
Customizing Large Language Models for
Automated Academic Advising at Universities
Ronit Banerjee, Kathryn Butziger, Jose Fabrizio Filizzola Ortiz, Matthew Kiszla

WORCESTER POLYTECHNIC INSTITUTE

Advisor:

Xiangnan Kong

AMajor Qualifying Project
Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE
in partial ful�llment of the requirements for

the Degree of Bachelor of Science in Computer
Science and Data Science.

This report represents the work of one or more WPI undergraduate students submitted to the faculty as
evidence of completion of a degree requirement. WPI routinely publishes these reports on the web without

editorial or peer review.

Abstract
In this report, we explore the customization of Large Language Models (LLMs) for automated
academic advising at universities, with a focus on streamlining access to the constantly evolving
academic information at Worcester Polytechnic Institute (WPI). This includes course details,
room bookings, and updates to tracking sheets. To overcome LLM knowledge gaps, we built
customized LLM solutions through three distinct pipelines: one utilizing the BGE embedding
model with Pinecone vector database for context mapping, one employing Pinecone’s
Retrieval-Augmented Generation (RAG) model for e�cient data retrieval, and one integrating
OpenAI’s Assistants API for precise query responses. In an experiment with 150 WPI
academic advising questions, each of these pipelines achieved promising results compared to
almost all incorrect answers from ChatGPT without context. Through our research, we not
only built a tailored Q&A system that tackles the knowledge gap at WPI but also showcased
the potential for LLMs to be customized for similar challenges in other institutions.

i

Contents

1 Introduction.. 1

2 Background..3
2.1 A Brief History of Chatbots... 3
2.2 Prompt Engineering.. 4
2.3 Current Limitations of LLMs.. 6
2.4 Retrieval Augmented Generation and RelatedWorks.. 9
2.5 Text Embeddings...10
2.6 Pre-trained embedding models... 11
2.7 Vector Database... 12
2.8 Pinecone Vector Database...14

3 Methodology..16
3.1 Dataset... 16

3.1.1 Collection of Data..17
3.1.2 Data Cleaning andModi�cation...19
3.1.3 Automation and Updating Data...24
3.1.4 Data Storage... 25
3.1.5 Data Limitations.. 25

3.2 Tools Used... 26
3.2.1 Versions of GPT... 26
3.2.2 Coding Tools.. 26

3.3 Pipeline #1: RAGModel with LangChain Pinecone and BGE embeddingModel...... 27
3.3.1 LangChain Usage... 27
3.3.2 BGE Usage..27
3.3.3 Pinecone Usage...28

3.4 Pipeline #2: RAGModel with Pinecone Canopy... 29
3.4.2 Key Di�erences...30

3.5 Pipeline #3: OpenAI Assistants API with Question Classi�er....................................... 30
3.5.1 Assistant Generation..30
3.5.2 Question Classi�er.. 32

ii

3.5.3 Key Di�erences...33
3.6 Experiment Methodology...33

3.6.1 Data Generation for Questions... 34
3.6.2 Experiment Format.. 34
3.6.3 Experiment EvaluationMethod.. 34

3.7 Integration with User Interface.. 34

4 Experiments and Results..36
4.1 Pipeline #1 Results.. 36

4.1.1 Time and Cost to Run Experiment for Pipeline #1... 36
4.1.2 Pipeline#1 Answer Results.. 36
4.1.3 Example of Incorrect Answer Pipeline #1...37

4.2 Pipeline #2 Results:... 38
4.2.1 Time and Cost to Run Experiment for Pipeline #2... 38
4.2.2 Pipeline #2 Answer Results... 38
4.2.3 Example of Incorrect Answer Pipeline #2...39

4.3 Pipeline #3 Results:... 40
4.3.1 Time and Cost to Run Experiment for Pipeline #3... 40
4.3.2 Pipeline #3 Answer Results... 40
4.3.3 Example of Incorrect Answer Pipeline #3...41

4.4 Overall Results...41
4.4.1 Comparison Between Pipelines and Base Model without Context.......................42
4.4.2 Example of Questions All Pipelines Responded Correctly....................................45

4.5 Frontend/Backend Results:..48

5 Discussion..49

6 Conclusion and Future Work...50

A GitHub Repository.. 54

iii

List of Tables

Table 1:Number of parameters vs. estimated training costs for GPTmodels [10].....................7
Table 2: Info on webpages gathered...18
Table 3:Key Resources for Data Gathering.. 19
Table 4:Token Comparison of Collected Data for Di�erent Formats...................................... 25
Table 5:Cost and Time for Pipeline#1 Experiment... 37
Table 6: Scoring Results for Pipeline #1.. 37
Table 7:Time Results Pipeline #1..38
Table 8:Cost and Time for Pipeline #2 Experiment...39
Table 9: Scoring Results for Pipeline #2.. 39
Table 10:Time Results Pipeline #2... 40
Table 11:Cost and Time for Pipeline #3 Experiment.. 41
Table 12: Scoring Results for Pipeline #3.. 41
Table 13:Time Results Pipeline #3... 42

iv

List of Figures

Figure 1:A typical prompt given to ChatGPT 3.5 Turbo [12]... 8
Figure 2:An engineered prompt given to ChatGPT [12]..9
Figure 3:Neural Network architecture for getting sentence embeddings [17].........................15
Figure 4:The �ow of how vector databases work [22]... 17
Figure 5:The �ow of how Canopy implements a RAG application [24].................................19
Figure 6:A portion of WPI sitemap..21
Figure 7: Breakdown ofWPI pages gathered... 23
Figure 8: JSONData for Elementary Arabic Course... 24
Figure 9:Natural Language Data for Elementary Arabic Course..24
Figure 10:ChatGPT Response to JSON Format [12]...25
Figure 11:ChatGPT Response to Natural Language Format [12]... 25
Figure 12: Similarity score for natural language format of the user question “Can you tell me
about the course Team and Leadership Fundamentals III?”...26
Figure 13: Similarity score for structured format of the user question “Can you tell me about
the course Team and Leadership Fundamentals III?”... 27
Figure 14:Data Updating Process...29
Figure 15:Usage Flow of LangChainTool.. 31
Figure 16:Usage Flow of LangChain Tool... 32
Figure 17: Pipeline #1 Visual... 33
Figure 18:Canopy Pipeline Visual.. 34
Figure 19:OpenAI Assistant Example..35
Figure 20:OpenAI Assistant Example..36
Figure 21:Classi�er Flow for User Question..37
Figure 22: Example Classi�er using an OpenAI Assistant... 37
Figure 23:Quality Score Breakdown of Pipelines vs Base Model without Context................. 46
Figure 24:Relevance Score Breakdown of Pipelines vs Base Model without Context............. 47
Figure 25: Satisfaction Score Breakdown of Pipelines vs Base Model without Context...........48
Figure 26:Answer Time Breakdown of Pipelines vs Base Model without Context................. 49
Figure 27:Working Implementation of WPI Chatbot using Pipeline # 3................................ 52

v

1 Introduction

In recent years, the advancement of Large Language Models (LLMs) such as OpenAI's
ChatGPT [1] and Google's BERT [2] has transformed our interaction with digital platforms.
Powered by sophisticated machine learning algorithms, these models excel in producing text
that mirrors human writing, adeptly handling intricate queries, and even programming
software. Their widespread utilization across diverse sectors highlights their capability to
enhance services in customer support, education, and healthcare, among others [3]. This
technological leap demonstrates not only the versatility of LLMs in addressing complex
informational and computational tasks, but also their role in streamlining processes and
improving information accessibility and e�ciency in many industries.

Despite their capabilities, LLMs encounter notable challenges, especially when it comes
to incorporating the latest information and providing precise responses to detailed queries.
This di�culty arises from their dependence on static datasets for training, limiting their
knowledge to what was available before their most recent update [4]. Such limitations are
particularly problematic in dynamic environments that require up-to-date and specialized
knowledge. A prime example of this is at higher education institutions such as WPI, where the
constant evolution of course content, room schedules, and degree requirements necessitates
access to the most current academic advising information. For the WPI community, navigating
these complexities is a frequent reality, demonstrating the need for a simpler, more adaptable
way to get information.

In an attempt to bridge this knowledge gap, some models have turned to internet access
or search engine integration as a workaround, enabling the LLM to "look up" the latest
information. Innovations like Google's Gemini (formerly known as Bard) [5] and Microsoft's
Bing Chat [6] exemplify this approach, aiming to bolster their models' ability to retrieve
real-time data and thereby improve responsiveness and accuracy. Nonetheless, this strategy
comes with its own set of challenges. The reliability of search engine-based updates is limited
by the search engines themselves, which may return results that are not entirely relevant,
up-to-date, or correct. Furthermore, parsing this externally sourced information accurately in
response to a user's speci�c query presents an additional layer of complexity. This reliance on
search engines also means depending on technology that might not be fully aligned with the
nuanced informational needs of speci�c environments like WPI.

