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ABSTRACT 

 

Several models for prostate oncogenesis have been presented throughout the years, including the 

cancer stem cell (CSC) model.  CSCs may be responsible for the self-renewing properties, and 

therefore progression, of the tumor.  In this project, several protein and integrin markers were 

characterized using immunohistochemistry, immunofluorescence, and immunoblotting to 

identify cancer stem cells in human biopsy tissue.  The data suggest that α2 and Trop2 cannot be 

used to identify CSCs, and that using several markers simultaneously, including perhaps CD133,  

will be required to identify, and eventually isolate, cancer stem cells. 
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BACKGROUND 

 

Cancer Stem Cells 

Overview 

Discovered roughly fifteen years ago in hematopoietic cancer (Regenbrecht et al., 2008), 

cancer stem cells (CSCs) represent a small subset of cells in a tumor, and are different from the 

highly differentiated tumor cells (Morrison et al., 2008).  It is thought that CSCs arise from stem 

cells which undergo cancerous growth, while maintaining their ability to undergo differentiation 

like normal stem cells (Signoretti and Loda, 2007).  It is also theorized that CSCs could be the 

product of the transformation of transit-amplifying cells (unipotent progenitor cells), or from the 

de-differentiation of adult cells that have acquired characteristics of stem cells (Signoretti and 

Loda, 2007).  The cancer stem cell phenotype is defined by several distinct features that include 

self-renewal, differentiation, and extensive proliferation (Vaish, 2007).  For cancer stem cells 

post-cell division, one of the daughter cells has identical genetic content to the parent cell and 

each stem cell is capable of differentiating into multiple lineages (Vaish, 2007).  In recent years, 

cancer biologists have discovered that normal stem cells and cancer stem cells are similar, both 

phenotypically and functionally, as characterized in the hematopoietic system where 

hematopoetic stem cells (HSCs) and leukemic stem cells (LSCs) have been shown to express 

common cell surface markers (Yilmaz and Morrison, 2008).  Similarities between these two cell 

types are also seen in their self-renewal pathways (Yilmaz and Morrison, 2008).  This 

information is of great importance and relevance, as it promotes a clearer understanding of the 

self-renewal mechanism essential for tumor growth, allows for the identification of more specific 
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CSC markers, and reveals information about pathways that may be suitable as future treatments 

against cancer (Regenbrecht et al., 2008).   

Studies of cancer stem cells in solid tumors are still in the developmental stage 

(Regenbrecht et al., 2008).  Methods for the isolation of CSCs from solid tumors, as investigated 

in this MQP, have still yet to be established (Regenbrecht et al., 2008).  In cases where CSCs 

were successfully isolated from solid tumors, it is seen that they possess biological properties 

that directly correlate with patient prognosis (Regenbrecht et al., 2008).  In the brain tumor, it 

was reported that mechanisms of DNA damage repair are specifically activated in CSCs to 

confer resistance to radiation to them (Regenbrecht et al., 2008).  Thus, the identification and 

isolation of CSCs is the actual challenge for development of target therapies for cancer treatment 

(Regenbrecht et al., 2008). 

 

Cancer Stem Cell Model 

Several models have been postulated to explain the origin and continued growth of 

tumors.  The CSC hypothesis is derived from the fact that cancer cells do not form a 

homogenous population (Regenbrecht et al., 2008).  A heterogenous population of cancer cells 

could potentially result from the differentiation of a single stem cell.  It is believed that cancer 

stem cells form a small portion of the tumor cell population (Regenbrecht et al., 2008).  Studies 

performed on these particular cells indicate that they are the only cells within the tumor 

population that are capable of maintaining tumor growth indefinitely (Regenbrecht et al., 2008).   

There are several possible origins of cancer stem cells.  In the oldest theorized model 

(Lapidot et al., 1994), CSCs emerge from normal stem cells by mutations that allow for an 

unchecked growth of CSCs (Lobo et al., 2007).  In newer models, however, it is viewed that 
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CSCs may arise from primary cancer cells that have acquired the ability to self-renew, occurring 

when several oncogenic mutations confer self-renewal capability onto regular cancer cells (Lobo 

et al., 2007). 

 

Evidence for the Existence of CSCs 

Evidence for the existence of CSCs is provided by a mouse teratocarcinoma cancer 

model in which tumors arise from germinal totipotent stem cells.  This model provides a way by 

which scientists are able to study how the cellular environment contributes to oncogenesis (Lobo 

et al., 2007).  Upon transplantation, these germinal stem cells form tumors consisting of both 

young and developed cell components, providing a model for how tumors form into a 

heterogeneous population of cells, and making this model useful for studying how the niche 

affects tumorigenesis (Lobo et al., 2007). 

 

Prostate Cancer 

Cancer, a leading cause of death worldwide, causes one in every four deaths in the United 

States (Jemal et al., 2009).  Prostate cancer is the most common non-skin cancer among men in 

United States (American Cancer Society, 2009), and is the second leading cause of death among 

men (Crawford, 2003).  Almost 200,000 men in the country will be diagnosed with prostate 

cancer in 2010, leading to almost 28,000 deaths (Jemal et al., 2009).  Statistics show that 1 in 6 

men will be diagnosed with prostate cancer at one point in their lives, with the likeliness 

increasing with age (Prostate Cancer Foundation, 2009).  In fact, more than half of all prostate 

cancer cases are diagnoses of men 65 years and older (Prostate Cancer Foundation, 2009).   
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Despite these bleak numbers, the five-year survival rate for all stages of prostate cancer is near 

100% (American Cancer Society, 2007). 

Prostate cancer is thought to begin with a pre-cancerous state known as prostatic 

intraepithelial neoplasia (PIN) (American Cancer Society, 2009).  PIN is seen in men as young 

as 20 years old, and by the time they reach 50, 50% of men show this condition (American 

Cancer Society, 2009).  This condition shows physically noticeable changes in normal prostate 

gland cells, but at this point, abnormal cells would not be seen growing into other parts of the 

prostate, like cancerous cells (American Cancer Society, 2009).   

