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Abstract

In analysis of the contingency tables, the Fisher’s exact test is a very important statistical significant

test that is commonly used to test independence between the two variables. However, the Fisher’ s

exact test is based upon the assumption of the fixed margins. That is, the Fisher’s exact test uses

information beyond the table so that it is conservative. To solve this problem, we allow the margins

to be random. This means that instead of fitting the count data to the hypergeometric distribution

as in the Fisher’s exact test, we model the margins and one cell using multinomial distribution,

and then we use the likelihood ratio to test the hypothesis of independence. Furthermore, using

Bayesian inference, we consider the Bayes factor as another test statistic. In order to judge the

test performance, we compare the power of the likelihood ratio test, the Bayes factor test and

the Fisher’s exact test. In addition, we use our methodology to analyse data gathered from the

Worcester Heart Attack Study to assess gender difference in the therapeutic management of patients

with acute myocardial infarction (AMI) by selected demographic and clinical characteristics.
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Chapter 1

Introduction

1.1 Discussion about the Fisher’s exact test

Usually, the Fisher’s exact test is useful for categorical data that result from classifying objects

in different ways; it is used to examine the significance of the association between the two kinds

of classification, for example the famous problem of the Fisher’s tea drinker. In the Fisher’s tea

drinker example, one criterion of classification could be whether milk or tea was put in the cup

first; the other could be whether the lady thinks that the milk or tea was put in first. We want

to know whether these two classifications are associated that is, whether the lady really can tell

whether milk or tea was poured in first. To test, she was given 8 cups of tea, in four of which

milk was added first. The null hypothesis is that there is no association between the true order of

pouring and the lady’s guess, and the alternative hypothesis is there is a positive association. Most

uses of the Fisher test involve, like this example, a 2×2 contingency table. The p-value from the

test is computed as if the margins of the table are fixed, i.e. as if, in the tea-tasting example, the

lady knows the number of cups with each treatment (milk or tea first) and will therefore provide

guesses with the correct number in each category. As pointed out by Fisher, this leads under a

null hypothesis of independence to a hypergeometric distribution of the numbers in the cells of the

table. Specifically, for the following table we calculated the Fisher’s exact p-value of 0.2429, which

means that in this situation we cannot reject the null hypothesis to make a conclusion that the
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lady had such an ability.

Guess-Milk Guess-Tea

Truth-Milk 3 1 4

Truth-Tea 1 3 4

4 4 8

Although in practice it is employed when sample sizes are small, it is valid for all sample sizes.

The Fisher’s exact test is one of exact tests, since the significance of the deviation from a null

hypothesis can be calculated exactly, rather than relying on an approximation that becomes exact

in the limit as the sample size grows to infinity. The approximation is inadequate when sample

sizes are small, or the data are unequally distributed among the cells of the table. In fact, for

small, sparse, unbalanced data, the exact and asymptotic p-values can be quite different and may

lead to opposite conclusions. In contrast, the Fisher test is, as its name states, exact as long as

the experimental procedure keeps the row and column totals fixed, and it can therefore be used

regardless of the sample characteristics.

Despite the fact that Fisher’s test gives exact p-values, some authors have argued that it is

conservative, meaning that its actual rejection rate is below the nominal significance level. Fisherian

basis of the exact test, that the marginal totals are “ancillary statistics” (Little 1989), and therefore

provide no information respecting the configuration of the body of the table, is shown to be incorrect

by Berkson (1978) through comparing the exact test for the one-sided case with the normal test for

the nominal significance levels α=0.05 and α=0.01, and it is shown by direct computation that the

effective level is closer to the nominal level with the normal test than with the exact test, and that

the power of the normal test is considerably larger than that of the exact test, with the increasing

power exceeding the change of effective level. Thus, a conclusion has been drawn that the exact

test should not be used in preference to the normal test.

The traditional solution for testing the equality of two independent binomial distributions is

to use (a) Pearson chi-squared test for large samples, (b) Chi-square test with Yates’ continuity

correction for intermediate size samples, and (c) the Fisher’s exact test for small samples. However,

several scientists, including Berkson (1978), Conover (1974), Grizzle (1967), Kempthorne (1979),
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Upton (1982), have questioned the usefulness of this solution after a careful study of 22 alternative

tests, and concluded that “the exact test of Fisher, and the corresponding Yates correction to Pear-

son’s test, produce results that are both extremely conservative and inappropriate” ( D’Agostino

et. al 1988). He noted that the uncorrected chi-square test performs well and suggested that a

preferred test is the scaled test (N − 1)X2/N , where N is the combined sample size and X2 is the

Pearson chi-square test statistic for a 2×2 contingency table.

While the Fisher’s exact test perhaps creates an impression that exact implies best, Upton

(1982) argued that we should be concerned more about the conservative nature or the poor power

of Fisher’s exact test and Yates’ correction to the chi-square test rather than having an exact test.

D’Agostino et. al (1988) confirmed Upton’s results and further demonstrated that the uncorrected

chi-squared test and the two-independent-sample t test with pooled variance are robust since their

actual levels of significance are, in most situations, close to or smaller than the nominal levels and

their maximum actual levels are close to the nominal levels.

Little (1989) also analysed two tables specifically between where the small one is T1 = {a, b, c, d} =

{3, 0, 0, 3} ( provided by Barnard 1945), and another table T2 = {a, b, c, d} = {170, 2, 162, 9} is of

moderate size. With applying (a) (b) (c) methods (denoted as P, Y, F respectively) to one-sided

tests for each of the two tables we observed that the p-values obtained by the last two methods are

close and considerably larger than those for Pearson chi-square test even for a quite large table.

Generally, the author suppose two independent random samples of size n1 and n2 are selected from

a large population. The first sample is given treatment 1, yielding a successes and b = n1 − a

failures. The second sample is given treatment 2, yielding c successes and d = n2 − c failures.

