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Abstract

BNP Paribas requires a high volume of calculations in order to support its front office. In
order to perform those calculations in a more efficient way, BNP Paribas requested the
implementation of a distributed system. The project outcome was a distributed system using the
Oracle Coherence framework, utilizing .NET as the main development framework. The structure

provided a flexible system of task distribution to be implemented at BNP Paribas.
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Executive Summary

BNP Paribas in New York is a firm that requires a high volume of calculations in order to
support its front office. These calculations can range from profit and loss analysis to risk analysis
to pricing of exotic financial instruments. Currently, these computations are executed locally or
handled using task-specific servers, and are often controlled manually. In addition to this, the
reliance on specifically created servers and applications makes extensibility of the system to
incorporate new products difficult. Furthermore, this current system of individual servers is not

fast enough to keep up with the future needs at BNP Paribas.

The solution to the problem facing BNP Paribas was to consolidate all tasks into a single
system. The approach to this solution was through the use of a distributed cache system, one that
was capable of processing all calculations given to it in a timely manner. Implementing this
solution allowed BNP Paribas to move away from its previous design of having numerous task-
specific servers, and instead have all servers capable of performing any calculation when asked.
This implementation meant a great improvement to the speed, extensibility and consistency of

their computation system.
Project Goal

The goal of the project was to have a functioning prototype of an Oracle Coherence cache
system that could serve as a proof of concept for the use of such a system at BNP Paribas to
manage a varying number of tasks from a varying number of clients in a distributed fashion. Two

main objectives were established to achieve this goal:



1. To create an Oracle Coherence application capable of computing any given task. We
created and configured this system, which was able to compute tasks in Java and .NET in

a distributed fashion. The system created needed to have the following characteristics:

e Reliability: The system needs to be stable, and errors should not have any

negative consequences on the system itself

e Transparency: Clients don’t have to worry about the system or the computation
process. New features or applications added to the system do not have any

consequence on the system.

e Scalability: The system needs to be able to handle large amount of users, server

and task at the same.

e Monitor: The system needs to be able to keep track of the progress of the

calculations and the performance of the calculation.

2. To implement two applications used daily at BNP Paribas into the Coherence cluster
implemented. This goal was accomplished in order to demonstrate that Coherence cluster
created could handle any giving work in distributed fashion and be more efficient that the
system currently used. Two graphical user interfaces for two different applications were

implemented in order to accomplish this goal:

e The first application implemented was PolyPaths, which is a fixed income

analytics application (PolyPaths, 2010).

e The second application implemented was Westminster, which is a market

scenario engine.



Results

The outcome of the project was a comprehensive distributed system with the ability to
extend to varied performance requirements. This implementation not only met the objectives of
the original goal of the project, but also succeeded in improving the performance as compared to
the existing system. Together, these accomplishments contributed to a well-rounded framework

that was inherited by BNP Paribas to improve the current implementation.

Vi
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1 Introduction

Rapid, up to date analysis of market data is absolutely vital to the success and
profitability of any investment firm’s trading operations. BNP Paribas in New York is a firm that
requires a high volume of calculations in order to support its front office, which handles its high
number of portfolios and transactions. All of these calculations have to be handled as efficiently
as possible, whether they are small problems with only a few calculations, or large batches of
algorithms that may take hours to complete. These tasks can range from profit and loss analysis,
to risk analysis, to pricing of exotic financial instruments; all of which are crucial to supporting
the profitability of the traders, as well as the monitoring of management. Prior to this project,
these computations were executed locally or handled using task-specific servers, and were often
controlled manually and did not provide the most up-to-date estimates. In addition to this, the
reliance on specifically created servers and applications made extensibility of the system to
incorporate new products difficult. Furthermore, the existing system of individual servers was

too inconsistent and not fast enough to keep up with the future needs at BNP Paribas.

The solution to the problem facing BNP Paribas was to consolidate all tasks into a single
system. One approach to this solution was the use of a distributed cache system, one that was
capable of processing all calculations given to it in a timely manner. Implementing this solution
allowed BNP Paribas to move away from its existing design of having numerous task-specific
servers, and instead have all servers capable of performing any calculation when asked. This
implementation meant a great improvement to the speed, extensibility and consistency of BNP

Paribas’ computation system.



For the project, this solution was implemented by the use of a distributed cache
framework based upon the Oracle Coherence product. The reason for the selection of Coherence
was that it provides a very stable framework to build upon. This framework is highly scalable,
has no single point of failure, and is optimized for fast distribution of data and tasks throughout
its cluster of services. All of these features made Oracle Coherence an ideal solution to the
problem facing BNP Paribas. It was used to effectively overcome their issues regarding
consistency and speed of vital calculations that support the front office and managerial office

operations.



2 Background and Literature Review

In this chapter we begin by explaining in more depth the principles of the technologies
we implemented. Second, we describe the Oracle Coherence framework, along with its features
and its advantages over other technologies. In addition, we touch base on the Coherence
Incubator projects and the Processing Pattern project, which is an application for Coherence that

provides the functionality of distributing work among the nodes in the system.

2.1 Distributed Cache

In order to get a more accurate definition and better understanding of distributed cache
systems, it is important to take an overview and define the terms “distributed systems’ and
‘cache’. A distributed system consists of a computer network containing multiple nodes, where
each node interacts with other nodes (Khan, 2009). A great example of distributed system is
parallel computation, where a large calculation is broken into smaller calculations and the
smaller calculations are then distributed between the nodes to compute the result. The principle
of cache is used to increase the performance of a data storage center by allocating a cache
memory which contains the data that is most likely to be accessed in the system; this process
reduces the 1/0O overhead in the system. Combining both principles, we get a distributed cache
system, which is a form of distributed system, which allows multiple machines to share a cache
memory in order to increase the performance of the system. The main purpose of a distributed
cache is to provide a scalable solution in order to maximize the performance of any application

that constantly requires data.



2.2 Oracle Coherence

This section focuses on the last release of Oracle Coherence 3.6 as well as its features and
usage. The Oracle Coherence framework is a distributed cache framework that is based upon the
Coherence Data Grid, developed by Tangosol Inc. in 2006 (Oracle Coherence, 2010). One year
later, Tangosol Inc. was formally acquired by Oracle (Ledbetter, 2007), and Oracle launched the
project under the name of Oracle Coherence. Oracle Coherence has become a popular solution

for businesses over the years due to its reliability, consistency and scalability.

Being a distributed cache system, Oracle Coherence provides the capability for an
application running on a machine to use the memory of other machines in the cluster as if it were
local memory. Oracle Coherence uses a peer-to-peer clustering data protocol. The usage of such
protocol while sharing data greatly increases the performance compared to protocols based on
central servers. Also, by not relying on a central server, the peer-to-peer protocol benefits in case
one of the nodes malfunctions. The Oracle Coherence framework was developed in Java,

however clients and servers of Coherence are supported in Java, .NET and C++.

The Oracle Coherence framework provides a large amount of features which make the
framework reliable, consistent, scalable and very powerful. The peer-to-peer protocol and the
storage implementation used by Oracle Coherences allow fast access to frequently used data in
the system. Another important factor is that it supports instantaneous data management, which
provides cache management in real time. In addition, Coherence provided a scalable solution that
was very suitable for the project, since the project sponsors were planning to expand this
technology over the following years. Furthermore, according to Oracle, Coherence provides an

exclusive system for failures that Oracle describes as not having any single point of failure



(Oracle Coherence, 2010). Should a node become unresponsive or nonfunctional, the system
provides the ability to redistribute the data on the cluster. In addition, new nodes and nodes that

disconnect or restart are able to automatically join the cluster.

