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Abstract

Periodic assessment is necessary to monitor the healing progress of chronic

wounds. Image analysis using computer vision algorithms has recently emerged

as a viable alternative as demonstrated by prior work. However, the performances

of such image analysis methods degrade on images captured in adverse illumina-

tion that occurs in many indoor environments. To mitigate these lighting problems,

High Dynamic Range (HDR) image enhancement techniques can be used to mit-

igate over- and under-exposure issues and preserve the details of scenes captured

in non-ideal illumination. In this paper, we address over- and under-exposure si-

multaneously using a deep learning-based bi-directional illumination enhancement

network based on the Retinex theory. Over- and under-exposed images are gen-

erated, which are then fused into a final image with enhanced illumination in an

exposure fusion step. Our proposed method outperformed the state-of-the-art on

various metrics including structure similarity, peak signal-noise ratio and changes in

segmentation accuracy (SSIM scores 0.76± 0.04/0.69± 0.08 on bright/dark images,

PSNR scores 28.60 ± 0.70 on dark images and DSC scores 0.76 ± 0.09/0.74 ± 0.09

on bright/dark images).
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Chapter 1

Introduction

In this section, we mainly focus on the background of our research. We first dis-

cussed the thesis motivation and challenges of our work. The related work and our

proposed method will also be briefly discussed in this section. At last, we listed the

contributions in our work and described the structure of this thesis.

1.1 Motivation

Chronic wounds are commonly defined as wounds that take longer to heal than other

wounds. Compared to most non-chronic wounds, chronic wounds usually take more

than 3 months to heal. Some chronic wounds may take up more than 1 year to

heal, with 60-70% probability of recurrence[42]. Due to the long-lasting pain both

physically and mentally chronic wounds can cause to the patients, treatment for the

chronic wounds has always been an urgent and emerging issue[34]. In the process of

chronic wound treatments, patient care usually involves several visual inspections by

wound experts and requires frequent visits to hospitals. However, the visual inspec-

tion processes are still quite rudimentary without an objective measuring metric.

The quality of these visual inspection processes can be also challenging to maintain
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especially given the current situation that the number of chronic wound patients is

huge compared to the limited number of wound experts.

To alleviate those issues in traditional visual inspection, our group has been work-

ing on new approaches in order to provide more reliable and objective solutions to

chronic wound treatment since 2011. We developed the Smartphone Wound Analysis

and Decision-Support (SmartWAnDS) system to provide automatic decision-making

based on wound images taken using a smartphone and Electronic Health Records

(EHR). This system is incorporated in the traditional chronic wound treatment and

used to provide aided or supplementary suggestions for caregivers such as nurses and

wound experts. This system is designed in such a way that caregivers who may not

have professional wound treatment knowledge, such as nurses or social service works,

can offer objective decisions with the guidance of the SmartWAnDS system. It re-

duces the workload of caregivers by simplifying the processes of routine checking-ups

and also provides timely objective wound assessments to patients, which also reduce

the risks of amputations caused by untimely treatments or un-objective assessments.

To obtain a persuasive assessment which can best reflect the healing process of

wounds, the quality of wound images plays a significant role in our SmartWAnDS

system. The information provided in the wound image can be crucial to making

unbiased wound assessment and proper decision-making. However, wound images

taken using smartphone cameras usually suffer from issues such as adverse global

illumination, ill-exposures, image blur and etc, which can lead to degradation of

image qualities. In this thesis, we mainly focus on the issues related to improper

exposures in wound images taken using smartphone cameras.

2



1.2 Challenges

Wound images are an important type of data to use for wound assessment, which

are also used in our SmartWAnDS system to provide objective assessments. The

wound images our system uses are mostly taken by smartphones since they are most

accessible to most patients. While smartphone images of chronic wounds are easy

to acquire, it poses several challenges. First, unlike medical images generated by

dedicated medical devices such as MRI scanners, the qualities of images taken by

smartphones can be influenced by many environmental factors, such as the lighting

condition, reflection, blur caused by motion, and etc. Second, the quality of the

images can also be affected by the hardware/software configuration of smartphone

cameras, such as the sensitivity of imaging sensors, the exposure settings of camera

applications and blur caused by loss of focus. The quality of wound images can

be of key importance for most machine vision tasks such as semantic segmentation,

image understanding, and etc. According to [47] and [48], the variation in lighting

and camera angles can cause up to 38% errors in wound area measurements. Wound

images with poor qualities can also negatively affect our SmartWAnDS system since

such wound images can lead to inaccuracy in most vision-related tasks, which in turn

fails to provide persuading and objective solutions for chronic wound patients.

The issue of degradation in performance caused by poor quality wound images

can be demonstrated in Figure 1.1. Without proper lighting and exposure settings,

the segmentation results can degrade severely.

A key problem we aim to address is: how can we design a method to enhance the

wound images taken by smartphones by converting the image into an HDR(high

dynamic range) image to minimize the negative effect (such as loss of texture infor-

mation) caused by adverse lighting condition or ill-exposure to improve the visual
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(a) Input Images (b) Segmentation Results

Figure 1.1: Segmentation Results (Using U-Net) on Wound Images with Different
lighting conditions

quality of images in terms of texture details, image metrics and finally lead to higher

performance in machine vision tasks (such as image segmentation) which are of great

importance in image-based wound assessment?

In this thesis, we mainly focus on the exposure issues of wound images. Images

with exposure issues can appear very dark (under-exposure) or very bright (over-

exposure) in a significant amount of regions. Usually, images with ill-exposure

are caused by the difference between the rather limited dynamic range of light

cameras are able to capture and the high dynamic range of lights in the real world.

Due to the limited illumination range of most smartphone cameras, only a very

subset of illumination range can be captured and recorded (usually 0 - 255) by

imaging sensors. The image is generated by filling each pixel value by estimating

the amount of Photon captured by each sensor in the sensor array in a very short
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time(exposure time) with additional steps such as quantization. As a result of the

difference in two light ranges, some sensors which record an excessive amount of

photons can be saturated and thus leading to saturated pixels. Negative-saturated

pixels can occur if some sensors cannot record enough photons to display the scene

properly. Most images with ill-exposures are due to the direct sunlight or very dark

environment when the images are taken, but improper camera settings can also lead

to ill exposure.

1.3 Related Work

Researches on HDR (high dynamic range) image conversion as a way to mitigate ex-

posure issues in images has been discussed in many literatures. One of the most pop-

ular methods is synthesizing HDR images using multiple photographic exposures[10].

Several images taken with different exposures are taken and the HDR image is gen-

erated by estimating the irradiance map. Apart from that, latest methods tend to

synthesize HDR images using one exposure, especially with the booming of con-

volutional neural networks. For example, Endo et al. [14] used Camera Response

Functions (CRFs) sampled from Grossberg and Nayar’s Database of Response Func-

tion [15] to synthesize images with different exposures and used a deep network to

learn the mapping between the input image and bracket images before synthesizing

the HDR images. Liu et al. [31] model the HDR-to-LDR image generation process

and adopt dedicated deep models to inverse each step.

An important and related field is image fusion. Image fusion is similar to HDR

image generation as a way of image enhancement. However, image fusion methods

generally do not preserve the relationship between HDR pixel intensities and actual

irradiance intensity in the resulted image. It works by integrating visual information
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in several images into a single image. Song et al.[43] proposed a fusion method

based on illumination using a probabilistic model. Vonikakis et al. [46] introduced

membership functions to images based on exposure rates and pixel illumination

values.

1.4 Our Approach

Our approach takes two phases. First, we adopt a deep learning approach to enhance

the image exposure of the original image. Two counterparts will be generated from

the original image. One image is the version with higher exposure (up-exposed)

image and the other is the version with lower exposure (down-exposed) image. Then,

we use these two images together with the original image to go through the image

fusion pipeline. We proposed a detail-recovered fusion method that can address the

detail loss in traditional image fusion processes. In this thesis, the final enhanced

image we plan to generate is the tone-mapped version of the HDR image instead

of the real HDR image, so the generated image has the same dynamic range as the

input image (0-255). But for the sake of simplicity, we denote the tone-mapped

HDR image as the HDR-like image or HDR image.

To validate our method, we include three types of evaluation experiments. First,

we compare our generated HDR image with the ground truth HDR image which

we synthesize with the traditional HDR generation pipeline. Several metrics are

used, such as structure similarity score (SSIM) and peak signal-noise ratio (PSNR).

Then, we train a UNet network using our prepared dataset and test the segmentation

performance on both the original image and the enhanced image. Last, we compare

our method with the state-of-art methods in HDR generation.

Figure 1.2 illustrates the system architecture of our SmartWAnDS system. It
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also visualizes how our method (in red dotted box) can be integrated into the

whole pipeline of the SmartWAnDS system. Patients can receive recovery treat-

ments from caregivers at patients’ homes while caregivers can collect patients’ health

records(EHR and wound images) using the smartphone app. During the treatment

process, EHR and wound images enhanced using our proposed method will be up-

loaded to a central server for analysis. With our proposed enhancement method,

the enhanced wound image will provide higher visual quality and recover any tex-

ture information loss in the original image to facilitate the analysis process. When

the wound analysis is done, the clinicians at hospitals will receive the analysis re-

sults from the central server and the assessment information will be published on

the smartphone app as the feedback. At last, caregivers can be notified and give

instructed treatments to patients according to the feedback.

Wound ImageEHR Enhanced Image

Recovery Treatment 
(Patient’s Home) Feedback to Patient and 

Caregiver

Smartphone AppCaregiver

Wound Analysis on Server

Clinicians at Hospital

Upload EHR

Upload Image

Bi-Directional 
Enhancement

Collect Data

Patient 
（at Home）

Publish Information

Smartphone App

Assessment Results

Figure 1.2: Basic Components in SmartWAnDS System Architecture
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1.5 Novelty and Contributions

To the best of our knowledge, there is very little research in techniques to enhance

both over-exposed and under-exposed images at the same time. Moreover, our work

is the first to mitigate the over-exposure and under-exposure issues of chronic wound

images. While there are many works on image enhancement, most of them are fo-

cused on low-light image enhancement and high-light removal. As for the HDR

conversion, most of the methods are focused on exposure expansion of the images

without exposure issues. Also, the image enhancement methods and the HDR con-

version are designed for images which are not directly related to medical images. Our

previous work includes 1) creation of the Illumination Varying Dataset of Wounds

(IVDS) dataset, which is a large dataset consisting of 55440 wound images captured

under controlled and different light conditions, smartphone cameras, and camera

settings; 2) correlation analysis between the lighting conditions and segmentation

accuracy and 3) enhancement of under-exposed images using Deep Retinex Model.

In this thesis, 1) we designed the Bi-Directional Retinex model based on the Deep

Retinex Model to allow both up and down-exposure operation, 2) explored different

fusion methods for HDR generation and 3) proposed the detail-recovered fusion for

HDR generation from ill-exposed images to enhance the image illumination condi-

tion. We also placed more emphasis on the part of over-exposed image enhancement

since it is far less studied in image analysis compared with under-exposed image en-

hancement.

The contributions of our work are three-fold:

1. We designed a Bi-Directional Retinex Model based on the Deep Retinex Model

to allow both up and down-exposure operation at the same time. The Deep

Retinex Model is only designed for low-light image enhancement (up expo-
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sure). In our work, we evaluate the performance of DRM in high-light image

enhancement (down exposure). We also optimize the decomposition part in

the DRM so the two operations (up/down exposure) can be performed si-

multaneously while reducing training and inference time. The bi-directional

model can support end-to-end training and generate up and down-exposed

images simultaneously with our proposed network structure.

