Analysis of Smoak Tannins

A Project Report for E&J Gallo Winery and Worcester Polytechnic Institute

Submitted to the Faculty of the

Department of Chemical Engineering Worcester Polytechnic Institute Worcester, MA 01609

And

Modesto, CA 95354

April 4, 2017

Table of Contents

Table of Contents	1
List of Tables	4
List of Figures	5
List of Equations	6
Acknowledgements	7
Abstract	8
Executive Summary	9
Background 1	2
History of Winemaking1	2
Process of Winemaking 1	3
Sensory Evaluation 1	5
Tannins Being Observed 1	6
Purpose1	8
Expected Benefits 1	9
Experimental Background & Methodology 2	20
Separation and Extraction Techniques2	21
Cooking Conditions	21
Column Chromatography2	24
Distillation	25
Steam Stripping	29
Falling Film Evaporator	31
Liquid-Liquid Extraction	33
Lab Tests at Gallo	36
Results	37
Cooking	37
Effect of Total Suspended Solids and Alcohol Content	37
Acetic Acid Production	38
Sensory Testing	39
Analytical Lab Results	10
Effects of Alkaline on Methoxyphenol Production4	1
Liquid-Liquid Extraction (LLE) 4	14

ENTIAL TRADE SECRET MATERIAL E. & J. Gallo Winery D ACCESS AND DISTRIBUTION

Scale-Up	
Batch Distillation	
Steam Stripping	
Sequential Distillation	
Column Chromatography	
Wine Dosing	
Aspen Simulation Results	
Distillation	
Falling Film	
Liquid-Liquid Extraction	
Conclusions and Recommendations	
References	
Appendices	
Appendix I: Experimental Procedures	
I.A Cooking:	
I.B Liquid-Liquid Extraction:	
I.C Column Chromatography:	
I.D Rotary Evaporator (Rotovap):	
I.E Liquid-Liquid Extraction	
I.F Steam Stripping	
Appendix II: Important Data/Graphs/Pictures	
II.A Cooking	
II.B Liquid-Liquid Extraction	
II.C Batch Distillation	
II.D Steam Stripping	
II.E Wine Dosing	
Appendix III: Aspen Results	
III.A: Distillation Column	
III.B: Liquid-Liquid Extraction	
Appendix IV: Raw Data	
IV.A Cooking	
IV.C Batch Distillation	
IV.D Steam Stripping	

ENTIAL TRADE SECRET MATERIAL E. & J. Gallo Winery D ACCESS AND DISTRIBUTION

IV.E Column Chromatography	
IV.F Dosing	
Appendix V: Lab Notebook	

List of Tables

Table 1: List of Boiling Temperatures (Restek), Molecular Weight, Vapor Pressure, and	
Flavor/Smell Components	27
Table 2: Analytical Tests at Gallo	36
Table 3: Table 3: MF2 1:1 Extraction Components	45
Table 4: MF2 1:2 Aroma and Volume Results	45
Table 5: Scale-Up Results for MF2 1:1 Extraction	48
Table 6: Scale-Up Results for MF2 1:2 Extraction	48
Table 7: Sensory Results from First Pass Elutions	64
Table 8: Sensory Results from Second Pass Elutions	66
Table 9: Bed Volume 4 Dosing Results	67
Table 10: Bed Volume 4 Dosing Results	67
Table 11: Bed Volume 6 Dosing Results	68

List of Figures

Figure 1: Overall Project Methodology	. 20
Figure 2: Various Pressure and Time Effects on Concentration of ELT Waste Stream	. 21
Figure 3: Outline of Cooking Process	. 22
Figure 4: High Pressure Soxhlet Extractor (used for cooking)	. 23
Figure 5: Results from Past Study on Methoxyphenol Production (Peng)	. 24
Figure 6: Column Chromatography Process	. 25
Figure 7: Distillation Column Separation	. 28
Figure 8: Distillation Column Set-up	. 29
Figure 9: Steam Stripping Column Set-up	. 31
Figure 10: Falling Film Evaporator (Evaporation Technique, 2016)	. 32
Figure 11: Bench-scale Rotary Evaporator Set-up	. 32
Figure 12: Liquid-Liquid Extraction Process	. 34
Figure 13: Liquid-Liquid Extraction Set-up	. 34
Figure 14: Liquid-Liquid Extraction Lab Process (Multi-stage)	. 35
Figure 15: TSS versus Post-Cook pH	. 38
Figure 16: Alcohol Concentration versus Post-Cook pH with 5 grams of oak	. 39
Figure 17: All Cooking Trials (for TSS & Percentage Alcohol)	. 40
Figure 18: Precipitation During pH Decrease Step	42
Figure 19: Effect of Base on Methoxyphenol Production	. 43
Figure 20: Evaporated K2CO3 Samples	. 44
Figure 21: MF2 1:1 Extraction Components	. 46
Figure 22: MF2 1:2 Extraction Components	. 47
Figure 23: Distillation Column Set-Up for 10% Ethanol Trial	. 50
Figure 24: Distillation Results (Absolute) of 5 Gram Oak, 10% Ethanol	. 51
Figure 25: pH Trend for 5 Gram Oak, 10% Ethanol Distillation Trial	. 51
Figure 26: Distillation Column Set-Up for 20% Ethanol Trial	. 52
Figure 27: Distillation Results (Absolute) of 5 Gram Oak, 20% Ethanol	. 53
Figure 28: Distillation Results (Absolute) of 5 Gram Oak, 20% Ethanol	. 54
Figure 29: pH Trend for 5 Gram Oak, 20% Ethanol Distillation Trial	. 54
Figure 30: Distillation Column Set-Up for 20% Ethanol Trial	. 55
Figure 31:Distillation Results (Absolute) of 5 Gram Oak, 10% Ethanol	. 56
Figure 32: Distillation Results (Absolute) of 5 Gram Oak, 10% Ethanol	. 56
Figure 33: pH Trend for 5 Gram Oak, 15% Ethanol Distillation Trial	. 57
Figure 34: Steam Stripping at Feed Flow Rate of 8 RPM	. 58
Figure 35: Steam Stripping at Feed Flow Rate of 6 RPM	. 58
Figure 36: Steam Stripping Fortified Feed at Flow Rate of 8 RPM	. 59
Figure 37: Column Depletion Results Using ELT-03 as Feed (Taken from Devin Ergler)	. 61
Figure 38: Column Depletion Results Using MF2 as Feed	. 61
Figure 39: First Pass Column Elution Results	. 62
Figure 40:pH Trend First Pass Column Elution	. 63
Figure 41: Second Pass Column Elution Results	. 65
Figure 42: pH Trend Second Pass Column Elution	. 65

List of Equations

Equation 1: Formation of Alcohol from Sugar and Yeast	. 13
Equation 2: The Kremser Equation	. 47
Equation 3: Stripping Factor	. 47
Equation 4: Distribution Factor	. 48

Acknowledgements

Thank you to the two project advisors Nikolaos Kazantzis and David DiBiasio for their encouragement and feedback during this project. Another massive thank you to Alex Kopchik and Ravi Ponangi, the on-site project advisors for helping out with research, calculations, and brainstorming ideas. Finally, a massive thank you to each and every single one of the Process Technology employees at E&J Gallo for their willingness to help run experiments and show their support for this project.

E. &. J. Gallo Winery E. &. Gallo Winery

Abstract

E&J Gallo (Gallo) currently has a large waste stream that is a by-product of their oak toasting process in Livingston, CA that is used for flavor production. These materials are currently being stored and contain components that are of interest to the company. Because the process comes from oak, Gallo would like to use this existing waste stream to deliver a new tannin product differentiation tool. The goal of this project was to develop various isolation and extraction processes to separate the smoky flavors in the waste stream. In order to do this, the concentrations were first increased through pressure cooking and then exposed to five different separation/extraction processes: liquid-liquid extraction, column chromatography, batch distillation, steam stripping, and evaporation. Once the ideal tannins were extracted, the final step was to dose and spike wines to come up with the right flavor profile. While there were some results that were not conclusive, there was a positive outcome from other trials that will allow the company to create new aroma notes that may increase commercial sales and save the company money by removing the need to process the waste stream.

E. &. J. Gallo Winery E. & Gallo Winery

Executive Summary

This report was a cumulative effort between Worcester Polytechnic Institute and E&J Gallo Wineries. This project examined the analysis of smoky oak tannins ("Smoak") in a large waste stream. The purpose of this project was to use this waste stream to deliver a new smoke tannin product differentiation tool for the company. Analysis of different compounds of interest in each solution was conducted primarily through three processes: increasing the production of methoxyphenols through cooking, various extraction/separations techniques, and dosing the extracted tannins in wine to create new aroma notes. The extraction/separation techniques used in this project were liquid-liquid extraction (LLE), batch distillation, steam stripping, and column chromatography. The compounds of focus were guaiacol and syringol. Guaiaicol is known for its smoky aroma whereas syringol is known for its mouth-feel and taste. Vanillin and other tannins are also included in the data for Gallo's future interest. Unfortunately, Gallo was unable to obtain the waste stream of interest for this project, the Extracted Livingston Tannin (ELT-03) stream and so commercial tannins were used instead.

The major focus of this project involved the analysis of methoxyphenol production through cooking. Two different types of trials were conducted: one where total suspended solids (TSS) were varied and one where potassium carbonate was used to adjust the pre-cook pH. In total, thirteen trials were conducted. The results with varying TSS show that the post-cook pH decreased more with increasing oak chips (the solids), however this trend was not necessarily true for syringol and guaiacol production. The ideal TSS was found to be five grams of oak. With the use of potassium carbonate as the alkaline base, the results showed that the methoxyphenol concentrations increased 3-fold, giving promising results for separation.

Another focus involved the separation and extraction of guaiacol and syringol. The

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

ENTIAL TRADE SECRET MATERIAL D ACCESS AND DISTRIBUTION

E. & I. Gallo Winerv

methods used—batch distillation, steam stripping, and LLE—yielded mediocre separation results. An attempt was made to simulate the distillation and extraction by using AspenPlus, a simulation software, but due to the non-ideal nature of the solution, the system was not obtaining real world results. For batch distillation and steam stripping, the separation was as expected with guaiacol coming off the condensate, and syringol concentrating in the residual/bottoms. In order to improve separation, Gallo should look into a sequential distillation process that first utilizes steam stripping and then batch distillation. Because there was more guaiacol in the bottom during steam stripping, Gallo should attempt sequential distillation to see the separation potential. LLE results essentially showed the entire feed matrix coming out with the solvent stream, indicating that a five stage extraction may be too high. It would be interesting for Gallo to do a simple one stage extraction to get a better idea of the separation in the raffinate and extract streams.

Overall, the best results came from column chromatography elutions. With column chromatography, the second pass elution showed promising results, both aromatically and analytically. There reached a point where the aroma was predominately smoky and smelled like pure guaiacol, of which analytical results showed high concentrations. The highest concentration of guaiacol and syringol in both elutions occurred around 40-60% elution, which is an economic advantage for Gallo. This is because high proof ethanol is costly, so with the knowledge that elution results are optimal at 40-60%, higher concentrations of ethanol do not need to be used for elution – thus saving the company money. Though the elution results were positive, the column adsorption results were poor, but this may be due to the increased number of tannins present in the feed, thus leaving less room for the guaiacol and syringol to adsorb onto the FPX-66 resin.

The final component of this project examined spiking wine with the eluted samples from column chromatography. With wine dosing, the best aroma/flavor was achieved at approximately

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

43 ppb of guaiacol, which allows the company to dial back on their 75 ppb guaiacol goal in each sample. This is a promising result that can be further expanded through more taste and aroma trials that will allow Gallo to come up with new aroma notes.

Disclaimer: Due to the similarities with the parallel 2017 Gallo MQP, there are components of this report that are shared in both papers, predominantly in the sections regarding background and steam stripping/distillation. There are also similarities to the 2014 Gallo MQP in terms of background information for Gallo-specific processes.

E. &. J. Gallo Winery E. & J. Gallo Winery

Background

History of Winemaking

Wine has been a part of human history since before civilization. According to paleontologists, some form of wine has been around for more than 100,000 years. From Arabs in early Mesopotamia, Egyptian pharaohs, and the ancients Greeks, all the way to today's society, humans throughout history have been consuming wine (Vine et al., 2002). Despite its long history, Christianity is considered by some as the reason that wine has become the developed industry it is today. Christ offering his cup at the Last Supper motivated monks to plant vineyards wherever they settled during the Middle Ages and the Renaissance, and this movement lasted into the New World, with the development of wines in both New York and California, but it wasn't until 1860 with Pasteur's discoveries that people understood the process behind fermentation (Vine et al., 2002). However, the mid 1800s saw an infestation of Black Rot fungus, which caused a lot of discouragement to winemakers. To battle the fungus, a disease-resistant vine was produced in 1854, after 7 years of testing. The cost was \$5 per vine, which was an incredibly high price at the time, but the disease-resistant vines brought back the enthusiasm of the winemakers after the fungus epidemic. At the same time, vines from American vineyards were taken to Europe to help combat the *Phylloxera* root louse that was destroying European grapevines. As a result, there are still classic vines in European countries, such as France, that are still grafted on the American roots (Vine et al., 2002).

In addition to the problems caused by rot and fungus, the prohibition movement, started in 1846 in Maine, caused significant damage to the wine industry, and resulted in the burning of much of the recorded history of American wine. The prohibitionists worked to strike the word

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

4/2/2017

ENTIAL TRADE SECRET MATERIAL D ACCESS AND DISTRIBUTION

wine from the Bible, claiming it was actually "grape juice," and tried to ban Greek and Roman classic literature that mentioned wine. While some winemakers got around the Volstead Act, which approved prohibition across America, by marketing their wine as medicinal, sacramental, or as cooking wines, many others were forced to shut down their businesses (Vine et al., 2002). Despite prohibition, home winemaking became legal, and allowed each household to produce up to 200 gallons of wine per year for household consumption. Regardless, some winemakers chose to continue production illegally, and became bootleggers, which then became a huge industry for gangster networks, who could get around law enforcement. Finally, in December of 1933, the Repeal came into effect, and ended the continued destruction to the wine industry in America (Vine et al., 2002). Since the end of prohibition, the wine industry has boomed.

Today, it is estimated that approximately 1 in every 100 people works in the wine industry, whether at the vineyard, the winery, or in the wine marketing sector. Additionally, it is estimated that the French and the Italians consume about 16 gallons of wine per person per year, as opposed to the 2 gallons per person per year in the United States (Vine et al., 2002). As a whole, the wine trade has maintained a sense of stability and proved itself as a lasting industry.

Process of Winemaking

Wine is produced through a chemical reaction called fermentation, which uses the yeast on the grape skins and, if desired, added yeast to create an alcoholic solution from the grapes' juices. The glucose from the grapes reacts with the yeast to form both ethanol and carbon dioxide, as shown in Equation 1 (Boulton et al., 2002).

Equation 1: Formation of Alcohol from Sugar and Yeast

 $C6H12O6 + Yeast \rightarrow 2C2H5OH + 2CO2$

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

4/2/2017

E. & J. Gallo Winery E. & J. Gallo Winery

The process begins with collection during the harvest. Afterwards, the grapes are exposed to approximately 30-100 ppm sulfur dioxide to kill and prevent any further growth of unwanted bacteria on the grapes before undergoing fermentation (Boulton et al. 2002 and Vine et al., 2002). Dry wines can be protected from the bacteria with the low end of 30 ppm sulfur dioxide while wines that have residual fermentable sugar are protected by 100 ppm or more sulfur dioxide (Vine et al., 2002) Finally, the wine is clarified before it is distributed to customers (Boulton et al., 2002).

While the general fermentation processes between red and white wine are essentially the same, the initial process differs. Red wine gets its color from the tannins in grapes (tannins are a material naturally in plants that precipitate protein), so the juice is allowed to stay in contact with the skins during fermentation. White wines, on the other hand, are made by pressing the grapes as quickly as possible and removing the skins, thus reducing contact time. The lower contact time gives less time for the color and tannins to seep, giving a whiter color and different flavor. Additionally, red wines must mature, while maturation is less important for white wines (The Difference Between Red and White, n.d.).

One of the most important steps of the winemaking process involves the sensory component, generally completed during mixing. For example, red wines are aged in oak barrels so that the oak tannins can be extracted. The oak tannins create a smoky flavor in the wine (Kopchik, 2016 and Vine, 2002). Other factors that play into the overall flavor of the wine are sweetness, acidity, body, and fruit. Sweetness is controlled by how much sugar is left unfermented in the wine, while acidity is a measure of tartness. As a result, a balance between acidity and sweetness must be achieved to obtain an optimal flavor (Vine, 2002). The body of a wine is similar to the mouth feel, or how the wine feels in the mouth, whether heavy or light. Finally, the fruit flavor in the wine has a huge impact on how the wine is perceived by tasters. The intensity of the fruit flavor

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

ENTIAL TRADE SECRET MATERIAL D ACCESS AND DISTRIBUTION

varies with the alcohol content; the pH; and the aging material, as some wines are aged in oak barrels while others are aged in steel containers (Vine, 2002).

Sensory Evaluation

While the sensory components of wine are adjusted during the winemaking process, there are several different aspects that affect the tasting process. Some of these aspects include the physiological standings of the taster—hunger, fatigue, ability to smell and taste, et cetera (LaMar, 2001). Others involve both the shape and size of the wine glass, as different sizes affect the collection of wine volatiles (Mansfield, 2010). The combination of these attributes, along with a tasting process, allow a person to thoroughly experience and taste a wine.

The tasting process includes four elements: smell, taste, feeling, and seeing. A person's sense of smell is about 1,000 times more sensitive than their sense of taste, and as a result, smell is one of the most important elements in wine tasting. In fact, the flavor a person tastes is greatly influenced by smell, with about 75% of the flavor coming from smell, or olfaction, and the other 25% coming from taste, or gustation. With these facts in mind, the first step of the tasting process is to swirl the wine in the glass and smell the aroma. Doing this can give the taster an indication of the alcohol level in the wine. If the smell is similar to rubbing alcohol, the alcohol content is too high for the type of wine. Additionally, if upon tasting, the wine as a hot sensation, it is possible again that the alcohol content is high. However, if the wine "feels thin and unsatisfying on the palate," then the alcohol content is on the low side (5 Key Wine Components, 2012).

The combination of smelling, tasting, feeling, and seeing lead to a taste process that is thorough and thoughtful. To start tasting, about one-third or less of a wine glass should be filled, as this allows the vapors to stay in the glass. The wine should then be swirled in the glass to bring some of the vapor molecules into the air and increase the surface area for vapor to move. Next,

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

E St. Gallo Winery E St. Gallo Winery

one should smell the wine to play to the olfactory senses. This prepares the brain for the flavor to come. After smelling the wine, a sip should be taken and swirled around the mouth. This allows the taster to experience the mouthfeel of the wine. Slurping while drinking aerates the wine, volatizing it, which increases the intensity of the smell and flavor (LaMar, 2001). The taste testing process is an important part of analyzing the wine flavors produced during ingredient development and can be used to help ensure that a wine will be liked by consumers.

Tannins Being Observed

E&J Gallo has two major tannin production processes: ELT and LLT. At Gallo, the tannins from these two processes are combined together and treated to produce a final product that can be added to wine.

The Extracted Livingston Tannin (ELT) is produced by toasting oak chips in a rotary toaster followed by three washes. The chips are placed in a 13% ethanol bath and then two separate water baths for 24 hours each. The bath solutions are then combined and evaporated so that the desired tannins are concentrated at the bottoms and the oak condensate can be collected separately. At this point, the condensate is subject to many pH shifts and put through evaporation processes to increase the concentration of the tannins. The pH is first increased to 10 to reduce the volatility of the acidic solution and allow the ring structures of the tannins to open before going through an evaporation process. The pH is then increased to 12 to further the reaction and again evaporated to increase tannin concentration. In order to stop the reaction, the ring structures must be closed, so the product from evaporation is treated with citric acid to bring the pH down to 3. The condensate solution is then subject to column chromatography where the the solution is washed

E. &. J. Gallo Winery E. &. J. Gallo Winery

with two 40% ethanol washes followed by two to three 80% ethanol washes to obtain the final product (Ames & Walker, 2014).

The Livingston Liquid Tannin (LLT) has a much simpler production process, as it is just a highly concentrated condensate product formed from the wood toasting process. This condensate is condensed and concentrated by a factor of ten and then purified through column chromatography. In the resin column, the solution is washed with two 40% ethanol washes and two 80% ethanol washes to give the final product (Ames & Walker, 2014).

E. &. J. Gallo Winery E. & Gallo Winery

Purpose

The main purpose of this project was to use the waste stream from the ELT process and separate the desired flavors. The ELT-03 waste stream was a by-product of E&J Gallo's primary oak extraction step involved in flavor production. This stream contained ethanol, water, and other organic compounds. These other organic compounds include guaiacol, syringol, and other methoxyphenol and non-methoxyphenol compounds. Each of these compounds had a different flavor profile, but the products with smoke flavor were of importance in this project. Unfortunately, due to the processing time of the oak chips, the ELT-03 waste stream was not available for testing. Instead, many stand-ins such as MF2 (Mocha Fume 2), lab-made oak slurries of various concentrations, and another waste streams (CT-04) were used. Using these stand-ins should, in theory, yield similar results to the waste stream except with cleaner results. Once these components were extracted, they were able to be added to unprocessed wine for flavoring.

