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1 Introduction

Generative adversarial networks (GANs) are machine learning based generative
approaches where a tandem of neural networks train in a competitive environ-
ment to effectively synthesise data from a known corpus to perform up-scaling
for a data set. Training a GAN is a challenging task that has many moving
parts. These all need to be considered before training a GAN properly. GANs
are not widely understood by the development community and are complex in
nature, which makes them difficult for new users to get accustomed to. Though
extremely useful for data generation, the competitive nature of a GAN makes
training one difficult and imprecise. Often times, developers may not even know
where to start creating one. This makes the demand for a usable package that
assists the making of GANs very high. [1]

1.1 State of the Art

Currently, there are tutorials that go over how to write a GAN. One notable
tutorial is the Neural Information Processing Systems (NIPS) tutorial. The
NIPS tutorial gives a great introduction as to what GANs do to give the user
a strong foundation. There are figures throughout the tutorial that give more
visual context to what is going on to help the user get a better understanding [2]
There also exists several packages in python that help give developers new to
GANs some exposure to them. The Keras-GAN package [3] and PyTorch-GAN
package [4] both are available for helping get familiar with GANs. Both projects
are very similar. One key difference is that they use different packages, Keras
and PyTorch respectively, to create their tool. Their main purpose is to allow
users to run a vast array of different GANs on their computers immediately
from the over a dozen that are rebuilt into the software. It is a great tool to
run a first GAN with no experience or skill needed.

1.2 Limitation of State of the Art

The example packages, while nice for seeing what a GAN is, are limited in scope.
They can only facilitate the running of rebuilt GANs. Users may find it difficult
to get support in building their own custom models from these packages as that
is not their purpose. This means that there is a severe lack of a GAN support
packages that help users make their own GANs. The available GAN tutorials,
while comprehensive, are outdated. The tutorials were written in 2016, which
is when GANs were new and not very widely known. GANs have evolved since
they were first utilized in 2016.

1.3 Problem Statement

GANs are extremely useful for generating data and have applications in image
generation, supplementing data sets for other machine learning applications,
and in data inference. However, the complicated nature of GANs makes them
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difficult to use for those new to the field without proper tools to assist in their
creation.

Our goal is to create a tool that is easy to use for those who are getting
started with GANs that will allow them to more easily get started with creating
their own.

1.4 Challenges

There are a few challenges that would come from solving this problem. Firstly,
we want to make a tool that is as accessible as possible for those new to GANs
or inexperienced with them. This group of people is potentially highly diverse
in existing coding skill set and knowledge so making a package that is helpful
to the most people possible in this group is essential to meet our goals.

In addition, we must evaluate the effectiveness of our tool. Our package
needs to have clear documentation that is easy to follow and code that can
be understood by the average user. The code needs to be intuitive and logi-
cal for someone who has a programming background so they can more deeply
understand its purpose.

Another challenge lies within the testing of our tool. It is important that
our tool is tested for all of the main use cases so that users can accomplish
what that are expected to do without errors. The package would not be ac-
cessible if it contains errors and inconsistencies that make it more difficult for
the user to work with. It is also crucial for us to test the different edge cases
that might occur in addition to common tests so that the possibility of issue
is minimized. Doing a sufficient testing protocol will be difficult to ensure the
smoothest experience possible.

1.5 Proposed Solution

We hope to write a user friendly package that will be accessible by all members
of our expected audience of users. Through this package, we will provide a new
avenue for users to learn how to make some of the less complicated GAN archi-
tectures. Specifically, the users will be able to write the architectures themselves
with the guidance of our documentation and tutorials. Through this, we hope
to give users a platform where they can test their GANs more easily and prepare
them for building more advanced ones in the future.

1.6 Goals

• Make a GAN package that will help users make their own

• Add clear and helpful documentation and tutorials for our package to help
programmers user it

• Test our package tutorial on prospective users to ensure that it under-
standable
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• Publish the package as open-source in python to make it usable to people
beyond our project

2 Background

Originally motivated in the domain of image synthesis, competition-based ap-
proaches [5] were introduced where multiple machines train against each other
in so that one of the machines can create novel data: the generative adversarial
network (GAN). Since then, GANs have been growing in research prominence
for applications in a variety of domains. Despite being very popular in ma-
chine learning research, they are still not widely known to most programmers.
Therefore, it is not easy to get started.

2.1 Simple Generative Adversarial Networks

Simple generative adversarial networks consist of two neural networks, a gener-
ator G and discriminator D, that compete in a zero-sum game in which each
machine attempts to minimize or maximize the following objective function
f(G,D),

min
G

max
D

f(G,D) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z))] (1)

Generator G attempts to minimize f(G,D) by drawing a random sample
of latent vectors z from a distribution defined over the latent space Rn and
maps them to a real space Rm. Likewise, discriminator D maximizes f(G,D)
by discriminating real data x from the synthetically generated data G(z). The
tandem trains in an iterative process where one machine’s parameters are tem-
porarily frozen and its adversary learns using the gradients derived from the
cross-entropy loss of the frozen machine. This process alternates in a periodic
fashion, where G finds a mapping function from the fake distribution to the real
distribution, implicitly attempting to fool D, whereas D combats this process
by training to learn the patterns and nuances only found in the real data. Under
ideal training conditions, G’s generated data is similar enough to the real data
that D is forced to randomly guess whether the data is real or fake [5].

G D
G(z)

z x

Figure 1: Simple GAN schema
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Simple GANs are limited to single class data generation and are unable
to allow user-adjustable generation. This schema is easily vulnerable to mode
collapse: a scenario of training failure in which G learns to generate data solely
mimicking the majority class and/or dominant pattern found in real data in
order to minimize its loss as quickly as possible. Mode collapse results in a
limited scope of synthetic data in which G can generate meaningful diversity,
causing G to have little practical use post-training [6–8].

2.2 Training Instability

Machines that train in an unstable fashion can no longer be assumed to im-
prove in their performance or loss if trained for an additional epoch. This type
of behavior can be diagnosed by non-monotonically decreasing trends in loss
over the course of training, such as high variance, oscillating patterns, or even
divergence from the loss’s goal. Highly sensitive hyper-parameters, an inappro-
priate or ambiguous loss function, or incompatible architectures can all result
in unstable training.

Figure 2: Stable training (red line) is monotonic and deceasing with negligible
variance as the loss approaches zero. One example of unstable training (grey
line) trends wildly towards zero with non-trivial variance. The most egregious
instance of instability (blue line) results in a divergence from the optimal loss
after a short training duration.

One theory for how GAN training becomes unstable is that it is a conse-
quence of the discriminator becoming trained enough to perfectly discriminate
between the generated and real data. In this state, all of the generated data is
marked as fake and the discriminator does not pass any useful gradients down
to the generator. As the remaining gradients are dominated by noise, contin-
ued training is unlikely to improve the generator and may even decrease its
performance [9].
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2.3 Modified Architectures

One way to customize the behavior and capabilities of a trained generator is by
modifying the architectures of one or more machines in the GAN environment.
Architecture modifications allow for more realistic data synthesis in the con-
text of specific domains. In some cases, finding effective architectures reduces
pitfalls that commonly arise in training which, in turn, reduce training instabil-
ities. This can be accomplished by modifying the architecture of D or G, or by
introducing entirely additional machines to the GAN.