2. We proposed a two-level image fusion pipeline to fuse images with different

exposures into a detail-recovered HDR image. The issue of information loss in

illumination-based fusion is addressed in our approach. Compared with direct

fusion (illumination-based fusion), our fusion method is proved to preserve

more texture details in ill-exposed regions.

3. We compared our proposed HDR-like generation method with several state-

of-art methods. The proposed method in this thesis obtained most highest

scores in several metrics(SSIM scores 0.76 ± 0.04/0.69 ± 0.08 on bright/dark

images, PSNR scores 28.60 ± 0.70 on dark images and DSC scores 0.76 ±

0.09/0.74 ± 0.09 on bright/dark images). We also showed our method has

consistent performance on images with various illumination conditions.

1.6 Thesis Outline

This thesis is structured in the following ways. In the first chapter, we discussed

the motivations of this thesis, the question and proposed method in general as well

as our contributions. In chapter 2, we listed the concepts and components which

we adopted in our research. In chapter 3, we mainly surveyed the recent image

enhancement work related to ours. In chapter 4 and 5, we discussed our proposed

approaches in detail.(Chapter 4 focuses on how the bi-directional network is designed
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to create bracket images and chapter 5 focuses on how we use detail-recovered fusion

to generate the HDR images.) In chapter 6, we mainly followed the steps of our

experiments and described how we evaluate our proposed method and compare it

with state-of-art methods. The conclusion and future work are included in chapter

7.
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Chapter 2

Background

2.1 Smartphone-Based Wound Assessment

Smartphone-based wound assessment refers to a group of methods which utilizes

the built-in sensors to help monitor, collect information of wounds to provide more

symptom-related information to doctors, nurses and caregivers in the treatment

procedure. As a supplement to the traditional therapy process, these types of as-

sessment methods are getting increasingly popular largely due to the extensive use

of smartphones as well as constantly evolving smartphone-related techniques. Be-

sides, smartphone-based assessments also provide a low-cost and flexible way[3] for

fast diagnosis compared with traditional methods which usually take a much longer

time and are required by trained clinicians.

Different from dedicated medical equipment, the applications of smartphone-

based wound assessment mainly focus on the early stage of diagnosis[4] which does

not require operations that are too complex or demand high precision. Most wound

assessments are focused on vision-related tasks. For example, Wang et al.[49] pro-

posed a system which can provide image-based wound analysis on diabetic foot
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ulcers using built-in cameras. It can effectively analyze the wound healing status

with a guided image capture procedure in the app. Apart from that, some works

[45, 26] combined image processing and supervised learning models to detect and

classify the types of wounds on wound images. Models such as neural networks,

random forest, support vector machines as well as K-Nearest Neighbors(KNN) were

used in wound tissue classification. Bhelonde et al.[8] implemented a vision-based

system solely on smartphones to assess diabetic ulcers. It utilized the accelerated

mean-shift algorithm to segment the wound areas and the Red-Yellow-Black color

evaluation model to assess the wound healing process.

Our work does not conduct wound assessment on patients directly, however,

our proposed method is closely related to it. In this thesis, we aim to enhance the

wound images taken using smartphone cameras to mitigate the adverse effect caused

by ill-exposures, which is typically found in wound images taken with smartphone

cameras. The enhancement in wound images can be beneficial to common wound

analysis tasks (such as wound image segmentation).

2.2 Image Illumination Enhancement

Image illumination enhancement refers to methods which enhance the original image

in order to have a more preferable illumination condition. We categorize the methods

in 3 types, which are histogram-based, frequency-based and Retinex-based methods.

2.2.1 Histogram-Based Methods

Histogram-based image enhancement methods are widely studied in many litera-

tures. Many methods are based on histogram equalization[19], which works by

remapping the colors of the input image based on the histogram of the pixel values
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(gray value). The goal of using histogram-based methods is to enhance the contrast

of the original image, which does not put much constraint on preserving the original

color information of the input image. These methods can be further divided into

global and local methods based on the image regions they take effects.

2.2.2 Frequency-Based Methods

Frequency-based methods[39, 5] are sometimes referred to as enhancement methods

in the frequency domain, which are contrary to methods in the spatial domain. Un-

like spatial domain methods which directly consider images as matrices of pixel val-

ues, frequency domain methods take images as signals and generally require Fourier

transform. The frequency domain is converted back into the spatial domain after

operations are applied. Apart from illumination enhancement, frequency domain

methods are also widely used in image smoothing, image sharpening, de-noising,

and etc.

2.2.3 Retinex-Based Methods

Retinex-based methods[37, 51, 16] focus on separating an image into two compo-

nents which are illumination and reflectance map. They are a group of methods

based on the Retinex theory[27]. The effect of illumination enhancement is directly

related to the accuracy in estimating the illumination maps, which ideally only

reveal information of the illumination condition in the real world.

Our proposed method belongs to the Retinex-based methods. The Retinex The-

ory is used in bracket image generation (in Section 5.4).
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2.3 LDR and HDR

The dynamic range of images refers to the ratio between the brightest and darkest

part of an image [36]. Most of the images we encounter and use are LDR (low

dynamic range) images. LDR images, which are contrary to the HDR (high dynamic

range) images, are taken with most commercial cameras and stored as 8-bit formats.

The most common LDR images use 8 bits (0-255) integers to present the pixel values

in each color channel. Due to the fixed values every pixel can vary, the range of pixel

values in each channel is limited. The HDR images, on the other hand, usually store

the pixel values in floating decimal numbers, which results in a much larger range

compared with the LDR images[40]. HDR images capture a much wider range of

light intensities than LDR images do. In this way, HDR images can more accurately

record the illumination changes in natural scenarios, especially in very dark and

very bright environments. Capturing HDR images directly can be rather expensive

since it requires dedicated imaging devices to support enough dynamic range in

sensors. Generally, HDR images are synthesized with several LDR images taken

with different exposures, and it has been a standard way for most photographers

and artists to generate HDR products. Displaying HDR images directly can also

be costly since most commercial displays and printers are limited to low dynamic

ranges. So instead of directly displaying HDR content, tone mapping is used to

convert an HDR image by mapping the high dynamic range back to the range of

LDR images for display.

Due to the very limited range of illumination change the LDR images are capable

to display, LDR images tend to suffer from exposure issues, typically over-exposure

and under-exposure. An LDR image with over-exposure issues usually contains a

large portion of very bright areas (pixel values approaching 255). These pixels be-
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Figure 2.1: Images with Different Exposures[1]

come saturated because the number of photons received at these sensor locations

exceeds the maximum that pixel values are able to display. On the other hand,

a large portion of dark areas (pixel values approaching ) usually can be found in

under-exposed images. These pixels are negatively saturated because the number

of photons received is too small that they fail to provide enough contrast. Figure

2.1 shows an example of LDR images of different exposures. The histogram of the

illumination layer of each image is also included. We can clearly notice that the

image on the left (under-exposed) contains lots of low-intensity pixels and pixel val-

ues in the image on the right (over-exposed) generally have high intensities. Most

pixel values in the image with appropriate exposure (correct-exposed) are concen-

trated in the center part of the histogram and such images can reveal more texture

information than the under- and over-exposed ones.

Converting LDR image into HDR image can enhance the contrast of the original

image since the range of pixel is expanded to allow more dynamic range. Mostly,

HDR images are tone mapped instead of being displayed directly. The tone-mapped
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Figure 2.2: Traditional HDR Generation

HDR image has the same dynamic range as the LDR image, but the color and

illumination contrast is enhanced compared with the original LDR image. In our

work, we aim to generate the tone-mapped HDR image directly to improve the

illumination condition of the original image.

2.4 HDR Image Generation

HDR images can be obtained directly, but most of the HDR images we encounter

are synthesized from LDR images. Traditional HDR image generation[10] pipeline

(see Fig.2.2) requires several LDR images taken with different exposures of the same

subject. For most smartphone cameras, 3 images are usually taken. These images

are then aligned to make the subject appear in the same position in each photo.

The method which combines several lower range photos taken with different

exposure values is usually referred to as exposure bracketing[Kalantari 2017].
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Ideally, the pixel values will have a linear relationship with the radiance received,

which means the value of each pixel should be linearly proportional to the radiance

received at the corresponding sensor. However, in reality, the relationships are

usually non-linear in most cameras. And different cameras usually have different

mapping. This mapping (radiance to pixel value) is usually referred to as the camera

response function (CRF). To recover the radiance distribution of the scene where

photos are taken, an inverse operation should be used to map the pixel values back

to the radiance values. This function, which is the inverse operation of CRF, is

named inverse CRF, or invCRF in most literatures. With the different exposures

used as well as the photos, we can estimate the invCRF curves of the camera. The

invCRF will map R, G and B channels separately, so three curves will be produced.

The invCRF, exposures, as well as photos, will be used to construct the HDR

image. The HDR image can be seen as the radiance map of the scene since it

reflects the degrees of radiance in each pixel. Also, due to the high dynamic range

in nature, the difference of the pixel values in the HDR can be several magnitudes

larger than the original LDR’s. Typically, the pixel values of HDR images are stored

using 32-bit floating-point numbers. In order to accommodate for most non-HDR

displays, tone mapping is usually performed on the HDR image to narrow the range

down and convert it to one LDR image. The LDR image processes lots of advantages

compared with the original LDR, most notably the increase of the contrast of colors.

It can also mitigate the exposure issues of the original LDR image.

Apart from the traditional way of generating HDR images, there are also many

researches which attempt to generate HDR content with fewer restrictions. For

example, some researchers have developed methods of generating HDR images using

single image. These methods, which are sometimes referred to as single-exposure

HDR generation, are usually implemented in two categories. The first category of
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single-exposure methods[31, 14] will first synthesize additional images with different

exposures, and go through the traditional HDR generation process with the original

and synthesized images. The second category of methods[13, 33] work more like a

direct mapping function. It learns the correlations between the LDR image and the

HDR counterparts and directly maps the LDR image to the HDR image.

The LDR-to-HDR conversion produces images with greater luminosity than stan-

dard imaging techniques to emulate the experience of human vision systems. Unlike

histogram-based images or Retinex-based images, HDR is not typically used in en-

hancement over existing photos.

In our work, we generate the HDR target image using the traditional HDR image

generation pipeline (in Section 6.3). The image is used as the ground truth when

we test the generated images on several metrics.

2.5 Tone Mapping

Tone mapping is the process of converting an HDR image back into an LDR image

for the ease of visualization in commercial displays and printers. Unlike the camera

response function, tone mappers are designed to enhance the visual quality instead

of solely expressing the positive relationship between radiance and pixel values. The

most common tone mappers are Drago[12], Mantiuk,[32] and Reinhard[41].

Tone mapping was used to generate the HDR image target in Section 6.3. We

also used tone mapping to convert HDR images generated from methods we compete

against (in Section 6.10) into 8-bit LDR images in performance comparison.
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2.6 Image Fusion

Image fusion[53] is very similar to the HDR generation as it takes several images to

generate one image with better visual quality. One key difference between image fu-

sion and HDR generation is, image fusion works without knowledge of the exposure,

so it is not related to the recovery of the radiance map. In other words, the rela-

tionship of pixel intensities and the radiance values is usually not consistent since

no information of environmental illumination is required when doing fusion. As a

result, image fusion will not necessarily preserve the positive relationship between

the pixel values and radiance levels. Most image fusion algorithms work in spatial

space or frequency space.

