
 Project Number: AW1- 12ES

Securing Embedded Systems

for Autonomous Aerial Vehicles

A Major Qualifying Project Report

Submitted to the faculty of WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the degree of Bachelor of Science

Submitted by:

Phuoc Luong
Electrical and Computer Engineering

Roni Rostom
Electrical and Computer Engineering

Evan Ziavras
Electrical and Computer Engineering

Advisors:

Professor Alexander Wyglinski
Electrical and Computer Engineering

Professor Thomas Eisenbarth
Electrical and Computer Engineering

On

April 24, 2013

Abstract

 This project focuses on securing embedded systems for unmanned aerial vehicles (UAV).

Over the past two decades UAVs have evolved from a primarily military tool into one that is

used in many commercial and civil applications. Today they are used in military strikes, weather

monitoring, search and rescue missions, and many other fields. As the market for these products

increases the need to protect transmitted data becomes more important. UAVs are flying

missions that contain crucial data and without the right protection they can be vulnerable to

malicious attacks. This project focuses on building a UAV platform and working to protect the

data transmitted on it. Areas that were focused on for security included the image processing

and wireless communications modules. Vulnerabilities were found in these areas and ways were

found in which they could be improved. This report contains knowledge concerning how UAVs

are currently used, prior arts, computing options, implementation of building a prototype and

attacks, and results and discussion of this work.

Contents

1. Introduction .. 1

1.1. UAV Market Analysis ... 2

1.2. Importance of UAVs .. 5

1.3. Benefits of UAVs ... 7

1.3.1. Civilian Uses ... 9

1.3.2. National Defense Uses ... 12

1.4. Importance of Security of UAV Systems .. 14

1.5. Proposed Approach .. 16

1.6. Report Organization .. 19

2. Overview of UAV Systems .. 21

2.1. History of UAVs ... 21

2.2. Current UAV Applications.. 24

2.3. Design Considerations ... 35

2.4. Computing Architecture of UAVs... 38

2.5. Prior Art of Previous UAV Projects... 40

2.6.1. Worcester Polytechnic Institute ... 41

2.6.2. Massachusetts Institute of Technology ... 44

2.6.3. Brigham Young University .. 46

2.6.4. University of Linkoping ... 48

2.6. Current Security of Unmanned Aerial Vehicle Technology ... 50

2.7. Chapter Summary ... 52

3. Proposed Approach ... 54

3.1. Computing Options ... 54

3.1.1. Design Architectures .. 54

3.1.2. Processor Options .. 59

3.1.3. Processing Tasks... 69

3.2. Framework Architecture ... 72

3.3. Value Analysis ... 74

3.3.1. Power .. 74

3.3.2. Autopilot .. 76

3.2.3. Image Processing Module .. 83

3.2.4. Communication .. 84

3.2.5. Camera .. 89

3.4. Security... 93

3.5. Tasks Division.. 95

3.4. Chapter Summary ... 95

4. Design Methodology and Implementation ... 97

4.1. Autopilot .. 98

4.2. Communication .. 100

4.2.2. Socket Programming Codes .. 106

4.2.3. Use of Virtual Machine ... 107

4.3. Image Processing .. 110

4.4. Attacks .. 116

4.4.1. Red Color Attack .. 116

4.4.2. Wireless Attacks ... 119

4.5. Integrated Prototype Implementation .. 124

4.6. Chapter Summary ... 125

5. Results and Discussion ... 127

5.1. Platform Functionality... 127

5.1.1. Image Processing Functionality .. 127

5.1.2. Socket Programming Functionality ... 128

5.1.3. File Sharing Functionality ... 129

5.1.4. Autopilot Functionality ... 130

5.2. Attack Results ... 134

5.2.1. Color Attacks .. 135

5.2.2. Wireless Attacks ... 140

5.3. Indoor Testing ... 147

5.4. Chapter Summary ... 149

6. Conclusions and Future Recommendations.. 150

6.1. Conclusions ... 150

6.2. Future Work ... 152

Appendix A .. 154

Appendix B .. 156

Appendix C .. 158

Bibliography .. 163

List of Figures

Figure 1 - National Defense use of a UAV: a predator drone takes off on a U.S. customs border

Protection mission [3]. .. 2

Figure 2 - This image shows a search and rescue mission. The dotted circle shows where a dummy was

dropped off in the Utah wilderness. Researchers are working on object-detection algorithms that would

allow the UAV to find the missing person [1]. .. 2

Figure 3 - The UAV funding witnessed a major increase since 2009. A 35% funding increase in the UAVs

market was carried out since 2009 [6]. .. 3

Figure 4 - Expected revenue for the different UAV types [4]. ... 4

Figure 5 - Pteryx UAV for aerial photography is an example of a UAV civilian application [8]. 5

Figure 6 - UAV with thermal Infrared camera to locate people by identifying body heat [11]. 6

Figure 7 - Kettering Bug. This is the first UAV that was employed by American national security forces,

making a big benchmark in the history of UAVs [13]. ... 7

Figure 8 - German FI 103 V1. This plane was used by the Germans during World War II to launch air

attacks at London [15]. .. 8

Figure 9 - Pioneer drone [18]. .. 9

Figure 10 - Predator drone. This and the Pioneer (Figure 7) are two prominent UAVs used by United

States defense forces in the recent wars in Iraq and Afghanistan. They have provided invaluable help as

they can carry out missions with a dramatically decreased risk for loss of life [19]. 9

Figure 11 - Aerosonde UAV is being released from its transport vehicle to fly into Tropical Storm Ophelia

in 2005. Its mission is to gather weather information for better understanding of tropical storm [21]. .. 10

Figure 12 - MLB Bat is prepared to be launched at Moffett Field. The UAVs is launched in flocks like bird

and they would gather information for possible risk of wildfire [22]. ... 11

Figure 13 - Video feed of U.S. Army UAVs. This video was used to spy on OPFOR mounted elements,

which is a group designated to simulate the enemy in preparation for battle. This screenshot proves how

defense teams can use video from UAVs to watch enemy movement [26]. ... 13

Figure 14 - Reaper drone [27]. ... 14

Figure 15 - UAV Proposed Design. All components are shown as well as data and connection types. The

central computing unit (CCU) handles the main plane operations and is fed data from the autopilot and

camera modules. This is then sent to the base station via Wi-Fi. .. 17

Figure 16 - The final design prototype.. 18

Figure 17 - Leonardo Da Vinci’s flying machine [34]. .. 22

Figure 18 - Aerial Steam Carriage by John Stringfellow and William Henson in 1848. The plane can fly for

a distance without any human interaction. However, it still lacks autonomous feature [33]. 22

Figure 19 - Kettering Bug by Charles Kettering and Dayton Wright Airplane Company in 1918. The plane

has simple autonomous system designed for finding and destroying enemy aircraft [35]. 23

Figure 20 - Tactical UAV is used to support the brigade with integral intelligence, reconnaissance and

target acquisition at distances of up to 200 km [36]. .. 25

Figure 21 - The UAV command center of a Reaper drone. The pilot is sitting to the left and the sensor

operator is sitting on the right. Although the pilot needs to command the plane with the same sense of

caution as he would a regular manned aircraft, he is removed from all danger [37]. 26

Figure 22 - The largest UAV in the USAF to date, this aircraft can stay in the air for two full days [38]. ... 27

Figure 23 - Outline of a typical United States drone mission in Afghanistan. The UAV is normally

deployed to the location of an enemy combatant and circles the area waiting for positive identification

of the target and clearance. Drones are not allowed to strike if there are women and children nearby,

making strikes on residential dwellings forbidden. The drones return to base once a positive strike is

confirmed. ... 28

Figure 24 - Interactive map revealing where UAVs are being flown inside the USA [40]. 29

Figure 25 - A timeline of the rise of the use of UAVs. As can be seen above, UAVs started to be used in

serious defense applications in World War II. Their use increased as time went on and after Israel used

them to destroy the Syrian air defenses in 1982 the United States decided to start investing heavily in

the technology. During the war in Afghanistan the United States had 3,000 drones in service. That

number has increased to 12,000 as of 2010 [41]. ... 30

Figure 26 - Autonomous Platform for Precision Agriculture (APPA) is an UAV developed by University of

Arkansas System. The UAV was developed with purpose of better crop management and nurseries [43].

.. 31

Figure 27 - An unmanned aerial vehicle developed by NASA in wildfire detection testing [44]. 31

Figure 28 - A UAV launched into a hurricane in 2008. The purpose was to know more about hurricane’s

characteristics [46]. ... 32

Figure 29 - Launching of RQ-11 Mini-UAV, an UAV that is used for identify possible threats. The UAV acts

as second security layer after the first layer of ground sensor [48]... 33

Figure 30 - A search and rescue UAV that is used for finding missing people. The UAV was developed by

Flat Eight Productions, Inc. [49]. .. 34

Figure 31 - A UAV is being tested in traffic controlling in UK. It can also be used to track down car chases,

hidden suspects and monitor riots or protests [51]. ... 35

Figure 32 - Comparison of UAV specifications. The x-axis represents the planes’ wingspans, the y-axis

represents their payload capacity, and the z-axis represents their power requirements. 37

Figure 33 - MQ-1 Predator [54]. ... 38

Figure 34 - General UAV architecture consists of camera, image processing, autopilot, CCU,

communication and a base station. ... 40

Figure 35 - WiND project architecture consists of camera, image processing, autopilot, path planning,

communication and base station modules. Data is computed inside the UAV [55]................................. 43

Figure 36 - System architecture of RAVEN project from MIT. The data processing tasks are not computed

in the UAV but on a ground station [30]. ... 45

Figure 37 - Magicc UAV System Architecture [31]. ... 48

Figure 38 - Witas UAV Network Architecture uses Ethernet switch to communicate between modules

[32]. .. 49

Figure 39 - Model of typical a sensor network. Data is transferred to the outside world using different

types of sensors... 51

Figure 40 - First design option. All modules are separate. This provides more flexibility but weights more,

takes up more room, and costs more. ... 56

Figure 41 - Second design option. This combines image processing, the CCU, and the encryption module

on one processor. While this saves money and weighs less, memory capacity is a concern and it might be

harder to implement image processing. .. 57

Figure 42 - Third design option. This offers the advantage of allowing the encrypting to be done by the

CCU’s specific encryption module. This also saves weight and money while allowing a separate model

that is more suited for image processing to be picked out for it. .. 58

Figure 43 - OMAP 4470 architecture. This shows all of the processors inside the OMAP as well as the

wireless, audio, and other connectivity ports [59].. 61

Figure 44 - MSP430 microprocessor architecture. This shows all of the memory, the ADC, DAC,

input/output ports, and clocks [63]. .. 64

Figure 45 - A typical digital signal processing system. ... 66

Figure 46 - Spartan 6 architecture with data links [64]. .. 67

Figure 47 - Lena. This is the image that algorithms normally use to test their effectiveness against [68]. 71

Figure 48 - Project detailed system architecture that has data links between modules. The platform has

CCU and Encryption module being implemented in one board for saving resources. 74

Figure 49 - Paparazzi communication. This shows how the autopilot module interacts with the ground

station and the user interface [69]. .. 78

Figure 50 - Kestrel autopilot [72]. .. 79

Figure 51 - Piccolo SL autopilot [74]. .. 80

Figure 52 - OpenPilot autopilot [76]. .. 80

Figure 53 - Type M Wi-Fi bullet [77]. .. 85

Figure 54 - Zigbee, a module of Xbee products [78]. .. 86

Figure 55 - A Bluetooth dongle for wireless communication [79]. .. 87

Figure 56 - Sony FCBIX45C camera [80]. ... 90

Figure 57 - Black Widow KX131 Color CCD camera [81]. ... 90

Figure 58 - Draganfly SAVS platform [82]. .. 91

Figure 59 - FCB-EX470LP camera [83]... 91

Figure 60 - System architecture of a sensor network model. The camera is the data receiving sensor,

ArduPilot and Wi-Fi bullet is bi-directional sensor. ... 93

Figure 61 - Encryption process alters original data (plaintext) into another form (cipher text). Decryption

is the opposite process. ... 94

Figure 62 - The PoE adapter is powering the bullet and linking the Beagleboard to the bullet via Ethernet

cords. .. 101

Figure 63 - AirOS wireless configuration page. ... 103

Figure 64 - AirOS network configuration page. ... 104

Figure 65 - Connecting the bullets together using AirControl. .. 104

Figure 66 - Socket programming testing. The base station received the message sent by the Beagleboard.

.. 106

Figure 67 - RGB convention states that all colors are composed of a certain degree of red, green and

blue. White color means equal maximum amount of both three and black means none of three [90]. 114

Figure 68 - HSV convention’s color is decided mainly based on hue value. Saturation decides strength of

the color and value decides its brightness [90]. ... 115

Figure 69 - Color filter process: First image was the original image, second image was converted to HSV

color plane and last one was filtering out non-red pixels. .. 115

Figure 70 - The testing module: camera and light source was placed in front of a white wall facing each

other, light source and camera had a distance of d and shining angle of a. .. 117

Figure 71 - The LED flashlight that was used had three LEDs with different colors: red, blue and green.

The LED had a solid lighting mode as well as a flashing mode. ... 118

Figure 72 - The laser light that was used was a level measurement laser. Its light could reach more than 5

feet distance [91]. ... 119

Figure 73 - The Aircrack-ng code used to send deauthentication packets to the bullets. These packets

contained random, meaningless bits that should not allow the two bullets to connect with one another.

.. 121

Figure 74 - Box architecture. .. 125

Figure 75 - The latitude, longitude, and altitude was sent to the base station after the red color was

detected. The first line in the above picture represents the client code command. This command must

be run in order to communicate with the server. The Beagleboard keeps on sending the GPS information

as long as the red color is still being detected. ... 129

Figure 76 - The flight simulation as it appears on the ground control software. This operates in real time

and tracks the plane’s orientation and altitude. ... 131

Figure 77 - Data window on the Mission Planner software. All important data is shown such as roll, pitch,

yaw, latitude, and longitude. ... 132

Figure 78 - Location of the autopilot. The software uses Google Maps to produce an interactive map

showing the location of the board and the direction in which it is facing. The current location is at

Atwater-Kent Laboratories at Worcester Polytechnic Institute in Worcester, MA. 133

Figure 79 - Red LED image after the algorithm was applied to it. Although it was detected as a positive

result, the LED could only be effective for short distances. .. 136

Figure 80 - Laser image after processed by the algorithm. Laser light was proven to be very effective as

an attacking light source with greater distance and shining angles. ... 138

Figure 81 - Laser light after the saturation filter is applied to it. The area of detected pixels had been

reduced greatly, making laser light no longer a threat to the algorithm. .. 139

Figure 82 - The Wi-Fi bullets captured packets ... 141

Figure 83 - Packets transfer between the Beagleboard and the Base Station 142

Figure 84 - The hallway where indoor testing was performed. The platform can be seen in the lower left

corner. .. 147

Figure 85 - A map of the WPI Sports and Recreation Center where indoor testing was performed. The

exact location of the testing was in the hallway connecting the Sports and Recreation Center to

Harrington Auditorium [95]. .. 148

Figure 86 - The GPS information of the Beagleboard was sent to the base station placed at the end of the

hallway. This signifies that the platform performs as expected. ... 149

List of Tables

Table 1 - Comparison of plane specifications ... 37

Table 2 - Power requirement for project WiND system [55]. .. 41

Table 3 - Architecture comparison. ranking the three choises in seven different categories. As can be

seen, the third option was chosen for implementation in this project. ... 59

Table 4 - Comparison table for the different kinds of microporcessors ... 68

Table 5 - System power requirements ... 75

Table 6 - Batteries considerations summary .. 76

Table 7 - Autopilot comparison .. 82

Table 8 - Image processing options summary... 84

Table 9 - Comparison of the Bluetooth, Zigbee, and the Wi-Fi protocols [66]. .. 89

Table 10 - Camera options summary. ... 93

Table 11 - Testing results for colored light attacks. The tests were conducted with different angles and

distances. .. 135

1

1. Introduction

 Countries around the globe have become increasingly reliant on unmanned aerial vehicles

(UAVs). UAVs are extremely useful in many areas such as the military, civilian, and commercial

fields and are a common tool to conduct search and rescue missions. These drones perform

missions with high levels of complexity and are useful for cases where a human pilot would face

certain risks. They require less human operator participation due to their autonomous behavior.

In the case of emergency situations such as natural disasters, UAV systems can be programmed

to complete missions from takeoff to landing. An example of this is shown in Figure 2 where a

UAV is used to find missing hikers in a search and rescue mission. These missions include high

navigation precision and long operation times that are tedious for human pilots. UAVs are also

much cheaper, faster, and safer than using helicopters for search and rescue mission according to

researchers [1]. Historically these drones were primarily used in defense operations but lately

they have seen more use in the civilian world. UAVs wide ranges of missions are also used by

the Air Force United States Marine Corps, Army, and Navy [2]. The National Defense UAVs

represent a variety of missions and technology that range from large vehicles that carry offensive

weapons to miniature systems whose components are light and compact to be carried in a

backpack. Figure 1 below shows a Predator drone, one of the most common UAVs used in

defense applications.

2

Figure 1 - National Defense use of a UAV: a predator drone takes off on a U.S. customs border Protection mission [3].

Figure 2 - This image shows a search and rescue mission. The dotted circle shows where a dummy was dropped off in the
Utah wilderness. Researchers are working on object-detection algorithms that would allow the UAV to find the missing

person [1].

1.1. UAV Market Analysis

 The United States of America is leading the growth and the speed of development of

UAV markets. However, understanding the usefulness of UAVs and using mature UAV systems

on operational deployment has dramatically improved the growth of UAVs in Europe, Asia, and

the Pacific. This, in turn, has generated a steady growth rate in the military field [4].

Many countries are attempting to manufacture drones, but most of them are either

technologically unsophisticated or are being used strictly for civilian purposes. The United States

and Israel are the two most active manufacturers of military drones with the United States being

the largest producer and most frequent user of these systems [5]. The American military now has

3

some 7,000 aerial drones, compared with fewer than 50 some 10 years ago [5]. The Pentagon has

asked Congress for nearly $5 billion for drones in the 2012 budget [5]. Many other countries,

including Russia and China, have been trying to manufacture deployable drones for a long time

but technological difficulties and a lack of accurate intelligence gathering capabilities imposes

limits on the effectiveness of their use [5]. Figure 3 shows how UAV funding witnessed a major

increase since 2009.

Figure 3 - The UAV funding witnessed a major increase since 2009. A 35% funding increase in the UAVs market was carried
out since 2009 [6].

The UAVs’ success in providing real-time information to military agents has contributed

to both task effectiveness and in protecting personnel. UAVs success in such roles has enabled

4

militaries around the globe to fully commit to the use of UAVs which will boost its market

growth rate in the next 10 years [4].

Figure 4 - Expected revenue for the different UAV types [4].

Figure 4 shows the expected military UAV revenues in Europe. A big percentage of the

revenue is coming from the MALE (medium altitude, long endurance) UAVs, which fly up to

30,000 feet and range over 200 kilometers. In 2010 the HALE (high altitude, long endurance)

UAVs revenue was more than $800 million. This kind of UAV flies over 30,000 feet with

indefinite range. Other types of UAVs with excellent revenues are the Tactical UAVs (TUAVs)

which fly up to 8000 feet and range 160 kilometers, and the Micro UAVs which are similar to

the TUAVs.

 Over the last decade UAV manufacturers have moved beyond pure military sales to

include civil and commercial markets. UAV manufacturers noticed a significant amount of

interest in the commercial and civilian markets for UAV applications. However, the military has

acted as a first adopter of UAV systems and has demonstrated their utility, encouraging the idea

of their use in a large number of non-military applications ranging from law enforcement and

border security to earth observation and communications.

5

1.2. Importance of UAVs

The transformation of combat zones abroad and law enforcement at home is considered

one of the most important reasons for increased UAV use today. Besides successfully altering

the way the military does business, UAVs are becoming powerful tool for civilians. UAVs now

are used for commercial applications, including business, photography and environmental

monitoring [7]. An example of UAV civilian application is given in Figure 5. A Pteryx UAV is

used for aerial photography. UAV drones, aircrafts without human pilots on board, are used

today to keep an eye on corporate pollution and to record police tactics at protest locations,

which is a big proof of the civilian utilization of UAVs [7].

Figure 5 - Pteryx UAV for aerial photography is an example of a UAV civilian application [8].

UAV drones are able to replace human beings for search, guard, and rescue missions.

Companies are replacing the human guards by helicopters piloted by a computer for overnight

surveillance, which is much cheaper than employing human beings. Likewise, governments from

all over the globe recently started deploying drones in areas affected by earthquakes for search

and rescue missions [9].

6

UAV drones are usually equipped with infra-red cameras and radar systems that generate

details of the ground from long distances and with significant resolution. These tools make the

UAVs ideal for military use. The planes give the military persistent operational capabilities while

offering the promise of even more capabilities in the future. The United States Air Force is

counting on UAV technology to be applied to different fields to face future challenges

encountered in conducted missions. Lieutenant General David A. Deptula, the Air Force's deputy

chief of staff for intelligence, surveillance and reconnaissance, said, “UAV’s technology could

one day be used in a modular platform that could perform a variety of tasks, such as cargo

transport and aircraft refueling missions” [10]. He focused on the idea of expanding the UAV

technology use and replacing conventional fighter planes and pilots with unmanned aerial

vehicles in the long term future [10]. Figure 6 shows a UAV that replaced human pilots for

search and rescue missions.

Figure 6 - UAV with thermal Infrared camera to locate people by identifying body heat [11].

7

All of this implies that more UAV applications in the future will be expected. UAVs will

reveal "sense and avoid" collision-avoidance systems by the end of this year [10]. They will be

able to refuel each other by 2030 and by 2047 a global military strike capability, perhaps even

with nuclear weapons, is expected for the UAVs. "As technology advances, machines will

automatically perform some repairs in flight," the Flight Plan reads. "Routine ground

maintenance will be conducted by machines without human touch labor," [10].

1.3. Benefits of UAVs

 In this era of technology, people tend to create more machines and equipment that can

make their lives easier. The UAV is a perfect example for a rising technology field that’s

purpose is to serve humans. After many years of people questioning their usefulness, UAVs are

getting more attention from both scientists and investors.

 The first UAVs were developed in 1918 by the United States Navy and Army. They were

nicknamed the “flying bomb” and the “Kettering Bug.” They were interfaced with a gyropscope

and barometer/altimeter and the “Kettering Bug” was able to fly for fifty miles on its own. A

picture of the “Kettering Bug” can be seen in Figure 7 below. This was a big step in the history

of UAVs as they were the first planes to be able to fly autonomously [12].

Figure 7 - Kettering Bug. This is the first UAV that was employed by American national security forces, making a big
benchmark in the history of UAVs [13].

8

Germany was able to successfully use UAVs in World War II for military missions. The

Fiesler FI 103 V1 was able to launch from France and strike at London and can be seen in Figure

8 below [12]. America also was able to develop its own devices during this time. The Aphrodite

Project involved having pilots fly B-17 bombers to a certain point, have the pilot evacuate, and

have someone on the ground control the plane to strike a target [14]. After the war, development

continued for the United States. The Navy and Air Force worked to turn extra airplanes into

drones that could be flown autonomously [12]. UAVs were then used in the Vietnam War where

they flew over 3,000 missions over North Vietnam and China [14].

Figure 8 - German FI 103 V1. This plane was used by the Germans during World War II to launch air attacks at London [15].

A pivotal point in the history of UAVs was the Israeli victory over the Syrian Air Force

in 1982. UAVs carried out attacks and were also used as decoys, jammers, and for surveillance

[12]. Up to this point some had questioned whether UAVs could play a critical role in a war

effort and whether they were worth the investment that they required. The fact that UAVs

allowed Israeli forces to destroy eighty-six Syrian aircrafts, essentially destroying their air

defenses, without losing one of their pilots confirmed that UAVs could play a critical part in

winning a battle and allowed them to gain acceptance in many people’s eyes [16]. The United

States used UAVs about a decade later in 1991 in Operation Desert Storm and provided

9

reconnaissance coverage. The Pioneer and Predator planes were two prominent platforms used in

this mission and can be seen in both Figure 9 and Figure 10 respectively [12] [14]. UAVs have

since been used by the United States military in the wars in Iraq and Afghanistan. They have

carried out attack missions and provided surveillance [17].

Figure 9 - Pioneer drone [18].

Figure 10 - Predator drone. This and the Pioneer (Figure 7) are two prominent UAVs used by United States defense forces in

the recent wars in Iraq and Afghanistan. They have provided invaluable help as they can carry out missions with a
dramatically decreased risk for loss of life [19].

1.3.1. Civilian Uses

Over the past several years, unmanned aerial vehicle usage has become bigger in both

military and civilian aspect. With the benefit of low cost and low maintenance, simpler operation

than manned vehicles, and less risk than manned vehicles, UAVs are used for many civilian

applications. Most of them are to alleviate difficulties and cost in certain jobs [20].

10

In Sept. 16, 2005, hurricane researchers of National Oceanic & Atmosphere

Administration (NOAA) Atlantic Oceanographic & Meteorological Lab were successful in

sending a UAV into Tropical Storm Ophelia. The mission was to send a UAV, which was called

Aerosonde, from Wallop Island into the storm when it passed Virginia’s Eastern Shore. The

UAV would fly inside the storm and drop a small sized measuring device, which was called

Dropsonde, into it and fly back. The Dropsonde would the send back data, information, and

reading concerning the Ophelia storm via radio and satellite [21]. A picture of this operation

being done can be seen in Figure 11 below.

Figure 11 - Aerosonde UAV is being released from its transport vehicle to fly into Tropical Storm Ophelia in 2005. Its mission
is to gather weather information for better understanding of tropical storm [21].

The data needed to be taken in near sea surface level where the strongest winds of a

hurricane are found. This made the operation too risky for a manned aircraft to conduct.

However, the Aerosonde UAV could fly at levels where regular pilots cannot reach and drop the

sensor with great accuracy. The result was remarkably good as they were able to measure all

important information of the storm on a real-time basis. As a NOAA pilot who did numerous

hurricane mission, Lt. Cmdr. Harris Halverson commented, “It’s way too early to say UAVs will

replace the traditional aircraft, but if they can do it better or more cost-effectively at some point

in the future, that’s possibility” [21].

11

In 2005, the Ames Research Center of NASA developed a project of using UAVs to

monitor wildfires. The idea of this project was to fly a fleet of UAVs called MLB Bat that was

like a flock of bird into a field in wildfire potential season. This system of UAVs was controlled

by a base station in the ground and each of the UAVs had a camera so it could transmit video

images captured to the ground station. This technology could save thousands of dollars in

manpower and possible destruction by wildfire. The planes could fly around an area, capturing

images for a very long time (more than 8 hours), and alleviate the need of human patrolling,

especially at night [22]. Figure 12 shows a picture of this operation being performed.

Figure 12 - MLB Bat is prepared to be launched at Moffett Field. The UAVs is launched in flocks like bird and they would
gather information for possible risk of wildfire [22].

In 2005, an $85,000 project was funded by Maryland Technology Development Corp. for

AeroView for using UAV in agricultural applications. The UAVs would fly over a field and take

both infrared and colored pictures of crops. Those pictures would be combined and display status

of the crops and possible areas of blight. Furthermore, the UAVs could also be used to measure

soil’s moisture levels, plant life, or destruction caused by over fertilization or pests. This system

saved time and money for farmers because they did not have to go through their fields acre by

acre. Also, since the pictures were taken from above, users could have a better view of whole

fields rather than just a small area [23].

12

1.3.2. National Defense Uses

 Historically, UAVs have been mostly used in military situations. Since their inception

they have provided many advantages over traditional airplanes. UAVs are safer, less expensive,

and more environmentally friendly than their counterparts. They are capable of executing

missions that manned aircraft cannot and can be controlled remotely. The advantages of UAVs

in military missions are numerous.