2.3.1 Conditional GAN

One of the first GAN architecture changes ever proposed was the conditional
GAN. This new type of GAN modifies the structure of G and D to include
inputs from some extra piece of information. This commonly comes in the
form of class labels but also can be any class modifier. For the generator, this
modification comes with the initial input noise. This noise is combined with the
class label to make a new hidden layer that is used to generate the new output.
For the discriminator, the generated or real data is passed in along with the
class labels for the correct and more complex input. In the end, this will allow
the conditional GAN to generate output that corresponds to the particular
labels that wered used as input making it much more targeted than the original
GAN. [6].

When considering a datum, which can be either real x or fake G(z|y), that
lies within a single class y, then the new loss f(G,D) is defined as

min
G

max
D

f(G,D) = Ex∼pdata(x),y∼py(y)[log(D(x|y))]+

Ez∼pz(z),y∼py(y)[log(1−D(G(z|y)|y))]
(2)

Like the simple GAN, the generator will attempt to minimize the loss f(G,D)
while the discriminator attempts to maximize f(G,D). The only difference of
note here is the additional input of feature label y received in the generator and
discriminator. However, this change will only change how data is handled and
not impact the core logic of the simple GAN loss function.

Conditional GANs are not a significant architectural shift from the simple
GAN as the only difference that is present is the feature label y. The generator
G receives random noise z and label y to make some fake data based on y. Then,
the discriminator D will take in this generated output G(x|y) with label y as
well as real data x with label y and attempt to tell which is which. Finally, the
discriminator will pass data back to the generator in the form of the above loss
to learn from its success or failure.

2.3.2 Controllable GAN

Controllable GANs are are a class-tunable architecture that builds upon condi-
tional GANs with the inclusion of an additional pre-trained classifier, C, which
identifies whether the synthesized data G(z) best matches the class y it was
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G DG(z| y)

xz
 y  y

Figure 3: Conditional GAN schema

conditioned on during generation: G(z|y). The third machine C is trained ex-
clusively on real data prior to training the generator and discriminator in the
context of the GAN. Fully training ahead of time on real data allows C to
properly identify intra-class patterns on realistic, correctly labeled data. For
multi-class problems with k independent classes, C learns by minimizing the
following categorical cross entropy function f(C)

min
C

f(C) = −
K∑
i

kilog(C(x)i) (3)

Consequently, if C is unable to classify the correct labels of only real data,
then its poor performance will also present itself when training the GAN and
potentially serve as a point of failure for the entire environment.

Pre-GAN Training

G
D

G(z| y)

x

 y

C

z
 y

C

x

Figure 4: Controllable GAN schema

Similar to the simple GAN, the job of the discriminator D only determines
whether the data it receives is real or fake without knowledge of its class label.
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[7]. The generator G attempts to generate data that fools the discriminator and
makes the classifier guess the correct class the data was conditioned on. Thus,
the loss f(G,D,C) can be described as

min
G

max
D

f(G,D,C) = Ex∼pdata,(y)∼p(y)[log(D(x)] +

Ez∼pz,(y)∼p(y)[log(1−D(G(z|y)))] −
Ez∼pz,(y)∼p(y)[log(C(G(z|y)|y))]

(4)

When training, the discriminator it attempts to maximize the f(G,D,C)
while the generator attempts to minimize the f(G,D,C). At no point does
the classifier learn when the GAN is training, so C does not need to minimize
nor maximize f(G,D,C) and only receives data when the generator trains.
Since C is also completely independent of D at no point do these two machines
communicate any information with each other.

2.3.3 Explicitly Controllable GAN

Explicitly Controllable GANs are a multi-label, user tunable, machine learning
architecture. For a given datum x in the real data set Xreal, x may contain
several, independent attributes that may correspond to discrete or real-valued
labels. For example in the context of facial images, hair color, eye color and
gender would be two discrete labels; likewise pose, hair length, and perceived
age could be real-valued attributes. Unlike previous architectures, which take in
real noise and generate completely novel data de novo, the explicitly controllable
GAN takes in a real image, and modifies these real attributes to the desired
attributes to generate a modified image x′. In order to accomplish this task,
G functions as a variational autoencoder (VAE). G takes in a high dimensional
representation of the data and its desired attributes and then transforms it into
a lower dimensional latent space. The latent space is then expanded back into
the encoding of the higher dimensional representation of the original, where the
desired attributes have been “baked in” to the output. An encoder is trained to
be able to translate human-readable attribute labels into a compressed latent
representation. [8].

When training, real and modified data along with their attrite encodings
are passed to a discriminator, and n different classifiers, where n is the number
of independent attributes used to encode the data. The discriminator’s job is
purely to distinguish the given data as real or fake. The job of each attribute
classifier is to determine how similar the given data matches the label it is
associated with for only a single attribute. The loss from each of the n + 1
machines is then fed back into the generator to better encode labels into latent
representations, and then decode back into a reconstructed image.

Each different type of modified architecture gives its GAN different capabil-
ities by changing the amounts and types of input G and D take. However, these
architecture modifications cannot work in isolation - they must be accompanied
by fitting loss functions and training procedures.
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Figure 5: Explicitly Controllable GAN schema

2.4 Generative Metrics

When training models, it is necessary to numerically evaluate how those models
perform. In particular, it is useful to calculate a numerical representation of how
well a model generates data indistinguishable from the real data. The data set
of real data and a synthesized data set of fake data can both be represented by a
probability density function which represents how likely a single or very similar
datum will appear if randomly drawn from one of the data sets. However,
since these data sets are finite and cannot be guaranteed to perfectly follow
some functional form, any value x from the probability density function can be
estimated via a Parzen window with a Gaussian kernel,

p̂(x)x∼Pdata(X) =
1

n

n∑
i=1

1√
2πσ

exp

(
− (xi − x)2

2σ2

)
(5)

Knowing probability estimates by proxy of the Parzen window means that a
divergence metric, via any standard divergence function, measuring the diver-
gence of the fake data against the real data can then be clearly quantified. As
the divergence between these two probability density functions shrinks, the gen-
eration quality generally improves. In the extreme case however, if the fake data
perfectly matches the real data set, then the generator is no longer producing
novel data no longer has any practical value [10].

Another metric is the Fréchet Inception Distance (FID), described in Heusel
et al. [11]. This metric measures the similarity of a given image to a larger data
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set. This metric is able to accurately measure the amount of distortion within
a given image, and maps very closely to human judgement.

FIDN (µr,Σr),N (µs,Σs) = |µr − µs|2 + tr
(

Σr + Σs − 2
√

ΣrΣs

)
(6)

FID is especially useful in measuring the rigor of a generators generation.
If small distortions in the synthetic image corresponds to a large FID, then
the generation technique (or the generator in the context of GANs) weakly
recognizes patterns in real data.