On top of Coherence’s reliability and consistency, Coherence offers its own serialization
library named Portable Object Format (POF). The POF library is used to encode objects into
binary form in order to move them around the cluster. One of the advantages of using POF is that
it is supported in the Java, .NET and C++ frameworks. According to Oracle, the POF
serialization or deserialization can be up to seven times faster, and the binary result down to one

sixth the size compared the standard library offered by Java (Arliss, 2009).

Analysis of the multiple advantages and features that Oracle Coherence provided a better
idea of why BNP Paribas wanted to implement the Coherence framework into their systems.
Oracle Coherence provides a unique technology that has become more popular over the past

years due to the solutions it offers.

2.3 The Coherence Incubator

The Oracle Coherence Incubator offers a repository of different projects. These projects
provide multiple solutions for some common design patterns and functionalities using Oracle
Coherence (Misek, Coherence Incubator, 2010). In simpler terms, the Incubator is a set of
applications for Coherence. All of the projects in the Incubator are distributed as source code and
JAR files, which provide great flexibility for developers. The Processing Pattern is a project in
the Incubator, which offers an extensible framework for performing distributed computing using

Oracle Coherence.



However, the projects in the Incubator are only supported by nodes inside the cluster and
Extend nodes written in Java. According to one of the main developers of the Incubator’s
project, in the near further Oracle will provide the ability to support Extend nodes written in

.NET and C++ (Fahlgren, 2010).

2.4 The Processing Pattern

As mentioned previously, the Processing Pattern is an application for Coherence,
developed by Oracle; its main purpose is to compute tasks among the nodes in the system. The
Processing Pattern uses three different Coherence caches to communicate tasks and results
between nodes. The first cache is used by clients and allows them to submit tasks into the
Coherence cluster; this cache is named the ‘SubmissionsCache’. The dispatcher, which is inside
the Coherence cluster, reads the ‘SubmissionsCache’, and posts the tasks into another cache
named the ‘DispatchersCache’. This cache is then read by one of the nodes in the list of
registered nodes that can execute the tasks. The tasks are executed in those nodes, where each
task is executed in a different thread. The thread pool of each processing node is defined in the
configuration of the nodes, and it allows configuring the number of threads running on each
node. Once a task is complete the result is returned to the client via a ‘SubmissionResultCache’

and retrieved by the client using a unique task ID.

The Processing Pattern handles the task distribution between the processing nodes. In
order to distribute the tasks the Processing Pattern provides three different policies: “Round
Robin”, “Random” and “Attribute Matching” (Misek, Processing Pattern, 2010). The three
different policies offered by the Processing Pattern provide a very flexible task distribution

system. Should the case be that all processing nodes are busy and there is a new task to compute,



the Processing Pattern puts the new task on “wait”, which makes the task wait until one

processing node is available.

As part of its flexibility, the Processing Pattern provides different features for the tasks
that have been submitted. One of the most noteworthy features is the ability to cancel any task at
any given moment. In order to complete this, the Processing Pattern removes the task and the
task’s listeners from the corresponding cache(s), and then the processing node stops the process
running that task. In addition, the Processing Pattern has the capability of pausing and resuming

tasks.

Furthermore, the Processing Pattern handles errors without any consequence on the
system itself. In case a task fails while executing for any given reason, the outcome of the task is
returned as an exception; this allows the user to find the reason for the failure. Another possible
scenario is that a processing node disconnects from the Coherence cluster while computing a
task. In this case, the Coherence cluster gets notified that the processing node has disconnected,
and the Coherence cluster takes care of redistributing the tasks among the other processing

nodes.

All of the previous capabilities mentioned are crucial for the reliability and stability of the
system. However, as mentioned in the previous section, the projects in the Incubator are not
supported by .NET or C++. The solution to this problem was to set up a JNI bridge between Java

and .NET.

2.5 JNI Bridge

Jni4net is an application that provides the ability to create a bridge between Java and

NET (Savara, 2009). This bridge provides the capability of wrapping Java or .NET code and
7



calling it from either Java or .NET. The application takes a library, either a Dynamic-Link
Library (DLL) or a Java Archive (JAR), as an input and then the application automatically
generates an interface for each of the classes specified in the library. Once this step has been
completed, the application builds the generated classes and it outputs a library (DLL or JAR),
which can be used as a normal library in either programming language. In order to access the
generated libraries, the developer needs to establish the connection between the proxy and the
program. This process is very “light” since both virtual machines use the same process. One of
the main advantages is that the jni4net allows having a total object oriented design between both

programming languages.

Jnidnet still is in Alpha phase, however, and is an open source project which has some
limitations handling both programming languages. One of the most notable limitations is that the

application cannot handle multi-dimensional arrays in any programming language.



3 Requirements Specification

The goal of the project was to have a functioning prototype of a Coherence cache system
that could serve as a proof of concept system. Furthermore, the use of such a system at BNP
Paribas needed to manage a varying number of tasks from a varying number of clients in a
distributed fashion. At a minimum, the hope was to have a final product capable of coordinating
the distribution of tasks from clients to servers through the use of Coherence as a middleware
product. The connection from client to server via the Coherence Cluster allowed the passing of
work, with the client having the ability to monitor its progress and be notified of completion.
Furthermore, it was vital to the project that the system was capable of executing both in a Java as
well as .NET environment. This requirement was necessary in order for the system to be able to
integrate into the already existing frameworks and operations at BNP Paribas. It became
necessary to design and create a simple, yet powerful, application that could be used as a tool to
demonstrate the capabilities of the system. This application’s purpose was twofold: it not only
facilitated demonstration of the efficiency and ease-of-use of the final product, but also provided

sample code that would be a base to expand upon by the employees at BNP Paribas.

3.1 The Processing Pattern Implementation

The Processing Pattern needed to be tailored specifically to fit the requirements. The

elements that were developed were:
e Establishment of the core cluster nodes
e Use of Extend proxies

e Configuration and instantiation of servers



e Creation of tasks to operate on the system

Each of these pieces of the overall processing pattern were developed individually, but

were ultimately combined to create a system that achieved all of the goals for the project.

It was vitally important to the project to be able to establish a level of communication
where tasks could be delivered to the server for processing and returned upon completion.
Through the use of features within the Processing Pattern, this was accomplished by moving the
processing workload away from the client, which was only notified when its requested
calculations had been completed. In doing so, the overall overhead related to Coherence handling
the communication between client and server was kept to a minimum, as little to no direct
interaction was necessary aside from sending a task and relaying results. In the scope of this
project, the Coherence Cluster was implemented in such a way that moved the task processing

nodes outside of the cluster.

Moving the communication capabilities of both client and server outside the Coherence
cluster necessitated the use of Extend proxies. The reasoning behind this is that although the
Coherence cluster is capable within an isolated network of containing all actions performed by
client and server, this functionality is not available to systems that need access over Wide-Area
Networks or personal computers (Howes, 2009). However, the configuration and usage of such
proxies provided the cluster with listeners to specific ports, allowed for both clients and servers
to communicate transparently to the cluster, regardless of physical location. Ultimately, these
Extend proxies were implemented by having designated ports and proxies, one each for both

client and server communication, which are automatically connected to the cluster. This decision

10



also resulted in another framework feature: the use of Single Task Processors set up on dedicated

server nodes.