 UAVs also provide a major cost advantage over similar alternative vehicles. A Reaper or

Sky Warrior, two common UAVs used by the United States military, cost about $22 million

apiece on average. In contrast the Pentagon pays about $100 million per fighter jet purchased.

Thus a Reaper or Sky Warrior provides over a 75% savings from traditional military aircraft

[24]. A pilot is also not needed to fly a UAV therefore providing extra savings. The upkeep of

UAVs is also less than that of regular manned vehicles and can be flown out of smaller airports

which cost less to use than bigger ones. The economic savings that UAVs provide is a very key

advantage of theirs [24].

 The use of UAVs also provides certain flexibility during missions that regular planes do

not have. Since many countries do not require UAV operators to be fully qualified, more people

are able to operate them for missions [25]. Also, because of their small size they can fly lower

than traditional aircraft and are capable of taking high resolution video, which other planes

cannot provide [25]. This video can be used in many common mission types such as

surveillance. Figure 13 is an example of UAV video that is used by the Army to gather

information about an area of land. Another advantage of not having a pilot onboard is that the

planes can be in the air for as many as twenty consecutive hours [25]. Since there is no pilot on

board issues like nourishment and rest are not considered in these missions. UAVs missions’ are

13

also normally very repetitive and dull when they are in the air for this long of a period of time.

Normally this would drive a human operator to distraction that could have a negative impact on

the mission’s performance. With no operator on board however this is not an issue. UAVs also

provide other advantages because they feature autonomous control. Autopilot and navigation

systems allow UAVs to take off, fly, and land under computer control. This allows the operators

to program them with flight patterns so that many of them can fly in the same area without the

worry of crashing [25].

Figure 13 - Video feed of U.S. Army UAVs. This video was used to spy on OPFOR mounted elements, which is a group
designated to simulate the enemy in preparation for battle. This screenshot proves how defense teams can use video from

UAVs to watch enemy movement [26].

Another often overlooked factor in the advantages of UAVs is that they are more

environmentally friendly than traditional aircraft. These planes require fewer materials to build

and less gas to run thus conserving natural resources. They also create release less carbon

dioxide into the atmosphere during flight, which reduces the amount of greenhouse gases in the

atmosphere. Other considerations include the fact that they make less noise than regular planes

and are easier to dispose of once they are out of use [25].

 UAVs are safer to operate and reduce the chance at a loss of life during mission runs.

They also are able to fly over areas where it would be too dangerous to send regular aircraft.

14

UAVs also present a major cost savings in the military, as they cost over 75% less than a

comparable manned vehicle. They are able to fly at lower altitudes than other vehicles because of

their size and their autonomous flight allows multiples of them to fly in the same area without

the worry of collision. Figure 14 shows a picture of a Reaper drone, a common plane used in

defense missions.

Figure 14 - Reaper drone [27].

1.4. Importance of Security of UAV Systems

 Security plays a crucial role in the success of a UAV system. Since these planes are used

for so many various defense and civil applications, they often carry confidential information that

could be devastating if it fell into the wrong hands. UAV platforms often consist of various

modules that allow it function properly. While having multiple modules is critical to the

performance of the platform, it also leads to many potential vulnerabilities that could be

exploited by malicious attackers. This project is dedicated to identifying these potential holes in

security and working to make it so that attackers cannot take advantage of them.

 One major potential problem regarding UAV security lies in the sensor inputs of the

system. UAVs usually consist of at least one sensor that takes in the environment and moves data

over to be processed to find items that are being searched for. If an attacker is somehow able to

15

tamper with this input to make the sensor see something that is not there, the effectiveness of the

mission will be compromised. This could lead the team controlling the UAV to react to

something they should not, while at the same time not identifying an item that should be

identified because they are preoccupied with the false one. An example of this could be a UAV

being used in a search and rescue mission with a camera programmed to identify red colored

objects on the ground. If an attacker could shine a light on the lens of the camera, it could cause

the image processing module to either identify the light as an object on the ground or be blinded

and not process any images at all. Another potential example is interfering with the global

positioning system (GPS) module of the UAV. Many drones carry GPS modules to let users

identify their location. If someone was able to jam the module so that it outputted the wrong

position coordinates it would seriously hinder the reliability of the UAV system.

 Another potential vulnerability lies in the communications module of UAVs. Since

UAVs are flown in the air and controlled on the ground, most of them feature some sort of

wireless communication to transmit important data and commands in a bidirectional manner.

Some common methods include Wi-Fi, Zigbee radios, and Bluetooth [28]. While this feature is

critical to UAV functionality, it also presents a major risk as wireless signals always have the

chance of being interfered with or intercepted. Software currently exists that is able to intercept

messages being sent between servers. This presents an imminent danger because if an enemy

was able to get a hold of critical information they could maneuver themselves so that they are out

of danger of the UAV control team. Another threat that exists regarding wireless communication

is the jamming of the signals. One popular way to jam signals is by sending packets to one server

that are full of meaningless data. This will keep the server so busy that it will not be able to listen

to relevant data coming from the other communication module. This presents a problem to the

16

control team as it would lose control of the plane and not be able to obtain the data that it is

transmitting. Much care must be taken as to make sure that the communication component of the

UAV system cannot be compromised.

 Keeping a UAV system secure is very important to any team that is working with them.

While the complexity of UAVs leads to their effective performance, it also presents multiple

issues that can be exploited by malicious attackers. This threat is compounded when the planes

are being used for defense missions where a breakdown in security can be the difference between

life and death. Extra caution must be taken when designing UAV systems as to make sure that

they are not open to attacks.

1.5. Proposed Approach

 During the course of this project, an architecture for a UAV platform was developed and

ways were found to protect it against malicious attacks. The UAV architecture consists of

multiple modules and is capable of capturing images, processing those images, and sending the

processed data between the UAV in the air and the station on the ground. The platform is based

on previous projects conducted at Worcester Polytechnic Institute [29], Massachusetts Institute

of Technology [30], Brigham Young University [31], and Linkoping University [32]. The main

components include an autopilot system for navigation, a microprocessor for image processing, a

ground control system, a camera, and a communication system for communicating with the

ground control system. Off-the-shelf items were considered for these components.

 Multiple components and their interfacing with one another were able to be compared by

looking at projects. Value analysis was conducted on the different components and methods of

communication and a finalized structure was determined for this system. Multiple various

architectures were compared to determine the best way to design this platform. Once a design

17

was decided upon, components were selected to meet the needs of each module. Different

options for the camera, autopilot, image processor, central control unit, and communications

module were considered. A block diagram of this system can be seen in Figure 15.

Figure 15 - UAV Proposed Design. All components are shown as well as data and connection types. The central computing
unit (CCU) handles the main plane operations and is fed data from the autopilot and camera modules. This is then sent to the

base station via Wi-Fi.

This architecture meets the ideal needs for security, performance, and size constraints.

Since the encryption module will be located on the central control unit (CCU), size and cost was

reduced as opposed to putting them on separate devices. This is also more secure as there is one

less link to send data by. By keeping the image processing module on the same board as the

CCU, size is reduced and the platform is simpler to design as less integration is needed. This

design fits the requirements as it is not too big to put on a UAV and it is secure.

18

 Once the platform was developed, malicious attacks were conducted against it and try to

compromise its security systems. These attacks included trying to compromise both the image

processing and communications modules. The image processing module was attacked by shining

a light into the lens of the camera that could be recognized as a positive hit and reported back to

the ground station. Wireless attacks were done by attempting to intercept wireless packets and

jamming the Wi-Fi network. Once these attacks were found to be successful, countermeasures

were developed against them to protect the system. Figure 16 shows the final design prototype

put together.

Figure 16 - The final design prototype.

Hole for powering the system

CCU & encryption module

Camera

Communication Module

Autopilot module (under

the Beagle Board)

19

1.6. Authorship

Each team member played a crucial in the completion of this project. Each person’s

contribution is shown below:

 Phuoc Luong wrote about the applications and history of UAVs. He wrote about current

security and computing architecture of UAVs. Furthermore, he worked on some portions

of the market research of processor choices and did the image processing value analysis.

Phuoc also programmed the image processing algorithm as well as socket programming.

Finally, he was in charge of testing the colored light attack and providing counter

measurement against this type of attack.

 Roni Rostom wrote about the importance of UAVs and UAV markets. Roni Rostom also

researched about the different communication modules used in past UAV projects to

transfer data between the UAVs in the air and the ground base stations, and did a value

analysis to choose the best module for this system. Roni also worked on configuring the

right settings of the Wi-Fi bullets and assisted in successfully running the socket

programming codes for the wireless communication. He also was involved in the wireless

hacking attacks that made use of the Wireshark software and wrote about it in the report.

 Evan Ziavras wrote the about the applications for UAVs in the civilian and defense

fields. He also conducted research about autopilot modules and cameras used in past

UAV projects and conducted value analysis to decide one the ones that were to be used in

this project. Evan also worked on configuring the autopilot module with the Beagleboard

and installed the virtual machine to run the socket programming between the platform

and ground station. He also was involved in the wireless jamming attacks that made use

of Aircrack-ng and wrote about these parts in the report.

20

1.5. Report Organization

This chapter has shown the problem statement and motivation for the project as well as a

low-level proposed approach for its implantation. In Chapter 2, background about history of

UAVs is given as well design options and prior art. Chapter 3 describes the proposed approach

and value analysis for the different components considered for this project. The implementation

process is given in Chapter 4 and the final results and discussion are covered in Chapter 5.

Chapter 6 states all of the conclusions and recommended future work for this project.

21

2. Overview of UAV Systems

 Information is very important when working on a project, especially in a technical area

such as UAVs are in. Therefore, before starting the implementation process, more needs to be

learned about the current status of UAVs, the UAV market, and information about popular UAV

components. This process will make the scope of the project clearer, helping organizing project

resources.

2.1. History of UAVs

Ever since the beginning of humanities flying was a never ending desire of people. There

have been countless number of attempts to fly in both history and legend; some of them were

very famous like “the story of Daedalus and Icarus” or Da Vinci’s flying machine. However,

aerial vehicles’ history formally started when the Wright brothers first succeeded in giving

humans the ability to fly in 1903. Since then, a whole new world of possibilities and dreams has

opened up. UAV history can be dated to as back from the advent of the first flight, but none of

the attempted inventions were truly autonomous or controllable. Notably, there were John

Stringfellow and William Henson who created a steam powered aircraft called Aerial Steam

Carriage in 1848 that could fly for a distance of about 60 yards [33]. Figure 17 and Figure 18

show drawings of these two primitive flying machines.

22

Figure 17 - Leonardo Da Vinci’s flying machine [34].

Figure 18 - Aerial Steam Carriage by John Stringfellow and William Henson in 1848. The plane can fly for a distance without
any human interaction. However, it still lacks autonomous feature [33].

In World War I, the concept of controllable UAVs was a very attractive idea for military

purposes. The idea was first used in a real application with the “Kettering Bug”, or Kettering

23

Aerial Torpedo, in 1918. The “Kettering Bug” was designed by Charles Kettering and

manufactured by Dayton Wright Airplane Company. Originally, it was created as an early

version of cruise missile. The Kettering Bug was a propeller driven biplane, powered by gasoline

that could fly a predetermined route of about 50 miles and explode when the propeller had turned

a preset number of times. An image of this plane can be seen in Figure 19. This aerial vehicle

was a revolution for UAVs’ technology and usage. People began to apply UAVs more and more

into practice, mostly in war. Drones were also widely used in World War II and remotely piloted

vehicles were developed for gathering information in the Vietnam War [35].

Figure 19 - Kettering Bug by Charles Kettering and Dayton Wright Airplane Company in 1918. The plane has simple
autonomous system designed for finding and destroying enemy aircraft [35].

After both world wars, the usage of UAVs split into many branches for many various

applications. For military applications, there were many programs developed to further advance

research and development of UAVs. For more general applications, UAVs are used for

surveillance, entertainment as well as education. Although their history is short, the potential of

UAVs is undeniable enormous.

24

2.2. Current UAV Applications

 UAVs are revolutionizing the way war is being fought. They are being used increasingly

to conduct missions that help military operatives gain intelligence about the enemy and allow

them to make up an attack strategy. The rise of UAVs can be particularly seen in the recent

United States wars in Iraq and Afghanistan. These wars rely heavily on intelligence because they

are or were fought using guerilla tactics against unknown enemies. Therefore, UAVs were

crucial in acquiring data about the enemy.

 The United States military has been employing UAVs for many years. They are a more

cost effective and versatile solution for flying missions compared to traditional aircraft and they

allow the military to run safer missions. Since there is no pilot onboard a UAV, the risk of loss is

minimized because there is no human life in danger in the event of a crash or capture. An image

of a pilot controlling a UAV drone from inside a control center can be seen in Figure 21. The

main purposes that these planes serve are reconnaissance, intelligence, surveillance, and target

acquisition. Other goals that are not as prominent include intelligence preparation of the

battlefield, situation development, battle management, battle damage assessment, and rear area

security. The planes are normally classified into one of three categories, UAV-Close Range,

UAV-Short Range, and UAV-Endurance. The UAV-Close Range class is designed to fly short

missions within a range of fifty kilometers. The UAV-Short Range class is designed to fly

missions into enemy airspace up to 200 kilometers away and can run missions from eight to ten

hours long. The UAV-Endurance class is the most powerful class of UAVs and is capable of

running for at least twenty-four hours and can perform multiple simultaneous missions [14].

There are also many types of planes put into use for flying these missions. The Pioneer was

created in 1985 and was capable of flying up to 185 kilometers away. This plane was retired in

25

1995 however in favor of more advanced technology. Three common UAVs used today are the

Tactical UAV, Joint Tactical UAV (Hunter), Medium Altitude Endurance UAV (Predator), and

High Altitude Endurance UAV (Global Hawk). All of these have difference capabilities and are

used for different types of missions. The Tactical UAV in Figure 20 provides close to real-time

imagery at a range of up to 200 kilometers [14].

Figure 20 - Tactical UAV is used to support the brigade with integral intelligence, reconnaissance and target acquisition at
distances of up to 200 km [36].

26

Figure 21 - The UAV command center of a Reaper drone. The pilot is sitting to the left and the sensor operator is sitting on
the right. Although the pilot needs to command the plane with the same sense of caution as he would a regular manned

aircraft, he is removed from all danger [37].

The Hunter is used by ground and sea forces and provides close to real time imagery at

up to 200 kilometers away. This range can be extended to over 300 kilometers if the military

decides to use a second Hunter as a relay [14]. The Global Hawk in Figure 22 is used for long

range missions and provides surveillance by flying over the area for a long period of time.

27

Figure 22 - The largest UAV in the USAF to date, this aircraft can stay in the air for two full days [38].

All of these are connected to a ground Tactical Control Station that allows the forces on

the ground to communicate with and control the planes remotely. Currently the military is

looking into developing Micro Unmanned Aerial Vehicles that will be no more than fifteen

centimeters in any direction [14]. The Air Force is constantly looking into developing new UAV

technology that cuts down on cost and weight and increases performance.

 UAVs are substantially being used in recent United States operations in Iraq and

Afghanistan. The nature of the fighting there makes UAVs essential in acquiring intelligence

about the enemy and conducting swift strikes against them. These wars require more

intelligence, surveillance, and reconnaissance than typical conflicts and UAVs are an ideal

solution to meet these goals. As of 2008 the military has used UAVs for more than 500,000

hours combined [17]. Most of this flying is being done in Iraq. However the United States has

also increased the use of drones in Afghanistan, Somalia, Libya, and Pakistan. This shift is

mission execution is also causing pilots who were traditionally used to fly aircraft to move to the

28

ground to operate the UAVs. As of 2008, 120 pilots were removed from flying duties and moved

to ground stations [17]. Not all of this flying is data gathering missions however. UAVs are also

able to carry out strikes against enemies. In Iraq, a Predator plane was able to locate militants

firing mortar and fired a missile killing them both. In total, Reaper and Predator drones have

been estimated to have killed over 2000 Taliban and al-Qaida militants [17]. A generic outline of

a UAV mission can be seen in Figure 23.

Figure 23 - Outline of a typical United States drone mission in Afghanistan. The UAV is normally deployed to the location of
an enemy combatant and circles the area waiting for positive identification of the target and clearance. Drones are not

allowed to strike if there are women and children nearby, making strikes on residential dwellings forbidden. The drones
return to base once a positive strike is confirmed.

The most common types of UAVs used in these wars are Predators, Global Hawks,

Shadows, and Ravens. As shown in Figure 24, the military has added bases all over the United

States in order to fly these remote aircrafts, with new bases having been added in North Dakota,

Texas, Arizona, and California [39].

Drone is
deployed to
location of

enemy
combatant

Drone circles
around the

area waiting for
positive target
and clearance

to strike

Drone fires on
enemy

Drone returns
to base

29

Figure 24 - Interactive map revealing where UAVs are being flown inside the USA [40].

As the United States continues to advance in this technology other countries and organizations

have started to create their own drones as well. China, Russia, India, Pakistan, and Iran have all

created some sort of UAV technology, with Iran reportedly developing a drone with a 1000 mile

range [39]. While this may seem to increase the risk of global war UAVs are not yet advanced

enough to attack a country with an air defense system [39].

 The use of UAVs in the military has drastically risen over the past decade. The outbreak

of war in Iraq and Afghanistan has caused the United States military to be more reliant on these

remote aircraft. Most planes are used for intelligence missions such as surveillance and

reconnaissance. However these planes have also proven very capable of carrying out attacks

against enemy targets. The Air Force is continuing to develop new UAV technology and it does

not appear as if this phenomenon will end soon. A general timeline of the advances in UAV

technology can be seen in Figure 25 below.

30

Figure 25 - A timeline of the rise of the use of UAVs. As can be seen above, UAVs started to be used in serious defense
applications in World War II. Their use increased as time went on and after Israel used them to destroy the Syrian air

defenses in 1982 the United States decided to start investing heavily in the technology. During the war in Afghanistan the
United States had 3,000 drones in service. That number has increased to 12,000 as of 2010 [41].

 UAVs are used in the agricultural market for precision agricultural and environmental

scanning. The planes are able to be sent in the air and take pictures of crops in both infrared and

visible-light frequencies. When these images are passed through an algorithm they can be color

coded to see which areas are growing well and which are growing poorly. Based on the results of

this data a variable rate applicator is adjusted to spray the areas that need more growth more than

the areas where growth is relatively poor. UAVs are also used to measure the moisture levels of

soil, the amount of plant life in soil, and runoff caused by over fertilization or animals.

Unmanned aerial vehicles are a good solution to these problems as they are not affected by bad

weather since they fly beneath the clouds to be able to take more detailed pictures than normal

[42]. Figure 26 shows a plane performing crop monitoring.

31

Figure 26 - Autonomous Platform for Precision Agriculture (APPA) is an UAV developed by University of Arkansas System.
The UAV was developed with purpose of better crop management and nurseries [43].

UAVs are also very useful for monitoring the spread of wildfires. These present a very

versatile option as they are able to fly in the air for over eight hours at a time and are capable of

flying at nighttime. This task is assigned to a group of planes that are programmed to simulate

the flight of a flock of birds. The planes take video of the terrain and transmit it to the firefighters

on the ground so that they can locate where the fire is strong and deploy their men appropriately.

The UAVs are also capable of locating lighting storms after a summer rainstorm and can also

investigate toxic chemical spills or radiological accidents [22]. A UAV performing a wildfire

monitoring mission can be seen in Figure 27.

Figure 27 - An unmanned aerial vehicle developed by NASA in wildfire detection testing [44].

32

Another area where UAVs play a prominent role is in the field of meteorology. One of

the most useful tasks done in this area is hurricane research. Since they do not risk the loss of

human life, UAVs can safely fly into a hurricane and measure pressure, humidity, waves, and

wind. This results in more accurate forecasts that can save more civilian lives. The United States

military has been employing this technology since 1950 and its use continues to grow. The

planes capture data by dropping dropsonodes, small cylinder sensors, on to the ground. The

dropsonodes relay information about the weather back to the aircraft which relays it to the team

controlling it from the ground [45]. A plane performing this operation is shown in Figure 28.

Figure 28 - A UAV launched into a hurricane in 2008. The purpose was to know more about hurricane’s characteristics [46].

UAVs are also a very useful tool to use in disaster response. The military once used a

UAV during a simulated terrorist attack and it proved to provide good results. A terrorist attack

was simulated in Silicon Valley, California and a UAV was flown in as first response and was

used to located suspicious vehicles on the road. The plane was able to provide aerial surveillance

data by using color and thermal infrared digital cameras, a color videocam, and a chemical

33

sensor. A picture of this UAV is shown in Figure 29. The analyst operating the plane was able to

locate the suspicious vehicles using the red/blue/green signals transmitted to him [47].

Figure 29 - Launching of RQ-11 Mini-UAV, an UAV that is used for identify possible threats. The UAV acts as second security
layer after the first layer of ground sensor [48].

One area where UAVs are most useful is in search and rescue missions. Search and

rescue is traditionally done in the wilderness to find people that have gone missing, such as

hikers. Normally this is a very costly and dangerous procedure, as rescuers need to trained and

compensated. It is dangerous because hikers are normally lost in hazardous and hard to get to

terrain. Sending in people after them is risky as it exposes them to the same risks that the hikers

have been subjected to. UAVs solve this issue by being sent to fly over the terrain that is being

searched. On-board cameras can get visual images of the area below and run image processing

algorithms on the video images to detect any background disturbances. The algorithm can detect

whether the disturbance detected is a human and the ground crew can send rescuers to that area.

This saves time and resources in that it can search a wider area quicker than traditional methods

and it is not necessary to send in humans until the location of the lost hikers have been

pinpointed. An image of a UAV used to perform search and rescue missions is shown in Figure

30. This is much safer than sending humans to physically search the area [29].

34

Figure 30 - A search and rescue UAV that is used for finding missing people. The UAV was developed by Flat Eight
Productions, Inc. [49].

A final application where UAVs are used in the civil realm is traffic monitoring. Being

able to view traffic on highways helps agencies such as the Department of Transportation collect

important data that can be used to make highways more accessible and less congested. It is more

importantly useful in emergency situations so that medical responders can be sent to the site of

an accident. The traditional method of acquiring traffic data is by placing magnetic loops

underneath the roads. This is only good for counting traffic however and it gives no qualitative

data. An existing method of taking real-time traffic video is by setting up towers along highways

with cameras attached to them. This option requires much time, money, and resources though

and it is not very efficient. UAVs solve this problem by being able to fly over the area in

question and report back to a central base. The planes can gather data and video and transmit it

wirelessly back to the ground where it can be used by people responsible for handling public

roads. An image of a UAV performing traffic monitoring can be seen in Figure 31. This is a

much more functional and efficient options than existing methods [50].

35

Figure 31 - A UAV is being tested in traffic controlling in UK. It can also be used to track down car chases, hidden suspects and
monitor riots or protests [51].

Over the past few decades UAV use has grown considerably in the commercial market.

What started as a primarily military tool has evolved into one that can be used for many civilian

applications. The uses of these planes range from saving lives in search and rescue missions to

simple data collection during traffic monitoring.

2.3. Design Considerations

 A major constraint among UAV platforms is the size of the airplanes. For fixed-wing

aircraft, equipment is normally placed within the body of the plane. UAVs are designed to be

small and therefore are not designed to carry very large equipment. For this reason it is

imperative that components chosen be of small size. The sizes of UAVs vary greatly. Many

military UAVs are bigger than normal such as General Atomics’ MQ-1 Predator with a wingspan

of fifty-five feet and a length of twenty-seven feet [52]. An MQ-1 Predator can be seen in Figure

33. Normally commercial UAVs are smaller. An example of one of these is the Arcturus T-20

36

with a wingspan of seventeen and a half feet and a length of nine and a half feet [53]. Even

smaller are UAVs that are built as student projects. The Goose UAV from Worcester Polytechnic

Institute has a wingspan of six feet and a body area of 2.16 square feet [29]. For this reason it is

crucial to select small hardware components when designing a system that is to be put onto a

UAV platform. Regarding the power constraints, and depending on the power source available,

the power generated can range from 102 watts for small UAV systems like the Goose to up to 48

kilowatts for superior UAV systems like the Predator.

Weight constraint is also a very important factor for every aerial vehicle which largely

influences the design process. This is more vital for UAVs due to their small size. Weight does

not only affect the UAV’s speed but also has very big impact on power budget and overall

performance of the UAV. Platform designers need to consider all factors to make the UAV as

light as possible. Consequently the system for this project must fit into a regularly sized UAV.

As UAVs’ purposes differ in many areas, UAVs’ weight also has very big range. For example,

the Arcturus UAV, which is used for simple surveillance, has maximum weight of 75 pounds

(about 35 kilograms), while the MQ-4C Triton that is used for marine intelligence gathering has

a gigantic weight of more than 14,000 kilogram [52] [53]. However, as this project is in smaller

scale, it is more focused toward small size UAVs that range between 20 kilograms and 100

kilograms.

 These examples as well as three other prominent UAVs are summarized in Table 1 and

the scatter plot in Figure 32. This shows the wide range of design specifications with which

UAVs are built.

37

Table 1 - Comparison of plane specifications

 Size Payload

Capacity

Power

MQ-1 Predator 55' wingspan 140 kg 4.8 kW

Arcturus T-20 17.5'

wingspan

34.1 kg 750 W

Project WiND

Goose

6' wingspan 22 kg 102 W

AA1 RQ-2

Pioneer

16.9'

wingspan

34 kg 28.3 kW

Arcturus T-15 10' wingspan 4.5 kg 3 W

AA1 RQ-7

Shadow

14' wingspan 86 kg 28 kW

Figure 32 - Comparison of UAV specifications. The x-axis represents the planes’ wingspans, the y-axis represents their

payload capacity, and the z-axis represents their power requirements.

Power (W)

Payload Capacity (kg)

Wingspan (ft.)

Goose

T-20

Predator

T-15

Shadow

Pioneer

38

Figure 33 - MQ-1 Predator [54].

2.4. Computing Architecture of UAVs

Although almost every UAV has its own microcontroller to process data so that it can

operate almost autonomously when flying, it still needs to communicate with users operating on

the ground. This can include receiving basic commands or flying plans as well as sending

processed data. Usually, there is a base station that communicates with the UAV through

wireless connections like Wi-Fi or radio that it locates on the ground. The ground station not

only acts as the bigger “brain” that coordinates and controls UAV behavior, especially with

networks of multiple UAVs, but also as the interface between UAV system and users.

Sometimes, it stores the data that gets sent from the UAV for later use or does a higher-level

process on the data and sends it back.

The central computing unit (CCU) is the main computing component inside a UAV. The

CCU takes care of data as well as commands that need to be processed or sent. Also, it acts as

the link between other modules, which usually have different configurations and data types. The

CCU is able to be used as an interface among these various modules. The CCU can also act as

the navigation module that takes in data from sensors and the ground station to calculate

39

positions in space and plan a future path based on basic commands from the ground station. It

contains a path planning algorithm that calculates suitable instructions for the autopilot module.

 Most UAV platforms contain some sort of image processing module. This normally takes

in images from a camera or other sensor and processes the data to detect relevant information

that can be used by the crew on the ground. This processing can be done on a variety of

computers such as field programmable gate arrays, microprocessors, or digital signal processors.

Usually the computer is programmed with an algorithm that can process distortions in the

background and can tell if that blob is relevant to the task being done. This processed image is

then transmitted to the ground control station where it can be viewed by the people in control of

the operation and they can respond appropriately.

 Cameras are a very important part of UAV platforms. Common camera types are linear,

infrared, color, and stereo. These are normally attached to the plane’s payload and capture raw

video that is inputted into a computer module that processes the image. The best camera type to

use depends on the intended application of the mission. Cameras are available in both analog and

digital options and can be converted into different formats via computers either inside the camera

or on a separate module. Other important characteristics to consider when deciding is the field of

vision, weight, power requirements, and desired resolution.

 The autopilot module provides the tools for autonomous flight of UAVs. They normally

are equipped with various sensors such as pressure sensors, attitude sensors, and accelerometers.

