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Abstract 

The purpose of this Major Qualifying Project was to design and build a prototype of an 

autonomous mapping robot capable of producing a floor plan of the interior of a building.  In 

order to accomplish this, several technologies were combined including, a laser rangefinder, 

ultrasonic sensors, optical encoders, an inertial sensor, and wireless networking to make a small, 

self-contained autonomous robot controlled by an ARM9 processor running embedded Linux. 

This robot was designed with future expansion in mind. 
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1. Introduction 

Robots are becoming more and more common in our daily lives showing up in the form of everything 

from children’s toys, to robotic vacuum cleaners, to home security robots; robots have been doing 

automated tasks in factories for decades. With the ever-increasing speed and power of digital systems 

coupled with the continuously expanding field of robotics, it is becoming more practical to build custom 

robotic systems with a degree of flexibility and freedom that was once impossible, giving robots the 

ability to communicate wirelessly or to act autonomously. Now, instead of robots simply performing 

menial tasks such as repetitive jobs at factories, robots can perform jobs once thought to be reserved 

for humans, without the risk a of danger to a human life. One such job that would be much safer for a 

robot to take on than a human is that of search and rescue. Such a robot, if it could perform its duties 

safely and reliably, would be of immense value to any rescue operation. The robot prototype designed 

and built for this major qualifying project was meant to be a starting point for such a robot; due to time 

and budget constraints building a fully functional search and rescue robot was not feasible.  

 The robot that was designed and built for this project was intended to have some of the basic 

components needed to develop a fully functional search and rescue robot. While such a robot would 

need many complicated systems all interfaced together the design of the robot presented in this paper 

focused on what was thought to be one of the core functionalities needed, autonomous mapping. The 

goal of the autonomous mapping robot was to be able to allow the robot to know its location relative to 

a known starting point and to be able to construct a floor plan of the surrounding structure on a 

wirelessly connected computer. As a proof of concept of this functionality the goal for this project was 

to have the robot make a map of the third floor of the Atwater Kent electrical and computer engineering 

building at Worcester Polytechnic Institute. Such a feature would be of vital importance to any rescue 

team using the robot because it would allow them to know the nature of the location before ever 

sending in a human, which would be a great asset especially in potentially dangerous situations. 

 By designing and building the autonomous mapping robot many steps were taken towards the 

design of a fully functional search and rescue robot. This design provides a solid base for further 

development of the robot by future students. The autonomous mapping robot was built around an 

embedded processor system running a custom Linux kernel. This processor was used to control the 

many systems incorporated into the design of the robot. The major functional blocks of this robot are its 

base – the platform on which all the systems were mounted, the processor, the power circuitry, the 
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motor controller, and finally the sensors, including optical wheel encoders, an inertial measurement 

unit, ultrasonic sensors, and a laser rangefinder. Each of these individual systems was interfaced through 

the processor using various drivers and programs, while the mapping and location data were sent to the 

graphical user interface using a custom communications protocol designed for an 802.11 wireless 

connection to the host computer.  

Each of the individual functional blocks of the overall mapping robot will be discussed in great 

detail in the following chapters beginning with a discussion of existing autonomous mapping robots. 

After that will be the overall design of the robot including requirements and a functional overview. The 

next topic will be the base chosen for the robot followed by a chapter about the ARM9 microprocessor 

and its operating system. From there the paper goes on to discuss each of the sensors used on the robot 

including the laser rangefinder for gathering mapping data, the ultrasonic sensors for navigational and 

obstacle avoidance purposes, the optical wheel encoders used for elementary dead reckoning 

techniques, and the accelerometer and gyroscope which were used to make an inertial measurement 

unit for the robot to aid in the dead reckoning algorithm. The next chapter goes on to discuss the motor 

controllers used for the robot’s drive wheels, followed by a detailed description of the power supply for 

the robot.  The next few chapters will focus on the software side of the robot outlining the 

communications protocol written to pass data between the client (robot) and the host machine, the 

code design and program flow for the programs running on the robot, the graphical user interface 

necessary for displaying the mapping data and robot position, and finally the navigation algorithm 

chosen to control the robot’s actions. The final two chapters share the results of this project as well as 

some recommendations for any further work to be done on the robot. 

2. Background 

One important step in designing a new mapping robot was to study and understand existing 

autonomous mapping robots as well as to attempt to find possible improvements to these established 

designs.  This paper examines three separate existing autonomous mapping robots to see the different 

methods used to achieve their goals. The information presented concerns mapping robots from 

Carnegie Mellon University, Mobile Robots Inc., and the Centibots project.  Different methods were 

used in each project however, there were some constant themes that provided a good outline for a new 

mapping robot. 
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2.1 CMU Mapping Robot 

Carnegie Mellon University has built several different types of mapping robots to map both indoor and 

outdoor terrain. On the CMU robotics website, they present information on two of their mapping robots, 

which are both capable of mapping in three dimensions.  The first of these is designed to map a mine, 

while the second robot is designed to map a 3D texture map. 

Two robotic systems were used in their research of mapping mines.  The first type was a cart 

that had to be manually walked through the mine in order to map the mine.  The cart was equipped 

with four 2D laser range finders to provide information on the mine cross section ahead of the cart and 

the ceiling structure above the cart.  The second type they have developed is a tele-operated device 

constructed from the chassis of two ATVs.  This robot was equipped with two laser range finders, one 

directed forward and the other pointed towards the ceiling.  In order to map out an accurate 3D map, 

the researchers developed a complicated algorithm which was explained in their report.  The 

Groundhog, as the robot is known, was not equipped with an odometer or an inertial sensor to obtain 

the robot’s global coordinates, however their algorithm allows them to calculate an estimate of the 

robot’s location by taking two consecutive scans and calculating the relative displacement.  Though the 

robot used to do their mapping does not exhibit autonomy like the one presented in this paper, their 

mapping algorithm and strategies are great resource to us.(6) 

The 3D texture mapping robot 

designed by students at CMU was equipped 

with a home-made panoramic camera and two 

laser range finders.  The panoramic camera 

was constructed by simply combining a camera 

with a convex mirror.  This allowed the camera 

to record its surroundings without having to 

move it.  They achieve their goal by taking data 

points using laser range finders and combining 

that data with the images taken with the 

camera.(3) 

Both of these robots were successful in constructing 3D maps and were great examples to 

examine.  The only concern is the cost of these robots.  One of the constant themes seen in these robots 

Figure 1 - CMU 3D Mapping robot 
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was the use of laser rangefinders to gather the data needed in order to make the actual map. While 

multiple lasers were needed in order to build 3D maps this would not be the case for this robot. Another 

valuable resource gained from these projects was the algorithms which were developed for use with 

each of these sophisticated robots.(7)(8) 

2.2 MobileRobots Inc. MapperBot 

This robot was built with the purpose of constructing 

2D maps of an area, having been first guided through the area 

by a human.  This robot featured WiFi control and tracking, as 

well as a capable laser rangefinder.  Optionally, a user-

controlled camera may be added to this robot allowing a 

human operator to see exactly what the robot sees as it drives. 

The informational page about this robot boasts the ability to 

map a 30,000sq ft building in 30 minutes.(9)   

The base of this robot was equipped with a pair of 

drive wheels and a single castor, acoustic close range sensors, 

a laser rangefinder, and an 802.11b radio.  This robot used the 

laser rangefinder to generate map data, which it then saved as a JPEG compressed image file for record 

keeping.   The robot was also able to accept commands via the WiFi connection for moving around its 

environment.  The website does not include pricing information for the robot. Many of the goals of this 

robot are shared in this project. This robot also employs the use of a laser rangefinder to do its mapping. 

It also uses ultrasonic sensors in order to achieve its short-range navigational needs. Wireless data 

transfer, along with the ability to control the robot through this link, was also intriguing characteristics 

of MobileRobots’ MapperBot. 

2.3 Centibots 

The Centibots Project was a project intended to “demonstrate by December 2004, 100 robots 

mapping, tracking, guarding in a coherent fashion during a period of 24 hours.” [10]  The project 

members included SRI International, Stanford University, University of Washington and ActivMedia.  

 This project used 97 ActivMedia Amigobots and 6 ActivMedia Pioneer 2 AT robots.  Each of the 

Pioneer 2 AT robots was equipped with a laser range finder (a SICK 200), an on-board computer, 

Figure 2 - MobileRobots Inc. MapperBot 
(http://www.mobilerobots.com/smMapperB
ot.gif) 
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odometer, sonar, camera and an Inertial Navigation System.  Each of the Amigobots was equipped with 

an onboard computer, sonar, wireless USB and a USB camera.  The sonar on both robots was used for 

navigation purposes only, and data collection was done with both the camera and the laser rangefinder. 

 The main goal of this project was to have 100 robots work 

together.  The first wave of robots (the pioneer 2 AT) mapped the 

building or area and sent the map wirelessly to each of the other 

robots. The Amigobots then move in an optimal way into the 

building or the area to sense intruders.  These robots were 

capable of communicating with one another and performing the 

tasks more effectively.  Each robot was also equipped with 

wireless networking equipment allowing the formation of an ad-

hoc network between all of the robots. 

 These robots used existing mapping techniques to utilize 

the data from their laser rangefinders [11].  Similar to the 

MapperBot these robots also employed the use of ultrasonic 

sensors to gather the needed data for short range navigational 

purposes. This project also had a good amount of interesting and useful information concerning robots 

and wireless communication. This project, along with the references it lists was a valuable source of 

information to for this project. 