While the majority of prostate tumors grow slowly, when they metastasize, they can do 

so very quickly (American Cancer Society, 2007).  As such, prostate cancer often shows no early 

signs or symptoms (American Cancer Society, 2007).  It is common for the prostate gland to 

become enlarged through the course of a man’s life (National Kidney and Urologic Diseases 

Information Clearinghouse, 2006).  This natural process is known as benign prostatic 

hyperplasia, BPH.  Though having BPH does not increase the likelihood of developing prostate 

cancer, a man with BPH may have undetected prostate cancer as well, or may develop prostate 

cancer in the future (National Kidney and Urologic Diseases Information Clearinghouse, 2006).  

Since this enlargement process is natural and inevitable, age is the primary risk factor for 

prostate cancer (National Kidney and Urologic Diseases Information Clearinghouse, 2006). 

The normal prostatic epithelium is composed of three different types of cells: secretory, 

basal, and neuroendocrine (Signoretti et al., 2000).  Cells have been identified in the normal 

prostatic epithelium which are a morphological and immunophenotypical intermediate between 

basal and secretory cells (Signoretti et al., 2000).  Evidence has been shown that basal and 

secretory cells are independent lineages and each have the ability to self-renew (Evans and 
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Chandler, 1987). Thus, the existence of a prostate stem cell able to give rise to both basal and 

secretory cells is controversial (Signoretti et al., 2000). 

Though the prostate is composed of several types of cells, the majority of prostate 

cancers develop from the luminal secretory cells (American Cancer Society, 2009).  Other types 

of cancers that can also develop in the prostate are known as sarcomas, small cell carcinomas, 

and transitional cell carcinomas (American Cancer Society, 2009).  However, since the other 

types are so rare, most prostate cancers can be assumed to be adenocarcinomas (cancers 

developed from luminal epithelium) (American Cancer Society, 2009).  The human prostate 

cancer specimens evaluated in this MQP are adenocarcinomas.   

 

Prostate Cancer Stem Cells 

It has been postulated that prostate cancer arises from differentiated luminal cells, since 

most of the tumor cell population express luminal cell-specific markers, while being negative for 

basal markers (Lang et al., 2009; Signoretti et al., 2000).  This information has also led to the 

hypothesis that prostate cancer arises from intermediate progenitor cells which have gained the 

ability via mutations to self-renew (Lang et al., 2009).  It has also been suggested that prostate 

CSCs arise from once normal stem cells (Lang et al., 2009). 

 

Integrins in Cancer 

 

The integrin “superfamily” is composed of α and β heterodimeric transmembrane 

proteins that bind the extracellular matrix (ECM) to modulate cellular adhesion to substrate 

(Mizejewski, 1999).  ECM proteins are essential for the normal development and remodeling of 

tissues during morphogenesis, tissue maintenance, wound healing, and oncogenesis (Mizejewski, 
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1999).  Integrins are composed of long extracellular domains (see Figure 1 for structure), which 

mediate adhesion to their ligands, and short cytoplasmic domains which bind/interact with 

several receptors to the cytoskeleton and intracellular signaling proteins involved in the 

regulation of signaling networks, such as cytoskeletal functions (Hayes et al., 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Diagram of Integrin Structure and Domains.  Integrin receptors are 

composed of two subunits (α and β).  The majority of amino acid residues are 

extracellular, and contain a variety of functional domains. (Goel et al., 2004) 

 

Integrin Deregulation in Prostate Cancer 

In prostate cancer, tumor cells show abnormal expression of integrins and have a 

significantly different ECM, compared to normal prostatic cells.  Integrin deregulation in cancer 

is thought to occur through activation of various specific transcriptional, translational and post-

translational processes (Goel et al., 2008). 

Studies have reported that most α and β integrin subunits are downregulated as a prostate 

gland slowly turns cancerous.  Specifically, several reports show that the α3, α4, α5, and α7 

subunits are downregulated (Goel et al., 2008).  Integrin α2 is unique in that it is downregulated 
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in prostate cancer while being upregulated in lymph node metastases, when compared to primary 

lesions (Goel et al., 2008).   

In contrast to most integrins, αvβ3, αvβ6, and a truncated version of α||b are upregulated 

in prostate cancer (Goel et al, 2008).  In studies performed on two prostate epithelial cell lines, 

PC3 and LNCaP, it was seen that αvβ3 is expressed at high levels in PC3 as compared to LNCaP 

(Zheng et al., 1999). PC3 cells are able to form metastatic lesions and intraperitoneal tumors, 

while LNCaP cells can form tumors but do not metastasize (Zheng et al., 1999).  This suggests a 

correlation between αvβ3 expression and metastatic potential of prostate cancer cells (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Overexpression of Integrin αvβ3 in Metastatic Prostate Cancer 

Cells.  FACS analysis of αvβ3 integrin expression in two types of prostate cancer 

cell lines.  PC3 cells show high metastatic potential, while LNCaP cells show low 

metastatic potential. Vertical axis represents cell number, while horizontal axis 

represents αvβ3 fluorescence expression and intensity.  (Zheng et al., 1999) 

 

 

A summary of the disregulation of integrin α subunits in prostatic adenocarcinoma and 

metastases is shown in Table I.   
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Integrin disregulation during human prostate cancer progression     

            

α Subunit Sample; Method 

 

Deregulated Expression 

 

References 

  

    

  

α2 Tissue specimens; 

IHC 

 downregulated in adenocarcinoma*; 

upregulated 

in metastases 

 Nagle et al, 1994; 

Bonkhoff et al, 1993 

        

α3, α4 α5 Tissue specimens; 

IHC 

 downregulated in adenocarcinoma  Nagle et al, 1994 

        

α6 Tissue specimens; 

IHC,  

TEM 

 polarized distribution in benign, less polarized 

in 

HGPIN, not polarized in lymph node 

metastases; 

upregulated in metastases 

 Bonkhoff et al, 1993; 

Knox et al,  

1994; Nagle et al, 1995 

        

α7 Tissue specimens; 

IHC,  

Sequencing of 

genomic  

DNAs and cDNAs 

 downregulated in adenocarcinoma; also 

mutated  

in adenocarcinoma and recurrent 

adenocarcinoma 

 Ren et al, 2007 

        

α||b 

(truncated) 

Tissue specimens; 

IHC 

 expressed in adenocarcinoma; absent in 

normal tissue 

 Trikha et al, 1998 

            

            

Table 1.  Integrin Disregulation During Human Prostate Cancer Progression. 
(Goel et al., 2008) 

 

 

Transformation of a tumor cell from a benign state to a malignant one is characterized by 

the disruption of cytoskeletal organization, decreased cellular adhesion, and altered adhesion-

dependent reactions (Mizejewski, 1999).  The spatial arrangement of integrins becomes 

disordered, with a diffuse and sparse cellular distribution in carcinomas (Mizejewski, 1999).  