All of these are essential to flying the plane as they allow it to fly at a steady level and rate to

prevent crashing. Autopilot modules are also equipped with global positioning systems that can

be fed waypoints from a navigation system to perform autonomous flight. The GPS also provides

the users on the ground with location coordinates and velocity that is used to pinpoint the area of

40

the plane. Autopilot modules also consist of a ground station where the users are able to remotely

control the plane and have data provided as to the plane’s location and position.

 Communication modules are essential for UAVs architecture. UAV drones need to

communicate with each other in the air and also communicate with the base station. The wireless

communication modules found in every UAV are used to send the autopilot and the image

processing data to the ground base station to be processed. Different communication brands can

be used for communication each with different platforms and specifications, but the ultimate goal

is to securely transmit the captured data to the ground station. A general UAV architecture is

shown in Figure 34.

Figure 34 - General UAV architecture consists of camera, image processing, autopilot, CCU, communication and a base
station.

2.5. Prior Art of Previous UAV Projects

Many colleges from all over the globe are enhancing the UAVs productivity by including

more applications and improving its performance. In this proposal four previous projects are

discussed. These are Project Wind [55], done by Worcester Polytechnic Institute, The Raven

41

UAV, done by Massachusetts Institute of Technology, The Magicc UAV [31], done by Brigham

Young University, and Witas UAV Project [32], done by University of Linkoping.

2.6.1. Worcester Polytechnic Institute

 Project WiND was a project done at Worcester Polytechnic Institute during the 2011-

2012 school year. The project focused on creating multiple UAVs that could be used in search

and rescue missions to find lost hikers in the wilderness. This would result in search and rescue

missions that would require less financial resources and also increase safety as men would not be

needed to be exposed to dangerous terrain as often as they would during traditional search and

rescue missions. The planes can each carry 10 pounds of equipment and maintain a cruising

speed of 35-45 miles per hour. The platform also contains both a color an infrared camera to

acquire color video of terrain and locate lost hikers [55] .

 Table 2 shows that the UAVs in project WiND must provide 102 watts of power for a

minimum of one hour. Each system has its own controllable regulator and uses a LM5118 buck-

boost controller to take an input from 3-7 volts and output 5-15 volts to each system. An

MSP430 microprocessor was used to monitor battery voltage and control enable lines on the

regulators. A breakdown of the power required for each system can be seen in Table 2 below.

Table 2 - Power requirement for project WiND system [55].

System Voltage Current
Allowed
Power

Priority
Level

FPGA Power 5 V 5 A 25 W 4

Camera 6 V .5 A 3 W 4

42

SDR Amplifier and
Computer 5 V 4 A 20 W 3

SDR 6 V 3 A 18 W 3

WIFI 15 V .8 A 12 W 2

Panda 5 V 1 A 5 W 2

Autopilot 8 V .5 A 4 W 1

Servos 5 V 3 A 15 W 1

Total

102 W
 Priority goes from highest being 1 down to 4 the lowest

 The microprocessor of the Project WiND UAV is responsible for controlling three parts

of the UAV, the autopilot, navigation and image processing. An overall diagram of the system is

shown in Figure 35. The autopilot module was chosen as Paparazzi board. The board was chosen

due to its price, versatility and availability [55]. The choice of Paparazzi system had a big effect

on the choice of the microprocessor used for computing in the autopilot module. The Paparazzi

system can support several types of microcontrollers, but after considering the options as well as

the choice of developing one (which the team considered to be impractical as it will need

massive research and time), the choices remained are Lisa/M(STM32F103RE), YAPA 2(ARM 7

LPC2148) and TWOG(ARM 7 LPC2148). Finally, the hardware team decided to use YAPA 2

microcontroller which uses ARM7 LPC2148 microprocessor for the project. The choice was

based on the number of servos YAPA 2 can control as well as availability [55].

43

Figure 35 - WiND project architecture consists of camera, image processing, autopilot, path planning, communication and
base station modules. Data is computed inside the UAV [55].

Most of the UAV’s sensors reside on the autopilot system used. The Paparazzi autopilot

is an open sourced Linux based control system and receives navigation waypoints from the GPS

system installed on it. The system has three modes, Auto 1 (partial stabilization mode), Auto 2

(fully autonomous mode), and manual mode. The onboard sensors allow the user to observe the

orientation, pitch, altitude of the plane in one convenient setting. One advantage of the Paparazzi

system is that it allows the user to use his custom sensors. The YAPA 2.0 module of the

Paparazzi requires 6.1-18 input volts and measures 80mm x 40mm. It also 23 grams with the

XBee radio attached.

 The flight sensors included in the autopilot are infrared (IR) thermopiles, a GPS module,

an airspeed sensor, an inertial measurement unit, and a gyroscope. The IR thermopiles measure

IR reflected from the Earth to calculate the orientation of the plane. A thermopile is placed on

each end of the plane and they give equal measurements when the plane is completely horizontal.

The measurements change while the plane is in the process of turning. The plane also has a set of

vertical thermopiles to measure its vertical level. The GPS receiver is placed on the UAV and

44

receives the plane’s position from satellites. This also allows it to calculate the velocity of the

plane but experiences difficulty in windy conditions. The inertial measurement unit contains a

combination of accelerometers and gyroscopes and measures the plane’s acceleration rates and

changes in roll, yaw, and pitch. The time is maintained by an internal processor and the

processor calculates the velocity, position, and orientation of the UAV. This unit is combined

with a khalman filter to compensate for error in location calculation. A separate gyroscope

measures changes in location, pitch, roll, and yaw. It also helps with thermopile stabilization

[29].

 The main concerns about the navigation module are power efficiency, price, and being

able to run on Linux OS. Using those standards, the team had chosen the Pandaboard as the main

computing unit for the navigation module and it used the OMAP 4430 processor. With a 1.2

GHz Dual Core ARM processor and enhanced HD-capable media acceleration, Pandaboard had

many advantages over other considered boards.

 The parameters of the image processing module were similar with that of the navigation

modules’ as they both concerned receiving data from sensors and processing. The major choices

were selected based on cost, availability, processing power as well as I/O methods. Finally, LX 9

board that use Xilinx Spartan-6 processor was chosen as it provided enough I/O methods as well

as processing power while remaining at a reasonable price [55].

2.6.2. Massachusetts Institute of Technology

 The RAVEN UAV project was completed at Massachusetts Institute of Technology in

2007. This project has a similar goal to that of Project WiND done at Worcester Polytechnic

Institute. It involves capturing images and processing them. It differs however as the main goal

of the project is for Health Management and the environment it target is indoors. The platform

45

uses two Vicon cameras to obtain the measurements of ground and aerial vehicles within a space

of 6 x 8 x 5 meters. The network consisted of five different autonomous vehicles with the main

one being a Draganfly Innovation Draganfly V Ti Pro quad-rotor helicopter. This platform also

includes one control computer per vehicle that can autonomously create tasks that can be done to

ensure that the vehicles are running smoothly [30]. A block diagram of the Raven system can be

seen in Figure 36.

Figure 36 - System architecture of RAVEN project from MIT. The data processing tasks are not computed in the UAV but on a
ground station [30].

The biggest difference between RAVEN and WiND concerning image processing is that

the image processing process does not take place in the plane but instead on a remote computer.

Images are captured from the camera and wirelessly transferred to a nearby computer. Since the

complexity of computing power has been removed from the UAV, the plane is light weight and

has a simple design. The UAV chosen was a Draganflyer SAVS RC helicopter. It was chosen for

its light weight and low power consumption. The UAV only consisted of the core plane itself and

the camera, transmitter. The processing unit is a dual-processor, 64-bit AMD Opteron PC

running Gentoo Linux in 64-bit mode with a LifeView FlyVideo 3000FM video capture card.

The video card was chosen for its good compatibility with Linux.

46

 This UAV’s navigation system uses the method of moiré patterns to estimate the altitude,

angle, pitch, and yaw of the flight. The system takes images in from a camera on the plane and

measures the wavelengths and takes the discrete Fourier transform of them to calculate these

parameters. The camera used is an Eyecam 2.4 GHz wireless CMOS camera with a 92 degree

field of vision and a resolution of 380 television lines. The advantages of this camera were that it

was small, lightweight, and wireless, which made it ideal for use in a UAV where the weight

restrictions are limited. An earlier version of the Eyecam was originally used but this was found

to be susceptible to noise and the white balance made it only usable in low lighting. The image

taken from this camera is processed by a frame grabber that runs at 20 Hz. This resulted in a time

between 50 to 100 milliseconds from when an action is done until it is detected. The Vicon MX

Motion Capture System is then used to determine the position and orientation of the plane. This

system consists of multiple cameras placed around the zone of operation and is accurate to

approximately 1 millimeter. Reference markers were placed on the plane to help the system

determine its altitude and position. The team intended for a GPS module to replace the Vicon

system if they were to try and use the plane outdoors [56].

2.6.3. Brigham Young University

 Being one of the major UAV research labs in the United States, the MAGICC lab of

Brigham Young University also developed a UAV with very similar concepts to that of WiND.

In 2004, MAGICC lab developed a Multiagent-UAV project that was implemented with an

autopilot system that successfully flew a pre-calculated route automatically. The project used a

Kestrel autopilot board with Rabbit RCM 340 microprocessor. The board was chosen for the

advantages of being small, lightweight, and robust. It has a speed of 29.4 MHz with 512

47

kilobytes of flash memory and 512 kilobytes SRAM. However, the price of $5,000 was the huge

tradeoff for considering this board [31].

 The MAGICC UAV weighs 193 grams and is able to carry 275 grams of equipment for a

total of 468 grams. The plane is interfaced with a KX-141 Color CCD camera from Black

Widow Audiovisual and a smaller CCD camera from Super Circuits. Both camera capture 30

frames per second of 640x480 and 540x380 color video respectively and are part of the National

Television System Committee. This raw footage captured was often corrupted by the motion of

the plane and had to be de-interlaced by the ground station.

 The UAV used a Furno GPS to determine its location. Gyroscopes are used to better

estimate the plane’s location. The GPS operates at 1 hertz and is installed on the wing of the

aircraft along with a small copper ground. It is usually accurate to within 5 meters. The Kestrel

autopilot is made by Procerus Technologies, weighs 16.65 grams, and measures 2 x 1.37 x .47

inches. This unit includes avionic sensors which are monitored by the Rabbit microcontroller. It

includes a barometric sensor to measure altitude and a pressure sensor to calculate the airspeed

of the plane. 3-axis solid-state rate gyroscopes and accelerometers are used for navigation as well

as to measure temperature. The actuator module is made up of four servo ports that are run by

10-bit pulse-width modulators. These are responsible for controlling the aileron, elevator,

throttle, and the bomb bay door. A block diagram of this architecture can be seen below in

Figure 37.

48

Figure 37 - Magicc UAV System Architecture [31].

2.6.4. University of Linkoping

 Linkoping University in Sweden developed a UAV platform known as the WITAS

Unmanned Aerial Vehicle Project. This project was designed to be used for applications like

traffic monitoring and surveillance, emergency services assistance, photogrammetry, and

surveying. The project incorporated image processing into automatic flight using a helicopter-

type UAV. The WITAS UAV is noticeably big compared to the other UAVs mentioned above.

One of the reasons is because this UAV is using three embedded computers for the task of

computing: two PC104 Pentium III 700MHz processors and one PC Pentium M 1.4GHz

processor. Although there will not be a problem with computing speed, its size, weight and

power consumption can become a trouble [32].

 The vehicle used for this project is a Yamaha RMAX helicopter. This was modified by

the team for specific use for this project. The helicopter measures 2 x 1 meters and has a

maximum payload of 30 kilograms. The platform can provide 150 watts of electrical power to

onboard equipment and is fitted with multiple sensors used for keeping track of its location and

orientation. These sensors include a Honeywell HMR3000 digital compass, a static pressure

49

sensor, a Boeing digital quartz inertial navigation system, a temperature sensor for the

microprocessor, and a differential GPS. Computation of the vehicle’s position is also done on the

image processor used. Since the helicopter works with three dimensional coordinates and the

camera works with two dimensional coordinates, some processing must be done to convert the

two dimensional images to three dimensional coordinates. The computation is done using a

homographic model and works well when flying at high altitudes. However it was faulty when

flying near buildings at around an altitude of 70 meters.

 Network communication between computers is physically realized with serial line

RS232C and Ethernet. Ethernet is mainly used for Corba applications, remote login and file

transfer, while serial lines are used for hard real-time networking. An overall system architecture

is shown in Figure 38 below.

Figure 38 - Witas UAV Network Architecture uses Ethernet switch to communicate between modules [32].

50

 Corba (Common Object Request Broker Architecture) is often used as middleware for

object-based distributed systems. It enables different objects or components to communicate with

each other regardless of the programming languages in which they are written and their location

on different processors or the operating systems are they running on. A component can act as a

client, a server or as both.

 The Bluetooth Wireless Serial Port adapter (RS232) is the ideal serial cable replacement.

It can be used to connect serial printers, serial scanners, or any other device to a computer or

remote up to over 300 feet (100 meters) away. This wireless serial port does not require a

computer to function. After it is configured, it can simply be plugged in and it is ready to work.

The RS232 can be used with PDAs, computers, laptops, and smartphones that support the

Bluetooth Serial Port Profile and Bluetooth Generic Access Profile. As such, this wireless serial

port adapter is ideal for use in applications where a PDA or laptop would communicate with

another device (SBC, RTU, sensor, robot, radio, PBX) wirelessly.

2.6. Current Security of Unmanned Aerial Vehicle Technology

In the past and even now, when people used keys and locks to protect luxuries, money or

important data, there was always a risk of lock picking or key stealing. In order to counter those

ill-intended approaches, people have to create new security methods or enhance old ones. Since

this is a digital era, and Internet has become an enormous library that can grant almost any

information of its users, security’s role in network structure is emphasized more than ever.

51

Figure 39 - Model of typical a sensor network. Data is transferred to the outside world using different types of sensors.

Typically, UAV architecture can be treated as a sensor network since it composed of

many types of sensor that have similar goal of transferring data with outside world. A general

diagram of a sensor network is shown in Figure 39. Sensors are categorized into 3 main types:

 Data Receiving Sensor: Sensors that can only receive data and pass it to data processing

module. Examples of this kind of sensor in UAV include cameras and GPS.

 Data Outputting Sensor: Sensor that can only output data (in both digital and physical

form) that received from data processing module. Signal light and servos driver are in

this sensor category.

 Bi-Directional Sensor: Sensor that can both receive and output data. Typically, this kind

of sensor is many types of sensors get combined into one sensor. For example, autopilots

are composed of data receiving sensors like GPS, gyroscope, and data outputting sensors

like servos driver. Also, communication sensor such as Wi-Fi bullet or Zigbee can be

listed as Bi-Directional Sensor.

52

Also, there is data link between local modules inside the system. However, since those

data links are usually physically connected (wires, PCB), they can only be attacked physically.

As UAVs operate in midair, attacking the system physically (in the sense of data) would be

impractical. Thus, attacks would focus on the three types of sensors listed above. For example,

the data receiving sensor could be attacked with feeding false data, possibly causing unexpected

behavior. For data outputting Sensor, the attack could be “eavesdropping” on outputted data.

Preventing data transmitting process, jamming, is also a typical type of attack in sensor network.

Of course, any type of attack that could be used in other two sensor types can also be applied to

bi-directional sensors.

 Using the same logic, securing a sensor network should focus on the data being

transferred among the sensors. For example, one famous type of security technique is encryption,

aimed at defending the network against “eavesdropping” attack. In encryption, original data is

altered in a fashion in which only the authorized system could recognize the data and vice versa.

This ensures that unauthorized personnel cannot make any use of data even if they can capture

the transferred information. Another example of security enhancing technique is implementing

the system with an intelligent algorithm that can differentiate between true and false signal, thus

protecting the data receiving sensor.

2.7. Chapter Summary

 The concept of UAVs has been around for nearly one hundred years. They originally

started out and remained a military tool for many decades but have since evolved to be used for

many various applications. Today UAVs are still a big part of the military but are also used for

civil tasks such as traffic monitoring and search and rescue missions. UAVs architecture also

differs greatly. There are many different computing options and architectures available in the

53

market and all of them have their own sets of advantages and disadvantages. The designer of a

specific platform must pick a computer and architecture based on the task at hand and the

constraints that he or she has to work with. The market for UAVs has grown dramatically over

the past decade with most of it being in the United States and Israel. Many European countries

are also adopting these tools for their own applications. With all of the data stored on these

machines, security is crucial. Users of UAVs need to be assured that the data stored on these

machines will be protected from malicious attacks that could jeopardize the status of the mission

or the authenticity of the data. UAV use has grown dramatically over the past few decades and it

is increasing as time goes on.

54

3. Proposed Approach

 This chapter covers the proposed approach for this project. In here the various options for

system architectures are described and compared as well as the individual components and

methods used. Components are chosen for the power, wireless communications, image

processing, video capture, and autopilot systems of the final design. From a high-level approach,

the system works by capturing video with the camera, looking for a blob of certain color on the

central computing unit, reading the coordinates of where the platform is from the autopilot, and

transmitting that data to the ground control laptop where it can be read by the controlling user.

3.1. Computing Options

 This section describes the options available for the architecture and components of this

project. Each option has different pros and cons, and has various effects on different

applications. Thus, the choices made must be those components which best meet the project’s

objectives.

3.1.1. Design Architectures

 The goal of this project is to develop a computer system that can be used in any UAV.

Thus, although there are many types of UAV architectures with some having complex designs

that can boost efficiency, this system should be as close to a basic design of UAV system as

possible. The most basic components are camera, image processing, autopilot, central

computing unit, communication, and base station. Since this platform will only focus on

transferring data between the UAV and base station, the communication module is only

composed of Wi-Fi bullets. Since this project is focused on data security between UAVs and

base station, there should be a module for that purpose and it should be located before the Wi-Fi

bullet. Furthermore, since the autopilot module is a separated package, it cannot be combined

55

with other modules. The options of this project are only limited between combining image

processing, CCU and encryption.

The first option is to include every module on its own separate computer. This involves a

separate computer for image processing, the central control unit, and the encryption module. This

provides numerous advantages for the design. Memory usage is less of a concern as there is a

separate machine for each module and the system is more flexible and easier to implement since

parts can be more easily interchanged. This design architecture also allows the designer to select

modules that are suitable for the task at hand. Since each module is responsible for handling only

one task, parts can be picked out with only that task in mind and no compromise has to be made

to accommodate any other tasks. There are also many negatives about this architecture however.

Since three separate modules have to be powered, there is more of a drain on the batteries. This

will either result in a lower lifespan of the platform or the addition of more batteries, which

increases the cost and weight of the platform. More modules also means that more weight is

added to the platform and it takes up more space. This might be a problem if the plane is small or

other components need to be added. More modules also will require more encryption than a more

condensed model which will result in either more work being done to encrypt it, or less overall

security. This architecture will also be more expensive than alternative options as more parts

need to be purchased. A block diagram of this proposed architecture can be seen in Figure 40.

56

Figure 40 - First design option. All modules are separate. This provides more flexibility but weights more, takes up more

room, and costs more.

In the second architecture all three main modules, image processing, CCU, and

encryption, are incorporated in just one microcontroller, as seen in Figure 41. This system is

considered to be more efficient in weight and size as all of them reside within a single board.

This is less expensive than having each microcontroller for each task. Also, since there are less

boards, power is conserved. Furthermore, with less data lines, there is less chance for outsider to

use flaws between connections to attack the system.

However, the biggest downside of having only one microcontroller for several modules is

the lack in computing resources (memory, speed, data lines), thus making it much harder to

implement, especially during the debugging phase. Having fewer boards also means fewer

options for consideration when choosing components, making it less flexible. Also, pushing the

microcontroller to perform several tasks can lead to an overheating problem, which may cause

damage to the board as well as the system. Although this system appears to be safe from attacks

57

targeting weak links between modules, it is hard for the system to cope up with all different

constraints of the modules. Therefore, the system tends to be more vulnerable to major

implementation flaws.

Figure 41 - Second design option. This combines image processing, the CCU, and the encryption module on one processor.

While this saves money and weighs less, memory capacity is a concern and it might be harder to implement image
processing.

The third approach includes one central processing unit and a separate image processing

module. This involves a central processing unit with already built in encryption module. This

provides various advantages for the design. This design architecture has a faster reaction time to

sudden attacks since the encryption module already exists in the central processing unit. This

design also allows average flexibility to deal with the different design components, and average

power consumption for the camera, microcontroller, and wireless module. The only negativity

58

about this module is the memory storage. Since one microcontroller is used in this design, the

microcontroller’s memory will be fed by lot of information from different units. This is not a big

concern however because central processing units doesn’t usually take up a lot of memory,

which provides a room for all the data to be stored. A block diagram of this proposed

architecture can be seen in Figure 42.

Figure 42 - Third design option. This offers the advantage of allowing the encrypting to be done by the CCU’s specific
encryption module. This also saves weight and money while allowing a separate model that is more suited for image

processing to be picked out for it.

 The third design is chosen as the best option for this project after a comparison was done

on all three of them. Rankings were on a scale of one to three, with one being the weakest option

and three being the strongest. When all of the scores were summed up the second choice had the

highest total. This design fits the size restraints for this project while providing simplicity by

59

having both the encryption and image processing modules on the CCU. A comparison of the

proposed architectures can be seen in Table 3.

Table 3 - Architecture comparison. ranking the three choises in seven different categories. As can be seen, the third option
was chosen for implementation in this project.

Choice
#1

Choice
#2

Choice
#3

Power Consumption 1 3 2

Size and Weight 1 3 2

Cost 1 3 2

Security 1 2 3

Memory
Management 3 1 2

Versatility 2 1 3

Simplicity 2 2 1

Totals 11 15 16

3.1.2. Processor Options

Among the wide variety of microcontrollers available in the market, a substantial amount

of research was conducted on five different brands to figure out which board is the most suitable

for this project. This research involved the power specifications of the microcontrollers, weight,

size, cost, memory, data type and other aspects.

OMAP

 Texas Instruments produces the OMAP line of processors. These computers are ideal for

mobile and portable multimedia applications and are used in a wide variety of commercial smart

phones and tablets. These chips provide wireless connectivity, power management, battery

management, and audio management so that the devices that they are installed on can be capable

of optimum performance. The OMAP allows the device to connect to other devices and networks

via Bluetooth, FM radio, Wi-Fi, and GPS. It features SmartReflex 2 technology that allows the

device to deliver high performance at low power and this technology uses intelligent and

60

adaptive silicon, circuit design, and software to allow the board to function at low power. The

audio management system also allows it to connect to numerous devices including head-sets,

speakers, vibrators, amplifiers, and microphones [57].

Texas Instruments also provides a software suite that makes programming the OMAP

processor easier. The system supports most high-level languages including Symbia, Microsoft

Windows CE, Java, Palm, and Linux [58]. The suite includes mobile operating system drivers,

solutions to connect to GPS, Bluetooth, FM, and Wi-Fi, and system-level power management.

The platform also supports the use of multiple operating systems running on the same platform

simultaneously [59].

One of the OMAP’s best qualities is that it can deliver high resolution 1080p video. It is

enabled for 3D graphics and 20 megapixel imaging. The board runs on two ARM Cortex-A9

processors capable of speeds up to 1 GHz. The graphics are controlled by a POWERVR SGX540

graphics accelerator. There are also IVA 3 hardware accelerators that enable the high definition

video and allow it to be encoded and decoded. The chip supports HDMI output. A block diagram

can be seen in Figure 43 below [59].

61

Figure 43 - OMAP 4470 architecture. This shows all of the processors inside the OMAP as well as the wireless, audio, and
other connectivity ports [59].

 The OMAP is best suited to perform as the central computing module of the UAV

platform. It is a high leveled software development board and can be programmed in many

languages. It also has the powerful ARM Cortex-A9 processor and many input peripherals. The

OMAP is also capable of executing a software image processing algorithm. The OMAP-DM

coprocessor family is specifically tailored for this purpose [60]. The OMAP also has an on-board

encryption module that works to secure it.

 OMAP processors are secured with Texas Instruments M-Shield Mobile Security

Technology. This provides a system-level security solution by combining both hardware and

software technologies. This system provides secure flashing, booting, and control of debug, test,

and trace. It also streamlines the development and deployment of Digital Rights Management, E-

Wallet functionality, mobile ticketing, brokering, banking, and online shopping. At the hardware

Audio Ports

Processors

Wireless Ports

62

level the security provided includes hardware cryptographic accelerators and random number

generators, public key infrastructure with secure on-chip keys, and protections against malicious

software attacks. It also encrypts the memory on the system by providing a secure state machine

and secure RAM and ROM. The software level is on top of the hardware level and provides

secure signing and flashing tools, toolkits for creating unique secure signatures for applications,

and security packs to make the HLOS security stronger. The software technology also has a

Security Middleware Component that allows software to be used on different platform

generations [61].

MSP430

 The MSP430 platform of microprocessors put out by Texas Instruments are low-power

affordable options for many computing needs. The component is a RISC 16-bit mixed-signal

microprocessor. The central processing unit uses the von Neumann architecture which means

that the program and data memory are located in a single space and bytes are stored in little

Endean. The processor has sixteen sixteen-bit registers. Four of the bits are saved for special

functions and the rest of them can be written to or read from. There are over 400 different

MSP430 microcontrollers, each with their own specific specifications.

 The most recent generation of MSP430 microcontrollers is the 6 series. These operate on

1.8 volts and are as fast as 25 MHz. When only 1.8 volts are being used to power it however it

can only be as fast as 12 MHz. The devices require very low power to operate however and they

only need one microamp of current for RAM retention and two and a half microamps to stay in

real-time clock mode. It only needs 165 microamps per million instructions per second (MIPS)

to be in active mode. It also only requires less than five microseconds to wake up from Standby

63

Mode [62]. The controller features up to 256 kilobytes of Flash Memory and 18 kilobytes of

random access memory (RAM).

 The system features three analog devices, an analog to digital converter (ADC), a

comparator, and a digital to analog converter (DAC). The ADC can be used to convert an analog

input voltage to a twelve bit binary number and the DAC can be used to do the opposite. The

comparator simply compares two input voltages and determines which one is higher. They also

feature both an internal and external temperature sensor.

 The microcontrollers also feature multiple sixteen-bit timers as well as a watchdog timer

that can reset the system in the event of a malfunction. There are also up to seventy-four general

purpose input/output pins that can be configured to either take in or output data. It also includes

other serial interfaces such as UART, SPI, I
2
C, SPI, and USB. It also features an LCD display

that can be used to display multiple seven segment numbers. A block diagram of the system

architecture is shown in Figure 44.

 The MSP430 can be programmed using C or assembly language. The RISC computer

contains 27 instructions in three different families. While C allows for easier and simpler

programming assembly uses much less memory and is faster. A block diagram of the

MSP430F6438 of the 6 series family can be seen below. This architecture is similar to the all 6

series product.

64

Figure 44 - MSP430 microprocessor architecture. This shows all of the memory, the ADC, DAC, input/output ports, and clocks
[63].

The MSP430 is ideal for performing as the central computing unit. Its multiple

peripherals and internal memory make it ideal to handle all of the control tasks of the platform. It

can also be programmed in C, which a common high level language. The microprocessor is not

an ideal choice for image processing though. Its relatively low clock speed and serial data are not

suited for such an advanced task. Image processing typically can use a lot of power and the

MSP430 boards are designed to low-powered.

 The MSP430 6 series microprocessors are protected by an Advanced Encryption

Standard (AES) accelerator module. This module encrypts and decrypts data of 128 bits with 128

bit keys according to AES FIPS PUB 197 standard. Other features include on-the-fly expansion

for encryption and decryption and off-line key generation for decryption. Byte and word access

to key, input, and output data is also included. The accelerator is configured with software and

consists of a two-dimensional, four by four array of bytes called the State. Data is then inputted

to this array, encryption is performed, and the encrypted data is then outputted into another array

[63].