2.4 Conclusion 

Using successful robots as a starting point, research for the autonomous mapping robot presented in 

this paper has been divided into several important areas.  Each of these existing robots has shown that 

laser range finders are almost universally used for mapping applications because they currently provide 

the best accuracy over medium to long ranges.  Additionally, short-range sensors, such as ultrasound 

sensors, are a common solution for navigation and obstacle avoidance.  Each of the aforementioned 

robots communicates wirelessly with a host computer, which then generates a map from the data 

provided by the robot(s).  From these projects it was also determined that a powerful processor will be 

needed to interpret the sensor data and navigate the robot. By studying each of these existing mapping 

robots several themes were discovered, many of which were incorporated into the design for this 

Figure 3 - Centibots 
(http://www.ai.sri.com/centibots/pictures/
robots-dec-2003/index.html) 
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autonomous mapping robot. Even though not all of the techniques used by these other robots will be 

used they provided a solid understanding of different ways these goals can be accomplished. 

3. Overall Design 

This chapter introduces the design requirements and the functional overview of the autonomous 

mapping robot.  The design requirement of this project was determined by the project goal of mapping 

the third floor of the Atwater Kent Laboratories located at WPI. This goal was chosen to act as a 

controlled proof of concept of the robot’s capabilities. By mapping a room which can be easily accessed 

it is possible to test the accuracy of the sensor readings from the robot as well as to compare the 

generated map to available blueprints of the location. After presenting the requirements the robot must 

meet a functional overview of the robot introducing each device needed for the robot to complete its 

core functions is provided. 

3.1 Design Requirements 

The following design requirements were determined by the team members in order to achieve the 

project goal of being able to map the third floor of Atwater Kent as well as to help equip the robot to be 

able to map other similar areas: 

1. The robot needed a durable chassis to hold all of the necessary sensors and drive equipment. 

2. An efficient power supply to power all the devices for at least 1~2 hours was required. 

3. A fast microprocessor was needed to control all the devices and process their incoming data. 

4. The robot needed to have an accurate range sensor to collect mapping data. 

5. The robot had to have some way to collect orientation data to place itself in the map. 

6. A host computer had to be equipped with software capable of receiving data from the robot and 

plotting the map from the given data. 

7. The robot requires a wireless module to communicate wirelessly with the host computer. 

8. The host computer must have a graphical user interface to display the collected data properly in a 

useful manner. 

Design decisions were made in order to achieve the design requirements above.  The following 

subchapter will give an overview of the robot’s design along with an explanation of each component in 

the robot. 
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3.2 System Overview 

This subchapter discusses the overall system design of the autonomous mapping robot along with a 

brief discussion on each of the components.  Arguably the most important component of the robot is 

the AT91SAM9260 microprocessor, due to the fact that it is the central point of integration between all 

of the onboard equipment the robot possesses. The processor used on the robot is built into a 

development board which was purchased from Olimex, which is discussed in greater detail in Chapter 5 

of this report. The processor was also required to be able to perform all of the on-board computing for 

navigational purposes as well as communicate with the host machine which runs a graphical user 

interface to plot the mapping data.  Connected to the microprocessor is the motor controller, laser 

range finder, an array of ultrasonic sensors, accelerometer, gyroscope, optical encoders and the wireless 

module.  Figure 4 provides a simple overall system diagram of the robot and, the connections used for 

each of the components, and the interface with the host system used to display the map. 

Robot Base

Development Board

(Microprocessor)

Ultrasonic Sensor 

Array

Inertial 

Measurement Unit

Motor Controller

Daughter Board

Wireless ModulePower Supply

Laser Range 

Finder

Optical Encoders

NiMH Batteries

Host Machine

Wireless Connection
Graphical User 

Interface

 

Figure 4 - Overall System Block Diagram 

 From the above diagram it can be seen that the laser rangefinder is the only sensor connected 

directly to the microprocessor development board. The laser range finder is the primary sensor of this 

robot used to collect mapping data.  The URG-04LX laser range finder manufactured by Hokuyo was 
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selected, which was connected to the development board via USB.  The data retrieved from the laser 

range finder data is combined with the orientation and position data in order to produce the map. 

 The rest of the sensors used on the robot are interfaced with the development board through a 

custom printed circuit board which contains the power circuitry for the robot as well as the wireless 

module used for communication with the host machine. The robot is accessed via an ad-hoc network 

allowing communication between the host and robot.  

An array of ultrasonic sensors was used for the robot’s navigational purposes.  The robot is 

equipped with five ultrasonic sensors spaced around the robot to allow effective implementation of the 

navigation algorithm as well as adequate obstacle avoidance capabilities.  The microprocessor makes 

decisions on where to move next or to stop based on the data returned from the ultrasonic sensors. 

These sensors are all interfaced with the development board through the custom PCB.  

The robot is equipped with a WIRZ #203 motor controller which was provided with the robot 

chassis which was ordered from  Zagros Robotics.  The motor controller is controlled by a Pulse Width 

Modulated (PWM) signal where the duty cycle of the PWM signal determines the rotation rate of each 

wheel.  The motor controller is connected to the SAM9260 microprocessor timer-counter which 

generates the PWM signal for each of the wheel to control the robots movement through the custom 

PCB. 

 The inertial measurement unit, made from an accelerometer and a gyroscope, along with the 

optical encoders, is used to collect orientation and position data.  The accelerometer and the gyroscope 

are connected to the microprocessor via a serial peripheral interface (SPI) bus.  The accelerometer is 

meant to provide the robot with acceleration data to determine distance traveled and the gyroscope 

provides angular acceleration data used to compute the heading of the robot.  Due to some operating 

system and software issues which are discussed later these parts are not currently being utilized by the 

system. The robot was also equipped with two optical encoders on each wheel which provide 

information on the direction the wheel is turning and the distance it has covered.  These systems 

together allow the use of dead reckoning to determine the robot’s location. 

 Data collected by each sensor are all sent to the microprocessor where preliminary data 

processing is performed for the robot navigation.  The data is stored into data structures headed with a 

message ID to identify what the data type is and is then sent to the host computer where the data is 

displayed by a graphical user interface.   
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Each of the functional subsystems presented in Figure 4 above are interfaced with the robot through 

the processor, allowing control of the motors, data gathering and processing from the multitude of 

sensors present, and wireless communication module. In the following chapters each of the 

aforementioned modules is discussed in greater detail. 

4. Robot Base 

The choice of a base for the robot was of great importance to the overall design since it dictates the size 

and weight constraints for the rest of the components. At the beginning of the project it was decided 

that purchasing a pre-made robot chassis would allow the focus to remain on the computer engineering 

aspects of the robot without having to worry about the mechanical engineering work needed to design 

an effective base. A search of existing robot bases yielded a large number of possible bases. Generally 

these bases were comprised of a simple chassis, two drive wheels and occasionally came equipped with 

an embedded processor. The most important aspects were the size, features, and price of the base. One 

of the goals of this project was to make the robot as small and 

manageable as possible while still maintaining sufficient size to carry 

all of the necessary sensing equipment. The absolute largest size 

would be 75cm in any dimension to ensure that the robot would 

always be able to fit through standard doorways. A reasonable 

starting estimate for the robot size envelope was decided to be a 

40cm cube. The design of the robot meant that it would move by 

means of electric motors running a set of drive wheels; bases which 

include drive motors and controllers were desirable, allowing the 

focus to be on the design and implementation of the sensing and 

processing aspect of the robot. Therefore, bases which included any 

advanced circuitry (such as a microprocessor or wireless radio) were not considered. The price range for 

bases considered for this robot spanned $100-$400. Simple, well-made bases from Zagros Robotics were 

decided to be worth the extra design effort of purchasing and putting together a motor, motor 

controller, and wheel setup that work well together.  

The base that was chosen was the Max '99 Robot Kit from Zagros Robotics, Figure 5. This robot 

chassis included three round platforms, two drive wheels and two castors, as well as motors and motor 

controllers. The motor controller provided was the WIRZ #203. Power and current consumption of the 

Figure 5 - Max '99 Robot Base. 
Adapted from Zagros robotics website. 
(https://www.zagrosrobotics.com/sho
p/item.asp?itemid=523) 
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motors can be seen in the table in Error! Reference source not found.A. This 12 inch diameter base was 

easily within the size constraints for the robot and was capable of supporting all of the necessary 

electronics and sensors with a maximum recommended payload of 35lbs. The price of this base was 

reasonable at $179. After researching the necessary parts it was found that this base would be only 

slightly cheaper to make with the help of the mechanical engineering department Worcester 

Polytechnic Institute and it was decided that the most efficient use of both time and money was to 

purchase the chassis from Zagros Robotics. 

5. Microprocessor 

The choice of microprocessor is important for overall robot design since it dictates the electrical design 

of the entire system as well as the complexity of the software which can run on the robot.  Linux support 

for the architecture was also important, as an embedded operating system would provide structure and 

low-level functionality for the robot.  The ARM family of microprocessors are well supported under Linux 

and enjoy nearly ubiquitous use in devices like cellular phones and portable music players. Widespread 

use and support for the embedded operating system of choice indicated that an ARM microprocessor 

would be a good fit.  The ARM9 series was in the speed range of interest (100s of MHz), which would be 

fast enough to run the embedded operating system and leave extra processing power for the robot 

application.  The processor must also expose enough general purpose I/O (input/output) pins and 

embedded peripherals to interface with the sensors required for the robot.  With these constraints in 

mind, the microprocessor chosen for the robot was the AT91SAM9260 ARM9 from ATMEL, a 200 MIPS 

processor clocked at 180MHz.    