Expected Benefits

By recycling the ELT-03 waste stream, it is expected that Gallo will save money on treatment processes, as the amount of waste will be decreased. As an added bonus, creating a new smoky flavor may allow Gallo to start a new line of wines, thus increasing commercial sales. Because the process will not require the use of any new equipment, production costs should not be affected, and Gallo should instead see an increase in their revenue.

ENTIAL TRADE SECRET MATERIAL ACCESS AND DISTRIBUTION

Experimental Background & Methodology

The two main smoky flavors of importance were predominantly guaiacol and syringol. These were found in very small concentrations in the waste stream (parts per million) and needed to be separated from the rest of the waste stream. Once the desired smoky flavors were separated, it was possible to add them to wines in different samples and conduct taste tests to determine optimal flavor. The final step was to use this concentration to estimate the feasibility of production as well as provide a case count based on the quantity of the flavor necessary for each bottle of wine. This process is illustrated in Figure 1 below.

There were five ideas for separation: distillation, steam stripping, column chromatography, evaporation, and liquid-liquid extraction, which are described in further details in the next section. Bench scale trials were conducted to find the ideal scheme for isolation/separation of guaiacol and syringol in the waste stream.

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

Separation and Extraction Techniques

Cooking Conditions

One way to increase the compounds of importance was to introduce the waste stream to different pressure, temperature, and pH ranges to try and increase the guaiacol and syringol concentrations in the stream. Gallo had already conducted proof of concept experiments in their lab using their small pressure-rated cooking vessel in the past to try to raise these concentrations. As seen in Figure 2, the waste stream lignins are converted to guaiacol and syringol at high temperatures, pH levels, and with more cooking time.

Figure 2: Various Pressure and Time Effects on Concentration of ELT Waste Stream

(provided by Gallo)

Based on past work conducted by intern Devin Ergler in 2014, optimal cooking parameters were found to be at a basic pH of 12, 40 psig maximum cooking pressure, and 120 minutes of cooking time. From this information, Gallo wanted to gain an understanding of the total suspended

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

solids versus alcohol content in the cooked product. In order to understand this, various slurries of oak, water, and ethanol were mixed and cooked in a high pressure Soxhlet extractor, seen in Figure

4. The process is outlined below in Figure 3.

Figure 3: Outline of Cooking Process

The pH was increased to 12 using potassium hydroxide in order to open the ring structures of the lactones and shift the reaction. After the cooking process, the pH was adjusted to 3-3.5 in order to increase the volatile aroma compounds and to re-close the ring structures. A more detailed procedure can be found in Appendix I.A. Once cooked, 50 mL of the sample was sent to the lab to test for aroma compounds and alcohol content. The rest of the samples were stored for further separations and extractions processing.

Figure 4: High Pressure Soxhlet Extractor (used for cooking)

Further research also indicated that methoxyphenol production is affected by the type of alkaline used to initially increase the pH of the slurry to 12. A study showed that "carbonates obviously promoted the production of methyoxyphenols while hydroxides greatly increased the alkyl-phenol production" (Peng, 2014). As seen in Figure 5, the 2-methoxyphenol production increases 3-fold when potassium carbonate (K₂CO₃) is used as the alkaline additive instead of potassium hydroxide (KOH). Once the optimal total suspended solid was determined with KOH as the alkaline, K₂CO₃ was also used to see the effects on guaiacol and syringol increase.

Figure 5: Results from Past Study on Methoxyphenol Production (Peng)

All in all, thirteen different trials were conducted where total suspended solids versus alcohol content and the effects of alkalinity were tested. Once the optimal cooking parameters were found and these concentrations were increased, the next step was to try to separate out the smoke components.

Column Chromatography

Chromatography, in general, is used to separate components. Column chromatography, specifically, also purifies components. These components are separated into two different phases: mobile phase and stationary phase ("CHE310: Column Chromatography", n.d.). The stationary phase in column chromatography is the packed resin bed, a solid adsorbent placed in a glass column. The mobile phase is added to the top of the glass column and allowed to flow through the stationary phase using external pressure (a peristaltic pump). In theory, the mobile phase is the ELT-03 stream, but Mocha Fume 2 diluted with water and CT-04 was used instead. The column

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

4/2/2017

was packed at a 50 milliliter bed volume of FPX-66 resin, a food grade adsorbent resin used in Gallo's lab. The overall process of column chromatography is illustrated in Figure 6.

Figure 6: Column Chromatography Process

There were 20 liters of the feed added to the column where the flow rate was controlled with the pump around 8-10 milliliters/minute. The stream exiting the resin column contained the depleted tannins and samples were collected every 4 liters in order to map out how much of the tannins adsorbed onto the resin column. Once all 20 liters were depleted, the column was eluted with ten bed volumes of ethanol at various ethanol concentrations: 20%, 40%, 60%, 80%, and 95%. The depleted tannins were then re-fed through the resin column and eluted in order to further separate and purify the components in the feed stream.

Distillation

Distillation is a process of separation that can generally occur in either a batch process or a continuous process. Batch distillation tends to have a product with a lower alcohol content than with continuous distillation. With the production of alcoholic beverages, the distillation process separates alcohol and water. Heat is used to vaporize one of the components and isolate the alcohol

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

4/2/2017

ENTIAL TRADE SECRET MATERIAL D ACCESS AND DISTRIBUTION

E. & I. Gallo Winerv

and congeners within the feed (Total Wine & More, 2016 and How Distilling Works, n.d.). The first part of the alcohol mixture, known as the wash, is the heads. The heads contains the materials that have lower boiling points, such as ethanol and syringol. The seconds part of the wash to vaporize is the hearts. The hearts have the highest concentration of the desirable alcohols, such as the esters, which contribute fruity flavors. Finally, the last part of the wash to vaporize is tails. The tails has predominantly water. Like in non-alcohol based distillation, each stream will have different concentrations of each component than originally found in the feed (Total Wine & More, 2016 and How Distilling Works, n.d.).

The distillation process starts with a base containing sugars. The sugars are converted in the fermentation process into alcohol, which is then distilled. After distillation, flavoring can be adjusted to change the style and flavor template. In the wine process, the grape juice is fermented, and the product can then be distilled into brandy (Total Wine & More, 2016 and How Distillation Works, n.d.). Higher alcohol content in wine or wine products such as brandy require distillation because fermentation is not enough to get achieve the high alcohol content. Alcohol levels around 14-18% are toxic to the yeast in the fermentation process. As a result, another method must be used to get a more concentrated beverage (How Distillation Works, n.d.).

The main organic compounds of focus were syringol and guaiacol. As seen in Table 1, these have very different boiling points, so it would normally be very difficult to get the two organic compounds out together.

Component	Boiling Temperature (°C)	Molecular Weight (g/mole)	Vapor Pressure (20-25 C)	Flavor/Smell
Ethanol	78.37	46.068	7.33 kPa	Sweet
Water	100	18.02	3.17 kPa	-
Guaiacol	204-206	124.14	0.0137 kPa	Roasted Coffee
Syringol	50-57	154.165	0.000823 kPa	Smokey

Table 1: List of Boiling Temperatures (Restek), Molecular Weight, Vapor Pressure, and Flavor/Smell Components

The idea for the distillation column was to have ethanol and guaiacol come off the top of the column and water and syringol off the bottoms stream, as seen in Figure 7. Once separated, the residual stream and condensate stream can be evaporated using a rotary evaporated, which will be described in a later section, to concentrate the guaiacol and syringol.

Figure 7: Distillation Column Separation

Three different distillation trials were conducted using the material from the cooking trials at three different alcohol levels and with different column types. The condensate was then collected in increments of 10% of the feed volume in order to map out separation of the important components. This set-up can be seen in Figure 8. These results were then compared with expected results from Aspen simulation software.

ENTIAL TRADE SECRET MATERIAL D ACCESS AND DISTRIBUTION

Figure 8: Distillation Column Set-up

Steam Stripping

Steam stripping is a type of distillation that makes use of steam at the bottom of the column instead of using a reboiler. In steam stripping, water is the heavy component from which the other components, generally volatile organics, are separated (Steam Stripping, n.d.). There are several typical applications which stream stripping can be used for, including alcohol removal from water. The process will usually take place at temperatures close to 100°C, the boiling point of water. While steam stripping requires lower operating temperatures than air stripping, another separation technique, steam stripping is more capital intensive (Steam Stripping, n.d.).

In steam stripping, steam is injected into the bottom of a tower as a means of heating the system and beginning vapor flow. The heat provided from the steam then brings the organic

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

E. S. I. Gallo Winery E. S. I. Gallo Winery

material, in this case, alcohol, into the vapor phase, where it can be carried out the top of the column. The stream is fed into the top of the column, and vaporization occurs as the feed falls (Steam Stripping, n.d.). The flow rate and pressure of the steam varies with the operating pressure, the material being separated, and the desired percentage of separation. The separation thermodynamics cannot be based on Henry's law because of the temperatures, interactions between materials, and varying concentrations, so the non-random two liquid (NRTL) activity coefficient model is used. It is recommended that laboratory tests be completed to determine the varying parameters, but usually vapor pressure data proves to be adequate (Steam Stripping, n.d.). This information was important while completing Aspen simulations.

The CT-04 waste stream was used as feed for steam stripping where 500 milliliters was fed to the system and completely stripped. The set up for this experiment can be seen in Figure 9. Various trials were conducted where the flowrate was adjusted and the feed was fortified. The condensate and bottoms were then sent for sample analysis.

ENTIAL TRADE SECRET MATERIAL D ACCESS AND DISTRIBUTION

Figure 9: Steam Stripping Column Set-up

Falling Film Evaporator

The falling film evaporator works as a special type of heat exchanger and can be used to increase the concentration of certain components in the liquid. Here, the feed enters the top of the tubes and flows down, due to gravity, the evaporator. Steam is used as an external heating source, and two phases form inside the tubes and are separated by means of an external separator. As the waste stream flows down the tube, partial evaporation occurs, which can increase the composition of the desired guaiacol and syringol in the stream. This concept is demonstrated in Figure 10.

Figure 10: Falling Film Evaporator (Evaporation Technique, 2016)

Gallo has a LUWA-type falling film evaporator that separates light and heavy components using indirect heat transfer. However, the large scale evaporator was never used due to time constraints. Instead, smaller rotary evaporators were used for separation. The rotary evaporator, as seen in Figure 11, consists of a vacuum system, a condenser, and a motor unit that rotates the feed. The water bath was increased to about 70°C, the chiller adjusted to -3°C, and the feed was added to a round bottom flask and rotated. The vacuum was then turned down and the pressure was set to 300 milliPascals (mPa) until a desired ratio of condensate to residual was attained.

Figure 11: Bench-scale Rotary Evaporator Set-up

ENTIAL TRADE SECRET MATERIAL D ACCESS AND DISTRIBUTION

Liquid-Liquid Extraction

This separation technique is based on solubility. In theory, the waste stream would be combined with a solvent in order to separate the aqueous and non-aqueous phases to extract only the desired organic compounds (M., 2010). As seen in Figure 12, the feed and the solvent mix together to pull out the desired solute, in this case guaiacol and syringol, into the extract stream. Figure 13 shows the physical set-up of the liquid-liquid extraction process.

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

Figure 12: Liquid-Liquid Extraction Process

Figure 13: Liquid-Liquid Extraction Set-up

N-butanol was the solvent of choice as it ties to another project where n-butanol can be separated from the fusel oil side stream from brandy stills. Bench trial scales were conducted using

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

4/2/2017

E. &. J. Gallo Winery E. & J. Gallo Winery

a separatory funnel. Mocha Fume stand-ins were used as the feed and three trials were conducted. Two trials were conducted where the ratio of the feed to the solvent was maintained at a 1:1 ratio (50 mL each) and 1 trial was conducted where the the feed to solvent ratio was 1:2 (50 mL feed, 100 mL solvent). These trials mocked a five stage extraction where the organic phase was treated as the new feed and fresh solvent was added to the separatory funnel each time. This principle is illustrated in Figure 14.

Lab Tests at Gallo

At Gallo, three analytical lab tests were run on all smoak samples submitted. These tests

are described in Table 2.

Table 2: Analytical	Tests at Gallo
---------------------	----------------

Test Name	Test Purpose		
MVAZ	-Enzymatic volatile aromas -Indicates amount of acetic acid		
MALC	-Ethanol concentration		
\$MAROMOAK	-Aroma concentrations of of various compounds		

Results

Cooking

As previously mentioned, the optimal cooking conditions had already been determined to be 40 psig for 120 minutes at a pH of 12. The main focus for cooking was to discover the effect of methoxyphenol production from the amount of total suspended solids (TSS) and alcohol content as well as the use of different bases. In total, thirteen trials were conducted.

Effect of Total Suspended Solids and Alcohol Content

The slurries were created with oak chips of various ethanol concentrations from 0-20% and the TSS varying from 1-60 gram(s). As seen in Figure 15, the post-cook pH, before it was readjusted back down to 3, decreased with increasing TSS. This was due to the breakdown of the lignins in the oak chips during the pressure cooking step. With more oak, there is more lignin breaking down and, as a result, more acetic acid production which reduces the final pH from the starting pH of 12.

Figure 15: TSS versus Post-Cook pH

Acetic Acid Production

The amount of acetic acid produced for each trial was also calculated using the ICE method and the pKa values. The concentration of acetic acid produced was very low and these calculations can be found in Appendix II.C.

While there was a trend with TSS, varying the ethanol concentration did not have a large effect on post-cook pH. Figure 16 shows four different alcohol concentrations at a constant 5 grams of suspended solids in the slurry. In comparison to the 0% ethanol concentration, there is a pH decrease for the other samples in the chart. However, the trend is not consistent as the pH increases at 15% and 20% ethanol.

Sensory Testing

All samples were sent to the lab for analytical testing to get concentration profiles of the methoxyphenol production. However, lab results take about two weeks to process so sensory testing was performed at the end of the cooking trials to understand how to further experimental trials. The aroma for each specific trial can be found in Appendix V. Most samples had varying intensities of campfire smoke with notes of mocha and fall spices. In order to collect unbiased and well-rounded data, many employees at Gallo were asked to give their input. The sample with the most overall pleasing aroma was at 5 grams of oak and 10% ethanol with deep wood and pumpkin spices. It is important to note that the aroma of the cooked oak slurry varies significantly from the aroma of the ELT-03 waste stream. Devin Ergler's results in 2014 mentioned pungent notes of cumin and fish along with smoky aromas while the cooked oak aromas were much cleaner.

ENTIAL TRADE SECRET MATERIAL D ACCESS AND DISTRIBUTION

Analytical Lab Results

In terms of tannin production, there are three major tannins of focus for this MQP: syringol, guaiacol, and vanillin. Syringol and guaiacol are important due to their contribution of the smoky flavors and vanillin production is, in general, of interest for the company. There are other interesting trends in production of eugenol, cis-oak lactone, and trans-oak lactone that can be found in more detail in Appendix II. Figure 17 illustrates the different concentrations produced from cooking at various conditions.

Figure 17: All Cooking Trials (for TSS & Percentage Alcohol)

Looking at only guaiacol, there was a two-fold increase in concentration between the 1 gram oak and 60 grams of oak at 10% ethanol and 120 minutes of cooking. However, the difference in concentration between 5 grams and 60 grams at the same conditions were minute. Another interesting phenomenon was the spike in guaiacol and syringol concentration when there was no ethanol added to the 5 grams oak slurry, suggesting that the alcohol actually negatively impacted

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

E St L Gallo Winery E. St L Gallo Winery

methoxyphenol production in the Soxhlet extractor. However, maintaining the pressure was a major challenge in this experiment, as the power had to be continually adjusted to keep a constant pressure. There were many instances when the pressure would overshoot to 50 psig or undershoot to 35 psig with a slight change in voltage. This instability affected the reaction mechanisms and therefore the methoxyphenol production, which likely is what resulted in inconsistent data. From the data collected, no definite conclusions can be made about the effect of alcohol on the methoxyphenol production until more trials are conducted for reproducibility.

Taking into account the multiple factors, it was decided that the trial with 5 grams of oak and 10% ethanol was the "optimal" condition for further testing at Gallo. While other trials had higher syringol and vanillin concentrations, this trial had the closest aroma to what was expected. The TSS in the slurry also closely mimicked the ELT-03 waste stream; only 1 gram of oak would have been too little in the waste stream and 60 grams would be oversaturated with oak chips.

Effects of Alkaline on Methoxyphenol Production

The past cooking trials were tested using KOH as the base to increase the pH before cooking. As mentioned before, past research indicates an increase in methoxyphenol production of K_2CO_3 , as seen in Figure 5 in the Methodology. In order to test these results, 5 grams of oak with 10% ethanol slurries were used for consistency. Three trials were conducted: one where the pH was adjusted to 12 using only KOH, one with pH adjusted to 12 using only K_2CO_3 , and one where a mixture of both bases were used. There were two major issues with the use of K_2CO_3 only. The first was trying the maintain pressure in the extractor and the second problem was with precipitation. K_2CO_3 increased the production of CO_2 in the extractor and the pressure would overshoot to 60 psig. Then, in order to maintain equilibrium, the pressure would then shoot back

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

E St. Gallo Winery E. St. Gallo Winery

down to zero and the cooking process would have to be restarted. The other problem was foaming and solidification when citric acid was added to the cooked slurry. With each increment of citric acid added, bubbles formed due to the reaction of citric acid with K₂CO₃, as seen in Figure 18. There reached a point around a pH of 4 where the slurry completely solidified into a peanut butterlike texture. The solid was vigorously agitated and left sitting for a few hours and separation between the liquid and solid phase was noticed. Once there was known separation, the solidified slurry was centrifuged had approximately a 54% yield. Since the liquid recovery was so low, it was decided that a combination of KOH and K₂CO₃ should be used to increase the pH before cooking. After about a pH of 10, K₂CO₃ reaches its equivalence point in the slurry, and it takes almost twice as much base to increase the pH. This may have oversaturated the slurry, thus causing solidification during the post-cook pH adjustment. To prevent this, the pH was increased to about 9.5 with K₂CO₃ and then fully increased to 12 using KOH.

Figure 18: Precipitation During pH Decrease Step

Foaming

Precipitation/solidification around pH pf 4.03

Centrifuged: approx 54% yield

As seen in Figure 19, the concentrations of guaiacol and syringol increased by over 50 times when K_2CO_3 was used to increase the pH to 12 instead of KOH. When using a combination of the two bases, the guaiacol and syringol concentrations were a little smaller, but the vanillin concentration increased. Although the concentrations of the smoky tannins are lower, there was no solidification of the slurry and therefore no centrifuging step necessary. The tradeoff then

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

became liquid yield versus increased concentration. Based on the results, it was recommended that the last two data sets (on the right) would be great concentrations for Gallo to work with. For example, the ratio of K_2CO_3 to KOH can be further examined and developed to see if a higher concentration of guaiacol and syringol can be obtained.

Figure 19: Effect of Base on Methoxyphenol Production

When performing sensory analysis of these samples, it was noted that with K₂CO₃, the smoky aroma was not pertinent. Instead, there was a much stronger starchy/pretzel aroma. With the pH decrease, the aroma became sweeter with a slight licorice/root beer undertone. In order to try to get the targeted aroma and see the effects of concentration, two samples of 5 grams oak, 10% ethanol, and pH adjusted with only K₂CO₃ were evaporated using a rotary evaporator after cooking. The cooked slurry was evaporated until about 60% condensate was produced. One sample was evaporated after the pH was adjusted back down to 3-3.5 (referred to as "post-rotovap") and another was adjusted back up to a pH of 12 after cooking and then evaporated and re-adjusted back down to 3-3.5 (referred to as "pre-rotovap"). After evaporation, the bottoms had a slight wet-wood aroma, more so in the pre-rotovap sample and these sensory results follow the analytics. As seen

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

ENTIAL TRADE SECRET MATERIAL D ACCESS AND DISTRIBUTION

in Figure 20, the guaiacol and syringol concentrations increased in the pre-rotovap bottoms sample. However, in the post-rotovap sample, there is a higher guaiacol concentration in the condensate. This may be due to the lower pH during evaporation. The tannins and aroma compounds were more volatile at a lower pH so guaiacol was more likely to come off as the condensate since it was the lighter key.

Figure 20: Evaporated K2CO3 Samples

Liquid-Liquid Extraction (LLE)

The purpose of LLE was to see the effect of separation using n-butanol as a solvent. Two trials were conducted using diluted Mocha Fumes (MF2) as the feed in a 1:1 ratio (1 part feed to 1 part solvent). One trial was conducted using MF2 as the feed in a 1:2 ratio (1 part feed to 2 parts butanol). Tables 3 and 4 describe the aroma compounds during the five stage extraction.