Our project addresses these issues head-on by developing a custom LLM solution
designed to meet the unique academic advising demands of WPI, thereby enhancing the
model's capacity to deliver timely and relevant information speci�c to the institution. By
integrating a dynamic dataset that captures the latest updates on course o�erings, room

1

scheduling, and other critical information at WPI, we aim not just to bridge the knowledge gap
experienced by the WPI community but also to showcase the potential for LLMs to be
customized for similar challenges in other institutions. This approach directly tackles the
complexities faced by WPI sta� and students, providing a targeted solution that bypasses the
limitations of external search engines and ensures the LLM remains a valuable and accurate
resource for the community.

In tackling this challenge, our methodology integrated three approaches to re�ne the
process of directing data to an LLM for generating accurate and relevant responses. The �rst
method involved converting WPI's extensive documentation into vectors through a text
embedding model, creating links between users' WPI-related queries and the pertinent
information. These vectors were then utilized by a GPT model to craft appropriate responses,
enabling a nuanced understanding of the query content for accurate information retrieval. The
second method employed Pinecone Canopy, a RAG (Retriever-Augmented Generation)
model builder, o�ering a more automated and e�cient way to perform tasks similar to our
initial text embedding model. This approach streamlined the process of linking queries with
the corresponding information, aiming to simplify and enhance the e�ciency of embedding
and retrieving relevant data. Lastly, for our third and �nal method, we explored using
OpenAI's Assistant API in conjunction with a knowledge retrieval tool to develop several
specialized chatbots. Through this, a classi�er analyzed the user's question and directed it to
the most suitable chatbot, ensuring that the response is as accurate as possible. This
multi-chatbot strategy ensures tailored responses to the speci�c nature of each inquiry,
leveraging specialized knowledge bases for optimal accuracy.

Through these methods, our project explores how to build a tailored Q&A system that
tackles the knowledge gap at WPI. This e�ort not only shows how well LLMs can ful�ll precise
information needs but also highlights the importance of machine learning progress in dealing
with today's digital challenges. By incorporating up-to-date, localized information into LLMs,
our approach points towards a future where information sharing becomes more personalized
and accurate across di�erent areas.

2

2 Background

This section provides the information that we referenced and based the project on, with
detailed context on chatbots, LLMs, and their associated �elds.

2.1 A Brief History of Chatbots

To understand the recent popularity of chatbots, we must �rst understand their history,
categories, and applications. Chatbots are computer programs that simulate human
conversations, which allows the user to interact more easily with the computer [7]. These
chatbots can range in complexity from simple keyword matching to using Natural Language
Processing (NLP) and machine learning (ML) techniques. The history of chatbots was marked
by the available knowledge and technology at the time to develop them.

In 1950, Alan Turing created the Turing Test, where a computer has to simulate a
human conversation with a user and the user cannot distinguish if it is a human or a computer.
This idea made people start thinking about chatbots and possible applications. Joseph
Weizenbaum's ELIZA was the �rst chatbot that helped users with daily tasks by retrieving
useful information like weather, stocks, and sports. These �rst chatbots did not understand
human language but used keyword matching and other basic techniques to respond to the
users [7].

In the early 2010s, chatbots became more sophisticated by leveraging NLP and ML
advancements. These chatbots can understand natural language data, including voice
recognition, which allows them to performmore complex tasks. With these advancements, the
development of personal assistants integrated into smartphones and computers became
popular. Apple with Siri, Google with Google assistants, Amazon with Alexa, and Microsoft
with Cortana were some of the most popular at the time. These chatbots could receive voice
communication and use the internet to have more meaningful conversations. However, this
technology still needed to fully understand the user queries and could have been better at
understanding the full context of conversations [7].

Around 2018, chatbots took advantage of new machine learning techniques such as
transformers and the ability to process large amounts of data. With these machine learning
tools, chatbots could be trained with large datasets and take advantage of the transformer
models to better understand the context of NLP data. These discoveries lead to the creation of
LLMs such as ChatGPT and Bard. These chatbots are not only capable of responding to
simple user queries but can also generate text, code, and images for a variety of areas. These
chatbots have many applications in areas such as marketing, education, health, and

3

entertainment [7]. They have proved to be very helpful for users, which led most companies to
strive to incorporate chatbots in their products.

2.2 Prompt Engineering

Prompt engineering involves designing and re�ning inputs for language models to optimize
their outputs for speci�c tasks. This method is crucial for directing AI to understand and
answer questions with accuracy and relevance [8]. Through prompt engineering, we can tailor
the model's response generation by translating human intentions into a format that the AI can
e�ciently process. For example, a well-designed prompt can guide the model to produce text in
a desired style or to answer a question with a speci�c level of detail [8].

The e�ectiveness of prompt engineering depends on a deep understanding of the
model's strengths and weaknesses. By trying out di�erent prompt styles, engineers can �nd the
best ways to get the responses they want [9]. This often includes careful selection of keywords,
providing the right context, and how instructions are framed. Adjusting the tone, format, or
speci�c details included can signi�cantly change the output.

Figure 1: A typical prompt given to ChatGPT 3.5 Turbo [12].

4

Figure 2: An engineered prompt given to ChatGPT [12].

Figures 1 and 2 collectively illustrate the nuances of prompt engineering in natural
language processing. In Figure 1, the ambiguity of the term "LLM" led to a misinterpretation
by ChatGPT, highlighting the challenge of ambiguous prompts and the necessity for precise
context speci�cation in prompt design. Conversely, Figure 2 demonstrates the model's
adeptness at explaining complex concepts, like large language models, in a straightforward and
accessible manner when provided with a clear and contextually relevant prompt. These
interactions demonstrate the critical role of re�ned prompt engineering in guiding AI models
toward accurate interpretations and informative responses, showcasing both the potential and
limitations of AI in educational and explanatory applications.

In our project, we use prompt engineering to improve how users interact with theWPI
chatbot. We re�ne prompts to ensure that the chatbot's responses to WPI academic advising
questions are relevant and accurate. Choosing the right prompts is essential for the chatbot's
ability to understand user queries and provide or generate suitable information [9]. Through
extensive testing and iteration, we identify prompts that lead to coherent and contextually
relevant responses, ensuring the chatbot meets user expectations and conveys information
e�ectively.

Moreover, prompt engineering is not just about optimizing responses. It also involves
using insights from user interactions to enhance the chatbot's performance over time. By
evaluating di�erent prompts' e�ectiveness, we can adjust our strategy to match evolving trends
and preferences. This ongoing re�nement is key to developing responsive and informative AI
applications, marking prompt engineering as a fundamental aspect of our project in creating an
e�ective WPI chatbot.

5

2.3 Current Limitations of LLMs

Training limitations create challenges in the development of today’s LLMs. Recently released
models, such as GPT-4, owe most of their success to large increases in their model parameters
and training dataset sizes [10]. However, the additional hardware and electricity needed to
make these changes dramatically a�ect training costs [10]. As models are trained with more
parameters, the cost to train increases.

Table 1: Number of parameters vs. estimated training costs for GPTmodels [10].

Model Year Parameters Training

cost

Source

GPT-2 2019 1.5 billion $100,000 Wiki, based on BERT cost x10 for model

size

GPT-3 2020 175 billion $10 million Blog post and forum post, maybe at high

end

GPT-4 2023 2 trillion $100

million

Sam Altman quote, anonymous estimate

of 1 trillion which I rounded for

consistency

GPT-5 2025 20 trillion $1 billion Epoch estimate of 100M every 2 years

GPT-6 2027 200 trillion $10 billion As above

The resources needed to train these models are prohibitively expensive, making it
almost impossible for most companies to develop an LLM model near the scale of GPT. The
massive training cost, along with the large amount of time needed to develop the LLM, make it
di�cult to repeatedly update any LLM. As shown in Table 1, it may take multiple years to train
and develop the next large-scale LLM. During this time, new information is discovered,
existing data may be updated, and new world events take place, which means that by the time
the model is done training and released to the public, the dataset it was trained on is obsolete or

6

https://en.wikipedia.org/wiki/GPT-2
https://www.nextplatform.com/2022/12/01/counting-the-cost-of-training-large-language-models/
https://www.reddit.com/r/MachineLearning/comments/hwfjej/d_the_cost_of_training_gpt3/
https://en.wikipedia.org/wiki/GPT-4#Training
https://the-decoder.com/gpt-4-has-a-trillion-parameters/
https://epochai.org/blog/trends-in-the-dollar-training-cost-of-machine-learning-systems#fnref:63

inaccurate. ChatGPT and Google Bard re�ect this idea as of January 2024, with their most
recent models trained on core datasets from only 2022 and earlier.

