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Abstract

A system of two two-dimensional quantum dots is one of the sim-

plest system used to study wavefunction localization. In general, the

system is approximated by two finite quantum wells in the vicinity of

each other. The wavefunction of such a system is hard to solve analyt-

ically; thus, a more precise numerical method is always in demand to

give a better description of the system. This report discusses the finite

element method (FEM), which is originally developed for mechanical

engineering but extended to physics. This report also discusses us-

ing Fermi function to approximate discontinuous physical properties

of the system. The validity of these methods is demonstrated with

numerical data calculated under various approximations.
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1 Introduction

In quantum mechanics, every system can be described by a Schrödinger’s

equation with appropriate potential terms. Due to complicated potential

terms and boundary conditions (BCs), analytically solving Schrödinger’s

equation is hard in general. However, the variational principle provides a

universal way to address this equation. The numerical results of the eigen-

functions corresponding to the wavefunction and the eigenvalues correspond-

ing to energy can be obtained via the finite element method (FEM).

The system of two 2D quantum dots is treated in two cases: two square

quantum wells and two circular quantum wells. Since different materials

usually compose the inside and outside regions of the quantum dots, there is

a discontinuity in the material properties across the boundary of the potential

wells. This discontinuity will lead to difficulties in numerical analysis. Hence,

an approximation is needed to resolve this problem. The report discusses

the Fermi function as a smooth approximation of the discontinuity at the

boundary.

In this report, Section II provides the methodology of the variational

principle and the FEM. Section III discusses the validity of the Fermi function

approximation. The numerical data of the wave functions and the energy

eigenvalues of an electron inside 2D quantum dots are presented and discussed

in Section IV. Section V provides the summation and conclusion remarks of

this report. Appendix lists selected figures of the wave functions to illustrate
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the localization of the wave functions between the two dots.

2 Variational Principles and Finite element

Analysis

Most of the physical properties obey differential equations which can be de-

rived from the principle of stationary action. For a non-relativistic parti-

cle moving in a region with potential energy V (r), the time-independent

Schrödinger equation is given by

− h̄2

2m
∇2ψ(r) + V (r)ψ(r) = Eψ(r). (1)

The Schrödinger equation can be obtained under the condition that the ac-

tion

A =

∫
d3r

[
∇ψ∗(r)

(
− h̄2

2m

)
∇ψ(r) + ψ∗(r)(V (r)− E)ψ(r)

]
(2)

has an extremum. Here ψ and ψ∗ (the complex conjugate of ψ) can be

considered as two independent fields. One can vary the action integral A

with respect to ψ∗(r) and set the variation to 0,

δA = δψ∗ δA

δψ∗ = 0. (3)
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The wave functions for the resulting Schrödinger’s equation can be obtained

from the solutions of the equation (3). [2]

The numerical solutions of the equation (3) can be obtained using FEM.

In FEM, the action integral is rewritten as the sum of the partitioned action

on each element.

To do the action integral for each element, we implement a polynomial

interpolation for the wavefunction as ψ = ϕiNi. Here, ϕi denotes the ith

nodal value and Ni denote the interpolation polynomial at that node. We

then integrate the actions using the interpolated wave functions over the

element and write the results in matrix form. Then we overlay the element

matrix onto the global matrix of the actions. During this process, when

a node is present in more than one elements, the matrix component of the

nodes in all the element matrices are adding together to ensure the continuity

of the action. In this way, the action integral can be written in the matrix

form as,

A =
nelem∑
αβ

⟨ψα|Kαβ|ψβ⟩ − ϵ⟨ψα|Mαβ|ψβ⟩. (4)

Here, α and β are indices that go from 1 to the total number of elements

(nelem), and the K matrix contains the kinetic part of the wavefunction,

and the M is the overlap matrix that contains the potential part; whereas ϵ

is the total energy of the system. We can minimize equation (4) with respect

to ⟨ψα| and obtain the discretized version of the Schrödinger equation in

matrix form. To solve this matrix is to do a generalized eigenvalue problem.
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Table 1: The first 10 energy eigenvalues of the infinite square potential well
of the size 600× 600Å with different number of elements. The interpolation
polynomials type used is quintic hermite