Clocks
Flash and RAM Memory Input/Output Ports

ADC

DAC

65

Digital Signal Processors

Digital signal processors (DSPs) are microcontrollers designed for the fast operational

needs of a digital signal processing. Unlike regular microprocessors which are general purpose

central processing units, DSPs are specialized processing units. DSPs are used for embedded

devices applications including medical images, digital communication, speech recognition, radar,

and many other applications. They are used in all kind of handheld computers, large mainframes,

and supercomputers.

Most general-purpose microprocessors and operating systems can execute DSP

algorithms successfully, but are not suitable for use in portable devices such as mobile phones

and personal digital assistants because of power supply and space constraints. A specialized

digital signal processor, however, will tend to provide a lower-cost solution, with better

performance, lower latency, and no requirements for specialized cooling or large batteries.

DSPs’ hardware usually include a hardware modulo addressing for circular buffers, a

memory architecture for streaming data, separate program and data memories, special single

instruction multiple data operations, special arithmetic operations, special addressing modes, and

a memory management unit. Its program flow includes a floating point unit, pipelined

architecture parallel multiplier accumulator and its memory architecture includes special

architectures that are able to obtain multiple data instructions at the same time. A general DSP

block diagram is shown in Figure 45.

TMS320C64XX is an example of a modern DSP family produced by Texas Instruments.

The TI TMS320C64XX optimizes and maximizes the power efficiency and battery life of

portable and mobile applications. The TMS320C64XX can handle real time processing, which

means that they give the optimal performance even when they are streaming data. This processor

66

usually take analog signals, convert them into digital form, process them and then, converting

them back into analog forms.

Figure 45 - A typical digital signal processing system.

Future UAVs will require enhanced capabilities like seeing and avoiding obstacles,

tolerating unpredicted flight conditions, interfacing with payload sensors, tracking moving

targets, and cooperating with other manned and unmanned systems. DSP technology can be used

to satisfy the requirements for more advanced vehicle behavior in a small package.

Xilinx Spartan-6 FPGA

With a focus on flexibility, the Xilinx Spartan-6 field programmable gate array (FPGA)

can transfer data in both byte peripheral interface (BPI) and serial peripheral interface (SPI)

mode. Furthermore, in both parallel and serial mode, the microprocessor can act as either the

master or slave. For serial data transferring, the Spartan-6 board can be configured to use

between 8 or 16 data bits (maximum total of 576 I/O gates) and up to 25 address bits. A block

diagram of the FPGA is shown in Figure 46. Additionally, the transfer rate can reach 3.2

gigabytes per second. The board’s maximum input voltage and current is 5 volts and 5 amps

respectively, making the maximum power rate that the board uses 25 watts. As an FPGA board,

the Spartan-6 family supports Hardware Description Language like Verilog and VHDL. With

that, FPGA board like Spartan-6 can process many tasks in parallel without worrying about

67

interrupt, boosting speed into a whole new level [64]. This makes FPGA a very worthy processor

for the image processing task.

Figure 46 - Spartan 6 architecture with data links [64].

However, the downside of this type of board is it does not support software-based

language like C++ or Java. This leads to one of the biggest tradeoff of FPGA boards,

implementation complexity. Despite this tradeoff, with low power consumption, flexibility and

amazing speed, this FPGA board is a worthy consideration for this project. Concerning security,

the board has on-chip Advanced Encryption Standard (AES) with 256-bit key for bitstream

encryption. However, this on-chip encryption module can only be used for encrypting bitstream

and users cannot configure it for any other purpose [65].

68

Table 4 illustrates a summary of the different kinds of microprocessors that could be

possibly used in this project.

Table 4 - Comparison table for the different kinds of microporcessors

Microprocessor

Type

OMAP Spartan 6 FPGA MSP430 DSP

TMS320C64xx

Features

Speed 2 GHz N/A (FPGA) 20MHz 1-1.2 GHz

Memory 8 GB DRAM 128Mb

Flash,512Mb

SDRAM

256 KB Flash, 18KB

RAM

2MB L2

mapped,

512MB

external

memory

Input/Output

Peripherals

5xUART,2xHSIC,3xSPI,MIPI

UniPortSMM,MIPI LLI, HIS

16xDSP48A1

slices,JTAG,UART,

GTP

2xUART,2xSPI,2xI2C,

4xSPI,2xLIN,2xIrDA,

74 GPIO

16xGPIO Pins

Power (mW) 250 25000 14.9 1900

Size 17mmx17mm 15mmx15mm 14mmx14mm 16mmx16mm

Language Symbia, Microsoft

Windows

CE,JAVA,Palm,Linux

VHDL,Verilog C,Assembly C/C++,

Assembly

Regarding the speed, FPGA clearly dominates with highly parallel characteristics as well

as low reliability on software. OMAP takes the second place and MSP430 is the slowest. This

makes FPGA a very viable choice for time critical and logic based application. However, since

FPGAs only support VHDL and Verilog, which has a smaller supporting community than C,

C++, and assembly, implementing a large scale project takes much more time than other options.

With ability of running an operating system such as Linux and Symbia, OMAP could be more

69

suitably used for a central computing role as it could use compatible drivers to communicate

with other hardware. MSP430 would be too slow for resource heavy applications. While feasible

as a computing unit since it has decent speed, the lacking of running an operating system made

DSP less suitable for the central unit.

3.1.3. Processing Tasks

 In this system, each module requires implementation in both hardware and software for

its specific task. The exception to this is the autopilot module, which has its own software and

hardware package. This section discusses which options were considered for this system.

Image Processing

 The image processing module is a very important part of this project. This part of the

UAV platform will be responsible for taking in input video from the camera module and running

an algorithm on it to detect items of interest. There are many existing programs available for this

task and they come in a variety of packages. This algorithm can be implemented in either

hardware or software and each method has its own advantages. Software can be programmed in a

higher level language such as C or Java and it is generally easier to implement. This processing

is normally done on central processing units (CPUs) when programmed in software. CPUs have

the advantage of having a higher frequency than other devices. The CPUs discussed in this paper

are the MSP430, OMAP, and TMSC600 [66] [67].

 Algorithms in hardware are typically programmed on FPGAs. This is done in a Hardware

Description Language such as VHSIC Hardware Description Language (VHDL) or Verilog [67].

While FPGAs tend to have lower clock speeds than CPUs they hold the advantage of being able

to process parallel data, while CPUs typically are only able to process serially. FPGAs’ clocks

normally operate in the order of hundreds of MHz while CPUs clocks can operate at one to two

70

GHz. However, FPGAs can carry out up to tens of thousands of instructions per clock cycle

while CPUs can only perform about four to eight instructions per clock cycle. [67]. This

parallelism in FPGAs makes them quicker and more power efficient than FPGAs. The FPGA

considered for this project is the Spartan-6.

 For this project the image processing algorithm is implemented on the Beagleboard CPU,

running on an OMAP processor. While FPGAs provide many performance advantages over

CPUs for image processing algorithms, the algorithms can be more easily implemented in

software. The computer vision library, OpenCV, contains many off the shelf algorithms that can

be used and modified to fit the needs of this project. Using the Beagleboard is also more

convenient because it comes with a dedicated camera port that can be used to input images to the

CPU. Using other options would have required either the use of an intermediary decoder board

or to write code to convert the images into a suitable format to be processed. Since writing an

image processing algorithm is not the main goal of this project it was decided that the

Beagleboard would be used to process images.

To decide what specifications are needed for the component running the algorithm, the

Lena picture is used as a benchmark. The Lena image was originally used in an image processing

experiment at the University of California in 1973 and has been used as a benchmark for image

processing algorithms since then [68]. The image is shown in Figure 47. This image has a size of

512x512 and is of the RGB data type [68]. Since three bytes of data are used for RGB, the

memory needed for this algorithm can be figured by multiplying 512, 512, and 3 for a data size

of 786,432 bytes or 786.432 kilobytes. The Beagleboard-xM fits this need by providing 512

megabytes of LPDDR RAM and 4 megabytes of memory on an external security data card.

71

Figure 47 - Lena. This is the image that algorithms normally use to test their effectiveness against [68].

Central Computing Unit

In order for the UAV to act autonomously with minimal human command, it needs a

module to process and determine how it needs to behave. This task is usually done with a central

computing unit module. This module acts as the “brain” of whole UAV system. Its purpose is to

decide which behavior it should do based on the processed data. The CCU also acts as medium

between other modules and the base station. This means it receives data from other modules and

stores, processes, or sends useful data to the base station and vice versa. There are several

algorithms can be used to serve as artificial intelligence for UAVs. Since this project’s scope

does not include developing algorithms for the CCU and the system is only composed of few

sensors, the main task for the CCU to just transfer data between modules and decide what to send

to the base station.

The hardware choices considered for this module were the Beagleboard which uses the

OMAP processor and LX 9 Microboard that use Spartan-6 FPGA. After a selection process,

Beagleboard was chosen for the system processor based on its low power requirements, small

size and weight, and high performance.

72

3.2. Framework Architecture

 This UAV platform includes seven main parts: a camera, autopilot module, image

processing module, a central control unit, an encryption module, a communications module, and

a base station. These are responsible for capturing data, storing and encrypting it, and checking it

to see if there is relevant data in it. The autopilot is responsible for allowing the plane to fly at

the correct level and transmitting data to the ground station regarding the plane’s coordinates and

position data. The central control unit is responsible for controlling the plane itself and transmits

relevant data down to the user controlling the plane on the ground. It is responsible for detecting

attacks and also includes the encryption module responsible for encrypting and protecting data.

The communication module is responsible for transmitting data between the plane and ground

station and the base station is responsible for controlling the plane and receiving data from it.

 A Leopard Imaging LI-LBCM3MI camera is used to capture raw images from the area

below the plane. The camera is connected directly to the CCU and be processed directly on the

board. The video sent is of type YUV format. The image processing algorithm will search for

potential targets in the video using the OpenCV image library and transmit the coordinates of

that target to the ground control station via Wi-Fi.

The autopilot module is responsible for flying the plane and receiving the global

positioning coordinates. An ArduPilot autopilot component is used to these tasks. The altitude,

longitude, and latitude is outputted in Mavlink, outputted to the CCU, converted to ASCII, and

transferred to the base station via Wi-Fi. The ArduPilot is connected to the CCU via universal

serial bus (USB) cord.

 The central control unit consists of a Beagleboard development board. This is responsible

for processing and sending all of the data from the autopilot and image processing algorithm to

73

the communication module and encrypting the data. The module is responsible for detecting

attacks on the plane and changing the path of the plane accordingly as well as other core

functions. The Texas Instruments (TI) OMAP processor on the Beagleboard is equipped with TI

M-Shield Mobile Security Technology. This module supports encryption of data through both

hardware and software and is used to encrypt the data that passes through the CCU.

 Wi-Fi is used for the communication method for this UAV platform. Ubiquiti Wi-Fi

bullets are placed on the UAV as well as the ground station. The data from the CCU is

transmitted to the bullets with an Ethernet cord and is transmitted to the base station through a

2.4 GHz radio frequency signal to the base station. The base station will consist of a laptop

running the image processing algorithm and receives all of the data from the image processing

and autopilot modules.

 The framework architecture of the UAV platform consists of a camera, autopilot, CCU,

encryption, communication, and base station module. These parts hold different responsibilities

that are essential to the completion of tasks for the UAV. The platform consists of two parts, the

part responsible for the on-board data and the ground station where the user will be controlling

the module. A detailed diagram of the architecture can be seen in Figure 48 below.

74

Figure 48 - Project detailed system architecture that has data links between modules. The platform has CCU and Encryption
module being implemented in one board for saving resources.

3.3. Value Analysis

 This section talks about selecting processes that were made in order to reach the final design. The

selecting processes were conducted based on the design specifications for this project.

3.3.1. Power

 The UAV of this project must provide 67 watts of power for a minimum of one hour.

Voltage controllable regulators can be used to convert and provide the voltage needed for each

part of the system. A breakdown of the power required for each system can be seen in Table 5

below.

75

Table 5 - System power requirements

System Voltage Current Allowed Power

WIFI 15V .8A 12W

Autopilot System 5V 1A 5W

Beagleboard 5V 1.5A 7.5W

Total 24.5W

The battery search was narrowed down to three commonly used types of batteries. The

nickel cadmium (NiCd) battery consists of a positive plate, a negative plate, separators, an

electrolyte, a metal case, a cover, and safety valve. Positive and negative plates, isolated from

each other by separators, are housed in the case. The cover and case of the battery are provided

with an insulation gasket for sealing and function as a positive terminal and a negative terminal

respectively.

 This type of battery is extremely safe. It is housed in a cylindrical metal case with a

resetting safety valve. The NiCd batteries electronically screen cells to determine capacity and

impedance. This virtually eliminates the need for cell matching and enhances long term

performance in cell assemblies. NiCd batteries can be used for 500 or more cycles with a

capacity available from 110 mAh to10000 mAh.

 The nickel-metal hydride (NiMH) batteries have a broad range of cell sizes and types that

meet a wide range of configurations and applications. Capacity ranges from 110 to 8000

milliamp hours (mAh). They are the state of the art design and their meticulously controlled

manufacturing ensures the highest performance levels in terms of energy density and voltage

stability. 500 to 1000 charge/discharge cycles can be obtained depending on the average depth of

discharge. NiMH batteries have low internal resistance and high flat voltage characteristics

76

during high current discharge. This allows the batteries to be used in a wide range of

applications.

 A lithium ion battery is a very high energy density. It is a 3.6 volt battery that is widely

used in the portable equipment market. It uses lithium metallic oxide in its positive electrode

(cathode) and carbon material in its negative electrode (anode), and the lithium ions inside the

battery transfer between the positive electrode and the negative electrode during charge and

discharge. The No metallic lithium is used while charging and discharging is very safe. The high

energy density lithium ion batteries known for minimize battery size and weight, making it

perfect for use in small portable equipment. Table 6 shows a value analysis for the three different

kinds of batteries.

Table 6 - Batteries considerations summary

 Voltage Power Efficiency Cycle

durability

Safety Cost

Nickel-

cadmium

(NiCd)

1.2V 150W/Kg 70%-90% 500-800 Very Safe Less

Expensive

Nickel

metal

hydride

(NiMH)

1.2

250-

1000W/Kg

66% 500-1000 Very Safe More

Expensive

Lithium

ion

3.6 1800W/Kg 99%+ 1200-

10000

Very Safe More

Expensive

3.3.2. Autopilot

 The autopilot module is a very important system for this UAV platform. The autopilot

contains multiple sensors that measure the positioning of the plane and make sure that it is flying

at a stable pace. The system also allows the user to control the plane wirelessly from a ground

server and transmits signals to let the user know information such as the velocity, acceleration,

pitch, and yaw of the plane. It was decided to use an off the shelf product for the autopilot

77

module seeing as creating a custom one would take much time and effort and is not within the

scope of this project. Four autopilot systems were researched that are specifically designed for

UAVs, Paparazzi, Kestrel, Piccolo, OpenPilot, and ArduPilot.

 The Paparazzi autopilot is an open source product that was used in Worcester Polytechnic

Institute’s Project WiND in 2011-2012 and is configured to work with STMicroelectronics

STM32Fxxx microcontroller boards [29]. The important components of the module include the

main autopilot board, sensors, a GPS receiver, datalink radio modem, an RC receiver, servos, a

propulsion system, batteries, and payload. The sensors included depend on the board model that

is bought and they can be added and taken off as needed. The system also includes a ground

control station used to control the aircraft [69]. A block diagram is shown in Figure 49.

 The software can be run in Linux or Mac OS X on most notebook computers. The

software includes a graphical user interface (GUI) to control the UAV and a simulator to

simulate flight patterns. It also includes a data logging system and other tools for communicating

with the UAVs [69].

78

Figure 49 - Paparazzi communication. This shows how the autopilot module interacts with the ground station and the user
interface [69].

 The Kestrel autopilot was used by the BYU Project Magicc team [31]. It is the lightest

autopilot on the market, weighing only 16.7 grams, and is used by both military and research

organizations [31]. It is interfaced with a 29 MHz Rabbit microprocessor with 512 kilobytes of

flash memory and 512 kilobytes of random access memory (RAM) and is fitted with three-axis

rate gyroscopes and accelerometers and differential and absolute pressure sensors. The Kestrel

autopilot can be interfaced with an external GPS for waypoint navigation [70]. It also has

autonomous fight and auto-landing capabilities. The GPS also aids the barometer and altimeter

for more accurate readings. The autopilot has four autonomous modes, Home, Loiter, Rally, and

Waypoint Navigation. Kestrel includes Virtual Cockpit ground control software that allows the

user to control the plane from a remote server. The module is able to deliver live video feed to

the server [71].The Kestrel autopilot can be seen in Figure 50.

79

Figure 50 - Kestrel autopilot [72].

 The Piccolo SL is an autopilot system created by Massachusetts Institute of Technology

students and graduates [29]. The system is thin and features flexible input/output capability. All

of the inertial, air data, and GPS sensors are included on the module so the user does not have to

buy extra sensors. The Piccolo system weighs 110 grams and measures 130 x 59 x 19 mm [73].

The module is a 51-pin vehicle interface and also includes fourteen general purpose input/output

lines. Four of the lines can be configured as analog inputs with inputs of 0 to 5 volts and a

conversion of 10 bits. The Piccolo also has radio options than include 900 MHz unlicensed ISM,

900 MHz Australian Band, 2.4 GHz unlicensed ISM, 310-390 MHz discrete, and 1350-1390

MHz discrete [74]. A picture of the autopilot is shown in Figure 51.

80

Figure 51 - Piccolo SL autopilot [74].

OpenPilot is an open source UAV autopilot option. This option is a very low cost, non-

profit option that is comparable in power to other options [75]. It is intended for both civil and

humanitarian uses and can be used by fixed wing or mulicopter vehicles. The CopterControl

platform is one of the two platforms created for OpenPilot. The CopterControl is fitted with a

STM32 32-bit microcontroller of 90 MIPS, 128 kilobytes of flash memory, and 20 kilobytes of

RAM. The platform also has three-axis mechanical-electronic machines accelerometers and

gyroscopes. CopterControl has Spektrum satellite receiver support and has 4 megabits EEPROM

for configuration settings [76]. Flexiport also allows a user to use I
2
C connectivity or a second

serial port. All of this is included in a 36 x 36 mm printed circuit board and is less than $100.

OpenPilot also includes free control software that is compatible with Windows, Mac OS, and

Linux [75]. The OpenPilot autopilot is shown in Figure 52 below.

Figure 52 - OpenPilot autopilot [76].

81

 The ArduPilot autopilot system is an open-source project developed by DIY Drones that

is based on the Arduino family of microprocessors. The latest version of this family of autopilots

is the ArduPilotMega APM 2, released in 2011. This is a small, low-weight option that is

moderately priced at $179. This is also a convenient option as it requires no assembly. All that

needs to be done is for the firmware to be downloaded onto the board via USB and the Mission

Planner autopilot software. This software allows the user to view a flight simulation, as well as

key information such as latitude, longitude, altitude, roll, pitch, and yaw.

 The ArduPilotMega APM 2 contains three Arduino processors, the atmega 2560, the

atmega 32u2, and the MPU-6000 DMP processor. It is also equipped with 3-axis gyros,

accelerometers, and magnetometers as well as a barometric pressure sensor to measure altitude.

It comes with a GPS module that can be attached to let the user know the exact location of the

vehicle and navigate it with the ground control software. The memory includes four megabytes

of data to store flight information on and flights can be replayed using the Mission Planner

software. The code is open-source so modifications can be made if desired, but none are needed

to achieve out of the box full functionality. The ArudPilot measures 40 x 65 x 10 millimeters and

is lightweight, making it an ideal option for a UAV where size constraints are prevalent.

 When deciding which autopilot module to use, the main factors taken into were size,

power consumption, on-board sensors, ease of implementation, availability, and cost. The

findings are summarized in Table 7 below.

82

Table 7 - Autopilot comparison

Size &
Weight Power On-Board Sensors Implementation Availability Cost

Paparazzi

80 x 40
mm,
23 g

2 W -
11.25 W none

configured in
XML, must
install external
sensors available $245

Kestrel

50.8 x
34.8
mm,
16.7 g .77 W

magnetometer,
micro-electronic
machine systems
inertial
measurement unit,
3 temperature
sensors

on-board
sensors, ground
control
software,
various
autonomous
modes available ~$5000

Piccolo

130 x 59
mm,
110 g 3 W

laser altimeter,
DGPS

on-board
sensors,
autoland, radio
on-board available ~$5000

OpenPilot
37 x 37
mm

.336 W -
1.05 W

micro-electronic
machine
accelerometers
and gyroscopes,
airspeed sensor

ground control
software
included,
compatible with
Windows, Mac
OS, Linux

out of
stock $92.44

ArduPilot
40 x 65 x
10 mm

3-axis gyros,
accelerometers,
magnetometers,
barometric
pressure sensor,
GPS

download
firmware from
ground control
software, no
assembly
required available $179

While the Piccolo and Kestrel were the most technically powerful systems, both of them cost

around $5000, which was too very much too far above the project budget of $450. The

OpenSource option provided the best value as it was very inexpensive, small, and was able to

work very well. However, these are not currently in stock. The Paparazzi was a viable option but

it required assembly and the technical support was not very strong for it. The ArduPilot

represented an easy-to-use option at an affordable price that performed well. For that reason, it

was chosen as the autopilot module for this project.

83

3.2.3. Image Processing Module

 The microprocessor for the image processing module is selected based on the comparison

of microprocessors used in previous UAV projects. In order to choose a suitable microcontroller

for the system, the physical constraints of the UAV is taken into account. The most important

contraint is size as well as weight; the microcontroller has to be compact so it can fit into a UAV.

Luckily, almost every microcontrollers that was researched had a reasonable size and weight.

Since the project had limited funding, the second contraint that was considered was price. Power

is also a crucial point for ruling out choices. Futhermore, availability also played a role in the

selection process. Lastly, speed needed to be considered as the main goal of the microprocessor

was to process data. However, all of the options considered are proven fast enough for the

required tasks as they had been used in previous projects. Although FPGAs had the advantage of

high parallelism that is most suitable for image processing, they are not very suitable since

FPGAs need a lot more time for programming and interfacing [55]. The Beagleboard and

Pandaboard has the advantage of being much easier to use and interface with other modules.

 The first pool of candidates includes those used in the UAV related projects that are

considered as prior art. These projects are from MIT (RAVEN), University of Linkoping

(WITAS), BYU (MAGICC) as well as Worcester Polytechnic Institute (WiND). Although all of

the components has gone through their own selection process, the goal of other projects is not

exactly the same as this one, so value analysis has to be conducted to determine which one best

fit the needs of this platform. For example, the embedded computer used in project WITAS, the

PC104, is clearly impratical for this project considering its big size and weight. Also, the Kreshel

system of project MAGICC with its price of five thousand dollars is too expensive for a smaller

scaled project such as this one. The final options remaining are the Pandaboard, Beagleboard,

84

Raspberry Pi, and LX9 Spartan-6 board. Below, Table 8 shows the value analysis of the choices

as well as choosing criteria: price, size, power, speed and availability.

Table 8 - Image processing options summary

 Pandaboard Beagleboard
Raspberry
PI

LX 9
Microboard

Price $174 $149 $30 $89

Size(in) 4.5x4 3.25x3.25 3.3x2.1 5x1.5

Power 250 250 3500 25000

Processing

1.2 GHz
Dual Core

ARM Cortex
A9

1 GHz ARM
Cortex A8

700 MHz
ARM

FPGA
processor

Availability Available
In

procession Available
In

procession

The Beagleboard is chosen as the processor used due to its speed, data, easiness of use, and the

fact that it was already in possession.

3.2.4. Communication

 The communication module of this platform is vital to its performance. This module is

responsible for transmitting data between the ground station and central control module. Multiple

methods were researched for this task including Wi-Fi, ZigBee, and Bluetooth.

Wi-Fi may be used with certified products that belong to the class of wireless local area

network (WLAN) devices based on IEEE 802.11 standards. It allows local area networks (LAN)

to be deployed without wires for client services. Spaces where cables cannot be run, such as

outdoor areas and historical buildings can host wireless local area networks. Wireless network

adaptors are built nowadays inside most electronic devices. The price of Wi-Fi is dropping down

making it an economical networking option included in even more devices. Power consumption

of Wi-Fi is fairly high compared to some other standards, and it varies depending on coverage

requirement which usually ranges between 10 meters to 100 meters.

85

Figure 53 shows the bullet M, which is the latest version of the Ubiquiti Bullets. Wi-Fi

Bullets acts as a wireless radio with an integrated Type N radio frequency (RF) connector that

can be directly plugged into any antenna to create a powerful and robust outdoor access point,

client, or bridge. The Bullet M features a signal strength LED meter for antenna alignment, a

low-loss integrated N-type RF connector, and a robust weatherproof design. With up to 600

milliwatts of power and enhanced receiver design, the Bullet M is ideal for long-distance links,

capable of 100Mbps+ real TCP/IP speeds over multi-km distances.

 Figure 53 - Type M Wi-Fi bullet [77].

Two software packages are accompanied with the bullets to configure them with. The

airOS software allows the user to configure the wireless and networking settings of the bullets

which includes the protocol support, Ubiquiti channelization, spectral width adjust, functionality

use, multi-language support, and encryption methods. The second software is airControl. This

software is a powerful and intuitive web based server network management application which

allows operators to centrally manage entire networks of Ubiquti devices. The two software

packages can be downloaded for free directly from the Ubiquiti website.

Zigbee is a low cost, low power, wireless mesh networking with proprietary standards.

This networking technology is widely deployed all over the world in wireless control and

86

networking applications due to its low cost and good quality. The low power-usage allows longer

life with smaller batteries, and the mesh network provides a decent liability and range.

The activation rate of Zigbee is fast. Zigbee can go from sleep mode to active mode in 15

milliseconds or less. The latency can be very low and devices can be very responsive compared

to Bluetooth sleep-to-active modes, which are around 3 seconds. The reason why the power

consumption of Zigbee is low is that it is in sleep mode most of the time, which results in a

longer battery life. Zigbee protocols are intended for use in embedded applications which

requires low data rates and low power consumption. Zigbee’s focus is to define a general-

purpose, inexpensive mesh network that can be used for different purposes. A Zigbee chip can be

seen in Figure 54.

Figure 54 - Zigbee, a module of Xbee products [78].

Bluetooth is a standard communication protocol designed for low power consumption

with a short range based on low-cost transceiver microchips in Bluetooth devices. This method

makes it possible for these devices to communicate with each other when they are in range.

Bluetooth uses the frequency-hopping spread spectrum, which cuts the data being sent and

87

transmits it on up to seventy-five different frequencies, and is usually found in devices such as

mobile phones, telephones, laptops printers, GPS, and digital cameras. It used a 2.4 GHz short

range frequency bandwidth and the technology is used for short distances and low-bandwidth

data transfer between two or more Bluetooth enabled devices. Bluetooth is usually useful for

transferring sound data with telephones. Figure 55 shows a Bluetooth USB for wireless

communication.

Figure 55 - A Bluetooth dongle for wireless communication [79].

Table 9 summarizes the main differences among the three protocols. Each protocol is

based on an IEEE standard. Wi-Fi bullets provide the highest data rate, while Bluetooth and

ZigBee are lower. In general, Bluetooth and ZigBee are intended for wireless personal area

network communication (about 10m), while Wi-Fi is oriented to WLAN (100m and more).

However, ZigBee can also reach 100m in some applications. The nominal transmission power is

0 dBm for both Bluetooth and ZigBee, and 28 dBm for the Wi-Fi bullets. Bluetooth, ZigBee and

Wi-Fi protocols have spread spectrum techniques in the 2.4 GHz band, which is unlicensed in

most countries and known as the industrial, scientific, and medical (ISM) band. Bluetooth uses

88

frequency hopping (FHSS) with 79 channels and 1 MHz bandwidth, while ZigBee uses direct

sequence spread spectrum (DSSS) with 16 channels and 2 MHz bandwidth. Wi-Fi uses DSSS

(802.11), complementary code keying (CCK, 802.11b), or OFDM modulation (802.11a/g) with

14 RF channels and around 22 MHz bandwidth. The Wi-Fi bullets can mix the 802.11 B, G, and

N modes.