5.1 Architecture and Features 

The AT91SAM9260 has a host of built-in peripherals which make it a good fit for the design.  The 

peripherals used by the robot include timer-counters, parallel I/O controllers, USB, SPI, MAC/PHY, and 

an AIC (advanced interrupt controller).  A development board based on the AT91SAM9260, the SAM9-

L9260 from Olimex (See Figure 6), was chosen to gain access to a useful sensor evaluation and test 

environment early in the development process.   
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Figure 6 - SAM9-L9260 Development Board from Olimex 

Fitted with an external 64MB of RAM and 512MB of flash memory, the development board is capable of 

running embedded Linux.  The development board also houses an RJ-45 jack for network 

communications, an RS-232 port for console access to the operating system, and USB host and slave 

ports for programming the board and running USB peripherals, respectively.   The development board 

also provides access to a 40-pin header, (of which 35 are I/O pins) connected to the processor.   

5.2 Embedded Operating System 

 The embedded operating system allows the navigation and mapping code to communicate with the 

host computer application over Ethernet and manages local processes efficiently.  The robot runs the 

Linux kernel version 2.6.28.4 with a Debian userland.  The kernel has been upgraded several times 

throughout the development of the robot to include features such as USB serial emulation (used by the 

laser rangefinder) as well as support for the onboard real time clock (to supply the robot with a 

consistent date and time at startup).  Additionally, the kernel source has been slightly modified to 

include userspace support for the SPI bus on which the gyroscope and accelerometer operate. 

The operating system can be accessed through a serial console, as well as over an SSH connection.   

Most of the development is done by cross compiling source code on a host machine and then 

transferring the binary to the robot via SCP, but the robot has a sane build environment as well and 

simple code may be compiled there.  More complicated code takes considerably longer to compile on 

the robot.  The embedded operating system makes communication like this easy so that the focus can 

remain on developing device drivers and application code for the robot. 
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6. Custom PCB  

A printed circuit board was designed as a daughter board to the development board housing the 

microprocessor using the board layout software CadSoft EAGLE.  The original idea was to use the 

daughter board as a way to mount and use the MatchPort Wireless Radio which was chosen for the 

robot’s wireless communications, but eventually expanded in scope to encompass many other functions.  

The design grew to include the power supply design, circuitry which had been present only on a 

prototype board, as well as connectors for the various sensor systems on the robot to allow them to 

interface with the processor through this board. 

 The circuitry on the daughter board was designed around an original prototype through-hole 

daughter board that was used for testing parts.  The board features a two section power supply, 

controller circuitry for the ultrasonic array, and a level shifter between the processor and the SPI bus.  

Additionally, a number of connectors for the various sensor arrays were added, as well as the MatchPort 

Wireless Radio and associated RJ-45 connector.  See Error! Reference source not found. for the 

daughter board connected to the development board and Appendix C for the complete daughter board 

schematic. 

The ground and Vdd planes have been turned off to make the layout more visible in Error! Reference 

source not found., but the bottom layer includes a Vdd plane (3.3V) and the top layer includes a ground 

plane.  Data traces are 10mil.  As mentioned above, the power supply traces were widened from the 

original design.  The 12V lines are 100mil, and the 3.3V and 5V lines are 70mil.  See Appendix D for a 

larger version of the layout depicted in Figure 7. 

 

Figure 7 - Final Daughter Board Layout 
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Due to board size constraints imposed by the ‘lite’ version of CadSoft EAGLE (maximum size of 3.2”x4”), 

the board layout had to be fairly dense.  The power supply was laid out first, and the rest of the parts 

added later.  The layout of the power supply circuitry was modified slightly to fit the rest of the 

components and connectors.  One of the biggest challenges was to carefully fit all of the connectors 

around the perimeter of the board.  Both sides of the board have pads for parts as shown in Figure 8.  

The board was fabricated at BatchPCB.  Upon arrival, the board was populated and tested. 

 

 

Figure 8 - Top and Bottom of Populated Daughter Board 

Several changes have been made to the schematic since the original population of the board.  

Two of the GPIO pins which connect the processor to the optical encoders were changed to different 

GPIO pins during debugging of the optical encoders.  The first modification was to cut the traces for 

these lines and install jumpers.  The second modification was the result of testing the SPI bus and 

ultrasonic array together.  The data line for the ultrasonic array was moved to a different GPIO pin, again 

the trace was cut and a jumper was installed.  Lastly, a jumper was installed between the processor 

connector and one of the GPIO pins on the Lantronix radio module to be configured as a kill switch for 

the robot.  The updated schematic appears in Appendix C. 
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6.1 Power Supply 

The power supply for a mobile robot system is a critical component of the design.  In most cases, mobile 

robots are powered by limited power supplies such as batteries or solar panels.   With an inefficient 

power supply design, the battery life will be significantly shortened.  Also, the power circuitry must be 

carefully designed for robots that are equipped with electric motors since they create noise in the power 

line which could cause damage to delicate components.  Therefore, efficient power circuitry with proper 

voltage isolation or filtering is required. 

6.1.1 Method 

Robots require various voltage levels due to variety in components.  This particular robot required three 

different voltage levels which were 12V, 5V and 3.3V.  The list of each component’s voltage 

requirements can be found in Appendix A.  To meet the requirements of generating clean supply of 

various voltages, a power supply with two NiMH batteries and two switching regulators was designed.  

There were several options of DC-DC voltage regulation methods which were the fly-back regulator, 

linear regulator and the switching regulator.  Each method has its own advantages and disadvantages 

which will be discussed in this chapter. 

The fly-back regulator is a voltage conversion method that requires coupled inductors, or a 

transformer.  The fly-back regulator provides voltage isolation which is useful for isolating the motor 

from other components.  The disadvantage of the fly-back regulator is that it is far more complex than 

the other two voltage regulation methods discussed in this chapter and it is difficult to design a stable 

fly-back regulator [5].  Though the voltage isolation was an attractive property of the fly-back regulator, 

due to time constraints the decision was made not to implement the fly-back regulator, but instead 

install a separate battery pack for the motor in order to isolate the motor power line from delicate 

components. 

 The linear regulator is the simplest method out of the three DC-DC voltage regulation methods.  

There are many linear regulator IC chips available, usually with three pins corresponding to input, 

ground, and output.  Simply connecting these pins to the battery and ground will produce the desired 

voltage on the output pin.  Another appealing aspect of the linear regulator is that the output DC 

voltage is very clean, but the tradeoff is that it is a very inefficient method of regulation especially when 

the voltage drop and the load current are large [6].  For a mobile robot, it is desired that the power 
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circuitry to be efficient, therefore the use of a linear regulator for large voltage drop of 12V to 5V and 

3.3V that will be needed for this application will not be suitable for this application. 

The power loss of a linear regulator can be calculated using 𝐏𝐥𝐨𝐬𝐬=  𝐕𝐢𝐧 −  𝐕𝐨𝐮𝐭 ∗  𝐈𝐥𝐨𝐚𝐝                

Equation 1.  It can be seen that greater the voltage drop, more power is wasted.  Therefore for large 

voltage drops the linear regulator is not the best solution.  On the other hand, if the voltage drop 

needed is small and the load current is small, the power loss is not as significant, making the linear 

regulator more appealing because of its lower price, easy implementation and clean supply. 

𝐏𝐥𝐨𝐬𝐬 =  𝐕𝐢𝐧 −  𝐕𝐨𝐮𝐭 ∗  𝐈𝐥𝐨𝐚𝐝                Equation 1 

 A more efficient regulator is the switching regulator.  Switching regulators typically have an 

efficiency of 80%~90% [6].  The disadvantages of using switching regulators are that they are expensive 

compared to linear regulators and more difficult to implement.   Switching regulators use a pulse width 

modulation (PWM) that switches the source on and off feeding current little by little giving switching 

regulators its high efficiency.  The switching regulator uses the characteristics of an inductor to down-

convert the voltage which requires a careful layout design on the board.   Though the switching 

regulator is harder to implement than the linear regulator, there are chips available that make the 

implementation much simpler.  Due to its high efficiency a switching regulator was selected for the 

voltage regulation method. 

6.1.2 Design 

In order to achieve the goal of designing a high efficiency power supply, two switching regulators were 

implemented to produce the desired voltages, 5V and 3.3V.  Two 12V NiMH rechargeable batteries were 

chosen as the power source for its lower cost and fairly high capacity of 2200mAh.  To achieve voltage 

isolation for the motor, a separate battery pack was used for the motor.  This choice was made over the 

fly-back converter because the use of a separate battery pack was a simpler solution than to implement 

the fly-back regulator.  The choice of using switching regulators over linear regulators was made by 

looking at the amount of voltage drop required and the current consumption for each voltage level. 

The table in Appendix A shows the current consumption of each component in the robot.  As 

can be seen from the table, approximately 950mA is needed at maximum for 5V which is not suitable for 

linear regulators since the power loss would approximately be 2.09W.  Therefore a switching regulator 

was selected for the 12V to 5V conversion.  For the 3.3V conversion there were two options. The first 

option was to use a linear regulator from the 5V output of the switching regulator, and the second 
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option was to use a switching regulator from the 12V source.  If a linear regulator from the 5V output is 

used, the power loss would have been 0.763W with devices running at their typical load current ratings 

and 1.30W at its maximum ratings.  Though the voltage drop required is small, since there are many 

components that run on 3.3V drawing a fairly large amount of current, the power loss was still high.  

Therefore a switching regulator was selected for the 3.3V regulation as well. 

 The final design of the power supply contains two switching regulators converting a 12V source 

from a NiMH battery to 5V and 3.3V.  Figure 9 shows the block diagram of the power supply circuitry.  