Even if an LLM was trained on a consistently up-to-date dataset, it still may produce
�awed or incomplete responses. For instance, LLMs are known to “hallucinate”, meaning they
sometimes make up nonsensical or incorrect data [11]. There are several factors that may
contribute to data hallucination. As discussed earlier, many LLMs have improved by increasing
their volume of training data, but increasing the training dataset size means that there is much
more data to be veri�ed and cleaned, making it di�cult to ensure the quality of the entire
dataset [11]. This may introduce human bias and incorrect information into the LLM’s
responses. Furthermore, many LLMs today are trained to be general purpose, utilizing publicly
available data from the internet [11]. While this set of training information is broad, enabling
the model to answer many generic questions, it lacks depth in various specialized �elds such as
medicine and law [11]. When LLMs are tasked with domain-speci�c knowledge of a
specialized �eld, they often hallucinate data in their responses or cannot respond to the query
at all because they are not well-trained on that domain.

ChatGPT 3.5 Incorrect Response Example:

User: Who teaches the BCB 510 - BCB Seminar course at Worcester Polytechnic

Institute?

ChatGPT: As of my last knowledge update in January 2022, I don't have speci�c

information about the current instructors for courses at Worcester Polytechnic

Institute (WPI), including BCB 510 - BCB Seminar. Faculty assignments can change,

and it's best to check the most recent course schedule or contact the relevant

department at WPI for the latest information on course instructors. You can visit the

o�cial WPI website or contact the Biology and Biotechnology Department for the

most accurate and up-to-date details on the BCB 510 course and its instructors.

7

Google Bard Incorrect Response Example:

User: Who teaches the BCB 510 - BCB Seminar course at Worcester Polytechnic

Institute?

Bard: Unfortunately, there isn't usually a dedicated instructor assigned to BCB 510 -

BCB Seminar at Worcester Polytechnic Institute. This is because it's a seminar course

designed for students to present their research and hear talks from guest speakers [1].

The guest speakers for the BCB seminar course will likely vary depending on the

semester and the research focus of the department at that time.

An LLM trained on only publicly available data will not have access to domain-speci�c knowledge needed to

discuss some topics. ChatGPT 3.5 [12] (Top) and Google Gemini [13] (Bottom) unable to provide real-time information

speci�c toWPI.

Even with a quality dataset, LLMs’ training process and architecture itself can cause
hallucinations. This unintended behavior can be introduced into the LLM due to its �rst stage
of training, known as pre-training. Pre-training develops the LLM’s foundational
understanding of language syntax, world knowledge, and reasoning [11]. In pre-training, the
LLM begins generating text by predicting the next token, or section of text, depending on
previous values in the sequence in a left-to-right manner [11]. This unidirectional method may
result in the model losing some understanding of the context if it is not presented in order,
resulting in hallucinations [11]. The next phase of training an LLM, Supervised Fine-Tuning
(SFT), adjusts the model with a set of labeled data in the form of annotated (instruction,
response) pairs [11]. SFT improves the model’s output and its performance on unseen tasks,
generalizing its abilities [11]. However, if the annotated data used for SFT exceeds the
knowledge boundaries de�ned in pre-training, the LLM will try to produce content beyond
what it knows [11]. This is called Capability Misalignment, and it also may lead to
hallucinations [11].

8

2.4 Retrieval Augmented Generation and Related Works

To understand current methods for improving LLM output, our team read through several
research papers. Retrieval Augmented Generation (RAG) [14] and Creating Large Language
Model Applications Utilizing LangChain: A Primer on Developing LLM Apps Fast [15]
inspired our project.

RAG is a current �ne-tuning method used to improve the output of an LLM model.
Broadly speaking, it incorporates information from external data sources into the LLM’s
output using a document retriever feeding into a generator. In this paper, the retriever encodes
the user’s question using a pre-trained BERT document encoder. Next, maximum inner
product search (MIPS) is used to search through the dataset and retrieve one or more
documents relevant to the query. The retrieved content is aggregated and concatenated to the
original input, and the result is given to the generator, a pre-trained BART-large model that
generates the �nal response.

RAG is an important development for generative NLP models because its responses
incorporate real, factual knowledge, making the model less susceptible to data hallucinations.
Additionally, it is easier to customize the model and ensure the data it uses is up-to-date with
the RAG by simply updating the document pool it draws from instead of having to re-training
the entire model.

Since its creation, the RAG has been incorporated into many frameworks for LLM
applications. LangChain, one such LLM framework, provides a set of modules that can be
chained together to create custom LLM pipelines. LangChain is known for its ease in
integrating di�erent data sources and interacting with other applications.

In Creating Large Language Model Applications Utilizing LangChain: A Primer on
Developing LLM Apps Fast [15], LangChain is used to rapidly develop custom LLM
applications. LangChain supports “chains”, or custom sequences of calls to tools, data
preprocessing, or the LLM [15], that can be stacked to create the application. In this paper,
several chains consisting of an LLM and a prompt are combined to perform multiple
operations on the input. One pipeline discussed in the paper involves �rst feeding the input to
a “router chain”, which evaluates the input and then redirects it to a subchain specializing in
that area. A tutor LLM app, for example, may have a router chain that evaluates a student’s
question, and then, depending on the subject, routes it to a math chain, history chain, or
science chain equipped to handle the question. Any of the subchains may be equipped with
RAG to answer the question with current, factual information. The subchains can be
customized to specialize in many di�erent areas, and act as a simple building block for a custom
LLM application.

9

To understand methods and tools currently used for other university chatbots, we
looked at Saint Louis University’s QnABot. This application uses the open source QnABot
from Amazon Web Services to retrieve information from the internet using Lambda hook
functions. When a student prompts the QnABot, the system retrieves the appropriate answer
from online at the time of the query and incorporates it into the response. This gives the
student real-time responses and resources to answer their questions.

2.5 Text Embeddings

Word embeddings are vector representations of words that allow the computation of semantic
similarities [16]. Word embeddings are very useful for AI to understand and generate NLP data
because computers can easily make sense of vector representations. These embeddings can be
represented in a multidimensional plot, where similar words will be closer together.

Word embeddings are great for representing words, but most applications need to get
the embeddings from sentences and documents. There are many strategies to achieve this goal
by leveraging the property of word embeddings. An intuitive approach is to use the frequency
of words to compare similar documents. Since common words like “a”, “and”, and “the” have a
high frequency in all documents, we take the inverse of the document frequency. We create a
matrix with all the documents and the word frequencies, which results in a row vector for each
document. We compare these vectors to get the similarity between documents; this approach is
called TF-IDF (Term Frequency-Inverse Document Frequency). This model is easy to interpret
but it does not take into account the order of words and is memory intensive.

Another approach is to use neural networks with a softmax layer to predict words. The
softmax layer is a function that normalizes the input to a probability distribution for the
number of classes. This function is suitable for classi�cation purposes. Training this model
consists of predicting the next word based on the previous words. As Figure 3 shows, the model
uses a �xed-size window of words and passes the concatenation of their embeddings to a neural
network model with a softmax layer to predict the next word. After training the model with
each word and adjusting the weights, then we can use all the words to compute the embedding
of the document. This approach captures short-term relationships between words but fails to
keep track of long-term relationships like long sentences or sentences in a paragraph. The
limitation is that a single vector cannot represent all the information to decide on the next
word. To solve this limitation, attention mechanisms and transformer models were introduced.

10

Figure 3: Neural Network architecture for getting sentence embeddings [17].

Models with an attention mechanism have an encoder and decoder part. The encoder
processes each item of the sequence and produces a vector called context with the extracted
information. The decoder gets the context from the encoder, processes this information, and
produces the relevant output. Unlike the previous model, the decoder gets the context of every
state to decide on the next word of the sequence. However, processing all these vectors is
expensive and not all of them contain relevant information. That is why the decoder uses an
attention mechanism to �lter the relevant hidden states by assigning them scores and passing
the result through a softmax layer. The transformer models optimize this process by providing
parallel computation through positional encoding and multi-head attention. Transformers
assign unique numbers to words, so they do not need to process the words sequentially and can
apply multi-head attention models to di�erent parts of the document. This model performs
well in capturing the relationship between words and context, but large training sets are
required to achieve accurate results.

2.6 Pre-trained embedding models

For embeddings to perform well, we need to train them with large amounts of data. With this
training, embedding models can identify the relationship between words and patterns in the
data using the previously discussed models. Machine learning applications usually use
pre-trained neural network models that have been trained in large amounts of data. In this

11

project, we chose the embedding model BGE-small and BGE-base because of their high score
in the Massive Text Embedding Benchmark (MTEB). MTEB is a benchmark that measures the
capabilities of embedding models against eight embedding tasks across 58 datasets and 112
languages [18]. This benchmark ensures that an embedding model is not only suitable for tasks
in a speci�c set of datasets but also applicable to other embedding tasks [18]. The BGEmodel
is at the top in the leaderboard of HuggingFace in the categories of reranking with 58.94 and
retrieval with 53.25 scores [19]. These are the two most important categories for the WPI
chatbot because we have a set of documents all WPI-related and we want to �nd relevant
documents to the user query for the LLM context. In addition, BGE models are lightweight
because they occupy less memory than embeddings from LLMs and can make accurate
inferences with fewer computational units [20]. These advantages make BGE models suitable
for retrieval and ranking tasks with an e�cient computational time.