The maximum number of devices belonging to the network’s building cell is 8 (7 slaves

plus one master) for Bluetooth, over 65000 for a ZigBee star network, and 2007 for Wi-Fi.

Encryption and authentication mechanism is involved in all of the three protocols. Bluetooth uses

the E0 stream cipher and shared secret with 16-bit cyclic redundancy check (CRC), while

ZigBee uses the advanced encryption standard (AES) block cipher with counter mode (CTR) and

cipher block chaining message authentication code (CBC-MAC), also known as CTR with CBC-

MAC (CCM), with 32-bit and 16-bit CRC, respectively. In 802.11, Wi-Fi uses the RC4 stream

cipher for encryption and the CRC-32 checksum for integrity. However, this technique seemed

to be weak and it can be easily cracked with a readily available software in a few minutes, and

thus WEP got upgraded to Wi-Fi protected access 2 (WPA2), i.e. IEEE 802.11i standard, of

which the AES block cipher and CCM are also employed. The power consumption of Wi-Fi is

very high compared to Bluetooth and Zigbee (up to 24V for the Wi-Fi bullets).

89

Table 9 - Comparison of the Bluetooth, Zigbee, and the Wi-Fi protocols [66].

Standard Bluetooth Wi-Fi Bullets Zigbee

IEEE Spec 802.15.1 802.11b,g & n 802.15.4

Frequency Band 2.4 GHz 2.4 GHz 2.4 GHz

Max Signal Rate 1 MB/s Up to 100 Mb/s 250Kb/s

Nominal Range 10m Over 50km 100m

Nominal TX Power 0-10dBm 28 dBm -25 - 0dBm

Number of RF Channels 79 14 16

Channel Bandwidth 1 MHz 20 MHz 0.3/0.6 MHZ; 2 MHz

Modulation Type GFSK QPSK BPSK, O-QPSK

Encryption E0 stream cipher AES block cipher AES block cipher

Authentication Shared Secret WPA2 CBC-MAC

Data Protection 16-bit CRC 32-bit CRC 16 bit CRC

Max Number of Cell
Nodes

8 2007 >65000

Spreading FHSS DSSS DSSS

Power Consumption medium high very low

Cost low average average

3.2.5. Camera

 The camera module is responsible for collecting images of the area of surveillance and

feeding them to the image processing module. Cameras used in previous UAV projects were

compared and value analysis was conducted on them to decide on the best one for this project.

Key factors included resolution, cost, and degree of visibility.

 The Sony FCBIX45C is a very durable inexpensive camera that is ideal for many video

applications. It features 18x optical zoom and 4x digital zoom and has a horizontal viewing angle

of 48º to 2.8°. The camera has a horizontal resolution of 470 television lines and minimum

illumination of 1.0 lux. It weighs 170 grams and measures at 48.2 x 56.6 x 92.3 mm, making it

an ideal fit for this platform. It also meets power constraints as it only requires between 6 and 12

volts to operate and only consumes 2 watts of power when its motors are active. This camera was

used by the Project WiND team at WPI in 2011-2012 and is currently in possession. Having this

90

camera readily available for no cost makes it an ideal solution for this decision [80]. An image of

the camera is shown in Figure 56 below.

Figure 56 - Sony FCBIX45C camera [80].

The Black Widow KX131 Color CCD camera is a light-weight, low power option that

was used by the BYU MAGICC team for their UAV project [31]. The Black Widow features

380 lines of horizontal resolution and 1 lux illumination. The camera has a 70º lens, but 90º and

116º lenses are also available. It requires 5 volts to operate and weighs only 23 grams. The

camera costs $139 [81]. The camera can be seen in Figure 57.

Figure 57 - Black Widow KX131 Color CCD camera [81].

The camera used in project RAVEN of MIT was the on-board camera of the Draganfly

SAVS system. The camera is an anti-vibraton colored camera with a resolution of 768x494,

91

making the camera have decnet image power for this project. However, the tradeoff of this

camera is it’s not a separate camera but come with the Draganfly SAVS helicopter, so

availability would become a problem if it was decided to use this component [82]. The Draganfly

SAVS platform is shown in Figure 58 below.

Figure 58 - Draganfly SAVS platform [82].

Similarly, University of Linkoping also use a colored camera for WITAS project. The

camera they used was Sony FCB-EX470LP [83]. This camera appears to be superior with

752x582 and 480 TVL resolutions. Noticeably, the camera had 18x AF Zoom Lens with 4x

Digital Zoom, with would be helpful for image gathering. However, availability is a problem as

this camera has not been produced since 2001. Other Sony CCD cameras have since been

produced though, so this still remained an option.

Figure 59 - FCB-EX470LP camera [83].

The Leopard Imaging LI-LBCM3MI camera is part of a family of cameras specifically

designed for the Leopardboard 365 development board, a similar computer to the Beagleboard.

92

The camera interface on the Leopardboard is the same as that of the Beagleboard in that in

supports CMOS cameras, which this one is. The LI-LBCM3MI has three megapixels and has an

output format of YUV colors. The vertical view angle is 61.4° and the focus range is sixty

centimeters to infinity, which is ideal as this system is designed to be used in a UAV at high

altitudes. The biggest strength of this board is that it is very convenient to use with the

Beagleboard. Since it is a CMOS camera is can plug directly into the board and start taking video

with very little configuration. All that needs to be done is to change one of the Linux files on the

board in order to set it up, while the other cameras would require an intermediate board to

convert the images to a suitable format that can be used by the Beagleboard. Another advantage

of this is that it is very thin and does not weigh very much. At $40 this module is also low-

priced.

Table 10 is a summary of the cameras that were considered in this section. Leopard

Imaging LI-LBCM3M1 is chosen as the system camera since it satisfies the needs of this project

and it is the easiest to interface with the Beagleboard. This is mainly due to the fact that it can be

connected to the Beagleboard and run with only a few changes to patches on the board. Other

cameras would require extra written software to convert the images to a suitable format that

could be processed on the board. The camera also provided high resolution imaging and was

low-weight and low-cost, making it a very good module to use.

93

Table 10 - Camera options summary.

Black
Widow Sony FCB-IX45C

Sony FCB-
EX470LP

Draganfly
Camera

Leopard
Imaging

Resolution 380 470 480 480 2048

Degree of
Visibility 70 2.8-48 2.0-48.0 62 61.4

Power
Consumption .5 W 2 W 3.6W N/A N/A

Weight 23 g 170 g 220g N/A N/A

Availability Available In possession Not available Not available Available

Cost $139 $0 N/A N/A $40

3.4. Security

In the sense of a sensor network, this UAV architecture has three main sensors that are

connected to the Beagleboard, which acts as the data processing module. The sensors include the

Leopard Imaging camera, ArduPilot, and Wi-Fi bullet. The model in Figure 60 can be adapted

into this system with the camera as the data receiving sensor and ArduPilot and Wi-Fi bullet as

the bi-directional sensor.

Figure 60 - System architecture of a sensor network model. The camera is the data receiving sensor, ArduPilot and Wi-Fi
bullet is bi-directional sensor.

From this sensor network model, the camera has the characteristics of the data receiving

sensor. Therefore, one possible way to attack this system is feeding false image to the camera.

The type of image that needs to be fed is heavily based on how image is processed inside the

system. Therefore, this attacking method will be discussed more later on in the report. One idea

94

to counter this attack is implementing an algorithm in the central computing unit that can detect

false image and counteract them.

As a bi-directional sensor, there are two data paths for the Ardupilot, servo controlling

information and GPS information. However, because servo controlling information goes to the

servos directly, there is no need for securing this data. Therefore, the GPS should be considered

to be secured. For example, an attacker can jam GPS signals with specialized equipment.

Nonetheless, this attack can only be countered using hardware protection; security concerning

this issue has less priority in this project.

The Wi-Fi bullet, being a bi-directional sensor, is the communication module of this

project along with the base station. There are many ways of attacking a communication system,

especially a wireless one such as the one used here. Two of the most common ways are

“eavesdropping” transmitted data and sending false data. These two attacks could be solved

using encryption and decryption processes. Encryption is a process that converts a piece of data

or information, which is called plaintext, into another form using an algorithm, which is called

cipher, which cannot be recognized by anybody. Decryption is the opposite process that converts

cipher text back to its original plaintext so receivers can retrieve data. The purpose of encryption

and decryption is to prevent sensitive information inside a network from being read by

unexpected people [84]. This entire process is outlined in Figure 61.

Figure 61 - Encryption process alters original data (plaintext) into another form (cipher text). Decryption is the opposite
process.

95

3.5. Tasks Division

The goal of this project is to deliver a fully functional platform on time and within

budget. Planning, organizing, securing, managing, leading, and controlling are significant for the

ultimate success of this project.

 This project was split up evenly between the three people in the group. All of the

modules of the platform architecture were assigned to one person each to design and implement

them. The camera, autopilot, central control unit, and image processing, encryption, and

communications modules will be assigned to one person. While everyone got to work on these

parts of the project completed, one person was ultimately responsible for their success.

 One person was responsible for the image processing and central computing modules.

Since the algorithm was implemented in software, a CPU was used to complete the task. This

was programmed in C++. This task requires experience with these devices by completing

relevant course work and projects. Another person was responsible for the communication

module of the platform. This required courses to have been completed related to communication

and a solid understanding of its different methods. The final task included the responsibility of

the autopilot and camera modules. This required relevant coursework in controls engineering a

solid understanding of how the sensors on the autopilot work. All tasks were divided evenly and

all members contributed equally to the success of the project.

3.4. Chapter Summary

This chapter contains the proposed approach of designing a UAV platform framework

architecture that can be used for blob detection and security testing. The platform consists of

generic basic components of a UAV: an autopilot module, an image processing module, a central

96

computing unit, and an encryption module. The modules are chosen from several candidates with

a value analysis processes using typical UAV constraints like size, weight, power, price, speed

and availability. With research done on many types of computing choices, conducted along with

cautious a selection process, more knowledge was gained about UAV systems and architectures.

97

4. Design Methodology and Implementation

Although the main focus of this project is building a UAV platform that can serve as a

test bed for enhancing securing, the platform should be able to have general features of an actual

UAV system. All modules of the system must be able to process and communicate data with

each other. Since the concerns of this project are more focused on the hardware side, software

implementation that is not security related could be really simple and off-the-shelf algorithms

obtained from the Internet. For example, the image processing module can use the image

processing code from an algorithm that simply outputs a certain value based on colors contained

in an image. The autopilot module is an independent board and did not require much custom

configuration. The central computing unit should be able to receive data from the image

processing and autopilot modules and process and transfer the data to the Wi-Fi bullet. To check

if the modules function correctly, they needed to be tested at first individually and then as a

complete system. Also, the image processing module needed to be tested by using both fixed and

motioned pictures. Not much needed to be tested the on autopilot module besides ensuring that

the module worked correctly. For the central computing unit, it needs to be made sure the the

module logic as well as the data line work fine.

For security concerns, several testing procedures needed to be developed to ensure data

inside the system was secured. Most of the tests were in forms of attacks toward the system.

Attacks against the image processing module were done by using light to generate false images

that were detected by the camera and countermeasures were developed against these attacks.

Also wireless attacks were used that made it possible to intercept packets being sent between the

Beagleboard and ground station and were able to alter the configuration of the Wi-Fi bullets.

98

4.1. Autopilot

The ArduPilot autopilot module was used to determine the coordinates and altitude of the

plane when a positive hit was detected. This component was essential to the project as it would

output the longitude, latitude, and altitude of the plane on a detected hit. The progression of

integrating this component went from reading the output via software on a laptop to isolate only

certain relevant parameters.

The autopilot was first connected to a laptop running Windows 7 via USB to test its

functionality [85]. The program ArduPilot Mega Planner was initially used to read the

information from the serial port. This software allowed made it possible to download the correct

firmware for this module and to track the progress of the module by outputting information such

as altitude, latitude, longitude, roll, pitch, and yaw in a GUI. The GUI also contained a window

that provided a virtualization of the flight and when the GPS was plugged in a real-time map of

where the autopilot was could be seen.

 After the correct firmware was downloaded and it was verified that the autopilot board

was working properly, steps were taken towards interfacing it with the Beagleboard. Initial

attempts included trying to send commands between the two boards to activate certain LED

lights on the autopilot. However, it was then realized that sending commands would not be

necessary information just needed to be read from the board, it did not need to perform any other

actions. The objective then became to be able to view the raw data from the board.

 Since a USB was being used to connect the two boards a common Linux application,

Minicom, was used to read the Beagleboard’s serial port [86]. Using Minicom made it possible

to read the board right from the Linux terminal on the Beagleboard. After configuring the

program to run using the correct settings the output was able to be read from the ArduPilot. This

99

output was mostly composed of machine code called Mavlink that is specific for remotely

controlled vehicles. By itself this information was mostly useless as it could not be read.

However it was possible to use the Mission Planner software to be to read a Mavlog file and

recreate the simulation of the flight. This allowed all of the relevant parameters to be read on the

software. After this was figured out, a method was found to output information from the Linux

terminal into a text file. This file was saved as a Mavlog format and it was able to be transferred

from the Beagleboard to a laptop running the ArduPilot software to recreate the “flight” and get

the relevant data.

 Once the raw data was able to be read from the serial port the next step was integrating

the code with the blob detection algorithm. To do this a separate C program was found that could

be used to read the serial port of a Linux machine. This code set the input and output baud rates

for the serial ports as well as specified what directory needed to be read for the serial port. This

code was able to be used to read from the serial port 10000 times to create a Mavlog file that

could be read by the GUI. It was tested by itself and then modified to save all of the results in a

separate text file. Once it was verified that this was working this code was inserted into the blob

detection algorithm to run whenever an object was detected. This would save the Mavlog file

into the directory the Beagleboard was currently in. The Mavlog file was able to be accessed

from the Windows laptop and run on the autopilot software to find the specific parameters that

were being looked for.

 While this method worked it was inefficient. Having to monitor the current directory for

a new file and running it in the software took too long and gave too much information for what

was desired. To remedy the situation, ways were searched for in which certain variables could be

isolated and then outputted directly into the terminal. This was accomplished by further studying

100

the Mavlink language. Mavlink is written in hexadecimal code and uses a certain code sequence

to indicate where the reading frame starts and stops. Each parameter such as roll, pitch, and yaw

is represented by two bytes, one to indicate which variable is being shown and another to display

its value in 8-bit floating point. An application was found and downloaded that was able to

convert the raw data from Mavlink into hexadecimal format. Using this information it was

possible to find where the longitudinal, latitudinal, and altitude parameters were located.

Once it was determined how to find the proper parameters and their values, some string

parsing code inside of the blob detection algorithm was written that would search for the

hexadecimal bytes representing the desired parameters. Once these bytes were found their next

bytes were converted from hexadecimal into floating point. These values were then outputted to

the terminal so that they could be viewed without the aid of autopilot software. They were then

transmitted to the ground control laptop via programming of network sockets.

4.2. Communication

Two Ubiquiti Wi-Fi bullets were used to communicate wirelessly between the

Beagleboard and the base station. After processing the desirable information, the bullets were

used to send the detected altitude and GPS coordinates of the UAV to the base station. The

bullets that were used were of type M, the latest version of the popular Ubiquiti Bullet model.

These types of bullets acts as a wireless radio with an integrated N style RF connector attached

to a 7 dBi gain antenna to create a powerful strong access point. The bullets have a built-in

enhanced receiver design which is ideal for long-distance links, capable of 100 Mbps real

TCP/IP speeds over several-miles distances.

Power over Ethernet (POE) injectors were used to power the bullets. The POE injectors

combine power and data on one cable and the POE power adapter can deliver 24V DC power to

101

a remote network device over a standard patch cable. Figure 62 shows how one of the bullets

was connected to the Beagleboard via an Ethernet cable, and the other bullet was attached to the

base station the same way. AirOS and AirControl, the two Ubiquity software packages, were

used to configure the bullets to the appropriate setting.

Figure 62 - The PoE adapter is powering the bullet and linking the Beagleboard to the bullet via Ethernet cords.

AirOS is a highly developed Ubiquiti firmware technology. It is simple software to allow users to

configure the different wireless and networking settings of the bullets. This powerful firmware

architecture enables high performance outdoor multipoint networking. The AirControl software

is a powerful web based server network management application which allows users to manage

an entire network of Ubiquti devices. It also allows the users to conduct network mapping,

device-status monitoring and task scheduling. This software was downloaded from the ubiquity

PoE adapter

Wi-Fi Bullet

Beagle Board

102

main website, and it was possible to login into the configuration page using the Ubiquity

username and password provided.

Configuring the bullets with the correct settings involved three major steps that included

connecting the hardware, setting the ground station and Beagleboard to the correct IP addresses,

and setting the bullets to the right settings to be able to communicate with one another. As

mentioned earlier, the POE injector had two Ethernet ports. One of the ports was connected to

the bullet via an Ethernet cable to power the bullet, and the second port was for the local area

network. This port was connected to the Beagleboard via Ethernet cable to transfer data to the

bullet. The same configurations were used at the base station end. The second POE injector was

used to power the second bullet, and to link the base station to the LAN line.

The Wi-Fi bullets can be used for different applications such as a simple access point,

wireless repeater, or a bridge. At first, the two Wi-Fi bullets were connected to two separate

computers to configure the computer to be able to setup the devices. The IP address and the

subnet mask of one of the computers were set as 192.168.1.21 and 255.255.255.0 respectively.

The second computer’s IP address and subnet mask were set as 192.168.1.20 and 255.255.255.0

respectively. 192.168.1.20 and 192.168.1.21 are the IP addresses of the bullets. By adjusting the

computers IP addresses, it was possible to log in into the ubnt server by typing either

http://192.169.1.20 or http://192.169.1.21 in the browser and adjusting the networking and

wireless settings according to the needs of this project.

One of the bullets needed to be setup to act as an access point. For this purpose, the

Wireless Mode was chosen as: Access Point WDS with the MAC address of the second bullet

entered in the WDS section as seen in Figure 63. SSID: UBNT, Channel Spectrum Width: 20

MHz, Channel: 1-2412 MHz range, 10 dBm output power, and WPA wireless security. Figure 64

103

shows the networking settings. The Network Mode was chosen as: Bridge, IP address:

192.168.1.20, Netmask: 255.255.255.0, and Gateway IP: 192.168.1.254.

Figure 63 - AirOS wireless configuration page.

The same networking and wireless settings were chosen for the second bullet except for the

Wireless Mode WDS MAC address, which was the MAC address of the base station, and

Network Mode IP address, which was the IP address of the base station.

Bullet’s MAC Address

AddeAddress

Choosing the

Wireless

Settings

104

Figure 64 - AirOS network configuration page.

After selecting the above settings, the AirControl software was used to connect the two

bullets together, and to test their transmitting and receiving capabilities as shown in Figure 65.

After connecting the two bullets together, a successful ping test was performed on the bullets.

Figure 65 - Connecting the bullets together using AirControl.

Choosing the

network mode as

bridge

Choosing the

appropriate

Network Settings

Connecting the two bullets together.

After they are connected, the status light

turns green.

105

Samba allows file and print sharing between computers running Windows and UNIX. It

is an implementation of several services and protocols and it sets up network shares for the

Linux any directories that are chosen. These appear to Microsoft Windows users as normal

Windows folders accessible via the network directory. By entering the Beagleboard’s (running

on the Linux operating system) IP address in the Windows Network and Sharing Center, the user

can successfully see the Beagleboard Linux files remotely. The shares can be mounted directly

as part of the file structure using the Submount command.

A more efficient method was needed to communicate between the Beagleboard running

on Linux and the base station running on Windows to fulfill the requirements of this project

though. A more viable choice was socket programming. Sockets are interfaces that can “plug

into” each other over a network. Once “plugged in”, the computers can communicate between

one another. In socket programming there is a server and a client. The server program was

exposed via a socket connected to a certain port number. The client program then connects its

own socket to the server’s socket. The client program’s writes to the socket were read as stdin to

the server program, and stdout from the server’s program were read from the client’s socket

reads.

Two simple server and client socket programming codes were used. The server’s code

was included in the Beagleboard’s main image processing code. The server code was executed

by entering the code name (server) followed by the IP address of the base station followed by the

port number in the command window. On the other hand, the client code was executed by

entering the client’s code name (client) in the ground control terminal followed by the IP address

of the Beagleboard followed and by the same port number as the server code. It is shown in

106

Figure 66 that the socket programming codes were tested by sending the message “Hello World

“from the server to the client.

Figure 66 - Socket programming testing. The base station received the message sent by the Beagleboard.

4.2.2. Socket Programming Codes

The “off the shelf” server code used was a simple code in the internet domain using TCP.

In this code, the port number is passed as an argument. The code starts with the function error()

which is a wrapper for perror. When called, the basic function socket() creates a UN-named

socket inside the kernel and returns an integer known as socket descriptor. The first argument of

the function socket() is the domain or Internet family to be used. For the IPv4 addresses Internet

family, AF_INET was used as a first argument. The second argument of the function, socket(), is

‘SOCK_STREAM’ which specifies that the desired transport layer protocol should be unfailing.

TCP is one example of this. The reason the third argument was left zero was to let the kernel

decide the default protocol to use, which is usually TCP protocol for reliable connections.

The virtual machine

command window got the

message sent from the

Beagle Board.

107

When the function bind() was called, it assigned the details specified in the structure

‘serv_addr’ to the socket created in the step above. The details include the family/domain, the

interface to listen on (in case the system has multiple interfaces to network) and the port on

which the server will wait for the client requests to come.

The second argument of the function, listen() (5), specified the maximum number of

client connections that the server will queue for this listening socket, which became a fully

functional listening socket after the call to the function listen. As soon as the server gets a request

from the client, it prepares the date and time and writes on the client socket through the

descriptor returned by accept().

The same thing was done as in the server code. A socket was created by calling the

socket() function. A struct including information about the IP address of the remote host and its

port was defined. The function connect () tried to connect this socket with the remote socket (IP

address and port of the remote host) after the function connect() was called. The client usually

can have its socket lined with any port unlike the server, which needs a well-known socket. This

means that binding the client socket on a particular port is not needed here [87].

Once the sockets were connected, the server sends the data and time information on

clients socket through clients socket descriptor and client was able to read it through normal

read call on the its socket descriptor.

4.2.3. Use of Virtual Machine

The sample socket programs that were found online were confirmed to work on the

Beagleboard itself. Messages could be sent between two terminal windows using the loopback

address to specify where the send the message. However more work had to be done before

getting them to work over a different computer.

108

 The objective was to use the Beagleboard to send messages back and forth between it and

the ground control laptop. It was planned to do this by connecting a laptop running Linux

Ubuntu 12.04 to the Beagleboard with an Ethernet cable and compiling both the server and client

programs on it. First, it was verified that the programs worked the laptop by sending messages

from one terminal window to another within it using the loopback address like had been done on

the Beagleboard. This worked with no difficulty. However, problems were encountered when it

was attempted to send messages between the laptop and board. The Beagleboard was not able to

read the connection to the laptop and it was not possible to communicate with it.

 After uncovering this problem, sending messages between the two machines was

attempted by running Windows 7 on the laptop rather than Linux. The board and laptop were

connected via Ethernet and this configuration allowed for successful pinging of the board from

the laptop and vice versa. MinGW was then downloaded to the laptop to compile the socket

programming code. MinGW provided an interface that was similar to the Linux shell that was

more convenient to work with because of familiarity. A simple “Hello World” program was

compiled and run using the gcc compiler on MinGW to verify that it worked as intended. The

socket programs proved to be more complicated to compile however. Multiple headers that were

included in the codes were specifically for Linux and would not compile in Windows. A way

was found to be able to find a way to circumvent this problem for one of the headers but could

not for the other ones.

 The next attempted solution was to look for a way to program the sockets in Windows.

Some simple server and client codes were found online but difficulty was experienced in

compiling them as they returned errors which were difficult to understand. Since nobody in the

109

group had any experience in programming sockets, alternate solutions were looked for instead of

trying to modify the original code.

 Problems were experienced when using just one operating system on the ground control

laptop. The computer and the board could be connected successfully when running Windows 7

but it was difficult to compile any socket programs on the laptop. When running Ubuntu on the

laptop, it was possible to compile the programs but not to establish a connection between the

Beagleboard and laptop. To solve this problem a virtual machine (VM) was installed on the

laptop running Windows that would run Linux Ubuntu 8.04. This solution made is possible to

connect the board to the computer successfully in Windows while running the socket software in

Linux like it was written for. The virtual machine software used was Oracle VM VirtualBox. The

Ubuntu image was downloaded online set up on VirtualBox. Once the system was installed the

server and client codes were compiled and run to send messages from one terminal to another on

the virtual machine as had been done before in Linux.

 Once this was done, difficulty was had in figuring out the right configuration method to

get the board communicating with the virtual machine. The default network setting on the VM

was a NAT configuration, but it was not possible to ping the board using this method. It was then

attempted to bridge the Wi-Fi connection from the laptop, the VM, and the Beagleboard and

changing the network setting to bridged. While this worked successfully once, it did not work the

next time the board was connected to the laptop. It was still possible to ping the board from

Windows but not from the VM however.

To remedy this, a static IP address was assigned to the Beagleboard. The Beagleboard has

a default dynamic IP address by default and that causes it to assign itself a new one on each boot-

up. It was decided to make this address static so that the same address would be assigned each

110

time. This was done so that the laptop would be able to connect to the board without having to

look up the address on the monitor. This was able to be done by modifying one of the scripts on

the Beagleboard that configured all of the interfaces on it. Doing this fixed the problem and

made it so that communication between the board and laptop was possible through the VM. First

the board was pinged through the Ubuntu terminal and then the socket networks were

configured. One issue that remained unsolved was that communication was only possible

between both systems if the client was running on the laptop and the server was running on the

Beagleboard. Communication was not possible if it was set up the opposite way. It was

suspected that this was due to the Beagleboard trying to connect to the Windows operating

system if the client was run in it and not the VM. This would not prove to be a major issue

however as communication was still possible as long as the server program was running on one

machine and the client on the other.

4.3. Image Processing

The image processing module was a very important part of this architecture as it was the

main data processing sensor. Parts of this module included connecting the camera, downloading

OpenCV, and finding a suitable blob detection algorithm that can be used to for this project.

The camera was one of the first components that were integrated with the Beagleboard

[88]. It was made by Leopard Imaging and was the LI-LBCM3M1 model. This was a CMOS

transistor camera composed of three megapixels, giving good quality of output video of YUV

format. This camera was specially created for the Leopard Board, which has the same camera

interface as the Beagleboard. The ability to plug the camera straight into the board eliminated the

need for any sort of intermediate components such as a decoder to interface the camera with the

board.

111

 Another advantage of using this camera was it being supported by the version of Linux

Angstrom that was used on the board. To enable it, some U-Boot files were modified by simply

adding several command lines so that the camera could be recognized by the Beagleboard. Once

these lines were added into the U-Boots file, the system was able to take pictures from the

camera and view the video output on the monitor screen using the program Mplayer. It was also

possible to record videos by using the application Mencoder.

The role of the image processing module is to process data that comes from camera. To

do that, there was a need to use many tools for the sole purpose of image processing. Instead of

developing an image processing module from scratch, which is impractical for both time and

resources for this project, a library package called Open Source Computer Vision Library

(OpenCV) was utilized. OpenCV is a free image processing library that contains many helpful

and powerful image processing functions and algorithms. Furthermore, the library is developed

and utilized by a big open source community that conducts many projects with an image

processing purpose. The projects range from simple color changing programs to more

sophisticated ones like face recognition. Being both free and widely used, OpenCV fit into this

project both financially and conveniently.