Table 1 displays the data in a 2 × 2 contingency table, writing m1 = a+ c as the total number of

successes and m2 = b+ d as the total number of failures.
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The objective is to assess an evidence against the null hypothesis that the two treatments are

equally effective;that is, π1 = π2 , where πj is the probability of success given treatment j. Table 2

shows the results of applying P, Y, and F to T1, and T2 ; p values are presented for both one-sided

(π1 > π2 ) and two-sided (π1 6= π2 ) alternatives.

For the one-sided tests, it is found that the p values for Y and F are close. In fact, Y is considered

as an approximation to F; we can also find that p values for Y and F are considerably larger

than those of P, even for T2, where the sample size is quite large. It illustrated that even in quite

respectable-sized samples, the choice of the three methods matters. Conventional wisdom favours

the use of Y in moderate samples and F in small samples; however, D’Agostino et. al. (1988)

challenged this position. Building on earlier work of Berkson (1978), Grizzle (1967), Upton (1982),

they claimed that Y and F are much too conservative in small samples, and argued that the usual

pooled t test for independent normal samples should replace Y and F. The t-test is essentially a

studentized version of P, and will perform like P unless the combined sample sizes are less than,

say, 30.
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The basis for this conclusion is a comparison of empirical and nominal significance levels of the

tests, using two independent samples from two binomial populations, where n1 and n2 are fixed.

Table 3 shows the empirical rejection rates for P and F, for the one-sided tests at the nominal 5%

level with null values of π = .2, .5, and .8, and samples size ranging from 5 to 200 in each group.

Clearly F is conservative, that is, it has much smaller rejection rates than the nominal level; Y (not

shown in the table) is similarly conservative. On the other hand, P has rejection rates similar to

the nominal level, even in the small samples, except a table of the one-sided test when n1 = n2 = 5.

D’Agostino et al. (1988) also showed that rejection rates for their studentized version of P are close

to the nominal levels. Results here are based on exact calculation, not simulation.

The above findings are impressive evidences against the use of Fisher’s exact test or the chi-

square test with the Yates’ correction. There are two reasons why exact test is so conservative

(Little 1989). One is that, the test statistic has a discrete null distribution, yielding discontinuities

in the rejection rates. The other reason is, Fisher’s exact test conditions on both fixed margins,

whereas the computations in Table 3 only condition on one margin fixed by the sampling design.

The apparent contradiction stems from the combination of a discrete statistic with fixed sig-

nificance levels. To be more precise, consider the following proposal for a significance test at the

5%-level which means rejecting the null hypothesis for each table to which the Fisher’s test that

assigns a p-value equal to or smaller than 5%. Because tables are discrete, there may not be a table
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that would achieve the equality. While this problem occurs for any discrete statistic, it has been

argued that the conservative effect is compounded by the fact that the Fisher’s test assumes the

fixed margins (Mehta and Senchaudhuri 2003). So in this thesis, by allowing random margins, we

try to develop an exact method that is not as much conservative exact as the Fisher’s exact test.
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Chapter 2

A new probability distribution

To illustrate our idea, we start from a specific contingency table from Worcester Heart Attack

Study, which contains the information about gender differences in the receipt of lidocaine therapy

in acute myocardial infarction (AMI) patients with a history of hypertension and stroke whose age

is greater than 75.

The most commonly used method is fitting the contingency table into two binomial distributions

(Nandram B. et. al. 2013 and Hashemi L. et. al. 1997), in our case, we divide all our target

patients into two groups of male and female, and denote the probability of therapy receiving of

male as p1, and the probability of therapy receiving of male as p2. So the number of male receiver

X1 ∼ binomial(30, p1), and the number of female receiver X2 ∼ binomial(51, p2). Thus our task

of significance detecting based on constructing the null hypothesis as p1 = p2. Even though the

model is more flexible with only one fixed margin, in comparison with Fisher’s exact test which

requires both margins fixed, it is still not very good by adding extra information. Hence we try to

find a model free of the margin assumption.

Receive Not receive

Males 8 22 30

Females 16 35 51

24 57 81
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2.1 Multinomial distribution

We denote the count of patient whose gender is male as random variable X, and denote the count

of patients who received the therapy as random variable Y. We’ll give our demonstration later on

that actually both X and Y follow the binomial distribution with the correspondent parameter p

and q. Here we view X and Y as the random variables in multinomial distribution represent the

same meaning.

And then we try to explore the correlation between two random variables X and Y which

follow the binomial distribution with parameter p and q. We consider about each patient, we

can let random variable I indicates the gender difference (1 for male and 0 for female), and let

random variable J represent if the patient received the therapy (1 for receive and 0 for not receive).

Obviously the bivariate (I , J) variable decides totally four kinds of situation and the relationship

between I, J and X, Y are

X =
∑N

k=1 Ik, Y =
∑N

k=1 Jk, Z =
∑N

k=1 IkJk

J

I

1 0

1 π11 π10 p

0 π01 π00 1− p

q 1− q 1

Then we get the multinomial distribution model of our table below

Receive Not receive

Males Z X-Z X

Females Y-Z N-X-Y+Z N-X

Y N-Y N

and the probability mass function is

P (Z,X − Z, Y − Z,N −X − Y + Z) =
n!

z!(x− z)!(y − z)!(n− x− y + z)!
π11

zπ10
x−zπ01

y−zπ00
n−x−y+z

(2.1.1)
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where 0 ≤ x ≤ n, 0 ≤ y ≤ n, max(0, x+ y − n) ≤ z ≤ min(x, y).

Let γ denote the correlation between I and J, and we can express γ using p q and π11 as below

γ =
cov(I, J)√

V ar(I)V ar(J)
(2.1.2)

=
E(IJ)− EIEJ√
V ar(I)V ar(J)

=
π11 − pq√

p(1− p)q(1− q)
.