These cell-surface rearrangements can effect various integrin functions, such as ligand-binding 

affinity, and correlate with the disorganization of the membrane (Mizejewski, 1999).  Abnormal 

interactions with the ECM induce cell proliferation, migration, differentiation, and overall cancer 

progression (Fornaro et al., 2001).   
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Cancer Stem Cell Markers 

 

Integrins as CSC Markers for Prostate Cancer 

β3 Integrin 

          As previously described, β3 integrin, among other β subunits, is upregulated in human 

prostate cancer (Goel et al., 2008).  The β3 integrin subunit is known to localize in focal 

contacts, and also mediates the spreading and cytoskeletal rearrangement of normal, non-

cancerous cells (Goel et al., 2008).  However, ectopic overexpression of β3 does not affect cell 

spreading (Zheng et al., 1999), suggesting that the ability of β3 subunit to promote cancer 

progression is independent of on its effects on spreading (Goel et al., 2008).  It has also been 

concluded that the β3 subunit activates specific cell signaling pathways, and supports distinct 

cellular functions in cancer (Goel et al., 2008).  β3 has been shown to contribute to the 

establishment and growth of pulmonary metastatic melanoma lesions (Filardo et al., 1995).  This 

integrin has also been shown to increase the invasiveness of cutaneous melanomas from the 

epidermis to the dermis in studies performed by Hsu et al in 1998.  Studies have also shown that 

β3 is necessary in cancer cells for increasing the levels of downstream effectors such as cdc2 

(Manes et al., 2003).  Increased levels of cdc2 resulted in increased cell migration by its 

association with cyclin B2 and phosphorylation of caldesmon, a substrate of cdc2 (Manes et al., 

2003).  Both caldesmon and cdc2 are localized in the membrane ruffles of motile cells, playing a 

key role in cancer cell migration (Manes et al., 2003).  Thus, increased β3 levels result in an 

increase of cdc2 levels, which in turn, promotes cancer cell migration (Manes et al., 2003). 
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α2 Integrin 

α2 integrin is expressed in the basal layer of the normal human prostate (Knox et al., 

1994).  However, its expression becomes aberrant in prostate cancer.  In particular, it is 

downregulated in primary tumors and upregulated in lymph node metastases (Goel et al., 2008). 

α2 integrin has been demonstrated to be able to regenerate a fully differentiated prostate 

epithelium in immunocompromised mice (Gedye et al., 2009).  Moreover, cells which express 

both α2 and CD133 have a higher proliferative potential, and have a greater ability to 

reconstitute a normal prostate gland (Gedye et al., 2009).  These cells, showing expression of α2 

and CD133, represent a tumor-initiating population within human prostate cancer (Maitland and 

Collins, 2008). 

 

Other Markers for Prostate Cancer Stem Cells 

p63 Basal Cell Marker 

p63 is widely used for identification of normal prostate basal cells (Signoretti et al., 

2000).  It is also selectively expressed in the basal cell compartment of a variety of other 

epithelial tissues (Signoretti et al., 2000).  Since this protein is undetectable in prostate cancer, its 

expression is used for the differential diagnosis between benign and malignant areas of the 

prostate gland (Signoretti et al., 2000), making it a negative marker for prostate cancer.   

 

CD133 Stem Cell Marker 

CD133, also known as PROML1 or prominin, is known to be a stem cell surface antigen 

in several tissues, including the prostate (Choi et al., 2009).  It is a homologue of a mouse cell 

surface transmembrane glycoprotein, Prominin-1, and was originally found on neuroepithelial 
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stem cells in mice (Miki et al., 2007).  It is used extensively to identify normal stem cells and 

cancer stem cells in a variety of tissues, such as hematopoietic, leukemic, neural, brain tumor, 

and most importantly, prostate cells (Miki et al., 2007).  Immunohistochemical studies have been 

performed to study localization of CD133 in the prostate, with the conclusion that CD133 may 

be unable to accurately identify cancer stem cells independently (Sullivan et al., 2008).  The 

distribution of CD133 across the prostate tissue is variable, and appears mostly in epithelial and 

stromal cell-specific, Figure 3 (Sullivan et al., 2008).  However, since expression is seen in both 

benign and neoplastic tissue, (Figure 3), it was deduced that although CD133 may be a stem cell 

marker in the prostate, it may not be able to accurately identify cancer stem cells on its own 

(Sullivan et al., 2008).   

 

 

 

 

 

 

Figure 3. Expression of CD133 in 

Prostate Tissue. 

Immunohistochemistry for CD133 

shows expression in neoplastic tissue 

(A) and benign glands (B and C).  The 

respective negative controls, stained 

with rIgG, are seen in panels D-F.  

Expression is seen to be epithelial-cell 

specific and diffuse in epithelial and 

stromal cells (Sullivan et al., 2008).  
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Trop2 Stem Cell Marker 

Trop2 is a transmembrane tumor-associated calcium signal transducer whose function or 

ligand is not completely known, that is expressed in human epithelia, and frequently upregulated 

in carcinomas (Fornaro et al., 1995; Ohmachi et al., 2006; Fong et al., 2008).  Its expression has 

been reported in both normal and malignant tissue from organs such as kidney, lung, ovary, 

testes, etc (Goldstein et al., 2008).  Trop2 has been recently used to functionally discriminate 

between two basal cell subpopulations in the human prostate (Goldstein et al., 2008).  Though 

not all basal cells exhibit stem cell characteristics, basal cells expressing high levels of Trop2 are 

found to be enriched with in vitro and in vivo stem cell-like characteristics (Goldstein et al., 

2008).  The role of Trop2, though not elucidated in normal and cancer cells, is suggested to be 

directly related to tumorigenicity and invasion of cancer cells (Goldstein et al., 2008).  
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PROJECT PURPOSE 

 

As discussed in the Background, understanding cancer stem cells is of utmost importance 

in the study and treatment of cancer.  Several models have been presented throughout the years 

for prostate oncogenesis.  The hypothesis being tested by this MQP is that the existence of an 

integrin marker for cancer stem cells can be confirmed by coexpression with known stem cell 

markers.  Human prostate tissue specimens were analyzed by immunohistochemistry for stem 

cell marker Trop-2, as well as for integrins β3 and α2.  Staining for prostate basal cell marker 

p63 was also performed for the identification of cancer cells which lack p63 expression.  Double 

staining was performed for CD133 and α2 to identify potential cancer stem cell candidates.  