OpenCV could be easily downloaded from its official site. The library supports almost all

mainstream operating system like Windows, Mac, and UNIX based operating systems. The

downloading and installation process was fairly simple with instruction from the library’s

documentation site. Upon downloading and building the Linux version package of OpenCV, this

library was ready to be used in the program.

 The first version image processing algorithm that was used was based on a simple

function that turns a colored picture into grayscale picture. Although converting the image into

112

grayscale was not the goal of this project and, in fact, this function was not even used in the final

design, this function was used at first for two main reasons: to be able to know that OpenCV had

been installed correctly and to have first-hand experience with image processing. This program

first loaded an image from a picture file and stored it in program memory with a pointer of

OpenCV’s image type called IplImage. The process was done using the cvLoadImage function of

OpenCV. Next, the colored image is converted into grayscale image using a function called

cvColor with the special parameter, CV_RGB2GRAY. After that, the image was successfully

converted into grayscale.

 Since converting image to grayscale was a very simple process and it did not have any

real use as image processing algorithm for this project, a more sophisticated function was

developed based on this version. The second version of the image processing module has two

new features: being able to load live images from the camera instead of a file and filtering out a

part of picture based on its color. For interacting with the camera, another type of data was

introduced into the program as IplImage which can only be used for the image. In order to be

able to store a video, which is basically a series of many images, a data type called CvCapture

was used. Furthermore, with an OpenCV function called cvCaptureFromCAM, live images that

came were able to be captured from the camera and stored in memory. With this, frames, or

images, of the video were extracted using the cvQueryframe function and stored as an IplImage

format. Each frame that had been extracted then went through the color-to-grayscale process that

had been implemented. However, instead of stopping at this point, another layer of image

processing was applied. This idea for this layer was to separate the part of the image that had

color level (or in this case gray level) less than a threshold level and the one that is bigger. Using

the cvThreshold function and the THRESH_BINARY option given to this function, the grayscale

113

image could be turned into a black and white image where the black area was the area with gray

level less than the threshold value and white otherwise.

 As OpenCV’s functionality was able to be confirmed by simple image processing

programs that worked with live images from the camera, the image processing module was

decided to be upgraded to another algorithm that was more complex and more suitable for the

goal of this project. Therefore, a third version of the image processing module was designed and

implemented.

 In order to figure out which algorithm should be use from this module, the design goal

for this project was considered. First and foremost, although UAV technology is applied with

various purposes in both military and civilian field, most of the time UAVs’ cameras are used for

detecting abnormalities in the area being watched (people, animals, wildfire, etc.). Secondly,

since the ultimate goal was not developing an image processing algorithm but detecting

exploitable flaws in UAV systems, the image processing module should only take up a fair

amount of the time budget. Lastly, as the UAV being built was supposed to fit a standard UAV

architecture, its functionality should also be common, rather than focusing on a specific

direction. Therefore, the image processing algorithm was decided to be a red color detection

program. The reason for choosing this algorithm was color detection was a very widely used

image processing technique and it did not require too much time and knowledge to be able to

implement. Also, red was a less frequent color that can be found in nature, making it a color that

would probably indicate an abnormality. Thus, the red color detection algorithm fit into the

project scale and purpose.

114

 The idea of this algorithm was to detect if the net area of the red color of this image was

bigger than a threshold value. This algorithm was inspired by a red detection code of Jay

Ragsdales’ found online [89]. The red detection program was divided into 4 parts:

 Getting live images (frame) from the camera

 Converting image into the HSV color plane

 Filtering all the parts of the images that were not red

 Checking if the red area was bigger than a certain value

 First, live images were taken from the camera using the same method from the grayscale

threshold algorithm. After that, cvColor was used with special the option, CV_RGB2HSV, upon

the frame taken. This function ensured the frame got converted into an HSV image instead of a

regular RGB image. RGB was a color indicator that based on three primary colors, red, green,

and blue. Usually, each pixel inside a colored image contains a unique color, which could be

represented as a combination between a certain degree of red, green, and blue (Figure 67).

Figure 67 - RGB convention states that all colors are composed of a certain degree of red, green and blue. White color means
equal maximum amount of both three and black means none of three [90].

However, although RGB was helpful in uniform color distribution, this system was not

very intuitive in the sense of assessing many shades of the same color. Usually, the color would

not be distributed equally but easily get affected by light condition as well as the observing

angle. Therefore, instead of using RGB as the color plane, another color indicator system was

115

introduced that was called HSV. Similar to RGB, HSV had three fields used to indicate a color:

hue, saturation and value (Figure 68). However, only the hue field in HSV truly decides which

color it was at the point, while the other two fields decided how powerful (saturation) and how

bright (value) the color is. Thus, HSV was more preferable in real life image processing.

Figure 68 - HSV convention’s color is decided mainly based on hue value. Saturation decides strength of the color and value
decides its brightness [90].

After converting the image into the HSV color plane, the program searched for pixels that

had appropriate color, or hue value that resides within a certain range. In this case, since it is

wanted to detect red color, the hue value ranged from 120 to 130. Pixels that were outside of this

range would be filtered out and replaced with black ones as in Figure 69. Using the process of

filtering out undesired pixels, the program could also count area of detected pixels.

Figure 69 - Color filter process: First image was the original image, second image was converted to HSV color plane and last
one was filtering out non-red pixels.

116

Lastly, with the net area of detected pixels, the program compared it to total area of one

image and if the ratio between two area was bigger than 1/11, it meant the image was detected as

abnormal (got considerable red detected).

4.4. Attacks

This section describes the attacks that were performed on the prototype and

vulnerabilities that were found. The attacks focused on compromising the image processing and

communications modules.

4.4.1. Red Color Attack

A red color attack was conducted to target the image processing module of the system.

The idea behind this attack was to give the camera a false signal, thus, making the system behave

in an unexpected way. The image processing module was implemented so that it reacted to a

sufficient amount of red color area in captured image from camera. Therefore, the attacker could

exploit this characteristic by shining a colored light beam to camera, confusing the module as

well as the whole system.

The tool for this attack was a colored light source. Currently, there were many kinds of

light sources out there in the market, but they could be divided into two main kinds: concentrated

light (i.e. laser) and non-concentrated light (i.e. LED, light bulb). The light source was placed

between the camera and a white wall. The distance between the camera and the light source

varied from three inches up to five feet. There was an angle in degree formed with light source

and camera’s lens (when light source shined straight to camera, this angle would be 90 degree).

The model diagram is found in Figure 70.

117

For each experiment setting, the algorithm was run for 500 samples. With this,

probability of reacted samples out of 500 samples was calculated and recorded for each setting,

thus, ensuring system’s stability.

Figure 70 - The testing module: camera and light source was placed in front of a white wall facing each other, light source
and camera had a distance of d and shining angle of a.

The first kind of light source that was tested in the system was non-concentrated light. In

this experiment, the target that was used was a colored LED flashlight of three primary colors:

red, blue and green. The reason for choosing LED flashlight instead of regular flashlight for first

target was because LED flashlight could produce many colors while regular flashlight was

limited with white light. Also, even-though there was a way to convert white light into colored

light, which mostly was done with a colored filter, the light would not be as strong as LED as it

was designed to make colored light. As the image processing algorithm ran based on red color

detection algorithm, it was reasonable to test the system with red colored light first. After that,

the system was also tested with other colored light like blue and green colored light.

Furthermore, the tests were run with flashing colored light. It was found that the red light

118

produced positive detections almost all the time while other colors did not. Figure 71 is the

picture of the LED flashlight that was used.

Figure 71 - The LED flashlight that was used had three LEDs with different colors: red, blue and green. The LED had a solid
lighting mode as well as a flashing mode.

For second the experiment, white flash light had been chosen as the light source. The

reason this test was conducted was white light was a light that comprised all colored light. Thus,

inside white light, there was red light component along with other colored light component.

Shining a white light to camera might get reaction from the image processing module. The

testing source that was chosen was a flashlight from a cellphone. This was because the phone’s

flashlight was designed to give out very “pure” and powerful white light so it would not mess up

the color when taking picture. Thus, a phone’s flashlight was a very good testing subject for the

second experiment. This hypothesis of producing positive hits with white light was proven false

however, as it only produced positive hits less than 1% of the time.

For the final experiment, the system needed to be tested with highly a concentrated light

source. This could be easily obtained was a laser pointer. As laser light is very concentrated and

parallel, it could reach a very long distance with very minimal loss of light intensity. Therefore, a

laser was an excellent light source for attacking UAV systems since most of the time the distance

119

from the attacker (usually at ground level) to the UAV’s camera would be very big. With a laser

pointer, the attacker’s false colored light signal could easily reach the camera and mess up image

processing module. The laser pointer was found to be able to affect the processing module at

greater distances and angles than the LED flashlight. Figure 72 is a picture of an example of a

laser pointer.

Figure 72 - The laser light that was used was a level measurement laser. Its light could reach more than 5 feet distance [91].

4.4.2. Wireless Attacks

 The second main attack focused on compromising the wireless communication module of

the UAV prototype. The first method used for this was by using the software, Wireshark, to try

and intercept data sent from one bullet to another. This would allow an authorized user to see the

location of the detected objects. The second method used was using a number of Linux scripts

under the suite of Aircrack-ng to attempt to jam the bullet’s Wi-Fi network and crack its WEP

code.

120

4.4.2.1. Wireshark

Wireshark is a powerful tool to analyze networks with a graphical interface. This can be

done by choosing the interfaces to be monitored. Wireshark usually captures network adapters,

and detects all activities on the adapters including TCP, UDP, and HTTP. Wireshark shows the

source and destination of the packs being transmitted using certain networks, it also shows the

protocol under which the packets are being transmitted and gives lot of information about the

data inside the packets. TCP streams can be followed using Wireshark by selecting the TCP

packet in the packet listing of connections, and choosing the follow TCP Stream option from the

tools menu. UDP and SSL streams can be followed by the same way.

Wireshark was used in this project to follow and capture the packets being transmitted

from the Beagleboard to the base station.

4.4.2.2. Aircrack-ng

 The next attempt at compromising the communications of the system involved jamming

the network on which the bullets were connected to. These attacks were conducted in Linux

Ubuntu 12.04 as it provided more options than Windows for Wi-Fi hacking. The idea behind

these attacks was to use a third laptop not connected to the bullets to jam communications

between them using its Wi-Fi card. These were done by using Aircrack-ng, a WEP and WPA-

PSK key cracking program that can be used to attack wireless networks.

 The first jamming attack was conducted using a script obtained from Google Code that

employed Aircrack-ng [92]. This script was programmed to look for all of the wireless networks

in the area and allow the user to select which one he wanted to jam. Once the selection was made

the program would send multiple deauthentication packets to the client server. This would not

allow the server to send information across the network because they would constantly have to

121

reauthenticate themselves. While this looked to be a viable attack it was ultimately unsuccessful

as a way was not found to block anyone’s connection to a wireless network.

After the failed attempt at using the script, it was decided to try to use Aircrack-ng

directly by itself [93]. Aircrack-ng is a suite of multiple commands that are used for carrying out

different Wi-Fi attacks. A tutorial was found online that showed an example of how to block

someone’s computer from accessing the Internet. This was used to attempt to block the bullets

from communicating with one another. A snippet of the terminal commands can be seen in

Figure 73 below.

Figure 73 - The Aircrack-ng code used to send deauthentication packets to the bullets. These packets contained random,

meaningless bits that should not allow the two bullets to connect with one another.

The airmon-ng command is used to enable monitor mode on the laptop’s wireless card. This

allows the card to see all of the traffic traveling on the network that it is connected to. The

airodump-ng command is used to view all of the wireless connections in range of the wireless

card. This shows each wireless access point and each station that is connected to it. The final

aireplay-ng command is used to jam the access point of the chosen network by sending it

deauthentication packets, similarly to what was attempted by using the script before. The

“--deauth” command specifies the type of attack and the number after it specifies the total

number of packets being sent out. The “-o” command shows how many packets to send out per

burst. The “-a” and “-e” commands are specific to the network that is attempted to be blocked.

“-a” refers to the MAC address of the wireless access point and “-e” refers to the extended

service set identification (ESSID), or name, of the network. Another optional parameter can be

122

added with “-c,” which is used to identify the MAC address of the computer that is being

targeted for jamming. This attack is typically more effective when adding this parameter.

 This method was successfully used to jam a laptop’s connections to the Wi-Fi network it

was getting Internet access from. The computer did not have Internet access while the

deauthentication script was running and were able to access it as soon as the script was stopped.

After confirming that this worked correctly, the next step was to try and use it to jam

communications between the bullets. Initial attempts included trying to attack the bullets with the

laptop that it was connected to. This was due to the fact that a second computer with a wireless

card was not on hand. It was first tried to connect to the network created by the bullet acting as a

repeater. This network had the name, ubnt. It was thought that the bullets both connected to this

network to communicate with each other and sending the bullet connected to the Beagleboard

deauthentication packets would disrupt its communications. First, it was made sure that the

bullets were properly working by pinging them. Airodump-ng was then run to verify if the

computer could see the bullets as an access point and station. After seeing that this was the case,

aireplay-ng was run to send deauthentication packets to the bullet connected to the board. While

the packets were successfully sent the bullets were still able to communicate and send messages

to one another. It was then tried to jam the bullet acting as the repeater rather than the one acting

as the access point but the same result was obtained. After unsuccessfully running this, attack it

was briefly attempted to attack the bullets with other attacks that Aircrack-ng offered such as

fake authentication and fragmentation attacks. However these attacks were unsuccessful and

attempts were refocused on trying to compromise communications by jamming them.

 After failing to jam the bullets by using the laptop that one of the bullets was connected

to a third laptop was used to conduct an attack. This was an example of a classic man-in-the-

123

middle attack where a person who is not supposed to be receiving information is able to hack

into the system. The same deauthentication attack as before was run but a glitch was

encountered. This glitch caused the computer’s wireless card to always look for networks on

channel -1, but no negative channels existed. To fix this a patch was downloaded that allowed for

the addition of the parameter, “ignore-negative-one.” This fixed the problems regarding this

glitch.

 While running the man-in-middle attack a variety of settings were used that still proved

to be unsuccessful. The laptop would be connected to the ubnt network and was able to find the

bullets by running airodump-ng. Once this was completed, the jamming attack was tried again. It

was first tried to send deauthentication packets to the bullet connected to the Beagleboard. While

the packets were able to be sent the bullets were still able to communicate with one another. The

bullet connected to the laptop was then sent these packets but the attack was still was

unsuccessful. It was also attempted to add a parameter to specify the opposite bullet as the device

being targeted but communication between the bullets was still possible.

 The next attack was composed of bridging the wireless card on the laptop connected to

the bullet with the laptop’s Ethernet port. The reason behind this was that the way the bullets

were previously set up they could only communicate between one another. This was because the

bullets acted as a wireless repeater. A repeater takes the signal of the network that it is plugged

into and creates a second network that extends the range of the original signal. This signal is

picked up by the second bullet and it then acts as an access point where multiple users can

connect to. In this case the bullet being plugged into the laptop was the repeater and the one

plugged into the Beagleboard was the access point. The repeater was taking the signal from the

Ethernet port and extending it so that the second bullet could connect to it. However no wireless

124

signal was coming from the Ethernet port. This configuration still allowed the bullets to connect

to one another but they only acted as a pure wired connection with no other clients being able to

connect to the wireless network created. This explained why the laptop could find the ubnt

network and attempt to connect to it but could never establish a connection. The bridge provided

a wireless signal to anything plugged into the Ethernet port. This allowed the bullet to extend a

wireless network rather than only a wired one and allowed the middle laptop to fully connect to

the ubnt network. The laptop was not able to surf the web but could access the configuration

page of the bullets and manipulate them from there.

 This proved to be a successful security breach as someone with unauthorized access

could log into the configuration pages and make it so that the bullets would not be compatible

with one another. It was also found that when the bullet was repeating with a bridged connection

on the laptop, the middle laptop could communicate with devices connected to the bullets

without even being connected to the same network. This represented a major security breach as it

allowed for the sending of false, unauthorized data and the interception of real data.

4.5. Integrated Prototype Implementation

All of the equipment for this platform was stored in a 9”x8”x5” Plexiglas box as shown

in Figure 74. This included the Beagleboard, Ardupilot, POE injector, GPS, and Wi-Fi bullet.

The Plexiglas is strong and light weighted and is the best choice to meet the weight constraints of

this project. The box weighed 10 pounds which is within the weight range. The sides of the box

were chosen to be transparent for the camera to be able to successfully capture pictures and

videos without any impacts, and to detect any hazards in the system.

One of the bullets with the POE adapter was included inside the box with the boards. The

bullet was attached to the box using a steel clamp and the adapter was attached using Velcro.

125

Silicon was used to connect the sides of the box, and two hinges were used to open and close the

box ceiling. One hole in the box was made to power the beagle board and the POE adapter.

Figure 74 - Box architecture.

4.6. Chapter Summary

 The implementation phase of this project included configuring the individual parts of the

project and putting them all together. The autopilot, image processing, and communication

modules all had to be tested to make sure they worked correctly before they could be put

together into one working prototype. The image processing module captured images from the

camera and ran the red color detection code to detect red blobs. On a detect, the autopilot board

was read from the USB port and the string parsing code identified the Mavlink characters

associated with altitude, latitude, and longitude and converted them to ASCII so that it could be

more readable. The information was then sent over the Wi-Fi bullets so that it could be read on

the ground control laptop.

Plexiglas box

Hinge to open and

close the cover

Hole for powering the

board and the bullet

126

127

5. Results and Discussion

 To verify that the platform was function correctly, tests had to be run to make sure that

the results intended were being obtained. This included testing all of the individual camera,

image processing, autopilot, and communications modules before integrating them into one

single product. Much was learned from these tests as to how the components functioned by

themselves and as a whole.

 Additional analysis had to be performed on the results obtained from the attacks done on

the platform. The results acquired were not always the ones that were expected and therefore the

reasons for this had to be explored. It was crucial to understand exactly why everything

happened as it did in order to get a good understanding on the vulnerabilities of this platform and

how they could be exploited.

5.1. Platform Functionality

In order to make sure that this UAV platform was functioning as intended, tests were run

on the individual components as well as the final product. Tests had to be run on the image

processing module in order to make sure that the correct color and size were being detected and

on the autopilot to emphasize that the outputted data was accurate and reliable. Tests were

performed also to make sure that the wireless communication module was functioning properly

and could transmit messages as intended.

5.1.1. Image Processing Functionality

First and foremost, the system needed to be tested to see if the image processing

algorithm functioned successfully. The only way to do this was by displaying a processed image

and comparing it with the original. Since OpenCV does not support streaming video, this task

128

could only be done by repeatedly displaying an image using cvNamedWindow and

cvShowImage, waiting for a short time using cvWaitKey, and closing the image using

cvDestroyWindow. By doing these commands, the image would be presented chronologically as

a low frame-rate video. Although it was not advisable to introduce a delay inside the program as

it could affect the overall timing performance, it was only for the purpose of testing. In real time

testing, there was not a need for displaying the processed image so these functions could be

removed.

The items that had been used to test the image processing module were any regular red

colored objects. They were tested with various distances to make sure that the algorithm worked

correctly as was desired. In order to minimize errors, the platform was placed facing a complete

white wall so that other red objects could not be accidentally detected and produce unwanted

positive hits. Along with red colored objects, the platform was also tested with objects with other

colors like blue, orange, black. It needed to be ensured that the algorithm only detected red color

and rejected all other colors.

5.1.2. Socket Programming Functionality

The socket server code was included in the main code that was run on the Beagleboard

along with both the image processing and autopilot codes. After the camera detects red and the

autopilot outputs the desired data, all the information is available to the base station by running

the client code inside terminal of the base station. The Wi-Fi bullets must be connected to be able

to communicate between the two nodes successfully, as the Beagleboard and base stations are

two separated computers and connected via the ubnt wireless network. The server executed by

running the server code in the Beagleboard terminal followed by the IP address of the base

station (where the client code would be executed) and the port number which can be any number

129

between 2000 and 65535. After a socket had been created by running the server code, a

connection to the socket by the client can be achieved by running the client code in the Linux

terminal followed by the IP address of the Beagleboard and by the same port used for the server

code. First, the server creates a listening socket, and waits for connection attempts from clients,

in this case the base station. The client creates a socket on its side, and attempts to connect with

the server. This happens after running the client’s code. The server then accepts the connection,

and data exchange can begin. Once all data has been passed through the socket connection, either

endpoint can close the connection. Figure 75 shows how the base station was able to receive the

GPS information from the Beagleboard using socket programming.

Figure 75 - The latitude, longitude, and altitude was sent to the base station after the red color was detected. The first line in
the above picture represents the client code command. This command must be run in order to communicate with the server.

The Beagleboard keeps on sending the GPS information as long as the red color is still being detected.

5.1.3. File Sharing Functionality

Samba software was used to share files between the Beagleboard running on Linux

Angstrom and the base station operating on Windows 7. The smbpasswd program must be run on

the Linux computer to set up the Samba username and password for the shares between the

Beagleboard and the laptop to operate. On the other hand, the same username and password

created with the smbpasswd must be used with the Windows machine to successfully share files

between the two machines. The Linux machine can be accessed on the Windows machine by

After detecting the red color,

the Beagle Board sent the
GPS information of the

ArduPilot to the Base Station

using the server and client

codes

130

entering the IP address of the Linux machine (192.168.1.186) in the network and sharing center

of the base station windows machine followed by the chosen username and password. By doing

so, all the Linux files were viewed on the windows machine screen.

5.1.4. Autopilot Functionality

In order to make sure that the autopilot was outputting accurate results, multiple methods

of testing were done. The autopilot outputted many different important parameters such as

altitude, longitude, latitude, roll, pitch, and yaw. The latitudinal and longitudinal parameters were

dependent on the GPS module the others depended on sensors attached to the autopilot board.

This information that could was dependent on the GPS was not able to be verified indoors as

GPS modules need a view of the sky to properly function. Therefore different tests had to be run

for the parameters dependent on the GPS and those dependent on the sensors.

 Multiple tests were run with the Mission Planner software to verify that the outputted

data was correct. The autopilot was initially run while connected to the ground control laptop to

ensure proper functionality. It was connected to the computer via USB cord and the proper

firmware was downloaded to simulate the flight of an aircraft. It was then checked to see if it

was running properly by viewing the flight data in real time. The software provided multiple

tools for checking the data such as a window that simulate the flight’s path over a green field, a

window that showed all of the flight data, and a map of where the flight was. At this point in

testing the map was not able to be used as it depended on the GPS and this testing was conducted

indoors.

 The flight simulation window was used to check that the path of the simulated flight was

being measured accurately. The plane’s “flight” was started on the lab bench and then moved

around by hand and watched on the window. The autopilot board was then tilted and rotated

131

while the simulation window was being watched to make sure that the movement in the window

was coincident with the movement of the board in real life. The plane was also moved higher and

lower to ensure that altitude was accurately being measured. After testing this multiple times it

was determined that the simulation of the plane was accurate as shown in the window. A

screenshot of the simulation window can be seen below in Figure 76.

Figure 76 - The flight simulation as it appears on the ground control software. This operates in real time and tracks the

plane’s orientation and altitude.

In order to ensure that the data was measured correctly quantitatively as well as

qualitatively the window showing all of the data was also watched as a flight was being

simulated on the board. Parameters such as altitude, roll, pitch, and yaw were watched to ensure

that they were changing with proportion to the movement of the board. After the board was spun

and tilted and the variables were watched it was determined that the data was accurate and the

sensors did an accurate job of measuring data when connected to the laptop. A screenshot of the

GUI that showed these pieces of data can be seen in Figure 77.

Compass

Roll

Altitude

132

Figure 77 - Data window on the Mission Planner software. All important data is shown such as roll, pitch, yaw, latitude, and

longitude.

Once it was determined that the data was accurate when connected to the laptop, the

functionality of the board needed to be tested when connected to the Beagleboard. This was done

by connecting it to the Beagleboard via USB cable and outputting raw data from the USB port

into a text file. The type of language inside the text file was called Mavlink which is used in

autonomous vehicles. This language was coded in hexadecimal and by itself was not usable.

However it could be read by the ground control software and could recreate the flight. To first

test if this was functional the serial port of the Beagleboard was read and the resulting data was

copied to a Mavlog file. During the “flight” the board was twisted, raised, and lowered to ensure

that it could be recognized when viewing it through the software. The Mission Planner software

was then used to read the Mavlog file and the parameters were checked for accuracy in the same

way before, by watching the simulation and data windows. Later it was implemented on the

Beagleboard that the Mavlog file would be continuously written to and read by the software.

This also proved to be accurate and showed that it was possible to view the flight in real time,

albeit with a slight delay.

133

 Due to the nature of GPS modules, data that was dependent on this could not be checked

in the same way as previously discussed. Testing could not be done without a clear view of the

sky and therefore the autopilot and laptop had to be brought outside in order to be properly

tested. Once the GPS was connected to the laptop it took about a minute to find a GPS signal and

then was able to show the accurate location of the board. This was verified by the map showing a

satellite view of the board being located at Worcester Polytechnic Institute outside Atwater-Kent

Labs. The latitudinal and longitudinal coordinates were also shown in the data window and were

later verified by checking the numbers of these against those provided by Google Maps. A

screenshot of the software showing the correct coordinates can be seen in Figure 78.

Figure 78 - Location of the autopilot. The software uses Google Maps to produce an interactive map showing the location of

the board and the direction in which it is facing. The current location is at Atwater-Kent Laboratories at Worcester
Polytechnic Institute in Worcester, MA.

By checking the data of the autopilot to ensure accuracy the project was able to move

forward to use the data for more practical purposes. Although all of the data parameters could

not be accurately measured as the autopilot was not attached to any servos, the important ones

134

for this project were able to be obtained. This was a very important part of the project as accurate

autopilot readings were needed to ensure that the system could output the location of a detected

object.

By being ensured that this data was accurate the project was able to move onto the

writing of code to go into the blob detection algorithm that would output the parameters of

altitude, latitude, and longitude on a detected object. These variables were isolated through the

use of string parsing in C and sent to the ground control laptop via the use of socket

programming.

5.2. Attack Results

Once it was determined that the platform functioned as intended, attacks were designed to

try and find vulnerabilities in the system. These attacks targeted both the image processing and

communications modules. The image processing attacks involved shining LED and laser lights at

the camera and seeing if it caused the algorithm to report positive hits. The theory behind this

was that a malicious attacker could use light to alter the course of a UAV and not allow it to

reach its intended target.

Another way of attacking the UAV platform was by trying to exploit weaknesses in its

wireless communications. Since the use of the Ubiquiti bullets was critical to the performance of

the platform, compromising this module would leave the system ineffective. Attacking was

attempted by trying to intercept packets being sent between the two modules and by jamming the

wireless network created by the bullets. These attacks yielded results that made it easier to

understand how communication worked and how it could better be secured.

135

5.2.1. Color Attacks

The first type of attack consisted of targeting the camera and image processing algorithm.

This attack was divided into three separated types based on the light source: colored LED, white

light, and laser light. The tests for attacking the system with colored light were run and recorded.

The percentage of positive hits was then calculated. Table 11 summarizes these results.

Table 11 - Testing results for colored light attacks. The tests were conducted with different angles and distances.