State No.
(nx, ny)

60 Elements 180 Elements 360 Elements 600 Elements
Exact

Eigenvalue
(1,1) 2.000 000 315 964 2.000 000 011 741 2.000 000 001 457 2.000 000 000 391 2
(1,2) 5.000 001 155 247 5.000 000 042 963 5.000 000 005 350 5.000 000 001 100 5
(2,1) 5.000 001 155 250 5.000 000 042 964 5.000 000 005 369 5.000 000 001 344 5
(2,2) 8.000 004 186 648 8.000 000 155 827 8.000 000 019 496 8.000 000 004 238 8
(1,3) 10.000 002 782 276 10.000 000 102 993 10.000 000 012 841 10.000 000 002 861 10
(3,1) 10.000 002 820 148 10.000 000 105 203 10.000 000 013 180 10.000 000 002 909 10
(2,3) 13.000 010 227 649 13.000 000 380 295 13.000 000 047 547 13.000 000 010 235 13
(3,2) 13.000 010 227 651 13.000 000 380 296 13.000 000 047 560 13.000 000 010 436 13
(1,4) 17.000 004 723 575 17.000 000 175 616 17.000 000 021 941 17.000 000 004 717 17
(4,1) 17.000 004 723 577 17.000 000 175 616 17.000 000 021 954 17.000 000 004 905 17

The energy of the equation is given by the eigenvalues of the matrix. The

corresponding eigenvectors are composed of values of the wave function at

each node. Using the interpolation polynomials with the nodal values, we

can plot the wavefunction over the whole region.

In the FEM calculation, we can improve the accuracy of the results by

adding more elements (h-refinement) and by using higher order interpolation

polynomials (called p-refinement). By increasing the number of elements and

decreasing the size of each element, we get a better approximation of the

wavefunction and thus improve the reliability of the interpolation. When we

are using higher order interpolation polynomials, in addition to the continuity

of the functional values, the values of higher order derivatives are also taken

into account, which provides more details about the function. Table 1 and

Table 2 present the data from the calculation of an infinite 2D potential

well with different number of elements and different kinds of interpolation
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Table 2: The first 10 energy eigenvalues of infinite square potential well of
the size 600× 600Å with different interpolation polynomials. The number of
elements along each direction is 30.

State No.
(nx, ny)

Linear Quadratic Cubic hermite Quintic hermite
Exact

Eigenvalue
(1,1) 2.002 072 976 968 2.000 000 809 195 2.000 009 490 588 2.000 002 514 726 2
(1,2) 5.023 403 002 383 5.000 018 656 386 5.000 036 310 359 5.000 009 185 818 5
(2,1) 5.023 403 002 383 5.000 018 656 386 5.000 036 310 360 5.000 009 185 819 5
(2,2) 8.044 733 027 798 8.000 036 503 577 8.000 138 421 374 8.000 033 253 701 8
(1,3) 10.090 019 505 074 10.000 278 643 245 10.000 080 984 889 10.000 022 309 353 10
(3,1) 10.090 019 505 074 10.000 278 643 246 10.000 093 282 900 10.000 022 343 845 10
(2,3) 13.111 349 530 489 13.000 296 490 437 13.000 331 225 894 13.000 081 457 404 13
(3,2) 13.111 349 530 489 13.000 296 490 437 13.000 331 225 894 13.000 081 457 404 13
(1,4) 17.339 273 291 118 17.001 264 311 523 17.000 162 669 871 17.000 037 609 686 17
(4,1) 17.339 273 291 118 17.001 264 311 524 17.000 162 669 871 17.000 037 609 687 17

polynomials. It can be shown that when we use quintic Hermite polynomial

with 600 elements along each side, we can get results with double precision.