Immunofluorescence was performed to show localization of Trop-2 in prostate cancer cells, and 

immunoblotting was performed to analyze potential aberrations of Trop2 elecTrophoretic 

mobility.  I hypothesize coexpression of integrin markers β3 (upregulated in prostate cancer) and 

α2 (upregulated in metastases) with stem cell markers CD133 and Trop-2 in regions negative for 

p63.  This MQP study will identify novel cancer stem cell populations, which can be then 

isolated and characterized, for further studies for research and therapeutic purposes. 
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MATERIALS AND METHODS 

 

Immunohistochemistry (IHC) 

Paraffin-Embedded, Formalin Fixed Sections: (p63, and Trop2) 

 IHC staining was performed on 4µm sections prepared from paraffin-embedded blocks, 

placed on charged glass slides.  The sections were deparaffinized in three changes of xylene for 

10 minutes each.  The slides were then hydrated in an ethanol series for 2 changes of 2 minutes 

each of 100% EtOH, 95% EtOH, 70% EtOH, 50% EtOH, and dH2O.  The sections were then 

incubated in 3% hydrogen peroxide for 5 minutes to remove endogenous peroxidase activity.  

The slides were then blocked for non-specific staining.  Next, the slides were incubated with the 

primary antibody.  An IgG antibody raised in the same animal as the primary antibody was used 

as a negative control.  After a series of 3 washes in PBS, slides were incubated with the primary 

antibody diluted in PBS+0.5% BSA.  Slides were then washed 3 times with PBS + 0.05% 

Tween-20, and incubated with a biotinylated secondary IgG antibody.  The conditions and 

durations for blocking, primary antibody, and secondary antibody incubation varied, and details 

can be seen in Table 2.  Immunoperoxidase staining was performed using horseradish 

peroxidase streptavidin (Vector Labs, SA-5004), at a dilution of 1:100.  The signal was amplified 

using the DAB Substrate-Chromogen System (Zymed Laboratories, Cat. #00-2014).  Finally, the 

slides were counterstained with Mayer’s hematoxylin, and dehydrated by reversing the alcohol 

and xylene series.  Stained tissue sections were examined on an Olympus BX41 microscope and 

photographed using an Olympus DP12 camera.  The IHC staining results were evaluated by Dr. 

Z. Jiang, Dr. L.R. Languino, Dr. H. L. Goel, Dr. M. Trerotola (University of Massachusetts 
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Medical School Departments of Pathology and Cancer Biology) and myself. The details for the 

cases used (Cases 1-15) can be seen in Table 3. 

 

Frozen Sections: (CD133 and α2 Double Staining) 

 IHC staining was performed on 5µm sections prepared from frozen tumors, placed on 

charged glass slides. The sections were fixed in acetone at -20°C for 10 minutes.  The slides 

were then blocked with 0.5% casein and 0.05% thimerosol diluted in TBS for 15 minutes at 

room temperature.  The slides were then incubated with the primary antibody. An IgG antibody 

raised in the same animal as the primary antibody was substituted as a negative control. After a 

series of washes in PBS, slides were incubated with the primary antibody, diluted in PBS+0.1% 

BSA.  Slides were then washed 3 times with PBS, and incubated with a biotinylated secondary 

IgG antibody. Immunoperoxidase staining was performed using horseradish peroxidase 

streptavidin (Vector Labs, SA-5004), at a dilution of 1:100.  The signal was amplified using the 

DAB Substrate-Chromogen System (Zymed Laboratories, Cat. #00-2014).  Finally, the slides 

were counterstained with Mayer’s hematoxylin.  The sections were then dehydrated in an ethanol 

series for 2 changes of 2 minutes each of 50% EtOH, 70% EtOH, 95% EtOH, 100% EtOH, and 

Xylene.  Stained tissue sections were examined on an Olympus BX41 microscope and 

photographed using an Olympus DP12 camera.  The IHC staining results were evaluated by Dr. 

Z. Jiang, Dr. L.R. Languino, Dr. H. L. Goel, (University of Massachusetts Medical School 

Departments of Pathology and Cancer Biology) and myself.  The cases used (Cases 16-21) did 

not have gleason grades available, but were graded by Dr. L.R. Languino and Dr. Z. Jiang. 

 

 



21 
 

Scoring of Expression 

 For all p63 IHC, expression was scored with a “+” and “-“ system, indicating expression 

or lack of expression in benign and malignant regions.  For all other IHC experiments, 

expression of the marker was seen in both benign and malignant regions.  Thus, staining was 

scored with a “+”, indicating the experiment was successful and yielded specific staining, or a  

“-“, indicating that the experiment did not yield specific staining.  

  

Double Staining 

  All double staining was performed using the Invitrogen PicTure Double Staining Kit (Cat 

No. 87-9999).  The protocol followed was provided by the manufacturer, with aforementioned 

details for paraffin-embedded and frozen sections. α2 expression was seen by the brown HRP 

staining, and CD133 expression was seen by the red Fast-Red staining.  Stained tissue sections 

were examined on an Olympus BX41 microscope and photographed using an Olympus DP12 

camera.  The IHC staining results were evaluated by Dr. Z. Jiang, Dr. L.R. Languino, Dr. H. L. 

Goel, Dr. M. Trerotola (University of Massachusetts Medical School Departments of Pathology 

and Cancer Biology) and myself.  Areas in tissue sections showing both colors, or displaying 

double staining, were targeted as potential stem cells. 