With this design, the efficiency of the power supply should be approximately 80%~90% according to the 

specification sheet of the switching regulator chip.  Parts were selected carefully, and for the switching 

regulator IC, the LM2592HV series by National Semiconductors was selected.  The LM2592 is capable of 

supplying 2A of current which was needed to have enough head room for each voltage level.  Only four 

discrete components were required for operation of this chip which was also another reason why the 

LM2592 chip was selected. 

 

12V NiMH Battery 12V NiMH Battery

Motor 5V Devices

3.3V Switching 

Regulator

5V Switching 

Regulator

3.3V Devices

12V DC

5V DC 3.3V DC

12V DC

 

Figure 9 - Block Diagram of the Power Supply 

 The schematic of the power circuitry and the parts list can be found in Appendix B.  The 

component values were selected carefully by reading the specification sheet of the switching regulator 

IC.  Shielded inductors were selected to prevent magnetic field interruptions as much as possible.  After 



17 
 

the schematic was drawn, the board layout was designed using EAGLE.  The daughter board layout can 

be found in Appendix C.  The component placements were carefully chosen since it can affect the 

performance of the switching regulator greatly.  Thick traces were drawn to make sure the trace can 

withstand high current flowing through the power lines and screw type terminal block connectors were 

selected for the input and output connection for flexibility. 

6.1.3 Battery Compartment 

The battery compartment is an addition that was made to clean up the wiring of the robot as well 

providing safety features to the robot. An aluminum die cast casing was used for the battery 

compartment. The battery compartment contains fuses to protect the circuitries as well as a battery 

indicator to notify the user that the battery is running low. The battery compartment also has a three 

way switch that can switch the robot on, off and into charging mode. Figure 10 is a close up picture of 

the battery compartment. 

 

Figure 10 Battery compartment close up 

The outside switches are used to switch the system on, off and to charging mode. The batteries are 

chargeable without taking the batteries out by connecting the charger to the barrel plug input next to 

the switches and flipping the switch up. The two LED sequences indicate the battery life of each battery. 

When fully charged all LED’s are lit, and when the battery starts to run low, the LED starts to turn off one 

by one.  
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6.2 Wireless Device 

The robot design dictates a wireless communication device because autonomous operation would not 

be feasible with a tether to the host computer.  The wireless radio should support standard wireless 

Ethernet (Wi-Fi) as well as the ability to bridge to a wired connection.  Bridging to the existing 

development board wired connection would provide efficient integration of wireless communication 

into the design and take advantage of the embedded operating system present on the development 

board.  The alternative was a device for which serial drivers would have to be written.  While coding a 

serial-based device driver would have been possible, bridging to the existing wired connection generally 

boasted  faster transfer rates, and was much easier to implement.   

 The wireless module chosen for the robot was the Lantronix MatchPort, which provided both 

serial and bridged connections as well as a simple web server and configurable I/O pins.  The daughter 

board was designed with connectors to accept the MatchPort, along with an RJ-45 connector with 

internal magnetics.  A standard cross-over Ethernet cable is used to bridge between the development 

board wired connection and the connection to the wireless radio on the daughter board.  Configuring 

the radio amounted to upgrading the firmware over tftp, and configuring the radio via a telnet 

connection.  After configuration, the wireless module bridges the wired connection to an ad-hoc 

wireless network which is the basis for wireless communication.  

 

Figure 11 - Lantronix MatchPort b/g 

 

7. Motor Controller 

The motor controller, a WIRZ #203 provided with the base from Zagros Robotics, translates I/O signals 

generated from the microprocessor into the voltage levels required by the drive motors.  The translation 

requires the connection of two power supplies.  One 5V supply is required for the quad-H driver and 

inverter logic, a separate 12V supply provides power to the motors.  By controlling the duty cycle of the 
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input signals (PWM), the microprocessor is able to dictate the voltage delivered to each of the drive 

motors independently, thereby controlling turn speed.  Additionally, the motor controller accepts logic 

levels which dictate the polarity of the voltage delivered to each motor, thereby controlling their 

direction.  A single timer-counter peripheral with two outputs on the microprocessor is coded to provide 

two same-frequency, different duty-cycle PWM signals to the motor driver.  Two parallel I/O lines are 

used to control each motor’s direction.  Control of the entire drive system is outlined in the following 

snippet of pseudo-code: 

 

The navigation code may access the duty cycle for each wheel independently, so the developer has 

direct control over the size and duration of turns as well as forward and reverse speed.  Variations in 

motor construction that would ordinarily lead the robot astray while expecting to travel in a straight line 

may be compensated for by a combination of distance and orientation sensors.   

 

Figure 12 - WIRZ #203 Motor Controller Mounted to Robot Deck 

8. Sensors 

Without an array of different sensors a robot becomes nothing more than a mobile computer incapable 

of accomplishing tasks based upon its current surroundings. In order to navigate and map its 

driveRobot (direction, duty_cycle) 

Configure I/O pins 

Set direction pins (for each motor) 

Set max duty cycle (for each motor) 

Ramp up from 40% duty cycle to maximum 

Wait for event  

Ramp down to 40% duty cycle 

Disable PWM 
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surroundings, as well as determine its current location, the robot needed to be equipped with a suite of 

sensors able to provide the necessary data to perform the task of mapping. In order to be able to 

estimate its position the robot utilizes both optical wheel encoders and a homemade inertial 

measurement unit to allow dead reckoning techniques to be used. For the purposes of gathering 

mapping data a laser rangefinder was chosen, this was based on the fact that this is one of the most 

common ways to gather this type of data, as was discussed in the background chapter. Another 

common sensor to see on a robot is an ultrasonic sensor, an array of five of these were employed in 

order to provide the robot with the necessary information to navigate its immediate surroundings and 

to avoid obstacles. When used together all of these sensors provide the robot with the information 

necessary to complete the task of autonomous mapping. 

8.1 Optical Encoders 

Optical encoders are another means of collecting distance and angular direction information from the 

robot. The sensors that were used in this project were reflective optical encoders, meaning they emit 

infrared light and activate when a  reflection is present. This allows the sensor to differentiate between 

reflective and non-reflective surfaces.  In this project the optical encoders were used as a secondary 

measurement of the robot’s current heading and the distance it has traveled. This information is sent to 

the processor where it can be checked against the data generated by the IMU. For instance, the IMU 

may indicate that the robot is in a state of constant acceleration when it is actually at rest. It is also 

possible that the accumulation of error in either the gyroscope or the accelerometer could cause 

erroneous data to be sent to the host. A simple test of the output from the wheel encoder can correct 

this and reset the output of the IMU to the proper values. 

The Fairchild Semiconductor QRB1134 reflective optical encoders used for this project are a 

fairly simple device consisting of an infrared light emitting diode and a phototransistor placed adjacent 

to one another inside of a plastic housing, as shown in Figure 13 taken from the sensor’s datasheet. A 

phototransistor is simply an NPN bipolar transistor with its base region exposed to sources of light. The 

light shining on the base region of the transistor acts as the voltage that would normally be applied to 

this location, causing the phototransistor to amplify changes in the amount of light currently hitting its 

surface. 
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Figure 13 - QRB1134 operation 

Reflective optical encoders work by reading IR reflections from a reflective (white) surface, such 

as a pinwheel pattern on the rotating wheel, like the one shown in Figure 14 which causes them to 

return a series of pulses. This information would be sufficient if the robot moved in only one direction. 

However, since the wheels are capable of spinning both backwards and forwards another 

implementation must be used to check the direction of rotation. For this application the use of a 

quadrature encoder is needed. A quadrature encoder works by combining the output from two 

encoders and comparing their respective logic levels, in fact for this project each quadrature encoder is 

made up from two QRB1134 sensors connected parallel to each other. Figure 14 shows the basic 

operation of a quadrature encoder. 

 

Figure 14 - Quadrature encoder operation 

It can be seen in Figure 14 that for one direction of rotation sensor A will change states before 

sensor B, and rotating the other direction will cause sensor B to lead in the output signal. By comparing 

the current bit value to the previous bit value of this out of phase pattern the direction of rotation of the 

wheel can be determined.  Table 1 below shows the binary outputs from this quadrature encoder for 

both clockwise and counterclockwise rotation. 
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Table 1 - Binary outputs for quadrature encoder 

Clockwise Counterclockwise 

0 0 0 0 

1 0 0 1 

1 1 1 1 

0 1 1 0 

 

From this table one can see that using this pinwheel scheme will cause only one bit value to 

change for each event. This is paramount to error reduction as it will keep the sensors from changing 

many bit values in too short of a time which can lead to unexpected values and cause deeply embedded 

errors when programming. 

 For their implementation each of the optical encoders was connected to a general purpose IO 

pin on the processor. These pins are registered as interrupt lines in the kernel by means of a kernel 

module (wpi_oenc) which acts as the driver for these devices.  The module keeps a buffer of the 

transitions from the encoders, and the direction of those transitions. By multiplying this value by the 

width of one of the stripes on the pinwheel, 7.5 mm which is the smallest resolution available, the 

distance traveled can be calculated. Using equations taken from A Tutorial and Elementary Trajectory 

Model for the Differential Steering System of Robot Wheel Actuators by G.W. Lucas the value of theta, 

the angle in radians that the robot has turned, can be found. The equation used was fairly simple: 

Θ = (So – Si) / WB                Equation 2  

 Where So and Si are the distance the outer wheel traveled and the distance the inner wheel 

traveled respectively and WB is the wheel base of the robot (246.0625 mm).  Also calculated are x and y 

coordinates indicating the robot’s position relative to its starting location. These are calculated by 

multiplying the distance traveled by the cosine of theta and the sine of theta to get x and y respectively. 