We have already known three relationships among πij and parameter p and q, they are

π11 + π10 = p,

π11 + π01 = q,

π11 + π10 + π01 + π00 = 1. (2.1.3)

So finally we get the expressions of πij with only one parameter γ introduced, the results are

π11 = pq + γ
√
p(1− p)q(1− q),

π10 = p(1− q)− γ
√
p(1− p)q(1− q),

π01 = q(1− p)− γ
√
p(1− p)q(1− q),

π00 = (1− p)(1− q) + γ
√
p(1− p)q(1− q). (2.1.4)
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Further more, we can calculate the marginal distributions of X and Y

P (X = x) =
x∑
z=0

n−x+z∑
y=z

P (X,Y, Z) (2.1.5)

=

x∑
z=0

n−x+z∑
y=z

n!π11
z(p− π11)x−z(q − π11)y−z(1− p− q + π11)

n−x−y+z

z!(x− z)!(y − z)!(n− x− y + z)!

=

x∑
z=0

n!π11
z(p− π11)x−z

z!(x− z)!

n−x+z∑
y=z

(p− π11)x−z(q − π11)y−z(1− p− q + π11)
n−x−y+z

(y − z)!(n− x− y + z)!

=
n!px(1− p)n−x

x!(n− x)!

x∑
z=0

x!(π11p )z(1− π11
p )x−z

z!(x− z)!

n−x∑
y−z=0

(n− x)!( q−π111−p )
y−z

(1− q−π11
1−p )

n−x−y+z

(y − z)!(n− x− y + z)!

=

(
n

x

)
px(1− p)n−x .

Similarly, we have

P (Y = y) =

y∑
z=0

n−y+z∑
x=z

P (X,Y, Z) =

(
n

y

)
qx(1− q)n−y . (2.1.6)

The marginal distribution is binomial and X∼Binomial(n, p), Y∼Binomial(n, q).

Since X∼Binomial(n, p), we can get EX and Var(X) , EY, Var(Y) easily from the feature of the

binomial distribution,

EX = n(π11 + π10) = np (2.1.7)

V arX = n(π11 + π10)(π01 + π00) = np(1− p) (2.1.8)

EY = n(π11 + π01) = nq (2.1.9)

V arX = n(π11 + π01)(π10 + π00) = nq(1− q) . (2.1.10)

2.2 The MLE of the parameters

Our goal is to find the MLE of the three parameters p, q and γ . First of all, considering a particular

2×2 contingency table, which we can generate from our original contingency table
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Received Not Received

Male n11 n10 n1.

Female n01 n00 n0.

n.1 n.0 n

In order to proceed a statistical optimization, we can set the initial value of the parameters as

p̂ =
n11 + n10

n
q̂ =

n11 + n01
n

γ̂ =

n11
n
− p̂q̂√

p̂(1− p̂)q̂(1− q̂)
. (2.2.1)

Since they are a general straightforward estimation of p, q, and γ. We have already known that

the relationships between p, q and γ are

pq + γ
√
p(1− p)q(1− q) ≥ 0 (2.2.2)

p− pq − γ
√
p(1− p)q(1− q) ≥ 0 (2.2.3)

q − pq − γ
√
p(1− p)q(1− q) ≥ 0 (2.2.4)

1− p− q + pq + γ
√
p(1− p)q(1− q) ≥ 0 . (2.2.5)

So given the value of the either two of the parameters will give a restriction interval of the other

one. Thus, we could obtain the value of the parameters generate from these intervals. If given the

value of q, γ, in order to calculate the interval of p, noticing that the signal of γ matters, so we

discuss in different situations with regard to γ > 0 and otherwise. If γ > 0, we only need to solve

the inequalities (2.2.3) and (2.2.4). Otherwise, we only solve the inequalities (2.2.2) and (2.2.5).

Finally, we obtain the constraints of p.

That is,

if γ > 0,
γ2q

1− q + γ2q
≤ p ≤ q

γ2(1− q) + q
(2.2.6)

and

if γ ≤ 0,
γ2(1− q)

q + γ2(1− q)
≤ p ≤ 1− q

γ2q + 1− q
. (2.2.7)
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Similarly, we can calculate the range of q ,

if γ > 0,
γ2p

1− p+ γ2p
≤ q ≤ p

γ2(1− p) + p
(2.2.8)

and

if γ ≤ 0,
γ2(1− p)

p+ γ2(1− p)
≤ q ≤ 1− p

γ2p+ 1− p
. (2.2.9)

However, we need to solve all the inequalities to get the range of γ

max{ −pq√
p(1− p)q(1− q)

,
−(1− p)(1− q)√
p(1− p)q(1− q)

} ≤ γ ≤ min{ p(1− q)√
p(1− p)q(1− q)

,
q(1− p)√

p(1− p)q(1− q)
}

(2.2.10)

Furthermore, we can simplify it to

max{−
√

pq

(1− p)(1− q)
,−

√
(1− p)(1− q)

pq
} ≤ γ ≤ min{

√
p(1− q)
(1− p)q

,

√
q(1− p)
(1− q)p

} (2.2.11)

We can see from the above simplification that the two terms in max and min have a reciprocal

relationship, so the maximum value is greater than -1 and the minimum value is less than 1. So

with the initial value of p, q and γ, we can get a new set of parameters p, q and γ successively by

being randomly picked up within their ranges. For example we generate 1100 sets of parameters

and plug each set into the likelihood function f(p, q, γ), which is

f(p, q, γ) = C · (pq + γ
√
p(1− p)q(1− q))

n11
(q − pq − γ

√
p(1− p)q(1− q))

n10
(2.2.12)

(p− pq − γ
√
p(1− p)q(1− q))

n01
(1− p− q + pq + γ

√
p(1− p)q(1− q))

n00

where C = n!
n11!n10!n01!n00!

is the coefficient of the parameter distribution function of p, q, and γ.