Other than enhancing the visual quality of images, the purpose of image fusion

varies on different scenarios, but in general, image fusion is a way to combine or

gather information from multiple images to create an output image with ideally all

required information for analysis, which is considered as a branch in data fusion.

While there are many standard techniques in medical image fusion[21], lots of

works are focused on images generated with specialized devices, such as MRI scan-

ners, and most of these methods are not designed for user-taken photos. In this

thesis, we only focus on photos taken by users.

In our work, we apply image fusion techniques on bracket images (in Section 5.4)

to generate the enhanced image.

2.7 Retinex Theory

Proposed by Edwin Land, Retinex Theory[27] provides a conceptual model on hu-

man color vision to account for color sensations in real scenes. The main idea behind

the Retinex Theory is color constancy, which means the perceived color of objects
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will remain relatively constant even under varying illumination conditions, or dif-

ferent ambient light levels. According to this theory, an image can be decomposed

and represented using two subcomponents, which are usually termed “reflectance”

(or “reflectance map”) and “illumination” (or “illumination map”). Reflectance

map can be considered the intrinsic color property of objects. The value of the

reflectance map is determined by properties (such as material) of the object itself,

and will always remain invariable when observed. Illumination map describes the

ambient illumination condition which is directly related to the light level. The two

subcomponents are independent of each other, and an image taken at a certain

level of illumination condition can be preserved as the element-wise multiplication

of these two components. This relationship can be concluded using Equation 2.1.

denotes the input image, while and denote the reflectance map and illumination

map respectively.

S = R⊗ I (2.1)

A large portion of our method is based on the Retinex theory. To be specific,

the assumptions of reflectance and illumination map of input images we made, op-

timization we used as well as the bi-directional network structure we proposed are

all based on it.

2.8 Image Segmentation

Image segmentation is a general process to group each pixel of input images. Pixels

belonging to the same object will be assigned with the same label(usually referred

to as image segments). There are generally two categories of image segmentation,

which are semantic segmentation and instance segmentation. These two segmen-
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Original Image Semantic Segmentation Instance Segmentation

Figure 2.3: Example of Semantic and Instance Segmentation [2]

tation methods are similar in the way that both provide pixel-level prediction on

the input images (which object does the current pixel belong to). The difference is

instance segmentation will differentiate objects within a same category, which, in

other words, can predict each pixel to which object it belongs. On the other, seman-

tic segmentation will not differentiate objects and can only output which category

the current pixel belongs to.

Fig.2.3 shows the segmentation results generated by semantic segmentation and

instance segmentation. Pixels with the same color are considered to belong to the

same type. In semantic segmentation, pixels related to all the chairs will have

the same label (chair). However, the segmentation result doesn’t directly provide

information on different chairs–they are instead treated as the same type. In instance

segmentation, all chairs are identified while every chair is treated as a single instance

labeled as chair.

Image segmentation is an important technique in image-based wound assessment.

In our work, we use image segmentation as a way to help evaluate the effectiveness of

our proposed method in image enhancement. The change in segmentation accuracy

is used as an indicator to show how much performance gain we can get in machine

vision tasks using the proposed enhancement method.
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Chapter 3

Related Work

In this chapter, we discussed methods which are related to our work, which are

Direct Enhancement, Multi-Exposure Fusion and Inverse Tone Mapping.

3.1 Direct Enhancement

In this section, we mainly discuss two classic types of methods which enhance image

contrast or color without additional information (such as multiple exposures) or

effect on dynamic range, which are histogram-based methods and methods using

illumination map estimation.

In histogram-based methods, Histogram Equalization[19] is a classic method

which remaps the colors of the input image based on the histogram of the pixel

values (gray value) so the cumulative distribution function of pixel values is approx-

imately linear. By making the pixel values more evenly distributed in an image,

it boosts the contrast of colors. It serves as the basis of many other histogram-

based methods. According to the area in which the method takes effects, there are

global histogram equalization methods (such as the Brightness Preserving Bi His-

togram Equalization, Dualistic Sub image Histogram Equalization, Recursive Mean
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Separate Histogram Equalization and etc) as well as local histogram equalization

methods (such as Adaptive Histogram Equalization and Contrast Limited Adaptive

Histogram Equalization).

Methods using illumination map estimation[37, 51, 16] are generally based on

the Retinex Theory[27, 28], which assumes that one image can be represented as the

pixel-wise product of two components, the reflectance map and the illumination map.

The reflectance map conserves the color information of the scene which is not affected

by the environmental light conditions, while the illumination map represents the

distribution of environmental lights in the image. A classic approach is Single Scale

Retinex[9] which uses one scale for surround function when doing convolution. Multi

Scale Retinex[22, 38] is similar but multiple surround functions are used. There

are many variations which are based on Muti Scale Retinex but extend to other

situations, such as improvements on color restoration[22], or on low-light images[30],

and etc.

3.2 Multi-Exposure Fusion

Exposure fusion techniques utilize information from images captured or synthesized

at multiple exposures to infer the HDR-like image with optimal exposure. Song

et al.[43] use a probabilistic model that preserves the calculated image luminance

levels and suppresses reversals in the image luminance gradients. Mertens et al.[35]

compute a perceptual quality measure for each pixel in the multi-exposure sequence

encoding desirable qualities such as saturation and contrast for fusion. Liu et al. [29]

perform signal decomposition using independent component analysis to restore tex-

ture and color information during fusion. Vonikakis et al. [46] introduce membership

functions, which assign weights to every pixel in images based on exposure rates and
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pixel illumination values. In our work, we merge images using a membership func-

tion similar to Vonikakis et al. [46] to merge images. A key difference is that using

exposure fusion to generate the final output, an intermediate fusion is performed

to enhance the texture details in highly saturated and negatively saturated regions.

Our method ensures that texture details are preserved maximally during exposure

fusion.

3.3 Inverse Tone Mapping

Inverse tone mapping or reverse tone mapping are referred as inverse Tone Mapping

Operator (iTMO) [7] or reverse Tone Mapping Operator (rTMO) in the literature.

It is the dual of tone mapping and infers an HDR from LDR image, which is the

opposite of tone mapping [7]. iTMO is similar to the conventional HDR imaging

pipeline, except that only one LDR image taken with single exposure level is utilized.

Endo et al. [14] propose a technique for synthesizing bracket images using Camera

Response Functions (CRFs) selected from 201 curves in Grossberg and Nayar’s

Database of Response Function [15]. They use k-means clustering and an encoder-

decoder model to learn the mapping between the input LDR image and synthesized

bracket images. Liu at al. [31] model the HDR-to-LDR image generation process

with three steps (dynamic range clipping, non-linear mapping and quantization)

and inverse each step by designing a dedicated neural network. [33] design a multi-

scale CNN architecture named ExpandNet that learns the direct mapping from

LDR image to its HDR counterpart. HDRCNN [13] predicts missing details in over-

exposed regions during HDR generation. Apart from directly generating an HDR

image, some works [52, 23] generate tone-mapped images or HDR-like images instead

of the original HDR images. Besides, some iTMOs [6, 25] focus on reconstructing
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saturated or over-exposed regions to recover lost information in highlight areas.

Similar to other iTMO methods, our proposed method only requires one LDR as

input, however, we focus on generating the tone-mapped image instead of the HDR

image itself.
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Chapter 4

Bracket Image Generation

In this chapter, we will describe our algorithmic pipeline using the Retinex model to

generate images with higher/lower exposures (bracket images). There are two steps

in generating images with different exposure. First, the image will be decomposed

into reflectance map and illumination map according to the Retinex Theory. Then

the illumination map will be adjusted (higher/lower exposure) and merged with

reflectance map to produce a bracket image which is only different in illumination

conditions from the input image.

The structure of our proposed pipeline in generating bracket images is shown

in Figure 4.1. Two types of deep networks are deployed in our pipeline, which

are DecomNet and SynthNet. DecomNet is used to decompose image into re-

flectance map and illumination map based on the Retinex Theory, and SynthNet is

an encoder-decoder model used to generate images with higher and lower exposure.

The pipeline is optimized in terms of maximized data sharing and consistency in

decomposition for images with a higher range of illumination densities.

The details in the design of the pipeline are discussed in the rest of the chapter.

The following sections in this chapter are structured in the following way. First, we
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Figure 4.1: Structure of Bi-Directional Network

discuss the assumptions we made in image decomposition and how an optimization

problem can be formalized based on them. We later describe how this optimization

can be achieved using a data-driven approach. Next, we discuss the methodology

used to synthesize bracket images given the reflectance map and illumination map.

At last, we wrap up and describe in detail the whole process in bracket image

generation in our proposed pipeline.

4.1 Assumptions in Decomposition

Directly decomposing an image into reflectance map and illumination map is a classic

ill-posed question, so we formalize the decomposition as an optimization problem

based on several assumptions. The assumptions used in image decomposition are

discussed in detail in this section.

An image S can be decomposed into reflectance map R and illumination map

I. The relationship (see Equation. 2.1) holds true for any given image S. For a

grayscale image with only one channel, there is only one reflectance map responding

to that channel. For color images with multiple color channels (such as RGB images),
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the number of reflectance maps is equal to the number of color channels. In this

section, we discuss the assumptions proposed in the Retinex Theory as well as the

ones on R and I.

Color Constancy and Consistency of Reflectance. When observing an

object, human color perception system will ensure the color perceived stays relatively

constant (on the surface) under varying illumination conditions. Color constancy is

usually considered ideal since it is not affected by the illumination condition. We

use reflectance map Rto represent the objective color independent from illumination

conditions. In this way, we can assume the values of the reflectance map remain

consistent in images only different in illumination conditions.

Independence in Color Channels. For color images (RGB image), the same

computation is performed on each color channel. In other words, each color channel

can be considered as the element-wise multiplication between the unique reflectance

map and the illumination. The reflectance map on each channel is usually different

from each other, but the same reflectance map is used across all channels.

Smoothness of Illumination. The intensities of illumination tend not to

change drastically in consecutive regions in images, which is intuitive in most cases.

In other words, The overall variation of values in illumination map I should be low

if the pixels are on the same surfaces. However, this assumption will not hold if the

observed object is highly complex in structure.

4.2 Optimization Formation

Given the relation between S, R and I as well as the assumptions mentioned above,

we can translate the decomposition problem into an optimization problem. We

define the re-construction error in the Equation 4.1, given the target image S, esti-
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mation of reflectance map R̂ and estimation of illumination map Î.

Lrecon(R̂, Î, S) = ‖R̂⊗ Î − S‖1 (4.1)

Based on the assumption on the consistency of reflectance, difference between

predicted reflectance map R̂ and the ground-truth reflectance map R should be min-

imized, so the consistency loss of the reflectance map can be defined in Equation 4.2,

given R and R̂. In general, the value of ground-truth reflectance map R is unknown.

To solve this problem, we will discuss how the value of R can be approximated with

a data-driven approach.

Lrefle(R, R̂) = ‖R− R̂‖1 (4.2)

By using the assumption on the smoothness of illumination, high variation in

the predicted illumination map I should be penalized. However, since illumination

should only be considered smooth for pixels on the same plane, minimizing gradient

variation of the illumination map without considering structure information does

not result in reasonable solutions. In the most extreme case, the values in the

illumination map will all be equal and result in 0 in variance, which is far from

reality.

To resolve this issue, the weight matrix can be used to imply the structural

property of objects. A typical way to include structural information in the estimated

illumination map is to construct a weight matrix W (usually we use 2 matrice to

represent weights in horizontal and vertical axis separately) using the information

provided in the reflectance map R or the input image S. In this way, we can use

Equation 4.3 to represent the smoothness loss of illumination. The calculation of

smoothness loss is performed in both horizontal and vertical directions. ∆Ih and
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∆Iv denote the average gradient in horizontal and vertical directions respectively.