ChatGPT from OpenAI, one of the most powerful LLMs, also has its embedding
model. This model derives from ChatGPT and has the same knowledge about the statistics of
words. Since ChatGPT has been trained with large amounts of text and has proven e�ective at
NLP tasks, its embedding model is a state-of-the-art approach. However, the rate limit is very
restrictive, with only three function calls per minute in the free account. This limitation means
that getting all the embeddings of documents for a big AI application will take an unreasonable
amount of time. OpenAI is a state-of-the-art approach for getting document embeddings, but
we need to be careful to handle rate limit exceptions.

As discussed in this section, The BGE and Open AI embedding models work well for
representing the meaning of words, but to perform similarity and retrieval operations in a
scalable way, we need a vector database.

2.7 Vector Database

A vector database is a specialized database in vector embeddings that allows optimized retrieval
and similarity search calculation [21]. Since machine learning models are trained with large
texts that require embedding manipulations, vector databases have become a very useful tool
nowadays. Traditional databases struggle to manipulate embeddings because embeddings
usually have large dimensions and encode complex meanings, which require specialized
operations to handle them.

Vector databases have three main advantages over traditional databases that make them
suitable for machine learning models: Similarity search, unstructured data, and big data
management. Vector databases o�er a similarity search of vectors, which a traditional database
cannot because it only searches for exact matches or prede�ned conditions [21]. Also, vector
databases can handle unstructured data such as video, images, and audio by transforming them

12

into vectors [21]. In terms of performance, traditional databases do not perform well in big
data because of latency issues, scalability, and concurrency con�ict [21]. On the other hand,
vector databases can use di�erent techniques such as caching, partitioning, and sharding to
distribute the work into di�erent machines to optimize the process [21]. As a result, vector
databases o�er the advantages of traditional databases and provide optimizations to perform
embedding operations.

Furthermore, traditional and vector databases also have important distinctions in their
work�ow. Traditional databases search by row looking for the exact match of a query. On the
other hand, vector databases use a similarity search to �nd the vectors that are most similar to
the query. Vector databases implement this type of search, Approximate Nearest Neighbor
(ANN), using a pipeline that o�ers fast and accurate retrievals (Figure 4). To add a vector, the
database maps the vector to a data structure that allows fast search and retrieval [22]. To
process a query, the database compares the index of the query to the indexes in the database
using similarity scores [22]. After getting similar vectors, the database could rerank the results
with di�erent similarity scores in a process called post-processing [22].

Figure 4: The �ow of how vector databases work [22].

13

2.8 Pinecone Vector Database

Pinecone o�ers a vector database managed in the cloud that has simple API calls to perform
operations with vectors. The storage limit of Pinecone varies depending on pricing with the
free version having a capacity of 100,000 vectors and the most expensive option, costing
around $30,000, has a capacity of 10B vectors. Pinecone o�ers a highly accurate and low
latency service to operate with vectors. This vector database was tested with the MSMarco V2
dataset of 138M embeddings and the results were 96% in recall and 51ms query latency [23].
These results mean that even when working with a dataset with billions of records, the
response time would still be fast. In addition, Pinecone o�ers automatic index matching, which
means that the user would always have access to up-to-date information. Pinecone o�ers the
option to search by metadata allowing for more customizable queries to the database. There is
also a functionality called collection, which allows the user to back up the information in the
database.

Canopy is an open-source framework built on top of Pinecone that allows users to
streamline the process of building a RAG application [24]. Canopy is compatible with all
Open AI LLMwhich provides great �exibility to implement a chat engine. Canopy o�ers a full
RAG work�ow with three main components: knowledge base, context engine, and chat engine
[24]. The user only needs to provide the text data and the knowledge base chunks and calculate
the embeddings to upsert the data to the vector database. With the vector database, the context
engine �nds the most relevant documents and provides them as context for the LLM. Finally,
the chat engine implements the two previous components to answer a user’s query. The chat
engine understands the chat history, identi�es the user’s questions, and transforms them into
embeddings. It then uses the context engine to identify relevant documents and produce a
relevant answer. Figure 5 depicts this process.

14

Figure 5: The �ow of how Canopy implements a RAG application [24].

15

3 Methodology

The goal of this project was to explore the possibilities of building a chatbot for academic
advising information at WPI and to identify strengths and weaknesses in di�erent techniques
along with developing a frontend for user interaction. We tested three di�erent methods with
slight variations. We gathered WPI-related data for each method and used it as context to help
the Large Language Model (LLM) better understand and answer any question we asked. The
�rst method we tested involved using an embedding model and storing the resulting document
representations in a vector database. For the second method, we explored Pinecone’s Retrieval
Augmented Generation (RAG) model. Our �nal method utilized OpenAI's Assistants API.
To achieve our goals for this project, we developed the following objectives:

1. Explore dataset creation of WPI information through di�erent data-gathering methods.
2. Build a RAG Pipeline using embedding models like BGE-small or BGE-base.
3. Explore the Pinecone Canopy tool.
4. Explore di�erent methods of using OpenAI’s Assistant API to build chatbots.
5. Use one of the pipelines to build an example front and back end for the chatbot.
6. Compare and determine strengths and weaknesses for each of the pipelines.

Our objectives will be explained in greater detail in the following subsections. We will
discuss the methods we used and the justi�cation behind them to accomplish the goals and
objectives of this project.

3.1 Dataset

The dataset was a key aspect of this project as it was used throughout the project in all of our
testing methods and was constantly being modi�ed. This section will go over some key points
in our data collection journey.

16

3.1.1 Collection of Data

The data for this project was gathered through WPI online resources. Originally, a Python
script was used to gather WPI webpage data using theWPI.edu sitemap.xml [25]:

Figure 6: A portion of WPI sitemap.

Using the vast amount of URLs on theWPI sitemap, we gathered over 8,000 web pages
deemed relevant to the WPI student experience:

Table 2: Info on webpages gathered.

Total Pages Total Word
Count

Average Word
Count

Estimates Token
Count

All 8308 3,115,270 ~375 4,153,693

However, after review, it was determined that it would be better to test our methods on
a smaller data set that was more targeted to certain aspects of the student experience. These
aspects were courses, degree requirements, and meeting place reservation times.

17

Table 3: Key Resources for Data Gathering.

Title Purpose Resource

Tracking Sheet Degree Requirement Data [26]

WPI Library Tech Suite Data [27]

WPI 25Live RoomAvailability Data [28]

WPI Course Listings WPI Courses Data [29]

Through these resources, we were able to collect enough useful data to create a WPI
academic advising chatbot.

18

Data Breakdown:

Figure 7: Breakdown ofWPI pages gathered.

Figure 7 shows an estimated breakdown of the percentage of data collected for each
category after processing. The total amount of data was about 4,654,895 bytes. These values
are likely to change somewhat every time we collect and process the data. However, since there
are over 3000 sections, courses are likely to be the majority of the data. Overall, the amount of
data collected and the variance of that data allowed us to test the WPI chatbot pipelines
e�ciently.

3.1.2 Data Cleaning and Modi�cation

Most of the data collected in its raw form was in JSON, HTML, or PDF format. The data
cleaning and modi�cation involved taking these raw formats and converting them into a
text-based format. This was done to make the data more natural language-like, which was
accomplished through the use of language templates and a Python script. It is important to

19

note that changing the format of the data has minimal impact on the LLM's ability to properly
answer a question as seen in Figures 10 and 11. These �gures show that ChatGPT can properly
answer the question regardless of whether it was given the JSON format of course information
or a natural language format of course information. In addition, the cosine similarity score of
embeddings from a BGE model and a user query were in a comparable range with the natural
language text, slightly beating out the structured format description of the same course.

Figure 8: JSONData for Elementary Arabic Course.

Figure 9: Natural Language Data for Elementary Arabic Course.

20

Figure 10: ChatGPT Response to JSON Format [12].

Figure 11: ChatGPT Response to Natural Language Format [12].

21

https://www.zotero.org/google-docs/?broken=VYLLo7
https://www.zotero.org/google-docs/?broken=ZgGyEF

Figure 12: Similarity score for natural language format of the user question “Can you tell me about the course Team and
Leadership Fundamentals III?”.

22

Figure 13: Similarity score for structured format of the user question “Can you tell me about the course Team and
Leadership Fundamentals III?”.