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

"Stage"	Aroma (Organic)	Color (Organic)	Color (Aqueous)	Volume (Aqueous) mL
1	BBQ Sauce	Dark Brown	Dark/Medium Brown	50 mL
2	Honey BBQ Sauce/Bacon	Dark Brown	Medium Brown	40 mL
3	BBQ Sauce	Dark Brown	Honey	35 mL
4	Stronger bacon notes/hickory	Darker Brown	Light Honey	~22 mL
5	Undertones lost	Dark Brown	Light Honey	18 mL
				Final Volume: 15 mL

Table 3: MF2 1:1 Extraction Components

Table 4: MF2 1:2 Aroma and Volume Results

"Stage"	Aroma (Organic)	Color (Organic)	Color (Aqueous)	Volume (Aqueous) mL	
1	Very strong butanol/light notes of	Dark	Dark/Medium	50	
I	BBQ sauce	Brown	Brown	50	
n	Honey BBQ sauce, notes of	Dark	Medium	40	
4	bacon	Brown	Brown	40	
3	PPO Sauca	Dark	Honoy	25	
3	BBQ Sauce	Brown	Honey	33	
4 Notes of bacon, strong butanol		Dark	Light Honey	22	
		Brown	Light Honey		
5	Very much butanol - undertones	Dark	Light Honey	15	
3	of bacon lost	Brown	Light Honey	15	
				Final Volume:	
				15 mL	
				(70% loss)	

When n-butanol was added, the mixture separated into a dark brown, viscous layer and a lighter brown, nonviscous layer. Using aroma and visual senses, it was assumed that the organic layer (the darker, viscous layer) was the extract and the lighter layer was the raffinate. However, when the lab results came back, the opposite was true. The aqueous, nonorganic phase was

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

E. & J. Gallo Winery E. & Gallo Winery

determined to be the true extract phase, as the important solutes from the feed came out in this phase (recall that the extract phase is solute-rich and the raffinate phase is solute lean). As seen in Figures 21 and 22, nothing came out in the raffinate stream (the viscous stream that was assumed to be the organic phase). This is perplexing because the smoke and bacon aromas were present in the raffinate stream. It is possible the entire feed matric was extracted along with the n-butanol and the smoke aroma molecules stayed behind and concentrated with the rest of the feed. This would explain why the darker, viscous stream lost volume over time; the solutes were pulled out and the aroma molecules stayed intact.

Scale-Up

In order to scale up the LLE results from the two conducted trials in the separatory funnel, the Kremser equation was used to translate the results to a continuous counter-flow extraction. The Kremser equation (Equation 2) gives the number of theoretical stages from the following equation:

Equation 2: The Kremser Equation

$$\mathsf{N}_{\mathsf{Theoretical}} = \frac{\ln\left[\left(\frac{1}{E}\right) + \left(\frac{E-1}{E \times x}\right)\right]}{\ln(E)}$$

where E is the stripping factor which indicates the ratio of the solute being stripped from the extract. In the Equation 3, V is defined as the solute in the extract and L is defined as the solute in the raffinate.

Equation 3: Stripping Factor

E=Stripping Factor=
$$\frac{V*k}{L}$$

E. S. I. Gallo Winery E. S. I. Gallo Winery

The stripping factor uses a distribution factor, K, which is the concentration of the solute in the extract phase (y) divided by the concentration in the raffinate phase (y), as seen in Equation 4 (Wankat).

Equation 4: Distribution Factor

K=Distribution Factor= $\frac{y}{r}$

The results of this scale-up can be seen in Tables 5 and 6. The value for the stripping factor and distribution factor are extremely high in both cases, and the theoretical number of stages is approximately -1, which cannot occur in practice. The high factor values indicate that the solute in the feed has completely come out in the extract phase, as suggested in Figures 21 and 22. The nonsensical negative number of stages is an indication that there is actually over extraction in the five stages, meaning that one stage may be sufficient for extraction. These calculations can be found in Appendix II.

MF2 (1:1)	K	E	Number of Theoretical Stages
Solute			
Guaiacol	236.35	2718.02	-0.973829761
Syringol	61.76	710.24	-0.996541394

Table 6: Scale-Up Results for MF2 1:2 Extraction

ENTIAL TRADE SECRET MATERIAL E. & J. Gallo Winery

MF2 (1:2)	K	Ε	Number of Theoretical Stages
Solute			
Guaiacol	72.36	1133.78	-0.9859
Syringol	17.40	272.67	-0.9984

The poor results from the scale-up and from the lack of separation may be due to assumptions made in these experiments. Kremser assumes that the diluent (water) and solvent (nbutanol) are completely immiscible. However, the water from the MF2 feed and the n-butanol are actually miscible up to approximately 20% by volume, which would have skewed the results. Also, the Kremser equation is used for counter-current extraction, but these experiments were run using five stages of co-current extraction. It is recommended that Gallo look into the results from a quick one stage extraction and compare the separation to these five stage separation results. It may also be interesting to look at the effects of feed temperature and pH on separation.

Batch Distillation

Three distillation trials with the 5 grams cooked oak slurry at different ethanol concentrations were combined and used as the feed. The first trial was only 10% ethanol, and as Figure 23 shows, a vigreux column was used with 3 valve trays. In order to maintain constant concentration of the condensate, the aim was to begin collection at a steady temperature of 78-80°C. However, during the actual run, the temperature would spike well above 90°C every time the reflux valve was opened to let out the condensate. It was also noticed that the liquid never went down the vigreux column, yet there was quite a bit of vapor going up. This was most likely an

indicator that the system reached a pinch point, or that there was no liquid hold up in the column

and the vigreux column was experiencing bad column performance.

Figure 23: Distillation Column Set-Up for 10% Ethanol Trial

Figure 24 shows the results of this separation. All the alcohol (MALC) was distilled within the first two collections, leaving almost none in the residual. The trend in alcohol concentration closely follows the trend in pH spike, as shown in Figure 25. With increasing ethanol in the sample, the pH became more basic. In terms of component separation, the syringol stayed in the bottoms whereas most of the guaiacol was present in the condensate, as expected.

Figure 24: Distillation Results (Absolute) of 5 Gram Oak, 10% Ethanol

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

E. &. J. Gallo Winery E. & Gallo Winery

The next trial was the 5 grams oak sample, except with 20% ethanol. This time, six bubble cap columns were used in place of the vigreux column, as seen in Figure 26. The first two collections had notes of sweet potatoes and vanilla but the third collection had a salty and unpleasant odor. At this point, it was noticed that there was more vapor and less liquid condensing in the column. This trial also ran into a similar problem with maintaining constant temperature as in the previous trial. The condensate temperature kept spiking to 90°C and then undershooting below 80°C when the reflux valve was closed. With the thought that the ambient temperature changes were causing these problems (opening and closing doors to let in cool air), the column was then insulated for the rest of the trial. The temperature then started to stabilize and the condensate was collected.

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

The results of this trial are shown in Figure 27 and Figure 28. As seen from the first trial, the ethanol concentration decreases with each condensate collection, and all the guaiacol is evaporated when all the ethanol has been distilled. The separation with 20% ethanol shows more promising separation that the 10% ethanol, as there is a high concentration of syringol in the bottoms and very little guaiacol. This suggests that the light key (guaiacol) is more likely to distill off with higher alcohol content.

Figure 27: Distillation Results (Absolute) of 5 Gram Oak, 20% Ethanol

Figure 28: Distillation Results (Absolute) of 5 Gram Oak, 20% Ethanol

The pH trend for the 20% ethanol, as seen in Figure 29, is slightly different from the 10% ethanol trend. The pH of condensate 2 decreased and then increased in the next collection before stabilizing. It was expected that the pH would continually decrease as guaiacol is removed from the feed, as the volatile components are increasing in the condensate. This slight change in trend may be due to the temperature inconsistency when collecting the condensate.

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

E. & J. Gallo Winery E. & J. Gallo Winery

In order to map out better separation, the 15% ethanol trial was run with only 3 valve trays, as seen in Figure 30. The first few collections smelled of sweet caramel and then the smell of ethanol started to overpower the condensate collections. The last collection had a sour note and the bottoms had a woodsy aroma. With this column, the temperature managed to stay constant until the last two collections. At these two collections, the guaiacol concentration is highest, as seen in Figure 32. MALC results were not given back from the lab in time for this project report, but it is expected based on the last two trials that the ethanol concentration was lowest at these two collections.

Figure 30: Distillation Column Set-Up for 15% Ethanol Trial

Figure 31:Distillation Results (Absolute) of 5 Gram Oak, 15% Ethanol

As seen in Figure 33, the pH trend decreases with each condensate, as it did for the 10% ethanol trial. This is an indication that more volatile components come out with more collections, with Condensate 4 and Condensate 5 having the largest amount of volatile components. This is in

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

line with the information given in Figure 32 where the concentration of guaiacol is the highest at

both of these collections.

Figure 33: pH Trend for 5 Gram Oak, 15% Ethanol Distillation Trial

Steam Stripping

The steam stripper was run using CT-04, an unprocessed waste stream containing smoak components. The smoak feed stream was initially transparent, so Valuable Dark Red (VDR), a grape component, was used to color the feed to a dark shade of pink. VDR is used in winemaking as a coloring agent, so it was expected to have negligible impact on the separation results and as such still comply with the component stipulations of wine. However, it was discovered that the VDR left solids in the CT-04 stream, and the impact of these solids is unknown. It was initially believed that the solids were oak particles, but after looking at the solid found in the bottoms and at oak solids, it was clear that this was not the case. These images can be seen in Appendix II.D. Several trials were completed using the waste stream as the feed. Variations were made in the feed flow rate, which ranged from 6 rotations per minute (rpm) to 10 rpm, while all other

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

E. &. J. Gallo Winery E. &. A. J. Gallo Winery

parameters were kept constant. Samples from both the distillate and bottoms were collected and sent out to be analyzed. The results of the analyzation are shown in Appendix II.D.

Figure 34 and Figure 35 show the concentration of the bottoms and distillate at two different flow rates: 8 rpm and 6 rpm. These results show that the higher flow rate yielded better separation of guaiacol in the distillate. As expected, guaiacol was pulled out in the light phase with the alcohol.

Figure 34: Steam Stripping at Feed Flow Rate of 8 RPM

Figure 35: Steam Stripping at Feed Flow Rate of 6 RPM

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

E St L Gallo Winery E. St L Gallo Winery

Aroma testing was completed on both the bottoms and distillate samples to complete a sensory analysis. The samples taken from the distillate had a stronger alcohol smell, as was expected, because alcohol is more volatile than water, meaning it was more likely to come off the top of the column. This was corroborated by the lab results, which showed that most of the distillate samples contained predominantly furfural and furfural alcohol. The distillate was also clear, as the color components in the VDR were too heavy to transform into the vapor phase. Additionally, the samples collected from the bottoms had a significantly weaker smell for the same amount of volume. However, the smell among each distillate sample and among each bottoms sample were very similar. The smells were reminiscent of oak, which was supported by the fact that the smoak material gets its scent from oak tannins.

After completing several trials of steam stripping, the initial feed was fortified, taking the ethanol content from about 7% to about 10% by volume. This result can be seen in Figure 36. These variations with the feed were intended to see how the different levels of ethanol affected the overall separation.

Figure 36: Steam Stripping Fortified Feed at Flow Rate of 8 RPM

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

ENTIAL TRADE SECRET MATERIAL ACCESS AND DISTRIBUTION

All in all, there were four key results from steam stripping the CT-04 stream:

- 1. There was 7.5 times the amount of guaiacol in the distillate than bottoms.
- 2. The non-fortified feed had little to no recognizable guaiacol in neither the bottoms nor distillate.
- 3. Fortifying the feed increased percentage of guaiacol in the distillate
- 4. Increasing feed flow-rate increased guaiacol production in distillate.

Sequential Distillation

Steam stripping and batch distillation showed inadequate separation results, with high amount of guaiacol still in the bottoms for steam stripping. It would be interesting for Gallo to look into sequential distillation to see how much further the waste stream components can be separated. It is recommended that Gallo steam strip the waste stream first and then batch distills in order to achieve further separation.

Column Chromatography

One full set of column chromatography was done with the diluted MF2 substituting as the waste stream. This feed was diluted to about 10 ppm guaiacol in order to mimic the ELT-03 waste stream. There was 20L of the diluted MF2 run through 50 mL of FPX-66 resin in order to compare results collected by Devin Ergler in 2014. He used the ELT-03 waste stream and his results can be found in Figure 37. The results from the experiment completed using the diluted MF2 can be found in Figure 38 and follow a similar trend, decreasing adsorption over time.

Figure 37: Column Depletion Results Using ELT-03 as Feed (Taken from Devin Ergler)

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

E. &. J. Gallo Winery E. & Gallo Winery

The data for this experiment was normalized so that it could be compared to Devin's bed volume of 25 mL. In Figure 38, "1" refers to the first pass column chromatography results and "2" refers to the results from the second pass, when the depleted tannins from the first pass were reused as feed. In Figure 37 (Devin's data), "400" refers to the first pass and "800" refers to the second pass. The results from using the MF2 had a much lower yield in terms of the guaiacol, syringol, and vanillin adsorbing to the column. This was due to the fact that the MF2 stream had more components in the stream than the waste stream did, making it much "busier." Since there were many concentrations in the MF2 feed, there was most likely other high affinity components that displaced the guaiacol in the resin, which is why the percent adsorption drops very quickly.

After the feed was run through the column both times, the column was eluted with ten bed volumes at five ethanol concentrations: 20%, 40%, 60%, 80%, and 95%. The concentration spikes can be seen for both elutions in Figure 39 and 41.

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

E. S. L. Gallo Winery E. S. L. Gallo Winery

In the first pass elution, the concentration (especially of syringol) increased around bed volume 4, reached its peak around bed volumes 5 and 6, and rapidly decreased afterwards. This reduction in volatile components affected the pH trend of each elution and the pH slightly increased as the tannin concentrations decreased, as shown in Figure 40. Aroma tests were also conducted for each elution, as seen in Table 7. The more pleasant aromas were present at bed volumes 4-6, which is also where the tannin concentrations were highest.

Figure 40:pH Trend First Pass Column Elution

Bed Volume	Percentage Ethanol	Aroma
1	20%	Barbeque sauce, hint of brown sugar
2	20%	Concentrated barbeque sauce, bacon
3	40%	Campfire smoke, hint of barbeque
4	40%	Barbeque, smoke
5	60%	Firewood
6	60%	Firewood smoke
7	80%	Cedar, cigars
8	80%	Hint of bacon, pipe tobacco
9	95%	Cigar, leather
10	95%	Very faint tobacco

Table 7: Sensory Results from First Pass Elutions

In the second pass elution, the concentration of the tannins increased around bed volume 4, reached its peak around bed volumes 5-7, and rapidly decreased afterwards, as shown in Figure 41. As in elution 1, the pH trend, displayed in Figure 42, increased after bed volume 7, indicating that there were less volatile components detaching from the resin. The aromas for each bed volume are described in Table 8, and it was noticed that there was no complexity in the aroma from bed volumes 5-7. In fact, these aromas smelled predominantly of pure guaiacol.

Figure 41: Second Pass Column Elution Results

Figure 42: pH Trend Second Pass Column Elution

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

ENTIAL TRADE SECRET MATERIAL E. & J. Gallo Winery D ACCESS AND DISTRIBUTION

Bed Volume	Percentage Ethanol	Aroma
1	20%	Smokey, hint of crème brulee and bacon
2	20%	Smokey, roasted coffee, bacon
3	40%	Smokey, vanilla, cake-icing
4	40%	Spice + coconut
5	60%	Guaiacol
6	60%	Guaiacol, less flavor complexity
7	80%	Guaiacol, less flavor complexity
8	80%	Guaiacol, fainter aroma
9	95%	Guaiacol, fainter aroma
10	95%	Very faint smokey smell

Table 8: Sensory Results from Second Pass Elutions

Wine Dosing

The final step in this project was to dose wines using the extracted tannins from one of the separation techniques. Pinot Noir was chosen as the wine of choice for dosing because it pairs well with the smokiness in guaiacol and syringol. The elutions from the first pass column chromatography were used for the dosing. Bed volumes 4-6 were chosen based on the pleasant aroma results, and their high tannin concentrations. Bed volume 6 was dosed straight into the wine, whereas bed volumes 4 and 5 were evaporated using the rotary evaporator to concentrate guaiacol in the condensate and syringol in the residual. Past results suggested that the best way to concentrate guaiacol and syringol was to dilute the elution to 16% alcohol by volume and then rotovap the samples to achieve 68% of the feed volume in the condensate.

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

The concentrations of the tannins as well as the amount of tannins dosed in unprocessed

Pinot Noir can be seen in Tables 9, 10, and 11.

Bed Volume 4	(Rotovap)	
Guaiacol	21226.1	PPB
Volume guaiacol added (mL) in 100 mL wine	Volume guaiacol in 1L	PPB Guaiacol
0.5	5	106.1305
0.25	2.5	53.06525
Syringol	94148	РРВ
Volume syringol added (mL) in 100 mL wine	Volume syringol in 1L	PPB Syringol
1.4	14	1318.072
0.7	7	659.036

Table 9: Bed Volume 4 Dosing Results

Table	10: B	ed Volur	ne 4 Dos	ing Results
-------	-------	----------	----------	-------------

Bed Volume 5	(Rotovap)	
Volume guaiacol added (mL) in 100 mL wine	Volume guaiacol in 1L	PPB Guaiacol
0.3	3	86.4363
0.15	1.5	43.21815
Syringol	144965	PPB
Volume syringol added (mL) in 100 mL wine	Volume syringol in 1L	PPB Syringol
1.3	13	1884.545
0.65	6.5	942.2725

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

Bed Volume 6		
Guaiacol	41034.4	PPB
Volume guaiacol added (mL) in 100 mL wine	Volume guaiacol in 1L	PPB Guaiacol
0.18	1.8	73.86192
0.09	0.9	36.93096

The original goal was to aim for 75 ppm of guaiacol in the pinot noir. However, when the trial was conducted using 75 ppm of guaiacol with bed volume 7, it was found that the flavor profile was too overwhelming and did not provide the right mouth-feel. Instead, the wines were dosed based on aroma until a hint of smoke was detected in the wine and then allowed to sit to let the flavors marry into the wine before tasting. The concentrated syringol and guaiacol from evaporation were dosed separately. These concentrations were also cut in half for another set of tastings, providing ten different dosings.

The full analysis of the tastings can be found in Appendix V, but overall it was decided that the best result was the guaiacol at bed volume 5 where the flavor was described as "dark and jammy." This occurred at 43 ppb (see Table 10) which is much lower than Gallo's target at 75 ppb. A lower dosing allows Gallo to dial back on the amount of product to add to the wine, thus making it more economically favorable.

There was unfortunately no time combine the syringol and guaiacol. It is recommended that Gallo try different blend ratios of the two in order to attain more favorable flavors. Another recommendation is to dose the second pass column chromatography trials. With the knowledge

ENTIAL TRADE SECRET MATERIAL DACCESS AND DISTRIBUTION

that the concentrations of guaiacol and syringol were higher in these trials, Gallo should specifically look into dosing bed volumes 5-7 in either Pinot Noir or Chardonnay.

Aspen Simulation Results

Distillation

For simulation purposes, Aspen Plus was used to try to obtain results for a continuous system. The column was designed with 40 stages operating at 25°C and 15 psi. The total waste stream entering was input at 100 kmol/hour consisting of 15% guaiacol, 35% syringol, 25% ethanol, and 25% water, with the side draw stream coming out at 15 kmol/hour. These concentrations were chosen at random since the exact composition of the waste stream is unknown. There were three varied parameters of focus in the simulation: side draw stage, reboiler duty, and bottoms flow. As seen in Appendix III.A, the side draw stage was varied from stage 10 to stage 15 and showed the largest concentration of guaiacol coming out at 74%. Increasing the reboiler heat duty increased the syringol concentration coming out of the bottoms but decreased the guaiacol concentration coming out the distillate. As seen in Appendix III.A, a high reboiler heat duty of 10.75 shows that the system produces 100% syringol at the bottoms and 0% guaiacol at the top. Finally, the higher bottoms flowrate shows and increase of guaiacol concentration at the bottoms, as seen in Appendix III.A.

Next, a rotary evaporator would have been used to evaporate the ethanol and water to obtain pure guaiacol and syringol. A side stream was used to evaluate intermediate compositions in the column. When doing Aspen simulations, the side-draw was used to find the stage and temperature at which the guaiacol concentration was largest. These exact conditions were not replicable at Gallo and bench scale trials did not include reflux changes, reboiler heat duty changes, or the use of a side draw.