After all of this information has been calculated, a global structure is incremented by these values, 

thereby keeping accumulated position data from the starting point. The heading of the robot, however, 

is not incremented, but saved as theta.  Note that for the code theta needed to be scaled up in order for 

it to be stored as an integer in C.  Storing all global data as the integer datatype simplifies 

communication between the robot and the host computer. 

This data is then used to supplement the data coming from both the accelerometer and the 

gyroscope. It can be seen that by using these sensors in combination with the IMU circuitry much more 



23 
 

accurate results can be gathered providing a much more accurate estimation of the current position of 

the robot. 

8.2 Accelerometer/Gyroscope 

In all autonomous motion devices there is a need to know the relative location of the autonomous 

object. This is critical for the autonomous mapping robot as it will need to efficiently navigate through a 

room or building making sure it examines all possible areas. In order to get the necessary information 

about the robot’s current to the navigation algorithm a set of sensors capable of providing both 

direction and distance information were needed. 

In many cases distance and direction calculation can be done with simple odometry techniques, 

using encoders to count wheel rotation. With this data the current location can be determined trivially. 

However, this approach lends itself to several sources of error. Wheel slip is one of the main causes of 

error leading to inaccurate data measurements. If a wheel on the robot were to slip on the surface it 

were driving on extra rotations would be measured and the distance and/or direction data would be 

incorrect. 

Another method other than odometry that avoids the issues brought on by wheel slip is the use 

of an inertial measurement unit (IMU). This is a device that incorporates an accelerometer and a 

gyroscope which work together to determine the current relative position of the robot. IMUs, while 

usually more accurate than simple wheel encoders, also suffer from accumulating error. This can be due 

to gyroscope drift which happens over time as a result of noise and even periodic drift from the rotation 

of the earth (Odometry: Calibration and Error Modeling, D. Bradley). However, there are ways of 

compensating for these kinds of error; see the section on the optical wheel encoders used for more 

information on this topic. 

For the purposes of this project it was decided that purchasing a separate accelerometer and 

gyroscope would be the best way to increase our performance while keeping the budget to a reasonable 

level (commercially available IMUs can cost upward of $400). Table 2 shows a comparison made of some 

of the various accelerometers and gyroscopes that were considered for this project. The most important 

measure for the sensors was their level of sensitivity since this, combined with their resolution, yielded a 

measure of the overall performance of the sensor. Another important factor was the sensor’s interface. 

It was preferred to find sensors with a digital output such as I2C or SPI. Many of the accelerometers were 
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available with this option; however digital output gyroscopes were much less common. This was one of 

the factors that lead to the choice of the Melexis MLX90609. 

Another challenge impeding the choice of the IMU sensors was the fact that they were nearly all 

offered only as SMT or LGA packages, making them difficult to use for prototyping. This problem was 

solved by choosing parts that have been broken out to easily accessible pins by Sparkfun.com. This will 

allow the use of these more precise parts during prototyping, as well as remove the need to purchase 

more solder boards that would only be used during prototyping and testing. 

Table 2 - IMU parts decision matrix 

Accelerometer MFG Resolution Sensitivity Voltage Interface Price 

LIS3LV02DQ ST ±2g/±6g 

2g - 1024 

LSB/g 3V I2C/SPI $43.95  

   

6g - 340   

LSB/g    

SCA3000-D01 VTI ±2g 1333 LSB/g 3V SPI $44.95  

Gyroscope MFG Resolution Sensitivity Voltage Interface Price 

ADXRS150 Analog Devices 150°/s 12.5mV/°/sec 5V Analog $69.95  

ADXRS300 Analog Devices 300°/s 5mV/°/sec 5V Analog $69.95  

MLX90609 Melexis ±75°/s 12.8LSB/°/sec 5V SPI $59.99  

  ±150°/s 6.4LSB/°/sec    

   ±300°/s 3.2LSB/°/sec    

IDG-300 InvenSense ±500°/sec 2mV/°/sec 3V Analog $74.95  

Combo Board MFG Resolution Sensitivity Voltage Interface Price 

ADXL203/ADXRS150 Analog Devices 

±1.7g 

±150°/s 

(10-bit ADC) 

1024 LSB/g 

15 mV/°/sec 

5V in 

2.5V 

out Analog  $124.95  

ADXL320/ADXRS150 Analog Devices 

±5g 

(10-bit ADC) 1.95 mV/LSB  

5V in 

2.5V 

out Analog  $109.95  

 

The table above shows several possibilities for sensors including two boards with a combination 

of an accelerometer and gyroscope. These, however provided less performance than any of the parts 

looked at separately at a higher price. The two parts that were chosen were the Melexis MLX90609 

angular rate sensor and the VTI Technologies SCA3000 accelerometer, each mounted on a board with 

break-out pins for more efficient implementation during prototyping. The MLX90609 has a resolution of 

± 150°/sec. This measurement is of some importance as it gives an upper bound on how fast the robot 

will be able to turn and still get accurate data from the gyroscope. It also provides 6.4LSB/°/sec with this 

resolution which should be satisfactory for the purposes of this project. The SCA3000 has a rating of 

7.501e-4 g/LSB. To put that in more practical terms this means that if the robot were to operate for 100 



25 
 

seconds continuously, it would accumulate a total error of +/- 120 feet, which is significantly less than 

other accelerometers that were considered for this role. As mentioned above, this error can be kept in 

check through the use of other means of odometry. 

Communication with each of these devices was performed using serial peripheral interface (SPI). 

Programming for SPI use in Linux user space was different from any experience anyone in the project 

group had previously had with SPI. First it required the development of a new kernel module. An issue 

that arose from the use of the SPI interface was that there was only one SPI chip select line available 

from the development board. In order to work around this, the devices were selected using  the single 

chip select line, a general purpose IO line, and a decoder as described in Table 3 below. As can be seen 

in the table when the accelerometer was selected by setting the GPIO line low, the outputs of the 

decoder would follow the input it received from the SPI chip select line; the same was true for setting 

the GPIO line high - selecting the gyroscope. 

Table 3 - IMU decoder truth table 

E 

(Always lo) 

A0 

(SPI_CS) 

A1 

(GPIO) 

O0 

(to accel.) 

02 

(to gyro.) 

Notes 

HI X X HI HI Cannot happen: E tied LO 

 LO LO LO LO HI Accel. selected and activated 

LO HI LO HI HI Accel. selected not activated 

LO LO HI HI LO Gyro. selected and activated 

LO HI HI HI HI Gyro. Selected not activated 

 

Once communications with each device were established they each needed to be calibrated to scale the 

output by the device’s sensitivity and to remove built in biases. For the accelerometer this is done by 

placing the robot in a “zero-g” orientation (meaning the axes of interest are experiencing no 

acceleration forces) and subtracting out the bias; this value is saved as an offset that can be applied to 

all measurements coming in after this value is stored. The mlx90609 angular rate sensor was calibrated 

in a similar way, subtracting out the static offset from each measurement.  In order to keep these 

calculated offsets in the correct range as the sensors experience both drift and temperature change the 

must be calculated every so often. In order to accomplish this calculation the robot will be stopped 

approximately every 3 meters. At this point laser rangefinder data will be taken and the axes of the 
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accelerometer will be zeroed. This will prevent unbound error growth in the sensors, thereby keeping 

the directional and distance data as accurate as possible. 

 Currently the inertial measurement unit system has been built and tested. It performs as 

expected with one down side: the communication with the individual devices via the SPI bus with the 

spidev Linux driver is not behaving as needed. The main problem stems from the fact that the chip select 

line, which activates each of the individual parts, remains in its active state for much longer 

(approximately two orders of magnitude) than is necessary to simply communicate with the device. 

These nearly 200ms communication cycles make scheduling the sensor firing order (discussed in chapter 

9) impossible to accomplish in an amount of time that would be able to provide useful data. For this 

reason the IMU has been left out of the final design due to time constraints placed on the project. This 

will obviously have a negative effect on the positional data provided to the navigation algorithm since 

the error in the optical encoders cannot be kept in check by another system. 

8.3 Laser Range Finder 

The laser range finder is the primary mapping sensor for the robot.  The most important factor when 

generating a map is the accuracy and precision of the data collected by the sensors.  Laser range finder 

measure distance by measuring the time taken by a laser beam to be reflected off the target.  The 

accuracy is usually on the order of millimeters, which is more than adequate for mapping purposes.  

Though laser range finders are suitable for mapping, there were some issues with them as well.  Most 

laser range finders consume a lot of power and are heavy, which makes them difficult to install on a 

mobile robot.  Therefore a light-weight and efficient URG-04LX laser scanner sensor manufactured by 

Hokuyo was selected for this project. 

The URG was particularly designed for robot 

applications.  At the Aichi Expo 2005 in Japan, more 

than half of the robots presented at the Expo used the 

URG-04LX [1].  The appealing aspects of this laser range 

finder are low power consumption and light weight.  

The required power source for this device is 5V DC , 

drawing only 500mA and weighing approximately one 

pound.  The range of the URG sensor is 60mm to 

4095mm with a field of vision of 240° incrementing 
Figure 15 - Hokuyo URG-04LX Laser Range Finder 
(http://www.hokuyo-
aut.co.jp/02sensor/07scanner/urg_04lx.html) 
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approximately by 0.36° per measurement.  The accuracy of the sensor is ±10mm when the object is 60 

to 1000mm away and 1% of the distance when the object is farther than 1000mm. 