2.5 Divergence Based Loss

In ideal scenarios, a well trained GAN will result in a generator that can ef-
fectively produce synthesized data that is indistinguishable from its real con-
temporaries. Utilizing techniques such as parzen windows, synthesized and real
data can both be described as probability density functions respectively within
some higher dimensional space that corresponds to the data’s encoding. [12]
Synthesized data that is adequately indistinguishable results in the probability
density functions (pdf’s) of the two distributions to be extremely similar to one
another. [12]

Divergence metrics give quantifiable measure of how two probability distri-
butions differ. Thus, divergence based loss functions in the context of GANs aim
at training the generator and discriminator directly to minimize the divergence
(ie: improve the similarity) of the fake distribution with respect to the real distri-
bution. The divergence between two probability distributions can be calculated
in many different ways based on what properties of the distributions are con-
sidered. Kullback-Leibler divergence (equation 7) is one metric that measures
how much one distribution diverges from a second. It is also important to note
this divergence is asymmetric, meaning the relation DKL(P ||Q) = DKL(Q||P )
is not guaranteed to always hold.

DKL(P ||Q) =

∫ ∞
−∞

p(x) log

(
p(x)

q(x)

)
dx (7)

Jensen-Shannon divergence (equation 8) is a symmetric metric who’s princi-
ples are rooted in Kullback-Leibler divergence. Thus, it can be reliably assumed
DJS(P ||Q) = DJS(Q||P ) holds for any two arbitrary pdf’s P and Q.

DJS(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M), M =

1

2
(P +Q) (8)

With Wasserstein divergence, GANs are typically trained by running only a
fixed number of discriminator updates per generator update. Specifically, each
number needs to be the same for the discriminator every time the generator
gets updated once. [13]

DWa(P ||Q) =

(
inf

γ∈Γ(P,Q)

∫
M×M

d(x, y)a dγ(x, y)

) 1
a

,∀a ∈ N (9)
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There are also different algorithms for Variational Divergence Minimization
(VDM). One algorithm for VDM is the alternating gradient method. With the
alternating gradient method, the inner loop tightens the lower bound during the
divergence, and the outer loop improves the model of the generator. [13] There
is also a single-step gradient method. The single-step gradient method is less
complex than the alternating gradient method, because there is no inner loop
and the gradients are determined in a single-back propagation. [13]

DBF
(P ||Q) = F (p)− F (q)− 〈∇F, p− q 〉,∀F : Ω 7→ R (10)

With Bregman divergence (equation 10), a base measure is defined where it
stays well-defined even when the data and the model distribution do not have
the same support. [13] The key contribution here is to identify base measures
that can play a useful role. Bregman divergence forms a measure of difference
between using a function that includes a wide range of distances. These dis-
tances include the the Euclidean distance and the Kullback-Leibler divergence
between finite-cardinality probability mass functions [13]. It is also important
to note that some of the divergence methods are instances of Bregman. For
example, the implementation of Kullback-Leibler includes a subsection of the
implementation used in Bregman. [13]

DH2(P ||Q) = 1−
∫ ∞
−∞

√
p(x)q(x) dx (11)

The Hellinger distance (equation 11) is a typf of f-divergence that is used to
quantitatively identify similarities between two probability distributions. The
Hellinger distance creates a bounded metric over a given probability space.

DBC(P ||Q) = −ln
(∫ ∞
−∞

√
p(x)q(x) dx

)
(12)

Bhattacharrya distance (equation 12) measures the similarity of two distri-
butions of probability. More specifically, the Bhattacharrya coefficient measures
how much overlap there is between two statistical samples or populations. [14]
Its intended purpose is to determine how close two samples are after they are
measured. The Bhattacharyya distance grows as the difference between the
standard deviations increase. The Bhattacharrya distance is widely used when
extracting features, processing images, speaker recognition, and phone cluster-
ing. [14]

2.6 Gradient Tuning Considerations

An additional way to change how a GAN functions is by altering how the gra-
dients that are used in training are tuned. One of the ways that gradients can
be tuned differently than the most basic GAN is the use of techniques such as
dropout, the batch-normalization, weight clipping, weight decay, momentum,
and various propagation techniques. Dropout is the machine learning practice
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of setting some of the input values to 0 throughout the training process in an at-
tempt to mitigate the problems of over-fitting. For a GAN, it is mostly one more
tool to help improve the success of training overall. Batch-normalization will
attempt to fix the issue of internal covariate shift. This is when the input layers
change in distribution from different training iterations. Batch-normalization
solves this by shifting around the input layers to make them more stable over
training.

Weight clipping is a technique used for the Wasserstein GAN where weights
that are deemed to be too big are scaled down in size [15]. With it, training
stays stable and within the defined best region for training. Weight decay is
used to penalize a model from coming too complex in an attempt to prevent
over fitting. This technique is used in a paper on GAN convergence as just
one of many common machine learning tools that can be used [16]. Changing
weights based on momentum is also possible. This is when gradient decent is
being used to optimize the model and we find a direction that is good for a
while so the model keeps going in that direction based on the past evidence of
momentum. This is also used while testing in the GAN convergence paper [16].

Finally, using various propagation techniques like SGD, Rprop, and RM-
Sprop are also popular. Stochastic gradient decent or SGD is one of the most
common methods of marching through many epochs of propagation through the
model training. It is used very commonly as no paper in particular is mentioned
here. Rprop and RMSprop are just other propagation options that are available
to the maker of a GAN.

2.7 Modification of Training Procedure

The procedure in which a GAN trains describes the method, information, and
frequency in which each machine in the adversarial environment communicates
with the other machine(s). Established by the first simple GAN [5], the G and
D alternate training based off of a static number of epochs respectively. When
G trains, a completely random sample from a latent space (often Gaussian) and
passed through G, where it is then evaluated on how realistic it is via D.

3 Package Design

To achieve the goals for this project, the team set out to make a GAN helper
package. The package assists in the creation, execution, and testing of GANs.
The team made sure that effective documentation was created, as it will allow
the users to effectively understand the package.

3.1 About the Package

The team designed a GAN Package that includes different types of GANs and
how they work. These GANs are constructed using PyTorch and Python pro-
gramming. The GAN package is designed to be used for several purposes, and
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multiple target audiences, which will be further discussed in the sections below.
There are also multiple documentation files associated with the package.

Figure 6: Package Architecture

3.1.1 Resources

The github repository can be found at:
https://github.com/deoliveirajoshua/pytorch_GAN_Package

3.1.2 Purpose

The purpose of making the package is to provide the wide developer community
with a useful tool to help them make and test their GANs. After gaining
experience with GANs, the team knows that implementing them are not always
trivial. There are many different ways that they can be implemented. We hope
to streamline the process by abstracting the parts that are common for the
GANs that our package supports and allowing the user to specify the rest.

We believe that our package can help with those goals by giving users a tool
that can be set up relatively easily compared to starting a GAN from scratch.
We also have several built in visualizations to show GAN performance. Finally,
the package is very usable with the preexisting Python ecosystem. To help with
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this goal, we have worked to make good documentation that will help others use
the package with minimal difficulty and have made an open source repository
on GitHub for anyone to view.