E. &. J. Gallo Winery E. &. J. Gallo Winery

Falling Film

Ideally, the falling film evaporator can be simulated as a distillation column with no rectifying section. However, when consulting WPI faculty and AspenTech, it was determined that Aspen Shell & Tube Exchanger program would yield more accurate results, where the film would be on the tube side and the evaporator would be a vertical heat exchanger. This program is not available on the WPI servers and a consultation with the engineers at Gallo determined that software simulation would not be accurate. Gallo has a LUWA-type film evaporator with a 400 gallon capacity, but the temperature and pressure ranges are fixed. The only conditions available for change are to choose between vacuum, steam, or cooling water. While there was no opportunity to use the LUWA while at Gallo, evaporation was conducted at the bench scale level using a rotary evaporator to evaporate alcohol from experimental samples before sending them in for trials. The chiller operated at -3°C and the vacuum pressure was set to about 200 mPa.

Liquid-Liquid Extraction

For simulation purposes, Aspen Plus was used to obtain separation results with the extraction column. In LLE, the ELT-03 waste stream enters in at the top of the column and the solvent enters at the bottom of the column. The waste stream consisted of water, ethanol, and guaiacol and n-butanol was tested as the solvent. Ideally, n-butanol should exhibit preferential affinity towards selected components in the feed (in this case, the guaiacol in the waste steam). As a result, two streams should exit—the extract, which contains the desired components extracted from the feed and the raffinate, which contains residual feed solution and solvent.

In Aspen, various pressures, temperatures, and number of stages were tested. For simulation purposes, it was assumed that the feed solution came in at 100 kmol/hour with 20% ethanol, 70% water, and 10% guaiacol and that the n-butanol solvent stream entered at the very last stage of the column at 200 kmol/hour. At various pressures, there was no change noted with the amount of extraction so other trials assumed the pressure of the column to be at 1 atm

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

(atmospheric pressure). As seen in Appendix III.B, the separation increased at high temperatures and more stages. However, Aspen was not extracting all the water from the feed stream, and it instead came out with the rest of the extract. This does not represent the bench-scale trials at Gallo since pressure or temperature were not changed in the separatory funnel. It is recommended that with further LLE trials, Gallo looks into simulating a settler-mixer instead of an extraction column. This may give more accurate separation results.
E. & J. Gallo Winery E. & J. Gallo Winery

Conclusions and Recommendations

In essence, the completion of this project was a successful continuation of Devin Ergler's work and the work performed by WPI students in 2014. Both proof of concept and novel experimental trials were conducted. However, there are still many directions that this project can take. Due to the short seven-week window, most trials were not able to be repeated for reproducibility, so it is highly possible that there may be data that needs to be re-evaluated. It is also important to note that the ELT-03 waste stream was never in use during this project, so the expected results will not be an exact match in terms of aroma, methoxyphenol concentrations, etc.

Overall, the best results came from pressure cooking, column chromatography elutions, and dosing. With pressure cooking trials, the ideal slurry parameter was determined to be at 5 grams of oak and 10% ethanol and there was indeed a significant methoxyphenol production with the use of K₂CO₃ as the base. It is recommended that the ratios of KOH and K₂CO₃ are varied to see the effects on the tannin production while decreasing the likelihood of foaming reaction. With column chromatography, the second pass elution showed promising results, both aromatically and analytically. There reached a point where the aroma was predominately smoky and smelled like pure guaiacol, of which analytical results showed high concentrations. The highest concentration of guaiacol and syringol in both elutions occurred around 40-60% ethanol, which is an economic advantage for Gallo. This is because high proof ethanol is costly, so with the knowledge that elution results are optimal at 40-60%, higher concentrations of ethanol do not need to be used for elution, saving the company money. Though the elution results were positive, the column adsorption results were poor. This may be due to the increased number of tannins present in the feed, which left less room for the guaiacol and syringol to adsorb onto the FPX-66 resin. It would be interesting for Gallo to try and neutralize or change the pH of the feed (which started at a pH

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

E St L Gallo Winerv E St L Gallo Winerv

of approximately 3) to see how it would affect the affinity of the tannins on the resin column.

With wine dosing, the best aroma/flavor was achieved at approximately 43 ppb of guaiacol which allows the company toe dial back on their 75 ppb guaiacol goal in each sample. This promising result should be further expanded by conducting more tasting and spikings by blending the syringol and guaiacol. Gallo should also spike the second pass elutions as those samples have a higher concentration in guaiacol and syringol and may lead to even more successful results.

Batch distillation, steam stripping, and LLE yielded mediocre separation results. For batch distillation and steam stripping, the separation was as expected with guaiacol coming off the condensate and syringol concentrating in the residual/bottoms. In order to improve separation, Gallo should look into sequential distillation. Since there was more guaiacol in the bottom during steam stripping, Gallo should try to first steam strip the waste stream and then batch distill the bottoms in order to see the separation. LLE results essentially showed the entire feed matrix coming out with the solvent stream, indicating that a five stage extraction may be too high. It would be interesting for Gallo to do a simple one stage extraction to get a better idea of the separation in the raffinate and extract streams. These trials were also run at standard temperature and pressure. While there would be no way to change the pressure in a separatory funnel, it would be interesting to see the separation that would occur when the feed is subject to pH and temperature changes.

Over the course of this project, there were some drawbacks that prevented extensive data analysis. First of all, there were many limitations with the bench scale equipment. The pressure cooker occasionally had pressure leaks coming out the top, making it difficult to maintain steady pressure. With steam stripping and batch distillation, the limitations hindered efforts to change parameters for separation. There were several limitations on the equipment: lack of ability to adjust

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

pressure, lack of ability to adjust or completely control temperature, lack of ability to fully control reflux ratio on the distillation column, trouble getting steam to rise in the steam stripper, heating capability of the stills, and steam production. All of these limitations made it incredibly difficult to vary the separation parameters and find the best option available to separate the tannins. Should these limitations be addressed, then more thorough research and separation trials could be completed. A huge challenge in this project was conducting six different types of experiments, while running multiple pieces of equipment simultaneously. It was very difficult to monitor multiple experiments alone, as the equipment would occasionally malfunction, thus shifting focus to one experiment. However, while on the other side of the lab, another piece of equipment would also malfunction, causing a vicious cycle that hindered not only the precision of lab data, but also lab analysis. There was not much downtime in the lab for data analysis due to the demand of watching multiple pieces of equipment. This problem, along with lack of lab accessibility (interns were not allowed to be in the lab without other employees present) meant that there was a very small time frame left for data analysis. This project was heavily dependent on past research which Gallo would not distribute prior to the start of the project due to confidentiality restraints. This made days at the lab very strenuous with research and experimental trials, leaving less time for calculations and data analysis. Effective work could have been conducted if increased time was spent on analysis and reproducibility. It is heavily recommended that should this be a future project in a seven week time span, it should be a group effort, not a solo project. Planning ahead is another important recommendation, as the ELT-03 stream was not available for use during the project. As a result, different commercial tannins were used. However, the use of these stand-in tannins were not consistent, as different ones were used for different experimental trials. Each of these tannins had various starting concentrations of guaiacol and syringol, so these results may not be true when

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

4/2/2017

74 of 189

reproduced when using the ELT-03 waste stream as the feed. These recommendations should help

in developing future projects related to tannin extraction and separation.

References

Ames, K., Walker, T. (2014). *Analysis of Oak Tannins*. Retrieved October 2016 from Alex Kopchick.

Boulton, R. B., Singleton, V. L., Bisson, L. F., & Kunkee, R. E. (1999). *Principles and Practices of Winemaking*. doi:10.1007/978-1-4757-6255-6

CHE 310: Column Chromatography. (n.d.). Retrieved January 30, 2017, from www.iyte.edu.tr/~ekremozdemir/1-TM.doc

Evaporation Technology Falling Film Evaporator. (2016). Retrieved January 03, 2017, from http://www.gea.com/en/products/falling-film-evaporator.jsp

Kosuge, H., & Iwakabe, K. (2005). Estimation of isobaric vapor–liquid–liquid equilibria for partially miscible mixture of ternary system. *Fluid Phase Equilibria*,233(1), 47-55. doi:10.1016/j.fluid.2005.04.010

LaMar, J. (2001, February 24). Wine 101: A Sensory User's Manual. Retrieved December 22, 2016, from http://www.winepros.org/wine101/sensory_guide.htm

Liu S.Q. and G.J. Pilone. 2000. An overview of formation and roles of acetaldehyde in winemaking with emphasis on microbiological implications. International J. of Food Science and Technology 35:49-61

Li, S., Crump, A. M., Grbin, P. R., Cozzolino, D., Warren, P., Hayasaka, Y., & Wilkinson, K. L. (2015). Aroma Potential of Oak Battens Prepared from Decommissioned Oak Barrels. *Journal of Agricultural and Food Chemistry*,63(13), 3419-3425. doi:10.1021/acs.jafc.5b00339

M. (2010, November 8). Optimize Liquid-Liquid Extraction - Separation Technology - Articles - Chemical Engineering - Frontpage. Retrieved December 21, 2016, from http://www.cheresources.com/content/articles/separation-technology/optimize-liquid-liquid-extraction

Mansfield, A. K. (2010, August 3). Formal and Informal Wine Sensory Evaluation. Retrieved December 22, 2016, from https://grapesandwine.cals.cornell.edu/newsletters/appellation-cornell/ 2010-newsletters/issue-3/formal-and-informal-wine-sensory-evaluation

Peng, Zhang, *Pyrolysis of lignin for phenols with alkaline additive*, August 2014, from http://www.sciencedirect.com/science/article/pii/S0378382014000952

Restek Chromatography Products and Solutions. (n.d.). Retrieved December 02, 2016, from http://www.restek.com/

The Difference Between Red and White. (n.d.). Retrieved December 21, 2016, from http://winery.csu.edu.au/pages/making-wine/the-difference-between-red-and-white.html

Total Wine & More. (2016). Retrieved January 03, 2017, from http://www.totalwine.com/liquor-guide/distilling

Vine, R. P., Harkness, E. M., & Linton, S. J. (2002). *Winemaking: From Grape Growing to Marketplace* (Second ed.). NY: Springer Science Business Media New York. doi:10.1007/978-1-4615-0733-8

5 Key Wine Components And How To Detect Them. (2012, October 17). Retrieved December 22, 2016, from http://www.huffingtonpost.com/gregory-dal-piaz/wine-tasting_b_1799853.html

Appendices

Appendix I: Experimental Procedures

I.A Cooking:

- 1. Increase the pH of using KOH oak slurry to desired starting pH.
- 2. Load the slurry into the Soxhlet high pressure extractor.
- 3. Add the top and use an allen wrench to tighten the screws.
- 4. Put the extractor in the insulated woven jacket and place on top of heating mantle.
- 5. Turn the heating mantle on high and increase the powerstat to 90-100 Volts.
- 6. Once the pressure gage reaches 10 degrees less than desired pressure, turn off heating mantle and powerstat.
- 7. Once pressure stabilizes, turn the powerstat to 70-75.
- 8. Start cooking timing when desired pressure is reached.
- 9. Adjust the power as needed to keep pressure constant and prevent overshoot.
- 10. Once cooking has finished, turn off the powerstat and take the extractor out of the jacket.
- 11. Place the extractor in an ice bath until the pressure decreases to 0.
- 12. Decrease the pH of the cooked product to 3-3.5 using citric acid or potassium carbonate and store in 750 mL bottles for further processing.

I.B Liquid-Liquid Extraction:

- 1. Place measured amount of solute and solvent in the separatory funnel.
- 2. Put a stopper on the funnel and slowly mix the contents of the funnel.
- 3. Once mixed, allow for the particles to settle and two distinct phases will appear: the hevy phase and the light phase. The heavy phase will be the solute (containing organics) and the lighter phase will be the solvent with extracted components.
- 4. Pour out the two phases into separate beakers.
- 5. If further separation is necessary, use the already extracted solute with fresh solvent and repeat steps 1-4.

I.C Column Chromatography:

- 1. Set up the chromatography column and cover the filter with a small piece of steel wool.
- 2. Obtain a 50 mL FPX-66 resin, mix with a small amount of DI water to create a slurry and pour into the column to pack it.
 - a. Tap the bed to get rid of air bubbles.
- 3. Turn the pump on and run DI water slowly through the column to clean the resin.
- 4. Load feed through the column, collecting 4L fragments and submitting samples for analysis.
- 5. Once the feed runs through, the desired aromas should be held tightly by the resin.

E. & J. Gallo Winery E. & Gallo Winery

6. Regenerate the column by eluting it with 2 bed volumes (100 mL total) of various ethanol solutions, starting with the most diluted concentration.

I.D Rotary Evaporator (Rotovap):

- 1. Set chiller temperature to -3 degrees Celsius.
- 2. Set water bath temperature to 75-80 degrees Celsius.
- 3. Grease round bottom flasks and clip the collection and sample flasks onto the apparatus.
- 4. Close the air valve to pressurize the system.
- 5. Lower the round bottom flask (with the feed inside) into the water bath and start the motor to start rotating the flask.
- 6. Start the pressure at 350 mPa and slowly decrease to avoid dumping.
- 7. Allow evaporation to occur until desired ratio of condensate to residual is attained.

I.E Liquid-Liquid Extraction

- 1. Place desired amount of feed in funnel, ensuring that the stopcock is in close position.
- 2. Add solvent to the funnel and close the funnel with a stopper.
- 3. Gently mix the two liquids by slowly flipping the funnel back and forth a few times.
- 4. Place the funnel back on the ring stand and remove the stopper and allow the phases to separate.
- 5. Collect the different phases separately.

I.F Steam Stripping

- 1. Obtain:
 - a. One heating mantle with controller
 - b. One hot plate/stirrer with stir bar
 - c. One one-liter double-necked round-bottom flask with plug
 - d. Two beakers or Erlenmeyer flasks for hold unstripped and stripped liquid
 - e. Any number trays worth of oldershaw columns
 - f. One distillation column middle-stage liquid collector
 - g. One distillation column middle-stage liquid injector
 - h. One distillation reflux/condenser head
 - i. Two 24/40 to 29/42 GGJ adapters
 - j. Boiling stones
 - k. Ring stands for securing glassware
 - l. Flask for collecting distillate
 - m. One digital readout peristaltic pump with 24-gauge masterflex tubing
 - n. One glass elbow with ball-in-socket GGJ for collecting stripped bottoms
 - o. High-temperature tubing for collecting stripped bottoms

2. Fill three-quarters of one round bottom flask with a saturated salt solution (note: salt is optional but will create hotter steam temperatures) and drop in a few boiling stones. Keep more pure water reserved for refilling.

3. Put water-filled flask in heating mantle and turn on the heat to 80-100.

E. & I. Gallo Winery E. & Gallo Winery

- 4. Stack the glassware in the following order. Please apply a small amount of grease on all GGJ's:a. Liquid collector (must be adapted from 24/40 to 29/42)
 - i. Attach glass elbow to ball-in-socket GGJ with clip
 - ii. Attach high-temp hose to glass elbow
 - iii. Put end of hose in clean beaker to collect water during heat-up
 - iv. Plug open port with stopper or thermometer
 - b. Oldershaw column
 - c. Liquid injector
 - i. Attach masterflex tubing to injection port
 - ii. Plug open port with stopper
 - d. Condenser/reflux head (must be adapted from 29/42 to 24/40)
 - e. Attach collection flask to reflux head using keck clip
 - f. Insulate areas of single-walled glass using aluminum foil or padded insulation.

5. Put the liquid to be stripped on the hot plate/stirrer. Heat and stir, but monitor the temperature closely. Do not allow this liquid to boil or evaporate significantly unless a reflux is set up.

- a. Note: pre-heating the liquid will improve the efficiency of the stripper, but over-heating the liquid with cause the masterflex hose to break down as it is not rated for high temperatures. Significant evaporation of this liquid will cause fractionation before the stripper and this will skew results.
- 6. Allow the glass to heat up. Watch the distillate collection for condensate dripping and watch for the thermometer on the top of the reflux head to reach over 98 C. Once this happens, turn the heat up to max. This might take quite a while, an hour or more. Collect the condensed water in the collection flask, but remember to switch this flask out before collecting product
- 7. Slowly introduce the liquid to be stripped to the top of the column by turning on the peristaltic pump.
 - a. Start with a low setting, around 10, and ramp up slowly. Monitor the vapor temperature at the top of the column and make sure it is stable. Make sure there is vapor reaching the condenser. Ideally the liquid would be loaded as quickly as possible without
 - b. Monitor the color of the stripped bottoms and when the bottoms begin to change color, begin collecting in an empty, clean beaker or flask.
 - c. If the top stages of the column cool down too much and vapor fails to reach the condenser, pause the pump and close the distillate collection valve to allow vapor to reflux back into the top of the column. Then restart the column following steps 7a and 7b.
 - d. Monitor the level of the water at the base of the column. If the level drops below the top of the mantle, pause the column following step 7c and refill the flask with more pure water, preheated would be best.

8. Once the stripping liquid is gone and the bottoms turns back to water, pause the column following step 7c. Empty the distillate collection flask and decide whether or not to do another pass on the stripped material.

a. If so, restart the stripping process with the collected bottoms.

- b. If not, restart the process with pure water instead. Allow this to run for some time to rinse out the system and then turn off the heat and the pump. Allow the column to cool down while the chiller still runs.
- c. Once water at the base of the column ceases to boil and vapor is no longer seen at the top of the column, turn off the chiller.
- d. Disassemble and clean glassware once cool

Appendix II: Important Data/Graphs/Pictures

II.A Cooking

TSS & Percentage Alcohol

Effect of Base on Methoxyphenols

Evaporation

II.B Liquid-Liquid Extraction

II.C Batch Distillation

<u>pKa Results</u>

Trial	1	2	3	4	5	6	7	8
Description	1g, 10%	3 g, 10%	5 g, 0%	5 g, 10%	5 g, 15%	5 g, 20%	10 g, 10%	60 g, 10%
Pre-cook	11.98	12.01	12.03	11.98	12	12.07	12	11.96
Post-Cook	11.5	10.67	10.31	8.06	8.98	8.77	6.98	6.23

	Trial 1								
					CH3COOH +	H20	\leftrightarrow	HCO3⁺+	CH3COO ⁻
		x=acetic acid		I	1.04713E-12			0	0
		Ka = 1.75*10^-5		С	X+			X+	Х+
		рКа=4.75		E	???			3.16228E-12	
Ka-			ошī						
Nd-		зсоо-ј) / [спзсо	ОПЈ		<i>x</i> =	3.16228E-12			
					2.11515E-12	M of acetic acid production			

	Trial 2								
					CH3COOH +	H20	\leftrightarrow	HCO3⁺+	CH3COO ⁻
		x=acetic acid		I	9.77237E-13			0	0
		Ka = 1.75*10^-5		С	х+			Х+	х+
		рКа=4.75		Е	???			2.13796E-11	
Ka-(
Nd-(ЮПј		<i>x=</i>	2.13796E-11			
					2.04024E-11	M of acetic acid production			

Trial 3								
				CH3COOH +	H20	\leftrightarrow	HCO3⁺+	CH3COO ⁻
	x=acetic acid		I	9.33254E-13			0	0
	Ka = 1.75*10^-5		С	X+			х+	х+
	рКа=4.75		E	???			4.89779E-11	
Ka-([പി						
Nd-([JI		<i>x</i> =	4.89779E-11			
				4.80446E-11	M of acetic acid production			

Trial 4							
			CH3COOH +	H20	\leftrightarrow	HCO3 ⁺ +	CH3COO ⁻
	x=acetic acid	I	1.04713E-12			0	0
	Ka = 1.75*10^-5	С	X+			X+	Х+
	pKa=4.75	E	???			8.70964E-09	

Ka-/[പി				
Ka-([JNJ	<i>x</i> =	8.70964E-09		
			8.70859E-09	M of acetic acid production		

Trial 5								
				CH3COOH +	H20	\leftrightarrow	HCO3⁺+	CH3COO ⁻
	x=acetic acid		I	1E-12			0	0
	Ka = 1.75*10^-5		С	х+			х+	х+
	рКа=4.75		E	???			1.04713E-09	
Ka-/[ОПІ						
Ka-([ОПј		<i>x</i> =	1.04713E-09			
				1.04613E-09	M of acetic acid production			

Trial 6								
				CH3COOH +	H20	\leftrightarrow	HCO3⁺+	CH3COO ⁻
	x=acetic acid		I	8.51138E-13			0	0
	Ka = 1.75*10^-5		С	X+			х+	х+
	рКа=4.75		Е	???			1.69824E-09	
Ka-/[וחי						
Nd-([r		וחכ		<i>x</i> =	1.69824E-09			
				1.69739E-09	M of acetic acid production			
Trial 8								
				CH3COOH +	H20	\leftrightarrow	HCO3 ⁺ +	CH3COO

	x=acetic acid		Ι	1.09648E-12		0	0
	Ka = 1.75*10^-5		С	X+		X+	Х+
	рКа=4.75		E	???		5.88844E-07	
Ka-/[I		וחכ					
Kd-([I		JUJ		<i>x=</i>	5.88844E-07		
				5.88843E-07	M of acetic acid production		

