. We vary the fail ratios of

partitions 1 and 2. We use (fr1, fr2) to denote that partitions 1 and 2 have

fr1 and fr2 fail ratios respectively. Each time a query failure condition is

satisfied, corresponding query partitions will be pruned. The experimental

results are shown in Figure 29.3.

0

200000

400000
600000

800000

1000000

1200000

1400000

1600000

1800000

(0, 0) (50, 0) (0, 50) (50, 50) (90,90)

Partition Fail Ratio (%)

To
ta

l #
 o

f P
ro

be
s

C-CEP R-CEP

0

200

400

600

800

1000

1200

1400

(0, 0) (50, 0) (0, 50) (50, 50) (90,90)

Partition Fail Ratio (%)

T
ot

al
 E

xe
cu

tio
n 

Ti
m

e 
(M

ill
is

ec
on

ds
)

C-CEP R-CEP

0

500

1000

1500

2000

2500

3000

3500

(0, 0) (50, 0) (0, 50) (50, 50) (90,90)

Partition Fail Ratio (%)

M
ax

 #
 o

f 
E

ve
nt

s 
in

 
S

ta
te

C-CEP R-CEP

Figure 29.3: OR Query Performance – Varying Fail Ratio of Two Conjunc-
tive Partitions.

We can see that when only one partition could possibly fail, i.e., at least

one partition has 0% fail ratio, very little performance gains can be achieved
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by C-CEP. This is because the cost of the OR query is determined by the

branch that provides the least performance gains. This is opposite to the

AND query, whose cost is determined by the branch that provides the most

performance gains (see Section 29.3). Hence, if a significant portion of the

OR query will never fail, not much gains can be achieved by C-CEP, con-

sidering the extra RunSAT checking cost. Second, the performance gains

increase with the partition fail ratios. When both partitions have high fail

ratios, i.e., (90, 90), 30% gains in memory and 13% gains in execution time

can be achieved by C-CEP. This is promising, indicating that even for OR

queries, significant memory savings can still be achieved for anomaly de-

tection queries.

29.5 Scalability Test

We also conduct the scalability test for the above sequence, AND queries in

which the event stream contains 4M events from 200,000 traces with 10,000

concurrent traces. The results are similar to the ones presented here in

terms of percentage-wise performance gains and are thus omitted. This

indicates that our C-CEP techniques are also scalable.
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Chapter 30

Related Work

As event processing gains popularity in many applications, an increasing

effort has been devoted in developing efficient event processing systems.

The existing work include streaming databases such as HiFi [52] that support

SQL-style queries, pub/sub systems such as [5, 48] that support simple fil-

tering queries, and CEP systems such as SNOOP [23], Amit [3], CEDR [17],

Cayuga [35] and SASE [101], that support event pattern queries expressed

by more powerful languages. These works focus on query model/language

design and query algebra development. None of these works consider ex-

ploiting the common event constraints.

Semantic query optimization (SQO), i.e., using schema knowledge to

optimize queries, has been extensively studied for traditional databases [24,

69]. Major techniques focus on optimizing value-based filtering or match-

ing operations, including join and predicate elimination and introduction.

They remain applicable in CEP for identifying efficient query plans at com-

pilation time. These existing SQO techiques are mainly designed for static
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query optimization. They are inappropriate for runtime use. SQO has also

been studied for optimizing queries over streaming XML documents [89].

In CEP, we are faced with event data from possibly thousands or millions

of concurrent processes interleaved, and thus huge numbers of potential

partial matches (one for each process) at runtime. Also, more types of con-

straints can be observed in business processes than in XML schema. All

these pose stringent requirements on scalability, generality and extensibil-

ity on exploiting constraints in CEP.

Our work is also related to punctuation [72, 93]. The existing works on

punctuation mainly focus on utilizing punctuations to reduce the memory

usage of SQL-type of stream query. In this work, we show how to gener-

ate punctuations (effective dynamic constraints) from event constraints and

how to use them to reduce both CPU and memory cost for CEP queries.