3.1.3 Target Audience

There are multiple sets of people who represent the intended target audience.
The package will specifically be tailored to our target audience in order to ensure
full usability. One part of the target audience consists of Students, Engineers,
and related professionals who have some experience with Python and some ex-
perience with opaque Machine Learning. In addition, this group will be familiar
with GANs from a conceptual level. They will know how GANs work, but do not
have much experience writing GANs themselves. The intentions behind having
this group be part of the audience is to help them gain more skills and expand
their current knowledge - specifically with how to write GANs themselves. Ide-
ally, those who know the least about the implementation of GANs will gain the
most out of using the package. People who have programming experience and
GAN familiarity already will not have too much difficulty constructing more
complex GANs. However, the more experienced the user is, the less potential
gain they will receive from using the package than a fully novel user.

Another group that makes up our target audience is people who have no
experience writing GANs at all. These people will gain the experience with how
GANs work by specifically working with the GAN package. They will learn
more skills with GANs in order to advance their research.

A third group that is part of the target audience consists of GAN subject
matter experts. These researchers, developers, and students will have extensive
knowledge of working with GANs already. They are looking to further expand
their knowledge to write new GANs from scratch. GAN subject matter experts
will benefit from the package as they will be able to identify ways to create new
GANs from the existing GANs already in the package. They will be able to
further enhance creativity during training and testing a model.

3.1.4 Compatibility

To use our package in its ideal state, here are some guidelines for what compat-
ibility restrictions exist:

• Minimum Python Version: 3 (we have used versions 3.6 and higher for
testing)

• Packages Used:

– torch

– numpy

– pandas

– matplotlib
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– scipy

• Must have a 64-bit system

While this is not a comprehensive list, it should give some guidance on what is
needed to support our package.

3.2 Package Structure

The basic design goal of the package was to be able to train, save, and ma-
nipulate GANs in a simple and intuitive fashion. To this end, the package
is designed around an object-oriented framework where the basic unit is the
Trainer object.

3.2.1 Trainer Object

The Trainer object represents the GAN as a whole - it stores all information
relevant to the GAN, and contains functions used to manipulate and train the
GAN. The Trainer object stores the models which make up the GAN, the func-
tions used to draw from the data set and the latent space, the optimizers used
to train the models, metrics saved while training the GAN, and the ToTrain
object, which is an object designed to determine which of the generator or
discriminator to train on a particular epoch. The Trainer object contains meth-
ods used to train the GAN, evaluate either model on specified input, visualize
training metrics, and save and load the GAN to disk.

User-Provided Objects When instantiating a Trainer object, the user must
provide certain objects and methods. In particular, the user must provide the
PyTorch model objects, the optimizers connected to those models, the desired
loss functions for each model, a function to draw a random batch from the latent
space, a function to draw from the real data, and the device on which training
and evaluation should be run.

The models must be valid PyTorch model objects - that is to say, they must
subclass nn.Module according to PyTorch conventions. Similarly, the optimizers
and loss functions must be valid for use with PyTorch models but may be either
built-in PyTorch objects or custom user-defined objects.

By definition, the generator is supposed to output data of the same format
as the real data. As such, the shape of the generator’s output should be identical
to the shape of the discriminator’s input.

The latent space and data set functions must accept as parameters the de-
sired batch size and the device on which training is done. These functions must
output PyTorch tensors on the specified device. The latent space function will
output a tensor of shape (batch size, generator input shape), and the data set
function will output a tensor of shape (batch size, discriminator input shape).

The device provided to the Trainer object must be a string representation
of a device as used by PyTorch. By default, the CPU is represented by "cpu"
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and the GPU is represented by "cuda", but this may depend on the user’s
environment.

Training The training loop is the most important part of the Trainer object.
Custom Trainer objects may override the default .train() function, but any
custom implementations should follow this basic structure:

ToTrain Object The ToTrain object determines which model to train
during each epoch. At the start of each epoch, the .train() function will call the
ToTrain object’s .next() function in order to determine which of the generator
or discriminator will be trained. The .next() function takes as input the entire
Trainer object.

ToTrain objects are designed to be completely interchangeable, while also
being as easy as possible for a user to write their own custom ToTrain ob-
jects. To that end, the only requirements are that a ToTrain object has a
.next(trainer object) function, which returns some representation of the next
model to be trained. The .next() function receives the entire trainer object as
a parameter so that it can read any metric from the Trainer object while be-
ing perfectly cross-compatible with other ToTrain objects. The .next() function
should not modify the Trainer object in any way.

Built-in ToTrain objects return the string ”D” if the discriminator should
be trained next, and the string ”G” if the generator should be trained next.
Custom ToTrain objects should respect this convention if they’re meant to be
compatible with built-in Trainer objects.

The package includes some built-in ToTrain objects such as TwoFiveRule,
which trains the discriminator for two epochs and the generator for five epochs.

Built-in Trainer objects call their ToTrain object at the beginning of every
epoch as follows:

t t = s e l f . t o t r a i n . next ( s e l f )
# Determine which model to t r a i n − w i l l e i t h e r be ”D” or ”G”

Training the Specified Model Once the ToTrain object has determined
which model to train, the training loop will then train that model. The Simple
GAN Trainer object handles this step in the most simple fashion possible:

If the generator is next to be trained, the Trainer object first generates
a batch from the latent space using the user-specified latent space function.
The output from this function is fed into the generator to create a batch of
fake data, and this fake data is fed into the discriminator. The output from
the discriminator is then used to compute the loss, which is then used by the
generator’s optimizer to update the generator’s parameters.

If the discriminator is next to be trained, the Trainer object creates a batch
which is composed of half generated data from the generator and half real data
from the user-specified dataset function. This batch is fed into the discriminator,
and the discriminator’s output is used to compute the loss and update the
discriminator’s parameters.
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Training Metrics The Trainer object keeps track of metrics during the
training loop. These metrics are stored in a single dictionary, where the keys are
the name of each metric. For example, stats[”epochs trained”] corresponds to
the dictionary {”G”:X, ”D”:Y}, where X is the number of epochs the generator
has been trained for and Y is the number of epochs the discriminator has been
trained for.

Users may define their own metrics in custom Trainer objects, and can call
them every epoch by overwriting the do viz() function.

Using the Trained Models After training the generator and discriminator,
the Trainer object can be used to perform operations on both models. The mod-
els are stored in the Trainer object’s models dictionary. Built-in Trainer objects
use the convention of models[”G”] referring to the generator and models[”D”]
referring to the discriminator. Custom Trainer objects may use whatever con-
vention makes sense for their intended use, but different conventions will not be
compatible with built-in ToTrain objects.

Evaluating the Models The models can be evaluated on given input
by using either of the Trainer object’s two built-in evaluation functions, or by
accessing the models directly through the models dictionary.

# output from t r a i n e d genera tor
print ( gan . e v a l g e n e r a t o r ( l a t s p a c e (16 , dev i c e ) ) )

# E q u i v a l e n t to :
print ( gan . eval ( ”G” , l a t s p a c e (16 , dev i c e ) ) )

# Or :
gan . models [ ”G” ] . eval ( )
print ( gan . models [ ”G” ] ( l a t s p a c e (16 , dev i c e ) ) )
gan . models [ ”G” ] . t r a i n ( )

Changing Device The Trainer object automatically does all operations
on the specified device, including training and evaluation. This device can be
changed during runtime using the .models to(new device) function.

Training Modes Trainer objects have functionality to support different train-
ing modes, which are designed to impact the manner in which GANs are trained
and metrics are collected. Currently, the only training mode currently imple-
mented is Wasserstein training.