∆Wh and ∆Wv denote the weight matrix along the horizontal/vertical axis. The

construction of the weight matrix is discussed in the next section.

Lsmooth(I) = ‖∆Ih ⊗Wh + ∆Iv ⊗Wv‖ (4.3)

We combine the 3 loss function as the target loss function. The target loss

function is illustrated in Equation. 4.4. λ1, λ2 and λ3 are positive coefficients used

to balance the weights in optimization. By minimizing the target loss function, we

can obtain the R̂ and Î from the given image.

L(R̂, Î) = λ1Lrecon + λ2Lrefle + λ3Lsmooth (4.4)

4.3 Construction of Illumination Weight Matrix

We usually consider the horizontal weight Wh and the vertical weight Wv sepa-

rately when constructing the weight matrix. In this section, we will discuss several

strategies to construct the weight matrix.

Uniform Weight. By setting the values of Wh and Wv all equal to 1, Lsmooth

can be treated as the minimization problem without any structural information

involved. This is a trivial case which is not used in our experiments.

Gradient of Illumination Map. Guo et al.[16] proposed an iterative way to

calculate the value of illumination map I. According to their method, the initial

illumination map Î can be used as the weight in approximation. The initial illumi-

nation map Î can be calculated as the maximum intensity in R, G and B channels

for all the pixels (see Equation 4.5). The weight in both axes can be computed using

Equation 4.6 and 4.7 .
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Î(x) = max(Si(x)), i ∈ r, g, b (4.5)

Wh =
1

∆hÎ + ε
(4.6)

Wv =
1

∆v Î + ε
(4.7)

Gradient of Reflectance Map. The reflectance map can imply the structure

information of the input image. More precisely, the gradient of the reflectance map

can be used as an indicator of the existence of strong structures (such as edges) in

the image. We can assume that the level of illumination can change drastically in

pixels where such strong structures exist. In this way, the weight can be considered

as the gradient of reflectance map in both axes, which is shown in Equation 4.8 and

4.9. λ is a scalar controlling the effect of weight.

Wh = exp(−λ∆Rh) (4.8)

Wv = exp(−λ∆Rv) (4.9)

4.4 Data-Driven Approach to Solve the Optimiza-

tion Problem

As we have discussed in the previous section, to calculate the loss in the generated

reflectance map Lrefle, we need to know the ground-truth value of the reflectance

map R, which is not possible in general. To address this issue, we can adopt a data-
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driven approach to approximate the value of R. With the data-driven approach, we

can provide a workable solution to minimize the defined loss function (see Equation

4.4) and finally solve the optimization problem to get the values for reflectance R̂

and illumination map Î.

Instead of only relying on one input image S, we introduce a way to take image

pairs as input. One image pair consists of two or more images. In the case of

only two images, we use a reference image S ′ apart from the input S we hope to

decompose. The reference image S ′ should only be different from the input image S

on the illumination conditions. In other words, the reflectance maps of both images

should be the same, as indicated in Equation 4.10.

R(S) = R(S ′) (4.10)

Without other prior knowledge of reflectance maps of both images, we can sim-

ulate the process of generating R and I using a deep learning network and use the

assumptions discussed above as constraints to solve the optimization problem. The

network takes into a pair of images as input and applies the same transformation

on both images. The high-level representation is shown in Equation 4.11 and 4.12.

R̂, Î ← DecomNet(S) (4.11)

R̂′, Î ′ ← DecomNet(S ′) (4.12)

We adopt the DecomNet structure from Wei et al[51].The structure of the

DecomNet is illustrated in Figure 4.2. The input RGB image (pixel range be-

tween 0 and 1) is used as the initial reflectance map (shape = W × H × 3) while

the initial illumination map (shape = W ×H × 1) was first inferred from the input
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Figure 4.2: Network Structure of DecomNet [51]

RGB image. Similar to LIME, the initial illumination is the maximum intensity in

R, G and B channels for all the pixels (see Equation 4.5). The initial reflectance and

illumination map are stacked (shape = W ×H × 4) on the channel dimension and

used as input to the network. The input layer of the DecomNet is a convolutional

layer which takes W × H × 4 tensors as input. Followed by the input layer is a

series of same network cells. Each network cell consists of a convolutional layer and

ReLu function. The output layer is a convolutional layer without activation func-

tions. Since all the convolution operations are padded to maintain the input size,

the shape of the output tensor will not be changed. To obtain the output reflectance

and illumination map, we split the output tensor into a W ×H×3 and a W ×H×1

tensor. Sigmoid function is applied on both tensors to make the pixel range between

0 and 1.

4.4.1 Training of DecomNet

Training the DecomNet can be a little different from most deep learning networks.

To be able to calculate the loss function (see Equation 4.4), we need to provide

the ground-truth reflectance map R. Without other information, we deploy two
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exact DecomNets to train simultaneously, the parameters are shared across the two

networks. The reflectance map obtained from one network is used as the ground-

truth R, while another reflectance map is considered as the estimation R̂.

While the parameters of these two networks are shared, we pass slightly different

data for training (Or there will be no difference than only training one network). As

we discussed before, a pair of image (S, S ′) is used as inputs for the two networks

(S is used in the first DecomNet while S ′ is used in another). And we update the

loss function as Equation 4.13.

L(R̂, Î, S, R̂′, Î ′, S ′) = λ1LAvgRecon(R̂, Î, S, R̂′, Î ′, S ′)+

λ2LAvgMutRecon(R̂, Î, S, R̂′, Î ′, S ′)+

λ3LAvgSmooth(R̂, Î, S, R̂′, Î ′, S
′)+

λ4Lrefle(R̂, R̂′)

(4.13)

where

LAvgRecon(R̂, Î, S, R̂′, Î ′, S ′) =
1

2
(Lrecon(R̂, Î, S) + Lrecon(R̂′, Î ′, S ′)) (4.14)

LAvgMutRecon(R̂, Î, S, R̂′, Î ′, S ′) =
1

2
(Lrecon(R̂, Î ′, S ′) + Lrecon(R̂′, Î , S)) (4.15)

LAvgSmooth(R̂, Î, S, R̂′, Î ′, S
′) =

1

2
(Lsmooth(Î , R̂) + Lsmooth(Î ′, R̂′)) (4.16)

To calculate the LAvgSmooth (see Equation 4.16), we use Equation 4.17.
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Lsmooth(Î , R̂) = ‖∆Îh ⊗ exp(−λ∆R̂h) + ∆Îv ⊗ exp(−λ∆R̂v)‖ (4.17)

4.4.2 Evaluation of DecomNet

Evaluation of DecomNet is straight-forward: take either one of the network (since

there share the same parameters) and feed one image as input. The output of the

network contains the reflectance map and the illumination map.

4.5 Illumination Adjustment

Given an input image, we aim to generate images with different exposures. We

have discussed the pipeline of decomposing the image into reflectance map and

illumination map. In this section, we will discuss how these two components can be

used to synthesize images with different exposures.

As we discussed before, the illumination map controls the light information of the

image. To change the exposure of a given image, we need to update the illumination

map of the original image, and use the new illumination map to merge with the

original reflectance map. We can represent the operation as Equation 4.18. We use

f(Î) to denote the transformation of the estimation of illumination map Î.

S∗ = R̂⊗ f(Î) (4.18)

Although we can use specific rules to design the transformation function f , a

better way is to simulate real scenarios. In this way, we can learn the transformation

function by using a pair of images (similar to decomposition).

We can again use a neural network (SynthNet) to learn the transformation.

Given the input image S, we choose an image S+ which is taken with higher expo-
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Figure 4.3: Network Structure of SynthNet [51]

sure. In theory, after decomposing these two images, the reflectance maps should be

identical while the illumination map of S+ reflects a brighter light condition than

the illumination map of S. The network structure is illustrated in Figure 4.3.

SynthNet acts as the transformer function which can transform the original illu-

mination map of the input image. Different from how we represent the transformer

function in Equation 4.18, we also use the reflectance map as input to help us design

the loss function (discussed in the next section). The main structure resembles the

structure of U-Net, which contains a series of convolution operations followed by a

series of de-convolution operations. Skip connections are also added to avoid infor-

mation loss during the de-convolution steps. To solve the shape mismatching issues

when adding the skip connections, up-sampling is performed before de-convolution

operations. The results of de-convolution operations are concatenated and processed

with several convolution layers to output a tensor with one channel (illumination

map).
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4.5.1 Training of SynthNet

SyntheNet takes the output of DecomNet as input. For the original image S, R̂

and Î are obtained using DecomNet. The output Î∗ denotes the illumination map

which is transformed in SynthNet. The relationship is shown in Equation 4.19.

Î∗ ← SynthNet(R̂, Î) (4.19)

We consider two metrics for the loss function for SynthNet: 1) the similarity

of the synthesized image S∗ and a similar image S+ with higher exposure; 2) the

smooth loss of the generated illumination map. The loss function we use to train

SyntheNet is shown in Equation 4.20.

L(Î∗, R̂, S+) = λ1Lrecon(R̂, Î∗, S+) + λ2Lsmooth(Î∗, R̂) (4.20)

4.5.2 Evaluation of SynthNet

Evaluation of SynthNet is straightforward. We can use Equation 4.19 to get the

new illumination map. By merging the illumination map with the reflectance map

(see Equation 4.18) we can generate an image with a different exposure. While we

illustrate the training process of SynthNet using an image S+ with higher exposure

than the original image S as the reference image, an image with lower exposure S−

can also be used. The difference is: when we use S+ as the reference image, the light

level of the generated illumination map Î∗ will be higher than before Î (closer to

the illumination map of S+); however, the light level of the generated illumination

map Î∗ will be lower than before Î if we use S− as the reference image.
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4.6 Bi-Directional DRM Neural Network

Given an input image S and a reference S ′, the DecomNet and SynthNet can

work together to transform the input image S to a new image S∗ which is similar

to the reference image S ′ on the illumination levels. It provides a feasible way

to either up-expose (increase the global illumination) or down-expose (decrease the

global illumination) the original image by varying the reference images. However, to

acquire both up-exposed and down-exposed images, we need to repeat the training

process with different input-reference image pairs and use multiple sets (2 sets at

least) of DecomNets and SynthNets to generate images with different exposures.

Besides, these training processes are isolated, which means one input-reference image

pair will only be used in one training and evaluation process.

To be able to synthesize images with different exposures during a single training

and evaluation phase. We propose a bi-directional network structure which can

take 3 images as input based on the DecomNet in the training phase, and generate

two images simultaneously with higher and lower exposures using one image in the

evaluation phase. In this section, we will discuss the details of the bi-directional

network structure and loss function. We also adopt a network structure similar to

SynthNet to generate enhanced illumination maps. These two network structures

can be trained and evaluated end-to-end. The bracket image generation using the bi-

directional network and methods for illumination map enhancement will be discussed

in detail in this section. We will also discuss how this method can be generalized to

enable multiple-image (more than 2 images) generation.
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4.6.1 Network Design

The structure of the bi-directional network is illustrated in Figure 4.1. To train the

network, three images with different exposures are required. We use three moulage

images of different exposures from the IVDS dataset. Among the three images,

image A has the highest illumination level (over-exposed) and image C has the

lowest illumination level (under-exposed). The illumination level of image B sits

between image A and C. Image B is used as the reference image for both image A

and C.