With the above restrictions among the three parameters, we can apply a grid method to do the

statistical optimization of the parameters in the likelihood function above by drawing 1100 sets of

parameters p, q and γ. Considering the fact that the former drawn samples are not stable, we drop

off the first 100 set of values and then plugging in the rest 1000 parameter sets to the likelihood

function to find the ones making function reach the maximum value.

15



Applying to the example of gender differences in the receipt of lidocaine therapy in AMI patients

(≥ 75) with a history of hypertension and stroke, we got MLEs of parameter p, q and γ, which are

0.3717696, 0.3012183, -0.05674575. The results are reasonable since they are close to the approxi-

mate estimations obtained directly from the table which are 0.3703704, 0.2962963, -0.04976726.
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Chapter 3

Likelihood Ratio Test

In this chapter, we are going to use the likelihood ratio as test statistic to do the hypothesis testing,

including developing methodology to compute the p-value and power function of the likelihood ratio

test, and certainly for the purpose of comparison, we also need to compute the power function of

the Fisher’s exact test under our multinomial distribution model.

3.1 P-value of the Likelihood Ratio Test

Consider the two-sided hypothesis test,

H0 : γ = 0 versus Ha : γ > 0

Now, we build our hypothesis test on our likelihood ratio test statistics defined as :

T =
L(x, y, z|H0)

L(x, y, z|Ω)
=
L(x, y, z|p̂mle0, q̂mle0, γ = 0)

L(x, y, z|p̂mle, q̂mle, γ̂mle)
(3.1.1)

where L(x, y, z|H0) represents the likelihood function under the null hypothesis, L(x, y, z|Ω) rep-

resents the likelihood function under the whole parameter space, and p̂mle0, q̂mle0 are the MLE

under the null hypothesis where γ = 0, while p̂mle, q̂mle, γ̂mle denote the MLE under the alternative

hypothesis. MLE can be calculated by applying the above method in last section.

We try to calculate p-value of the hypothesis test follow the methodology below:
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a) Draw 1000 samples under the null hypothesis, from which a multinomial distribution with

parameter p̂ = n11+n12
n , q̂ = n11+n21

n , γ = 0.

b) For each sample drawn above, which we can denote as(n
(h)
11 , n

(h)
12 , n

(h)
21 , n

(h)
22 ), calculate the the

parameters with respect to H0 , which are p
(h)
mle0, q

(h)
mle0, γ

(h) = 0; and Ha, which are p
(h)
mle, q

(h)
mle, γ

(h)
mle,

now we get all the parameters in Likelihood ratio statistics for each sample.

c) Plug in each sample, as well as the original table into their likelihood ratio test statistic and

count the number of samples which are smaller than the value we got from the original table. So

the p-value can be expressed as

p− value = P (T < Tobs|H0) = #(T < Tobs)/1000 (3.1.2)

where Tobs = L(n11 + n10, n11 + n01, n11|H0) .

Applying our specific data above, we get a p-value of 0.629, which fails to reject the null

hypothesis compared to the p-value 0.8021 got from Fisher’s Exact test and 0.6542 from chi-square

test. In this case, the likelihood ratio test produces a consistant testing result with the other two

standard test, even though a contradiction may occur on other tables and we will discuss more

situations later.

3.2 Power comparison

So far, we have already got our newly defined method of likelihood ratio test, and got a brief

comparison with Fisher’s exact test and chi-square test. It is natural to think about comparing

their power. Here we consider the power under three different test levels α = 0.01, 0.025, 0.05, and

the corresponding test statistics come respectively from the 1%, 2.5% and 5% lower quantile (Tα)

of the 1000 samples drawn under the null hypothesis γ = 0 are 0.1350654, 0.07754259, 0.04561459.

In order to find the power of the test, in other words, we need to find the probability of rejection

of null hypothesis under each value of γ > 0 within the range which is restrained by p and q (2.2.11).

We divide the range into 85 pieces (each one is denoted as γi, grows in 0.01 from 0, where i=1,

..., 85) which can approximately express the whole alternative hypothesis. Since the value of γ is
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constrained by p and q (see 2.2.11), so it cannot reach 1. Actually γ can only reach to 0.8460434.

For each γi value greater than 1, the approach of finding the power is similar to the method of

obtaining the p-value we discussed in the above section. Instead of drawing samples under the null

hypothesis with γ = 0, we draw samples under each γi > 0, and then calculating the 1000 likelihood

ratio statistics the same way.

Then p-value can be expressed as

p = #(Ti < Tα)/1000 (3.2.1)

where Tα is the α quantile of the 1000 likelihood ratio test statistics generated from corresponding

samples drawn above.

So we now get the power function of the likelihood ratio test, and now we intend to process a

comparison to the power function of the Fisher’s exact test.

Recall that the algorithm of the Fisher’s exact test comes from hypergeometric distribution

where we can obtain the p-value, which is the essence of the Fisher’s exact test. In other words,

through comparing the p-value we calculate with the test size (significance level), we can make

a decision of rejecting the null hypothesis or not. Start from the definition of the power, which

is the probability of correctly rejecting the null hypothesis, our interest is to obtain the power of

the Fisher’s exact test. However, the commonly referred power analysis of the Fisher’s exact test

focus on calculating the power with regard to different table size. Remember that in calculating

the power of the likelihood ratio test, what we actually do is calculating the rejection probability

point-by-point under the alternative hypothesis. So inspired by the same methodology, we need to

find the point-by-point power with respect to each γ value under the alternative hypothesis, which

in our case are the 85 values range equally from 0 to the maximum value of γ restrained by p and

q. Thus we are thinking about applying our table to the non-central hypergeometric distribution.

Hence, we start from introducing the probability mass function of the non-central hypergeometric

distribution.