Wasserstein Trainer objects in Wasserstein mode discard the user-provided
optimizers and replace them with built-in optimizer objects designed to train
the GAN based on Wasserstein distance.
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Saving and Loading Trainer objects support saving and loading their state
to or from disk. The .soft_save(PATH) and .soft_load(PATH) functions save
and load the Trainer object respectively. These functions use Pickle to save most
of the Trainer object’s parameters, and use PyTorch’s built-in saving function-
ality to save the states of the models and optimizers (PyTorch’s saving func-
tionality also just uses Pickle). Because these functions use Pickle, successfully
loading a Trainer object checkpoint from disk requires that any custom objects
are visible in the current scope.

3.3 Testing Protocol

In order to effectively test our GAN Package, we will investigate all possible use
cases that a member of our target audience might have and focus the primary
effort on testing those. Then, we can test all related edge cases and other less
common activities. For our testing, we will then be focusing on making GANs,
training GANs, evaluating their results, saving and loading models from disk,
and visualizing their results. These broad idea encompass all main tasks a user
might do and is thus as comprehensive as possible.

4 User Study

In order to actually serve the target audience, the package does not just need
useful functionality but also simple and clear documentation. We created doc-
umentation in the form of a tutorial in order to describe the core functionality
of the package and how to use its features.

By being the author’s of the package, we were too familiar with how it
worked to accurately judge the effectiveness of the tutorial. In order to evaluate
the tutorial and find areas to improve, we conducted a user study composed of
a coding challenge and a survey.

We sought out seven participants with solid python experience and varying
levels of experience with deep learning and GANs. We had these users complete
a coding challenge designed to test knowledge of the package’s basic function-
ality, and complete a survey about how they did. To ensure that our study
was done properly, we applied for and received approval for our study from the
Institutional Review Board. A copy of this approval can be found in Appendix
A. The study in full can be viewed in Appendix B.

4.1 Coding Challenge

The coding challenge was designed to test whether the tutorial was able to give
a user a general understanding of the package’s functionality. In particular, our
goal when designing the challenge was to test a user’s ability to use functionality
described in the tutorial in a manner not described in the tutorial. To complete
the coding challenge, a user would need to be able to apply skills taught by the
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tutorial but the user would not be able to solve the challenge simply by directly
copying code from the tutorial.

The core premise of the challenge was to use a Trainer object to create a
simple GAN and train the GAN in multiple steps. The user was required to
perform various operations during training, such as viewing built-in visualizers
and saving a checkpoint of the model. These skills were demonstrated by the
tutorial, but not in the exact fashion used in the challenge, so to successfully
complete the challenge a user would need to be able to generalize the infor-
mation presented in the tutorial into a working understanding of the package.
If the tutorial was effective at teaching how to use our package, then all the
participants should be able to accomplish this. A copy of the coding challenge
can be found in Appendix B part 4.

5 Results

Through the process of making our GAN helper package, we have produced
several useful resources as well as data from our tests and user study that
support the package.

5.1 Testing Results

From our testing, we have determined that the package works as intended
when used for its use cases. To perform this testing, we wrote various test-
ing files of an example program a user might make to test their potential
actions. These files are SimpleGANTesting.py, SimpleGANSaveTesting.py,
WassersteinGANTesting.py, and ConditionalGANTesting.py.

Our testing process allowed us to find and correct bugs during the develop-
ment process, and we can now confidently say that all aspects of our package
work as intended.

5.2 User Study Results

Our team was able to compile results for seven different users. These users were
able to work with the provided documentation. In terms of making the docu-
mentation, our team provided the users a README.md file that lays out the
different steps that the users need to understand. Our documentation first talks
about the SimpleGANTrainer.py file and what the purpose is behind it. Next,
our documentation talks about the initial setup for the users. The initial setup
is crucial in order for the trainer object to be created. After the initial setup, we
show the user the necessary environment setup, including the proper imports,
in order to successfully design the GAN. Next, our documentation includes the
generator and discriminator models, optimizers and loss functions, and latent
space and dataset functions. After showing the different pieces of code, our doc-
umentation describes the purposes behind making the ToTrain object and the
discriminator positive threshold. Next, out documentation includes instructions
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on how to create the trainer object, how to train the GAN, and how to evaluate
the different models. Our documentation also includes instructions for saving
and loading, as well as loading a checkpoint.

5.2.1 Data on our Participants

At the start of our study, we ask for some ratings that the user felt about their
skills in related areas to the. The full data of our user study can be found in
Appendix C. First we asked for people’s python experience level. Having some
knowledge of the language is a prerequisite of using our package. As shown
by Figure 7, every user has at least some python experience so they should be
minimally prepared.

Figure 7: Python Experience Question

Next, we asked how familiar they are with PyTorch. It the main package
we use to do our machine learning. As shown by Figure 8, many users were not
familiar with it beforehand. This knowledge is not as important for the tutorial
so this is not much of a factor.

Figure 8: PyTorch Experience Question

Following this, we asked for experience level with neural networks. These are
the building blocks of GANs so the user will get much more out of the tutorial
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with this knowledge. This was much more split, as shown by Figure 9, so we
have a wide variety of users in this regard.

Figure 9: Neural Networks Experience Question

Finally, as this is a GAN centered package, we thought it would be good
to ask their own experience with GANs. As shown by Figure 10, most did not
know much about the topic which makes them our ideal target audience. The
ones more familiar come from the expert users we also tested on.

Figure 10: GAN Experience Question

5.2.2 Tutorial Feedback

After reading the tutorial and doing the programming task, we ask post-study
questions to gauge understanding and performance. In terms of data, we asked
several multiple choice questions. First, we asked on how long it took to read
and understand the tutorial. It is crucial that this is not a huge time sink as we
want it to be easy to read and follow. Luckily, a majority of respondents took
the minimal time range of less that 15 minutes. The rest took 30-60 minutes.
This is within an acceptable time expectation for this task.

Next, we asked for how long the programming task took. Being more in-
volved than reading the tutorial, we anticipated it taking longer for users. It
is good to see that a majority of users took 30 minutes or less to complete it.
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Figure 11: Time Taken Reading the Tutorial

Most of the rest took the net highest time rank which is still fair with only a
single user taking over an hour. This user encountered many issues that we
have addressed to hopefully prevent their troubles from happening again.

Figure 12: Time Taken Doing the Programming Task

Finally, we asked for a overall rating of the ease of following our tutorial.
As this was the main objective of our test, this acts as a holistic rating of our
efficacy. No one gave a perfect 5 which makes sense as our project is still being
worked on and needed their feedback. However, everyone gave a 3 or 4 which
are both positive scores. Though every user encountered issues, it is a boost to
the project confidence that they still thought highly of the tutorial regardless.

5.2.3 Tutorial Changes

After the multiple choice questions, we provided open ended questions to give
participants more room to express their opinions. Through this, we received
helpful feedback on what was done well and what issues need to be fixed. In
general, users were able to complete the programming task, but some users found
sections of the tutorial which were poorly worded or unclear when describing
how to accomplish specific tasks.

The feedback we received, and the actions we took to improve the tutorial,
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Figure 13: Tutorial Rating

was:

• The tutorial did not clearly show how to load a checkpoint from a newly
instantiated Trainer object. To fix this, we updated the example in order
to demonstrate this behavior.