3 Fermi Function in 2D

The regions outside and inside of a quantum dot are composed of different

materials, each of them with a different effective mass for the carrier and

potential band-gap.[1] At the boundary of the two materials, there will be a

discontinuity in these properties. This discontinuity will cause problems in

FEM calculation when using Hermite interpolation, in which the continuity

of the derivative of the function is taken into account. When using Hermite

interpolation, we impose the continuity condition at the boundary of the el-

ements by overlying parts from different local matrices that correspond to

the same node. If we have a discontinuity at the boundary, the derivative

5



at the same node calculated from the two adjacent elements is different by a

constant. We need to adjust this by multiplying the derivative nodal value of

one of the elements by that constant so that the corresponding matrix value

in both elements match up. It is hard to perform this for a complicated

BCs because there is no simple algorithm to pick up all the adjacent element

matrices at the boundary. Resolving this problem requires approximations

that smooth out those discontinuous steps. The Fermi function, which origi-

nated in statistical physics to describe the Fermi-Dirac Distribution provides

a good approximation for this condition. To show this graphically, we take

an example of a 1D three-layer system with different effective mass in each

layers. If mr represents the ratio me/m
∗, mr along the region can be written

as a Fermi function. The Fermi function provides an adjustable smoothing

of the jump discontinuity at the boundary. Thus mr is given by

mr(x) = mro +
mri −mro

1 + exp( (x−x1)(x−x2)
δ2

)
. (5)

Here, x1 and x2 are the coordinates of the two boundaries, δ is the parameter

used to control the sharpness of the Fermi curve at the edge, mri is the value

of mr(x) in the middle, and mro is the value of mr(x) on the two sides. A

set of plots that corresponds to this set up is shown as FIG. 1.

From FIG. 1. it is clear that if the parameter δ is small enough, the

Fermi function will quickly become horizontal when moving away from the

boundary. The parameter δ can be used to control the fitness of the Fermi

6
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Figure 1: Comparison between a step function and a Fermi function.

function to the step function. It can be shown by doing quick math that a

smaller δ value will give better fitness of the function. To give an example

of the results using the Fermi function, Table 3 shows the calculations for a

finite square inside a square potential well, where the Fermi function (take

potential for example) is set up as

V (x) = Vout −
Vout − Vin

(1 + exp( (x−x1)(x−x2)
δ2

))(1 + exp( (y−y1)(y−y2)
δ2

))
. (6)

In this equation, x1 and y1 are the smaller bound and x2 and y2 are the

larger bound of the square region inside. This Fermi function will ensure the

potential equals Vin inside the square region and Vin in the surrounding outer

7



square. FIG. 2 shows the effective mass distribution in the physical region

in terms of mass ratio. FIG. 3 shows the potential function in the region.

The shape of the function in these two figures are described by the Fermi

function to provide a continuous approximation of the property difference

across the boundary. Table ?? shows the results of the first ten eigenvalues

obtained from this problem with various δ values. The potential band gap

and effective mass ratio come from the heavy hole band width of AlGaAs and

GaAs. The potential inside is 0eV and the potential outside is 0.159eV . The

ratio of electron mass to its effective mass inside is 2.86 and the ratio outside

is 2.638. From the variational method in quantum mechanics, we know that

the approximated results will always give an upper bound for the real value.

From Table 3, when δ is smaller the results are smaller. So our data shows

that for smaller δ values we get better results. It is also worth noticing that

when δ is getting smaller the change in the resulting number is getting less

significant. However, due to the limited capacity of the computer program,

results will not be valid when using a extremely small δ value.

When we use the Fermi function to approximate the discontinuous prop-

erties at the boundary, We need to assign more elements in the adjacent of

the boundary. This is because the graph of the Fermi is turning to vertical

line very fast at the boundary, as shown in FIG. 1. To interpolation this

behaviour properly, the size of the elements close to the boundary needs to

be small. Applying more elements near the boundary can shrink the element

size so that within each element the change in the function value is small
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and can be represented properly by the interpolation polynomials. In order

to have more elements at the boundary and try to reduce the overall num-

ber of elements, we can set up several intervals, each with different element

density. The length of the intervals are given in terms of δ. We then assign

more elements in the interval close to the boundary and assign a few ele-

ments to interval away from the boundary. This way we can represent the

discontinuous properly at the boundary without using too much elements.