II.D Steam Stripping

Microscope Images of Solid Oak and Solids Found in CLT04 Stream

Oak Microscope Image

VDR Solid Microscope Image

E. & J. Gallo Winery E. & J. Gallo Winery

E. & J. Gallo Winery E. & J. Gallo Winery

II.E Wine Dosing

Bed Volume	#6 (1 st Pass	s Elution)
Guaiacol	41034.4	PPB
Volume guaiacol added (mL) in 100 mL wine	Volume guaiacol in 1L	PPB Guaiacol
0.18	1.8	73.86192
0.09	0.9	36.93096

	Bed Volume #5 (1 st Pass Elution) Rotary Evaporation										
Guai	acol = 28812.	1PPB	Syringol = 144965 PPB								
Volume guaiacol added (mL) in 100 mL wine	Volume guaiacol in 1L	PPB Guaiacol	Volume syringol added (mL) in 100 mL wine	Volume syringol in 1L	PPB Syringol						
0.3	3	86.4363	1.3	13	1884.545						
0.15	1.5	43.21815	0.65	6.5	942.2725						

	Bed Volume #4 (1 st Pass Elution) Rotary Evaporation										
Guaia	acol = 21226.1	l PPB	Sy	ringol = 9414	8 PPB						
Volume guaiacol added (mL) in 100 mL wine	Volume guaiacol in 1L	PPB Guaiacol	Volume syringol added (mL) in 100 mL wine	Volume syringol in 1L	PPB Syringol						
0.5	5	106.1305	1.4	14	1318.072						
0.25	2.5	53.06525	0.7	7	659.036						

Appendix III: Aspen Results

III.A: Distillation Column Properties

Units	METBAR
Method Filter	Common
Base Method	UNIQAC

Side Stage Variation

#1 Feed Specs								
Temperature (C)	25	# of A. Stages	40	Feed Stage	7	Side Stage	10	
Pressure (PSI)	15	Condenser type	Total	Feed	Above-Stage			
F (kmol/hr)	100	Reboiler type	Kettle	Top stage Pressure	5			
S (kmol/hr)	10	Reflux Ratio	1.5	# of T. Stages	20			
Component	F	zF	D	хD	в	×В	s	xS
Guaiacol	15	15%	6.03E-06	0%	7.215931	18%	7.784004	78%
Syringol	35	35%	2.50E-14	0%	3.28E+01	82%	2.187575	22%
Ethanol	25	25%	24.99906	50%	8.52E-19	0%	0.000976	0%
Water	25	25%	24.97259	50%	1.42E-16	0%	0.027445	0%
Total	100	1	49.971656	1	40.028341	1	10	1
R. Duty (GJ/hr)	7.75							

Stages	Stage Composition			
	Guaiacol	Syringol	Ethanol	Water
1	0%	0%	72%	28%
2	0%	0%	29%	71%
3	0%	0%	9%	91%
4	0%	0%	6%	94%

5	0%	0%	6%	94%
6	2%	0%	6%	92%
7	19%	53%	6%	22%
8	39%	45%	2%	14%
9	69%	30%	0%	1%
10	74%	26%	0%	0%
11	74%	26%	0%	0%
12	74%	26%	0%	0%
13	74%	26%	0%	0%
14	74%	26%	0%	0%
15	74%	26%	0%	0%
16	74%	26%	0%	0%
17	71%	29%	0%	0%
18	61%	39%	0%	0%
19	38%	62%	0%	0%
20	15%	85%	0%	0%

#2 Feed Specs								
Temperature (C)	25	# of A. Stages	40	Feed Stage	7	Side Stage	15	
Pressure (PSI)	15	Condense r type	Total	Feed	Above- Stage			
F (kmol/hr)	100	Reboiler type	Kettle	Top stage Pressure	5			
S (kmol/hr)	10	Reflux Ratio	1.5	# of T. Stages	20			
Component	F	zF	D	хD	в	×В	s	xS
Guaiacol	15	15%	5.84E-06	0%	7.227717	18%	7.772288	78%
Syringol	35	35%	2.50E-14	0%	3.28E+01	82%	2.199753	22%
Ethanol	25	25%	24.99999	50%	2.10E-13	0%	5.33E-06	0%
Water	25	25%	24.97205	50%	2.80E-09	0%	0.0279538	0%
Total	100	1	49.97204584	1	40.02796	1	10.00000013	1
R. Duty (GJ/hr)	7.75							

Stages	Stage Composition						
	Guaiacol	Syringol	Ethanol	Water			
1	<i>4.52E-07</i>	2.40E-15	72%	28%			
2	2.36E-05	<i>4.29E-12</i>	29%	71%			
3	0%	8.30E-10	9%	91%			

4	0%	1.10E-07	6%	94%
5	0%	1.42E-05	6%	94%
6	2%	0%	6%	92%
7	19%	53%	6%	22%
8	19%	54%	3%	25%
9	19%	54%	1%	26%
10	19%	55%	0%	26%
11	19%	55%	0%	26%
12	20%	54%	0%	26%
13	41%	45%	0%	14%
14	69%	30%	5.54E-06	1%
15	74%	26%	1.88E-07	0%
16	74%	26%	5.55E-09	1.35E-05
17	71%	29%	1.60E-10	4.63E-07
18	61%	39%	<i>4.32E-12</i>	1.50E-08
19	38%	62%	9.61E-14	4.07E-10

20	15%	85%	1.62E-15	8.46E-12

Reboiler Heat Duty Variation

#1 Feed Specs									
Temperature (C)	25	# of A. Stages	40	Feed Stage	7	Side Stage	15		
Pressure (PSI)	15	Condenser type	Total	Feed	Above-Stage				
F (kmol/hr)	100	Reboiler type	Kettle	Top stage Pressure	5				
S (kmol/hr)	10	Reflux Ratio	1.5	# of T. Stages	20				
Component	F	zF	D	×D	в	×В	s	xS	
Guaiacol	15	15%	1.79E-13	0%	13.84607	17%	1.153931	12%	
Syringol	35	35%	3.47E-22	0%	3.23E+01	40%	2.683345	27%	
Ethanol	25	25%	6.589445	79%	1.51E+01	18%	3.313335	33%	
Water	25	25%	1.713848	21%	2.04E+01	25%	2.849389	28%	
Total	100	1	8.303293	1	81.69671	1	10	1	
R. Duty (GJ/hr)	1.75								

Stages	Stage Composition						
	Guaiacol	Syringol	Ethanol	Water			
1	6.66E-14	1.60E-22	91%	9%			
2	1.80E-11	1.46E-18	89%	11%			
3	2.87E-09	8.03E-15	86%	14%			

4	4.44E-07	4.38E-11	84%	16%
5	6.54E-05	2.33E-07	80%	20%
6	1%	0%	74%	25%
7	19%	54%	20%	7%
8	19%	54%	20%	7%
9	19%	54%	20%	7%
10	19%	54%	20%	7%
11	19%	54%	20%	7%
12	19%	54%	20%	7%
13	19%	54%	20%	7%
14	19%	54%	20%	7%
15	19%	54%	20%	7%
16	19%	54%	20%	7%
17	19%	54%	20%	7%
18	19%	55%	19%	7%
19	19%	55%	18%	8%

20	22%	64%	9%	5%

#2 Feed Specs								
Temperature (C)	25	# of A. Stages	40	Feed Stage	7	Side Stage	15	
Pressure (PSI)	15	Condense r type	Total	Feed	Above- Stage			
F (kmol/hr)	100	Reboiler type	Kettle	Top stage Pressure	5			
S (kmol/hr)	10	Reflux Ratio	1.5	# of T. Stages	20			
Component	F	zF	D	хD	в	хВ	s	xS
Guaiacol	15	15%	8.00E-11	0%	14.0939	25%	0.9060942	9%
Syringol	35	35%	1.37E-19	0%	3.29E+01	58%	2.080541	21%
Ethanol	25	25%	24.99649	74%	9.56E-05	0%	3.42E-03	0%
Water	25	25%	8.683491	26%	9.31E+00	17%	7.009946	70%
Total	100	1	33.679981	1	56.32003	1	9.9999998	1
R. Duty (GJ/hr)	4.75							

Stages	Stage Composition						
	Guaiacol	Syringol	Ethanol	Water			
1	7.59E-12	1.61E-20	88%	12%			
2	2.00E-09	1.51E-16	83%	17%			
3	2.85E-07	7.89E-13	76%	24%			

4	2.93E-05	3.08E-09	62%	38%
5	0%	<i>4.13E-06</i>	36%	64%
6	1%	0%	18%	81%
7	19%	54%	11%	17%
8	19%	55%	7%	19%
9	20%	56%	3%	21%
10	20%	57%	2%	22%
11	20%	57%	1%	22%
12	20%	57%	0%	22%
13	20%	57%	0%	22%
14	20%	57%	6.56E-04	23%
15	20%	57%	2.81E-04	23%
16	20%	57%	1.16E-04	2.26E-01
17	20%	57%	<i>4.79E-05</i>	2.26E-01
18	20%	57%	1.96E-05	2.25E-01
19	24%	56%	7.55E-06	2.01E-01

20	25%	73%	6.30E-07	2.40E-02

#3 Feed Specs									
Temperature (C)	25	# of A. Stages	40	Feed Stage	7	Side Stage	15		
Pressure (PSI)	15	Condense r type	Total	Feed	Above- Stage				
F (kmol/hr)	100	Reboiler type	Kettle	Top stage Pressure	5				
S (kmol/hr)	10	Reflux Ratio	1.5	# of T. Stages	20				
Component	F	zF	D	хD	В	×В	s	xS	
Guaiacol	15	15%	1.50E+01	23%	6.24E-08	0%	1.98E-05	0%	
Syringol	35	35%	3.37E-01	1%	2.47E+01	100%	9.99998	100%	
Ethanol	25	25%	25	38%	7.43E-27	0%	1.39E-17	0%	
Water	25	25%	25	38%	1.35E-25	0%	9.05E-17	0%	
Total	100	1	65.33673	1	24.66327	1	10	1	
R. Duty (GJ/hr)	10.75								

Stages	Stage Composition						
	Guaiacol	Syringol	Ethanol	Water			
1	5.30E-01	1.48E-02	33%	13%			
2	7.82E-01	2.05E-01	1%	0%			

3	<i>4.18E-01</i>	5.80E-01	0%	0%
4	1.56E-01	8.43E-01	0%	0%
5	7%	9.29E-01	0%	0%
6	5%	95%	0%	0%
7	4%	96%	0%	0%
8	1%	99%	9.93E-06	6.01E-06
9	0%	100%	1.22E-07	<i>9.11E-08</i>
10	0%	100%	1.50E-09	1.37E-09
11	0%	100%	1.84E-11	2.07E-11
12	7.49E-05	100%	2.26E-13	<i>3.11E-13</i>
13	2.09E-05	100%	2.76E-15	4.68E-15
14	5.80E-06	100%	<i>3.39E-17</i>	7.04E-17
15	1.60E-06	100%	<i>4.15E-19</i>	1.06E-18
16	<i>4.25E-07</i>	100%	4.84E-21	1.52E-20
17	1.13E-07	100%	5.66E-23	2.18E-22
18	<i>3.00E-08</i>	100%	6.61E-25	<i>3.12E-24</i>

19	7.90E-09	100%	7.72E-27	4.48E-26
20	2.04E-09	100%	9.00E-29	6.41E-28

Bottoms Flow Variation

#1 Feed Specs								
Temperature (C)	25	# of A. Stages	40	Feed Stage	7	Side Stage	15	
Pressure (PSI)	15	Condenser type	Total	Feed	Above-Stage	S (kmol/hr)	10	
F (kmol/hr)	100	Reboiler type	Kettle	Top stage Pressure	5			
B (kmol/hr)	20	Reflux Ratio	1.5	# of T. Stages	20			
Component	F	zF	D	хD	В	хΒ	s	xS
Guaiacol	15	15%	1.50E+01	21%	2.48E-08	0%	1.13E-05	0%
Syringol	35	35%	5.00E+00	7%	2.00E+01	100%	9.999989	100%
Ethanol	25	25%	25	36%	3.10E-27	0%	8.42E-18	0%
Water	25	25%	25	36%	5.62E-26	0%	5.47E-17	0%
Total	100	1	70.000001	1	20.00000002	1	10	1
R. Duty (GJ/hr)	11.94							

Stages	Stage Composition					
	Guaiacol	Syringol	Ethanol	Water		
1	4.40E-01	1.82E-01	27%	11%		
2	2.48E-01	7.46E-01	0%	0%		

3	8.87E-02	9.10E-01	0%	0%
4	4.54E-02	9.54E-01	0%	0%
5	3.52E-02	9.64E-01	0%	0%
6	3%	97%	0%	0%
7	3%	97%	0%	0%
8	1%	99%	7.79E-06	4.70E-06
9	0%	100%	9.24E-08	6.85E-08
10		100%	1.09E-09	9.94E-10
11	0%	100%	1.29E-11	1.44E-11
12	4.76E-05	100%	1.53E-13	2.09E-13
13	1.28E-05	100%	1.80E-15	3.04E-15
14	3.43E-06	100%	2.13E-17	4.41E-17
15	9.12E-07	100%	2.51E-19	6.39E-19
16	2.35E-07	100%	2.84E-21	8.87E-21
17	6.03E-08	100%	3.21E-23	1.23E-22
18	1.55E-08	100%	3.63E-25	1.71E-24

19	3.97E-09	100%	4.10E-27	2.37E-26
20	9.97E-10	100%	4.63E-29	3.28E-28

				-		-			
#2 Feed Specs									
Temperature (C)	25	# of A. Stages	40	Feed Stage	7	Side Stage	15		
Pressure (PSI)	15	Condense r type	Total	Feed	Above- Stage				
F (kmol/hr)	100	Reboiler type	Kettle	Top stage Pressure	5				
S (kmol/hr)	10	Reflux Ratio	1.5	# of T. Stages	20				
Component	F	zF	D	хD	В	хВ	s	xS	
Guaiacol	15	15%	8.00E-11	0%	14.0939	25%	0.9060942	9%	
Syringol	35	35%	1.37E-19	0%	3.29E+01	58%	2.080541	21%	
Ethanol	25	25%	24.99649	74%	9.56E-05	0%	3.42E-03	0%	
Water	25	25%	8.683491	26%	9.31E+00	17%	7.009946	70%	
Total	100	1	33.679981	1	56.32003	1	9.9999998	1	
R. Duty (GJ/hr)	4.75								
						1			

Stages	Stage Composition					
	Guaiacol	Syringol	Ethanol	Water		
1	7.59E-12	1.61E-20	88%	12%		
2	2.00E-09	1.51E-16	83%	17%		

3	2.85E-07	7.89E-13	76%	24%
4	2.93E-05	3.08E-09	62%	38%
5	0%	4.13E-06	36%	64%
6	1%	0%	18%	81%
7	19%	54%	11%	17%
8	19%	55%	7%	19%
9	20%	56%	3%	21%
10	20%	57%	2%	22%
11	20%	57%	1%	22%
12	20%	57%	0%	22%
13	20%	57%	0%	22%
14	20%	57%	6.56E-04	23%
15	20%	57%	2.81E-04	23%
16	20%	57%	1.16E-04	2.26E-01
17	20%	57%	4.79E-05	2.26E-01
18	20%	57%	1.96E-05	2.25E-01

19	24%	56%	7.55E-06	2.01E-01
20	25%	73%	6.30E-07	2.40E-02

						1			
#3 Feed Specs									
Temperature (C)	25	# of A. Stages	40	Feed Stage	7	Side Stage	15		
Pressure (PSI)	15	Condense r type	Total	Feed	Above- Stage				
F (kmol/hr)	100	Reboiler type	Kettle	Top stage Pressure	5				
S (kmol/hr)	10	Reflux Ratio	1.5	# of T. Stages	20				
Component	F	zF	D	хD	в	×В	s	xS	
Guaiacol	15	15%	1.50E+01	23%	6.24E-08	0%	1.98E-05	0%	
 Syringol	35	35%	3.37E-01	1%	2.47E+01	100%	9.99998	100%	
Ethanol	25	25%	25	38%	7.43E-27	0%	1.39E-17	0%	
 Water	25	25%	25	38%	1.35E-25	0%	9.05E-17	0%	
Total	100	1	65.33673	1	24.66327	1	10	1	
 R. Duty (GJ/hr)	10.75								

Stages	Stage Composition					
	Guaiacol	Syringol	Ethanol	Water		
1	5.30E-01	1.48E-02	33%	13%		

2	7.82E-01	2.05E-01	1%	0%
3	4.18E-01	5.80E-01	0%	0%
4	1.56E-01	8.43E-01	0%	0%
5	7%	9.29E-01	0%	0%
6	5%	95%	0%	0%
7	4%	96%	0%	0%
8	1%	99%	9.93E-06	6.01E-06
9	0%	100%	1.22E-07	9.11E-08
10	0%	100%	1.50E-09	1.37E-09
11	0%	100%	1.84E-11	2.07E-11
12	7.49E-05	100%	2.26E-13	3.11E-13
13	2.09E-05	100%	2.76E-15	4.68E-15
14	5.80E-06	100%	3.39E-17	7.04E-17
15	1.60E-06	100%	4.15E-19	1.06E-18
16	4.25E-07	100%	4.84E-21	1.52E-20
17	1.13E-07	100%	5.66E-23	2.18E-22

18	3.00E-08	100%	6.61E-25	3.12E-24
19	7.90E-09	100%	7.72E-27	4.48E-26
20	2.04E-09	100%	9.00E-29	6.41E-28

III.B: Liquid-Liquid Extraction

n=40 100 C

	ELT-03	EXTRACT	RAFF	SOLVENT
	EXTCOL			EXTCOL
		EXTCOL	EXTCOL	
	MIXED	LIQUID	LIQUID	LIQUID
Substream: MIXED				
Mole Flow kmol/hr				
WATER	70	65.92259	4.077409	0
ETHAN-01	20	18.83503	1.164974	0
GUAIA-01	10	9.417513	0.582487	0
N-BUT-01	0	3.83E-20	30	30
Total Flow kmol/hr	100	94.17513	35.82487	30

Total Flow kg/hr	3423.844	3224.409	2423.118	2223.684
Total Flow l/min	38998.21	63.35919	55.93381	50.68645
Temperature C	100	151.5665	122.5104	100
Pressure bar	1.01325	1.01325	1.01325	1.378951
Vapor Frac	0.7703777	0	0	0
Liquid Frac	0.2296223	1	1	1
Solid Frac	0	0	0	0
Enthalpy cal/mol	-59367.46	-65394.93	-71955.12	-74399.18
Enthalpy cal/gm	-1733.942	-1909.986	-1063.829	-1003.729
Enthalpy cal/sec	-1.65E+06	-1.71E+06	-7.16E+05	-6.20E+05
Entropy cal/mol-K	-30.70769	-47.52202	-105.7445	-120.9597
Entropy cal/gm-K	-0.8968778	-1.387973	-1.563392	-1.631882
Density amol/cc	4.27E-05	0.0247728	0.0106747	9.86E-03
Density gm/cc	1.46E-03	0.8481825	0.7220196	0.7311895
Average MW	34.23844	34.23844	67.63788	74.1228
Liq Vol 60F l/min	58.69607	55.2771	49.06972	45.65075

10 stages at 50 degrees celsius

n=10 50 C

ELT-03 EXTRACT RAFF SOLVENT	
-----------------------------	--

	EXTCOL			EXTCOL
		EXTCOL	EXTCOL	
	LIQUID	LIQUID	LIQUID	LIQUID
Substream: MIXED				
Mole Flow kmol/hr				
WATER	70	66.50127	3.498728	0
ETHAN-01	20	19.00039	0.999614	0
GUAIA-01	10	9.500153	0.4998473	0
N-BUT-01	0	9.29E-03	49.99071	50
Total Flow kmol/hr	100	95.0111	54.9889	50
Total Flow kg/hr	3423.844	3253.4	3876.584	3706.14
Total Flow l/min	56.35166	53.54873	78.60838	76.06382
Temperature C	20	20.00064	20.41434	20
Pressure bar	1.01325	1.01325	1.01325	1.378951
Vapor Frac	0	0	0	0
Liquid Frac	1	1	1	1
Solid Frac	0	0	0	0
Enthalpy cal/mol	-69057.25	-69058.19	-77860.57	-78740.72
Enthalpy cal/gm	-2016.951	-2016.75	-1104.443	-1062.301
Enthalpy cal/sec	-1.92E+06	-1.82E+06	-1.19E+06	-1.09E+06

Entropy cal/mol-K	-57.70512	-57.71072	-126.5617	-134.0085
Entropy cal/gm-K	-1.68539	-1.685363	-1.795263	-1.807926
Density mol/cc	0.0295761	0.0295715	0.0116588	0.0109557
Density gm/cc	1.012642	1.012598	0.8219191	0.8120681
Average MW	34.23844	34.24231	70.49757	74.1228
Liq Vol 60F l/min	58.69607	55.77644	79.00421	76.08458