Even though there is not much di�erence in an LLM’s ability to answer a question
given structured vs. natural language data, there are some bene�ts from changing the data into
a natural language format. As seen in Table 4, there are instances where the natural language
format has a smaller token count, which can lead to faster performance and lower costs when
interacting with an embedding model like BGE or language models' APIs, such as with
OpenAI’s models. In addition, with a RAG model, it is often common practice to return the
context used to the user for further understanding. If this is the case, it can be useful to return
natural language context compared to the structured data context.

23

Table 4: Token Comparison of Collected Data for Di�erent Formats.

3.1.3 Automation and Updating Data

In addition to dataset creation, another important aspect of this project and customized
chatbots in general is the use of automation and scripts to update the data set on an interval
basis. We developed a Python script that automatically goes to the data sources, gathers the
data, and then transforms it into a cleaned format for the di�erent pipelines to use. The script
could be run daily to completely replace the data set with more up-to-date information. This
would be useful for reservation data and speci�c course data. Figure 14, found on the next
page, shows a visualization of this process.

24

File Group
Text format

(NL)
Cleaned HTML

(NL)
HTML JSON

AB 1532 262 -- -- 471

AB 1533 260 -- -- 475

Admissions 954 638 49326 --

Bursar 914 582 41844 --

Figure 14: Data Updating Process.

This process was slightly di�erent for our OpenAI Assistants pipeline, as steps 3 and 4 are done
through OpenAI. This will be discussed further in section 3.5.

3.1.4 Data Storage

Data storage for this project was also important, as we needed a quick way to to get the
information based on a user question and feed it to the LLM in order to get an appropriate
response. In this project, data storage occurred in two di�erent ways, one with Pinecone and
one with OpenAI’s �le system. However, it is important to note that we also used services like
Google Drive to help store data after gathering information from sources. Pipeline #1 and
Pipeline #2 use Pinecone to help store data. After embedding the text, we gathered from
sources and stored their vectors in Pinecone for later use.

3.1.5 Data Limitations

There were some limitations of the data we could collect and what we could do with it. The
amount of data we had was limited as it takes more time to update the more data you collect.
Additionally, a lot of the data changes often, which is why we chose a smaller dataset to test the

25

methods. The data was also not always guaranteed to be completely up-to-date. Even if
updated daily, data could still be changed elsewhere before updates.

3.2 Tools Used

In this section, we discuss the technical tools used for the project.

3.2.1 Versions of GPT

In our project, we integrated GPT-3.5-turbo and GPT-4, versions of OpenAI's Generative
Pre-trained Transformer, to address varied operational needs in natural language processing
(NLP). GPT-3.5-turbo, optimized for computational e�ciency and quick response times,
improves latency and throughput for immediate feedback applications like real-time user
interactions and processing queries swiftly [30]. However, its focus on speed can sometimes
limit the depth of response for complex inquiries. On the other hand, GPT-4 advances in text
understanding and generation, with a larger dataset and re�ned algorithms for better context,
nuance, and language complexity handling [31]. It generates coherent, detailed responses for
tasks requiring deep content understanding and high-quality outputs.

The use of GPT-3.5-turbo and GPT-4 introduces challenges such as increased
operational costs and the need to balance computational e�ciency with response quality.
GPT-3.5-turbo's rapid responses may lack complexity, while GPT-4's detailed outputs come
with higher computational costs and potentially slower response times [32]. Both models have
their strengths as well as their limitations. In real-world scenarios, managing these aspects is
essential for a cost-e�ective and e�cient system. This project's integration strategy utilized
GPT-3.5-turbo for e�ciency in scenarios demanding quick feedback and GPT-4 for complex
inquiries needing depth and quality. This approach optimized performance to meet the
project’s objectives more e�ectively.

3.2.2 Coding Tools

List of coding tools that were at least partially used to help facilitate the pipelines:

Google Colab
LangChain Python Library
Pinecone Python Library

26

OpenAI Python Library
Requests, CSV, Pandas, Numpy, Time, OS, JSON Python Libraries
OpenAI GPTs

3.3 Pipeline #1: RAG Model with LangChain Pinecone and BGE

embedding Model

In this section, we discuss the �rst key method we used, which was developing a RAG model
using LangChain. This RAG model parses and feeds documents to the BGE embedding
model, which returns vectors that are stored in a Pinecone database. These vectors can be
accessed and compared to help answer a WPI-related question with the assistance of a GPT
model.

3.3.1 LangChain Usage

LangChain is a toolkit and framework that assists in the development of applications that
integrate or use LLMs [33]. For this scenario, we used LangChain as a document loader to help
the process of embedding documents by getting documents into a ready to embed format.
This process is visualized in Figure 15.

Figure 15: Usage Flow of LangChainTool.

3.3.2 BGE Usage

As mentioned in the background, in this project we use a BGE embedding model. For this
pipeline, each of the formatted context segments the LangChain tool formatted we used this
model to create a 768 dimension vector for each segment that was used to perform document
analysis later with cosine similarity. The BGE model was also used to vectorize a user question

27

so that it could be used to compare similarity to context segments. The process can be seen
below in Figure 16.

Figure 16: Usage Flow of LangChain Tool.

3.3.3 Pinecone Usage

Finally, these vector embeddings were stored in a pinecone database for continued use. The
Pinecone database was also used for querying. Once we embed a user question and get a vector
we can use that vector to compare with the stored vectors to �nd relevant context. Using cosine
similarity we can retrieve the context with the highest similarity score, and then feed that into
the LLM along with the user question to get back a reasonable answer. An example of this
context and score can be seen in section 3.1.2 with Figure 12. Additionally, a general visual of
Pipeline #1 is shown in Figure 17 on the next page.

28

Figure 17: Pipeline #1 Visual.

3.4 Pipeline #2: RAGModel with Pinecone Canopy

To use Canopy, we created a new Canopy Pinecone Index, started a Canopy server, and loaded
documents using Canopy. Canopy then automatically parsed and separated the documents
and used OpenAI’s text embedding model to create vector embeddings of the parsed
documents. From there, a user can ask a question to the server. In response, Canopy will �nd
relevant documents and send the documents along with the question to an OpenAI LLM
model. Canopy then receives a knowledgeable response and relays it to the user.

29

Figure 18: Canopy Pipeline Visual.

3.4.2 Key Di�erences

The main di�erence between Pinecone Canopy and Pipeline #1 is that Canopy does much of
the legwork for you. All you need is the proper API keys for both Pinecone and OpenAI and
the documents of information you want to upload. From there you can use a Canopy server’s
RESTful API to implement a chatbot.

3.5 Pipeline #3: OpenAI Assistants API with Question Classi�er

In this section we will discuss the use of OpenAI assistants to build a WPI chatbot and
Question classi�er and how these were used to facilitate answering user questions from our
WPI academic advising dataset.

3.5.1 Assistant Generation

The OpenAI Assistant generation was done in Python. For this project, we decided to have
multiple assistants, each specializing in a speci�c WPI topic. To start, we had an assistant for
courses, room reservation times, and degree requirements. Having specialized assistants might
be done for various reasons, but some reasons we explored are providing specialized
instructions and cost reduction. By having specialized assistants, we can provide each of those
with specialized instructions to provide a better answer for the user which may be harder to do
for a combined assistant. Separating assistants can also have cost bene�ts, as the knowledge
retrieval tool OpenAI provides is often not used if the dataset is distributed between multiple
assistants. Figure 19 is an example of one assistant created using a Python script. Additionally,
when the data must be updated, we can quickly delete the assistants, prepare the up-to-date
documents, and then recreate the assistants all in Python.

30

Figure 19: OpenAI Assistant Example.

31

Figure 20: OpenAI Assistant Example.

3.5.2 Question Classi�er

To use multiple assistants in a single chatbot pipeline, we need some sort of classi�er that can
determine which assistant is best for a user question. In this project, we explored two di�erent
methods involving a classi�er. The �rst method used an embedding model for classi�cation.
Each assistant would have a description that is embedded and represented as a vector. When
the user makes a query, the query is also embedded to create a vector and used to perform a
similarity search among the embedded assistant descriptions. The closest matching assistant
description determines which assistant will ultimately answer the question. The �nal method,
which we incorporated into our web app, involved making another OpenAI assistant to
function as a classi�er. By giving the assistant classi�er descriptions of each of the assistants, it
determines which assistant is best for a speci�c question.

32

Figure 21: Classi�er Flow for User Question.

Figure 22: Example Classi�er using an OpenAI Assistant.

3.5.3 Key Di�erences

This pipeline is similar to the Canopy pipeline as OpenAI does most of the legwork for you.
After gathering your API key and desired documents, you can write a Python script to create
an assistant for each desired topic and interact with them accordingly. Out of all the pipelines,
the most friendly to a beginner would be the OpenAI assistants API.

3.6 Experiment Methodology

In this section, we will discuss how we tested each pipeline to evaluate its performance when
answering WPI related questions. We compare the results across pipelines and against and
against a model without speci�c context.