 The URG can communicate with the host via an USB connection or an RS232 link.  For this robot 

the USB connection was used because it provides faster transfer rate.  The URG-04LX laser range finder 

communicates with the host through Hokuyo’s SCIP communication protocol.  Hokuyo provides a library 

with API functions to simplify initialization and communication with the sensor. 

The laser range finder driver was written using the API to initialize the sensor and to perform a 

full range scan.  Each full range scan was stored in a buffer containing 726 data points of magnitude data 

and angle measurements that are retrieved by another API function call that converts indices to radians.    

Before the laser range finder driver was written, the device was tested using vmon, an application 

provided by the manufacturer. 

8.3.1 Sensor Evaluation 

The Hokuyo laser came with a CD containing evaluation software. This included an application called 

vmon which could be run in a Windows environment. Installing the driver for the laser connection was 

simple and a README from Hokuyo provided all of the necessary information to use the software. The 

vmon application shows a visual representation of the data that the laser is sending back in real time 

and can also be used to export a directory of Microsoft Excel spreadsheets containing numerical data 

from ten sequential sweeps of the laser. Figure 16 shows the visual representation of the data given by 

vmon   
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Table 4 shows a sample of the corresponding output data values and a scatter plot of the x and y 

coordinates. 

 

Figure 16 - Visual data provided by vmon application 

 In the image above the laser was placed at the center of a grid laid out on a table in the lab. Blue 

areas represent information received by the laser while the pink areas show where the laser’s range was 

exceeded. The three arrows indicate boxes that were placed in the laser’s scanning range for testing 

purposes. In an x-y coordinate system the corners of these boxes were placed at: (40cm, 1000cm) (-

40cm, 40cm) and (60cm, 40cm). Note that in the image above the view is as if the laser were being 

looked at from below so, although two boxes appear to have negative x coordinates, they were  actually 

to the right of the laser when looking in the same direction it was facing.  The actual measurements 

returned in vmon for each box respectively were: (997.4, 38.0cm) (41.9cm, 41.9cm) and (56.0, 42.3). By 

analyzing several more data points from many tests it was found that this laser is indeed accurate to 

within the +- 10mm as specified by the manufacturer. Table 4 shows some sample data and a scatter 

plot of all of the x and y coordinates from the test described above. 
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Table 4 - Laser rangefinder data points and scatter plot 

Angle 
(rads) 

X-coord. 
(cm) 

Y-coord. 
(cm) 

Angle 
(deg) 

 

-0.80994 530.5326 -557.236 -46.4063 

 

-0.80381 536.093 -556.202 -46.0547 

-0.79767 542.4289 -555.908 -45.7031 

-0.79153 551.1003 -557.905 -45.3516 

-0.7854 557.6243 -557.624 -45 

-0.77926 563.3831 -556.511 -44.6484 

-0.77313 570.6523 -556.815 -44.2969 

-0.76699 1685.746 -1624.8 -43.9453 

-0.76085 1705.818 -1624.08 -43.5937 

-0.75472 1723.619 -1620.98 -43.2422 

 

The format of the data in the above table is:  Angle in radians, x coordinate, y coordinate, angle 

in degrees. 

 The data in the table above corresponds to -45° where the edge of one of the boxes can clearly 

be seen in the highlighted row.  By making a simple scatter plot of the x and y coordinates in Microsoft 

Excel a crude 2-dimensional map can be constructed from the data provided by vmon. In the scatter plot 

it can be seen that there are a few extraneous data points that do not correspond to an actual object in 

the laser’s view. This was most likely due to the fact that the angle that those points are at was an area 

in the lab where the laser was pointed at a lab bench with a very inconsistent surface.  

8.4 Ultrasonic Sensor Array 

The SRF05 ultrasonic sensor is capable of interfacing with the host processor in one of two modes.  The 

first mode separates the input and output data, whereas the second mode allows for the use only one 

line for bidirectional communication (See Figure 17).  The second mode was chosen to reduce the wiring 

complexity, and to reduce the number of built-in timer-counter peripherals necessary from the ARM9 

microprocessor.   
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Figure 17 - SRF05 Timing Diagram, Mode 2 

Since multiple sensors are necessary, the data lines from each of 5 sensors are multiplexed to a single 

timer-counter on the ARM9 microprocessor.  Furthermore, the 5V logic levels from the ultrasonic 

sensors must be level shifted to 3.3V logic levels.  This is accomplished with a 4051 analog multiplexer to 

multiplex the bidirectional data between the sensor array and the microprocessor as well as a 5V 

tolerant bidirectional buffer, which acts as a level shifter.  See Appendix C for the circuitry designed to 

accomplish this task.  The code to retrieve distance data from the sensor array is outlined in following 

pseudo-code snippet: 

 

The ultrasonic sensors are mounted on the underside of the middle deck of the robot according to 

Figure 18.  This placement allows for easy wall-following, with two sensors at each side, and good 

obstacle avoidance in front of the robot. 

pollSRF(sensorID) 

 Configure IO pins 

 Set inhibit pin low (multiplexer active) 

 Set address lines (Select the proper sensor) 

 Set direction pin (Processor -> Sensor) 

 Send an 11µs pulse 

 Set direction pin (Sensor -> Processor) 

 Measure received pulse 

 Set inhibit pin high (multiplexer in active) 
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Figure 18 - Ultrasonic Sensory Array Layout, Bottom View 

Each sensor is mounted to the deck of the robot with a custom-made bracket.  The brackets are 

composed of aluminum angle stock with the appropriate holes drilled to match the sensors, as well as a 

triangular hole pattern for fastening to the deck of the robot.  See Figure 19 for an image of the robot 

with all 5 sensors installed. 

 

Figure 19 - Robot Base with Ultrasonic Sensor Array 

 

8.4.1 Sensor Evaluation 

The SRF05 ultrasonic sensor is responsible for obstacle detection and robot navigation.  Though the 

accuracy of the ultrasonic sensor is not a critical element for mapping purposes, it was still important to 



32 
 

understand its capabilities and any potential problems it might introduce into the overall design. Two 

experiments were conducted to examine the accuracy, precision and angular range of the sensors. The 

first table in Appendix  shows the results of these experiments. 

 In order to examine the accuracy of the ultrasonic sensors a piece of tape was used to mark the 

distance from the sensor to the wall.  Next, an ultrasonic sensor was placed on each distance mark and a 

measurement was taken using a simple program that triggered the ultrasonic sensor one hundred times 

sequentially.  The program output the measurement of each of the hundred runs, and also output the 

average of the hundred runs after terminating.  As the ultrasonic sensor was run one hundred times 

each of the measurements output was examined to observe any possible glitches or unexpected 

measurements in the output.  The numbers in the table are the average of the one hundred 

measurements made.  In order to measure the consistency of the ultrasonic sensor, the program was 

run ten times for each of the measurements made. 

 It was found that the ultrasonic sensor is very accurate for most distances.  Though accuracy is 

important, the precision and consistency of the sensor was more valued for obstacle detection and 

navigational purposes.   As long as the sensor is consistent it is possible to make some adjustments to 

the code or to the sensor itself to account for measurement error.  The sensor had the least precision at 

5cm, where the maximum value and the minimum value ranged 3.18mm and the least accuracy at 30cm 

where the percent error was 1.3%.  This was high enough precision and accuracy for obstacle detection 

and navigation purposes for the robot.  It was also found that as the sensor gets closer to the wall, its 

accuracy decreases.  Up to 60cm, the percent error of the sensor was below 0.3% but at 50cm it 

increased to 0.785%.  Overall the SRF05 ultrasonic range sensor meets the requirements for accuracy 

and consistency for this project. 
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Figure 20 - Error of the Ultrasonic Sensor Plotted 

 Figure 20 shows the error of the ultrasonic sensors plotted versus the actual measurement.  It 

can be seen that the maximum error is 1.6cm at 1cm.  Up to 60cm the ultrasonic sensor is accurate up to 

+-0.2cm.  As the object gets closer the sensor becomes less accurate. 

The angular range of the ultrasonic sensors is important data for this application since it 

determines the placement of the sensors on the robot.  In order to measure the angular range of the 

ultra sonic sensors the robot was placed 80cm away from the wall and a board was slowly moved at a 

fixed distance in front of the robot.  The angle at which the sensor detected the board was measured 

using a protractor and a string.  The angles with the board were measured at 20cm, 40cm and 60cm.  

When the measurements were made, it was found that there was a region where the sensors detected 

both the board and the wall.  Therefore it was decided to make two measurements where the sensor 

stably detected the board (inner bound) and where the sensor stably detected the wall (outer bound).  

The table in Appendix  shows the result of this experiment. From these results it can be said that objects 

within plus or minus ten degrees from the ultrasonic sensor will be detected consistently. 

For most of the measurements taken the performance of the ultrasonic sensors was better than 

expected.  By conducting this evaluation, the capabilities of the ultrasonic sensors as well as their 

problems were better understood.  The experimentation was valuable since it opened up many options.  

It was found that the sensors are fairly accurate and consistent, which yielded the option of 
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supplementing the laser range finder information for the mapping process with data gathered by the 

ultrasonic sensors. 

9. Software 

The software of this system is comprised of three main parts, which are the communication code, robot 

code and the host application. The communication code is used to transmit commands and data 

between the robot and the host application. The communication code contains the server code and the 

client code where each code lies in both the robot code and the host application as shown in Figure 21 

The robot code contains the server/client code, sensor timer scheduler, sensor drivers and the 

navigation algorithm. The host application holds the server/client code and the graphical user interface. 

Figure 21 shows the basic code flow of the entire system. 