 

Immunofluorescence (IF) 

 Immunofluorescence was performed to examine the localization of Trop2 in PC3 cells 

transfected with Trop2, seeded on fibronectin.  Cells were fixed on coverslips by incubation with 

4% paraformaldehyde diluted in PBS for 5 minutes. To permeabilize the cells, coverslips were 
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incubated with PBS+0.5% Triton for 5 minutes. The coverslips were then blocked with 5% BSA 

diluted in PBS for 20 minutes at room temperature.  The coverslips were then incubated with the 

primary antibody (Trop2 T16) for 20 minutes, at a dilution of 1:80.  After incubation with the 

primary antibody, the coverslips were washed several times with PBS.  Coverslips were then 

incubated with the secondary FITC-conjugated goat anti-mouse antibody and Phalloidin-TRITC 

(1:1000, for Actin staining), in 5% BSA for 20 minutes.  The coverslips were washed three times 

with PBS and mounted with anti fade reagent (Invitrogen, ProLong Gold antifade reagent, cat. 

P36930) for fluorescence microscopy (Olympus IX71). 

 

Immunoblotting 

 Cells used for lysates were PC3-2 prostate cancer cells transfected with Trop2 or empty 

vector, for positive and negative controls, respectively.  These cells do not endogenously express 

Trop2.  Malignant and benign prostate tissue samples were also used for lysates. Cells and 

tissues were lysed in lysis buffer composed of 100 mM Tris-Cl, pH 7.4, 150 mM NaCl, and 1% 

Triton X-100.  Tissue samples were homogenized for 5 minutes until even suspension.  The 

suspension was decanted, and an equal volume of 10% SDS was added to make final 

concentration of 5% SDS.  The samples were mixed and boiled for 5 minutes.  The tissue 

samples were then centrifuged at 14,000 RPM for 20 minutes at 4°C.  The supernatants were 

then collected for BCA total protein assay. 

 Total cellular protein was resolved by SDS-PAGE, transferred onto a PVDF membrane, 

and immunoblotted with mAb to Trop2.  Proteins were separated by 10% SDS-PAGE under non 

reducing conditions, and immunoblotted with an Ab specific to FAK as a loading control.  
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Protein was visualized using an ECL reagent (Boston Bioproducts), and developed using 

autoradiography (ISC Bioexpress).   
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Table 3. Antibody and IHC Details 

Marker Antibody 
Stock 

Concentration 
Dilution Blocking 

Antigen 

Retrieval 

Primary 

Incubation 
Secondary Incubation Reference 

p63 

Santa Cruz 

Biotechnolog

y p63 [4A4] 

200 µg/mL 1:50 
Horse Serum,  

20 minutes 

10mM Sodium 

Citrate Buffer, pH 

6.0 

750W Microwave 

Oven, 15 minutes 

4°C, 

overnight 

Vector Labs, BA-2000 

Biotinylated Anti-

Mouse IgG (H+L), 30 

minutes 

Emanuel et al., 2004 

CD133 

Abcam Rb 

pAb to 

CD133 

ab19898-100 

1 mg/mL 1:400 

Blocking 

solution 

(Invitrogen 

PicTure Kit), 

30 minutes 

- 
4°C, 

overnight 

Biotinylated Anti-

Rabbit IgG Conjugated 

to Alkaline Phosphatase 

(Invitrogen PicTure 

Kit) 

Friedman et al., 2009 

Trop2 

R&D Anti-

Trop2 

AF650 

1 mg/mL 1:200 

1% BSA, 5% 

Rabbit Serum 

in TBS, 1 

hour 

 Microwave Oven, 

8 minutes 
1 hour, RT 

Vector Labs, BA-9500 

Biotinylated Anti-Goat 

IgG (H+L), 1 hour 

Fong et al., 2008 

β3 

Abcam, mAb 

to Integrin 

beta 3 [BV4] 

ab7167-50 

100 µg/mL 
1:50, 

1:100 

Horse Serum,  

20 minutes 

After pressure is 

reached in 

pressure cooker, 3 

minutes 

4°C, 

overnight 

Vector Labs, BA-2000 

Biotinylated Anti-

Mouse IgG (H+L), 30 

minutes 

Neto et al., 2007 

Hybridoma 

Culture 

Supernatant 

AP3   

1:10, 1:5 
Goat Serum, 

45 minutes 

Proteinase K, 

37°C, 30 minutes 

4°C, 

overnight 

Hybridoma Culture 

Supernatant 12CA5, 45 

minutes 

Degrosellier et al., 2009 

Purified 

Antibody 

AP3 

30 µg/mL, 10 

µg/mL 
  

Goat Serum, 

45 minutes 

Proteinase K, 

37°C, 30 minutes 

4°C, 

overnight 

Hybridoma Culture 

Supernatant 12CA5, 45 

minutes 

Degrosellier et al., 2009 

α2 

Santa Cruz 

Biotechnolog

y α2 [HAS-3] 

200 µg/mL 1:10 

TBS + 0.5% 

casein and 

0.05% 

thimerosal, 

15 minutes 

- 
4°C, 

overnight 

Vector Labs, BA-2000 

Biotinylated Anti-

Mouse IgG (H+L), 30 

minutes 

Yoshimura et al., 2009 
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Table 3. Paraffin-Embedded Formalin Fixed Case Details 

Case 
Tissue 

Type 
Diagnosis A/S/R 

Necrosis 

% 

Lesion 

% 

Stroma 

% 
Gleason Grade 

1 Malignant Adenocarcinoma 74/M/W 0 70 30 7 

2 Malignant Adenocarcinoma 60/M/W 0 30 70 7 

3 Malignant Adenocarcinoma 64/M/W 0 80 20 7 

4 Malignant Adenocarcinoma 68/M/W 0 20 80 6 

5 Malignant Adenocarcinoma 72/M/W 0 30 70 6 

6 Malignant Adenocarcinoma 72/M/W 0 30 70 6 

7 Malignant Adenocarcinoma 78/M/W 0 30 70 7 

8 Malignant Adenocarcinoma 66/M/W 0 30 70 7 

9 Malignant Adenocarcinoma 68/M/W 0 20 80 6 

10 Malignant Adenocarcinoma 52/M/W 0 30 70 7 

11 Malignant Adenocarcinoma 67/M/W 0 20 80 6 

12 Malignant Adenocarcinoma 73/M/W 0 30 70 9 

13 Normal - 51/M/W 0 0 0   

14 Malignant Adenocarcinoma 69/M/W 0 50 50 6 

15 Malignant Adenocarcinoma 70/M/W 0 60 40 7 
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RESULTS 

 

p63 Expression in Benign and Malignant Prostate  

As detailed in the Background section, to study the presence and localization of prostate 

cancer stem cells (CSCs), it is important to include the evaluation of benign glands.  p63 

expression in benign and malignant prostate was studied since p63 is a prostate basal cell marker 

(Signoretti et al, 2000).  p63 was evaluated to discriminate between benign and malignant 

regions of the prostate, as this protein’s expression is limited to basal cells (Signoretti et al., 

2000), enabling us to use it for differential diagnosis. 