33

3.6.1 Data Generation for Questions

For the experiment, we used another OpenAI assistant to generate questions based on the
context. Using this method we generated 150 questions total (50 for courses, 50 for reservation
times, and 50 for degree requirements). Each pipeline has the reference documents to be able to
answer the questions.

3.6.2 Experiment Format

To understand the performance of each pipeline and how successfully they handle WPI
academic advising information, we designed an experiment. Each pipeline was given 150
questions as de�ned in 3.6.1, and for each question, we recorded its response along with how
long it took to generate. In addition, we gave 150 questions to GPT 3.5 through the OpenAI
API to provide a baseline comparison as an LLM that does not have the additional context.

3.6.3 Experiment Evaluation Method

For each question the pipeline answered we gave a human evaluation. Each answer was
evaluated based on its Quality, Relevance, and Satisfaction by rating each attribute as a 0 (low
rating) or 1 (high rating). Quality was determined by the correctness of an answer, Relevance
was determined by the answer’s relevance to the original question, and Satisfaction was
determined by how satisfactory the answer was. At the end, we calculated scores by summing
the 0s and 1s and getting an average. An average of 0 would be the lowest score and an average
of 1 would be a perfect score.

3.7 Integration with User Interface

Our project's methodology included integrating Pipeline #3 (OpenAI Assistants API with
question classi�er) with a user interface and transitioning our backend code to a Flask
application. Flask, a Python micro web framework, was chosen for its simplicity, �exibility, and
ability to develop web applications quickly. It provides a lightweight solution for creating a web
interface that bridges the backend processes with the frontend.

The frontend was developed using an open-source project by GitHub user
PandaWhoCodes, which employs Bootstrap and jQuery, ensuring a responsive and
user-friendly design [34]. We modi�ed the base frontend code to be more in line with WPI’s
theme and branding. This choice facilitated an e�cient integration with our Flask application,
enabling dynamic interaction with the backend functionalities.

34

The presence of a user interface in a chatbot system is crucial. It transforms complex
backend operations into a straightforward, engaging user experience, increasing user
satisfaction and engagement by o�ering immediate responses and interactions. The Flask
framework's adaptability, combined with the simple and intuitive design of the frontend,
enhances user interaction.

35

4 Experiments and Results

In this section we will go over the results for our main experiment and results for the front end
and back end.

4.1 Pipeline #1 Results

In this section, we will share some of the results and data collected for Pipeline #1 regarding its
performance in terms of accuracy, time, and cost among other attributes.

4.1.1 Time and Cost to Run Experiment for Pipeline #1

Table 5: Cost and Time for Pipeline#1 Experiment.

Gathering Data Embedding Data Asking Questions

Time ~5Minutes ~51 minutes ~ 4.5 minutes

Cost 0 0 ~ $0.99

4.1.2 Pipeline#1 Answer Results

Table 6: Scoring Results for Pipeline #1.

Quality Score Relevance Score Satisfaction Score Combined Score

All Questions 0.8513 0.8918 0.8503 0.8645

Course
Questions 0.9200 0.9800 0.9400 0.9466

Reservation
Questions 0.7959 0.7959 0.7916 0.7945

Tracking
Sheet

Questions 0.8367 0.8979 0.8163 0.8503

36

Table 7: Time Results Pipeline #1.

Average Time
(Seconds)

Standard Deviation
(Seconds)

MinimumTime
(Seconds)

MaximumTime
(Second)

All Questions 1.731 1.459 0.4016 10.87

Course
Questions 1.5701 1.144 0.5732 6.318

Reservation
Questions 1.912 2.100 0.4016 10.87

Tracking Sheet
Questions 1.709 0.8172 0.8321 5.607

4.1.3 Example of Incorrect Answer Pipeline #1

User: What type of course is ID 4000 considered at WPI?

Pipeline #1: Based on the provided context, ID 4000 is not mentioned as a course in any
of the program tracking sheets for the mentioned majors (MIS, Society, Technology,
and Policy Studies, Electrical and Computer Engineering, and Industrial Engineering).
Therefore, it is not possible to determine the speci�c type of course ID 4000 is
considered at WPI.

The correct answer should be that ID4000 is a Practicum Seminar that focuses on teacher
preparation. Pipeline #1 was not able to retrieve the document that contains the relevant
information about ID4000. It seems that the pipeline had the information about di�erent
tracking sheets, but none of them had the relevant information. When the class is not speci�c
to any major, this pipeline might not be able to retrieve the relevant document.

37

4.2 Pipeline #2 Results:

In this section, we will share some of the results and data collected for pipeline #2 regarding its
performance in terms of accuracy, time, and cost among other attributes

4.2.1 Time and Cost to Run Experiment for Pipeline #2

Table 8: Cost and Time for Pipeline #2 Experiment.

Gathering Data Embedding Data Asking Questions

Time ~5Minutes ~1.5 minutes ~ 9.22 minutes

Cost 0 ~$0.17 ~ $1.36

4.2.2 Pipeline #2 Answer Results

Table 9: Scoring Results for Pipeline #2.

Quality Score Relevance Score Satisfaction Score Combined Score

All Questions 0.8993 0.9527 0.9048 0.9189

Course
Questions 0.9600 0.9600 0.9600 0.9600

Reservation
Questions 0.9400 0.9592 0.9400 0.9464

Tracking
Sheet

Questions 0.7959 0.9388 0.8085 0.8477

38

Table 10: Time Results Pipeline #2.

Average Time
(Seconds)

Standard Deviation
(Seconds)

MinimumTime
(Seconds)

MaximumTime
(Second)

All Questions 3.763 2.055 1.974 20.53

Course
Questions 3.287 1.207 1.974 10.12

Reservation
Questions 4.899 2.694 2.076 20.53

Tracking Sheet
Questions 3.172 1.415 2.148 12.29

4.2.3 Example of Incorrect Answer Pipeline #2

User: What type of project is associated with the Interactive Qualifying Project (IQP)
requirement for Actuarial Mathematics majors?

Pipeline #2: The type of project associated with the Interactive Qualifying Project
(IQP) requirement for Actuarial Mathematics majors is a Major Qualifying Project
(MQP). This MQP must be in ISC with an ISC advisor and meet the speci�c criteria
outlined for Actuarial Mathematics majors. Students interested in pursuing a degree in
Actuarial Mathematics should contact Professor Abraham, the Coordinator of the
Actuarial Mathematics Program, for more details about this requirement.

The correct answer should be that IQP projects are interdisciplinary teams trying to solve a
problem or need that lies at the intersection of science and society. The pipeline describes IQP
and MQP as the same project, but they are not. The retrieved documents for this question may
contain information about IQP and MQP, as they are both project-based major requirements,
but the model should be able to tell that they are di�erent based on their description.

39

4.3 Pipeline #3 Results:

In this section, we will share some of the results and data collected for pipeline #3 regarding its
performance in terms of accuracy, time, and cost among other attributes

4.3.1 Time and Cost to Run Experiment for Pipeline #3

Table 11: Cost and Time for Pipeline #3 Experiment.

Gathering Data Embedding Data Asking Questions

Time ~3Minutes N/A ~ 57.8 minutes

Cost 0 0 ~ $16.54

4.3.2 Pipeline #3 Answer Results

Table 12: Scoring Results for Pipeline #3.

Quality Score Relevance Score Satisfaction Score Combined Score

All Questions 0.8322 0.8590 0.8053 0.8322

Course
Questions 0.7000 0.7000 0.7000 0.7000

Reservation
Questions 0.9000 0.9000 0.9000 0.9000

Tracking
Sheet

Questions 0.8979 0.9795 0.81632 0.8979

40

Table 13: Time Results Pipeline #3.

Average Time
(Seconds)

Standard Deviation
(Seconds)

MinimumTime
(Seconds)

MaximumTime
(Second)

All Questions 23.28 5.907 21.88 75.30

Course
Questions 22.92 3.984 21.88 42.21

Reservation
Questions 23.27 4.903 21.94 42.76

Tracking Sheet
Questions 23.65 8.159 21.91 75.30

4.3.3 Example of Incorrect Answer Pipeline #3

User: Howmany credits can students earn from the BCB Seminar course?

Pipeline #3: Students can earn 3 credits from the AE 5032 Seminar course

The correct answer should be that students do not get any credit for this class because
the grading system is Pass/Fail. This pipeline retrieved the information from the wrong course.
A possible reason is that AE 5032 is also a seminar course.

4.4 Overall Results

In this section, we will go into the comparison of all the results and the results for the base
model without context.

41

4.4.1 Comparison Between Pipelines and Base Model without Context

Figure 23: Quality Score Breakdown of Pipelines vs Base Model without Context.

42

Figure 24: Relevance Score Breakdown of Pipelines vs Base Model without Context.