Appendix IV: Raw Data

IV.A Cooking

qry_LA W_xTal SIDN	B 6. SCM1	LCOD	GeoupID	DSCR	LABDES C	LOT	TANK	wo	OPCODE	LINE	RAD2	SUBDAT E	SUBTIM E	COLDA E	COLTIM E	\$MARI MOAB	D MALC	MVAJ	qry_LA Wmultij Tab.SID	B SMAR MOAK N Methy guaiac	tO \$MAJ -4- MOAR yl Viny ol guaiac	RO I-4- A col furfur	10 5- MOA3 Meth al	RO \$MAJ I-5- MOA yi Acetov tal llon	tO \$MAJ K- MOAi ani Benzal e yde	RO \$MAR K- MOA3 ideh Benzy alcoho	0 SMAI C- MOA d cis-O ol lactor	RO SMAR K- MOA3 ak Ethyl ne vanillai	0 5MAJ MOA Euger	0 \$MAR K- MOAJ ol Furfur	0 MOAK Furfuri alcoho	SMAR MOAN Gunine	0 C- 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RO SM/ IK- MO. yl is ste Eug	ARO AK- smol Smol	ARO IAK- Itol va	IARO \$M OAK- M lethyl Syn nillate c	MARO OAK- ringald shyde	MARO 40AK- lyringol	IMARO MOAK- ans-Oak lactone	\$MARO MOAK- Vanillin	\$MARO MOAK- Volatile aroma compound * - cak
OD3107	73	CANPRO JECTS- PTECH) NP19.01.17	Projects in CANOPI for Process Tech	Pressure cooked 60 min	GKredboo k	16-01-17	lgOAK60 min	40psig			01/23/17	09:38 AM	01/19/17	12:00 AM	TITLE	_ 11.14	8.010	OD3101	3 <15	<15	<150	<150	<150	<30	<30	<15	<150	<15	<150	<150	92.10	<30	<15	<150		50 267	% <1	150 <1	15 1	804.90	_TITLE_
OD3107	14	CANPRO JECTS- PTECH) NP19.01.17	Projects in CANOPI for Process Tech	Pressure cooked	GKredboo k	17-01-17	lgOAKI3 0min	2 30psig			01/23/17	09:38 AM	01/19/17	12:00 AM	TITLE	9.39	0.010	OD3101	4 <50	52.10	<500	<\$00	<500	<100	<100	62.60	<\$00	<50	<500	<\$00	236:30	<100	<\$0	<\$00	া ব	00 349	n d	500 <	50	956.20	_TITLE_
OD3107	75	CANPRO JECTS- PTECH) NP19.01.17	Projects in CANOPI for Process Tech	Pressure cooked	GKredboo k	18-01-17	5gOAK12 0min	2 40paig			01/23/17	09:38 AM	01/19/17	12:00 AM	TTTLE	9,44	0.026	OD3107	5 <50	68.40	<\$00	<500	<500	<100	<100	296.70	<\$00	<\$0	<500	<\$00	475.50	<100	<50	<\$00	4	00 260	91 90	02 <	50	1003.40	_TITLE_
qry_L/ W_xTa SIDN	AB b. SCM1	LCOD	GroupID	DSCR	LABDES C	LOT	TANK	wo	OPCODE	LINE	RAD2	SUBDAT E	SUBTIM E	COLDAT E	COLTIM E	\$MARO MOAK	MALC	qry_LAB Wmulti_x Tab.SIDN	SMARO MOAK-4- Methyl guniacol	\$MARO MOAK-4- Vinyl guaiacol	\$MARO MOAK-5- Hydroxy methyl furfural	\$MARO MOAK-5- Methyl furfural	\$MARO MOAK- Acetovani Ilone	\$MARO MOAK- Benzaldeh yde	\$MARO MOAK- Benzyl alcohol	\$MARO MOAK- cis-Oak lactone	SMARO MOAK- Ethyl vanillate	\$MARO MOAK- Eugenol	SMARO MOAK- Furfural	\$MARO MOAK- Furfural alcohol	\$MARO MOAK- Guaincol	MARO 40AK- Hexyl acetate	MARO MOAK- iso- Eugenol	\$MARO MOAK- Maltol	\$MARO MOAK- Methyl varillate	\$MAR(MOAK Syringal chyde) SMARO MOAK- Syringol	\$MARI MOAK trans-Ou lactors	0 5- MOAX vanilli	0 C- in compo	RO K- iile m und	
OD499	91	CANPRO JECTS- PTECH	^D (жө126201 7	Projects in CANOPI for Process Tach	5 g cak, 15% EsOH	DCN22- p86	01262017	conked_o ak_5g_1	pressure			01/27/17	09-52 AM	01/26/17	12:00 AM	TITLE_	14.75	OD40991	<250	<250	<2500	<2500	<2500	<\$00	<500	<250	<2500	<250 -	2500	-2500 2	71.90 <	500 <	250 -	<2500	<2500	<2500	<2500	<250	769.50	_1171.	E_	
OD499	92	CANPRO JECTS- PTECH	^D (3K0126201 7	Projects in CANOPI for Process Tech	5 g cak, 20% ErOH	DCN22- p88	01262017	cooked_o ak_5g_2	pressure			01/27/17	09.52 AM	01/26/17	12:00 AM	TITLE	19.52	OD40992	<250	529.40	<2500	<2500	<2500	<500	<500	<250	<2500	<250 -	2500	<2500 3	97.30 <	500 <	250 -	<2500	<2500	<2500	<2500	<250	844.90	_1171.	E_	
OD409	93	CANPRO JECTS- PTECH	о скот26201 7	Projects in CANOPI for Process Tech	10 g cak, 10% E:OH	DCN22- p87	01262017	cookad_o ak_3g_1	pressure			01/27/17	09:52 AM	01/26/17	12:00 AM	TITLE_	9.59	OD40993	<250	<250	<2500	<2500	<2500	<\$00	<500	584.90	<2500	<250 -	2500	-2500 -	250 <	500 <	250 -	<2500	<2500	<2500	<2500	<250	707.10	_1171.	E_	
qry_L W_xT SIDY	AB ab. SCM1	LCOL) GroupII	DSCR	LABDI	²⁵ LOT	TAN	wo	OPCOL	DE LINE	RAD	2 SUBD E	AT SUBT E	IM COLI E	DAT COLI	TIM SM. MC	ARO Wmu DAK Tab.9	LAB MO hi_x M gu	IARO SM IAK-4- MO lethyl V aiacol gu	ARO AK-4- inyl facol	MARO DAK-5- ydroxy sethyl rfural	MARO \$3 DAK-5- M dethyl Ac arfural	MARO \$ ЮАК- M etovani Bi Ilone	MARO \$ 40AK- M mzaldeh I yde a	MARO \$1 10AK- M Benzyl ci Ilcohol I	MARO \$1 40AK- M is-Oak jactone va	MARO MARO Ethyl millate	MARO \$1 MOAK- M Eugenol F	MARO IOAK- urfural	MARO 40AK- furfural alcobol	MARO MOAK- mincol	MARO \$ MOAK- M Hexyl cetate H	MARO 40AK- iso- lugenol	\$MARO MOAK- Maltol	\$MARO MOAK- Methyl vanillate	SMAR MOA3 Syrings chydd	O SMAR(MOAK Syringo	0 SMAJ MOA trans-C lactor	RO JK- Dak Te	RO Kc- llin comp	ARO IAK- latile pound oak	
OD448	22	CANPR JECTS- PTECH	^{IO} GK01302 7	Projects CANOF for Process Tech	in 5 g Oak Slurry (cooked 0% EtO	DCN22-) - p89 H	27-1-17	Pressur cook	r Crok			01/30/	17 01:091	РМ 01/30	17 12:00	AM_111	LE_ OD4	822 <29	0 302	40 <29	500 <2	500 <2	500 <	00 <	600 29	8.90 <2	:500 <	250 <2	500 <	2500 10	62.00 <5	00 <	250 -		<2500	4144	3075	<250	1545.4	ю_пт	LE_	

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

qry_LAB W_xTab. SIDN	SCM1	LCOD	GroupID	DSCR	LABDES C	LOT	TANK	WO	OPCODE	LINE	RAD2	SUBDAT E	SUBTIM E	COLDAT E	COLTIM E	\$MARO MOAK	qry_LAB Wmulti_x Tab.SIDN	\$MARO MOAK-4- Methyl guaiacol	\$MARO MOAK-4- Vinyl guaiacol	\$MARO MOAK-5 Hydroxy methyl furfural	\$MARO MOAK-5- Methyl furfural	SMARO MOAK- Acetovani Ilone	\$MARO MOAK- Benzaldeh yde	\$MARO MOAK- Benzyl alcohol	\$MARO MOAK- cis-Oak lactone	\$MARO MOAK- Ethyl varillate	\$MARO MOAK- Eugenol	\$MARO MOAK- Furfural	\$MARO MOAK- Furfural alcohol	\$MARO MOAK- Gunizeol	\$MARO MOAK- Hexyl acetate	\$MARO MOAK- iso- Eugenol	\$MARO MOAK- Mahol	\$MARO MOAK- Methyl vanillate	\$MARO MOAK- Syringald ehyde	\$MARO MOAK- Syringol	\$MARO MOAK- trans-Oak lactone	\$MARO MOAK- Vanillin	\$MARO MOAK- Volatile aroma compound 8 - cak
OD44822	2	CANPRO JECTS- PTECH	GK0130201 7	Projects i CANOPI for Process	5 g Oak Slurry (conked) - 0% EtOH	DCN22- p89	27-1-17	Pressure cook	Crock			01/30/17	01:09 PM	01/30/17	12:00 AM	_TITLE_	OD44822	<250	302.40	<2500	<2500	<2500	<500	<500	293.90	<2500	<250	<2500	<2500	1062.00	<500	<250		<2500	4144	3075	<250	1545.40	_TITLE_

IV.B Liquid-Liquid Extraction

qry_LABW _xTab.SID N	LABDESC	LOT	TANK	wo	OPCODE	MALC	qry_LABW multi_xTa b.SIDN	\$MAROM OAK-4- Methyl guaiacol	\$MAROM OAK-4- Vinyl guaiacol	SMAROM OAK-5- Hydroxym ethyl furfural	\$MAROM OAK-5- Methyl furfural	\$MAROM OAK- Acetovanil Ione	\$MAROM OAK- Benzaldeh yde	\$MAROM OAK- Benzyl alcohol	\$MAROM OAK-cis- Oak lactone	ŚMAROM OAK-Ethyl vanillate	\$MAROM OAK- Eugenol	\$MAROM OAK- Furfural	\$MAROM OAK- Furfural alcohol	\$MAROM OAK- Guaiacol	\$MAROM OAK-Hexyl acetate	\$MAROM OAK-iso- Eugenol	\$MAROM OAK- Maltol	\$MAROM OAK- Methyl vanillate	\$MAROM OAK- Syringalde hyde	\$MAROM OAK- Syringol	\$MAROM OAK-trans- Oak lactone	\$MAROM OAK- Vanillin	\$MAROM OAK- Volatile aroma compoun ds - oak
OD47718	MF2 1:1 Dilution	31Jan201 7	mf2	pH=2.99		PENDING	OD47718	22562.4	<1000	158920	15570	10193	<2000	<2000	<1000	<10000	2354	207987	<10000	50630.7	<2000	<1000	69583	<10000	50975	114458	<1000	17394.9	_TITLE_
OD47719	MF4	31Jan201 7	mf4	pH=3.05		PENDING	OD47719	41757.5	<1000	257586	53280	28937	<2000	<2000	23133.4	<10000	5861.1	519249	<10000	84263.5	<2000	<1000	115958	<10000	879934	230398	12073.4	95376.9	_TITLE_

qry_LABW_xTab _SIDN	LABDESC	LOT	TANK	MVAZ	qry_LABW multi_xTab.\$ IDN	SMAROMO AK-4-Methyl guaincol	SMAROMO AK-4-Vinyl guaiacol	SMAROMO AK-5- Hydroxymet hyl furfural	SMAROMO AK-5-Methyl furfural	SMAROMO AK- Acetovanillo ne	SMAROMO AK- Benzaldehyd e	SMAROMO AK-Benzyl alcohol	SMAROMO AK-cis-Oak lactone	\$MAROMO AK-Ethyl vanillate	SMAROMO AK-Eugenol	SMAROMO AK-Furfural	SMAROMO AK-Furfural alcohol	SMAROMOAK- Gunincol	SMAROMO AK-Hexyl acetate	\$MAROMO AK-iso- Eugenol	SMAROMO AK-Maltol	SMAROMO AK-Methyl vanillate	SMAROMO AK- Syringaldehy de	\$MAROMO AK-Syringol	SMAROMO AK-trans- Oak lactone	SMAROMO AK-Vanillin
OD67900	Bottoms - Rotovap 40% Elution	BV4	2142017	<0.005	OD67900	<500	<500	<5000	<5000	10182	<1000	<1000	<500	<5000	<500	<5000	<5000	<500	<1000	<500	5015	<5000	45658	94148	<500	11658.4
OD67901	Condensate - Rotovap 40% Elution	BV4	2142017	<0.005	OD67901	22628.3	<500	<5000	<5000	<5000	<1000	<1000	932.5	<5000	2356	15227	<5000	21226.1	<1000	<500	<5000	<5000	<5000	8524	<500	<500
OD67902	Bottoms - Rotovap 60% Elution	BV5	2142017	<0.005	OD67902	549.4	501.7	8829	<5000	14705	<1000	<1000	<500	<5000	<500	<5000	<5000	<500	<1000	<500	<5000	<5000	63622	144965	<500	16114.4
OD67903	Condensate - Rotovap 60% Elution	BV5	2142017	0.005	5 OD67903	45296.2	<1000	<10000	<10000	<10000	<2000	<2000	3392.3	<10000	10047.7	10486	5 <10000	28812.1	<2000	<1000	<10000	<10000	<10000	<10000	1060.8	<1000

IV.C Batch Distillation

qry_LAB W_xTab.S IDN	SCM1	LCOD	GroupID	DSCR	LABDES C	LOT	TANK	wo	OPCODE	MALC	MVAZ	qry_LAB Wmulti_x Tab.SIDN	SMARO MOAK-4- Methyl guaiacol	SMARO MOAK-4- Vinyl guaiacol	SMARO MOAK-5 Hydroxyn ethyl furfural	SMARO MOAK-5- Methyl furfural	SMARO MOAK- Acetovan Ilone	SMARO MOAK- i Benzaldeh yde	SMARO MOAK- Benzyl alcohol	\$MARO MOAK- cis-Oak lactone	SMARO MOAK- Ethyl vanillate	SMARO MOAK- Eugenol	SMARO MOAK- Furfural	SMARO MOAK- Furfural alcohol	SMARO MOAK- Guaiacol	SMARO MOAK- Hexyl acetate	SMARO MOAK- iso- Eugenol	SMARO MOAK- Maltol	SMARO MOAK- Methyl vanillate	SMARO MOAK- Syringalde hyde	SMARO MOAK- Syringol	SMARO MOAK- trans-Oak lactone	SMARO MOAK- Vanillin	SMARO MOAK- Volatile aroma compound s - oak
OD67904		CANPRO JECTS- PTECH	2152017	Projects in CANOPI for Process Tech	Distillate 1 - 5 g, 15% oak		2142017			PENDIN G	0.005	OD67904	<50	<50	<500	<500	<500	<100	<100	<50	<500	<50	<500	<500	<50	<100	<50	*	<500	<500	<500	<50	<50	_TITLE_
OD67905		CANPRO JECTS- PTECH	2152017	Projects in CANOPI for Process Tech	Distillate 2 - 5 g, 15% oak		2152017			PENDIN G	0.005	OD67905	<50	<50	<500	<500	<500	<100	<100	89.3	8 <500	<50	633	<500	73.5	<100	<50		<500	<500	<500	<50	<50	_TITLE_
OD67906		CANPRO JECTS- PTECH	2152017	Projects in CANOPI for Process Tech	Distillate 3 - 5 g, 15% oak		2152017			PENDIN G	0.006	OD67906	<50	67.8	<500	<500	<500	<100	<100	1549.7	7 <500	122.8	3897	<500	902	<100	<50		<500	<500	<500	145.4	<50	_TITLE_
OD67907		CANPRO JECTS- PTECH	2152017	Projects in CANOPI for Process Tech	Distillate 4 - 5 g, 15% oak		2152017			PENDIN G	0.009	OD67907	<50	360.8	<500	934	<500	<100	<100	4949.7	7 <500	349.2	10498	<500	2568.5	<100	<50		<500	<500	<500	369.2	<50	_TITLE_
OD67908		CANPRO JECTS- PTECH	2152017	Projects in CANOPI far Process Tech	Distillate 5 - 5 g, 15% oak		2152017			PENDIN G	0.011	OD67908	<50	425.5	<500	<500	<500	<100	<100	2728.2	2 <500	133.4	3695	<500	1393.6	<100	<50		<500	<500	<500	120.6	<50	_TITLE_
OD67909		CANPRO JECTS- PTECH	2152017	Projects in CANOPI for Process Tech	Bottoms - 5 g, 15% oak		2152017			PENDIN G	0.023	OD67909	<15	60.9	438	<150	<150	<30	<30	106.5	<150	<15	153	<150	63.5	<30	<15		<150	3729	705	<15	1351.4	TITLE_

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

qry_LAB W_xTab.S IDN	SCM1	LCOD	GroupID	DSCR	LABDES C	LOT	TANK	WO	OPCODE	MALC	MVAZ	qry_LAB Wmulti_x Tab.SIDN	SMARO MOAK-4- Methyl gunincol	SMARO MOAK-4 Vinyl guaiacol	SMARO MOAK-5 Hydroxyr ethyl furfural	SMARO MOAK-5- Methyl furfural	SMARO MOAK- Acetovani Ilone	SMARO MOAK- Benzaldeh yde	SMARO MOAK- Benzyl alcohol	SMARO MOAK- cis-Oak lactone	SMARO MOAK- Ethyl vanillate	SMARO MOAK- Eugenol	SMARO MOAK- Furfural	SMARO MOAK- Furfural alcohol	\$MARO MOAK- Guaiacol	SMARO MOAK- Hexyl acetate	SMARO MOAK- iso- Eugenol	SMARO MOAK- Maltol	SMARO MOAK- Methyl vanillate	SMARO MOAK- Syringalde hyde	SMARO MOAK- Syringol	SMARO MOAK- trans-Oak lactone	SMARO MOAK- Vanillin	SMARO MOAK- Volatile aroma compound s - oak
OD57655		CANPRO JECTS- PTECH	GK02082 017	Projects in CANOPI for Process Tech	Condensat e 1 - 5 g, 10%	DCN22	2082017			85.86	<0.005	OD57655	<50	<50	<500	<500	<500	110	122	926.1	7 <500	84.2	2379	<500	584.3	<100	<50	<500	<500	<500	<500	106.2	122	TITLE_
OD57656		CANPRO JECTS- PTECH	GK02082 017	Projects in CANOPI for Process Tech	Condensat e 2 - 5 g, 10%	DCN22	2082017			5.13	0.00	8 OD57656	<50	945.3	3 <500	973	<500	<100	293	2925.	7 <500	149.8	6000	<500	2020.8	<100	<50	<500	<500	<500	<500	130.8	<50	_TITLE_
OD57657		CANPRO JECTS- PTECH	GK02082 017	Projects in CANOPI for Process Tech	Bottoms - 5 g, 10%	DCN22	2082017			0.08	0.02	8 OD57657	<50	63.	4 <500	<500	<500	<100	<100	<50	<500	<50	<500	<500	<50	<100	<50	<500	<500	4131	1252	<50	173	3_TITLE_
OD57658		CANPRO JECTS- PTECH	GK02082 017	Projects in CANOPI for Process Tech	Condensat e 1 - 5 g, 20%	DCN22	2082017			89.25	<0.005	OD57658	<50	<50	<500	<500	<500	<100	<100	<50	<500	<50	<500	<500	<50	<100	<50	<500	<500	<500	<500	<50	89.1	, _TITLE_
OD57659		CANPRO JECTS- PTECH	GK02082 017	Projects in CANOPI for Process Tech	Condensat e 2 - 5 g, 20%	DCN22	2082017			89.24	<0.005	OD57659	<50	<50	<500	<500	<500	<100	<100	<50	<500	<50	<500	<500	<50	<100	<50	<500	<500	<500	<500	<50	97.)	LTITLE_
OD57660		CANPRO JECTS- PTECH	GK02082 017	Projects in CANOPI for Process Tech	Bottoms - 5 g, 20%	DCN22	2082017			<0.05	0.02	7 OD57660	<50	15	9 <500	<500	<500	<100	<100	<50	<500	<50	<500	<500	<50	<100	<50	<500	<500	4116	1168	<50	1564.3	5_TITLE_
OD58350		CANPRO JECTS- PTECH	GK02082 017	Projects in CANOPI for Process Tarb	CONDEN SATE 4 - 5 g oak, 20%	DCN22	2082017		pH=5.73	1.91	0.008	8 OD58350	<25	2944.3	8 35	1 893	<250	<50	64	328	5 <250	184.8	4641	<250	2024.1	<50	87_3	<250	<250	<250	<250	138.9	28.9	, TITLE