Host Application

Graphical User 

Interface

Robot Code

Sensor Drivers

Navigation 

Algorithm

Sensor Timer 

Scheduler

Communication Code

Server/ClientServer/Client

 

Figure 21 - Software Architecture Block Diagram 

  

9.1 Communication Protocol 

The communication protocol is the bridge between the robot and the host machine.  The protocol uses 

the sockets API and is designed around using a message ID to identify different types of data.  Important 

data structures are stored globally in the robot application.  These include a structure for holding each 

of the major sensor data, as well as a combined structure for holding the adjusted heading and position 

data, calculated on the robot side.  Each structure has as the first element an integer specifying the 

message ID.   

 When the structure is sent over the network, the first piece to arrive on the receiving end is the 

message id.  The receiving end can then use a lookup table to determine the message length and the 

appropriate storage structure.  The receiving end waits in a loop until all of the data has been sent.  
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Since the size of the data structure is known from the lookup table, the loop can use the comparison of 

the total number of bytes received to the total number of bytes expected.  As the data is being received, 

it is stored in a buffer with size determined by the message ID.  When the buffer has been filled (all 

expected bytes have been received), the buffer is then copied to an allocated data structure which 

matches the structure from the sending side.  The sending side also loops through the send process to 

allow for the data to be split over multiple packets.  

9.2 Robot Code 

The robot code is separated into device drivers,  the timer scheduler, communications, and navigation.  

Each piece is crucial to the autonomous operation of the robot.  The device drivers are the lowest level 

code, and are responsible for abstracting the physical world, as experienced through sensors (ultrasonic 

sensors, optical encoders) and actuators (motor driver), into clean, efficient function calls where the 

data can be made available to the application layer.  The timer scheduler sits between the driver and 

application, and is responsible for keeping accurate time between sensor reads, interrogating sensors at 

known intervals, and scheduling the sending of map data to the host machine..  The navigation code is 

on the application level and is responsible for higher-level decision making  based on the sensor data.  

Communication code is also used by the application level, which allows the robot to communicate with 

the host machine.  

9.2.1 Device Drivers 

The device drivers communicate with the development board hardware in a number of ways.  The 

ultrasonic sensors and motor controller drivers map out a page in user space from /dev/mem and 

manipulate this page in order to control the contents of the microprocessor registers.  The optical 

encoders use a custom kernel module (wpi_oenc) which treats the encoders as interrupt sources.  The 

kernel module updates the direction and number of transitions on each new interrupt and buffers the 

information until it is read through an ioctl call.  The laser rangefinder uses an API based on the cdc-acm 

kernel module, which emulates a serial connection over USB.  The gyroscope and accelerometer both 

use SPI.  The SPI bus is controlled via a custom kernel module which allows for access to the Linux kernel 

SPI API.  Each major device or sensor has its own source and header file.  

9.2.2 Timer Scheduler 

Sensor reads are scheduled with the custom kernel module (wpi_tcsched).  This module controls a 

timer/counter which it uses to generate interrupts.  On an interrupt, a flag is set and then copied from 
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kernel space to userspace.  The main code waits for a flag change and then services the appropriate 

device based on the flag.  Since the time of the sensor reads in known, data can be integrated with 

respect to time, which is necessary for calculating position from acceleration data (accelerometer) and 

heading from angular velocity data (gyroscope).  Additionally, the scheduler can be used to finely adjust 

the frequency of sensor reads to strike a balance between gathering all the necessary information, but 

not wasting system resources.   

9.2.3 Navigation Algorithm 

The navigation algorithm is needed for the robot to navigate through the building and to avoid obstacles. 

The robot uses a “wall follower” algorithm which is a popular navigation algorithm for robots navigating 

in an unknown environment. The “wall follower” is an algorithm that has the robot follow the wall to its 

right (or left) until it returns to its original position. This algorithm works in any environment as long as 

all the walls are connected. The navigation algorithm for this project was written based on the ultrasonic 

sensor data and the wheel encoder data. 

 The navigation algorithm lies in the ultrasonic sensor polling service routine. The algorithm 

starts by polling the ultrasonic sensor depending on the sequence array which holds ultrasonic sensor 

IDs in the order to be fired. The sequence array was necessary to avoid firing physically close ultrasonic 

sensors too closely in time, a condition which is known to create false readings when one sensor detects 

echos generated by another sensor.  Depending on which sensor was fired, the algorithm calls on a 

check function. There are four check functions for this algorithm which are bump check, right check, 

parallel check and center check. 

 The bump check function is called whenever the front sensor (sensor ID 2) is fired. This function 

checks the value returned by the front ultrasonic sensor, and stops the robot if the distance measured is 

closer than 90cm. After stopping the function decides on which way for the robot to turn by checking 

the previous sensor values on the right and left of the robot. The right check function is called on 

whenever the right sensor (sensor ID 0) is fired. This function checks if the right wall is lost or not by 

checking if the sensors return value. If the right wall is lost, it tells the robot to turn right to follow the 

right wall. 

 The parallel check function is called when both of the right sensors are fired  (sensor ID 0 and 1). 

This function checks if the robot is parallel to the wall to its right by comparing the values of the two 

right sensors. If the difference between the two sensors is large, the robot adjusts itself until the robot is 



37 
 

parallel to the right wall. The center check function is called when the left sensor (sensor ID 4) is fired. 

The center check function checks whether the robot is centered relative to the walls on its side. This 

function is only called when the robot is parallel to the right wall and when the robot sees a wall to its 

right and left. When the function is called the robot takes the right and left ultrasonic sensors 

measurement to determine the center point. The robot then checks if its current position is near the 

center point. If it isn’t, the robot moves toward the center. 

 The individual functions of the navigation algorithm works properly, but for certain situations 

the navigation algorithm seems to fail. Further testing and debugging will be needed in order to 

determine the exact reason for the failure in certain situations. The navigation algorithm can be 

improved and one whole research project can be spent on writing an effective navigation algorithm for 

this robot. If time allowed, it would be interesting to use the laser range finder data for navigational 

purposes along with the ultrasonic sensor and the wheel encoders.  

9.3 Host Application 

The host application was designed to receive data from the robot and to display it in a manner that is 

easy to comprehend for the user as well as sending commands to the robot when necessary.  The host 

application was programmed using a combination of C and Tcl/Tk.  Tcl is a scripting language and Tk is a 

popular Graphical User Interface (GUI) toolkit used with Tcl.  The host application contains four parts, 

server code, client code, data processing code and the GUI, each running on its own thread.  The server 

runs constantly in the background waiting for data from the robot.  Once data is received, the server 

notifies the data processing thread.  The data processing thread then processes the data so that the GUI 

can properly display the data in a useful fashion.  Figure 22 is a flow diagram of the host application. 
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Figure 22 - Code Flow Diagram of the Host Application 

  The server code, client code and the data processing code were written in C and the GUI code 

was written in Tcl/Tk.  Though it was possible to perform the data processing in Tcl, it was decided to 

add the data processing thread because C is faster at performing calculations.  The data processing 

thread and the Tcl/Tk code communicates through linked variables.  Tcl provides a useful API function 

that links a variable in C to a variable in Tcl. Whenever a change on one side is detected; the changes are 

reflected on the other side. 

The server is responsible of receiving the data from the robot and storing it in the appropriate 

data structure.  Each data received is headed with a message ID which is used to identify what type of 

data is being received.  Once the data is stored in the appropriate data structure, it notifies the data 

processor.   The data processor then takes the message ID to call on the appropriate function to 

calculate the values needed for the GUI to display the information properly.  The data processor stores 

the calculated values in the linked variables and then notifies the GUI that the data is ready to be 

displayed for the user. 

The GUI provides the user an easy way to view the robot’s current status and the data being 

collected as well as providing the user some control over the robot when needed.  The GUI displays the 

map, a log of robot’s action and the robot’s current status.  The GUI runs a custom event handler where 

it traces a variable and whenever a change is detected, it updates the proper data depending on the 
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message ID.  The message log is updated every time new data is received.  Figure 23 is a screenshot of 

the GUI. 

 

Figure 23 - Screenshot of the Graphical User Interface (this figure will be updated later) 

The red circle in the figure above indicates the latest position of the robot and the small yellow 

circles indicate previous positions of the robot.  The line in the red circle indicates the heading of the 

robot and the black dots are objects detected by the laser range finder.  The robot’s position is displayed 

in x-y coordinates in millimeters where (0, 0) is defined as the original start position of the robot and 

zero degrees defined as the robot’s heading at the start.  When the zoom is set to 1, each pixel on the 

map display corresponds to 1mm. The GUI allows you to click on the laser data points to view the 

coordinate of the data point.  

10. Final Results 

At the beginning of this project the goal was to build a prototype of a robot with the ability to 

autonomously navigate the interior of a building and produce a floor map of the areas it navigated 

through. After integrating all of the various sensors and running numerous tests on the robot to 
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calibrate and debug the navigation code the final results of the project were able to be determined. 

Figure 24 shows the robot fully assembled in the same state it was in when it ran its final test. 

 

Figure 24 - Fully assembled robot 

10.1   Capabilities and Test Results 

The overall outcome of this project was a positive one. The final prototype of the robot is capable of 

creating a two-dimensional map of its surroundings as it navigates autonomously through them. This 

allowed for a partial fulfillment of the original goal which was set for this project: to map the third floor 

of Atwater Kent Laboratories at WPI. Figure 25 shows a screen shot of the final map that was created as 

well as an actual floor plan of the area for comparison. 