In the training phase, we deploy 2 DecomNets with all parameters shared. Image

A and C are assigned to separate networks in training, while image B (reference

image) can be assigned to either of the 2 networks. Since we do not modify the

structure of DecomNet, the structure of each network stays unchanged (see Figure

4.2). In every training iteration, we calculate the combined loss of the 3 networks.

The loss function is defined in Equation 4.21. For the simplicity of the equation,

we use Îx and R̂x to denote the illumination and reflectance map generated by the

DecomNet using x as input. While λn, n = 1, 2, ... are used as coefficients to balance

each importance of each loss components.

Lbi direc = λ1(Lreconn(R̂A, ÎA, A) + Lreconn(R̂B, ÎB, B) + Lreconn(R̂C , ÎC , C))+

λ2(Lreconn(R̂B, ÎA, A) + Lreconn(R̂C , ÎA, A)+

Lreconn(R̂A, ÎB, B) + Lreconn(R̂C , ÎB, B)+

Lreconn(R̂A, ÎC , C) + Lreconn(R̂B, ÎC , C))+

λ3(Lsmooth(ÎA, R̂A) + Lsmooth(ÎB, R̂B) + Lsmooth(ÎC , R̂C))

(4.21)

Inspired by the training process of DecomNet, the loss we aim to minimize
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also contains three parts. The first part describes the quality of the reconstruction

using the decomposed maps. This loss is designed based on the basic assumption

of the Retinex Theory (see Equation 2.1). The second part describes how well the

reflectance maps generated from images with different illumination conditions can be

used to construct images. This loss is based on the assumption that the reflectance

maps should be identical for images different only from illuminations (see Equation

4.10). The last part is used to ensure the illumination maps should be smooth in

general. This loss can also be seen as the smoothing operation on the illuminance

map.

The decomposed maps of the three images are used as inputs for the SynthNet.

To be able to generate two illumination maps (both up-exposed and down-exposed

versions), two instances of SynthNet are required. Contrary to the training process

of DecomNet, the two SynthNets are trained separately. The first instance uses

decomposed maps from image A as input while the second one uses maps from image

C. Both instances use the illumination map of image B as ground-truth. In this

way, the first instance learns the transformation function to reduce the illumination

density (down-exposure) while the second one learns how illumination density can

be increased (up-exposure). The same loss function (see Equation 4.20) can be used

in this process. In the final step, the illumination map is used together with the

corresponding reflectance map to generate bracket images. We call the network the

bi-directional network since it integrates the up- and down-exposure operation at

once and can be used to generate bracket images with higher and lower exposures

than the original images.
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4.6.2 Discussion

Compared with training two completely different models for bracket image genera-

tion, our proposed bi-directional network has several advantages: 1) Data sharing.

The original design of DecomNet can only be trained using two images (input and

reference images). Our bi-directional design makes training multiple in a single

phase possible. 2) Stable training. By using the information from three images, we

can apply more constraints in the training process, which can lead to a more sta-

ble training process. 3) Decomposition consistency. Decomposition can yield more

consistent results for images taken with a higher range of illumination densities.
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Chapter 5

Exposure Fusion

In this chapter, we will discuss how the bracket images(images with different expo-

sures) can be merged into an HDR-like image using exposure fusion. The generated

image will take into consideration all texture information of bracket images and give

preferable illumination conditions.

In order to prevent texture information loss and also enhance details in ill-

exposed regions, we propose the detail-recovered fusion pipeline in exposure fusion

is shown in Figure 5.1. Three images (down-exposed, up-exposed and the original

image) are used as inputs. At the first stage, we use two transformer functions to-

gether with illumination-based fusion to generate a detail-enhanced version of each

bracket image(labeled as Enhanced Bracket Images). The detail-enhanced bracket

images are then fused again using illumination-based fusion to synthesize the HDR-

like image.

We discuss the design of our proposed pipeline in the rest of the chapter. The fol-

lowing sections in this chapter are structured in the following way. First, we discuss

illumination-based fusion, which is central in our implementation. We later show

the limitation of applying illumination-based fusion directly in image generation. To
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Figure 5.1: Exposure Fusion and HDR-like Image Generation

overcome the limitation of illumination-based fusion, we describe how we enhance

image details using our designed transformer functions according to different image

exposures. At last, we describe in detail how HDR-like images can be generated

using our proposed pipeline.

5.1 Illumination-Based Fusion

Illumination-based fusion[46] is a kind of image fusion method which takes several

images with different illumination conditions (or different exposures) and merges

them into one image. Given three images S−, S and S+ with increasing exposures,

we can design three membership functions (weights) for each image and use the

weighted sum of the three images as the fused result.

The curves of the three membership functions are shown in Figure 5.2. The hor-

izontal axis denotes pixel intensity in the illumination layer in any 8-bit images. For

under-exposed images (images with low exposure), the bright regions are more em-

phasized than the dark regions since the bright regions contain texture information

of the scene while the dark regions are mostly negatively saturated. On the other
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Figure 5.2: Membership Functions for Different Exposures. 1)left: under-exposed
images. 2) middle: well-exposed image 3) right: over-exposed image

hand, for over-exposed images (images with high exposure), the saturated pixels are

mostly included in the bright regions while texture details are more significant in the

dark regions. Thus the dark regions are emphasized relative to the bright regions

in the over-exposed images. For well-exposed images (exposure between over- and

under-exposure), regions either too bright or too dark are penalized while we only

concentrate on the regions with moderate illumination intensities.

To apply the illumination-based fusion, we need to obtain the illumination layer

from each of the three images. Similar to the illumination map which is generated

from image decomposition based on the Retinex Theory, illumination layer can also

be used as an estimator of the illumination. However, illumination layer doesn’t

follow the assumptions (relationship between reflectance, smoothing assumptions,

and etc.) made in the Retinex Theory, also it doesn’t convey information on the

intrinsic properties of the objects in the scene. However, it serves the fusion purpose

well because of its simplicity and compatibility in our pipeline.

Three images with different exposures are first converted into the Y CbCr space.

The first channel (the Y channel) encodes the information of the illumination, while

the other two channels control the color information in the image. We take the

Y channel only and use it to calculate the weight matrix using the membership

functions mentioned above. For an image S with size h×w× 3, the resulted weight

matrix can be calculated using Equation 5.1.
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W(i,j) = Fmem(Y (S)(i,j)), 1 ≤ i ≤ h, 1 ≤ j ≤ w (5.1)

Y (S) denotes the Y channel (shape of Y channel is h×w) of the image S in the

Y CbCr space. We use Y (S)(i,j) to represent the scalar value on the row i and column

j from the Y channel. This value is then passed to one of the three membership

functions based on the illumination intensity level. The calculated value from the

membership function is used to construct the weight matrix, with the scalar value

on the row i and column j from the weight matrix W equals to the value calculated

from the membership function.

The weight matrices for the three images (S−, S and S+) are denoted as W−,

W and W+. They all have the same shape (h × w) since the shapes of the three

input images are the same (h × w × 3). We calculate the weighted sum using the

three weight matrices. This operation is shown in Equation 5.2.

Sweighted = (W− ⊗ S− + W ⊗ S + W+ ⊗ S+)⊗ (
1

W− + W + W+
) (5.2)

We use the symbol ⊗ to represent the element-wise multiplication. The image

matrices are multiplied with their corresponding weight matrices in an element-wise

fashion. The latter part 1
W−+W+W+ means we first add the three weight matrices,

and calculate the element-wise reciprocal (calculate the reciprocal for each element

in the result matrix), which is different from the inverse matrix of the sum of three

weight matrices.

The final step is to normalize the image to make the all the pixel values are

within a certain range (e.g. 0-255). The pseudo-code of the fusion process is shown

in Algorithm 5.1.
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Algorithm 1 Illumination-based Fusion

1: procedure Fuse(img+, img, img−) . RGB images with high/median/low
exposures

2: rgb list← {img+, img, img−}
3: weight list← {}
4: for rgb in rgb list do
5: ycbcr ← convert rgb to YCbCr space.

6: Y ch← get the Y channel from ycbcr.
7: weight list.add(get weight matrix(Y ch))
8: end for

. weight list contains weights for rgb list
9: img∗ ← weighted sum of rgb list

10: img∗ ← normalized(img∗)
11: return img∗. Fused image. Clip the pixel values within the range of (0− 1)
12: end procedure

5.2 Direct Fusion

5.2.1 Fusion Concept

To generate the HDR-like image, we synthesize two bracket images with the bi-

directional network given an input image. The input image S is up-exposed to an

image with a higher illumination level S+ and down-exposed to an image with a

lower illumination level S−. Using the illumination-based fusion, we can directly

generate the fused result.

The process of direct fusion is shown in Equation 5.3. We use SF to denote

the resulted image from direct fusion. The implementation of function FUSE() is

described in Algorithm 5.1.

SF = FUSE(S+, S, S−) (5.3)

46



5.2.2 Limitations of Direct Fusion

While directly applying the illumination-based fusion can integrate the most textural

informative regions into the resulting image, there are some limitations for over- and

under-exposed images. In over-exposed images, a large portion of the image regions

can be saturated (the values of pixels are approaching 255). The saturated regions

cannot provide any viable information for analysis. However, these highly saturated

pixels can still have a positive weight when being used for fusion as long as the pixel

value is not as high as 255. Similar problems occur on the under-exposed images.

When fusing the under-exposed images, some of the dark regions are negatively

saturated (the values of pixels are approaching 0), but as long as the pixel values

are not 0, a small positive weight will be applied in the fusion process.

Every pixel value of the fused result Sweighted can be seen as the weighted sum

of three pixel values taken from the three images at the same pixel location. The

relationship can be represented in Equation 5.4. For pixel located at (i, j), if it

is saturated in S+ with no information gain for the full image, the pixel value

Sweighted(i,j) computed using S−(i,j) and S(i,j) can be seen as diluted because of the

effect of weighted average. Similarly, if the pixel is negatively-saturated on S−, the

pixel value will also be diluted because only S(i,j) and S−(i,j) are providing texture

information and the averaged value is affected by S−(i,j).

Sweighted(i,j) =
W−

(i,j)S
−
(i,j) + W(i,j)S(i,j) + W+

(i,j)S
+
(i,j)

W−
(i,j) + W(i,j) + W+

(i,j)

(5.4)

The dilution of the pixels causes the degradation of the contrast for the whole

image. It is most obvious if the over- or under-exposed regions are large. Because

of this limitation, the fused image may degrade heavily on contrast in highly satu-

rated or negatively saturated regions. Figure 5.3 shows the comparison between the
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(a) (b)

Figure 5.3: The comparison between the original input image (a) and the directly
fused result (b). We can clearly notice that some texture details in the wound area
are lost after direct fusion.

original image S and the direct fused image using illumination-based fusion. The

original image is highly over-exposed in some regions. In these regions, the fused

image even loses more texture details because of the effect of dilution.

5.3 Detail Enhancement

To address the texture information loss using illumination-based fusion, we propose a

method to enhance the texture details before performing fusion. The detail enhance-

ment is used as one additional step to reduce the contrast loss in illumination-based

fusion. Two transformer functions are used to enhance the details, for over- and

under-exposed images respectively.

5.3.1 Transformer Functions

The transformer function for the over-exposed images is defined in Equation 5.5

while the one for the under-exposed images is defined in Equation 5.6. As gamma

correction is commonly used to improve contrast in dark images[24], the design of

TF− and TF+ are based on gamma correction with TF− enhancing the details in
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over-exposed and TF+ enhancing the under-exposed regions.