• The tutorial did not clearly show how to use visualisers or explain what
the visualiser functions do. To fix this, we elaborated on the visualiser
section.

• The tutorial did not clearly show how to instantiate ToTrain objects. To
fix this, we added an example showing how to do this.

• The list of dependencies incorrectly omitted SciPy, which caused the pack-
age installation process to fail to install SciPy in python environments
which did not already have SciPy. We fixed this by adding SciPy to the
list of dependencies.

• Trainer object checkpoints did not write files to the correct folder on Linux
systems. We fixed this by correcting the format of the auto-generated
filenames.

• Finally, we fixed several typos and wording problems.

While this was not every error found in the tutorial testing, it covers a
majority of the major issues found. All not addressed are mentioned in the
future works section.

6 Conclusion

Overall, we thought that the project was a valuable way to learn more about
GANs and teach others how to work with them. In addition, we are proud of
our accomplishments while learning about GANs in a relatively short period
of time. In addition, we were able to stay on track with our timeline every
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week, despite challenges faced along the way. We have also been able to learn
a significant amount of information from each other. The ability to adapt has
been crucial for our success in this project.

6.1 Future Work

Though the package contains all of its core features, there are many features
that could still be added to improve it. Also, there is still work to be done in
increasing its accessibility to a wide audience. Future work could go towards
fixing these problems by adding new features. In particular:

• Currently the only two built-in Trainer objects are designed for Simple
GANs and Conditional GANs. Future work could add more built-in
Trainer objects, such as a Controllable GAN, designed to work with a
much wider variety of GAN types.

• The array of built-in ToTrain objects is currently very bare. Future work
could add more built-in ToTrain objects.

• The user has very little control over how long the GAN should be trained
- currently, the user can only specify number of epochs. Future work
could add different ways the user could control training length, such as
performance benchmarks.

• Currently, built-in Trainer objects do not keep track of very many metrics.
Future work could add to the list of natively supported metrics.

• Currently, the only feature which makes use of the Training Modes feature
is Wasserstein Training. Future work could add additional training modes.

• There is not currently any cohesive guide for users planning on creating
custom Trainer objects. Though the information required is present in
this document, future work could gather it all in once place, ideally in the
form of a guided tutorial.

• Currently, the only documentation of the package is the tutorial. A more
traditional documentation of all the objects and functions in the package
would help users make the most use of our package.

• User study feedback not addressed:

– One user suggested making the tutorial have more payoff at the end
on top of the generated graphs. This is a great thing to add, though
we did not have time to make this a reality.

– Another user recommended using the GitHub wiki tool to display
the tutorial rather then the ReadMe we used. This could be great to
look into, however we again did not have time to see it through
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7 Individual Contributions

7.1 A Term

Kyle implemented simple and controllable GANs. In addition, he found multiple
articles related to Divergence, GAN Strategies, and Training Procedures. Kyle
also effectively communicated as the team leader and explained the team’s goals
during individual and advisor meetings. Kyle took initiative and scheduled team
meetings as needed. Kyle helped the team troubleshoot errors and provided
solutions that completed the GAN implementations. Kyle wrote the Introduc-
tion and the Introduction subsections, and sections of the background including
Divergence Based Loss (Section 2.5), and part of Modification of Training Pro-
cedure (Section 2.7). In addition, Kyle wrote about the f-Divergent Generator
in the methods (Section 3.2).

Ryan also implemented a simple and controllable GAN. He helped write
notes during each of the advisor and individual meetings. Ryan created several
figures that have been added to the paper. Also, he organized meetings with
the team, made outlook invites for said events, and wrote or assisted in writing
several sections, including 2.6, 2.3.1, and 3.3.

Alek aided with the literature review by finding research papers on GAN
architectures, training procedures, and generative metrics. Alek wrote sections
of the background (part of 2.2, parts of 2.3, and 2.4) and edited the introduction.
Alek proposed a novel training strategy, Multiple Discriminators, and wrote the
section describing it (3.1) and created the diagram in that section.

Josh performed a literature review of research done in order to improve GAN
training. In doing so, organized GAN research into 4 key facets: improving the
architectures, improving the loss functions, incorporating more meaningful reg-
ularizations, and improving the order in which parts of the GAN train. Also,
Josh proposed a novel training strategy coined dynamic freezing detailed in sec-
tion (3.3). Josh also assisted in introducing simple GANs and its well respected
successors (conditional, controllable, explicitly controllable) to the rest of the
team, as well as help improve understanding of these modified approaches in
order for the team to have a good foundation for the rest of the MQP. Josh
wrote or assisted in writing sub-sections in the Introduction (prelude, 1.1, 1.2,
1.6), Background (prelude, 2.1-2.5) and Methods (3.3) chapters. Lastly, Josh
designed and created figures 1-5 and 7-11, as well as wrote equations 1-15.

7.2 B Term

Kyle implemented the Wasserstein GAN. The Wasserstein GAN involved mod-
ifying the Simple GAN. Specifically, Kyle was able to graph the Wasserstein
distance over time as the number of epochs increases. Kyle also worked on
documentation for the Wasserstein GAN. In addition, Kyle took notes during
the entire term. The notes taken during every meeting helped the team stay on
track to meet the project goals over the course of the timeline.

Ryan implemented the code that proves the ability for the package to sup-
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port the running of a Conditional GAN. This is achieved by using the Simple
GAN file and giving it extra input via the labels while also changing the passed
in generator, discriminator, latent space, and sample from data functions. They
also gathered and cleaned two data sets to use to test the efficacy of the Condi-
tional and Controllable GANs. They also wrote code to record the Wasserstein
distances per epoch per class and wrote a new visualization to show that data
if asked. Finally, the wrote sections new sections for the paper specifically on
the package purpose (4.1.1) and package compatibility (4.1.3)

Alek implemented the SuperTrainer base class and the SimpleGANTrainer
class. The SimpleGANTrainer trains simple GANs with a focus on allowing
the user to customize their own GAN as much as possible, making as few as-
sumptions as possible about the structure of the data or the models themselves.
This customizability was key for allowing conditional GANs to be implemented
using the SimpleGANTrainer. Alek also implemented the save/load feature, the
custom device training feature, and many of the present visualizations. Finally,
Alek wrote the tutorials for how to use the package (4.3.2).

Josh implemented the code that proves the ability for the package to support
the running of a Controllable GAN. This is achieved by writing a Controllable-
GANTrainer class that extends from SuperTrainer (similar to the simple and
wasserstein GAN trainer objects). ControllableGANTrainer allows pre-trained
classifiers to be incorperated into a generator-discriminator GAN environment,
and train on multi-class tabular data sets. Josh also assisted in visualizations
for GAN evaluations, as well as debugging and design in the conditional and
wasserstein GAN implementations in the SuperTrainer architecture. Finally,
Josh wrote sections in Package Structure (4.2.0) and User Pipeline (4.2.1)

7.3 C Term

Kyle worked on the documentation to make sure it is easy to understand for the
target audience. In addition, Kyle worked on the poster that will be used during
Project Presentation Day. For the study, Kyle helped to gather participants and
gain more outreach to graduate level students taking Deep Learning classes.
Kyle also helped on determining the study questions. Kyle tested the coding
challenge and was able to identify issues that were addressed before sending out
the study to participants. He also worked on rewriting the paper and writing
specific sections, including information about the tutorial/documentation, user
study results, and findings from the reflection as part of the conclusion.