For a table like
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Receive Not receive

Males x m1 − x m1

Females n− x m2 − n+ x m2

n N − n N

The corresponding probability mass function is

fnchypg(x|n,m1, N,w) =

(
m1

x

)(
m2

n− x

)
wx

∑xmax
y=xmin

(
m1

y

)(
m2

n− y

)
wy

(3.2.2)

where m1,m2 ∈ N, N = m1 + m2, n ∈ [0, N), w ∈ R+, and x ∈ [xmin, xmax], represent the number

of the male patients who received the therapy, where xmin = max(0, n−m2), xmax = min(n,m1),

and w is the odds ratio of the male group over the female group, and the expression of the odds

ratio is

w =
π11

π11+π10
π01

π01+π00

=

pq+γ
√
p(1−p)q(1−q)
p

q(1−p)−γ
√
p(1−p)q(1−q)

1−p

(3.2.3)

which can be expressed as a function of γ, with p = m1
N and q = n

N which are the straightforward

estimation obtained directly from our observed table. Hence we can connect a specific γ value to

some specific non-central hypergeometric distribution through the odds ratio w, and then we fit

our table to that specific non-central hypergeometric distribution. As we try to run a upper-sided

hypothesis test at a α significance level, first of all we need to find the upper (1- α)% critical value

cα of the table, and since the margins are fixed we only need to know the value of x. Because of the

discrete nature of the distribution of X, we cannot strictly satisfy the condition Pr(x ≥ cα|H0) = α.

So we choose the cα= {x : Pr(x ≥ cα|H0)− α reaches the minimum} It is worth mentioning that

the H0 represent to the hypergeometric distribution that the odds ratio equals to 1, which can be

straightly demonstrated by setting the value γ to 0.

power(γ) = Pr(x ≥ cα|Ha) = Pr(x ≥ cα|γ 6= 0) (3.2.4)

20



=

n∑
x=cα

fnchypg(x|n,m1, N,w(γ)) (3.2.5)

Here we use R package ’BiasedUrn’ for computing the non-central hypergeometric distribution.

Henceforth, we can draw a comparative power plot through point description method, with regard

to a test level of 0.01 (Figure 3.1) and 0.05 (Figure 3.2). We discover that the power plot of our

likelihood ratio test (blue one) is almost above the power plot of the Fisher’s exact test (red one),

meaning that the likelihood ratio test is less likely to make a type II error compared to the Fisher’s

exact test. Additionally, from the fact that the intercept value which corresponds to γ = 0 of

the power function is the test size, we can indirectly verify the rationality of our methodology of

computing the power plot.
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Figure 3.1: Power function of two tests at α = .01
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Figure 3.2: Power function of two tests at α = .05
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Chapter 4

Bayes factor

We have already developed a natural way of judging the independence or the dependence situation

of the two variables of a 2×2 contingency table by testing the null hypothesis γ = 0. Additionally, if

we want to know more about the exact (positive or negative) relationship between the two variables,

we can just change the alternative hypothesis from γ 6= 0 to γ > 0 (or γ < 0) respectively. And

all of the work is done within the knowledge of classical statistics. Naturally, we are thinking

about extended our idea to Bayesian statistics method, thinking of the fact that Bayes factor can

be treated as Bayesian alternative to classical hypothesis testing. The Bayes factor is defined as

the ratio of the marginal likelihoods of the two models M1 and M2, which respectively denote the

probability distribution model under the null hypothesis and alternative hypothesis. Considering

that the essence of our problem is still with regard to testing against two hypothesis, so Bayes

factor could be automatically applied to our problem. The general idea remains the same, since

Bayes factor is defined as the ratio of the marginal likelihoods, we can treat Bayes factor similarly

like the likelihood ratio above as the test statistics, and run the test same way. In the following

section, we will compute the Bayes factor by drawing samples from the given observed table.

4.1 Computing the Bayes factor

Under the null hypothesis when γ= 0, the probability distribution function of X, Y and Z have the

simple form when we plug in γ=0, which is
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M1:

p(x, y, z|p, q) =
n!

z!(x− z)!(y − z)!(n− x− y + z)!
px(1− p)n−xqy(1− q)n−y

While under the null hypothesis when γ 6= 0, the probability distribution function of X, Y and Z

have the form

M2:

p(x, y, z|p, q, γ) =
n!

z!(x− z)!(y − z)!(n− x− y + z)!
π11

zπ10
x−zπ01

y−zπ00
n−x−y+z

where

π11 = pq + γ
√
p(1− p)q(1− q),

π10 = p(1− q)− γ
√
p(1− p)q(1− q),

π01 = q(1− p)− γ
√
p(1− p)q(1− q),

π00 = (1− p)(1− q) + γ
√
p(1− p)q(1− q).

A reasonable assumption for the prior distributions are π(p) = 1, π(q) = 1 and π(γ)=1, since p, q

and γ ranges from 0 to 1. Thus, the marginal likelihood for M1 can be expressed as

f(x, y, z|M1) =

∫ 1

0

∫ 1

0
p(x, y, z|p, q)π(p)π(q) dp dq (4.1.1)

=

∫ 1

0

∫ 1

0
C · px(1− p)n−xqy(1− q)n−y · 1 · 1 dp dq

= C ·B(x+ 1, n− x+ 1)B(y + 1, n− y + 1)

where B() represents the beta function, and C = n!
z!(x−z)!(y−z)!(n−x−y+z)! is the constant after the

integration. Similarly, the marginal likelihood for M2

f(x, y, z|M2) =

∫ a1(p,q)

a0(p,q)

∫ 1

0

∫ 1

0
p(x, y, z|p, q, γ)π(p)π(q)π(γ) dp dq dγ (4.1.2)
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where in our case that Ha is γ > 0, a0(p, q) = 0, a1(p, q) = min(
√

(p(1−q)
(1−p)q , 1/

√
(p(1−q)
(1−p)q ) is a function

of p, q indicates the upper bound of γ given p and q. So the Bayes factor, the ratio of the marginal

likelihood of M2 to M1 is

TBF =
f(x, y, z|M2)

f(x, y, z|M1)
(4.1.3)

In order to calculate Bayes factor, the pivotal procedure is calculating the integration of both

nominator and the denominator. As we can see above derivation, the denominator integration

can be easily calculated from beta distribution, obtaining the result of a multiplication of the two

beta function. However, unlike the denominator, the nominator has a more complicated integrand

so that the integration cannot be calculated through normal way. Therefore, we consider using

a Monte Carlo method to get the an approximation to our integration. There are some methods

work for computing the marginal likelihood, including applying the reduced Metropolis- Hastings

samplers proposed by Chib and Jeliazkov (2001), which is also implemented by Nandram and Kim

(2002) in the paper studying the marginal likelihood for a class of bayesian generalized models.