To summarize, using the Fermi function to approximate the step- function-

like behaviour will give good numerical results when we assign more elements

in the adjacent of the boundary and a small enough δ value.
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Figure 2: Inverse of mass to effective mass ratio (m∗/me) distribution for the
square inside a square calculation.
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Table 3: The first 10 energy eigenvalues of a finite potential square inside an
infinite square potential well with various δ values. The size of the region
is 600 × 600Å and the size of the finite well inside is 100 × 100Å. Around
the boundary there are three intervals. The sizes of these intervals 5, 5, 10
in terms of δÅ and the number of elements inside each interval are corre-
spondingly 25, 10, 5. The total number of elements along each direction is
310. The effective mass and potential difference of the inside square and the
outside square come from the heavy hole band gap of AlGaAs and GaAs.
Parameter used in the calculation are further elaborated on in the text.

Energy
Eigenstates

δ = 0.5
10−3eV

δ = 0.1
10−3eV

δ = 0.05
10−3eV

δ = 0.01
10−3eV

1 15.599 597 506 491 15.599 587 280 724 15.599 586 560 589 15.599 586 003 793
2 38.758 694 071 697 38.758 672 070 459 38.758 670 538 591 38.758 669 354 742
3 38.758 694 071 733 38.758 672 070 763 38.758 670 539 295 38.758 669 361 244
4 61.733 240 851 152 61.733 207 910 490 61.733 205 627 558 61.733 203 882 489
5 76.357 094 213 602 76.357 063 911 059 76.357 061 868 547 76.357 060 311 942
6 76.560 231 572 882 76.560 200 073 149 76.560 197 941 915 76.560 196 290 390
7 99.028 297 790 542 99.028 257 598 005 99.028 254 876 732 99.028 252 810 697
8 99.028 297 790 641 99.028 257 598 609 99.028 254 877 917 99.028 252 820 181
9 126.155 187 366 676 126.155 163 516 181 126.155 162 034 658 126.155 160 894 802
10 126.155 187 366 819 126.155 163 517 511 126.155 162 037 583 126.155 160 920 987
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Figure 3: Potential function for the square inside a square calculation.

4 Double Quantum Dots Interaction

In a 2D region where there are two separated quantum dots, a particle can

tunnel through the barrier between the dots if the dots are close enough to

each other. The localization of the wavefunction inside two dots and the shift

of the energy eigenvalue are discussed in this section.

4.1 Double Square dots

The quantum dots here are two squares that each have the width of 200Å.

They are symmetric to each other about the central y-axis. The distance

between them is allowed to vary, and its effect to the wavefunction and

eigenvalue is calculated. Outside the two dots, the width of surrounded region

is set to 300Å to allow the wavefunction to die out properly at the outside
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boundary. The Fermi function that is used to describe the discontinuous

properties at the dots boundary is

P (x) = Pout −
Pout − Pin

(1 + exp( (x−x1)(x−x2)
δ2

))(1 + exp( (y−y1)(y−y2)
δ2

))

− Pout − Pin

(1 + exp( (x−x3)(x−x4)
δ2

))(1 + exp( (y−y1)(y−y2)
δ2

))
,

(7)

where P denotes the properties such as effective mass or potential, and x1

and x2, y1 and y2 are the boundary coordinates of the first dot and x3 and

x4, y1 and y2 are the boundary coordinates of the second dot. The effective

mass distribution and the potential function are shown in FIG. 4 and FIG.

5 respectively.
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Figure 4: Inverse of mass to effective mass ratio (m∗/me) distribution for the
double square dots calculation.