By default, the Processing Pattern comes equipped with the functionality to handle task
execution in two places, within the grid through ‘Grid Task Processors’, and outside of the grid
though the use of ‘Single Task Processors’. While ‘Grid Task Processing’ allowed for server-
side computation to take place on any grid node that is storage-enabled, it was not capable of
functioning through the use of Coherence Extend. On the other hand, ‘Single Task Processing’
was implemented as it could handle processing outside of the cluster through connection by
Extend proxies. However, it needed to be individually instantiated on each server that is to take
part in processing. In order to do so, customized XML files that contain the instructions on how
to use the Coherence libraries were used. Furthermore, these configuration specifications also

declared the type of tasks that could be processed on a server.

In order for any server to be able to handle executing a task, the server needed to be able
to understand how it was structured. In particular, instructions about how the task data and
results are serialized and deserialized were stored within the task’s Java class file, which was
referenced in the configuration for servers as well as members of the cluster. This allowed for
application-specific tasks to be written, ultimately being integrated into the distributed cache as a
whole. After a task had been written, however, the necessity of managing the execution of each
task that was invoked was handled within the cluster, and did not require client action outside of
providing data upon which to calculate. This framework was crucial to making the system as
adaptable as possible as well as reaching as a wide scope of potential applications used at BNP

Paribas.

11



3.2 Using Algorithms to Distribute PolyPaths Effectively

In order to speed up the rate at which a task could be processed on the Coherence cluster,
it was necessary to break it into subtasks. This is because submission of a single task to compute
a given number of securities is not as quick as numerous submissions, each with a piece of the
overall task, which are recombined later. This was a difficult challenge, as in order to achieve a
good performance considerations had to be made for the overall complexity of the task, the
composition of individual securities to be calculated, and the number of servers that were
available to work. Furthermore, there was a substantial startup cost to operate PolyPaths under
some circumstances for certain security types. This startup cost involved loading a large amount
of static data and was shared for all securities of a certain type. Therefore, handling each security
individually was far from efficient, when securities of similar cost could be grouped for a
fraction of the overall cost. Fortunately, PolyPaths was well suited to subdivision, as multiple
instances could be instantiated asynchronously, each with their own unit of work to calculate. A
full analysis of the metrics of algorithm performances can be found in Section 5. Nonetheless,
the following sections are a breakdown of the structure of the algorithms from a functional

standpoint.

3.2.1 Common Overhead

In the project’s implementation of an application to run PolyPaths, several algorithms and
methods of work distribution have been developed and tested. While each of these
methodologies has unique components, they also share a common pattern of how to divide and

merge the subtasks in a submitted task.

12



Initially, each uses an object that is written to read through the input file, whether in
XML or CSV format, and parse the information contained therein about securities into memory.
Next, a database of securities at BNP Paribas is queried to find out what type of security each
individual security is. This information is logged for every security, and is indicative of the
expected complexity to calculate it. From this type, an estimate of the complexity both of
PolyPaths overhead by security as well as an estimated calculation time for the security are

stored.

Once the data for individual securities has been calculated, any given algorithm can be
used to group securities into subtasks. The next step is to write temporary input files, each with a
respective task’s assigned securities. Once these have been created, the subtasks are ready to be

sent to the Coherence cluster.

Each subtask is sent as an individual task to Coherence, which is passed on to the servers
for computation. Once the subtasks receive word that all have been completed, they are then
merged into one output file. Internally, all of this is repeated consistently, varying only in what

type of algorithm is used, which decides how securities are grouped into subtasks.

Over the course of the project, five algorithms were produced, each of which can be
modified, and each of which perform to different degrees. The algorithm that performs the well
over all instances is the ‘Limited Complexity’ algorithm, which groups tasks into subtasks each
with a maximum allowable time to completion. Other algorithms take different approaches, such
as ‘Limited Number of Tasks’ and ‘Limited Number of Tasks, Average Complexity’ which
control how many subtasks a task is divided into. Furthermore, an algorithm was developed to

group securities into tasks by the type of security they are, an effort to maximize the sharing of

13



startup costs. Lastly, a simple algorithm was developed to split each security into its own
subtask. Each of these methods of task distribution was tested over numerous different tasks and
environments, with each performing well in certain circumstances. The algorithm that provided
the most consistently efficient performance, however, was ‘Limited Complexity’ with a

predefined means of finding the maximum complexity per task.

3.2.2 Limited Complexity 1225
One of the best performing algorithms ,, 1ooo 899
. . . é 632
used to distribute work on the serversis to create & ., 417
193
subtasks that have a limit on their individual
0
complexity. This is accomplished first by sorting L
1000
.- . . . 845
the securities in decreasing order by complexity. 8 697
§ 507
Next, the most complex security is added to the @ 500 | |
210
current subtask, provided that doing so would not 0 |
122
go over the defined limit. Preference is given to 100 o6
securities of the same type as are already present % 5
& 50 43
within a subtask, in order to share in startup . I
overhead. This common overhead cost can be seen I s 50 s 100
Quantity
in Figure 1, where three types of securities, when Figure 1 — Performances for Differing Security Types

calculated, have a specified baseline cost to run the calculation. Failing at using a similar type
security, any other type can be viable, provided that it falls within the complexity limit. If no
security can be found to fit within these constraints, a new subtask is dynamically created and the

process continues with the new subtask. In this manner, a task can be broken into a relatively

14



small number of subtasks that incur low startup costs and take approximately the same time to

complete.

Furthermore, in order to strike an effective balance between minimizing task costs and
overreaching the capacities of the server farm, an improvement upon this algorithm was
developed that effectively provides a sliding scale of complexity limits that is related to the
number of securities to be calculated. This system starts off with a small grouping complexity for
small tasks, which helps to prioritize small requests to finish as rapidly as possible. For larger
tasks, a gradually increasing cap on the complexity is imposed, which helps the subtasks grow
gradually to account for the growing complexity while avoiding over or under grouping.
Utilizing this approach, an algorithm was derived that proved itself to perform well under all

circumstances tested, both for very simple tasks as well as for quite complex tasks.

3.2.3 Limited Number of Tasks

A straightforward yet effective algorithm to distribute the work into subtasks is to simply
distribute each security evenly. In this algorithm the list of securities are iterated through and
distributed to the set number of subtasks in a round robin fashion, with no regard for the
expected complexity of each security. In practice, this method tends to perform reasonably well,
as when the securities are randomly distributed they tend to develop tasks with approximately
average complexities. However, this method’s pitfall is that there is no guarantee of good
distribution, and with no consideration of complexity for each security, it is very possible for a
large number of complex securities to be put into a single subtask. Therefore, while in most
situations this performs well and operates quickly, certain circumstances could lead to great

inefficiencies in task distribution.
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3.2.4 Limited Number of Tasks, Average Complexity

Another algorithm was developed that performs similarly to a straightforward limited
number of tasks method, but additionally considers the weights of tasks in deciding how to
distribute workload. This was accomplished by evaluating the complexities of all securities, and
then sorting the list of them in descending order of complexity. Once this is done, they are
distributed into the predefined number of bins in a modified round-robin fashion. The
modification is to distribute them iterating up the list of subtasks and then distributing down the
list, rather than always in an increasing manner. Doing so prevents the early tasks from always
being given the more complex securities, and provides a more homogeneous weight in each
subtask. This improves upon simple sorting of securities without consideration for their
complexity, as it helps to avoid unexpected conditions where subtasks are poorly balanced.
However, this system does little to consider the wastage generated from redundant startup costs

across tasks, as it will lead to similar securities being distributed widely across subtasks.