Other related areas include workflow management [54, 92] since the event

constraints are extracted from workflows. The existing work on workflow

management focuses on two problems, workflow analysis and workflow verifi-

cation. Workflow analysis involves the soundness proof of a workflow and

the identification of critical activities in a workflow. Workflow verification

deals with the following problem. Given a finite set S of dependencies,

check whether there is a workflow execution (or all executions) satisfying

all the dependencies in S. This conceptually is similar to our SunSAT rea-

soning. Our exploitation of the order constraints relates to the work on

temporal reasoning [55, 99], i.e., to detect whether a cycle exists among the

order constraints in query and in event data. However, the existing works

on temporal reasoning focus on the language specification and enforcement
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instead of utilizing temporal constraints to optimize queries.
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Part V

Conclusions and Future Work
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Chapter 31

Conclusions of This

Dissertation

A wide range of modern applications need to process queries over large

volumes of or even potentially infinite streaming data and provide real-

time answers. Due to the unknown characteristics of the streaming data,

traditional query processing techniques remain largely inapplicable. In

addition, due to the stringent requirements on real-time responses, main

memory is regarded as particularly precious resource. Many stream pro-

cessing systems therefore face serious challenges on resource management,

in particular memory management, when processing large numbers of con-

current stream queries, which are the typical workloads of many common

applications.

This dissertation has proposed novel techniques to reduce runtime re-

source requirements by exploiting stream constraints and to maximally
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share query execution. It focused on three topics, namely constraint-aware

query operator execution, shared execution of parameterized streaming

group-by queries, and constraint-aware complex event processing.

The first part of this dissertation proposed punctuation-aware opera-

tor execution strategies, particularly focusing on join operators, including

binary join, binary window join, and multiway window join operators.

We concentrated on addressing three issues: 1) design of efficient strate-

gies for identifying no-longer needed tuples; 2) design of strategies for ef-

fectively exploit orthogonal constraints, namely punctuation and window

constraints; and 3) design of a framework for operators to adaptively tune

their behaviour according to various parameters. To address the first is-

sue, we proposed eager and lazy state purge strategies that are suitable

for different cases. We also proposed eager and lazy punctuation propaga-

tion strategies for operators to benefit downstream operators. To address

the second issue, we proposed an effective state organization strategy that

facilitate exploitation of both punctuation and window constraints. We

also designed the early propagation strategy enabled by the interactions

between punctuation and window constraints. To address the third issue,

we proposed an adaptive operator execution framework that equip each

task with different strategies and adaptively switch between them accord-

ing to runtime characteristics. We conducted extensive experiment studies

that tested and validated the effectiveness of our proposed techniques.

In the second part of this dissertation, we proposed the semantic query

optimization approach for data stream processing that exploits herald meta-

data on attribute values. We designed four herald-driven SQO techniques
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that, once applied, guarantee performance gains. We proposed a lightweight

constraint reasoning algorithm based on classic satisfiability theory to ef-

ficiently identify optimization opportunities at runtime upon the receipt

of heralds. To optimize the resource usage in supporting multiple con-

current SQO plans with different yet overlapping scopes, we proposed a

novel query execution paradigm that employs data partitioning and multi-

modal operators to achieve multiple logical plans with one single physical

plan. Our extensive experimental study confirms that our herald-driven

optimization techniques help to significantly reduce query execution time.

In the third part of this dissertation, we proposed the notion of Parameterized

Streaming GroupBy query template (PSGB template) that represents a poten-

tially infinite number of groupby queries (i.e., PSGB queries) to be instanti-

ated at runtime by user requests. We designed the PSGB operator to achieve

shared execution of all PSGB queries instantiated from a PSGB template.

This way the memory for maintaining the groupby state and the CPU time

for organizing the groupby state to facilitate the construction and retrieval

of groups can be shared among all these PSGB queries. We defined the

index tuning problem for pull-based continuous groupby operators. We

described the adaptive index tuning process that includes three key oper-

ations – index configuration, index evaluation and index migration. We

employed a lightweight index structure, namely IMP index, that can be

configured to benefit various frequent query patterns. Also, it is easy to

migrate. We proposed algorithms for selecting the IMP index configura-

tion that achieves the minimum or close-to-minimum processing cost for a

given workload. We conducted an extensive experimental study in a con-
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tinuous query system. Our experiment results validated the effectiveness

of our index selection algorithms and index tuning approach.