Color
Positive
Reads

Total
Scans Angle Distance Percentage

Red 500 500 90 3" 100.00%

Flashing Red 487 500 90 3" 97.40%

Green 0 500 90 3" 0.00%

Blue 0 500 90 3" 0.00%

Flashing Red/Blue/Green 0 500 90 3" 0.00%

Red 1 500 90 1' 0.20%

Flashing Red 0 500 90 1' 0.00%

White 3 500 90 5" 0.60%

Flashing White 1 500 90 5" 0.20%

Red Laser Pointer 496 500 90 3" 99.20%

Red Laser Pointer 496 500 90 1' 99.20%

Red Laser Pointer 496 500 45 3" 99.20%

Red Laser Pointer 500 500 45 1' 100.00%

Red Laser Pointer 500 500 90 5' 100.00%

Red Laser Pointer 500 500 45 5' 100.00%

This system was vulnerable to colored light attack. When the red LED was the attacking

light source, as both solid and flashing light, the system got a positive reaction at close to a 100%

rate. A processed image of red LED flashlight can be seen in Figure 79.This proved that a red

LED light could be used to attack the system. However, as distance from the attacking light

source to the camera got bigger, LED light was not as effective as it was at close range. With the

light source at a distance of one foot from the camera, the system did not give a positive hit. This

could be explained because a non-concentrated light source like an LED or flash light gets

136

weakened considerably at long distance and the light gets spread out. Although LED

theoretically was a possible attacking light source for this attack, it would not be practical in real

situations where the distance between the UAV and the ground level would be much bigger than

1 foot.

Figure 79 - Red LED image after the algorithm was applied to it. Although it was detected as a positive result, the LED could
only be effective for short distances.

For other colored light sources like green, blue, or a combination of red, green, and blue

the results imply the system did not react to any of them as almost none of results returned a

positive alarm. This result was expected as the algorithm specifically targeted red color, thus

other colored light should not be able to trigger it. Mixing up other colors with red also was not

proven to be effective as the red color area would get reduced in the process. In the tests with

white light, one interesting result was that although white light comprised of many color

components, including red, it did not get any reaction from the system. Very few case of white

light source returned a positive alarm, making the reaction percentage very close to zero. The

conditions of the image processing algorithm were not triggered by white light. This could be

explained because the algorithm used the HSV color plane instead of the regular RGB color

137

plane. In the RGB color plane, one color is a mixture of three primary colors, red, green and

blue. White color in RGB color plane contains a portion of red along with other two colors.

However, each color in the HSV plane has its own hue value along with a degree of color

strength (saturation) and brightness (value). White color in HSV could have any hue value with a

minimum level of saturation and value. Thus, when feeding images containing white pixels, the

value could be set to anything. Since the hue range was very small compared to its scale (10 out

of 255), this ensured only a few number of white pixel could satisfy the filter condition, thus,

preventing the detected area from getting bigger than the threshold area (which was 1/25 of the

total image area). However, there was a possibility of cases where many white pixels had a hue

value inside the filter range, occasionally triggering false alarm.

As the final option for a possible attacking light source, the red laser pointer dominated

with all positive results. Notably, this included an attack from an angle of 45° and distance of 5

feet. A processed image of red laser pointer can be seen in Figure 80. The experiment proved

that red laser light could easily break through the security of the system and cause the image

processing module to malfunction, giving false alarms. This was a very serious issue as the

image processing module was a very important sensor system in the architecture of this design.

Bad effects from the image processing module could affect data processing and behavioral

decisions of the whole system. With the current design, only when there was a positive result fed

from the image processing module, the system read data from the ArduPilot and sent that

information to the ground station. In a regular situation, positive results were not very frequent

so almost all of the power budget could be used up by the image processing module. With a red

laser attack, the system would be fed with nonstop false signals that produced positive results. As

a consequence, power would be depleted in a much faster fashion since the system had to utilize

138

all of its functions. Also, false alarms meant incorrect information to ground station. Therefore, a

solution needed to found for this problem.

Figure 80 - Laser image after processed by the algorithm. Laser light was proven to be very effective as an attacking light
source with greater distance and shining angles.

In order to counter the red colored light attack, new features needed to be added into the

image processing algorithm. There were two ideas on how to deal with this attack: to detect that

it was an attack and avoid the laser’s path or to reject the laser signal as negative signal. After

some research and brainstorming, the second idea which was to reject laser light was chosen as

the solution. The idea for this solution came from a light’s characteristic that when it shone to the

camera, its color would not be distributed equally but rather scattered with various strengths.

There was also the fact that although, in real life, color could vary upon different surrounding

conditions, the variety would not be too big and it would be, in some ways, concentrated.

The solution was to add a filter condition based on saturation value. Since laser light

image color gets scattered randomly, its saturation spectrum varies in a bigger range than a red

object’s saturation spectrum. In order to get a saturation range that could reject red laser but

accept red objects, a modified version of the image processing algorithm was run in which its

139

saturation range was increased by 10 from 0 to 260. As expected, only small parts of laser light

image could pass through in each saturation range like demonstrated in Figure 81. The saturation

range detected red objects most was 250 to 260. In this range, the detected area of laser light got

decreased dramatically, thus, the system could reject laser light as a negative signal but still

accept red objects. Coincidentally, this method could also filter out rare case of white light that

occasionally gave a false alarm as mentioned before. Since white color in the HSV color plane

had minimum level of saturation, it could not satisfy the saturation condition.

Although the additional saturation condition was simple, it was very effective with

rejecting laser light. With a new version of the image processing algorithm, the system still

worked stably but no longer got false alarms caused by the laser light.

Figure 81 - Laser light after the saturation filter is applied to it. The area of detected pixels had been reduced greatly, making
laser light no longer a threat to the algorithm.

However, one downside of the new algorithm was the system only got defended

passively through a saturation filter “shield”. Thus, the system could not take any action to avoid

the attack. This was the second counter measurement idea, to detect the attack and avoid it. One

idea was to measure the density of filtered pixels. For red laser pointer light, the pixels got

140

scattered in the image while filtered pixels of regular red object focused on one area where the

object was. With the ability to detect attacks, the UAV could take intelligent behavior to avoid

the attack source. For instance, the UAV could turn around when there was an attack detected,

preventing continuous attacks. Unfortunately, the time and resource budget did not

implementation of this idea since it would require much more programming.

5.2.2. Wireless Attacks

Wireless attacks were run to try to compromise the communications module of the UAV

platform. Multiple methods were tested including trying to intercept packets being sent between

the Beagleboard and ground station using Wireshark and trying to jam the network of the bullets.

These tests provided mixed results as it was possible to find some vulnerabilities in the system

but some other attacks did not execute as expected.

5.2.2.1. Wireshark Results

A third laptop was used to intercept the packets being sent from the Beagleboard to the

base station. The top panel of the Wireshark window identifies each packet’s source and

destination nodes, protocol implemented, and information about each packet as shown in Figure

82. By selecting a specific packet, many details can be displayed about this specific one. The

packets captured can be filtered by entering the IP address of the desired packets in the search

box. Display filters allow concentrating only on the packets of interest. The desired packets are

the packets that include the Wi-Fi bullets IP addresses. The middle panel displays information

about the data of the specified packets, and a specific field of the packet can be chosen such as

the duration field.

141

Figure 82 - The Wi-Fi bullets captured packets

As a result, it was possible to view and analyze the flow and for all packets transmitted

and received in the area, but it was not possible to detect or see any of the packets being

transmitted from the Beagleboard to the base station under the ubnt network. Figure 83 shows

that Wireshark was able to detect the packets being sent from the Beagleboard to the base station

when run on the base station laptop that had the Wi-Fi bullet connected to it using an Ethernet

cord. The IP address of the bullets, 192.168.1.21, was detected sending packets to 192.168.1.249,

which is the IP address of the base station.

142

Figure 83 - Packets transfer between the Beagleboard and the Base Station

The data being transferred between the two nodes detected by Wireshark can be

witnessed by either following the TCP stream of the desired packet or selecting the data option in

the Wireshark middle window. Following the TCP stream of the packets transferred between the

bullets didn’t allow for the viewing of real information or data being transferred. It showed some

information about the ubnt network such as the SSID but it didn’t show any real information that

would be useful in the case of a hacking attempt. Using the AES high-level encryption algorithm

to protect the network traffic and the packets being transmitted under the ubnt network

minimized the success of the hacking attempts using software’s such as Wireshark.

Another attempt to hack the system was by using the idea of a man-in-the-middle attack.

This attack is based on the idea of making independent connections with the victims of the attack

making them believe that they are talking directly to each other, when in fact the entire

conversation is being controlled by the attacker, which is the third laptop trying to interfere

between the Beagleboard and the base station in this case. The attacker within reception range of

143

an unencrypted Wi-Fi access point can insert himself as a man-in-the-middle by redirecting all

packets through an “evil twin,” which is a Wi-Fi access point that appears to be a legitimate, but

actually has been set up to eavesdrop on wireless communications. The attacker can then log

onto the real server using victim-supplied information, capturing all messages exchanged

between the user and real server [94]. This attempt to hack the system failed gain. In order for

the man-in-the-middle attack attempt to work, the wireless network used must be unsecured or

secured using some low level security algorithm. This system’s security algorithm is an up to

date high class AES encryption algorithm, which makes a man-in-the-middle attack real hard to

execute.

5.2.2.2. Aircrack-ng Results

The second attempt at compromising the wireless communications dealt with using the

Aircrack-ng suite. This suite included multiple commands that allowed the bullets to be attacked

in multiple ways. Ways to compromise included deauthenication, fake authentication,

fragmentation attacks, and interactive packet replays.

The attack that the most time was spent on was attempting to jam the communications

between the bullets by sending deauthentication packets to one of them. The idea behind this was

to bombard the bullet creating the new network with packets so that it could not create a new

network that the bullet connected to the Beagleboard could connect with. The first attempt at

sending jamming packets involved trying to jam a laptop from connecting to the Internet. This

was successfully done by sending packets to the access point of that laptop’s Internet connection

and not allowing the client laptop to connect to it. This verified that the deauthentications

commands worked and could be used to jam a connection.

144

Once it was verified that this command work it was then attempted to jam the Wi-Fi

bullets. At first this was tried with the bullet acting as the repeater connected to the Ethernet port

of the laptop without any bridging involved with the wireless card. The bullet acting as the

access point was also connected to the Beagleboard via Ethernet port so that it was picking up

the signals sent out by the bullet connected to the laptop. Using this configuration, a jamming

attack was programmed to block all clients trying to connect to the repeater bullet. While these

jamming packets were able to be sent out successfully, the two bullets still were able to

communicate with each other.

The initial reasoning for these bullets not being able to be jammed was that the repeater

was not extending a wireless network. The bullet was connected to an Ethernet port of network

type Local Area Network (LAN). This was a wired network that could not be connected to

wirelessly except through another Ubiquiti bullet with the correct configuration. The device that

the bullet was connected to, in this case the Beagleboard, could communicate with the other

bullet but no other device could connect to it. Although the bullet was configured as an access

point no other device with a wireless card could connect to it. It could be seen by other devices

with wireless cards such as a laptop but it was not able to establish a solid connection. A middle

laptop could briefly connect and see the bullet and its BSSID number but it could only see it for

a few seconds before the connection was lost. The deauthentication packets were sent to the

wireless access point while the laptop was connected to the repeater’s network but were not

effective.

The next step taken in the hacking of the bullets was to bridge the ground control laptop’s

LAN and wireless network connections. This allowed the Ethernet port and wireless card to

share the same connection and the Ethernet port to output the laptop’s wireless connection. The

145

laptop in essence was configured to act as a wireless router, getting its Internet signal through the

wireless card and outputting it through the Ethernet port. This allowed the bullet acting as a

repeater to output a wireless network and allow other devices to connect to the access point.

Bridging the laptop’s connections allowed a third laptop to establish a connection to the

created network and allow us to perform man-in-the-middle-attacks. The third laptop was

successfully able to connect to the ubnt wireless network and fully communicate with the bullets

and Beagleboard. This was verified by pinging all three of these devices from the middle laptop

and receiving a response from each one. This functionality opened up the device to multiple

man-in-the-middle attacks.

The first attack dealt with logging into the configuration page for the bullets. By

connecting to the ubnt network it was possible to access the configuration page by typing in the

IP address of each bullet into the address bar of an online browser. As long as the attacker knew

the username and password for each bullet he could be able to switch the configuration of the

bullets so that it would not act as a repeater, make it so that the two bullets were not authorized

to talk to one another, or enable certain settings that did not allow them to work within the

context of this project at all. This was a very prominent concern as having the proper settings

allowed the laptop and board to communicate with one another and send vital information back

and forth.

The second attack dealt with accessing the socket programming that allowed the bullets

to communicate with one another. The plan was to use the middle laptop to intercept the

messages being sent to the ground control laptop that contained the location of a detected object.

This was going to be done via MAC spoofing. The bullets were configured to only communicate

between each other by specifying the specific MAC address of each one. It was thought that by

146

making the MAC address of the wireless card of the attacking laptop the same as the address of

the bullet acting as the repeater the bullet connected to the Beagleboard could be fooled into

thinking that the laptop was the bullet and send messages to it. Switching the MAC address of a

laptop in Linux is very simple and only requires three lines of commands.

It was found that the attacking laptop could communicate with the Beagleboard

regardless of its MAC address and whether it was connected to the ubnt network. While the

laptop had to be connected to the ubnt network to access the configuration page of the bullets, it

could communicate with any of the bullets or Beagleboard regardless of which network it was

connected to. This was verified by pinging the board and bullets and using the server and client

codes to send messages back and forth. This presented a major security concern as it would

allow anyone with a wireless card and the proper codes to initialize the image processing

algorithm. This would send the coordinates of a detected object to the attacking laptop rather

than the ground control laptop and compromise the entire operation.

The third attack was trying to jam the bullets while the connection was bridged on the

ground control laptop. It was thought that since the repeater bullet was now extending a wireless

signal the wireless deauthentication packets would be able to successfully jam communications

and not allow the bullet acting as an access point to connect to the repeater. Packets were

attempted to be sent out in the same ways as before but still were not successful in jamming

communications. The bullets could still communicate while the jamming was being done. It is

thought that the reason for this is because the signals sent between the repeater and access point

are not the same as those between access point and client. It is possible that this connection uses

a different standard and therefore is not affected in the same way.

147

The way to protect against these attacks is to remove the bridge from the ground control

laptop. Doing this would make the bullet act as a wireless bridging network rather than

repeating. This mode makes it so that the bullets can only communicate with one another and

clients would not be allowed to connect to the bullet acting as an access point. This would not

allow an attacking computer to send and receive messages to and from the bullet. The network

could also be further protected by making the network hidden and encrypting it with a WPA key.

While there are ways to view hidden networks and crack WPA keys it adds an extra layer of

security that a hacker would have to deal with in order to gain access to the system.

5.3. Indoor Testing

Indoor testing of the platform was performed in the hallway that connects the WPI

Harrington Auditorium to the Sports and Recreation Center. It can be seen in Figure 84 that the

clear white color of the hallway with no other color intervention made it an optimal place to

perform the testing. A map of the floor can also be seen in Figure 85.

Figure 84 - The hallway where indoor testing was performed. The platform can be seen in the lower left corner.

148

Figure 85 - A map of the WPI Sports and Recreation Center where indoor testing was performed. The exact location of the
testing was in the hallway connecting the Sports and Recreation Center to Harrington Auditorium [95].

 The laptop which is representing the base station was placed at one end of the hallway

and the Beagleboard was placed two meters away from it. A bright red laptop cover was used for

the red color testing. The red cover was placed at the other end of the hallway which is around

fifteen meters away facing the camera. Figure 86 shows that the base station received the

Beagleboard GPS information as the red cover was moved towards the camera and reached the

distance of three meters away from the camera. The results of this test proved that the system

performs successfully. The reason the camera wasn’t able to detect the red light at a further

distance is the saturation level of the red color that was chosen in the code. The value of the

saturation was chosen to be small to avoid the red laser light attacks. This affected the range of

the red light that can be detected. The camera lens can detect a red light at a longer range as the

saturation level of the red light is increased.

Location of testing

149

Figure 86 - The GPS information of the Beagleboard was sent to the base station placed at the end of the hallway. This
signifies that the platform performs as expected.

5.4. Chapter Summary

After testing was conducted as mentioned in the previous chapter, all results were

concluded in this chapter. Based on the results, functionality of the platform was confirmed

along with its vulnerabilities. The first vulnerability was found by feeding false information to

the camera with an external red laser pointer. Therefore, a solution was introduced to the system

to counter this type of attack. Also, by bridging Wi-Fi bullet connection with the internet

connection on the ground control laptop, a second vulnerability was found. An outsider can

exploit this by reconfiguring the bullet settings without the user’s awareness. There are two types

of attacks that were tested and were not able to penetrate the platform: the Wireshark and

Aircrack-ng attacks. Lastly, an indoor testing session was conducted to assess the real-time

processing ability of the platform.

GPS information sent by

the Beagleboard

150

6. Conclusions and Future Recommendations

With all the tests conducted and results discussed, this final chapter concludes everything

in the report. This chapter summarizes key ideas on the importance of this project, how it was

done, and major knowledge that has been gained over the course of the project. Also, due to

several constraints in both time and resources, much room for improvement exists. Thus,

difficulties and limitations of the implementation process are listed along with possible

recommendations that could be done in future.

6.1. Conclusions

 Over the course of this project, much was learned regarding modern-day UAVs and

security of their computer architecture. UAVs consist of multiple modules that are each

responsible for performing a different function. These typically include image processing, central

processing on a computer board, a camera, communications module, autopilot module, and a

ground control module. All of these must be programmed to fit together to ensure that the UAV

is fully functional and completes all of its tasks properly.

 Sizing is also a very important factor in the design of UAV platforms. Since these planes

are unmanned, they are typically smaller than most man-flown aircraft. While some military-

grade planes can carry a big payload, most are used for civil uses and have limited size, space,

and power capacity. For this reason one must be careful when designing a platform so that they

do not exceed the limitations of the actual aircraft.

 There were many lessons that were learned regarding the design of aUAV computer

architecture. The Beagleboard was an ideal board to use as the central processing unit for this

project as it had the USB, Ethernet, and camera port interfaces required to connect the autopilot,

Wi-Fi bullet, and camera. It was also a very compact board capable of running a full version of

151

Linux which made it easy to write and compile software to complete the necessary tasks for this

project. The board also had the advantage of having ample memory to run all of the necessary

tasks of this project. This also featured internal as well as external memory that could be stored

on a secure digital card. This allows a user to select a card to use that will have enough memory

to store his or her data.

 Communication played a vital role in the functionality and security of this platform. It

was determined that Wi-Fi was the best way to transfer data wirelessly from board to ground

station as it is very powerful and has a variety of security options. Flaws were found in the

security however that left the platform susceptible to malicious attacks. Configuring the Wi-Fi

settings the wrong way or leaving the network unencrypted could have disastrous results as a

unauthorized user can either shut down communication between the modules or intercept data

that is only meant to be seen by the board and ground station. Another important aspect of the

communications methods used was the interface through which the ground station and platform

talked to one another. Socket programming was utilized in this project so that the ground control

user could open a simple Linux terminal, run a program, and start the image processing

algorithm remotely. Messages were able to be sent via a user-defined port on the Beagleboard

and two-way communication was possible. The algorithm would start to run on the UAV

platform and report the results directly back to the terminal on the user’s side. This made for a

very simple, streamlined interface through which the laptop could wirelessly transmit commands

to the Beagleboard and the board would transmit back the results of its search.

 This project also dealt heavily with how computers process image processing. It was

conclude that HSV is the ideal color scheme to utilize when trying to recognize colors as it

focuses on shade as well as base color. This made it easy to filter out high-intensity light that

152

would probably be an attacker trying to compromise the image processing of the system. An

algorithm was that depended on certain color and size of an object. A color could be specified

using the HSV parameters and the size was specified as a ratio of the number of pixels where the

color was detected. The camera would take in all of the images around it, process them on the

algorithm, and output results of its location if a positive hit was detected. While this algorithm

could have been more advanced and sophisticated, it met the needs of this project.

 Much was also learned about the vulnerabilities associated with UAV systems. During

the course of this project attacks were taken that targeted the image processing and

communications modules of the platform. The attacks and their associated results gave good

insight as to how the modules themselves work and how a potential enemy could take advantage

of them to compromise its functionality. Color attacks were used to either blind the camera so

that it read nothing or made it report positives on items that it should not have. This attack was

countered by adjusting the values of the color parameters for which to report a positive hit. The

communications were attacked by trying to intercept the wireless packets sent between the

modules, jamming the Wi-Fi network, and connecting to the network so that data could be

accessed. Wireshark was used to intercept packets and Aircrack-ng was used to jam the network.

While the first two attacks were not able to compromise the system, it was found that it was

possible for an unauthenticated user to communicate with the Beagleboard.

6.2. Future Work

In this MQP a module was created for future teams to base their MQPs on. The team was

able to develop a platform, and was able to figure out two counter measures for two possible

embedded attacks. Future MQP teams can continue the progress in developing more computers

153

embedded attacks and find some counter measures for them. Future work on this project should

also include:

 Improving the image processing and the blob detection algorithm. The team was able to

develop a fully functional algorithm that detects the red. Blobs appear in different ways

depending on their scale after the red color is detected. This system is meant to be

embedded in UAV’s and other advanced, data-dependent aircraft of the future for search

and rescue missions. Future teams can develop some more advanced algorithms with

sensors more sensitive to human bodies (such as detecting the body temperature of a

human being or human motion sensor).

 Implementing a more active method to counter against color light attack. Right now, the

system was only defended passively by rejecting a red laser signal. However, although

the red laser light could no longer produce a positive result from the image processing

module, the light could easily cover all of the camera image area, blinding the system. As

long as there was laser light shone to the camera, it would still be disabled. Thus, one

possible improvement the system could get is a more efficient algorithm that can detect

when there is an attack. Furthermore, the central computing unit should be able to take

some action like avoiding laser light or alarm base station about the attack.

 Finding an alternative to the Wi-Fi bullets. The 802.11N multi-function wireless platform

bullets that were used are capable of wireless speeds up to 100Mbps which is more than

enough for the project’s wireless purposes. The bullets create a safe network to share the

information. Configuring the bullets right wireless and networking settings was tough and

required a decent knowledge of the principles of communication and networking. Many

other alternatives are easier to deal with.

154

Appendix A - Server Socket Programming Code

Server Code:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

void error(const char *msg)
{
 perror(msg);
 exit(1);
}

int main(int argc, char *argv[])
{
 int sockfd, newsockfd, portno;
 socklen_t clilen;
 char buffer[256];
 struct sockaddr_in serv_addr, cli_addr;
 int n;
 if (argc < 2) {
 fprintf(stderr,"ERROR, no port provided\n");
 exit(1);
 }
 sockfd = socket(AF_INET, SOCK_STREAM, 0);
 if (sockfd < 0)
 error("ERROR opening socket");
 bzero((char *) &serv_addr, sizeof(serv_addr));
 portno = atoi(argv[1]);
 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = INADDR_ANY;
 serv_addr.sin_port = htons(portno);
 if (bind(sockfd, (struct sockaddr *) &serv_addr,
 sizeof(serv_addr)) < 0)
 error("ERROR on binding");
 listen(sockfd,5);
 clilen = sizeof(cli_addr);
 newsockfd = accept(sockfd,
 (struct sockaddr *) &cli_addr,
 &clilen);
 if (newsockfd < 0)
 error("ERROR on accept");
 bzero(buffer,256);
 n = read(newsockfd,buffer,255);
 if (n < 0) error("ERROR reading from socket");
 printf("Here is the message2: %s\n",buffer);
 while (1)
 n = write(newsockfd,"Some Message",12);

 if (n < 0) error("ERROR writing to socket");

155

 close(newsockfd);
 close(sockfd);
 return 0;
}

156

Appendix B - Client Socket Programming Code

Client Code:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

void error(const char *msg)
{
 perror(msg);
 exit(0);
}

int main(int argc, char *argv[])
{
 int sockfd, portno, n;
 struct sockaddr_in serv_addr;
 struct hostent *server;

 char buffer[256];
 if (argc < 3) {
 fprintf(stderr,"usage %s hostname port\n", argv[0]);
 exit(0);
 }
 portno = atoi(argv[2]);
 sockfd = socket(AF_INET, SOCK_STREAM, 0);
 if (sockfd < 0)
 error("ERROR opening socket");
 server = gethostbyname(argv[1]);
 if (server == NULL) {
 fprintf(stderr,"ERROR, no such host\n");
 exit(0);
 }
 bzero((char *) &serv_addr, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;
 bcopy((char *)server->h_addr,
 (char *)&serv_addr.sin_addr.s_addr,
 server->h_length);
 serv_addr.sin_port = htons(portno);
 if (connect(sockfd,(struct sockaddr *) &serv_addr,sizeof(serv_addr)) < 0)
 error("ERROR connecting");
 printf("Please enter the message: ");
 bzero(buffer,256);
 fgets(buffer,255,stdin);
 n = write(sockfd,buffer,strlen(buffer));
 if (n < 0)
 error("ERROR writing to socket");
 bzero(buffer,256);
 n = read(sockfd,buffer,255);

157

 if (n < 0)
 error("ERROR reading from socket");
 printf("%s\n",buffer);
 close(sockfd);
 return 0;
}

158

Appendix C - Overall Code

//Libraries
#include <iostream>
#include <fstream>
#include <cmath>
using namespace std;
#include <stdio.h>
#include <opencv/cv.h>
#include <opencv/highgui.h>
#include <fcntl.h>
#include <termios.h>
#include <unistd.h>

#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

//Variables and pointers
IplImage* frame=0;
IplImage* s=0;
IplImage* h=0;
IplImage* j=0;
IplImage* v=0;
CvCapture* capture = 0;
string response;

int n=0;
int newsockfd;
int blob_area, total_area;
int fd2, res;
unsigned char buffer[0];
/*************ERROR*****************
Description: Give a warning error when using TCP
connection
************************************/
void error(const char *msg)
{
 perror(msg);
 exit(1);
}
/*************READSERIAL************
Description: Read serial stream from Ardupilot,
extract the GPS coordinate and write it to output
stream
************************************/
int readserial()
{
 //Streaming strings
 stringstream ss1,ss2,ss3 (stringstream::in | stringstream::out);
 int i;
 unsigned char lon_hex[4], lat_hex[4], alt_hex[4]={0};

159

 signed int lon,lat,alt;
 float lon_f,lat_f,alt_f;

 for (i=1;i<5000;i++)
 {
 //Start reading
 read(fd2,buffer,1);
 //Only GPS signal is needed in this part, streaming signal should start with 0xfe1c
 if (buffer[0]==0xfe)
 {
 read(fd2,buffer,1);
 if (buffer[0]==0x1c)
 {
 //Ignore 4 bytes
 for (int o=0;o<4;o++)
 read(fd2,buffer,1);
 if (buffer[0]==0x21)
 {
 //Ignore 4 bytes
 for (int o=0;o<4;o++)
 read(fd2,buffer,1);
 //Read Latitude in hex
 for (int o=0;o<4;o++)
 {
 read(fd2,buffer,1);
 lat_hex[o]=buffer[0];
 }
 //Read Longitude in hex
 for (int o=0;o<4;o++)
 {
 read(fd2,buffer,1);
 lon_hex[o]=buffer[0];
 }
 //Ignore 4 bytes
 for (int o=0;o<4;o++)
 read(fd2,buffer,1);
 //Read Altitude in hex
 for (int o=0;o<4;o++)
 {
 read(fd2,buffer,1);
 alt_hex[o]=buffer[0];
 }
 //Convert hex value into long int
 lat
=lat_hex[0]+lat_hex[1]*256ul+lat_hex[2]*256ul*256ul+lat_hex[3]*256ul*256ul*256ul;
 lon
=lon_hex[0]+lon_hex[1]*256ul+lon_hex[2]*256ul*256ul+lon_hex[3]*256ul*256ul*256ul;
 alt
=alt_hex[0]+alt_hex[1]*256ul+alt_hex[2]*256ul*256ul+alt_hex[3]*256ul*256ul*256ul;
 //Convert into float
 lat_f=(float)lat/10000000;
 lon_f=(float)lon/10000000;
 alt_f=(float)alt/1000;

 //Convert three values into string and output

160

 ss1 << lat_f;
 string test1 = ss1.str();

 ss2 << lon_f;
 string test2 = ss2.str();

 ss3 << alt_f;
 string test3 = ss3.str();

 char output[100]={0};
 strcat(output,"Latitude: ");
 strcat(output,test1.c_str());
 strcat(output," Longitude: ");
 strcat(output,test2.c_str());
 strcat(output," Altitude: ");
 strcat(output,test3.c_str());
 int n2 = write(newsockfd,output,100);
 if (n2 < 0) error("ERROR writing to socket");
 ss1.str("");
 ss2.str("");
 ss3.str("");
 return 0;
 }
 }