3.2.5 Group by Security Type

Grouping the securities into subtasks based upon the type of security they are was found
to be quite effective, and maximizes sharing of overhead costs. This is achieved by iterating
through the list of securities, keeping a list of types that have been encountered up to that point.
This list also stores which corresponding subtask is being used to store a certain security type,
and can be used for sorting securities that belong to already-encountered types. If it encounters a
new type while iterating, it dynamically creates a new subtask, which is reserved for the new
security type. This method performs well for small and medium size batches of securities, and

keeps a low startup cost regardless of batch size. However, larger batches may result in single
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tasks that contain hundreds of complex securities, and will perform quite poorly under these

circumstances.

By additionally limiting the size of subtask, this algorithm was improved to address the
issue of poor performance with heavy tasks. This was done by establishing a defined limit on the
size of any task. The algorithm then performs very similar as to without the limit, however it
keeps track of the growing size of subtasks as they are built. If at any one time a subtask would
be overloaded by adding another security, this security is instead added to a new subtask and all
future securities of that type enter the new subtask. This improvement to the algorithm allows for

flexibility to provide high performance across a wide band of task sizes.

3.2.6 Individual Security Tasks

The algorithm that merely divides each security within a task into a subtask can be
effective if the number of securities is very small, but otherwise is highly inefficient and
burdensome to the cluster as a whole. The delay of writing and reading temporary files for
subtasks is small in most circumstances, but the latency to build and write these files is
substantial when this is done for a very large number of individual files. Furthermore, if the
number of tasks exceeds the number of available nodes on the server, the excess tasks will be
queued until other subtasks finish. This latency both slows the outcome dramatically as well as
inhibits other tasks from different users from being processed in a timely fashion. Therefore,
splitting securities into individual tasks is best reserved for small batches of only a handful of

securities, where expediency is desired and is possible without overloading the servers.

17



4 Results

4.1 Coherence Cluster

In developing the Coherence cache product for BNP Paribas, it was especially important
to ensure that the final product met the original requirements of the project. In particular,
considerations were constantly made to ensure that the cache was extensible, efficient, and able
to be closely and constantly monitored. Doing so required not only a focused interpretation of
how each piece of the puzzle was to operate, but also a broad realization that all pieces had to fit
perfectly together and work in harmony to achieve the goal. Among the many minute

considerations to be made were some large interactions to consider, such as:

e How the cluster itself was to be designed

e How the clients and servers pass data through the Coherence Cluster

e How to make the cluster easily extensible to suit any necessity

e How to harness and control the tasks that are sent through the system and monitor

them appropriately

e How to make the end product be flexible enough to apply to a broad range of

applications

In completion, all of these features were interwoven into a system that achieves the initial
objectives effectively, and provides a strong demonstration of the Oracle Coherence cluster in

action.
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4.1.1 Core Structure

The internal design of the Coherence cluster was the core of the project that was to be
built upon. The initial concept for the design of the cluster was predicted to be very simple and
straightforward, however the ultimate development proved to be quite complex. The foundation
for the Coherence cluster is the ‘Dispatcher’ nodes that reside within the cluster. These took the
form of Coherence cache servers that are instantiated in such a way as to persist and
automatically join other members of the cluster. Within the framework, their core responsibility
is to negotiate the distribution of work to connected servers, as well as monitor progress and
relay messages regarding completion. Even though these nodes can be configured to distribute
work in several different manners, the usage chosen for the project was to provide a round-robin

distribution of work to all servers, effectively balancing the workload amongst the server farm.

In addition to the dispatchers, the Coherence cluster also was designed to incorporate the
use of two Extend proxies. These proxies resided in the cluster, but on the fringe. Their purpose
was simply to allow points of communication both on the server side as well as the client side.
Due to the necessity to operate in .NET as well as to operate in a distributed, non-local network,
these proxies were required to contain the cluster locally yet still allow communication to either
side of the work distribution. Similar to the dispatchers, these proxies were lightweight and

instantiated to persist and connect to other nodes within the cluster.

This final design approach for the core of the Coherence cluster creates a fully functional
approach that allows for a wide variety of operations to pass through the cluster. Furthermore,
from a design perspective, this allowed for the entire cluster to be thought of as one monolithic
entity, with just one access point for the client and another for the server. This created a generic
implementation that is more readily extensible to other applications.
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4.1.2 Client Structure

In this project, the structure of the client was extremely straightforward and of minimal
size. Each client obviously must have some means of communicating to the cluster, which was
handled by using a coherence JAR file structured to handle access to the appropriate proxy. With
this connection established, the core features of the task submission were to submit the task to
the cluster, and to wait for the response. Both of these were provided by Coherence, and in fact
only the submission was required, as tasks were able to be submitted without concern for
feedback if desired. Both submission and reception allowed for a significant amount of transferal
of data, which was still feasible through the current implementation. Although both applications
that were developed in the course of this project primarily used shared files for communication
and had relatively small amounts of data transfer directly, the functionality for more data transfer

directly through the cluster was still provided.

4.1.3 Server Structure

The structure of the servers in the overall implementation was simple and shares some
characteristics of both the clients and the cluster itself. As with the client, servers connected to
the cluster through a proxy connection reserved for such use, and needed no more setup in order
to participate in calculations. However, the servers were instantiated in much the same way as
the units of the cluster were started: via simple execution scripts that were based on Coherence
configuration files and remained active indefinitely. As far as the actual task execution that takes
place on the server was concerned, a simple class that inherited the ‘Resumable Task’ interface
from Coherence can be used by a server, and was included in its running environment through a
simple configuration file. This allowed for servers to be easily extended in order to execute any

desired calculations.
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4.1.4 Monitoring and Feedback

As monitoring and the overall accessibility of information about tasks as they are
executing was of high importance to BNP Paribas, specific considerations were made to bring as
much transparency to these aspects as possible. From the client perspective, an application was
given the capability to view the status of any submitted task, as well as specific metrics as to the
progress within. Also, the ability to terminate tasks before completion was also accessible to the

client, which provided important features related to controlling the overall execution.

4.1.5 Extensibility

In designing the project framework into the final iteration that was delivered, several
features made the system particularly extensible. Firstly, with concern to extending the size of
the cluster and of the servers, creation and startup of new dispatchers, proxies, or servers was
relatively simple. This was because of the way in which they dynamically organized themselves,
as well as the means through which redundancy and failover considerations were controlled
within Coherence. Furthermore, during the project a simple script was developed in order to
automatically create a unique ID for any new server that was to join in on handling the workload.

This allowed for next to nothing in startup work in order to add servers to server farm.