Ryan worked on testing the package to ensure that it was in full working
order through various testing files on all of the main components that a user
might work on. He also helped make the questions for the user study that
was sent to participants. For the study, he also tested the coding challenge
and filter the feedback received into executable tasks. In addition, Ryan served
as the team leader this term by keeping the team on task at all times and
coordinating efficient work across the team. Finally, he contributed sections the
the paper about testing done on the package and helped write those about the
user study, and proofread the rest.
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Alek worked on writing the tutorial explaining how to use the package. Alek
also designed the coding challenge for the user study, and revised the tutorial
based on feedback from the team. Alek helped fix bugs in the package code and
refactored the package to simplify its structure. Alek contributed to the paper
by writing sections 3.2, 4, and 5.2.2, and by helping reorganize the structure of
the paper.

Josh was unable to participate on the project this term for medical reasons
so he has no contributions to list here.
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8.2 Appendix B: User Study Questionnaire

8.2.1 Informed Consent Agreement for the User Study

Investigator: Professor Elke Rundensteiner (PI), Ryan Astor, Kyle Costello,
Josh DeOliveira, and Alek Lewis
Contact Information: gr-GAN-MQP-2021-2022@wpi.edu
Title of Research Study: Participation in GAN Trainer Package tutorial effec-
tiveness
Introduction:

You are being asked to participate in a research study. Before you agree,
however, you must be fully informed about the purpose of the study, the pro-
cedures to be followed, and any benefits, risks, or discomfort that you may
experience as a result of your participation. This form presents information
about the study so that you may make a fully informed decision regarding your
participation.
Purpose of the study:

Our MQP project is focusing on generative adversarial networks or GANs.
This is a special kind of machine learning that involves two or more neural
networks competing with each other. In the simplest case, one is a generator
that makes fake data and the other is a discriminator that attempts to tell the
difference between the fake data made by the generator and some real data
provided. The end goal is to create machines capable of making believable fake
data and this is useful in various areas of research and industry alike. The goal
of this study is to assess the effectiveness of the tutorial we created for our GAN
python package that helps newer users of GANs get some experience with the
fundamentals of creating them.
Procedures to be followed:

For this study, you will first answer a few initial questions to assess your
background. Then you will read over our tutorial on the package. Then, you
will do a short programming task to assess your understanding of the tutorial.
Finally, you will answer some follow-up questions to reflect on your experience
in the study.
Risks to study participants:

We do not foresee any risks to the user from participating in this study.
Benefits to research participants and others:

There are no benefits for the user from participating in this study.
Record keeping and confidentiality:

The data collected for this study will be done via google forms. The only ones
who will have access to these records are the study personnel listed above as in-
vestigators. Records of your participation in this study will be held confidential
so far as permitted by law. However, the study investigators, the sponsor or it’s
designee and, under certain circumstances, the Worcester Polytechnic Institute
Institutional Review Board (WPI IRB) will be able to inspect and have access
to confidential data that identify you by name. Any publication or presentation
of the data will not identify you.
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Compensation or treatment in the event of injury:
There is no expected possibility of injury involved in taking part in our study.

You do not give up any of your legal rights by signing this statement.
Cost/Payment:

Participants who completed the study will each receive a $20 gift card.
For more information about this research or about the rights of research partic-
ipants, or in case of research-related injury, contact:

The MQP Team: gr-GAN-MQP-2021-2022@wpi.edu
IRB Manager (Ruth McKeogh, Tel. 508 8316699, Email: irb@wpi.edu)
Human Protection Administrator (Gabriel Johnson, Tel. 508-831-4989, Email:

gjohnson@wpi.edu)
Your participation in this research is voluntary. Your refusal to participate

will not result in any penalty to you or any loss of benefits to which you may
otherwise be entitled. You may decide to stop participating in the research at
any time without penalty or loss of other benefits. The project investigators
retain the right to cancel or postpone the experimental procedures at any time
they see fit.

By signing below, you acknowledge that you have been informed about and
consent to be a participant in the study described above. Make sure that your
questions are answered to your satisfaction before signing. You are entitled to
retain a copy of this consent agreement.

Virtual Signature:

8.2.2 Pre-Study Questionnaire

Please answer the following before starting our tutorial
The compensation of the gift card listed above is for the full completion of

this study. For compensation to occur, some evidence of actually participation
in the full study is needed by your responses. This is mostly to discourage po-
tential participants from giving little to no effort and expecting the gift card in
return. If you do actually try, then there is no reason to think you would not
qualify for the gift card.

Please give your email if you would be ok with potential follow questions
and to be reachable for the receipt of the gift card

1. On a scale of 1 to 5, how familiar are you with Python?
2. On a scale of 1 to 5, how familiar are you with Pytorch?
3. On a scale of 1 to 5, how familiar are you with Neural Networks?
4. On a scale of 1 to 5, how familiar are you with GANs?
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8.2.3 Tutorial Section

Please read our package tutorial. It can be found here in the ReadMe:
https://github.com/deoliveirajoshua/pytorch_GAN_Package

Move to the next section when you have read and understand our tutorial

8.2.4 Programming Task Section

Now that you have read and understand the tutorial, Please complete the fol-
lowing programming task. Once you think you are done, please upload the code
you wrote. A google account is required for the file upload.

Task for you to complete:
Using the minimal GAN demonstrated in the tutorial:

1. Train the GAN for 100 epochs

2. At epochs 20, 60, and 100, graph the discriminator’s loss by epochs

3. At epoch 60, save the trainer

4. Load a new model from the saved checkpoint, and train it for another
60 epochs. After training the new GAN, graph the generator’s loss by
epochs

Starter Code:
https://drive.google.com/file/d/10VF1EwLtejyr19P05Pc3LUjWjUb9EXe0/view?usp=sharing

8.2.5 Post-Study Questions

By now you have finished reading the tutorial and completing the programming
task. Please answer the following questions about your experience in this study

1. About how long did it take you to complete your reading and under-
standing of the tutorial as to where you were ready to begin the programming
task?

Less than 15 Minutes

15-30 Minutes

30-60 Minutes

More than 60 Minutes

2. About how long did it take you to complete the programming task?

Less than 15 Minutes

15-30 Minutes

30-60 Minutes
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More than 60 Minutes

3. On a scale of 1 to 5 (low to high), how easy to follow was the tutorial for
you?

4. Did the tutorial give you all the information you needed to complete the
tasks? If no, why not?

5. Was there any point in reading the tutorial where you got stuck or had
to spend an extended period of time figuring it out? If yes, please explain.