 }
}
 return 0;
}
/***********MAIN*******************
Description: Main body of the program, make connection
with the base station, ardupilot and camera as well as
process image from the camera
**********************************/
int main(void)
{

//Start TCP connection server, fixed port: 51212
 int sockfd, portno;
 socklen_t clilen;
 char buffer[256];
 struct sockaddr_in serv_addr, cli_addr;
 int n;
 sockfd = socket(AF_INET, SOCK_STREAM, 0);
 if (sockfd < 0)
 error("ERROR opening socket");
 bzero((char *) &serv_addr, sizeof(serv_addr));
 portno = atoi("51212");
 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = INADDR_ANY;
 serv_addr.sin_port = htons(portno);
 if (bind(sockfd, (struct sockaddr *) &serv_addr,
 sizeof(serv_addr)) < 0)
 error("ERROR on binding");
 listen(sockfd,5);

161

 clilen = sizeof(cli_addr);
 newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr, &clilen);
 if (newsockfd < 0)
 error("ERROR on accept");
 bzero(buffer,256);

//Start serial connection to Ardupilot
 fd_set readfs;
 struct timeval timeout;
 struct termios options2;
 fd2 = open("/media/mmcblk0p2/home/root/Desktop/dev/ttyACM0", O_RDWR | O_NOCTTY |
O_NDELAY);
 fcntl(fd2, F_SETFL, 0);
 tcflush(fd2, TCIFLUSH);
 tcgetattr(fd2, &options2);
 cfsetispeed(&options2, B115200);
 cfsetospeed(&options2, B115200);
 options2.c_cflag &= ~PARENB; // set no parity, stop bits, data bits
 options2.c_cflag &= ~CSTOPB;
 options2.c_cflag &= ~CSIZE;
 options2.c_cflag |= CS8;
 tcsetattr(fd2, TCSANOW, &options2);
 FD_SET(fd2, &readfs);
 timeout.tv_usec = 0;
 timeout.tv_sec = 1;

 capture = cvCaptureFromCAM(-1);
 //Create the image to hold each frame of the video
 frame=cvQueryFrame(capture);
 cvNamedWindow("Image" ,1);

 // Temporary storage.
 s = cvCreateImage(cvGetSize(frame), IPL_DEPTH_8U, 3);

 // Allocate individual image planes.
 h = cvCreateImage(cvGetSize(s), IPL_DEPTH_8U, 1);
 j = cvCreateImage(cvGetSize(s), IPL_DEPTH_8U, 1);
 v = cvCreateImage(cvGetSize(s), IPL_DEPTH_8U, 1);

 int ntemp=read(newsockfd,buffer,255);
 int count_total,count_pos=0;
 float probability_pos=0;
 int threshold=200;
 while (1){
 count_total++;
 frame=cvQueryFrame(capture);
 if(!frame) break;
 //Convert the frame to HSV
 cvCvtColor(frame,s,CV_RGB2HSV);
 // Turn all pixels outside of the specified color range to black
 CvScalar p;
 CvScalar black;
 black.val[0]=0;
 black.val[1]=0;

162

 black.val[2]=0;
 blob_area=1;
 total_area=s->height*s->width;
 buffer[0]='\0';
 read(fd2,buffer,1);
 for(int x = 0; x < s->height - 1; x++){
 for(int y = 0; y < s->width - 1; y++){
 p=cvGet2D(s, x, y);
 if(p.val[0]>110 && p.val[0]<120 && p.val[1]>=250 && p.val[1]<260){
 cvSet2D(s, x, y, p);
 blob_area++;
 }
 else {
 cvSet2D(s, x, y, black);
 }
 }
 }
 //Check blog area ratio to total area, if it is bigger than 25 start reading information from
Ardupilot
 if ((total_area/blob_area<25))
 {
 count_pos++;
 readserial();
 }

 }
 //Release all allocated variables
 cvReleaseImage(&h);
 cvReleaseImage(&j);
 cvReleaseImage(&v);
 cvReleaseImage(&s);

 cvReleaseImage(&frame);
 cvReleaseCapture(&capture);
 //Close all connection
 close(fd2);

 close(newsockfd);
 close(sockfd);
}

163

Bibliography

[1] R. Boyle, "Autonimous Search and Rescue Operations," 16 July 2010. [Online]. Available:

http://www.popsci.com/technology/article/2010-07/small-drones-could-replace-search-and-

rescue-helos-making-hiker-rescue-faster-and-cheaper.

[2] "Smithsonian National Air and Space Museum," [Online]. Available:

http://airandspace.si.edu/exhibitions/gal104/uav.cfm.

[3] B. Naylor, 5 December 2011. [Online]. Available:

http://www.npr.org/2011/12/05/143144146/drone-technology-finding-its-way-to-american-

skies.

[4] M. Lukovic, "The future of the Civil and Military UAV Market," 28 June 2011. [Online]. Available:

http://www.frost.com/sublib/display-market-insight-top.do?id=236443867.

[5] A. Service, "Drones Who Makes Them and Who Has Them," 3 march 2013. [Online].

[6] DOE, "Defense Market," 2012. [Online]. Available: http://www.defensemarket.com/?tag=uav-

market.

[7] "Microdrones," [Online]. Available: http://www.microdrones.com/products/md4-200/md4-200-

key-information.php.

[8] Kbosak, "Pteryx UAV," 27 March 2010. [Online]. Available:

http://en.wikipedia.org/wiki/File:Pteryx_UAV_-_wiki.jpg.

[9] B. Neild, "Not just for military use, Drones turn Civilian," 22 December 2012. [Online]. Available:

http://www.cnn.com/2012/07/12/world/europe/civilian-drones-farnborough.

[10] J. PAPPALARDO, 26 February 2010. [Online]. Available:

http://www.popularmechanics.com/technology/aviation/military/4347306.

[11] "Thermal Infrared Camera," 2013. [Online]. Available: http://www.draganfly.com/uav-

helicopter/draganflyer-x6/features/flir-camera.php.

[12] Draganfly Innovations Inc., "A Short History of Unmanned Aerial Vehicles (UAVs)," 2012. [Online].

Available: http://www.draganfly.com/news/2009/03/04/a-short-history-of-unmanned-aerial-

vehicles-uavs/. [Accessed 12 October 2012].

[13] T. f. Aircraft, "First cruise missile — Kettering’s Bug," 1 April 2011. [Online]. Available:

http://travelforaircraft.wordpress.com/2011/04/01/first-cruise-missile-%E2%80%94-the-

164

kettering-bug/. [Accessed 20 April 2013].

[14] "Global Security," 28 June 2011. [Online]. Available:

http://www.globalsecurity.org/intell/systems/uav-intro.htm. [Accessed 4 October 2012].

[15] The Museum of Flight, "The Fieseler Fi 103 (V1) German “Buzz Bomb”," The Museum of Flight,

2013. [Online]. Available: http://www.museumofflight.org/exhibits/fieseler-fi-103-v1. [Accessed

11 March 20131].

[16] C. Levinson, "The Wall Street Journal," Dow Jones and Company, 10 January 2010. [Online].

Available: http://online.wsj.com/article/SB126325146524725387.html. [Accessed 8 January

2013].

[17] Associataed Press, "Military.com," 2 January 2008. [Online]. Available:

http://www.military.com/NewsContent/0,13319,159220,00.html. [Accessed 4 October 2012].

[18] D. Dufrene, "The Unmanned Aerial Vehicle in Wartime," The Top Secret Writers, 2013. [Online].

Available: http://www.topsecretwriters.com/2010/11/the-unmanned-aerial-vehicle-in-wartime/.

[Accessed 11 March 2013].

[19] "U.S. Using Armed Predator Drones Over Libya," Defense Tech, 21 April 2011. [Online]. Available:

http://defensetech.org/2011/04/21/u-s-using-armed-predator-drones-over-libya/. [Accessed 21

April 2013].

[20] [Online]. Available: http://www.uavm.com/uavapplications.html.

[21] L. Bowman, September 2005. [Online]. Available:

http://www.uavm.com/images/Aerosonde_Ophelia.pdf.

[22] B. V. Bigelow, "NASA research team envisions flock of," The San Diego Union-Tribune, p. 3, 22

August 2005.

[23] A. Caumont, "Start Up," 2005.

[24] P. Tristam, "Predator Drones and other Unmanned Aerial Vehicles (UAVs)," 2012. [Online].

Available: http://middleeast.about.com/od/usmideastpolicy/a/predator-uavs-weaponry.htm.

[Accessed 2 October 2012].

[25] "Hawk AeroSpace," Hawk AeroSpace, 2012. [Online]. Available:

http://www.hawkaerospace.eu/Default.aspx?tabid=239&articleType=ArticleView&articleId=37.

[Accessed 4 October 2012].

[26] B. C. Dostal, "Enhancing Situational Understanding through the Employment of Unmanned Aerial

165

Vehicles," GlobalSecurity.org, 2013. [Online]. Available:

http://www.globalsecurity.org/military/library/report/call/call_01-18_ch6.htm. [Accessed 11

March 2013].

[27] B. Christensen, "Technovelogy," 9 September 2009. [Online]. Available:

http://www.technovelgy.com/ct/Science-Fiction-News.asp?NewsNum=2529. [Accessed 2012

October 2012].

[28] "WiFi, Bluetooth or ZigBee Wireless," Kanda, 29 May 2012. [Online]. Available:

http://www.kanda.com/blog/wireless/wifi-bluetooth-zigbee-wireless/. [Accessed 9 April 2013].

[29] C. Coleman, J. Funk, J. Salvati and C. Whipple, "Design of an Autonomous Platform for Search and

Rescue," Worcester Polytechnic Institute, Worcester, MA, 2012.

[30] M. J. Valenti, "Approximate Dynamic Programming with Applications in," Massachusetts Institute

of Technology, Cambridge, MA, 2007.

[31] T. Millet, J. Yates, B. Millar and N. Johnson, "Brigham Young University MAV Team," Brigham

Young Univerity, Provo, Utah, 2007.

[32] K. Nordberg, P. Doherty, G. Farneback, P.-E. Forssen, G. Granlund, A. Moe and J. Wiklund, "Vision

for a UAV helicoptor," Linkoping University, Linkoping, Sweden.

[33] C. Tetrault, "A Short History of Unmanned Aerial Vehicles (UAVs)".

[34] "Ponte Vecchio 17," Callai, 2013. [Online]. Available:

http://www.callaipontevecchio.com/contact_me_19.html. [Accessed 21 April 2013].

[35] J. M. SULLIVAN, "Evolution or Revolution? Rise of UAVs," IEEE Technology and Society, vol. 25, no.

3, Fall 2006.

[36] admin, "Shadow 200 tactical UAV system," 16 october 2006. [Online]. Available: http://defence-

update.com/20061016_shadown.html.

[37] R. Blackhurst, "The air force men who fly drones in Afghanistan by remote control," The

Telegraph, 24 September 2012. [Online]. Available:

http://www.telegraph.co.uk/news/uknews/defence/9552547/The-air-force-men-who-fly-drones-

in-Afghanistan-by-remote-control.html. [Accessed 11 March 2013].

[38] D. B, "Revolutionary UAV Drones," 23 January 2012. [Online]. Available:

http://strikefighterconsultinginc.com/blog/5-revolutionary-uav-drones/.

[39] "PBS," 10 October 2011. [Online]. Available: http://www.pbs.org/newshour/bb/military/july-

166

dec11/drones1_10-10.html. [Accessed 4 October 2012].

[40] J. Kopstein, "Interactive map reveals where drones are being flown inside the US right now," 6

December 2012. [Online]. Available: http://www.theverge.com/2012/12/6/3735976/interactive-

map-domestic-drones-eff.

[41] R. Waugh, "The rise of the robo-fighters: Britain's new pilotless air force," Mail Online, 5 May

2010. [Online]. Available: http://www.dailymail.co.uk/home/moslive/article-1269282/The-rise-

robo-fighters-Britains-new-pilotless-air-force.html. [Accessed 11 March 2013].

[42] A. Caumont, "Start-Up," The Washington Post, p. 1, 28 November 2005.

[43] "Division of Agriculture," University of Arkansas System, [Online]. Available:

http://www.aragriculture.org/horticulture/nursery_automation/default.htm. [Accessed March

2013].

[44] "NASA," NASA, 2003. [Online]. Available:

http://www.nasa.gov/vision/earth/everydaylife/Safer_Firefighting_prt.htm. [Accessed 2013].

[45] L. Bowman, "Drone aircraft joining hurricane-research missions," Sky Tracker, p. 2, 18 September

2005.

[46] "DWS review," 2008. [Online]. Available: http://www.digi-help.com/uavs-will-fly-into-the-eye-of-

the-hurrican-and-gather-data/. [Accessed March 2013].

[47] UAV Collaborative, "Homeland Security Project," 2012. [Online]. Available: http://www.uav-

applications.org/projects/homeland_1.html. [Accessed 3 October 2012].

[48] "Homeland Security News Wire," 2010. [Online]. Available:

http://www.homelandsecuritynewswire.com/mini-uavs-infrastructure-facilities-protection.

[Accessed March 2013].

[49] "Flat Eight Productions," Flat Eight Productions Inc., [Online]. Available:

http://www.flat8inc.com/search-and-rescue/. [Accessed March 2013].

[50] S. Srinivasan, H. Latchman, J. Shea, T. Wong and J. McNair, "Airborne Traffic Surveillance Systems -

Video Surveillance of Highway Traffic," University of Florida, Gainesville, FL.

[51] J. Elgot, "Police Drones: Unmanned Air Vehicles Could Monitor Protests, Riots And Traffic In UK,"

The Huffington Post, 2012.

[52] General Atomics Aeronautical, "MQ-1 Predator," 2012. [Online]. Available: http://www.ga-

asi.com/products/aircraft/pdf/MQ-1_Predator.pdf. [Accessed 12 October 2012].

167

[53] Arcturus UAV, "Arcturus UAV T-20," 2012. [Online]. Available: http://www.arcturus-

uav.com/docs/Arcturus-T20-SpecSheet.pdf. [Accessed 4 October 2012].

[54] M. v. Leeuwen, "New Contract at Crew Training International in Las Vegas," 2010. [Online].

Available: http://www.goiam.org/index.php/territories/western/2410-new-contract-at-crew-

training-international-in-las-vegas. [Accessed 12 October 2012].

[55] A. Brown, J. Estabrook and B. Franklin, "Sensor Processing and Path Planning Framework for s

Search and Rescue UAV Network," Worcester Polytechnic Institute, Worcester, MA, 2011.

[56] B. Bethke, "Persistent Vision-Based Search and Track Using Multiple UAVs," Massachusetts

Institute of Technology, Cambridge, MA, 2007.

[57] Texas Instruments, "OMAP Mobile Processors : OMAP™ 4 Platform," 2012. [Online]. Available:

http://www.ti.com/general/docs/wtbu/wtbuproductcontent.tsp?templateId=6123&navigationId=

12842&contentId=53247. [Accessed 2012 October 12 2012].

[58] C. Holland, "TI expands support for OMAP," 14 February 2002. [Online]. Available:

http://www.embedded.com/electronics-news/4134387/TI-expands-support-for-OMAP. [Accessed

4 October 2012].

[59] Texas Instruments, "OMAP 4 Platform : OMAP4430/OMAP4460," 2012. [Online]. Available:

http://www.ti.com/general/docs/wtbu/wtbuproductcontent.tsp?templateId=6123&navigationId=

12843&contentId=53243. [Accessed 4 October 2012].

[60] Texas Instruments, "OMAP-DM Coprocessors: OMAP-DM299/500," 2012. [Online]. Available:

http://www.ti.com.cn/general/docs/wtbu/wtbuproductcontent.tsp?templateId=6123&navigation

Id=12828&contentId=50020. [Accessed 12 October 2012].

[61] Texas Instruments, "OMAP Mobile Processors : Security," 2012. [Online]. Available:

http://www.ti.com/general/docs/wtbu/wtbugencontent.tsp?templateId=6123&navigationId=123

16&contentId=4629&DCMP=WTBU&HQS=Other+EM+m-shield. [Accessed 4 October 2012].

[62] "MSP430 16-bit ultra-low power microcontrollers (MCUs) - F6xx series," Texas Instruments, 2012.

[Online]. Available:

http://www.ti.com/paramsearch/docs/parametricsearch.tsp?familyId=2926§ionId=95&tabId

=2880&family=mcu. [Accessed 4 October 2012].

[63] Texas Instruments, "MSP430x5xx and MSP430x6xx Family User's Guide," Texas Instruments, 2012.

[64] October 2011. [Online]. Available:

http://www.xilinx.com/support/documentation/data_sheets/ds162.pdf.

168

[65] July 2012. [Online]. Available:

http://www.xilinx.com/support/documentation/user_guides/ug382.pdf.

[66] S. Asano, T. Maruyama and Y. Yamaguchi, "Performance Comparison of FPGA, GPU, and CPU in

Image Processing," IEEE, Tsukuba, 2009.

[67] S. Edwards, "Microprocessors or FPGAs?: Making the Right Choice," 2012. [Online]. Available:

http://www.rtcmagazine.com/articles/view/102015. [Accessed 12 October 2012].

[68] "The Lenna Story," 1 October 2009. [Online]. Available: http://www.cs.cmu.edu/~chuck/lennapg/.

[Accessed 12 October 2012].

[69] Paparazzi, "Autopilots," Paparazzi, 16 September 2012. [Online]. Available:

http://paparazzi.enac.fr/wiki/Autopilots. [Accessed 4 October 2012].

[70] Procerus Technologies, "Kestrel Autopilot v2.4," 2012. [Online]. Available:

http://www.procerus.com/Downloads/DataSheets/Kestrel_2.4.pdf. [Accessed 4 October 2012].

[71] Procerus Technologies, "Kestrel autopilot," Lockheed Martin Corporation, 2012. [Online].

Available: http://www.procerus.com/productsKestrelAutopilot.php. [Accessed 4 October 2012].

[72] Lockheed Martin, "Product Pricing," Lockheed Martin, 2013. [Online]. Available:

http://www.lockheedmartin.com/us/products/procerus/product-pricing.html. [Accessed 21 April

2013].

[73] Cloud Cap Technology, "Piccolo SL unmanned avionics system," 2012. [Online]. Available:

http://www.cloudcaptech.com/Sales%20and%20Marketing%20Documents/Piccolo%20SL%20Dat

a%20Sheet.pdf. [Accessed 4 October 2012].

[74] Cloud Cap Technology, "Piccolo SL," UTC Aerospace System, 2012. [Online]. Available:

http://www.cloudcaptech.com/piccolo_sl.shtm#datasheet. [Accessed 4 October 2012].

[75] OpenPilot, "OpenPilot," OpenPilot, 2012. [Online]. Available: http://www.openpilot.org/.

[Accessed 2 October 2012].

[76] OpenPilot, "OpenPilot Hardware User Manual," 2012. [Online]. Available:

http://wiki.openpilot.org/display/Doc/OpenPilot+Hardware+User+Manual. [Accessed 3 October

2012].

[77] Ubiquiti, "Bullet," Ubiquiti, 2013. [Online]. Available: http://www.ubnt.com/bullet. [Accessed 23

April 2013].

[78] "JoseMariaKim," 2013. [Online]. Available: http://josemariakim.blogspot.com/. [Accessed 23 April

169

2013].

[79] Overstock.com, "USB 2.0 Bluetooth Dongle," Overstock.com, 2013. [Online]. Available:

http://www.overstock.com/Electronics/USB-2.0-Bluetooth-Dongle/2343471/product.html.

[Accessed 23 April 2013].

[80] "FCBIX45C," Sony, 2012. [Online]. Available: http://pro.sony.com/bbsc/ssr/product-FCBIX45C/.

[Accessed 4 October 2012].

[81] Black Widow AV, "Black Widow AV Wireless Aerial Video Solutions," Black Widow AV, 2012.

[Online]. Available: http://www.blackwidowav.com/kx131.html. [Accessed 12 October 2012].

[82] [Online]. Available: http://www.draganfly.com/news/2006/11/09/draganflyer-savs-rc-helicopter-

termal-intelligence-aerial-video/.

[83] Aegis, " Sony FCB-EX780B," Aegis, 2004. [Online]. Available: http://www.aegis-

elec.com/products/sonyfcbex780b.html. [Accessed 21 April 2013].

[84] [Online]. Available: http://fisher.osu.edu/~muhanna_1/pdf/crypto.pdf.

[85] ArduPilot, "MPInstallation," DIY Drones, 9 November 2012. [Online]. Available:

http://code.google.com/p/ardupilot-mega/wiki/MPInstallation. [Accessed 10 November 2012].

[86] M. S. John, "Configure minicom to communicate with Cisco device," Youtube, 26 September 2010.

[Online]. Available: http://www.youtube.com/watch?v=vUp9TergyhQ. [Accessed 25 November

2012].

[87] G. Anescu, "Encryption/Decryption Method," 7 11 2002. [Online]. Available:

http://www.codeproject.com/Articles/1380/A-C-Implementation-of-the-Rijndael-Encryption-

Decr.

[88] A. Zaki, "Leopard Imaging Camera LI-LBCM3M1 on the Beagleboard," Embedded Geeks, 21

January 2012. [Online]. Available: http://embeddedgeeks.wordpress.com/2012/01/21/leopard-

imaging-camera-li-lbcm3m1-on-the-beagleboard/. [Accessed 26 October 2012].

[89] J. Ragsdale, "Jay Ragsdale," [Online]. Available: http://jayragsdale.com/projects/34-robotics/47-

my-first-opencv-assignment. [Accessed March 2013].

[90] P. D'Silva, "A Little About Color: HSV vs. RGB," 28 July 2008. [Online]. Available:

http://www.kirupa.com/design/little_about_color_hsv_rgb.htm. [Accessed 23 April 2013].

[91] BeamQ, "200mW Red Laser," BeamQ, 2013. [Online]. Available: http://www.beamq.com/laser-

pointers-200mw-red-laser-c-54_25.html. [Accessed 21 April 2013].

170

[92] M. Szczys, "Wifi Jamming via Deauthentication Packets," Hack a Day, 4 October 2011. [Online].

Available: http://hackaday.com/2011/10/04/wifi-jamming-via-deauthentication-packets/.

[Accessed 30 January 2013].

[93] Aircrack-ng, "Aircrack-ng," Aircrack-ng, 2013. [Online]. Available: http://www.aircrack-ng.org/.

[Accessed 5 February 2013].

[94] "Man-in-the-middle-attack," [Online]. Available: http://en.wikipedia.org/wiki/Man-in-the-

middle_attack#References.

[95] Worcester Polytechnic Institute, "Second Floor," Worcester Polytechnic Institute, 2013. [Online].

Available: http://wp.wpi.edu/reccenter/files/2012/07/sr-secondfloor.pdf. [Accessed 23 April

2013].

[96] L. Dong, Z. Han, A. Petropulu and V. H. Poor, "Improving Wireless Physical Layer Security via," IEEE

Tranasactions on Signal Processing, vol. 58, no. 3, p. 14, 2010.

[97] G. J. Gilmore, "U.S. Air Force," 23 June 2009. [Online]. Available:

http://www.af.mil/news/story.asp?id=123160247. [Accessed 4 October 2012].

[98] T. W. McLain and R. W. Beard, "Unmanned Air Vehicle Testbed for Cooperative Control

Experiments," Boston, 2004.

[99] "Wireless Handset Solutions : OMAP Mobile Processors," Texas Instruments, 2012. [Online].

Available:

http://www.ti.com/general/docs/wtbu/wtbugencontent.tsp?templateId=6123&navigationId=119

88&contentId=4638. [Accessed 4 October 2012].

[100] "Autopilot Design," Brigham Young University, 2012. [Online]. Available:

http://magicc.byu.edu/content/autopilot-design. [Accessed 3 October 2012].

[101] [Online]. Available: http://arduino.cc/en/Main/ArduinoBoardUno.

[102] "http://www.arduino.cc/," [Online].

[103] [Online]. Available: http://en.wikipedia.org/wiki/Digital_signal_processor.

[104] 28 june 2011. [Online]. Available: C:\Users\Roni\Desktop\Dropbox\MQP\UAV Markets\The

Future of the Civil and Military UAV Market.htm.

[105] [Online]. Available: http://www.marketresearchmedia.com/?p=509.

[106] [Online]. Available: http://www.uavm.com/uavapplications.html.

171

[107] B. V. Bigelow, August 2005. [Online]. Available:

http://www.uavm.com/images/Fire_Fight_NASA_research_team_envisions_flock_of_robot_aircr

aft_monitori...pdf.

[108] James Nechvatal, Elaine Barker, Lawrence Bassham, William Burr, Morris Dworkin, James Foti,

Edward Roback, "Report on the Development of Advanced Encryption Standard (AES)," 2000.

[109] April 2006. [Online]. Available:

http://ece.wpi.edu/courses/ece3803b2008/Datasheets/AT91M42800A.pdf.

[110] J. Azema and G. Fayad, "M-Shield Mobile Security Technology: making wireless secure," February

2008. [Online]. Available: http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf. [Accessed 8

October 2012].

[111] T. Scherrer, "Video wireless for model RC planes," August 2007. [Online]. Available:

http://www.webx.dk/rc/video-wireless/video.htm. [Accessed 12 October 2012].

[112] "http://securityuncorked.com/2008/08/history-of-wireless-security/," [Online].

[113] [Online]. Available: http://searchnetworking.techtarget.com/definition/OSI.

[114] [Online]. Available:

http://www.senetas.com/products/resources/media/understanding_layer2_encryption.pdf.

[115] "Escotal," 2012. [Online]. Available: http://www.escotal.com/osilayer.html. [Accessed 14 October

2012].

[116] Y.-W. S. a. C.-C. S. Jin-Shyan Lee, "A Comparative Study of Wireless Protocols: Bluetooth, UWB,

ZigBee, and Wi-Fi," in IEEE Industrial Electronics Society, Taipei, 2007.

[117] "Mirifica," [Online]. Available: http://www.mirifica.it/store/lang-en/schede-fpga/178-digilent-

atlys-spartan-6-fpga-development-kit-academic.html. [Accessed 14 October 2012].

[118] [Online]. Available: http://www.uavm.com/images/Economics_Forcast_of_UAV_-

_Graphic_From_NASA_UAV_Capabilities_Assessment-DRAFT.pdf.

[119] Y.-W. S. a. C.-C. S. Jin-Shyan Lee, "A Comparative Study of Wireless Protocols: Bluetooth, UWB,

ZigBee, and Wi-Fi," 5-8 November 2007. [Online]. Available:

http://eee.guc.edu.eg/announcements/comparaitive_wireless_standards.pdf.

[120] U.S. Air Force, "RQ-4 GLOBAL HAWK," U.S. Air Force, 27 January 2012. [Online]. Available:

http://www.af.mil/information/factsheets/factsheet.asp?id=13225. [Accessed 11 March 2013].

172

[121] Smithsonian National Air and Space Museum, "Pioneer RQ-2A UAV," Smithsonian National Air and

Space Museum, 2013. [Online]. Available:

http://web.archive.org/web/20110429160929/http://www.nasm.si.edu/collections/artifact.cfm?i

d=A20000794000. [Accessed 11 March 2013].

[122] Arcturus UAV, "Arcturus UAV," 2013. [Online]. Available: http://www.arcturus-

uav.com/docs/products_brochure08.pdf. [Accessed 11 March 2013].

[123] Universal Printing, "More about Color: Digital Color | RGB vs. CMYK," Universal Printing, 1

September 2012. [Online]. Available: http://info.universalprinting.com/blog/bid/51844/More-

about-Color-Digital-Color-RGB-vs-CMYK. [Accessed 23 April 2013].