Here we apply complete importance sampling into the procedure computing the integration. We

rewrite the integration in a new form

f(x, y, z|M2) =

∫ a1(p,q)

a0(p,q)

∫ 1

0

∫ 1

0

{p(x, y, z|p, q, γ)π(p)π(q)π(γ)

πa(p, q, γ|x, y, z)

}
πa(p, q, γ|x, y, z) dp dq dγ (4.1.4)

which means that instead of integrating over its prior density, we integrate over an approximation to

the posterior density πa(p, q, γ|x, y, z). By drawing samples from the posterior density, we then are

able to apply the Monte Carlo method to compute the integration. Thus our next task is obtaining

the exact expression of our posterior density distribution πa(p, q, γ|x, y, z). Inspired by the above

deduction that X ∼ B(n, p), Y ∼ B(n, q), we naturally consider the fact that the conjugate

distribution of binomial distribution is beta distribution, thus we can make an assumption that the

posterior distribution for p is beta distribution and so as q. So given the data (x, y, z), we can draw

p from πa(p|x, y, z) = beta(x+ 1, n− x+ 1), and draw q from πa(q|x, y, z) = beta(y+ 1, n− y+ 1).
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And the approximate posterior density can be decomposed as :

πa(p, q, γ|x, y, z) = πa(p|x, y, z) πa(q|x, y, z) πa(γ|p, q, x, y, z) (4.1.5)

Acknowledging the fact that we can draw p and q respectively from beta distribution, we cer-

tainly expect that the posterior density for γ has the same distribution, otherwise is close to beta

distribution to the most extent. Notice that beta distribution require the random variable ranges

from 0 to 1, which actually can be satisfied by making a little adjustment according to the range of

γ, we proceed with this thought to get the specific expression of posterior density πa(γ|p, q, x, y, z)

where we can draw γ.

We will list the detailed procedure,

a) Given the count data (x, y, z), firstly we draw p from beta(x + 1, n − x + 1); draw q from

beta(y+ 1, n− y+ 1), which can be denoted as p(k) and q(k), where k = 1, 2, ...,M . In our case, we

choose a reasonable sample size M = 1000.

b) Apply the same p(h) , q(h)γ(h) generated from the process of computing the MLE in section 2.2

, and calculate the related range a0(p
(h), q(h)) and a1(p

(h), q(h)). Thus we have 1000 sets of p(h),

q(h), γ(h), a0(p
(h), q(h)) and a1(p

(h), q(h))

c) Fit M γ(h)samples to the model :

γ
(h)
1 =

γ(h) − a0(p(h), q(h))
a1(p(h), q(h))− a0(p(h), q(h))

∼ beta(µτ, (1− µ)τ) (4.1.6)

where 0 < µ < 1, τ > 0.

According to the property of the beta distribution, the mean of beta (µτ, (1−µ)τ) is µτ
µτ+(1−µ)τ = µ,

and the variance is µ(1−µ)
τ+1 . Thus we can estimate the beta distribution parameters by equalling the

sample mean to the real mean and equal the sample variance to the real variance. By solving the

equations:

E(γ
(h)
1 ) =

∑M
h=1 γ

(h)
1

M
= µ (4.1.7)
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V ar(γ
(h)
1 ) =

∑M
h=1(γ

(h)
1 − E(γ

(h)
1 ))2

M − 1
=
µ(1− µ)

τ + 1
(4.1.8)

We get an estimation of µ and τ which are:

µ̂ = E(γ
(h)
1 ) (4.1.9)

τ̂ =
µ(1− µ)(M − 1)∑M
h=1(γ

(h)
1 − E(γ

(h)
1 ))2

− 1 (4.1.10)

d) Draw γ
(k)
1 from beta (µ̂τ̂ , (1 − µ̂)τ̂), then γ = h(γ

(k)
1 ) = [a1(p

(k), q(k)) − a0(p
(k), q(k))] γ1 +

a0(p
(k), q(k)), where p(k) and q(k) are drawn from beta distribution we mentioned above.

e) Get the expression of πa(p, q, γ|x, y, z):

The probability density function of γ1 is

f(γ1) =
γµ̂τ̂1 (1− γ1)(1−µ̂)τ̂

B(µ̂τ̂ , (1− µ̂)τ̂)
(4.1.11)

Due to the rule of the density function of a transformed random variable, the probability density

function of γ is

πa(γ|p, q, x, y, z) = f(h−1(γ)) (4.1.12)

=
[h−1(γ)]µ̂τ̂ [1− h−1(γ)](1−µ̂)τ̂

B(µ̂τ̂ , (1− µ̂)τ̂)
· d(h−1(γ))

dγ

=

[ γ−a0(p,q)
a1(p,q)−a0(p,q)

]µ̂τ̂{
1−

[ γ−a0(p,q)
a1(p,q)−a0(p,q)

]}(1−µ̂)τ̂
B(µ̂τ̂ , (1− µ̂)τ̂)

· 1

a1(p, q)− a0(p, q)