Parameter img is a h×w× 3 matrix representing the input RGB image. And λ

is a small custom parameter. As for TF+(img, λ), λ are the inverse of γ in gamma

correction. TF−(img, λ) works by applying gamma correction on the color-inverted

version of the input rather than the input itself. Then, we invert the color after

gamma correction to generate the output.

TF−(img, λ) = 1− (1− img)
1
λ (5.5)

TF+(img, λ) = img
1
λ (5.6)

These two transformer functions are used to generate detail-enhanced copies

of the original image. For an over-exposed image, TF−(img, 1), TF−(img, 2) and

TF−(img, 3) are generated and similarly, we will generate TF+(img, 1), TF+(img, 2)

and TF+(img, 3) for an under-exposed image. One thing to notice is: when the value

of λ equals to 1, either TF−(img, λ) or TF+(img, λ) will return the original image

without any modification. So, in our case, there are two newly-generated images for

any input image, and we can use the three images (2 newly-generated ones and the

original one) to synthesize the detail-enhanced image.

Since the two transformer functions will also change the illumination of the input

image when enhancing the details, we use the illumination-based fusion again in the

last step of detail enhancement. The three images (TF−(img, 1), TF−(img, 2) and

TF−(img, 3) for over-exposed image, TF+(img, 1), TF+(img, 2) and TF+(img, 3)

for under-exposed image) are synthesized using the illumination-based fusion. The

fusion process for over- and under-exposed images can be represented in Equation

5.7 and 5.8 respectively. FUSE is the illumination-based function which we defined
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Figure 5.4: Intermediate Results and Enhanced Result (over-exposed image)

in Algorithm 5.1. img+E and img−E mean the enhanced versions of the over- and

under-exposed images. This process is illustrated in Figure 5.1, where images with

various exposures are processed with the two transformer functions before being

fused using the illumination-based fusion. The three generated images (Enhanced

Bracket Images) are detail-enhanced versions of the former ones.

img+E = FUSE(TF−(img, 1), TF−(img, 2), TF−(img, 3)) (5.7)

img−E = FUSE(TF+(img, 3), TF+(img, 2), TF+(img, 1)) (5.8)

5.3.2 Output of Transformer Functions

Figure 5.4 and 5.5 show the original images, images transformed using the trans-

former functions together with the detailed enhanced image. In Figure 5.4, the

input image TF−(img, 0) is over-exposed, so we use function TF− to recover the

details in the over-exposed regions. Similarly, in Figure 5.5, we use function TF+

to recover the details in the under-exposed region of the input image TF+(img, 0).

We can clearly see the detail-enhanced images contains more texture information in

the ill-exposed regions for over- and under-exposed image input.
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Figure 5.5: Intermediate Results and Enhanced Result (under-exposed image)

5.4 Detail-Recovered Fusion

To generate the HDR-like image with preferable illumination and texture details

recovered in the ill-exposed region, we propose the detail-recovered fusion which

can take 3 bracket images as input. With the knowledge of detail enhancement for

both over- and under-exposed images as well as illumination-based fusion, the fusion

process is relatively straightforward. For the 3 bracket images (S+, S, S−), we first

apply different detail enhancement methods based on their illumination conditions.

TF+ is used to process the image S− and the detail-enhanced version of S− can be

obtained. Similarly, we obtain the detail-enhanced version of S+ using TF−. For

image img, we can use both TF+ and TF− to enhance details in both over- and

under-exposed regions (see Equation 5.9).

imgE = FUSE(TF+(img, 1), img, TF−(img, 1)) (5.9)

When we acquire the detail-enhanced versions of three images (img−E , imgE and

img+E), we apply the illumination-based fusion on these enhanced images to get the

detail-recovered result (see Equation 5.10).

imgDR = FUSE(img+E , imgE, img
−
E) (5.10)
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The pseudo-code of this algorithm is shown in Algorithm 2. And the pipeline of

detail-recovered fusion is illustrated in Figure 5.1.

Algorithm 2 Detail-recovered Exposure Fusion

1: procedure DR-Fuse(img+, img, img−) . Up/Original/Down exposed images
2: img list+ ← {}
3: img list− ← {}
4: img list← {}
5: for λ in 1..3 do
6: img list−.add(TF−(img−, λ))
7: img list+.add(TF+(img+, λ))
8: end for
9: img list.add(TF+(img, 2))

10: img list.add(img)
11: img list.add(TF−(img, 2))

. Perform first level fusion on 3 images
12: img

(1)
+ ← FUSE(img list+)

13: img
(1)
− ← FUSE(reversed(img list−))

14: img(1) ← FUSE(img list)
15: img∗ ← FUSE(img

(1)
+ , img(1), img

(1)
− ) . Perform second level fusion

16: return img∗ . Fused image.
17: end procedure

5.4.1 Global Illumination Adjustment

To mitigate the change in global illumination in detail-recovered fusion, we introduce

a global illumination multiplier ψ to adjust the lighting condition. We define ψ as

follows.

ψ = min(
1

max(imgDR)
,
max(avg(img), C)

avg(imgDR)
) (5.11)

img is the original image and imgDR is the fused image. C is a constant that

controls the average pixel values of the fused image in case the original image is too

dark or too bright. We also limit pixels of the adjusted image to the (0− 1) range

by not allowing the value of ψ exceeding 1/max(imgDR). We set C = 0.6 for all
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original bright image one-step fusion enhanced image

Figure 5.6: Visual Comparison(Over-Exposed Images)

original dark image one-step fusion enhanced image

Figure 5.7: Visual Comparison(Under-Exposed Images)

our experiments.

The multiplier ψ changes the illumination by scaling the pixel values linearly. It

also ensures every scaled pixel in the resulted image will always stay in the range

(0− 1), so no information will be lost due to value clipping.

The fused result after we adjust the global illumination can be denoted as

imgDR(ψ) (see Equation 5.12).

imgDR(ψ) = ψ × imgDR (5.12)

5.4.2 Visual Comparison of Fused Results

We visually compare the fused images generated using the direct approach (one-step

fusion) and the detail-recovered approach. We use over- and under-exposed images

as inputs and compare the fused results. The visual comparisons are shown in Figure

5.6 and 5.7. More detailed comparisons will be discussed in the next chapter.

We can notice the images generated using detail-recovered are visually better
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than the directly fused images in over- and under-exposed illumination conditions.

Specifically, for the over-exposed image, the recovered fused image provides more

smooth-lit texture details in the wound areas, a larger portion of over-exposed re-

gions is also recovered. For under-exposed images, the recovered fused image is not

only more smooth in light, but it also contains far less noise than the directly fused

image.

54



Chapter 6

Experiments and Evaluation

In this chapter, we discuss the experiments we have conducted in detail. We also

included performance evaluations of our proposed method using several metrics such

as SSIM, PSNR, dice coefficient, and etc.

6.1 Dataset Preparation

In our previous work[20], the Illumination Varying Dataset (IVDS) is created to

analyze the correlation between image illumination and segmentation accuracy. It

consists of 7 separated sub-datasets and each sub-dataset contains 7920 images

of a wound moulage captured under various illumination conditions/smartphone

cameras/parameters. The moulage is illustrated in Figure 6.1.

The illumination included 33 different light sources, 16 light color temperatures

ranging from 3200K to 5600K and 15 light intensities ranging from 10 to 255. The

location of the light source is attached on a controllable moving platform and the

color temperature is controlled using Python. The hardware settings are shown in

Figure 6.2. And the details of IVDS dataset are listed in Table 6.1.
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Figure 6.1: Moulage Used in IVDS Creation[20]

Figure 6.2: Hardware Settings Used in IVDS[20]

6.2 Data Preprocessing

The datasets we used in our experiments are from the Wound Illumination Vary-

ing Dataset (IVDS) which was created in our previous work[20].

We aim to test the performance of our proposed method on both over- and

under-exposed images. For sub-datasets created using automatic configurations,

the exposure was automatically adjusted based on the environmental lighting con-

ditions so the images taken in different light source intensities do not show significant

variations on the image illumination. On the other hand, the images in sub-datasets

created with manual configuration preserve a relatively positive correlated relation-
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Table 6.1: The Illumination Varying Dataset (IVDS)
Dataset Name Camera Phone Mode No.of Images
Pixel-M1 Pixel2 XL Manual 7920
Pixel-M2 Pixel2 XL Manual 7920
Pixel-Auto Pixel2 XL Automatic 7920
Pixel-WBDL Pixel2 XL Automatic 7920
HTC-Auto HTC Desire 816 Automatic 7920
Moto-Auto Moto G5 Plus Automatic 7920
Samsung-Auto Samsung J7 V Automatic 7920

ship between light source intensity and image illumination. So in order to reduce

the bias caused by the automatic adjustment from the smartphone camera and also

be able to test images with high illumination variations, we chose Pixel-M1 and

Pixel-M2 which were the only two sub-datasets captured in manual mode.

6.2.1 Splitting Images Based on Illuminations

Dataset Pixel-M1 and Pixel-M2 contain images different in light source intensities

and parameters. Since we want to treat images with over- and under-exposed issues

separately, the first step was to split the images based on the image illumination.

Please note we cannot classify images solely based on the light source intensities

since the light source position can play an essential role in the image illumination. In

other words, when the light source is placed away from the target wound moulage,

the captured image would still be dark in general even though the light source

intensity is high. And when the light source is placed near the center of the wound

moulage, the captured images tend to be over-exposed even the light source intensity

is relatively moderate. We use Figure 6.3 to illustrate this issue. The image on the

left side looks much brighter (contains more over-exposed regions) than the image

on the right side, however, the light source intensity of the left-sided image is much

smaller than the intensity of the image on the right side.
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Position:32 Temperature:255 Intensity:50 Position:0 Temperature:255 Intensity:160

Figure 6.3: Two Images with Different Light Source Intensities

We group images based on the (camera, parameters) pair. In each group, there

are 15 images which are only different in their light source intensities, and we can

label images as ”bright”, ”normal” and ”dark”. Figure 6.4 shows all 15 images

in one (camera, parameters) group captured in light source position 7 and light

temperature index 136 using the Pixel 2 smartphone camera. In this typical case,

we labelled image 0−2 as ”dark”, image 5 as ”normal” and image 9−14 as ”bright”.

ID 0: Light Intensity=10.0 ID 1: Light Intensity=27.5 ID 2: Light Intensity=45.0 ID 3: Light Intensity=62.5 ID 4: Light Intensity=80.0

ID 5: Light Intensity=97.5 ID 6: Light Intensity=115.0 ID 7: Light Intensity=132.5 ID 8: Light Intensity=150.0 ID 9: Light Intensity=167.5

ID 10: Light Intensity=185.0 ID 11: Light Intensity=202.5 ID 12: Light Intensity=220.0 ID 13: Light Intensity=237.5 ID 14: Light Intensity=255.0

Figure 6.4: 15 Images in IVDS only different in light source intensities(light source
position 7, light temperature index 136). Light intensities from 10 to 255 in 15 steps.

An alternative way[18] to automate this process is to classify images based on the

histogram in the illumination layer. We need to set up four thresholds (Th1−Th4)

and the four thresholds can help us determine which type of image it should be.

The four thresholds are fixed values which divide the illumination histogram into 5
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Th1 Th2 Th3 Th4

Figure 6.5: Four Thresholds on Illumination Layer

Table 6.2: Conditions of Image Types
Type Description
dark Lo > 2Hi
bright Hi > 2Lo
extreme 1

2
≤ Hi

Lo
≤ 2 and Hi and Lo > Ptotal

4

normal others

intervals (see Figure 6.5). The 4 types can be inferred from this approach are dark,

bright, extreme and normal, which are determined by two parameters (Hi and Lo).