43

Figure 25: Satisfaction Score Breakdown of Pipelines vs Base Model without Context.

44

Figure 26: Answer Time Breakdown of Pipelines vs Base Model without Context.

4.4.2 Example of Questions All Pipelines Responded Correctly

Course Question

User:On what dates will the BCB 590 - Special Topics course be o�ered in 2024?

Pipeline #1: Based on the information provided, the BCB 590 - Special Topics course will be
o�ered from January 10, 2024, to May 1, 2024.

Pipeline #2: The BCB 590 - Special Topics course will be o�ered from January 10th, 2024, to
May 1st, 2024.

Pipeline #3: The BCB 590 - Special Topics course will be o�ered from January 10, 2024, to
May 1, 2024

45

Reservations Question

User:What is the capacity of Higgins Labs 116 - Classroom?

Pipeline #1:The capacity of Higgins Labs 116 - Classroom is 97.

Pipeline #2: The capacity of Higgins Labs 116 - Classroom is 97 based on the default layout
capacity provided in the reservation details.

Pipeline #3:The capacity of Higgins Labs 116 - Classroom at Worcester Polytechnic Institute is
97

Tracking Sheet Question

User: What is the maximum credit allowance for AP courses towards the Humanities and Arts
requirement for Actuarial Mathematics majors?

Pipeline #1: Based on the information provided in the Program Tracking Sheet for Actuarial
Mathematics majors, only 1 AP credit can be applied to the Humanities and Arts (HUA)
requirement. Therefore, the maximum credit allowance for AP.

Pipeline #2: The maximum credit allowance for AP courses towards the Humanities and Arts
(HUA) requirement for Actuarial Mathematics majors is 1 AP credit. Only one AP credit can
be applied to ful�ll the HUA requirement for Actuarial

Pipeline #3: For Actuarial Mathematics majors at Worcester Polytechnic Institute, only 1 AP
credit can be applied to the Humanities and Arts (HUA) requirement

Answer For Each Question Given By Base Model Without Context

User:On what dates will the BCB 590 - Special Topics course be o�ered in 2024?

ChatGPT: I'm sorry, but as an AI language model, I don't have access to speci�c course
schedules for universities. The dates for the BCB 590 - Special Topics course in 2024 would be

46

determined by the university o�ering the course. I recommend checking with the relevant
university or department for the speci�c dates of the course in 2024.

User:What is the capacity of Higgins Labs 116 - Classroom?

ChatGPT: I'm sorry, but as an AI language model, I don't have access to speci�c information
about the capacity of Higgins Labs 116 - Classroom. It would be best to contact the relevant
institution or facility directly for accurate information regarding the capacity of that particular
classroom.

User: What is the maximum credit allowance for AP courses towards the Humanities and Arts
requirement for Actuarial Mathematics majors?

ChatGPT: I'm sorry, but I couldn't �nd speci�c information about the maximum credit
allowance for AP courses towards the Humanities and Arts requirement for Actuarial
Mathematics majors. The credit allowance may vary depending on the university or college you
are attending. It is best to consult with your academic advisor or the department responsible
for Actuarial Mathematics at your institution for accurate and up-to-date information.

47

4.5 Frontend/Backend Results:

Figure 27: Working Implementation of WPI Chatbot using Pipeline # 3.

Figure 27, above, shows the front end of our chatbot that is connected to the back end. The
screenshot shows a small portion of a longer conversation.

48

5 Discussion

In evaluating the performance of various pipelines against a base model without context, it
becomes evident that the base model's limitations signi�cantly impact its accuracy, primarily
due to its training on static datasets and a general-purpose design that lacks depth in specialized
�elds such as WPI academic advising information. This resulted in the base model incorrectly
answering almost all questions.

Conversely, the specialized pipelines exhibited superior performance, with all achieving
over 70% accuracy across evaluated categories. Pipeline #2 was particularly notable for its high
accuracy in course (96%) and reservation information (94%), although its performance dipped
to 79.6% for tracking sheet information. Pipelines #1 and #3, while slightly less e�ective for
courses and reservations, outperformed pipeline #2 in tracking sheet information with
accuracies of 83.7% and 89.8%, respectively. Pipeline #3 uses an Open-AI Assistant that
classi�es the questions and assigns them to the speci�c Open-AI Assistant with the
corresponding information. Since this classi�er can make mistakes, the performance of pipeline
#3 is also a�ected by the accuracy of the classi�er.

In terms of user satisfaction, the trends mirrored those of accuracy, with pipeline #2
leading in courses and reservation information. However, the satisfaction scores for pipeline #3
signi�cantly decreased to 81.6%. Relevance scores followed a similar pattern, with pipeline #2
consistently outperforming others, except in speci�c categories where pipeline #1 excelled in
course information.

The analysis of response times revealed pipeline #1 as the fastest, averaging 1.73 seconds,
surpassing even the base model. Pipeline #2 had a moderate average time of 3.76 seconds, while
pipeline #3 lagged signi�cantly at 23.28 seconds mainly due to the way polling the response was
set up the minimum time of 20 seconds.

For pricing, pipeline #1 is the cheapest with a cost of 0.99$ to ask the 150 WPI
academic advising questions. Pipeline #2 is slightly more expensive with a cost of $1.36 to ask
the questions. For pipeline #3, there is a signi�cant jump in price of $16.54 because of the
associated cost of using Open-AI Assistants.

Considering these �ndings, pipeline #2 demonstrates superior overall performance
across various question types. However, the nuanced performances of pipelines #1 and #3 for
tracking sheet questions suggest a potential for customizing pipelines based on question
speci�city in future applications. This tailored approach could enhance the e�cacy of LLMs
for institutional applications, as evidenced by the promising results of the WPI chatbots. The
distinct improvement over the base model emphasizes the value of contextual and specialized
training in developing e�ective chatbot solutions.

49

6 Conclusion and Future Work

Our project leveraged customized LLMs for WPI, integrating speci�c institutional data into
several models. This e�ort aimed to surpass the performance of a generic base model by better
addressing WPI's unique information requirements. It also investigated how custom pipelines
could reduce inaccuracies in LLM responses by addressing knowledge gaps.

The work done through this project successfully demonstrates the potential of custom
LLMs to signi�cantly enhance the precision and relevance of responses to academic advising
queries for a university such as WPI. By comparing the performance of specialized pipelines
with a base model, it is evident that incorporating contextual and institution-speci�c datasets
into LLMs markedly improves their functionality. Among the various pipelines tested,
Pipeline #2 (a RAG Model with Pinecone Canopy) emerged as the most e�ective, showcasing
exceptional accuracy in processing course and reservation information, despite a slight decline
in tracking sheet queries. This indicates a substantial advancement over the base model, which
was constrained by its reliance on static datasets and a lack of specialization.

The �ndings demonstrate the importance of tailoring LLMs to speci�c domains to
overcome the limitations of generic models. The superior performance of the specialized
pipelines not only a�rms the feasibility of creating more accurate and e�cient LLMs for
institutional use but also highlights the potential for these models to be adapted for similar
challenges in other settings. This adaptability could signi�cantly improve the way institutions
manage and distribute information, making it more accessible and easier to navigate for their
communities.

For future work, we recommend exploring further customization of pipelines based on
the speci�city of queries. The nuanced performance di�erences among the pipelines suggest
that a more targeted approach could yield even higher accuracies and user satisfaction levels.
Additionally, integrating real-time data updates and exploring the use of advanced machine
learning techniques could further enhance the responsiveness and reliability of these systems.
Investigating the scalability of such models to cater to larger institutions or di�erent sectors
could also provide valuable insights into the broader applicability of custom LLMs.

Furthermore, continuous feedback loops from users should be incorporated to re�ne
and update the models regularly. This iterative process will ensure the LLMs remain relevant
and highly e�cient in meeting the dynamic needs of their intended users. By advancing these
areas, future research can build on the foundation laid by this project, paving the way for
LLMs that are not only highly specialized and accurate but also adaptable to the ever-evolving
landscape of information needs across various domains.

50

Bibliography
[1] “Introducing ChatGPT.” Accessed: Feb. 19, 2024. [Online]. Available:

https://openai.com/blog/chatgpt
[2] “Open Sourcing BERT: State-of-the-Art Pre-training for Natural Language Processing.”

Accessed: Feb. 19, 2024. [Online]. Available:
https://blog.research.google/2018/11/open-sourcing-bert-state-of-art-pre.html

[3] M. U. Hadi et al., “A Survey on Large Language Models: Applications, Challenges,
Limitations, and Practical Usage,” preprint, Jul. 2023. doi:
10.36227/techrxiv.23589741.v1.

[4] S. Feng, W. Shi, Y. Wang, W. Ding, V. Balachandran, and Y. Tsvetkov, “Don’t Hallucinate,
Abstain: Identifying LLMKnowledge Gaps via Multi-LLMCollaboration,” 2024, doi:
10.48550/ARXIV.2402.00367.