Immunohistochemical analysis of p63 expression in benign and malignant human 

prostate tissue specimens was performed.  Strong p63 reactivity was observed in benign prostate 

sections stained with monoclonal 4A4 antibody against p63 (Figure 4A, B, C). The specificity 

of the 4A4 antibody was verified when compared to the negative controls stained with mouse 

IgG (Figure 4D, E, F).  Nuclear staining in prostate tissue was present in basal cells of the 

epithelium of benign areas within the pathogenic prostate glands.  No expression of p63 was 

observed in malignant areas of the prostate cancer specimens (Figure 5). 
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Figure 4. p63 Expression in Benign Prostate Glands 

Analyzed by Immunohistochemistry 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Lack of p63 Expression in Malignant Prostate Cells 
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The p63 results were reproduced and scored using a “+” and “-“ system for ten cases, as 

shown in Table 4.  The case details for these and all subsequent paraffin-embedded cases were 

shown in Table 3, in the Materials and Methods section.  Strong p63 immunoreactivity was 

consistently seen in the epithelium of benign prostate glands.  p63 expression within these 

regions is considered specific to cell type, as it is only expressed in benign basal cells, but is not 

present in surrounding stromal or cancerous cells.  Thus, p63 provided a reliable marker to 

exclude benign prostate cells in future experiments of this MQP. 

 

Table 4. Summary of Immunohistochemical Expression 

of p63 in Benign and Malignant Prostate 

 

Immunohistochemical 

Expression of p63 in 

Benign and Malignant 

Prostate 

  p63 

Case Benign Malignant 

1 + - 

2 + - 

3 + - 

8 + - 

10 + - 

11 + - 

12 + - 

13 + - 

14 + - 

15 + - 

 

  



29 
 

Trop2 Expression in Benign and Malignant Prostate 

Immunohistochemical analysis of Trop2 expression in benign and malignant human 

prostate tissue specimens was performed based on published studies showing the potential for 

Trop2 to be a stem cell candidate (Goldstein et al., 2008).  Expression was observed in prostate 

sections stained with polyclonal antibody against Trop2 (Figure 6A, B, C).  The specificity of 

the Trop2 antibody was verified when compared to the negative controls stained with goat IgG 

(Figure 6D, E, F).  Trop2 expression was observed in both benign and malignant tissue areas.  

The staining pattern in malignant areas was very similar to that exhibited in benign glands.  

Staining was seen in cells of epithelial origin, but not in stromal cells in benign and malignant 

prostate.  In malignant areas of the prostate, staining was diffuse and cytoplasmic (Figure 7, 

Panels A, B, C). 
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Figure 6. Analysis of Trop2 Expression in Benign Prostate Glands by Immunohistochemistry. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Analysis of Trop2 Expression in Malignant Prostate Cells by Immunohistochemistry. 
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It can be concluded from these results that Trop2 is expressed in both benign and 

malignant prostate cancer.  The IHC results for all the staining performed on paraffin-embedded 

sections for Trop2 are summarized in Table 5.  A “+” indicates that staining was visible in both 

benign and malignant areas, and a “-“ indicates that no staining was visible at all. The case 

details can be seen in Table 3 in the Materials and Methods section. 

Table 5. Summary of the Expression of Trop2 

in Prostate Tissue Specimens 

Expression of Trop2 in Prostate Tissue Specimens 

Case Trop2 

1 - 

4 + 

5 + 

6 + 

7 + 

8 + 

9 + 

10 + 

13 - 

14 + 

15 + 

 

Next, immunoblotting analysis of Trop2 expression in benign and prostate tissue, as well 

as PC3 and PC3-Trop2 cell lysates, was performed to test for protein expression levels, and 

possible differences between benign and malignant prostate tissue (Figure 8).  PC3 cells, which 

do not endogenously express Trop2 were used as a negative control, while the same cell line 

transfected with Trop2 was used as a positive control.   The findings indicate that Trop2 is 

expressed in both benign and malignant prostate tissue.  The difference in expression levels 

observed within the tissue lysates are not indicative of expression levels as a whole.  
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Figure 8. Trop2 Immunoblot. 

 

 

Studies have shown that Trop2 expression correlates with poor prognosis in human 

carcinomas (Goldstein et al., 2008), suggesting that it can play an important role in tumor 

invasion and migration.  Immunofluorescence was performed on the aforementioned PC3 cells 

seeded on fibronectin to study the expression and localization of Trop2 (Figure 9A).  Trop2 was 

found to strongly co-localize with actin in discrete membrane rims (Fig 9B, C).  Since actin is 

actively involved in the regulation of cellular movements on substrates, like fibronectin, these 

results support a role of Trop2 in modulation of PC3 migration. 
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Figure 9. Trop2 & Actin Immunofluorescence. 

 

 

 

 

 

 

 

 

Integrin Expression in Frozen Prostate Tissue Specimens 

From the aforementioned results, it can be said that Trop2 cannot be used as a cancer 

stem cell marker, as it shows diffuse expression.  According to recent studies, tumor cells 

expressing α2 integrin and CD133 represent subpopulations with high proliferation potential 

(Collins et al., 2005).  Single α2 IHC was performed as a pre-screen to enable subsequent double 

staining of α2 and CD133, to isolate cancer stem cells.  Immunohistochemistry was performed 

on paraffin-embedded sections to visualize integrin expression in human prostate tissue (data not 

shown).  However, no expression could be seen for either α2 or β3, as the antibody does not 

work on paraffin-embedded sections.    

IHC was then performed on frozen sections, with successful results only for α2. 

Expression was observed in frozen prostate sections stained with monoclonal HAS-3 antibody 

against α2 (Figure 10, A-C).  The specificity of the α2 antibody was verified when compared to 

the negative controls stained with mouse IgG (Figure 10, D-F).   α2 expression is diffuse and 

can be seen in the epithelial cells of benign glands, as well as in a cancerous region. The 

expression appears to be at a uniform level throughout the prostate tissue. Our results are also in 
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disagreement with results seen by Nagle et al., as expression levels were the same in both benign 

prostate and adenocarcinoma.  