Aside from expanding the size of the cluster and server farm, extensibility was achieved
through the constrained points of entry and exit to passing through the Coherence cluster. This
meant that the core within the cluster could remain unmodified, while only adaptors to the
proxies needed to be created for a new operation that was to be handled. This improvement
drastically improved upon development time, allowing new calculations to be run on the system
without the overhead of developing a system that would stand in the place of Coherence for each
new application.
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4.2 Command Line PolyPaths as a Task

A major proof of concept for the prototype Distributed Coherence Cache framework was
to be able to handle the invocation of PolyPaths remotely on servers (PolyPaths, 2010). To
accomplish this, considerations for transparency to the client invoking a task, accessibility of the
data to be used, implementation within the Coherence framework, and efficiency in task
distribution were carefully considered. However, all of this hinged upon the system being
designed in such a way as to integrate easily into the current usage of the PolyPaths functionality

at BNP Paribas.

Before the availability of the distributed computing architecture that is provided by this
project, the primary means by which to perform large volumes of necessary calculations by
PolyPaths would have been executed by a command line operation and performed locally on
each machine. However, this system can create a large load to a single computer, which is
problematic if the computer is a personal desktop used by traders. Also, there are substantial
slowdown costs, as each security must be calculated in sequence, while a distributed system
could share the workload over many processors. The project’s implementation allowed for the
invocation of a client that can communicate tasks to the cluster, with little or no difference in the
complexity of the operation call. Additionally, part of the project’s accomplishment was the
creation of a straightforward Windows Form application that can be used to demonstrate and use
the Coherence Cluster for PolyPaths calculations through a graphical user interface. This
application offered all functionality of command-line calls, as well as the ability to start multiple
calculations simultaneously and monitoring of task progress. In both instances, the task

processing was handled the same way within the structure of the Coherence Cache.
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Within the Coherence framework, the actual implementation of a PolyPaths calculation
request was very simple. A task had been written that simply receives the command like
arguments that would ordinarily be executed on the client’s machine, and instead invokes them
on the server. This simple passing of work allows the task to be loaded on the server processor
instead of the client’s, thereby lightening the load on the client. This task was visible across all
sections of the cluster and servers, and therefore allowed for a very lightweight method of
migrating work away from the client. However, in order to do so successfully still relied upon

the ability for the server to be able to access the input data that needs to be calculated.

The PolyPaths application required access to the data in a compatible form in an input
file. Therefore, in order for the calculations to be moved onto a server that is located on a
computer other than where the files are stored, the system needed to be able to compensate for
this. Fortunately, much of the networking framework in place at BNP Paribas relied on shared
drives for file storage. As a result, any input file or output destination could be used by the
project’s implementation provided that its absolute network path was provided. A benefit from
this was that this system of task passing was very easily distributed over numerous servers to

speed up processing.
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The greatest benefit that the use of a distributed cache for PolyPaths calculation provides
was the opportunity to use the processing power of numerous servers to expedite the valuation of
large batches of securities. In the implementation of PolyPaths that was used within this project,

this was accomplished by shredding the input file into numerous smaller input files, each of

Coherence Cluster \

) . Proxy Dlzpatchen | Proxy ) _

/ Application ; — Servers
| (Polypaths, .
' Westminster) ‘ ) —

Figure 2 — Structure of Flow Data

which was handled individually on different servers. Each file had the necessary input data,
could be calculated in parallel, and was recombined with other files upon completion. This
architecture was located within the client specific to the PolyPaths application, and could easily
be replicated in other clients, provided an understanding of how the target application’s work

could be piecemealed and executed.

Figure 2 is an example of the final structure, including how the layers of the process
appear in Java versus .NET, as well as the interoperability between the two. As can be seen, it is

important to note that the client side makes use of .NET, while the server side remains
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exclusively in Java. Also, both sides share the usage of commonly accessible shared files instead

of using the cluster as a means of passing of data.

4.2.1 WinForms Application Associated with PolyPaths

The culmination of client-side development for PolyPaths was a comprehensive
WinForms application. This application was intended as a demonstrative tool of the power of the
system developed. The complete structure of the completed project for PolyPaths can be seen in
Figure 3. In doing so, a complex yet intuitive interface was developed to exemplify the different
algorithms, different calculation formats, and task monitoring and management options available

to the end user. The resulting product of all features can be seen in Figure 4. Starting from the
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: NET Read Config Files - -

Shared Files

Figure 3 — Structure of the PolyPaths Appli.-c';ation

top left of the window pane, it can be seen that different input and output paths can be specified
for the calculations, and within these options are the choices for both .xml and .csv file formats.

Beneath this is a listing of ‘switches’ corresponding to different data values that are to be
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calculated for the given securities (specific switch names have been omitted from this figure for

confidentiality reasons). Any number of these can be chosen to be run together, or alternatively
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Figure 4 — Example of PolyPaths Application

the box beneath it can be used to directly copy and paste in a specific list of options, allowing for
greater flexibility. Next down are the various methods of grouping as described in section 3, and
also corresponding configuration data may be entered where available. Lastly on the left column
is the output pane, where performance data about the application as a whole may be inspected
and tracked. To the right is the pane allowing monitoring and inspection of the currently
submitted tasks. Within these collapsible lists it can be seen that a particular task may be

inspected with greater granularity to observe what components of it have completed, while also
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being able to easily identify any trouble spots. During the execution, a great deal of data is
available to the user, such as the progress of the task(s) (as visible in the progress column), the
types of securities in each batch (omitted), and the presumed complexity of a task as well as its
actual runtime. Furthermore, tasks may be cancelled directly through this interface by means of
the ‘cancel’ button associated with a task on the right of the pane. As can be seen from the task
in the figure, a cancelled task remains on the list of computations, but is immediately abandoned
on the server, and only remains for informational purposes. Collectively, this application
demonstrates all of the capabilities present both in the core of the Coherence Cache as well as the

adaptation suited to PolyPaths calculations.

4.3 Westminster Coherence Client Application

As a result of proving how fast applications could be incorporated into the cluster, during
our last week of work we implemented a graphical user interface to compute tasks using
Westminster in a distributed fashion. Westminster was an application used by BNP Paribas that
allowed computing market scenarios by inputting a list of parameters for a specific market.
Westminster is an application fully written in .NET and developed by BNP Paribas, which has an

extreme importance on a daily basis for traders.

In order to prove that the cluster was also able to compute tasks written in .NET, and due
to the fact that Westminster had a significant impact on a daily basis for traders, we decided to
implement a Westminster application into our Coherence cluster. The application developed was
programmed in Java to prove that our system was also able to handle both .NET and Java at the
same time, and on the same cluster. In order to implement a Westminster application into our

Coherence cluster, we decided to create a Westminster controller, which we will refer as
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‘Westminster Server Controller’. The Westminster Server Controller’ was based on a wrapper
written as interface in .NET, which called a Westminster application, referred as ‘Westminster

Server’, through the use of the ‘RemoteObject’ library.

Figure 5 represents the design we decided to implement for the Westminster Coherence
Client application. The major difference in the design compared to the PolyPaths application

created was that . .......................................................................................................................... |

: Java i Coherence Cluster \ :
Westminster clients y . [— p“l oy [ i
iy . - | - Servers i
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[ Client \ '
were written in Java, —j H;H ;
RSO ISR i
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Bridge
executed a Java task T Lo, :
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| Shared Files | Controller |
bridge to S NET
P |

Figure 5 — Westminster Coherence Client Design
execute the

task written in .NET. The .NET task calls the ‘Westminster Server Controller’, which takes care
of sending a list of parameters to the “Westminster Server’. Then, the ‘Westminster Server’ takes
care of running the scenario engine with the parameter provided. Once the market scenario has
been created, the output file containing the scenario specification is created on a shared drive

where the user can easily retrieve the file.