IV.D Steam Stripping

199. 20 190

b. Gano whiery							
		LAB REPO	RT			nicole.packar	d@ejgallo.com
Lab ID: OD31062 Col Date/Time: 01/19/17 00:00 Submitted Date/Time: 01/23/17 09:38 Sample Type: BOTTOMS Comments:	Projec	Steam Stripper 8 ts in CANOPI for F 8rp Cummins	rpm rocess Tech mB 16B	ı 8-10		Section: Tank: Lot: CANOPI:	CANPROJECTS-P 16-01-17 excel sheet desktop 12963
Test Code Test Description	Result	Units	Recheck	Violations	MDL	Analysis Co	mments
MAROMOA Volatile aroma compounds - o	TITLE	1,526926		NONE			
MAROMOA Hexyl acetate	<30	ppb		NONE	30		
MAROMOA Furfural	<150	ppb		NONE	150		
MAROMOA 5-Methyl furfural	<150	ppb		NONE	150		
MAROMOA Furfural alcohol	3234	ppb		NONE	150		
MAROMOA Benzaldehyde	<30	ppb		NONE	30		
MAROMOA Guaiacol	47.90	ppb		NONE	15.0		
MAROMOA/Benzyl alcohol	132	ppb		NONE	30		
MAROMOA trans-Oak lactone	<15	ppb		NONE	15.0		
MAROMOA 4-Methyl guaiacol	77.40	ppb		NONE	15.0		
MAROMOA Maltol	<150	ppb		NONE	150		
MAROMOA cis-Oak lactone	<15	ppb		NONE	15.0		
MAROMOA Eugenol	<15	ppb		NONE	15.0		
MAROMOA 4-Vinyl guaiacol	<15	ppb		NONE	15.0		
MAROMOA Syringol	<150	ppb		NONE	150		
MAROMOA iso-Eugenol	<15	ppb		NONE	15.0		
MAROMOA 5-Hydroxymethyl furfural	<150	ppb		NONE	150		
MAROMOA Vanillin	<15	ppb		NONE	15.0		
MAROMOA Methyl vanillate	<150	ppb		NONE	150		
MAROMOA Ethyl vanillate	<150	ppb		NONE	150		
MAROMOA Acetovanillone	<150	ppb		NONE	150		
MAROMOA Syringaldehyde	<150	ppb		NONE	150		
MALC Alcohol % v/v at 60F	1.18	% v/v ± 0.14		NONE	0.05		

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

4/2/2017

Date: 01/25/17 16:09

		LAB REPO	ORT			nicole.packar	d@ejgallo.com
Lab ID: OD31056 Col Date/Time: 01/19/17 00:00 Submitted Date/Time: 01/23/17 09:38	Projec	Steam Stripper 6 ts in CANOPI for F 6n	rpm Process Tech omB	i		Section: Tank: Lot:	CANPROJECTS-P 16-01-17 excel sheet desktop
Sample Type: BOTTOMS Comments:		Cummins	16B	6-10		CANOPI	: 12963
Test Code Test Description	Result	Units	Recheck	Violations	MDL	Analysis Co	mments
MAROMOA Volatile aroma compounds - o	_TITLE_			NONE			
MAROMOA Hexyl acetate	<30	ppb		NONE	30		
MAROMOA Furfural	<150	ppb		NONE	150		
MAROMOA 5-Methyl furfural	<150	ppb		NONE	150		
MAROMOA Furfural alcohol	2605	ppb		NONE	150		
MAROMOA Benzaldehyde	<30	ppb		NONE	30		
MAROMOA Guaiacol	38.90	ppb		NONE	15.0		
MAROMOA Benzyl alcohol	152	ppb		NONE	30		
MAROMOAltrans-Oak lactone	<15	ppb		NONE	15.0		
MAROMOA 4-Methyl guaiacol	59.90	ppb		NONE	15.0		
MAROMOA Maltol	<150	ppb		NONE	150		
MAROMOA cis-Oak lactone	<15	ppb		NONE	15.0		
MAROMOA Eugenol	<15	ppb		NONE	15.0		
MAROMOA 4-Vinyl guaiacol	<15	ppb		NONE	15.0		
MAROMOA Syringol	<150	ppb		NONE	150		
MAROMOAliso-Eugenol	<15	ppb		NONE	15.0		
MAROMOA 5-Hydroxymethyl furfural	<150	ppb		NONE	150		
MAROMOA Vanillin	<15	ppb		NONE	15.0		
MAROMOA Methyl vanillate	<150	ppb		NONE	150		
MAROMOA Ethyl vanillate	<150	ppb		NONE	150		
MAROMOA Acetovanillone	<150	ppb		NONE	150		
MAROMOA Syringaldehyde	<150	ppb		NONE	150		
MALC Alcohol % v/v at 60F	0.26	% v/v ± 0.14		NONE	0.05		

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

Date: 01/25/17 16:09

		LAB REPO	ORT			nicole.packar	d@ejgallo.com
Lab ID: OD31068 Col Date/Time: 01/19/17 00:00 Submitted Date/Time: 01/23/17 09:38	Projec	Steam Stripper 1 ts in CANOPI for 10	0 rpm Process Tech romB	í.		Section: Tank: Lot:	CANPROJECTS-P 16-01-17 excel sheet desktop
Sample Type: BOTTOMS Comments:		Cummins	16B	10-10		CANOPI	: 12963
Test Code Test Description	Result	Units	Recheck	Violations	MDL	Analysis Co	mments
MAROMOA Volatile aroma compounds - o	TITLE			NONE			
MAROMOA Hexyl acetate	<30	ppb		NONE	30		
MAROMOA Furfural	<150	ppb		NONE	150		
MAROMOA 5-Methyl furfural	<150	ppb		NONE	150		
MAROMOA Furfural alcohol	3552	ppb		NONE	150		
MAROMOA Benzaldehyde	<30	ppb		NONE	30		
MAROMOA Guaiacol	69.20	ppb		NONE	15.0		
MAROMOA Benzyl alcohol	71	ppb		NONE	30		
MAROMOA trans-Oak lactone	<15	ppb		NONE	15.0		
MAROMOAl 4-Methyl guaiacol	130.50	ppb		NONE	15.0		
MAROMOA Maltol	<150	ppb		NONE	150		
MAROMOA cis-Oak lactone	<15	ppb		NONE	15.0		
MAROMOA Eugenol	<15	ppb		NONE	15.0		
MAROMOA 4-Vinyl guaiacol	<15	ppb		NONE	15.0		
MAROMOA Syringol	<150	ppb		NONE	150		
MAROMOA iso-Eugenol	<15	ppb		NONE	15.0		
MAROMOA 5-Hydroxymethyl furfural	<150	ppb		NONE	150		
MAROMOAVanillin	<15	ppb		NONE	15.0		
MAROMOA Methyl vanillate	<150	ppb		NONE	150		
MAROMOA Ethyl vanillate	<150	ppb		NONE	150		
MAROMOAAcetovanillone	<150	ppb		NONE	150		
MAROMOA Syringaldehyde	<150	ppb		NONE	150		
MALC Alcohol % v/v at 60F	1.86	% v/v ± 0.14		NONE	0.05		

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

Est Gallo Winery

Date: 01/25/17 16:09

		LAB REPO	ORT			nicole.packard@ejgallo.com
Lab ID: OD31059 Col Date/Time: 01/19/17 00:00 Submitted Date/Time: 01/23/17 09:38	Projec	Steam Stripper ts in CANOPI for 6r	6 rpm Process Tech pmD	i l		Section: CANPROJECTS-P Tank: 16-01-17 Lot: excel sheet desktop
Sample Type: DISTILLATE Comments:		Cummins	16D	610		CANOPI: 12963
Test Code Test Description	Result	Units	Recheck	Violations	MDL	Analysis Comments
MAROMOA Volatile aroma compounds - o	_TITLE_			NONE		16
MAROMOA Hexyl acetate	<150	ppb		NONE	150	
MAROMOA Furfural	2219	ppb		NONE	750	
MAROMOAI5-Methyl furfural	794	ppb		NONE	750	
MAROMOA Furfural alcohol	3358	ppb		NONE	750	
MAROMOA Benzaldehyde	<150	ppb		NONE	150	
MAROMOA Guaiacol	292.90	ppb		NONE	75.0	
MAROMOA Benzyl alcohol	604	ppb		NONE	150	
MAROMOAltrans-Oak lactone	<75	ppb		NONE	75.0	
MAROMOA 4-Methyl guaiacol	644.40	ppb		NONE	75.0	
MAROMOA Maltol	<750	ppb		NONE	750	
MAROMOA cis-Oak lactone	83.30	ppb		NONE	75.0	
MAROMOA Eugenol	<75	ppb		NONE	75.0	
MAROMOA 4-Vinyl guaiacol	<75	ppb		NONE	75.0	
MAROMOA Syringol	<750	ppb		NONE	750	
MAROMOAliso-Eugenol	<75	ppb		NONE	75.0	
MAROMOA 5-Hydroxymethyl furfural	<750	ppb		NONE	750	
MAROMOA Vanillin	<75	ppb		NONE	75.0	
MAROMOA Methyl vanillate	<750	ppb		NONE	750	
MAROMOA Ethyl vanillate	<750	ppb		NONE	750	
MAROMOA Acetovanillone	<750	ppb		NONE	750	
MAROMOA Syringaldehyde	<750	ppb		NONE	750	
MALC Alcohol % v/v at 60F	29.07	% v/v ± 0.14		NONE	0.1	

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

Date: 01/25/17 16:09

		LAB REPO	ORT			nicole.packar	d@ejgallo.com
Lab ID: OD31069 Col Date/Time: 01/19/17 00:00	Projec	Steam Stripper 1 ts in CANOPI for	0 rpm Process Tech			Section: Tank:	CANPROJECTS-P 16-01-17
Submitted Date/Time: 01/23/17/09:38 Sample Type: DISTILLATE Comments:		Cummins	16D1	0-10		CANOPI	excel sheet desidop : 12963
Test Code Test Description	Result	Units	Recheck	Violations	MDL	Analysis Co	mments
MAROMOA/Volatile aroma compounds - o	_TITLE_	0000-		NONE	100.00		in second descent
MAROMOA Hexyl acetate	<100	ppb		NONE	100		
MAROMOA Furfural	1972	ppb		NONE	500		
MAROMOA 5-Methyl furfural	627	ppb		NONE	500		
MAROMOA Furfural alcohol	1708	ppb		NONE	500		
MAROMOA Benzaldehyde	107	ppb		NONE	100		
MAROMOA Guaiacol	163.90	ppb		NONE	50.0		
MAROMOA Benzyl alcohol	<100	ppb		NONE	100		
MAROMOA trans-Oak lactone	<50	ppb		NONE	50.0		
MAROMOA 4-Methyl guaiacol	421.70	ppb		NONE	50.0		
MAROMOA Maltol	<500	ppb		NONE	500		
MAROMOA cis-Oak lactone	<50	ppb		NONE	50.0		
MAROMOA Eugenol	<50	ppb		NONE	50.0		
MAROMOA 4-Vinyl guaiacol	<50	ppb		NONE	50.0		
MAROMOA Syringol	<500	ppb		NONE	500		
MAROMOAliso-Eugenol	<50	ppb		NONE	50.0		
MAROMOAI5-Hydroxymethyl furfural	<500	ppb		NONE	500		
MAROMOAVanillin	<50	ppb		NONE	50.0		
MAROMOA Methyl vanillate	<500	ppb		NONE	500		
MAROMOA Ethyl vanillate	<500	ppb		NONE	500		
MAROMOA/Acetovanillone	<500	ppb		NONE	500		
MAROMOA Syringaldehyde	<500	ppb		NONE	500		
MALC Alcohol % v/v at 60F	59.36	% v/v ± 0.14		NONE	0.5		

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

Date: 01/25/17 16:09

		LAB REPORT					d@ejgallo.com
ab ID: OD31060 Col Date/Time: 01/19/17 00:00 Submitted Date/Time: 01/92/17 09:38	Steam Stripper 6 rpm Projects in CANOPI for Process Tech					Section: Tank:	CANPROJECTS-P 17-01-17 excel sheet desitor
Sample Type: DISTILLATE		Cummins	17D6	5		CANOPI:	: 12963
Test Code Test Description	Result	Units	Recheck	Violations	MDL	Analysis Co	mments
MAROMOA Volatile aroma compounds - o	TITLE	00000		NONE			
MAROMOA Hexyl acetate	<100	ppb		NONE	100		
MAROMOA Furfural	2146	ppb		NONE	500		
MAROMOA 5-Methyl furfural	722	ppb		NONE	500		
MAROMOA Furfural alcohol	2779	ppb		NONE	500		
MAROMOA Benzaldehyde	<100	ppb		NONE	100		
MAROMOA Guaiacol	234.30	ppb		NONE	50.0		
MAROMOA Benzyl alcohol	<100	ppb		NONE	100		
MAROMOAltrans-Oak lactone	<50	ppb		NONE	50.0		
MAROMOA 4-Methyl gualacol	530.80	ppb		NONE	50.0		
MAROMOA Maltol	<500	ppb		NONE	500		
MAROMOAlcis-Oak lactone	<50	ppb		NONE	50.0		
MAROMOA Eugenol	56.90	ppb		NONE	50.0		
MAROMOA 4-Vinyl guaiacol	<50	ppb		NONE	50.0		
MAROMOAl Syringol	<500	ppb		NONE	500		
MAROMOA iso-Eugenol	<50	ppb		NONE	50.0		
MAROMOA 5-Hydroxymethyl furfural	<500	ppb		NONE	500		
MAROMOA Vanilin	<50	ppb		NONE	50.0		
MAROMOA Methyl vanillate	<500	ppb		NONE	500		
MAROMOA Ethyl vanillate	<500	ppb		NONE	500		
MAROMOA Acetovanillone	<500	ppb		NONE	500		
MAROMOA Syringaldehyde	<500	ppb		NONE	500		
MALC Alcohol % v/v at 60F	41.47	% v/v ± 0.14		NONE	0.1		

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

Date: 01/25/17 16:09

	LAB REPORT					nicole.packar	d@ejgallo.com
Lab ID: OD31057 Col Date/Time: 01/19/17 00:00 Submitted Date/Time: 01/23/17 09:38	Steam Stripper 6 rpm Projects in CANOPI for Process Tech GrpmB					Section: Tank: Lot:	CANPROJECTS-P 17-01-17 excel sheet desktop
Sample Type: BOTTOMS Comments:		Cummins 17B6-10				CANOPI	: 12963
Test Code Test Description	Result	Units	Recheck	Violations	MDL	Analysis Co	mments
MAROMOA/Volatile aroma compounds - o	TITLE			NONE			67.
MAROMOA Hexyl acetate	<30	ppb		NONE	30		
MAROMOA Furfural	<150	ppb		NONE	150		
MAROMOA 5-Methyl furfural	<150	ppb		NONE	150		
MAROMOA Furfural alcohol	3267	ppb		NONE	150		
MAROMOA Benzaldehyde	<30	ppb		NONE	30		
MAROMOA Guaiacol	63.10	ppb		NONE	15.0		
MAROMOA Benzyl alcohol	47	ppb		NONE	30		
MAROMOA trans-Oak lactone	<15	ppb		NONE	15.0		
MAROMOAl 4-Methyl guaiacol	111.50	ppb		NONE	15.0		
MAROMOA Maltol	<150	ppb		NONE	150		
MAROMOA cis-Oak lactone	<15	ppb		NONE	15.0		
MAROMOA Eugenol	<15	ppb		NONE	15.0		
MAROMOA 4-Vinyl guaiacol	<15	ppb		NONE	15.0		
MAROMOA Syringol	<150	ppb		NONE	150		
MAROMOA iso-Eugenol	<15	ppb		NONE	15.0		
MAROMOA 5-Hydroxymethyl furfural	<150	ppb		NONE	150		
MAROMOA Vanilin	<15	ppb		NONE	15.0		
MAROMOA Methyl vanillate	<150	ppb		NONE	150		
MAROMOA Ethyl vanillate	<150	ppb		NONE	150		
MAROMOA Acetovanillone	<150	ppb		NONE	150		
MAROMOA Syringaldehyde	<150	ppb		NONE	150		
MALC Alcohol % v/v at 60F	1.08	% v/v ± 0.14		NONE	0.05		

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

Date: 01/25/17 16:09

	LAB REPORT					nicole.packar	d@ejgallo.com
Lab ID: OD31070 Col Date/Time: 01/19/17 00:00 Submitted Date/Time: 01/23/17 09:38	Cleaned Bottoms Projects in CANOPI for Process Tech CB1					Section: Tank: Lot:	CANPROJECTS-P 17-01-17 excel sheet desktop
Sample Type: CLEANED Comments:	CLEANED Cummins 17CB-10					CANOPI	12963
Test Code Test Description	Result	Units	Recheck	Violations	MDL	Analysis Co	mments
MAROMOA Volatile aroma compounds - o	_TITLE_			NONE			<u>*</u>
MAROMOA Hexyl acetate	<30	ppb		NONE	30		
MAROMOA Furfural	<150	ppb		NONE	150		
MAROMOA 5-Methyl furfural	<150	ppb		NONE	150		
MAROMOA Furfural alcohol	<150	ppb		NONE	150		
MAROMOA Benzaldehyde	<30	ppb		NONE	30		
MAROMOA Guaiacol	<15	ppb		NONE	15.0		
MAROMOA Benzyl alcohol	<30	ppb		NONE	30		
MAROMOA trans-Oak lactone	<15	ppb		NONE	15.0		
MAROMOA 4-Methyl guaiacol	<15	ppb		NONE	15.0		
MAROMOA Maltol	<150	ppb		NONE	150		
MAROMOA cis-Oak lactone	<15	ppb		NONE	15.0		
MAROMOA Eugenol	<15	ppb		NONE	15.0		
MAROMOA 4-Vinyl guaiacol	<15	ppb		NONE	15.0		
MAROMOA Syringol	<150	ppb		NONE	150		
MAROMOA iso-Eugenol	<15	ppb		NONE	15.0		
MAROMOA 5-Hydroxymethyl furfural	<150	ppb		NONE	150		
MAROMOA Vanillin	<15	ppb		NONE	15.0		
MAROMOA Methyl vanillate	<150	ppb		NONE	150		
MAROMOA Ethyl vanillate	<150	ppb		NONE	150		
MAROMOA Acetovanillone	<150	ppb		NONE	150		
MAROMOA Syringaldehyde	<150	ppb		NONE	150		
MALC Alcohol % v/v at 60F	0.14	% v/v ± 0.14		NONE	0.05		

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

Date: 01/25/17 16:09

S-PT

top

		LAB REPO	ORT	nicole.packard@ejgallo.com			
Lab ID: OD31058 Col Date/Time: 01/19/17 00:00 Submitted Date/Time: 01/23/17 09:38	Steam Stripper 6 rpm Projects in CANOPI for Process Tech formmB					Section: (Tank: Lot: (CANPROJECT: 18-01-17 excel sheet desk
Sample Type: BOTTOMS Comments:	Cummins 18B6-10					2963	
Test Code Test Description	Result	Units	Recheck	Violations	MDL	Analysis Com	iments
MAROMOA Volatile aroma compounds - o	_TITLE_			NONE			
MAROMOA Hexyl acetate	<30	ppb		NONE	30		
MAROMOA Furfural	<150	ppb		NONE	150		
MAROMOA 5-Methyl furfural	<150	ppb		NONE	150		
MAROMOA Furfural alcohol	3032	ppb		NONE	150		
MAROMOA Benzaldehyde	<30	ppb		NONE	30		
MAROMOA Guaiacol	34.30	ppb		NONE	15.0		
MAROMOA Benzyl alcohol	193	ppb		NONE	30		
MAROMOAltrans-Oak lactone	<15	ppb		NONE	15.0		
MAROMOAI 4-Methyl guaiacol	50.00	ppb		NONE	15.0		
MAROMOA Maltol	<150	ppb		NONE	150		
MAROMOA cis-Oak lactone	<15	ppb		NONE	15.0		
MAROMOA Eugenol	<15	ppb		NONE	15.0		
MAROMOA 4-Vinyl guaiacol	<15	ppb		NONE	15.0		
MAROMOA Syringol	<150	ppb		NONE	150		
MAROMOA iso-Eugenol	<15	ppb		NONE	15.0		
MAROMOA 5-Hydroxymethyl furfural	<150	ppb		NONE	150		
MAROMOAVanilin	<15	ppb		NONE	15.0		
MAROMOA Methyl vanillate	<150	ppb		NONE	150		
MAROMOA Ethyl vanillate	<150	ppb		NONE	150		
MAROMOAAcetovanillone	<150	ppb		NONE	150		
MAROMOA Syringaldehyde	<150	ppb		NONE	150		
MALC Alcohol % v/v at 60F	0.25	% v/v ± 0.14		NONE	0.05		