In the fourth part of this dissertation, we extended our vision on constraint-

exploiting stream query processing to the area of complex event processing

(CEP) where events arrive to CEP system as high speed streams. We pro-

posed to exploiting constraints to optimize CEP by detecting and termi-

nating the unsatisfiable query processing at the earliest possible time. We

abstracted our problem into a query unsatisfiability problem. We formally

defined runtime query unsatisfiability (RunSAT) problem and its extreme

case, static query unsatisfiability (SunSAT). We then studied the incremen-

tal properties of the RunSAT checking procedure, which includes two key

operations, dynamic constraint derivation and RunSAT reasoning. Based

on the incremental properties, we described a solution to pre-compute the

query failure conditions by employing abductive reasoning. We also pre-

sented a constraint-aware CEP architecture that integrates our proposed

techniques with state-of-the-art CEP techniques. We showed an extensive

experimental study based on online order processes. Our experimental re-

sults on sequence, AND queries demonstrated that significant performance

gains can be achieved through our approach, while the optimization cost is

small.
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Chapter 32

Ideas for Future Work

This chapter discusses several future work topics that are important for

constraint-aware continuous query processing. In particular, the topics for

future work include: 1) punctuation-aware memory management, 2) han-

dling probabilistic punctuations, 3) punctuation generation, and 4) han-

dling more complex constraints in CEP. In the following, I will discuss is-

sues and possible solutions for each of these topics.

32.1 Punctuation-Aware Memory Management

Given dynamic constraints such as punctuations, optimizations of memory

utilization in different aspects are possible. The techniques proposed in this

dissertation focus on equipping the operators with the ability to efficiently

identify and then purge no-longer-needed data from their states. Punctua-

tions can also be exploited for optimizing the memory allocation and state

spilling and prefetching, as detailed below.
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32.1.1 Punctuation-Aware Memory Estimation

With punctuations, operators may no longer maintain unboundedly grow-

ing state even when input data streams are potentially infinite. [72] pro-

poses the technique for identifying whether a continuous join query can be

safely executed under a given set of punctuation schemes. However, an

even more important issue, i.e., how to estimate the memory needed for

executing a safe query with regard to a given set of punctuation schemes,

remains unexplored in the literature. The problem is important because

only when we know the memory needed by each stateful operator in the

query plan, can we intelligently allocate memory to the operators to best

achieve optimization goals on memory usage and query throughput.

The memory estimation needs to take into consideration at least four

factors, i.e., data arrival rate, data distribution, punctuation arrival rate

and punctuation distribution. Data arrival rate determines how fast the

operator state grows while the other three factors determine how much the

operator state can be shrunk. Together these parameters can be used to

estimate how much memory is needed for each stateful operator.

The problem is difficult problem due to the unknown and changing

nature of both data and punctuation arrival patterns. Accordingly, the fol-

lowing issues need to be addressed. First, an estimation method (formula)

needs to be designed. Second, a statistics collection technique is needed to

gather the runtime statistics used by the estimation method. The technique

should be lightweight yet efficient such that high-quality statistics can be

gathered in a timely manner with low cost. Third, an adaptive framework
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is needed to adaptively tune the estimation based on the fluctuations oc-

curred at runtime.

32.1.2 Punctuation-Aware State Spilling and Prefetching

In typical cases, the stream query system will experience large numbers of

concurrent queries and fast-arriving data streams. Therefore, the available

memory is usually not enough to hold all the operator states. To guaran-

tee the exact query result, some data in the state must be moved to the

secondary storage such as the disk. Since I/O operations are much more

expensive than the in-memory execution, it is desired that the hot data,

i.e., the data that will be used next, stay in memory while the cold data is

flushed to disk and is fetched back later when they become hot.

Punctuations can be used to identify hot data and cold data since it

signals what attribute values will or will not be carried by the incoming

tuples. Using an equi-join over streams S1 and S2 on attribute A as an

example, if a punctuation arrives from stream S2 saying that the next 5000

tuples will only have A>2000. Then all tuples with A≤2000 in the state for

stream S1 can be flushed to disk since they will not be useful for evaluating

the next 5000 tuples from S2. Accordingly, tuples from the S1 stream with

A>2000, if having been flushed to disk before, should be fetched back to

memory since they become hot now.