As with the PolyPaths application, the Westminster Coherence application allows the
users to monitors the tasks launched. In order to monitor the tasks, the client sets up a listener on
the output file, once the output file is completed by the ‘Westminster Server’, the application was
notified and outputs the total time taken to compute and which machine computed the given

scenario.
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Another key point during the creation of this application was to make a very flexible
environment with different capabilities, so developers can keep implementing the application
very easily and adapt new functionality to the application without major issues. As a proof of
this, our application had two tabs, the first one where the user can launch the creation of a single
scenario with a list of parameters. The second has the capability of taking a CSV file with

different scenarios parameters and generates the different scenarios in a distributed fashion.!

! For confidentiality reasons, we cannot post screenshots of the Westminster Coherence Client

application.
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5 Analysis of PolyPaths Algorithms

In order to more accurately evaluate the effectiveness of different algorithms that were
created to organize PolyPaths calculation requests, as well as to spot room for possible
improvements, all of these algorithms were run numerous times under differing environments.
These benchmarking tests provided useful interpretations of how well a particular algorithm
could perform, as well as gave a point of comparison to determine overall improvement. Figure 6
gives a distribution of performance, measured in overall runtime, of all algorithms and previous
means of calculation over a variety of task complexities. It is important to note that the
‘Command Line’ and ‘Demand Batch’ performances are representative of the two means of
calculation currently in use at BNP Paribas. The rest of the performance distributions, labeled in
green, are the myriad of different algorithms that were implemented. It is important to note that
the ‘Demand Batch’ calculations were executed on approximately 100 processors and the
algorithms used were executed on only 16 processors, yet still outperformed in most
circumstances. (For brevity’s sake and in order to reasonably understand the data, much of the
‘Command Line’ execution was excluded for more complex files. In actual testing, the largest

files were found to take in excess of 2 hours to calculate).
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Figure 6 demonstrates the relative consistency of runtimes throughout the algorithms
attempted, but it was necessary to develop upon a single algorithm to create an algorithm that
would perform reasonably well under all circumstances. This is the ‘Limited Complexity’
algorithm as described in the Methodology section, with a sliding scale for the complexity to be
used. In the next graph, it can be seen how this metric performed in comparison to ‘Demand
Batch’, the best-case means of data generation currently in use at BNP Paribas. As can plainly be
seen, in the event of very large and complex tasks being run, the developed system with
accompanying algorithm can outperform the current implementation in roughly half the time.

This is impressive as this is still being performed on the 16 processors versus the 100 processors

in use
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current method. The poorer performance experienced by the algorithm for some mid-ranged file
sizes can be attributed to this difference in processors in use. If the number of processors within
the cluster were to be comparable, it could be expected for this gap to shrink considerably,

possibly even reversing.

The major outcome of these benchmarking tests of the created algorithms is positive.
When run under comparable features and on identical calculations, the algorithms written in
conjunction with the Coherence cluster developed could reasonably match or outperform the
current implementation, at times by a factor of 2 This comparison can be seen quite clearly in

Figure 7, a comparison between the optimal algorithm chosen and the existing calculation
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methods in use at BNP Paribas. This is a strong indicator that the Coherence cluster can not only
be used as an effective means of having generic distribution of work, but also as a lightweight

platform for powerful distribution algorithms that provide noticeable benefits to BNP Paribas.

6 Further Steps

There are more improvements to the product that could be implemented, so it was
structured in such a way so as to make their later development possible. The primary
improvements that could have been made were to integrate the PolyPaths and Westminster
applications into the systems currently in use, to make the cluster operate as a series of windows
services, to move the algorithms to distribute work into the cluster itself, and of course to
perform calculations for other applications on the system. While all of these would provide their
own benefits to the product, the improvement that BNP Paribas could implement quickest in
order to see performance improvements would be to integrate the system into the current

applications.

Integrating access to the Coherence Cluster into current applications at BNP Paribas
could provide performance improvements with relative ease. These integrations would likely not
use the applications developed during the project specifically for calculation, as these were
merely for demonstrative and testing purposes. Nonetheless, the core concept of the means of
accessing the cache could be transferred quite easily, and transparently implemented in systems
already in place at BNP Paribas. Once this is done, the next logical step would be to help
improve the ease of use of the cluster itself, which would take the form of developing windows

services.
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Windows services, which are applications that persist in the background of a running
operating system, are a perfect candidate for the long-term implementation of the Coherence
Cluster developed. It is probable that windows services would be an ideal implementation of the
cluster, as they provide the simplicity necessary to manage as well as the reliability desired.
Once a reliable and stable server has been established, it would then be feasible to transition the

burden of deciding how to distribute work into the cluster itself.

While the developed implementation where the algorithms to distribute PolyPaths are
retained within the client application works well, it would be preferable to have this sort of
calculation be performed in a generic manner within the cluster. By modifying the
implementation of the Processing Pattern to insert an intermediate step wherein work is split,
distributed, and rejoined transparently, it would be possible to achieve the performance benefits
regardless of the application being distributed. This would lessen the burden to the developers, as
they would only have to write a small wrapper to this implementation, rather than rewrite the
algorithm for each specific application. Of course, having such ease of extensibility would of

course allow for far more applications to be integrated effortlessly.

Lastly, the addition of more and more applications to the list of calculations that can be
performed on the developed system is possibly the most evident extension of the software. Due
to the fact that the Coherence Cluster is so adaptive and the structure is as flexible as it is,
extensions and additions should not be a great challenge for BNP Paribas, and is an opportunity
in the near future for even more performance benefits to be gained through the use of the system

created.
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1 Coherence Cluster

1.1 How to Run it

. Launch "cache.cmd”
. Wait until "cache.cmd" has been initialized
. Launch "client-proxy.cmd”

1
2
3
4.
5
6

Launch "server-proxy.cmd”

. Wait uatil "server-proxy.cmd " has been initialized

. Launch "server.cmd”

1.2 How it Works

All the configurations for the nodes (cache, proxy, server and client) can be found
at

http://coherence. oracle. com/display INCUBATOFR Configuration+for+the+Proce

ssing+Pattern

custom-paf-config.xml: POF serialization contains the path to the task locations.
The POF configuration file will look for * class.

Inside the PFServer folder there are two folders: application and process. These
folders contain the class files for the Tasks.

cache.cmd : Launches the cache and dispatcher, the cache needs to be executed
with the following classpaths: coherence jar, commen jar and
processingpattern jar. The libraries can be founded at:

(http://coherence oracle.com/display/ INCUBATOE Heme). The configuration
file mitializes the dispatcher.

server-proxy.cmd & client-proxy.cmd : Create a proxy to connect the servers and
clients. Need to make sure that the proxies for the server and client use different
ports.

server.cmd - Launches a processing node.
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/" Application

Final positioning and function of the coherence cluster in the overall architecture
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2 NodeConfigCreator

This solution is executed as part of the execution of server.cmd when creating a new
node. Once the NodeConfigCreator project has been built. the created exe file needs to
be copied into the WPI directory for server.cmd to access it. It should not need to be run
on its own. The executable file takes as an argument the absolute path to the

confignration file of the server.

2.1 How it Works

# Loads the serverxml file, and replaces the “ID” with a dynamically generated
unigue ID. The unique ID is currently setup to be the corrent time.