[5] S. K. Singh, S. Kumar, and P. S. Mehra, “Chat GPT&Google Bard AI: A Review,” in
2023 International Conference on IoT, Communication and Automation Technology
(ICICAT), Gorakhpur, India: IEEE, Jun. 2023, pp. 1–6. doi:
10.1109/ICICAT57735.2023.10263706.

[6] Y. Mehdi, “Reinventing search with a new AI-poweredMicrosoft Bing and Edge, your
copilot for the web,” The O�cial Microsoft Blog. Accessed: Feb. 28, 2024. [Online].
Available:
https://blogs.microsoft.com/blog/2023/02/07/reinventing-search-with-a-new-ai-powered
-microsoft-bing-and-edge-your-copilot-for-the-web/

[7] E. Adamopoulou and L. Moussiades, “Chatbots: History, technology, and applications,”
Mach. Learn. Appl., vol. 2, p. 100006, Dec. 2020, doi: 10.1016/j.mlwa.2020.100006.

[8] “Arti�cial intelligence prompt engineering as a new digital competence: Analysis of
generative AI technologies such as ChatGPT,” Entrep. Bus. Econ. Rev., vol. 11, no. 3, pp.
25–38, 2023.

[9] B. Chen, Z. Zhang, N. Langrené, and S. Zhu, “Unleashing the potential of prompt
engineering in Large Language Models: a comprehensive review,” 2023, doi:
10.48550/ARXIV.2310.14735.

[10] J. Fodor, “Intrinsic limitations of GPT-4 and other large language models, and why I’m
not (very) worried about GPT-n”, Accessed: Feb. 05, 2024. [Online]. Available:
https://forum.e�ectivealtruism.org/posts/6dphu3p8d5mQZEZzk/intrinsic-limitations-of
-gpt-4-and-other-large-language

[11] L. Huang et al., “A Survey on Hallucination in Large Language Models: Principles,
Taxonomy, Challenges, and Open Questions.” 2023.

[12] “ChatGPT.” OpenAI, 2024. [Large Language Model]. Available:

51

https://openai.com/blog/chatgpt
https://blog.research.google/2018/11/open-sourcing-bert-state-of-art-pre.html
https://blogs.microsoft.com/blog/2023/02/07/reinventing-search-with-a-new-ai-powered-microsoft-bing-and-edge-your-copilot-for-the-web/
https://blogs.microsoft.com/blog/2023/02/07/reinventing-search-with-a-new-ai-powered-microsoft-bing-and-edge-your-copilot-for-the-web/
https://forum.effectivealtruism.org/posts/6dphu3p8d5mQZEZzk/intrinsic-limitations-of-gpt-4-and-other-large-language
https://forum.effectivealtruism.org/posts/6dphu3p8d5mQZEZzk/intrinsic-limitations-of-gpt-4-and-other-large-language

https://chat.openai.com/
[13] “Gemini.” Google, 2024. [[Large Language Model]]. Available:

https://gemini.google.com/app
[14] P. Lewis et al., “Retrieval-Augmented Generation for Knowledge-Intensive NLP

Tasks,” in Advances in Neural Information Processing Systems, Curran Associates, Inc.,
2020, pp. 9459–9474. Accessed: Jan. 25, 2024. [Online]. Available:
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-
Abstract.html

[15] O. Topsakal and T. C. Akinci, “Creating Large Language Model Applications Utilizing
LangChain: A Primer on Developing LLMApps Fast,” Int. Conf. Appl. Eng. Nat. Sci., vol.
1, no. 1, pp. 1050–1056, Jul. 2023, doi: 10.59287/icaens.1127.

[16] M. Pelevina, N. Arefyev, C. Biemann, and A. Panchenko, “Making Sense of Word
Embeddings.” arXiv, Aug. 10, 2017. doi: 10.48550/arXiv.1708.03390.

[17] Q. V. Le and T. Mikolov, “Distributed Representations of Sentences and Documents.”
arXiv, May 22, 2014. doi: 10.48550/arXiv.1405.4053.

[18] N. Muennigho�, N. Tazi, L. Magne, and N. Reimers, “MTEB: Massive Text
Embedding Benchmark.” arXiv, Mar. 19, 2023. doi: 10.48550/arXiv.2210.07316.

[19] “MTEB Leaderboard - a Hugging Face Space byMTEB.” Accessed: Jan. 29, 2024.
[Online]. Available: https://huggingface.co/spaces/mteb/leaderboard

[20] S. Xiao, Z. Liu, P. Zhang, and N.Muennigho�, “C-Pack: Packaged Resources To
Advance General Chinese Embedding.” arXiv, Dec. 15, 2023. doi:
10.48550/arXiv.2309.07597.

[21] Y. Han, C. Liu, and P. Wang, “A Comprehensive Survey on Vector Database: Storage
and Retrieval Technique, Challenge.” arXiv, Oct. 18, 2023. doi:
10.48550/arXiv.2310.11703.

[22] R. Schwaber-Cohen, “What is a Vector Database &HowDoes it Work? Use Cases +
Examples | Pinecone.” Accessed: Feb. 05, 2024. [Online]. Available:
https://www.pinecone.io/learn/vector-database/

[23] “Pinecone Serverless | Pinecone.” Accessed: Feb. 10, 2024. [Online]. Available:
https://www.pinecone.io/product/serverless

[24] G. Cullen, “Introducing Canopy: An easy, free, and �exible RAG framework powered
by Pinecone | Pinecone.” Accessed: Feb. 26, 2024. [Online]. Available:
https://www.pinecone.io/blog/canopy-rag-framework/

[25] “Sitemap �le: https://www.wpi.edu/sitemap.xml?page=1.” Accessed: Jan. 31, 2024.
[Online]. Available: https://www.wpi.edu/sitemap.xml?page=1

[26] “Program Tracking Sheets | Worcester Polytechnic Institute.” Accessed: Jan. 31, 2024.
[Online]. Available:
https://www.wpi.edu/student-experience/resources/academic-advising/program-tracking-s

52

https://chat.openai.com/
https://gemini.google.com/app
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://huggingface.co/spaces/mteb/leaderboard
https://www.pinecone.io/learn/vector-database/
https://www.pinecone.io/product/serverless
https://www.pinecone.io/blog/canopy-rag-framework/
https://www.wpi.edu/sitemap.xml?page=1
https://www.wpi.edu/student-experience/resources/academic-advising/program-tracking-sheets

heets
[27] “Search Spaces - LibCal - Worcester Polytechnic Institute.” Accessed: Jan. 31, 2024.

[Online]. Available: https://wpi.libcal.com/spaces
[28] “25live RoomReservations.” Accessed: Jan. 31, 2024. [Online]. Available:

https://25live.collegenet.com/25live/data/wpi/run/rm_reservations.json
[29] “WPI Course Listing JSON.” Accessed: Jan. 31, 2024. [Online]. Available:

https://courselistings.wpi.edu/assets/prod-data.json
[30] “OpenAI Platform.” Accessed: Feb. 28, 2024. [Online]. Available:

https://platform.openai.com
[31] “GPT-4.” Accessed: Feb. 28, 2024. [Online]. Available:

https://openai.com/research/gpt-4
[32] J. Ye et al., “A Comprehensive Capability Analysis of GPT-3 and GPT-3.5 Series

Models,” 2023, doi: 10.48550/ARXIV.2303.10420.
[33] “LangChain.” Accessed: Feb. 07, 2024. [Online]. Available:

https://www.langchain.com/
[34] T. A. Cherian, “PandaWhoCodes/chatbot-frontend.” Feb. 19, 2024. Accessed: Feb. 28,

2024. [Online]. Available: https://github.com/PandaWhoCodes/chatbot-frontend

53

https://www.wpi.edu/student-experience/resources/academic-advising/program-tracking-sheets
https://wpi.libcal.com/spaces
https://25live.collegenet.com/25live/data/wpi/run/rm_reservations.json
https://courselistings.wpi.edu/assets/prod-data.json
https://platform.openai.com
https://openai.com/research/gpt-4
https://www.langchain.com/
https://github.com/PandaWhoCodes/chatbot-frontend

Appendix A

GitHub Repository

We have published a GitHub repository containing supplementary materials for our project.
There, the following supplementary materials can be found:

● Code for a chatbot using Pipeline #3 (OpenAI Assistants) for the backend, and an
open-source chatbot UI for the frontend

● A folder called Pipeline Testing, which contains all the text �les that were fed into the
customized LLMs as well as spreadsheets with questions, answers, and ratings assessing
the performance of each pipeline

Here is the full link as well: https://github.com/Swaggerjee/AdvisorBotWPI.

54

https://github.com/Swaggerjee/AdvisorBotWPI
https://github.com/Swaggerjee/AdvisorBotWPI