Table 4 shows the energy eigenvalues of each calculation with different

separation distance. It is clear that when the distance in between is wide
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Figure 5: Potential function for the double dots calculation.

enough for both wavefunctions to die out within the barrier, there is a two-

fold degeneracy of each state. This is due to the symmetry in the shape of

the two dots. When two dots are moving towards each other, the degeneracy

is broken up due to the possibility of particle tunneling through the barrier.

From the data, when the distance in between is shrinking, some of the states

are moving upward while others are moving downward and no state remains

the same. When the two dots are close enough, the energy of the lower states

may surpass the energy of the originally higher states. It can also be shown

from the data that when the distance is changing in one direction, the change

of energy is strictly in one direction. In another word, when a state’s energy is

increasing, it is strictly increasing while the distance is decreasing. Similarly,

when a state’s energy is decreasing, it is strictly decreasing while the distance

is decreasing. The next section shows the figures to the wavefunctions of the

13



first few states with square dots. The merging of the two waves is clearly

shown when the two dots are getting closer to each other.

4.2 Double Circular dots

The quantum dots in this set of calculation are two squares with a radius

of 100Å. The center of the two dots is on the same horizontal line. The

physical region around the two dots is a rectangle with the dimension 1600Å∗

800Å.The distance between the dots is set to be the distance between the two

center subtract two times the radius. This distance is allowed to vary, and

its effect to the wavefunction and eigenvalue is calculated. The changing of

the potential energy and effective mass at the circular boundary is described

by a Fermi function

P = Pout −
Pout − Pin

1 + exp( r1−r
δ

)
− Pout − Pin

1 + exp( r2−r
δ

)
. (8)

P is the physical property the function is used to described. r is the radius

of the circle and r1 and r2 is the distance of the point of interest to the two

center.

Table 5 shows the first 10 energy eigenvalues of each calculation with dif-

ferent separation distance. From the comparison of circular dots and square

dots, there are two things worth noticing. Firstly, the energy eigenvalues are

changed in different geometry. This is because the first ten states are all

bound states whose energy is lower than the potential energy of the finite
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wells. Therefore the energy of the bound states should depend on the ge-

ometry and the size of the quantum well. Secondly, the degeneracy pattern

is different and can be shown by looking at the last four states of dots that

have distance 600Å in between. In the square dots, there are two doublet

degeneracies and the difference is quite significant, but in circular dots dif-

ference in all the four states are much less than that of square dots. The

degeneracy pattern is determined by the symmetry of the system and can

be predicted using group theory. The square and circle have different sym-

metry; therefore, the degeneracy pattern should be different. There are also

many similarities between this two set of data. Firstly, it is clear that for

the circular wells when the distance is large enough, there will be a doublet

degeneracy of every state same as that of the square wells. When the two

circle are getting closer to each other, the degeneracy is broken due to the

possibility of electron tunneling through. Secondly, similar to that of the

square, when the distance between the circle is decreasing, the change of

energy of the same state is strictly in one direction. The next section also

shows the figures to the wavefunctions of the first few states with circular

dots. The merging of the two waves is clearly shown when the two dots are

getting closer to each other.
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Table 5: The first 10 energy eigenvalues of two circular quantum dots with
various distances in between. The physical region around the two dots is a
rectangle with the dimension 1600Å ∗ 800Å and the radius of each quantum
dots is 100Å. The center of two circle is on the same horizontal line and the
distant between the two dots is denoted at the first row. The node density
(Å per node) on the circle is 0.5.The node density on the outside is 40. The
mesh is generated with Gmsh and the mesh element is triangle. The effective
mass and potential difference of the quantum dots and outside regions come
from the conduction band gap of AlGaAs and GaAs. The δ used for this
calculation is 0.01Å