* MNecessary to quickly start up servers, as no two servers may share an ID

2.2 Requirements

# The absolute path to the configuration file of the server. (serverxmi)
+ Beinvoked by laonching server.cmd
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3 Jni4.Net

JNI4 Net is an application that allows to port libraries from Net to Java and from
Java to Net. The application auto generates the required code from one language to the
other. We used JNI in order to address the problem of supperting Net in the Processing
Pattern. JINI4 Net requires having the following directories:

o [ib: this folder contains all the libraries to run JNI4 Net. alzo the user needs to
put the library he wants to port into this folder and modify generateProxies,
to reference the library correctly

s work: this folder 13 where the worl: gets computed and where the ported
library is outputted

¢ bin: this folder contains the application proxygen.

3.1 Restrictions

# The JAR file to port cannot start with an upper letter case

# Proxygen needs to be inside a folder named bin

* Jnid Net does not support multidimensional arrays

# The bridge cannot be initialized on a shared driver. It needs to be initialized
locally

® Questions http://gronps_google.com/sroup/jnidnet Thi=en
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4 Polypaths

4.1 How to Compile it

B Y R e

Notes:

Once the Java code is ready, we need to create a JAR file

Copy the created JAR. into the [ib folder

Bun generateProxies.cmd (This will create a DLL named polyclient j4n.dll)

Need to make sure that VS is closed (or any application that 15 using the C#
classes)

Run copyJarDILemd (This will copy the DLL and JAR files into the Debug folder
of the solution

Make sure that the Coherence cluster is running

Execute the solution

In case of making any changes to CommandResumableTaskjava. you will need to
get the binary file (_class) and copy it into the server.

4.2 PolyClientWinForm (.Net)

This 15 the primary client application and WinForm that is used to interact with

the closter and send calculations. As 1t 1s a VS project, it can be run simply by building

the project and either munning it from VS or through the exe file that is created. Within

the project itself there are several components to lock at specifically:

Form.cs, Program.cs - Rather self-explanatory, these are what interfaces with the
GUT and handle the default woik to set up a WinForm

Task.cs - This 1s the main class that handles all things related to parsing a task,
sending it, receiving it, and aggregating it

FolyFile.cs and related classes — These classes implement the PolyFile interface,
and are nsed to specifically handle the shredding and merging of their respective

file types.
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s FileJoin.cs and related classes — These classes implement the FileJoin interface,
and are all of the different algonthms wsed to distribute files. By looking at them
as a foundation, more algorithms can easily be added.

s  ProgressColumn.cs and CustomCancelColumn.cs — Used exclusively in the UI
for the grid view displaying progress of tasks and offering the ability to cancel
tasks.

* DafabaseConnection.cs — Sets up and persists a connection to the MBS database,

to be used for querying information about specific tasks.

The core of the application to lock at is within the LaunchTask method within the
Task.cs class. In here, it can be seen where the work is split up. each subtask is sent
individually, and how. Also it covers merging of results and sending feedback and
metrics back fo the Form.cs class.

Reguirements:

+ Inidpet must be used to create the proxies to the PolyClient (see jnidnet
documentation for more detailed instructions). These proxy files must be
incleded into the preject and located in the same directory as the .exe

 Inidpet dll and jar files must be located in the bin'Debug directory. or located
with the .exe file in order to run

+  Within the coherence jar file, there is a file called coherence-cache-config.xml
which must be modified to list the port(s) and machine(s) that it is to
attempt to connect to.

«  Within the coherencejar file. the pof-config.xml file must be modified to kst

any tasks that it must understand how to execute.

4.3 PolyClient (Java)

This project contains the java classes necessary for actual execution of tasks.
There are three classes to consider:
CommandResumableTaskjava — this class is the “task” that is the instructions to

the server specifying what work is to be done. In this application, this 1s simply to take
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the given command line argument and executed it as a process. It implements the
ResumableTask and PortableObject interfaces, allowing for it to be used in the
Coherence Cluster. This class appears in two specific locations, the resulting jar file
which a proxy to NET is built upon, and in a specified folder within the same directory
as the server, to be referenced in the server’s pof confipuration. (more specifics about this

can be found i the jnidnet and cluster sections, respectively)

TaskExecution java — This class is the client side to the operation, and is what is
responsible for entering calculation requests into the cluster. It does so by use of the
‘submit’ method. and waits for the outcome with the “wait” method. It can be used
directly or also through creating a jnidnet bridge to the resulting jar file that can be
mvoked from NET.

CoherenceTask5tais java — This is a simple class that allows for multiple matime
metrics to be refurned to the calling platform. It 1s specifically within the Polypaths class
structure, but is not specific to the Polypaths function.

i i
. Coherene Clusber \ L
: send/Receive :
i Tasks Sond/Racoha i
! | PoyPaths | . w o e Proay | - !
' Java Chent Servers i
i I| i
i i
: : :
- | ---------------------------------------- 8 Lot vl
NI
Bridge

RN [———
1 | e ———
i ] : Get Security Data - Read Input
2 . Security Database Werite Crutput
! DolyPathu I |‘_-—'_FI
|| WinFarms Client b
.. Apglication i
I ; Rezadl Input &
i H Wirite Temp Files . |
] MET ! Read Contig Files e

L_ Shared Files J

-

Final structure of the Polypaths implementation
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4.4 Known Unresolved Bugs

# In certain circomstances, when the PolyClientWinForm should happen to
encounter an unresolved exception and crash, there is a chance that the tempeorary
output files of BatchCal executing on the servers may occasienally be written into
the directory that the task processing servers are run from. This is not easily
repeatable. and is only observable through the appearance of errant output files
appearing in the server’s directory.

o Likely canse: npon the client crashing, the server has no application
watting for its feedback, and the “current directory” may be getting reset to
point to the local directory where the server was spawned from. When the
writing of the output file occurs, it may be written here instead of the

intended location
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5 Westminster

5.1 How to Compile it:

Once the solution is dene editing, build it {create the DLL)
Copy the DLL into the Ilib directory

Faun generateProxies.cmd

L Y

Fun the application

Notes:
* In case of making any changes to CommandResumableTask java, you will need to

get the binary file (.class) and copy it into the server.

+ [Ifthe solution is changed, copy the DLL and the created JAR into the Coherence
server folder

# Make sure that the Coherence Cluster executes the JNI bridge locally (cannot be
on a shared drive), otherwise this will create a fatal java error.

5.2 How to Run it

1. The Coherence cluster needs to be initialized
2. WestServer needs to be running on the server(s)

3. Bam WestClient.cmd

5.3 WestTest (.Net)

This application is a server controller for the Westminster server. This project
calls the Westminster server throngh an interface. The code was originally created by
Andrew Clark.

5.4 Java (application, gui, utilities)

The project is divided into three different packages:

10
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+« Applicaton: This package contains the main class to execute the task
o Client.java: The main class to execute the program
o CommandResumableTask java: A class confaining information of how to
execute the task into the server.

o TaskSender java: Wrapper to the task for the GUL

s Gui: This package contains all the classes to display the Graphical User Interface

s Utilities: This package contains two helper classes. One to read and split the CSV
files. and the second one to filter the files by name.

Final structure of the Westminster implementation

5.5 Known Unresolved Bugs
s The way the program checks if the task is done, is by checking the cutput path of

the file. The application checks if there is a new file with the specific name. In

11
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theory this should weorl, however when there 15 a repeated file Westmunster
creates a filename with a number. The main bug with this is that if the user sends
two tasks with the same output filename, the program will indicate that the two

tasks are done. even if the second one has not even started.