The conditions of these four types are summarized in Table 6.2.

The calculation of the two parameters (Hi and Lo) are shown in Equation 6.1

and 6.2. The function hi means the number of pixels whose values are equal to i.

In our experiment, we set Th1 = 15, Th2 = 50, Th3 = 205 and Th4 = 240.

Hi =
Th4∑
i=Th3

h(i) +
255∑

i=Th4

h(i)× 2 (6.1)

Lo =
Th1∑
i=0

h(i)× 2 +
Th2∑
i=Th1

h(i) (6.2)

Similar to how we manually label each image, we first label all the images using

the histogram-based approach. We then draw two samples with the same size from
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the ”dark” and ”bright” images. One drawback is for some images with the same

(camera, parameters) pair, there is no image in the 15 images labeled as ”normal”.

In such cases, we need to either manually pick one image as the ”normal” image or

ignore the 15 images with the same (camera, parameters) pair completely. In our

following experiments, we labeled images manually.

6.2.2 Setting Up Train/Test Images

To set up the training and test images, we use 80% of the images for training and the

remaining 20% for evaluation. In order to keep the relationship of images sampled

from the same (camera, parameter) group, we don’t sample the images directly,

instead, we only sample the (camera, parameter) groups, and within each sampled

group, we take samples from the ”bright” and ”dark” images. This operation can

be described in the following steps.

1. From each dataset, we randomly choose 80% groups from all groups (422 out

of 528 groups are chosen).

2. In each group we have chosen, we take N random samples from ”dark” images

and N random samples from ”bright” images. Both are without replacement.

Of the 15 images, we pick the image with the best exposure as the ”normal”.

The ”normal” image should contain the least over- and under-exposed regions

compared with other images.

3. Use all sampled images from the chosen groups as the training set.

4. For the rest 20% groups, we perform the similar step (step 2) and use the

images as the test set.
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6.3 HDR Target Generation

To evaluate the performance of our proposed method, we need to generate the HDR

wound image as the ground truth. Four LDR images were used to synthesize the

HDR target. In our experiment, the light source intensities of selected four LDR

images are 10, 80, 140 and 250. All of them are from the Pixel-M1 dataset with the

same light source position(index number 9) and light temperatures(index number

102). These four images are shown in Figure6.6. The inverse camera response

function for the RGB channels is shown in Figure6.7.

We compared the Drago, Mantiuk and Reinhard tone mappers for converting

the HDR wound image into a HDR-like image (shown in Fig.6.8 with parameters).

Drago performed the best, with minimal over/under exposed areas and it preserved

most texture details. Although it’s feasible to generate the HDR target using images

from each (camera, parameter) group and use different HDR targets just for that

group, we noticed that in our experiments many generated HDR targets did not

provide enough details. This issue happened frequently because images in a same

group can suffer from similar exposure issues (both over- and under-exposed issues)

simultaneously, which leads to texture information loss in a common image region

for all images in the group. With little information in some common regions in all

images, it becomes very challenging for the generated HDR target to recover the

lost information. Besides, to obtain the tone-mapped version of the HDR target

image, the parameters used in the tone-mapper are usually different for HDR im-

ages generated from LDR images with various illumination conditions, which can

make it hard to choose the best image in each group. Apart from that, comparing

with different HDR targets in different groups is actually measuring how close our

synthesized result is relative to the HDR target in each group, no matter how much
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(a) intensity=10 (b) intensity=80 (c) intensity=140 (d) intensity=250

Figure 6.6: LDR Images Used for HDR Target Creation

texture information is preserved in the generated HDR targets, which is different

from our goal that we want to restore the lost texture information in over- and

under-exposed images.

On the other hand, the single HDR target makes the bench-marking process

much more consistent. All HDR images converted from ill-exposed images using

our method as well as other methods can be compared using the same target HDR

image. Besides, the HDR target is generated with the idea that as much as texture

details should be preserved in the image. So the degree of resemblance between the

synthesized image and the HDR target can be used as an indicator to tell how much

texture details are recovered from the original ill-exposed image.
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Figure 6.7: Inverse Camera Response Function for RGB Channels. The exposure
times we used are 1/30, 8/30, 14/30 and 25/30 seconds.
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Drago Mantiuk Reinhard

Figure 6.8: HDR Targets Generated with Three Tone Mappers. 1)
Drago (gamma=1.6, saturation=1.45); 2) Mantiuk(gamma=1.6, scale=0.8, sat-
uration=1.45); 3) Reinhard(gamma=1.6, intensity=-8, lightAdapt=0.5, col-
orAdapt=0); The HDR-like image generated by Drago was used as the target to
calculate image similarities.

6.4 Training of Bi-Directional Network

The Bi-Directional network (see Figure 4.1) can convert an input image into two

images with higher and lower exposures. The network can be logically split into

two models when training, which are up-exposure model and down-exposure model.

These two models have the exact network components (decom-net + synth-net), and

the parameters of decom-nets of both models are shared (same network parameters),

but they have its own synth-net with different parameters. And up- and down-

exposure model contain the workflows of increasing or decreasing the exposures of

the original image respectively.

We generate training pairs using the labeled data with permutation. Each pair

consists of one ”bright” image, one ”normal” image, and one ”dark” image. We

always make sure the three images belong to the same (camera, parameter) group,

which means except for the light intensities, all the configurations remain the same

for the three images in each pair. The ”bright”/”normal” images are used to train

the down-exposure model while the ”dark”/”normal” images are used to train the

up-exposure model. In our experiment, we use 1267 pairs for training and 317 pairs

for testing. All the images are re-scaled to 512 ∗ 256 for fast training and testing.
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Table 6.3: Hardware Specification and Software Platforms
Type Description
Processor Model Intel(R) Xeon(R) CPU
Processor Count 4
Processor Frequency 2.30GHz
Socket Count 1
Core(s) per socket 1
Thread(s) per core 2
L1d cache 32K
L1i cache 32K
L2 cache 256K
L3 cache 46080K
GPU Model Tesla P100-PCIE-16GB
GPU Count 1
GPU Video Memory 16 GB
RAM 25.5 GB
Disk 150 GB SSD
Operating System Ubuntu 18.04 LTS 64-bit
Deep Learning Platform Tensorflow 2.4.1

The specs of the machine and software platforms used for training and test are listed

in Table 6.3. We trained the bi-directional network for 100 epochs in total that took

approximately 20 minutes. After the hyper-parameter search, we utilized a batch

size of 16, patch size of 48, the Adam optimizer and a learning rate of 0.001.

6.5 Image Measuring Metrics

The purpose of image measuring metrics is to compare how similar or how close

two images are to each other. The common use case is to measure the quality of

reconstructed images. It is also considered a method to assess image quality.
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6.5.1 Structural Similarity Index Measure

Structural Similarity Index Measure (SSIM)[50] is a very popular metric to mea-

sure the similarity between two images designed by modeling image distortion as a

combination of three factors: loss of correlation, luminance distortion and contrast

distortion[17]. Given a test image S and the ground-truth image (reference image)

G, these three factors are multiplied together to get the SSIM value (see Equation

6.3). In the equation, l(S,G) measures the closeness of two images’ average illu-

mination. c(S,G) measures similarity in contrast between these two images, while

s(S,G) compares the structural information. For these three parameters, a higher

value (maximal value is 1) indicates higher resemblance(or more similarity) while a

lower value (minimal value is 0) means higher distortion (larger difference).

SSIM(S,G) = l(S,G)c(S,G)s(S,G) (6.3)

The definitions of these three parameters are listed in Equation 6.4. The av-

erage luminance of both images (µS and µG) are used to measure the closeness of

lumination in l(S,G). When the values of µSandµG are equal, l(S,G) reaches its

maximal value (which is 1). c(S,G) is quite similar in structure to l(S,G), however,

the standard deviation of both images (σS and σG) are used to measure the differ-

ences in contrast. In s(S,G), the covariances σS,G between the two images and their

standard deviations are used to calculate the correlation coefficient. C1, C2 and C3

are positive constants.

l(S,G) =
2µSµG + C1

µ2
S + µ2

G + C1

c(S,G) =
2σSσG + C2

σ2
S + σ2

G + C2

s(S,G) =
σS,G + C3

σSσG + C3

(6.4)
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6.5.2 Mean Squared Error

Mean squared error (MSE) is not a metric typically utilized in assessing image qual-

ity. However, it is also a widely used method to calculate the differences between

two images[44, 17]. The definition of MSE is straightforward – differences of inten-

sities in every pixel are compared between images S and G, both of the same size

H ×W . Equation 6.5 shows how MSE of these two images is calculated.

MSE(S,G) =

∑H
i=1

∑W
j=1(S(i,j) −G(i,j))

2

HW
(6.5)

One main difference between SSIM and MSE is: MSE calculates the absolute

errors in images while SSIM is not directly related to differences in pixel intensities.

In our experiments, MSE is not used to compare the generated images and the

ground-truth image. A similar metric Mean Absolute Error (MAE) is used in the

design of our reconstruction loss in DecomNet (see Equation 4.2).

6.5.3 Peak Signal-to-Noise Ratio

Peak Signal-to-Noise Ratio (PSNR) is another metric to measure the quality of

reconstructed images in comparison to the ground truth. Using the reference image

(noise-free image) G and the image S (encoded using 8 bits), PSNR is defined in

Equation 6.6.

PSNR(S,G) = 10 log10(
2552

MSE(S,G)
) (6.6)

Image S is usually a noisy approximation of image G. PSNR is used as a metric

to reflect how much noise is contained in the image S. This metric also measures

the absolute errors(based on MSE),
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6.6 Dice Coefficient Segmentation Metric

Dice Similarity Coefficient(DSC)[11] is a metric for measuring segmentation accu-

racy compared to ground truth. Unlike the other metrics, DSC is not a direct

method to compare two images. Instead, DSC takes the segmentation result S ′

generated from the test image S, and compares it with the a prepared segmentation

result G′.

The segmentation results (which are sometimes called masks) can be viewed as

a binary matrix which has the same shape as the input image. Pixels are labeled

as either 1 or 0 manually or from model prediction. All the pixels with value 1

constitute the region of interest.

Calculation of DSC is illustrated in Equation 6.7. TP , FP and FN are abbre-

viations of true positive, false positive and false negative, which can be obtained by

comparing the segmentation result S ′ with the ground-truth result G′.

DSC =
2TP

2TP + FP + FN
(6.7)

We use DSC obtained from U-Net trained on the IVDS dataset to locate wound

areas in images. Taking wound segmentation as a typical example in wound image

assessment, we aim to demonstrate improvement in performance in wound image

assessment methods by comparing the DSC scored using original images and images

enhanced using our proposed method.

6.7 Performance Evaluation Using SSIM

In this section, we evaluate the performance of our proposed bi-directional model

using Structural Similarity Index (SSIM)[50] as the metric. SSIM is a popular
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method to compare the similarity between two images. The value of SSIM ranges

from 0 to 1, while a higher value means higher resemblance. We calculate the SSIM

scores before and after HDR conversion and compare the changes in distribution.

The experiments are conducted in the following steps.

1. For an ill-exposed (either over- or under-exposed) image img, we calculate the

SSIM score between the HDR target imgT and img.

2. We generate the bracket images using the trained bi-directional network, which

are img+ (up-exposed) and img− (down-exposed).

3. The generated bracket images together with the original image img are fused

using detail-recovered fusion. The fused result (HDR-like image) is imgDR.

4. The SSIM score between the HDR target imgT and the fused result imgDR is

calculated.