6. Do you have any suggestions as to how we could improve the tutorial?

8.3 Appendix C: User Study Responses

8.3.1 Pre-Study Results

Participant Python Exp Pytorch Exp NN Exp GAN Exp

1 5 2 4 2
2 4 1 2 1
3 4 1 3 1
4 3 2 1 1
5 4 4 5 4
6 4 1 1 1
7 5 5 5 5

8.3.2 Post-Study Tabular

Participant Tutorial Time Task Time Rating

1 Less than 15 Minutes 15-30 Minutes 4
2 Less than 15 Minutes 15-30 Minutes 4
3 30-60 Minutes 30-60 Minutes 3
4 30-60 Minutes 15-30 Minutes 3
5 Less than 15 Minutes Less than 15 Minutes 4
6 30-60 Minutes More than 60 Minutes 4
7 Less than 15 Minutes 30-60 Minutes 4

8.3.3 Post-Study Open Ended

Participant 1:
Did the tutorial give you all the information you needed to complete the

tasks? If no, why not?
Yes.
Was there any point in reading the tutorial where you got stuck or had to

spend an extended period of time figuring it out? If yes, please explain.
There were no places in particular that required excessive re-reading, how-

ever the wordiness of the tutorial made it difficult to re-find information.
Do you have any suggestions as to how we could improve the tutorial?
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I would recommend utilizing GitHub’s wiki to properly document each func-
tion of the object, so that the tutorial / example code only needs simple expla-
nations for each line of code. This would make it quicker to process the tutorial,
and specifics of each function could be looked up as-needed. This would also
make it easier to publish more examples.
Participant 2:

Did the tutorial give you all the information you needed to complete the
tasks? If no, why not?

SimpleGANTrainer complained that scipy wasn’t installed, which wasn’t
stated in the tutorial. It worked fine after installing it.

Was there any point in reading the tutorial where you got stuck or had to
spend an extended period of time figuring it out? If yes, please explain.

I ended up having some trouble with pytorch and matplotlib because I’m
running Ubuntu 20.04 on WSL2, but that’s not really your problem. I eventually
gave up on trying to get my GPU to work with pytorch, and got matplotlib to
work with my X11 server using the python3.8-tk package from apt. At that
point everything went fine.

I have very little experience with deep learning and its terminology, but I
was able to figure out what most terms in the tutorial meant from context. The
only one I never got was what a ”dense layer” was, but it wasn’t necessary to
understand to complete the tutorial.”

Do you have any suggestions as to how we could improve the tutorial?
I noticed that ‘SimpleGANTrainer.soft save‘ saved several files. I assume

these are supposed to be in a separate folder with the name I gave, but they got
saved as files named like ”name\D.pt” with the backslash in the filename. They
still happened to load fine, but this probably isn’t the behavior you’re looking
for.

There are some minor formatting problems with the code in the tutorial.
Some of the code blocks have inconsistent indentation, comments with inconsis-
tent capitalization, and some double quotes look like they got turned into smart
quotes.

I wish there was more of a payoff in the tutorial like being able to give some
numbers to the discriminator manually to see that it’s getting better at telling
which ones are even. I recognize that the loss-by-epoch graphs are probably
supposed to be this payoff, but they’re meaningless to me as someone without
prior deep-learning knowledge.
Participant 3:

Did the tutorial give you all the information you needed to complete the
tasks? If no, why not?

Confused on what the PATH should be, PATH to the project or any path
on the file system. Also, the tutorial didn’t have a gan.soft load in the second
example if you wanted a new object.

Was there any point in reading the tutorial where you got stuck or had to
spend an extended period of time figuring it out? If yes, please explain.

Confused by the .loss by epoch(model name) function. I saw that ”D” and
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”G” were options but an example used gan.loss by epoch d() which wasn’t men-
tioned in the tutorial.

Do you have any suggestions as to how we could improve the tutorial?
Confused on why you asked for only discriminator loss for the first 3 training

and only generator’s loss for the loaded file. Also there was no requirement on
downloading scipy which was an error I had when I ran the file for the first time
even after installing all the packages including the pytorch GAN package.
Participant 4:

Did the tutorial give you all the information you needed to complete the
tasks? If no, why not?

Yes, I think it gave me all the information I needed to complete the tasks.
Was there any point in reading the tutorial where you got stuck or had to

spend an extended period of time figuring it out? If yes, please explain.
I had two small issues. One was that SciPy is a package that is used in the

SimpleGANTrainer file but apparently didn’t get installed when I ran the pip
command, so I just installed it myself and it was fine after. Also, you should
make it more clear what PATH is for soft save and soft load or at least what it
could be.

Do you have any suggestions as to how we could improve the tutorial?
Not really other than make sure all your code example are correct. I think

you’re missing some key lines in some of your last examples (like evaluating on
a different device). Also, you talk about ToTrain objects but don’t show any
example of them. It didn’t impede my ability to do the tasks but it felt weird
to not see code for it.
Participant 5:

Did the tutorial give you all the information you needed to complete the
tasks? If no, why not?

Yes - in part. I was able to write code that ran, but I do not know if the
visualizations were generated anywhere. The tutorial says that the function call
will ”show” a visualization. Show in what sense? Should I be running this in a
Jupyter notebook or something? Just running as a .py file throws no errors but
I do not see where the visualizations were saved.

Was there any point in reading the tutorial where you got stuck or had to
spend an extended period of time figuring it out? If yes, please explain.

No - other than the visualization thin
Do you have any suggestions as to how we could improve the tutorial?
Some notes:
on google form, under ”programming task section”: please upload the cod

you wrote. → please upload the code you wrote
no indication in the tutorial what it means to plot visualizations - does it save

a png of a plot? where does it save it? Is it overriding the previous visualization
every time I save it? I don’t see the visualizations anywhere

Error message, requiring installing scipy: ModuleNotFoundError: No mod-
ule named ’scipy’

I tried to save the parameters of the gan as ”trained gan”. this made the
system create an empty directory, and then created a bunch of files OUTSIDE
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OF the directory titled ”trained gan\ ∼whaterver∼”. Maybe this is a bug that
will only arise on linux system?
Participant 6:

Did the tutorial give you all the information you needed to complete the
tasks? If no, why not?

No, it was unclear about a few lines of code regarding instantiating the
trainer object. First, it was not clear that the variable titled ”GAN DEVICE”
was supposed to be the input for the device parameter. Second, the sw input
was never specified and I only found it from the programming task. You do
talk about the two-five rule but it was unclear that sw was the two five rule and
there was no mention of the twoFiveRule function in the tutorial. Also, I had to
install the ”scipy” package to use the code. When running the program, I got a
ValueError that said the torch.Size([16, 1]) was not equal to torch.Size([16,7]).

Was there any point in reading the tutorial where you got stuck or had to
spend an extended period of time figuring it out? If yes, please explain.

I had to spend time at the trainer object because I didnt know what ”sw”
or device were.

Do you have any suggestions as to how we could improve the tutorial?
Add in the scipy and math libraries as packages you need to run the program.

In the tutorial, it should say ”import math” under the imports section since we
used that library.
Participant 7:

Did the tutorial give you all the information you needed to complete the
tasks? If no, why not?

A basic minimum, not sure how it would fare when people want to do some-
thing more than the simple tutorial style workflow.

Was there any point in reading the tutorial where you got stuck or had to
spend an extended period of time figuring it out? If yes, please explain.

yes, the last part wasn’t clear how to properly load and re start training
Do you have any suggestions as to how we could improve the tutorial?
make things more explicit and technical; maybe include a brief section about

the terminology of gans and how they work.
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