Together with

πa(p|x, y, z) =
px(1− p)n−x

B(x+ 1, n− x+ 1)
(4.1.13)

πa(q|x, y, z) =
qy(1− q)n−y

B(y + 1, n− y + 1)
(4.1.14)
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Therefore,

πa(p, q, γ|x, y, z) = πa(p|x, y, z)πa(q|x, y, z)πa(γ|p, q, x, y, z) (4.1.15)

=
px(1− p)n−x

B(x+ 1, n− x+ 1)

qy(1− q)n−y

B(y + 1, n− y + 1)

[h−1(γ)]µ̂τ̂ [1− h−1(γ)](1−µ̂)τ̂

B(µ̂τ̂ , (1− µ̂)τ̂)
· d(h−1(γ))

dγ

Through all the work above, we can go back to our test statistics TBF

TBF =
f(x, y, z|M2)

f(x, y, z|M1)
(4.1.16)

=

∫ a1(p,q)
a0(p,q)

∫ 1
0

∫ 1
0

{
p(x,y,z|p,q,γ)π(p)π(q)π(γ)

πa(p,q,γ|x,y,z)

}
πa(p, q, γ|x, y, z) dp dq dγ

C ·B(x+ 1, n− x+ 1)B(y + 1, n− y + 1)

=

1
M

∑M
k=1

Cπz11π
x−z
10 πy−z01 πn−x−y+z00 π(p)π(q)π(γ)

πa(p,q,γ|x,y,z)

C ·B(x+ 1, n− x+ 1)B(y + 1, n− y + 1)

f) Plug 1000 sets of p(k), q(k), γ(k) into (4.1.16) to obtain the Bayes factor.

Since it is a Bayes factor based on M2 to M1, a Bayes factor value of greater than 1 will indicate

a rejection of null hypothesis. Similarly, we can get the power function of Bayes factor test just by

treating the Bayes factor as the likelihood ratio test statistics in the former section. A widely sited

judging table is provided by Kass and Raftery (1995):

2 ln(B10) (B10) Evidence against H0

0 to 2 1 to 3 Not worth more than a bare mention

2 to 6 3 to 20 Positive

6 to 10 20 to 150 Strong

>10 >150 Very strong

where B10 is the Bayes factor of M2 to M1.
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Chapter 5

Conclusions

In this chapter we summarize our methods, give results on Worcester Heart Attack study, and

we give an extension to a general r × c contingency table. We have been interested in a test

of independence in a 2 × 2 contingency table when the margins are random. This has been a

long-standing problem of the Fisher’s exact test.

5.1 Summary

We have built a model based on the multinomial distribution to accommodate random margins in a

2× 2 contingency table. We have constructed two competitive tests which take care of the random

margins. The first test is based on the likelihood ratio and the second test is based on the Bayes

factor. We have obtained the p-values for these tests; we use the Bayes factor for the corresponding

test. These tests naturally remove the conservative nature of the Fisher’s exact test. We have also

obtained the power functions of the three tests for different sizes. We found that likelihood ratio

test is always better than the Fisher’s exact test and the based on the Bayes factor may also be

better.
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5.2 Results

By applying our tests to the data from three examples of the Worcester Heart Attack Study and

calculating the p-values with respect to the different method, we obtain two kinds of p-values and

the Bayes factor for each group listed in the table below. We can see that generally the p-value

of likelihood ratio test and Fisher’s exact test are close. In addition p-value of the Fisher’s exact

test tends to be greater (17 groups in total 18 groups in all the three examples), which can be

understood as a result of the conservatism of Fisher’s exact test.

For 14 groups (the last five groups in Example 1, the 1st, 3rd, 4th and 6th group in Example 2,

and the 4th group in Example 3), we can get a consistent conclusion of no rejection which means

male patients are not more likely to receive the therapy. This is true because both kinds of the

p-values are greater than 0.05 and the Bayes factor is small than 1. For the first group in Example 1

and the second group in Example 2, both likelihood ratio test and Bayes factor reject while Fisher’s

exact test does not. For the 5th group in Example 3 all three tests tend to reject; for the 4th group

in Example 3, only Bayes factor rejects.

To deal with this apparent contradictory conclusion, we should look at the power functions

of these tests. A higher power plot indicates that we are less likely to making error of failing to

reject the null hypothesis when the alternative hypothesis is true. Figure 5.1 and 5.2 shows that

the power function of likelihood ratio test generally goes above the Fisher’s exact test under test

level of α = 0.01 and α = 0.05 and we also list some of the powers in Table 5.1 and 5.2, thus one

may trust the result of likelihood ratio test. The gain in power of our likelihood ratio test may

come from our more flexible model setting than the Fisher’s exact test. We also look at the power

function for the Bayes factor test to see if we have confidence to reject the null hypothesis of the

4th group in Example 3.
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Age (years) p-value (Likelihood ratio test) p-value (Fisher’s exact test) Bayes factor

<55 0.01 0.0979 2.65415

55-59 0.456 0.7143 0.3760477

60-64 0.214 0.3733 0.5483426

65-69 0.355 0.57 0.3151118

70-74 0.104 0.1592 0.7962698

≥75 0.54 0.7562 0.09215492
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Age (years) p-value (Likelihood ratio test) p-value (Fisher’s exact test) Bayes factor

<55 0.803 0.7506 0.265819

55-59 0.036 0.1786 1.894009

60-64 0.12 0.2613 0.9032894

65-69 0.979 0.9326 0.1273676

70-74 0.012 0.02191 5.554933

≥75 0.178 0.2554 0.3041774
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Age (years) p-value (Likelihood ratio test) p-value (Fisher’s exact test) Bayes factor

<55 0.910 1 0.2023028

55-59 0.798 1 0.1023002

60-64 0.283 0.5 0.4739417

65-69 0.094 0.1818 1.197311

70-74 0.902 0.8635 0.1320737

≥75 0.288 0.3559 0.2263033
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Figure 5.1: Power functions of the three tests at α = .01
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Table 5.1: Power values of the three tests of α = .01 for γ ranges from 0 to 0.8460434