Figure 10. α2 Expression in Frozen Prostate Tissue 

Analyzed by Immunohistochemistry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

With successful staining visible on frozen prostate sections, double staining with α2 and 

CD133 to isolate cancer stem cells was possible. Double staining reveals coexpression of α2 

(brown color) and CD133 (red color) within the same prostate tissue section (Figure 11, A,B,C).  

The arrows indicate regions which are stem cell candidates, due to heavy expression of both α2 

and CD133 (Gedye et al., 2009). 
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Figure 11. Double Immunohistochemical Staining to Analyze the 

Co-Expression of α2 and CD133 in Frozen Prostate Tissue 

 

It cannot be said with certainty whether cancer stem cells were identified, as only 1 of the 

6 cases tested showed cancer regions. The double staining revealed cells with high expression of 

CD133 and α2, characteristics of cells with high clonogenicity (Maitland and Collins, 2008). 

These cells are potential stem cell candidates, because expression levels are high for both CD133 

and α2.  Overall, the single staining of α2 was performed on 6 cases, 1 of which had malignant 

regions.  Double staining with CD133, was performed on a total of 6 frozen cases. The IHC 

results for all the staining performed on frozen sections for CD133 and α2 are summarized in 
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Table 6.  A “+” indicates that staining was visible, and a “-“ indicates that no staining was 

visible at all.  

Table 6. Summary of the Expression of α2 and CD133 

in Frozen Prostate Tissue Specimens 

Expression of Markers in Frozen Prostate 

Tissue Specimens 

Case 
α2 CD133 & α2 

Coexpression 
Benign Malignant 

16 +   + 

17 +   + 

18 +   + 

19 +   + 

20 +   + 

21 + + + 

 

Black denotes not tested. 

 

β3 Immunohistochemistry 

 Attempts were made to perform IHC on both paraffin-embedded and frozen sections for 

β3 integrin.  Various methods of antigen retrieval and different antibodies were tested (as per 

Table 2), but we could not see any positive specific staining for β3 expression, even in known 

malignant areas (data not shown).  

 

Paraffin-Embedded vs. Frozen Sections  

 It is important to note that expression for both integrins α2 and β3 could not be detected 

on paraffin-embedded sections.  This lead to the belief that integrin antigens are better preserved 

in frozen tissue than in their paraffin-embedded counterparts. 
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DISCUSSION 

Treatment against the proliferation of cancer stem cells may well be the next step of 

cancer therapy.  In this MQP, various known and potential markers were analyzed to enable us to 

potentially isolate prostate cancer stem cells in the future.  The hypothesis tested by this MQP 

was that the existence of an integrin marker for cancer stem cells will co-express with known 

stem cell markers.  We saw that Trop2 and α2 staining was diffuse, thus they could not be used 

independently as cancer stem cell markers.  However, through our observed coexpression of 

CD133 and α2, we identified stem cells which could be potential cancer stem cells.  

The study of p63 expression plays an important role in the study of prostate cancer.  An 

established prostate basal cell marker, p63 is used in the differential diagnosis between benign 

and malignant areas of the prostate (Signoretti et al., 2000).  p63 expression was seen in basal 

cells of the prostate epithelium which enabled us to identify areas of the prostate tissue specimen 

that were benign, versus the cancerous regions.  It was consistently seen that p63 expression was 

lacking in malignant areas of the prostate, thus enabling us to conclude that p63 is an excellent 

negative marker for prostate cancer.    

CD133, a known stem cell surface antigen for prostate tissue (Choi et al., 2009), played 

an important role in this project to identify potential CSCs.  As previously suggested, CD133 can 

be used in combination with other markers to identify CSCs.  In contrast, Trop2 was seen to 

display diffuse expression in both benign prostate epithelium and cancer, thus it cannot be used 

as a CSC marker.   

As previously stated, the focus of this MQP was the characterization of an integrin 

markers, such as α2 (Maitland and Collins, 2008) or β3 (Goel et al., 2008), for the identification 
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of CSCs.  However, it was seen that α2 expression was diffuse, and thus it could not be used to 

identify CSCs. 

Future Experiments 

 Although in this MQP study we were unable to definitively identify prostate cancer stem 

cells, we took a clear step forward towards this goal. We established that α2 and Trop2 cannot be 

used in the identification of CSCs, and that CD133 would need to be studied with another marker 

to identify CSCs.  Future studies would involve isolating CSCs by fluorescence activated cell 

sorting using CD133 in combination with other markers, and analyzing their potential for multi-

lineage differentiation and tumor growth. 

  



39 
 

BIBLIOGRAPHY 

 

American Cancer Society. "Detailed guide: prostate cancer." 2009. Cancer Reference 

Information. 

<http://www.cancer.org/docroot/cri/content/cri_2_4_1x_what_is_prostate_cancer_36.asp>. 

 

American Cancer Society. "Prostate cancer." 2007. American Cancer Society. November 3 2009 

<http://www.cancer.org/downloads/PRO/ProstateCancer.pdf>. 

 

Choi, D., et al. "Cancer stem cell markers CD133 and CD24 correlate with invasiveness and 

differential in colorectal adenocarcinoma." World Journal of Gastroenterology 15 (2009): 2258-

2264. 

 

Collins, A.T., et al. “Prospective identification of tumorigenic prostate cancer stem cells.” 

Cancer Research 65 (2005): 10946-10951 

 

Crawford, E.D. "Epidemiology of prostate cancer." Urology 62 (2003): 3-12. 

 

Desgrosellier, J.S., et al. "An integrin αvβ3–c-Src oncogenic unit promotes anchorage-

independence and tumor progression." Nature Medicine 15 (2009): 1163-1169. 

 

Emanuel, P., et al. "p63 immunohistochemistry in the distinction of adenoid cystic carcinoma 

from basaloid squamous cell carcinoma." Modern Pathology 18 (2004): 645-650. 

 

Evans, G.S. and Chandler, J.A. "Cell proliferation studies in the rat prostate: II. The effects of 

castration and androgen-induced regeneration upon basal and secretory cell proliferation." 

Prostate 11 (1987): 339-351. 

 

Filardo, E.J., et al. "Requirement of the NPXY motif in the integrin β3 subunit cytoplasmic tail 

for melanoma cell migration in vitro and in vivo." Journal of Cell Biology 130 (1995): 441-450. 