5. We compare the two SSIM scores and record the results.

Figure 6.9 shows the comparison of SSIM scores for over- and under-exposed im-

ages. The values labeled with original are SSIM scores calculated using the original

ill-exposed image img and the ones labeled with enhanced are SSIM scores using the

fused result imgDR (HDR-like image). We also included the SSIM scores between

the HDR target imgT and the image synthesized directly using illumination-based

fusion, which are labeled as directly-fused. The HDR-like images generated achieved

higher similarity scores, indicating a higher resemblance to the HDR target. Also,

compared with direct fusion, the detail-recovered exposure fusion method achieves

significantly higher similarity scores for both over- and under-exposed images.
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Figure 6.9: Distribution of SSIM Scores

6.8 Performance Evaluation Using PSNR

Similar to performance evaluation using SSIM, we use a different metric named Peak

Signal-Noise Ratio (PSNR)[17] to measure the difference between the HDR target

and synthesized images. Unlike SSIM, PSNR is calculated based on the mean square

error (MSE) between two compared images. Most of the steps are similar to what

we used to compare SSIM scores. The steps of evaluation using PSNR are shown as

follows.

1. For an ill-exposed (either over- or under-exposed) image img, we calculate the

PSNR score between the HDR target imgT and img.

2. We generate the bracket images using the trained bi-directional network, which

are img+ (up-exposed) and img− (down-exposed).

3. The generated bracket images together with the original image img are fused

using detail-recovered fusion. The fused result (HDR-like image) is imgDR.
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Figure 6.10: Distribution of PSNR Scores

4. The PSNR score between the HDR target imgT and the fused result imgDR

is calculated.

5. We compare the two PSNR scores and record the results.

The comparison of PSNR scores is illustrated in Figure 6.10. The PSNR scores of

original images img (labeled as original), images synthesized directly using illumination-

based fusion (labeled as directly-fused) and the fused results imgDR (HDR-like im-

age) are compared. We can notice a similar trend as we have seen in the distri-

bution of SSIM scores (see Figure 6.9). When the original images (either over- or

under-exposed) are converted into HDR-like images, there is a significant increase

in PSNR scores. Besides, compared with illumination-based fusion, images using

detail-recovered fusion generally have higher PSNR scores.
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6.9 Performance Evaluation Using Dice Similar-

ity Coefficient (U-Net)

We also used the change in semantic segmentation accuracy as an evaluation metric

since semantic segmentation is an important task in medical image analyses includ-

ing wounds. Dice Similarity Coefficient(DSC)[11] is used in the experiment as the

metric for measuring segmentation accuracy compared to ground truth.

In our experiments, we trained a U-Net model to differentiate the chronic wound

regions(positive) and the rest(negative) on Pixel-M1 and Pixel-M2 datasets. 80%

of the data is used in training and the remaining 20% is used for evaluation. Figure

6.11 and 6.12illustrate the training and testing loss of the U-Net model.

Figure 6.11: Training Loss of U-Net

The comparison of DSC scores is listed in Table 6.4. DSC- and DSC+ are

scores calculated on under and over-exposed images respectively. We can find our

method achieves the highest DSC scores for both under and over-exposed among all

methods compared against.
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Figure 6.12: Testing Loss of U-Net

6.10 Comparison with State-Of-Art Methods

6.10.1 Visual Comparison

We compared results generated with our proposed method with those generated

from HDRCNN[13], ExpandNet[33] and SingleHDR[31]. Sample results are shown

in Figure6.13. The 1st column in Figure6.13 shows the original images that are

used as inputs (the first 3 images are over-exposed and the last 3 images are under-

exposed). Each row shows the HDR-like images generated using different methods.

HDRCNN mitigates the over-exposed issues at the cost of reducing the color con-

trast. SingleHDR is prone to saturated issues for both over and under-exposed

images. The performance of ExpandNet is roughly equivalent to our method in

over-exposed images. However, ExpandNet may introduce significant artifacts in

saturated regions. Overall, the enhanced results generated by our method have the

best visual quality.
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Input Images HDRCNN ExpandNet SingleHDR Our Method

Figure 6.13: Visual Comparison on Enhanced Images. The first column contains
the input images (moulage) from the IVDS dataset. The first 3 rows include HDR
results generated from 3 over-exposed images and the last 3 rows include HDR
results with under-exposed images. Except for our method, all other enhanced im-
ages(column 2-4) are tone-mapped with Drago using the same settings (gamma=1.6,
saturation=1.45).

6.10.2 Quantitative Comparison

We also used SSIM. PSNR and DSC as our metrics to quantify the qualities of

images after enhancement (see Table 6.4). All statistics are computed on the same

test set, in which the over- and under-exposed images are tested and recorded sep-

arately. We use SSIM+/SSIM- to represent SSIM scores calculated using over-

and under-exposed test images respectively, which is similar to how we calculate

PSNR+/PSNR- and DSC+/DSC-. It’s easy to find our method achieves the

highest DSC scores for both under and over-exposed among all methods compared

against.
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Table 6.4: Comparison with Other Methods
Methods SSIM+ SSIM- PSNR+ PSNR- DSC+ DSC-
Original 0.74± 0.04 0.56± 0.14 27.97± 0.27 27.76± 0.26 0.75± 0.07 0.58± 0.14
HDRCNN 0.73± 0.02 0.66± 0.06 28.46±0.29 27.53± 0.28 0.41± 0.18 0.55± 0.11
ExpandNet 0.74± 0.04 0.68± 0.11 27.97± 0.35 27.97± 0.84 0.75± 0.11 0.73± 0.11
SingleHDR 0.66± 0.06 0.60± 0.11 27.90± 0.21 28.02± 0.22 0.60± 0.12 0.55± 0.14
Our Method 0.76 ± 0.04 0.69 ± 0.08 28.25± 0.76 28.60±0.70 0.76 ± 0.09 0.74 ± 0.09

Compared with the original images (not enhanced using any method), we can

also notice that not all image enhancement methods can achieve higher scores in

quantitative assessments. For example, all enhancement methods produced images

with higher SSIM scores for under-exposed images (SSIM-), but for other metrics

on images with different exposures, the effects of enhancement are not significant.

Our proposed method, however, got higher scores after enhancement on both over-

and under-exposed images on all metrics compared with the original image, which

indicates our method is a viable and relative stable method for image enhancement.

6.10.3 Enhancement Effect with Various Illuminations

We further analyzed the effect of enhancement on images with different lighting

conditions using SSIM, PSNR and DSC. We use image L-values to estimate their

average illumination. The L-value is the average value of the luminance channel L(S)

of an image S in CIELAB or LAB space can be expressed as Lvalue = avg(L(S)).

Figure 6.14, 6.15 and 6.16 show how SSIM, PSNR and DSC changes with differ-

ent L-values respectively. For clearer visualization, all data points plotted in these

three figures are smoothed using moving average with window size 10. As the L-

value increases, SSIM scores of all methods increase in general. Beyond an L-value of

70, the SSIM scores of the original images, images generated by ExpandNet and our

method starts to decrease. SSIM scores of HDRCNN are the most steady among all

methods and SingleHDR has the best SSIM scores for very bright images (L-value
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larger than 80). Our method achieves the highest PSNR scores for dark (L-value

around 35) and bright (L-value around 65) images. And ExpandNet achieves better

scores in the middle range of L-values. Our method generally achieves better DSC

scores on dark images (L-value below 55), and ExpandNet has roughly equivalent

performance with our method on bright images.
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Figure 6.14: SSIM with Different L-values. Results are processed with moving
average(window size equals to 10) for better visualization.

6.11 Discussions on Experiments

With all the experiments and evaluations we have conducted, we can see our method

provides a viable solution to enhance both over- and under-exposed wound images.

And it remains most stable compared with all the methods we compare against

in terms of SSIM, PSNR and DSC. An interesting fact we also notice is: segmen-

tation accuracy (DSC) of U-Net can be strongly affected by under-exposure and

less affected by images with over-exposed issues(After enhancement using our pro-
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Figure 6.15: PSNR with Different L-values. Results are processed with moving
average(window size equals to 10) for better visualization.
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Figure 6.16: DSC with Different L-values. Results are processed with moving aver-
age(window size equals to 10) for better visualization.

posed method, the average DSC increased 16% on under-exposed images, while the

increase on over-exposed images is only 1%). A similar conclusion can also be de-

76



rived from our previous work[20]. The concrete conclusions of our experiments are

summarized as follows.

• Compared with direct fusion(applying illumination-based fusion directly[46]),

our proposed method(detail-recovered fusion) can effectively preserve more

texture information, which can be testified by visual comparison and higher

resemblance to the HDR-target in terms of SSIM and PSNR.

• Compared with the original wound image, our enhancement method can im-

prove segmentation performance of U-Net in terms of DSC, while the enhance-

ment effects vary for under- and over-exposed images.

• Our method achieves the highest scores in most metrics compared with state-

of-art methods. And it has relatively consistent enhancement effects on image

with various illuminations (characterized with L-Values).

Our work demonstrated the feasibility of improve performance of machine vision

tasks (segmentation accuracy using U-Net) by mitigating adverse illuminations on

wound images. However, there are still many limitations we did not cover in our

work. 1) Due to the limitation of available datasets we can choose, the whole ex-

periments and evaluations were conducted on the moulage image (instead of real

wound images). 2) In the training process, we noticed the inconsistency of light

temperatures between training and reference images can lead to large artifacts in

bracket image generation, which means training the bi-directional network would

require images with the same or close color temperature. 3) We notice the enhance-

ment of over-exposed images is generally harder than under-exposed images due to

texture information likely completely lost in large regions, and our method does not

provide significant improvement in terms of DSC.
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Apart from these limitations, we believe the proposed method achieves our goal–

it successfully mitigates texture information loss of ill-exposed wound images by

converting the original LDR image into the HDR-like image, which leads to im-

provement in performance in the machine vision tasks(wound segmentation using

U-Net).
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Chapter 7

Conclusion and Future Work

Wound assessment using images taken with smartphone cameras largely reduces the

workload of caregivers in routine checking-ups in traditional treatment and provides

a responsive and objective way to monitor the healing process of wounds, which can

reduce the risks of amputations. However, wound images taken using smartphones

are prone to exposure issues, which may lead to severe loss in texture information.

The texture information loss can result in degradation in machine vision tasks which

are common in image-based wound assessments and finally lead to inaccuracy in

wound assessment. In order to address this issue, we proposed a novel deep network

structure (Bi-Directional Illumination Enhancement Network) to mitigate texture

information loss of ill-exposed wound images by converting the original LDR image

into the HDR-like image.

In this thesis, a deep network structure was proposed to generate bracket images.

To mitigate information loss in over and under-exposed image regions when fusing,

we applied two transformer functions to recover the textural details. Illumination-

based fusion was used in the 2-step fusion to generate the final output. Experiments

show our method achieves higher scores in most metrics (SSIM, PSNR, DSC) for
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both dark and bright images on chronic wound images in the IVDS dataset.

The method proposed in our thesis provides a viable solution to mitigate the

issues related to exposures taken using smartphone cameras, however, there are still

lots of aspects in image-based wound assessments we want to explore. In our future

work, we aim to improve accuracy in Photographic Wound Assessment Tool (PWAT)

prediction by integrating the image enhancement pipeline into the modeling of a

deep convolutional network. Since we are only working on images with synthetic

wounds captured in the IVDS, we plan to conduct more experiments on real wounds

in the next step in order to explore the feasibility of applying image enhancement

techniques to facilitate a broader range of wound assessment tasks.
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