γ Likelihood ratio test Fisher’s exact test Bayes factor

0.00 0.022 0.01057581 0.008

0.05 0.060 0.03241211 0.018

0.10 0.128 0.08177870 0.057

0.15 0.224 0.17304464 0.152

0.20 0.368 0.31191125 0.292

0.25 0.573 0.48604699 0.453

0.30 0.731 0.63083935 0.561

0.35 0.868 0.81579139 0.749

0.40 0.927 0.91705728 0.869

0.45 0.973 0.97063244 0.951

0.50 0.990 0.99222457 0.986

0.55 0.997 0.99791878 0.997

0.60 0.998 0.99983293 0.996

0.65 1.000 0.99998964 1.000

0.70 1.000 0.99999975 1.000

0.75 1.000 1.00000000 1.000

0.80 1.000 1.00000000 1.000
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Figure 5.2: Power functions of the three tests at α = .05
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Table 5.2: Power values of the three tests at α = .05 for γ ranges from 0 to 0.8460434

γ Likelihood ratio test Fisher’s exact test Bayes factor

0.00 0.054 0.03531537 0.053

0.05 0.128 0.08867190 0.113

0.10 0.249 0.18531512 0.217

0.15 0.409 0.32869365 0.384

0.20 0.526 0.50372789 0.565

0.25 0.740 0.67948445 0.736

0.30 0.860 0.82388455 0.837

0.35 0.938 0.91994950 0.940

0.40 0.974 0.97085519 0.977

0.45 0.992 0.99183238 0.994

0.50 1.000 0.99832841 0.999

0.55 1.000 0.99976793 1.000

0.60 0.999 0.99998043 1.000

0.65 1.000 0.99999916 1.000

0.70 1.000 0.99999999 1.000

0.75 1.000 1.00000000 1.000

0.80 1.000 1.00000000 1.000
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5.3 Extension

It is natural to think about how to generalize our methodology to higher dimensional tables. In

particular, in our situation we need to discuss how to test for independence in r × c contingency

tables with larger values of r and c and specifically for random margins. Unlike the 2×2 contingency

table where we have used the correlation coefficient between rows and columns as a test parameter,

we cannot do so for the general r × c table. So we need to construct a new test procedure.

Consider the general r × c contingency table, one for the population and the other for the

sample.

Table 5.3: Population table

1 2 · · · c

1 γ11p1q1 γ12p1q2 · · · p1qc p1

2 γ21p2q1 γ22p2q2 · · · p2qc p2
...

...
...

...

r-1 γr−1pr−1q1 γ22p2q2 · · · pr−1qc pr−1

r prq1 prq2 · · · prqc pr

q1 q2 · · · qc 1
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Table 5.4: Population table

1 2 · · · c

1 n11 n11 · · · n1c x1

2 n21 n22 · · · n2c x2
...

...
...

...

r nr1 nr2 · · · nrc xr

y1 y2 · · · yc n

Note that 0 < γijpiqj < 1, i = 1, . . . , r, j = 1, . . . , c and
∑r

i=1 pi =
∑c

j=1 qj = 1

We wish to test and the null hypothesis is

H0 : γ11 = · · · = γrc = 1.

The alternative hypothesis is

Ha : γij 6= 1 for some 1 ≤ i ≤ r, 1 ≤ j ≤ c

.

There are a number of restrictions that must be satisfied among the γijpiqj . For the first row

in our model setting, there is a restriction between parameters, which is

γ11p1q1 + · · ·+ γr−1,1pr−1q1 + prq1 = q1. (5.3.1)

By dividing both sides by q1 we get

γ11p1 + · · ·+ γr−1pr−1 + pr = 1.
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Now replacing prwith 1−
∑r−1

i=1 pi and we obtain

γ11p1 + · · ·+ γr−1pr−1 + 1−
r−1∑
i=1

pi = 1 (5.3.2)

γ11p1 + · · ·+ γr−1pr−1 −
r−1∑
i=1

pi = 0

r−1∑
i=1

(γi1 − 1)pi = 0

Generally we can obtain r+ c restrictions exactly the same way, by making summation of rows

and columns. Together with the global restriction
∑r

i=1 pi =
∑c

j=1 qj = 1, we totally have r+ c+ 2

restrictions and r + c+ (r − 1)(c− 1)− 2 = rc− 1 parameters.

Hence we can rewrite our r × c table as So we can fit data from r × c into a multinomial

Table 5.5: A constrained r × c contingency table for the sample table

1 2 · · · c-1 c

1 n11 n12 · · · n1,c−1 x1 −
∑c−1

j=1 n1j x1
2 n21 n22 · · · n2,c−1 x2 −

∑c−1
j=1 n1j x2

...
...

...
...

...
...

...

r-1 nr−1,1 nr−1,2 · · · nr−1,c−1 xr−1 −
∑c−1

j=1 n1j xr−1
r y1 −

∑r−1
i=1 ni1 y2 −

∑r−1
i=1 ni1 · · · yc−1 −

∑r−1
i=1 ni1 n−

∑r−1
i=1 xi −

∑c−1
j=1 yj xr

y1 y2 · · · yc−1 yc n

distribution,

(n11, · · · , nr−1,c−1, x1 −
c−1∑
j=1

n1j , · · · , y1 −
r−1∑
i=1

ni1, · · ·n−
r−1∑
i=1

xi −
c−1∑
j=1

yj) ∼ Multinomial(n, vecp),

(5.3.3)

where vecp = (γ11p1q1, . . . , prqc); see the population table.

Thus a more complicated multinomial distribution model is constructed and we can develop

the likelihood ratio test and Bayes factor test to test for independence in r× c contingency tables.

This is our future plan.
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