41 
 

 

Figure 25 - Left: robot-generated floor plan; right: actual floor plan 

As can be seen from the above images the robot was unable to complete a map of the entire 

third floor. This was due to what is believed to be a combination of some minor bugs in the navigation 

algorithm and a build up of error in the position data provided by the optical encoders. In order to make 

the above map the robot followed the directions shown by the black arrows. The slight curvature in the 

hallways shows the skew that was being accumulated by the position data. At the point indicated by the 

red arrow the robot became disoriented as it found itself next to an open door and with a chair 

immediately in front of it; this caused the robot to spin in a 360° circle before continuing. This circle 

caused the state of the navigation algorithm to change eventually causing the robot to lose its sense of 

direction, rendering the rest of the map unusable. The performance of the robot in this final test, 

however, showed that despite not having each individual module of the robot working perfectly; it was 

still able to do what it was originally built to do, with some limitations. Had the inertial measurement 

unit been fully implemented, allowing more reliable distance and angle data to be available to the 

navigation algorithm it is believed that the results would have been far better.  

Other positive results that came out of the final test of the robot were that the navigation 

algorithm’s centering functionality worked very well in the first two hallways traveled, as can be seen 

from the small amount of wavering in the series of points running through the corridor that represent 

the robot’s path. Also effective was the functionality of the navigation algorithm to try to keep the robot 

parallel to the right wall as often as possible. This too worked very well for the first two hallways 

traversed. 
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10.2   Quantitative Performance Analysis 

The effectiveness of this autonomous mapping system can also be measured in a quantitative manner. 

Using the X and Y coordinates stored from each point of the laser scan it becomes possible to compare 

the generated map to the actual dimensions of the floor. 

 The accuracy of the laser rangefinder was probably more than would be needed for a simple 

floor plan mapping system. The problems that arose were due to the inconsistencies in the position data 

as mentioned above. The image below describes some detailed measurements from the generated map. 

 

Figure 26 - Quantitative analysis of a hallway in the map 

 In the image above it is shown that the length of the hallway traveled by the robot was 

measured in the graphical user interface to be 19.4m long. This distance, in reality is very close to the 

actual length of the corridor which is almost exactly 20m. The calculation of the width of the hallway 

was also quite accurate, coming out to be 1.814m; while the actual width of the hallway at this location 

was measured as 1.828m. The final measurement needed to tell the whole story was a measurement of 

the accumulated positional skew which causes the hallways to appear somewhat curved in the maps 

that are generated. In order to measure the skew the difference was taken between the x-coordinate at 

the start of the hallway and the x-coordinate at the point where the robot made its right turn; these two 

should ideally be approximately equal.  Using this technique the skew induced by the inaccuracy of the 

optical encoder-provided position data was found to be about 1.1m. When divided into the total length 

traveled down this  hallway that yielded a skew percentage of about 5.6%which is quite high for such an 

application. Again, however, with a working IMU it is believed that this error could be drastically 

decreased. This amount of skew does not present too much of a visual disruption to the map for a single 

hallway, however when added together over the course of trying to map an entire floor it becomes 

much more significant. 

Regardless of the small setbacks that were experienced while attempting to accomplish the goal 

of mapping the entire floor it can be seen from the results presented in this chapter that the overall 

outcome of this project was a positive one. The original goal of building a robot with the ability to 

1.094m

1.814m 

19.355m 

1.814m

1.814m 
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autonomously map the interior of a building was met. The next chapter will discuss some 

recommendations for possible future MQP groups to improve the overall design of the robot and to help 

it become a more effective search and rescue system. 

11. Recommendations 

Given the general success of this project it is only natural that more work be done on it in the future to 

add an extended set of capabilities to the existing system. Before this can be done some minor work 

would need to be completed to improve the current design, including laying out a custom PCB for the 

processor and also getting the serial peripheral interface with the IMU parts to work as needed with the 

system to prevent to decaying quality of the positional data. Once these tasks are complete many 

opportunities for added functionality will be available. Some recommendations for future work on the 

robot are described in this section. 

 This project was originally meant to be developed into a robot capable of performing complex 

search and rescue operations to help protect human lives. One of the most important features that 

should be added next to such a system would be a human detection capability and alert system. This 

would allow the robot to navigate itself through an area to locate a possible victim and alert the 

operator, while also providing a map of the area it has traversed leading to the victim. 

 After implementing the ability to locate a victim of some sort of hazardous situation another 

improvement to the robot that would greatly improve its practicality would be to redesign the drive 

capabilities to allow the robot to traverse more difficult terrain. One idea would be to attempt to make a 

two-wheeled balancing design that would allow the robot to climb over some obstacles. 

 With the addition of the proposed minor upgrades, along with the major capability extensions 

suggested in this chapter the robot would have the opportunity to become a very practical and useful 

device. All of these capabilities would allow this autonomous robot to become a system with the 

possibility of saving human lives or, at a minimum, reducing risk to search and rescue personnel in 

hazardous situations. 
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Appendix A – Load Currents 

 

Table 5 - Load Current of Each Device 

Device Voltage Typical Load Current Max Load Current 

AT91SAM9260 1.8V - 100mA 

Motor Driver 5V - 70mA, 33mA 

Gyroscope 5V 16mA 20mA 

Laser Range Finder 5V 500mA 800mA 

Ultrasonic Sensor 5V - 4mA 

Wireless Module 3.3V 360mA 550mA 

Accelerometer 3.3V - 650μA 

Optical Encoders 3.3V 20mA 50mA 

Bidirectional Buffer 3.3V - 10μA 

Analog Multiplexer 3.3V - 40μA 

Dual RS232 Xceiver 3.3V 8mA 12mA 

Switching Regulator   0.9mA 1.4mA 

 Voltage 1.8V 3.3V 5V 

Max 100.01mA 762.7mA 943mA 

Typ   448.7mA 639mA 
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Appendix B – Power Supply 

 

Figure 27 - Schematic of the Power Supply 

 

Table 6  - Power Supply Parts List 

# Description Value Manufacturer 

C1 Input Capacitor 680μF 50V Nichicon 

C2 Output Capacitor 220μF 25V Nichicon 

L1 Inductor 33μH Coiltronics 

D1 Diode 3.3A 60V Schottky Vishay IR 

 Switching Regulator DC-DC 5V Step Down National Semiconductor 

 Switching Regulator DC-DC 3.3V Step Down  

C3 Input Capacitor 680μF 50V Nichicon 

C4 Output Capacitor 220μF 25V Nichicon 

L2 Inductor 50μH Coiltornics 

D2 Diode 3.3A 60V Schottky Vishay IR 

 Switching Regulator DC-DC 3.3V Step Down National Semiconductor 

 

  



46 
 

Appendix C – Daughter Board Schematic 

  

Figure 28 - Daughter Board Schematic 
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Appendix D – Daughter Board Layout 

 

Figure 29 - Layout of the Daughter Board 

  



48 
 

Appendix E – Ultrasonic Sensor Measurements 

 

Table 7 - Accuracy and precision measurement of the SRF05 Ultrasonic Sensor 

Actual 
Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Average Range %Error 

Measurement 

140 140.165 140.21 140.18 140.223 140.253 140.245 140.208 140.265 140.192 140.2 140.214 0.1 0.21% 

130 130.11 130.128 130.118 130.15 130.149 130.158 130.144 130.165 130.108 129.976 130.121 0.189 0.12% 

120 120.3 120.3 120.299 120.3 120.295 120.299 120.3 120.289 120.295 120.299 120.298 0.011 0.30% 

110 109.683 109.809 109.847 109.73 109.853 109.869 109.886 109.878 109.883 109.881 109.832 0.203 0.17% 

100 100.105 100.104 100.1 100.101 100.102 100.106 100.105 100.094 100.1 100.093 100.101 0.013 0.10% 

90 90.15 90.153 90.148 90.156 90.151 90.142 90.141 90.146 90.145 90.148 90.148 0.015 0.15% 

80 80.198 80.201 80.204 80.201 80.201 80.2 80.201 80.201 80.2 80.201 80.201 0.006 0.20% 

70 70.2 70.2 70.131 70.112 70.165 70.196 70.2 70.199 70.199 70.198 70.18 0.088 0.18% 

60 60.205 60.208 60.204 60.209 60.2 60.203 60.206 60.212 60.207 60.206 60.206 0.012 0.21% 

50 50.766 50.793 50.794 50.787 50.787 50.781 50.783 50.784 50.785 50.791 50.785 0.028 0.79% 

40 40.898 40.9 40.897 40.897 40.898 40.897 40.903 40.899 40.897 40.897 40.898 0.006 0.90% 

30 31.296 31.297 31.295 31.299 31.299 31.295 31.297 31.296 31.297 31.298 31.297 0.004 1.30% 

20 21.101 21.1 21.1 21.1 21.1 21.101 21.101 21.1 21.101 21.1 21.1 0.001 1.10% 

10 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 0 0.80% 

5 5.6 5.604 5.615 5.655 5.659 5.847 5.918 5.675 5.695 5.648 5.692 0.318 0.69% 

3 3.5 3.497 3.498 3.5 3.498 3.499 3.499 3.499 3.499 3.5 3.499 0.003 0.50% 

2 3.102 3.102 3.101 3.102 3.102 3.103 3.1 3.1 3.101 3.102 3.102 0.003 1.10% 

1 2.6 2.6 2.6 2.6 2.6 2.601 2.6 2.601 2.6 2.6 2.6 0.001 1.60% 

Total                       0.056 0.58% 

*All measurements in cm. 
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Table 8 - Angular Range Measurement of the SRF05 Ultrasonic Sensor 

  
Left    Right   

Inner Outer Inner Outer 

20cm 15 18 16 18 

40cm 10 15 10 15 

60cm 15 16 18 19 

          *All measurements in degrees. 
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