To realize punctuation-aware state spilling, the following issues need

to be addressed. First, a mechanism for efficiently identifying hot and cold

data, such as lightweight yet efficient index, is needed. The construction

of the index should take punctuation types into consideration, e.g., ranged
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punctuation or set punctuation, positive punctuation or negative punctu-

ation, etc. Second, the on-disk state organization method is needed to ef-

fectively organize data on disk so that they can be efficiently located when

they need to be fetched back to memory. In terms of queries with win-

dow specification, the data on disk need to be purged appropriately after

they expire from the window. Third, the prefetching strategy should be

designed to timely and efficiently fetch the hot data from disk without af-

fecting the query execution.

32.2 Handling Probabilistic Punctuations

So far the existing work related to punctuations only considers exact punc-

tuations, i.e., punctuations signaling exact information that is taken to be

always correct. Such punctuations can only be obtained from a limited set

of applications. In many cases, the query systems has to derive punctua-

tions by themselves, as will be discussed in the next section (Section 32.3).

The generation of exact punctuations need to buffer and preprocess the

data, which incurs preprocessing costs and may affect query responsive-

ness. A more lightweight solution for generating punctuations is to use

sampling. However, punctuations generated by sampling can no longer

be exact, but rather they can only be probabilistic. For example, a punc-

tuation may announce that “the next 5000 tuples will have A>2000 with

probability of 85%”. Given such probabilistic punctuations, none of the ex-

isting techniques are applicable. Therefore, an interesting future topic is

to design and develop efficient query optimization strategies that exploit
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probabilistic punctuations and provide guarantees on the precision bound

of the approximate query answer.

32.3 Punctuation Generation

Another important topic to be explored is the generation of punctuations.

Punctuations can be generated either by the data source providers, or by

intermediate devices in network, or by the query processing system itself.

The applications may be configured to produce punctuations based on cer-

tain rules. For example, the online auction application can be instructed

to append a punctuation to the Bid stream whenever the corresponding

auction is closed. However, this imposes all responsibility for generating

punctuations to data sources. From the query system perspective, it’s less

controllable. It can also be inefficient since applications may pay significant

expense to generate many punctuations that are not useful for query exe-

cution. This not only increases network burden but also introduces more

punctuation processing overhead to query operators, which is undesirable.

A more promising method that could be explored is for the query sys-

tem itself to derive punctuations. The query system can derive punctua-

tions in two ways, by sampling data or by pre-processing data. The punctu-

ations derived by sampling are probabilistic punctuations. To derive exact

punctuations that can be exploited by existing techniques, a preprocessing

method must be used. For example, a query system can employ a buffer

to periodically buffer the input data. Then the buffered data are sorted or

partitioned based on the needs of query processing and punctuations are
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generated with attribute value information. Heartbeat [86] is an example

of generating punctuations about timestamp using buffering.

There exists a tradeoff between data buffering and query response time.

The more data get buffered, the punctuations with longer lifespan can be

generated, which therefore reduces optimization overhead. However, this

may affect query responsive time, which is very important for stream ap-

plications. The punctuation generation mechanism needs to deal with this

tradeoff appropriately. In addition, the overhead for preprocessing the data

shouldn’t outweigh the benefit that it brings for query processing. That

is, the punctuation generation mechanism should intelligently determine

which attributes to generate punctuations for. That is, it should only gen-

erate punctuations that can be used to significantly reduce memory usage

and/or increase query throughput.

32.4 Handling More Complex Constraints in CEP

In this dissertation, we considered a core set of event constraints. That is,

the failing conditions derived from these constraints involve only a single

event type. While these are the most common event constraints in our tar-

geted applications, other more complex constraints may also be very use-

ful. For example, we may have an event constraint such that if events A

and B both occur, event C will not occur. Hence for an event query that

requires the occurrence of event C, we can monitor the co-occurrence of

events A and B as failing conditions for this query. This is not covered by

our existing work though.
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For general occurrence and order constraints, some failing conditions

may involve more than one event type. The cost of monitoring these failing

conditions is no longer constant and could be very expensive. Therefore,

unlike our existing work that exploits all possible failing conditions, a cost-

based optimizer is needed to identify the most beneficial failing conditions

and apply them.
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