12
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6 How to Develop the Current Structure Further

In order to adapt the architecture to handle new applications and new types of
tasks, between two and four new classes must be written in order to expand the capacity.
For the sake of explanation, the focus will be on hypothetically adding the functionality
to execute Python scripts in a distributed fashion through the existing framework.

Task (Java) — The first step is to write a new task, which is the actpal instructions
that will be provided to the server regarding how to execute the work. This class must
implement both ResumbaleTask and PortableObject interfaces. This can be closely based
off of the existing tasks that have been written, and will contain the instructions
specifying what is to be done. In the case of the python script execution, this could likely
take the form of a direct call to a python interpreter with the given script (passed either as
a parameter to the server or as a reference to a script stored 1n a shared directory). This
would be performed on the server(s) and relying on the server resources for processing
power. Once this task 1s written, 1t must first and foremost be copied (entire directory)
into the folder of the call to execute the task processing servers. Furthermore, the server’s
pof~config.xml must be modified to include a reference to the path to the new task. This
will canse the server to be able to recognize how to perform the given task. Also, the task
class must appear in the compiled jar file that is used with jnidnet to build a proxy that
can be accessible from NET. if this step is necessary on the client.

Client (Java} — next, it will be necessary to create a client class in Java that is used
to connect to the cluster and send work to 1t. This can be closely based off of the already
existing examples of Polypaths and Westminster. and the primary concern is how to send
data to the task Depending on the structure of the task, it will be either sending the
arguments to perform work on directly, or provide a reference to where they can be
found. This will be the likely implementation to be seen in a simation if a Python script-
handling task was developed. This class must also appear in the jar file that will be
necessary for any NET client that might invoke it. Examples of this can be seen with
Polypaths, while a standalone version is seen with Westminster.

13
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Server (NET) [possible] — A possible extension of code that may be necessary as
well is the creation of a server-side application in NET. This is requirement specific, and
largely depends on whether the task will require direct interaction with other NET code
bases. In the Polypaths example this was not necessary. as the process could be started
directly from Java. However, Westminster provides a good example of one possible
means of creating this connection, again with references to jnidnet for how to establish
this. In the Python example, this section could be necessary if it is needed to be a
persistent program that will be listening for incoming work, but for most circumstances

the server would only need to be in Java.

Client ( NET) [possible] — Just as the server side may or may not need
fonctionality in NET, the client side has the option to do so if necessary. This would
likely not be mecessary for a Python script scenario, but can be needed for situations such
as Polypaths, where the ultimate goal is to have a client framework that can be plugged
right into an existing NET system. Such a system would require the establishment of a
JNI Bridge in the NET code, as well as inclusion of a proxy to the client (in Java). A full
example of this can be seen in the PolyClientWinForm.

With the above configured correctly, it then should be possible to have new tasks
be added into the capabilities of the server farm. Note that it should require no

modifications to the existing core of the coherence cluster, only to periphery applications

cn the client and server.

14
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7 Contact

In case of any question please contact:

¢ Claudio Herreros <cherreros@wpiedu™

+ Jotham Kildea <jothambk@wpi.edu™
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8 Work Schedule

While working on the project, the goals and objectives moved fluidly and continuously
from week to week. As expected, there was a decent amount of setup work to begin acclimating
to the workplace. By the end of the first week, however, much of the work of obtaining ID
badges, installing software, and receiving administrative rights on computers had been

accomplished.

Once this was over, the work of setting up a simple coherence cluster began. This
required a large amount of effort towards setting up the computer environments correctly, and
began to cause difficulties particularly with using the Processing Pattern in .NET. Fortunately,
early in the second week a meeting was held with representatives from Oracle, which produced
an introduction to and means of contacting one of the lead developers of the Processing Pattern.
His assistance with fixing bugs in their software allowed the transmission of tasks from clients to
servers, a major accomplishment for the overall project, to be achieved by the end of the second

week.

Upon having a proof of concept for creation of a Coherence Cluster was completed, the
next consideration was to assess the ability to extend this across multiple computers in a
distributed fashion. Fortunately, the design structure that had been used and the functionality
provided by Coherence allowed for this step to happen very quickly, and only required a few

days of development before this could be achieved reliably and easily.

With a truly distributed Coherence system functioning, work began on outfitting it to be
used to perform specifically needed tasks. This process required concise code that would be in

Java to act on both sides of the cluster. Although the server side was able to remain in Java, the
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client side also needed to have functionality in .NET. In order to achieve this goal, a complex
process of developing the client side into a product that could be interoperable with .NET was
undertaken. Through some trial and error, the conclusion was reached to use jni4net, a product
specifically designed to provide limited interaction between the two languages. This product’s
implementation proved to be very difficult to work with but its use was unavoidable as the bridge
between the two languages was necessary. Once jni4net had been implemented, the step of

developing the .NET application to be used could begin.

Development of the graphical application that could be used to interact with the already
developed Coherence Cluster was the next major objective, and began roughly in the early part
of the fourth week of the project. This application underwent numerous iterations and evolved
considerably throughout the project. Its development proceeded uninterrupted for the next few

weeks, and was only finalized shortly before the final product was delivered.

As an additional focus of the development of the Cluster for use with PolyPaths was the
creation of the assortment of algorithms used to partition work. These began to be developed
approximately in the fifth week of the project, and were continually improved and added on to
up until the middle of the sixth week. Along the way they had been developed to operate
seamlessly within the developed application itself, and therefore little work was needed in order

to combine the two.

Simultaneously, beginning towards the end of the fifth week, the development of an
entirely separate feature to the Coherence cluster was begun. This took the form of implementing
operation with Westminster, and additionally required the usage of jni4net on the client as well

as the server. Unfortunately, the difficult problems with the server side were overcome and there
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existed serious limitations to the jni4net product that prevented the client side from functioning
in the desired fashion. As a result, the Westminster implementation remained in Java on the
client side, and development lasted until the end of the sixth week. Nonetheless, this addition
provided an exceptional proof of the fact that the cluster was as versatile as desired, and capable

of handling vastly different tasks in parallel.

As the code development aspect of the project drew to a close the focus shifted once
again, this time to the development of the final demonstration and presentation of the
accomplishments. This involved not only the development of the final presentation, but also the
benchmarking of performances of varying algorithms as well as structuring applications to be
understood easily. This phase began roughly in the middle of the sixth week and continued
through the end of the project. The presentation also underwent several revisions as presentations

uncovered to improvements that could be made to the overall delivery.

In the final two weeks, the transfer of the code base occurred, and involved extensive
commenting and documenting of the code base, as well as reviewing it with sponsors at BNP
Paribas to familiarize them with the approach. In addition, due to the complexity of the systems
implemented a technical guide had to be created, in order to introduce new developers into the
system. This technical guide can be found in Technical Documentation. This handing over of the
final product was the major conclusion to the project as a whole. Table 1 resumes how the team

managed his time during the course of the project.
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Plan of Work

Meet with Contacts, familiarize
with environment

Develop product code, expand
functionality and features

Table 1 — Work Schedule

Week 1| Week 2 | Week 3 | Week4|Week 5| Week 6

Week 7

Test code, fix any bugs that appear

Prepare Presentation

Write Report
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