 

Fong, D., et al. "High expression of Trop2 correlates with poor prognosis in pancreatic cancer." 

Molecular Diagnostics 99 (2008): 1290-1295. 

 

Fornaro, M., et al. “Cloning of the gene encoding Trop-2, a cell-surface glycoprotein expressed 

by human carcinomas.” International Journal of Cancer 62 (1995): 610-618. 

 

Fornaro, M., et al. "Integrins and prostate cancer metastases." Cancer Metastasis Review 20 

(2001): 321-331. 

 

Friedman, S., et al. "CD133+ anaplastic thyroid cancer cells initiate tumors in immunodeficient 

mice and are regulated by thyroTropin." PLos ONE 4 (2009): e5395. 

 

Gedye, C., et al. “Cancer stem cells in urologic cancers.” Urologic Oncology (2009): 1-6. 



40 
 

Goel, H.L. and Languino, L.R. (2004). Integrin signaling in cancer. Norwell: Kluwer Academic 

Publishers. 

 

Goel, H. L., et al. "Integrins in prostate cancer progression." Endocrine-Related Cancer 3 (2008): 

657-664. 

 

Goldstein, A.S., et al. "Trop2 identifies a subpopulation of murine and human prostate basal cells 

with stem cell characteristics." PNAS 105 (2008): 20882-20887. 

 

Hayes, P., et al. "Integrin structure." 2003. Cell Adhesion Molecules. St. Edwards University. 

<http://www.cs.stedwards.edu/chem/Chemistry/CHEM43/CHEM43/CellAdhesion/integrinstruct

ure.htm>. 

 

Hsu, M.Y., et al. "Adenoviral gene transfer of β3 integrin subunit induces conversion from radial 

to vertical growth phase in primary human melanoma." American Journal of Pathology 153 

(1998): 1435-1442. 

 

Humphries, J.D., et al. "Integrin ligands at a glance." Journal of Cell Science 119 (2006): 3901-

3903. 

 

Jemal, A., et al. "Cancer Statistics, 2009." CA: a cancer journal for clinicians 59 (2009): 225-

249. 

 

Knox, J.D., et al. "Differential expression of extracellular matrix molecules and the α6-Integrins 

in the normal and neoplastic integrins." American Journal of Pathology 145 (1994): 167-174. 

 

Lang, S.H., et al. "Prostate cancer stem cells." Journal of Pathology 217 (2009): 299-306. 

 

Lapidot, T., et al. "A cell initiating human acute myeloid leukaemia after transplantation into 

SCID mice." Nature 367 (1994): 645-648. 

 

Lobo, N., et al. "The biology of cancer stem cells." Annual Review of Cell and Development 

Biology 23 (2007): 675-799. 

 

Maitland, N.J. and Collins, A.T. “Prostate cancer stem cells: a new target for therapy.” Journal of 

Clinical Oncology 26 (2008): 2862-2870. 

 

Manes, T., et al. “αvβ3 integrin expression up-regulates cdc2, which modulates cell migration.” 

Journal of Cellular Biology 161 (2003): 817-826. 

 

Miki, J., et al. "Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-

immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell 

lines and in prostate cancer specimens." Cancer Research 67 (2007): 3153-3161. 

 

Mizejewski, G.J. "Role of integrins in cancer: survey of expression patterns." Molecular 

Medicine 222 (1999): 124-138. 



41 
 

 

Morrison, B.J., et al. "Breast cancer stem cells: implications for therapy of breast cancer." Breast 

Cancer Research 10 (2008): 1-14. <http://breast-cancer-research.com/content/10/4/210>. 

 

Nagle R.B., et al. “Adhesion molecules, extracellular matrix, and proteases in prostate 

carcinoma” Journal of Cellular Biochemistry 19 (1994): 232–237. 

 

National Kidney and Urologic Diseases Information Clearinghouse. Prostate Enlargement: 

Benign Prostatic Hyperplasia. June 2006. 

<http://kidney.niddk.nih.gov/kudiseases/pubs/prostateenlargement/index.htm>. 

 

Neto, D.S., et al. "αvβ3 integrin expression in melanocytic nevi and cutaneous melanoma." 

Journal of Cutaneous Pathology 34 (2007): 851-856. 

 

Ohmachi, T., et al. “Clinical significance of Trop2 expression in colorectal cancer.” Clinical 

Cancer Research 12 (2006): 3057-3063. 

 

Prostate Cancer Foundation. "An introduction to prostate cancer." 2009. Prostate Cancer 

Foundation. <http://www.prostatecancerfoundation.org/atf/cf/%7B705B3273-F2EF-4EF6-A653-

E15C5D8BB6B1%7D/InTroprostateCancer.pdf>. 

 

Regenbrecht, C.R.A., et al. "Stemming cancer: functional genomics of cancer stem cells in solid 

tumors." Stem Cell Reviews 4 (2008): 319-328. 

 

Signoretti, S. and Loda, M. "Prostate stem cells: From development to cancer." Seminars in 

Cancer Biology 17 (2007): 219-224. 

 

Signoretti, S., et al. "p63 is a prostate basal cell marker and is required for prostate 

development." American Journal of Pathology 157 (2000): 1769-1775. 

 

Sullivan. G., et al. “Identifying Cancer Stem Cells in the Prostate.” The 2008 Summer Research 

Fellowship Program at UMass Medical School (2008). 

 

Vaish, M. "Mismatch repair deficiencies transforming stem cells into cancer stem cells and 

therapeutic implications." Molecular Cancer 6 (2007): 1-8. <http://www.molecular-

cancer.com/content/6/1/26>. 

 

Yilmaz, O.H. and Morrison, S.J. "The PI-3kinase pathway in hematopoietic stem cells and 

leukemia-initiating cells: a mechanistic difference between normal and cancer stem cells." Blood 

Cells, Molecules and Diseases 41 (2008): 73-76. 

 

Yoshimura, K., et al. "Integrin α2 mediates selective metastasis to the liver." Cancer Research 69 

(2009): 7320-7328. 

 

Zheng, D., et al. "Prostatic carcinoma cell migation via αvβ3 integrin is modulated by a focal 

adhesion kinase pathway." Cancer Research 59 (1999): 1655-1664. 