Energy
States

600Å
10−3eV

100Å
10−3eV

50Å
10−3eV

2Å
10−3eV

1 24.301 762 24.299 946 24.271 749 22.520 824
2 24.301 848 24.301 157 24.328 896 25.174 874
3 61.479 926 61.469 889 61.307 540 54.336 396
4 61.480 161 61.474 289 61.465 212 61.066 178
5 61.480 645 61.474 724 61.483 734 61.796 655
6 61.480 810 61.479 178 61.638 951 65.436 480
7 109.788 008 109.752 326 109.440 862 100.310 885
8 109.788 361 109.762 897 109.686 299 107.291 977
9 109.791 326 109.768 343 109.844 395 111.672 180
10 109.791 652 109.778 437 110.080 558 114.466 675
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5 Conclusion

This MQP project provides a finite element modelling of single and double

quantum dots. It also shows how to use the Fermi function as a continuous

approximation of discontinuous functions. All of this shows the power of

FEM in calculating the energy eigenvalues and modelling the wavefuncions

of 2D systems. This report also discusses the localization of the wavefuncions

in two adjacent square and circular quantum dots. The results of which

provides details about electrons tunnelling thought the barrier between the

dots.

A system of two two-dimensional quantum dots is one of the simplest

system used to study wavefunction entanglement between two electrons. The

wavefunction of two electrons in side the double quantum dots is strongly

correlated with the wavefunction of a single electron. The results of this

report could be extended into the study of two electrons interaction and the

entanglement between them in quantum wells.
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A The figures of the wavefunctions

A.1 square dots
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Figure 6: State 1 wavefunction of the square quantum dots with distance
100Å between.
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Figure 7: State 2 wavefunction of the square quantum dots with distance
100Å between.
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Figure 8: State 3 wavefunction of the square quantum dots with distance
100Å between.
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Figure 9: State 4 wavefunction of the square quantum dots with distance
100Å between.
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Figure 10: State 1 wavefunction of the square quantum dots with distance
50Å between.
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Figure 11: State 2 wavefunction of the square quantum dots with distance
50Å between.
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Figure 12: State 3 wavefunction of the square quantum dots with distance
50Å between.
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Figure 13: State 4 wavefunction of the square quantum dots with distance
50Å between.
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Figure 14: State 1 wavefunction of the square quantum dots with distance
20Å between.
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Figure 15: State 2 wavefunction of the square quantum dots with distance
20Å between.
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Figure 16: State 3 wavefunction of the square quantum dots with distance
20Å between.
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Figure 17: State 4 wavefunction of the square quantum dots with distance
20Å between.
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Figure 18: State 1 wavefunction of the square quantum dots with distance
10Å between.
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Figure 19: State 2 wavefunction of the square quantum dots with distance
10Å between.
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Figure 20: State 3 wavefunction of the square quantum dots with distance
10Å between.
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Figure 21: State 4 wavefunction of the square quantum dots with distance
10Å between.
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Figure 22: State 1 wavefunction of the square quantum dots with distance
5Å between.
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Figure 23: State 2 wavefunction of the square quantum dots with distance
5Å between.
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Figure 24: State 3 wavefunction of the square quantum dots with distance
5Å between.
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Figure 25: State 4 wavefunction of the square quantum dots with distance
5Å between.
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A.2 circular dots
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Figure 26: State 1 wavefunction of the circular quantum dots with distance
100Å between.
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Figure 27: State 2 wavefunction of the circular quantum dots with distance
100Å between.
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Figure 28: State 3 wavefunction of the circular quantum dots with distance
100Å between.
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Figure 29: State 4 wavefunction of the circular quantum dots with distance
100Å between.
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Figure 30: State 1 wavefunction of the circular quantum dots with distance
50Å between.
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Figure 31: State 2 wavefunction of the circular quantum dots with distance
50Å between.
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Figure 32: State 3 wavefunction of double quantum dots with distance 50Å
between.
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Figure 33: State 4 wavefunction of the circular quantum dots with distance
50Å between.
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Figure 34: State 1 wavefunction of the circular quantum dots with distance
2Å between.
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Figure 35: State 2 wavefunction of the circular quantum dots with distance
2Å between.
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Figure 36: State 3 wavefunction of the circular quantum dots with distance
2Å between.
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Figure 37: State 4 wavefunction of the circular quantum dots with distance
2Å between.
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