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

Date: 01/25/17 16:09

	LAB REPORT					nicole.packard@ejgallo.com
Lab ID: OD31071 Col Date/Time: 01/19/17 00:00 Submitted Date/Time: 01/23/17 09:38	Cleaned Bottoms Projects in CANOPI for Process Tech CB2					Section: CANPROJECTS-P Tank: 18-01-17 Lot: excel sheet desktop
Sample Type: CLEANED Comments:		Cummins 18CB-15				CANOPI: 12963
Test Code Test Description	Result	Units	Recheck	Violations	MDL	Analysis Comments
MAROMOA Volatile aroma compounds - o	_TITLE_			NONE		
MAROMOA Hexyl acetate	<30	ppb		NONE	30	
MAROMOA Furfural	<150	ppb		NONE	150	
MAROMOA 5-Methyl furfural	<150	ppb		NONE	150	
MAROMOA Furfural alcohol	653	ppb		NONE	150	
MAROMOA Benzaldehyde	<30	ppb		NONE	30	
MAROMOA Guaiacol	17.40	ppb		NONE	15.0	
MAROMOA Benzyl alcohol	40	ppb		NONE	30	
MAROMOA trans-Oak lactone	<15	ppb		NONE	15.0	
MAROMOA 4-Methyl gualacol	35.10	ppb		NONE	15.0	
MAROMOA Maltol	<150	ppb		NONE	150	
MAROMOA cis-Oak lactone	<15	ppb		NONE	15.0	
MAROMOA Eugenol	<15	ppb		NONE	15.0	
MAROMOA 4-Vinyl guaiacol	<15	ppb		NONE	15.0	
MAROMOA Syringol	<150	ppb		NONE	150	
MAROMOA iso-Eugenol	<15	ppb		NONE	15.0	
MAROMOA 5-Hydroxymethyl furfural	<150	ppb		NONE	150	
MAROMOAVanilin	<15	ppb		NONE	15.0	
MAROMOA Methyl vanillate	<150	ppb		NONE	150	
MAROMOA Ethyl vanillate	<150	ppb		NONE	150	
MAROMOAAcetovanillone	<150	ppb		NONE	150	
MAROMOA Syringaldehyde	<150	ppb		NONE	150	
MALC Alcohol % v/v at 60F	0.20	% v/v ± 0.14		NONE	0.05	

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

Date: 01/25/17 16:09

	LAB REPORT					nicole.packa	rd@eigallo.com	
Lab ID: OD31061 Col Date/Time: 01/19/17 00:00	Steam Stripper 6 rpm Projects in CANOPI for Process Tech					Section: Tank:	CANPROJECTS-P 18-01-17	
Submitted Date/Time: 01/23/17 09:38	mitted Date/Time: 01/23/17 09:38 6rpmD					Lot:	excel sheet desktop	
Sample Type: DISTILLATE Comments:		Cummins	18D	6-15		CANOPI: 12963		
Test Code Test Description	Result	Units	Recheck	Violations	MDL	Analysis Co	omments	
MAROMOA Volatile aroma compounds - o	_TITLE_			NONE				
MAROMOA Hexyl acetate	<100	ppb		NONE	100			
MAROMOA Furfural	1611	ppb		NONE	500			
MAROMOAI5-Methyl furfural	1018	ppb		NONE	500			
MAROMOA Furfural alcohol	5476	ppb		NONE	500			
MAROMOA Benzaldehyde	<100	ppb		NONE	100			
MAROMOA Guaiacol	405.60	ppb		NONE	50.0			
MAROMOA Benzyl alcohol	222	ppb		NONE	100			
MAROMOAltrans-Oak lactone	<50	ppb		NONE	50.0			
MAROMOA 4-Methyl guaiacol	930.70	ppb		NONE	50.0			
MAROMOA Maltol	<500	ppb		NONE	500			
MAROMOA cis-Oak lactone	112.60	ppb		NONE	50.0			
MAROMOA Eugenol	93.20	ppb		NONE	50.0			
MAROMOA 4-Vinyl guaiacol	<50	ppb		NONE	50.0			
MAROMOA Syringol	<500	ppb		NONE	500			
MAROMOAliso-Eugenol	<50	ppb		NONE	50.0			
MAROMOA 5-Hydroxymethyl furfural	<500	ppb		NONE	500			
MAROMOA Vanillin	<50	ppb		NONE	50.0			
MAROMOA Methyl vanillate	<500	ppb		NONE	500			
MAROMOA Ethyl vanillate	<500	ppb		NONE	500			
MAROMOAAcetovanillone	<500	ppb		NONE	500			
MAROMOA Syringaldehyde	<500	ppb		NONE	500			
MALC Alcohol % w/v at 60F	27.79	% w'v ± 0.14		NONE	0.1			

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

Date: 01/25/17 16:09

S-PT

ktop

		LAB REPO	RT			nicole.packard@ejgallo.com
Lab ID: OD31066 Col Date/Time: 01/19/17 00:00 Submitted Date/Time: 01/23/17 09:38	Steam Stripper 8 rpm Projects in CANOPI for Process Tech 8rpmD					Section: CANPROJECT Tank: 18-01-17 Lot: excel sheet dee
Sample Type: DISTILLATE Comments:		Cummins	18D	8-15		CANOPI: 12963
Test Code Test Description	Result	Units	Recheck	Violations	MDL	Analysis Comments
MAROMOA Volatile aroma compounds - o	_TITLE_			NONE		
MAROMOA Hexyl acetate	<100	ppb		NONE	100	
MAROMOA Furfural	1532	ppb		NONE	500	
MAROMOA 5-Methyl furfural	994	ppb		NONE	500	
MAROMOAl Furfural alcohol	3188	ppb		NONE	500	
MAROMOA Benzaldehyde	<100	ppb		NONE	100	
MAROMOA Guaiacol	331.80	ppb		NONE	50.0	
MAROMOA Benzyl alcohol	<100	ppb		NONE	100	
MAROMOA trans-Oak lactone	<50	ppb		NONE	50.0	
MAROMOA 4-Methyl guaiacol	839.40	ppb		NONE	50.0	
MAROMOA Maltol	<500	ppb		NONE	500	
MAROMOA cis-Oak lactone	56.40	ppb		NONE	50.0	
MAROMOA Eugenol	87.20	ppb		NONE	50.0	
MAROMOA 4-Vinyl guaiacol	<50	ppb		NONE	50.0	
MAROMOA Syringol	<500	ppb		NONE	500	
MAROMOAliso-Eugenol	<50	ppb		NONE	50.0	
MAROMOA 5-Hydroxymethyl furfural	<500	ppb		NONE	500	
MAROMOA Vanillin	<50	ppb		NONE	50.0	
MAROMOA Methyl vanillate	<500	ppb		NONE	500	
MAROMOA Ethyl vanillate	<500	ppb		NONE	500	
MAROMOA Acetovanillone	<500	ppb		NONE	500	
MAROMOA Syringaldehyde	<500	ppb		NONE	500	
MALC Alcohol % v/v at 60F	53.78	% w/v ± 0.14		NONE	0.5	

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

E&J. Gallo Winery

Date: 01/25/17 16:09

		LAB REPO	ORT			nicole.packard@ejgallo.com
Lab ID: OD31064 Col Date/Time: 01/19/17 00:00 Submitted Date/Time: 01/23/17 09:38	Si Projec	team Stripper 8 rp ts in CANOPI for 8romi	m fortified Process Tech 3Fortified	ь.		Section: CANPROJECTS-P Tank: 19-01-17 Lot: excel sheet desktop
Sample Type: BOTTOMS Comments:		Cummins	19B	8-10		CANOPI: 12963
Test Code Test Description	Result	Units	Recheck	Violations	MDL	Analysis Comments
MAROMOA Volatile aroma compounds - o	_TITLE_			NONE	_	
MAROMOA Hexyl acetate	<10	ppb		NONE	10	
MAROMOA Furfural	<50	ppb		NONE	50	
MAROMOA 5-Methyl furfural	68	ppb		NONE	50	
MAROMOA Furfural alcohol	3760	ppb		NONE	50	
MAROMOA Benzaldehyde	<10	ppb		NONE	10	
MAROMOA Gualacol	71.50	ppb		NONE	5.00	
MAROMOA Benzyl alcohol	107	ppb		NONE	10	
MAROMOAltrans-Oak lactone	<5	ppb		NONE	5.00	
MAROMOA 4-Methyl guaiacol	131.10	ppb		NONE	5.00	
MAROMOA Maltol	<50	ppb		NONE	50	
MAROMOA cis-Oak lactone	19.10	ppb		NONE	5.00	
MAROMOA Eugenol	12.10	ppb		NONE	5.00	
MAROMOA 4-Vinyl guaiacol	<5	ppb		NONE	5.00	
MAROMOA Syringol	<50	ppb		NONE	50	
MAROMOA iso-Eugenol	<5	ppb		NONE	5.00	
MAROMOA 5-Hydroxymethyl furfural	<50	ppb		NONE	50	
MAROMOA/Vanillin	6.00	ppb		NONE	5.00	
MAROMOA Methyl vanillate	<50	ppb		NONE	50	
MAROMOA Ethyl vanillate	<50	ppb		NONE	50	
MAROMOA Acetovanillone	<50	ppb		NONE	50	
MAROMOA Syringaldehyde	<50	ppb		NONE	50	
MALC Alcohol % v/v at 60F	1.02	% w/v ± 0.14		NONE	0.05	

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

E&J. Gallo Winery

Date: 01/25/17 16:09

		LAB REPO	ORT			nicole.packar	d@ejgallo.com
Lab ID: OD31067 Col Date/Time: 01/19/17 00:00 Submitted Date/Time: 01/23/17 09:38 Sample Type: DISTILLATE Comments:	Projec	Steam Stripper 8 ts in CANOPI for F BrpmD Cummins	3 rpm Process Tech Fortified 19D	8-10		Section: Tank: Lot: CANOPI	CANPROJECTS-P 19-01-17 excel sheet desktop 12963
Test Code Test Description	Result	Units	Recheck	Violations	MDL	Analysis Co	mments
MAROMOA Volatile aroma compounds - o	_TITLE_			NONE			
MAROMOA Hexyl acetate	<100	ppb		NONE	100		
MAROMOA Furfural	<500	ppb		NONE	500		
MAROMOA 5-Methyl furfural	<500	ppb		NONE	500		
MAROMOA Furfural alcohol	1560	ppb		NONE	500		
MAROMOA Benzaldehyde	<100	ppb		NONE	100		
MAROMOA Guaiacol	169.40	ppb		NONE	50.0		
MAROMOA Benzyl alcohol	<100	ppb		NONE	100		
MAROMOA trans-Oak lactone	<50	ppb		NONE	50.0		
MAROMOA 4-Methyl guaiacol	418.40	ppb		NONE	50.0		
MAROMOA Maltol	<500	ppb		NONE	500		
MAROMOA cis-Oak lactone	<50	ppb		NONE	50.0		
MAROMOA Eugenol	<50	ppb		NONE	50.0		
MAROMOA 4-Vinyl guaiacol	<50	ppb		NONE	50.0		
MAROMOA Syringol	<500	ppb		NONE	500		
MAROMOA iso-Eugenol	<50	ppb		NONE	50.0		
MAROMOA 5-Hydroxymethyl furfural	<500	ppb		NONE	500		
MAROMOA Vanillin	<50	ppb		NONE	50.0		
MAROMOA Methyl vanillate	<500	ppb		NONE	500		
MAROMOA Ethyl vanillate	<500	ppb		NONE	500		
MAROMOAAcetovanillone	<500	ppb		NONE	500		
MAROMOA Syringaldehyde	<500	ppb		NONE	500		
MALC Alcohol % v/v at 60F	68.05	% v/v ± 0.14		NONE	0.5		

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

IV.E Column Chromatography

1ST PASS D	EPLETED TA	NNINS																													
qry_LAB W_xTab.S IDN	GroupID	DSCR	LABDESC	LOT	TANK	wo	OPCODE	\$MAROM SM	MALC	qry_LAB Wmulti_x Tab.SIDN	\$MAROM OAK-4- Methyl guaiacol	\$MAROM OAK-4- Vinyl guaiacol	\$MAROM OAK-5- Hydroxym ethyl furfural	\$MAROM OAK-5- Methyl furfural	\$MAROM OAK- Acetovani Ilone	\$MAROM OAK- Benzaldeh yde	\$MAROM OAK- Benzyl alcohol	\$MAROM OAK-cis- Oak lactone	\$MAROM OAK-Ethyl vanillate	\$MAROM OAK- Eugenol	\$MAROM OAK- Furfural	\$MAROM OAK- Furfural alcohol	\$MAROM OAK- Guaiacol	\$MAROM OAK- Hexyl acetate	SMAROM OAK-iso- Eugenol	\$MAROM OAK- Maltol	\$MAROM OAK- Methyl vanillate	\$MAROM OAK- Syringalde hyde	SMAROM OAK- Syringol	\$MAROM DAK-trans- Oak lactone	\$MAROM OAK- Vanillin
OD27811	AK170117	Projects in	Smoak	MF2/Stani	Feed	~10 ppm	FEED		7.21	OD27811	4452.3	<150	21346	3188	1841	<300	<300	<150	<1500	485.7	34442	5331	8842.6	<300	<150	7802	<1500	9220	20839 <	:150	2798.1
OD31077	NP19.01.1	Projects	smoak	GKredboo	19-01-17	dep.tanni	Sample 1	7.06	0.082	OD31077	<150	<150	19513	1820	<1500	<300	<300	<150	<1500	<150	28940	4471	2344.8	<300	<150	3218	<1500	2160	4817 4	<150	905.6
OD32824	GK200120	Projects	Depleted	ReBook	1/20/201	Sample 2	Sample 2		7.08	OD32824	1591.1	<150	19640	3678	1980	<300	<300	<150	<1500	<150	34594	4660	9397.7	<300	<150	6763	<1500	10626	24409 <	<150	3172.7
OD37080	N.P.24.1.2	Projects	chromato	GKRedbo	1/24/201	depleted	Sample 3		6.94	OD37080	4617.6	<500	20509	<5000	<5000	<1000	<1000	<500	<5000	<500	33405	5142	9714.2	<1000	<500	<5000	<5000	10922	25449 <	<500	3187.6
OD40990	GK012620	Projects	Depleted	DCN22-	01262017	depleted	Sample 4		7.04	OD40990	5210.4	<1000	20015	<10000	<10000	<2000	<2000	<1000	<10000	<1000	32562	<10000	8671.2	<2000	<1000	<10000	<10000	<10000	22597 4	<1000	2965
OD40989	GK012620	Projects	Depleted	DCN22-	01262017	depleted	Sample 5		6.9	OD40989	5712.2	<500	25596	<5000	<5000	<1000	<1000	<500	<5000	<500	34257	5586	10073.5	<1000	<500	8548	<5000	10830	24760 <	<500	3347.1

																					1										
1ST PASS																															
ELUTIONS																															
qry_LAB W_xTab.S IDN	GroupID	DSCR	LABDESC	LOT	TANK	wo	OPCODE	MALC	qry_LAB Wmulti_x Tab.SIDN	\$MAROM OAK-4- Methyl guaiacol	\$MAROM OAK-4- Vinyl guaiacol	SMAROM OAK-5- Hydroxym ethyl furfural	\$MAROM OAK-5- Methyl furfural	\$MAROM OAK- Acetovani Ilone	\$MAROM OAK- Benzaldeh yde	\$MAROM OAK- Benzyl alcohol	\$MAROM OAK-cis- Oak lactone	ŚMAROM OAK-Ethyl vanillate	ŚMAROM OAK- Eugenol	\$MAROM OAK- Furfural	\$MAROM OAK- Furfural alcohol	\$MAROM OAK- Guaiacol	\$MAROM OAK- Hexyl acetate	\$MAROM OAK-iso- Eugenol	\$MAROM OAK- Maltol	\$MAROM OAK- Methyl vanillate	\$MAROM OAK- Syringalde hyde	\$MAROM OAK- Syringol	\$MAROM OAK-trans- Oak lactone	\$MAROM OAK- Vanillin	\$MAROM OAK- Volatile aroma compoun ds - oak
OD44812	GK013020	Projects	elution1_	DCN22-	30-1-17	Column	8V1	17.51	OD44812	13144.00	<500	17808	6357	5508	<1000	<1000	<500	<5000	<500	51652	<5000	18233.60	<1000	<500		<5000	28176	54495	<500	6437.10	TITLE
OD44813	GK013020	Projects	elution2_	DCN22-	30-1-17	Column	BV2	20.72	OD44813	14743.50	<500	9435	6745	6247	<1000	<1000	<500	<5000	527.30	49174	<5000	19554.90	<1000	<500	-	<5000	31609	58413	<500	7287.50	_TITLE_
OD44814	GK013020	Projects	elution3	DCN22-	30-1-17	Column	BV3	36.25	OD44814	48551.40	<1000	<10000	13767	15820	<2000	<2000	1517.10	<10000	3661.80	59331	<10000	50285.30	<2000	<1000	10244	<10000	74526	144381	<1000	17792.80	TITLE
OD44815	GK013020	Projects	elution4	DCN22-	30-1-17	Column	BV4	44.42	OD44815	83792.00	<1000	<10000	14915	16341	<2000	<2000	3590.40	<10000	10212.90	43500	<10000	68538.10	<2000	<1000	<10000	<10000	71466	165438	1019.00	18390.10	TITLE
OD44816	GK013020	Projects	elution5_	DCN22-	30-1-17	Column	BV5	58.37	OD44816	101567.7	<1000	<10000	11744	12749	<2000	<2000	8375.90	<10000	25877.80	23039	<10000	66112.00	<2000	<1000	<10000	<10000	51930	138881	2441.00	14290.20	TITLE
OD44817	GK013020	Projects	elution6_	DCN22-	30-1-17	Column	BV6	62.89	OD44817	70792.20	<1000	<10000	<10000	<10000	<2000	<2000	7811.90	<10000	24917.50	<10000	<10000	41034.40	<2000	<1000	<10000	<10000	29951	80418	2389.30	8300.40	_TITLE_
OD44818	GK013020	Projects	elution7_	DCN22-	30-1-17	Column	BV7	77.77	OD44818	59485.60	<1000	<10000	<10000	<10000	<2000	<2000	11689.90	<10000	42142.30	<10000	<10000	23844.20	<2000	<1000	<10000	<10000	12526	41308	3949.00	3565.10	TITLE
OD44819	GK013020	Projects	elution8_	DCN22-	30-1-17	Column	8V8	81.29	OD44819	27467.50	<250	<2500	<2500	<2500	756	532	6812.40	<2500	30142.60	<2500	<2500	7675.40	<500	408.50	<2500	<2500	5231	15026	2464.30	1085.90	_TITLE_
OD44820	GK013020	Projects	elution9_	DCN22-	30-1-17	Column	8V9	91.89	OD44820	9511.90	<250	<2500	<2500	<2500	<500	<500	2913.10	<2500	18761.00	<2500	<2500	2103.10	<500	337.50	<2500	<2500	<2500	4396	1168.00	363.30	_TITLE_
OD44821	GK013020	Projects	elution10	DCN22-	30-1-17	Column	BV10	94.35	OD44821	2499.80	<250	<2500	<2500	<2500	<500	<500	673.30	<2500	5498.50	<2500	<2500	675.70	<500	<250	<2500	<2500	<2500	<2500	254.20	<250	_TITLE_

PASS DEPLETIO N																														
qry_LAB W_xTab.S IDN	DSCR	LABDESC	LOT	TANK	wo	OPCODE			v V	qry_LAB Vmulti_x Tab.SIDN	\$MAROM \$ OAK-4- Methyl guaiacol	MAROM OAK-4- Vinyl guaiacol	AROM AK-5- droxym ethyl rfural	AROM \$M NK-5- C ethyl Ace rfural II	AROM \$M. AK- C tovani Ben jone y	AROM \$MA AK- O zaldeh Be yde alo	ROM \$MARC AK- OAK-c nzyl Oak ohol lactor	OM is- OAK-Ethy vanillate	1 \$MARON 1 OAK- Eugeno	M \$MAROM OAK- ol Furfural	ŚMARON OAK- Furfural alcohol	A SMARON OAK- Guaiaco	SMARON OAK- Hexyl acetate	¹ \$MAROM OAK-iso- Eugenol	1 \$MARON OAK- Maltol	1 SMARON OAK- Methyl vanillate	SMAROI OAK- Syringalo hyde	4 SMAROM OAK- Syringol	\$MAROM OAK-trans Oak lactone	\$MARON OAK- Vanillin
OD49208	Projects	Depleted	DCN22-	01-30-		FEED			C	D49208	3153.6 <	50	17173	2894	1631 <10	0	115 <50	<500	<50	32979	440	5 7845.	1 <100	<50	987	9 <500	820	2 20005	<50	2532
qry_LAB W_xTab.S IDN	DSCR	LABDESC	LOT	TANK	wo	OPCODE	\$MFURA NEOL	MALC	MVAZ V	qry_LAB Vmulti_x Tab.SIDN	\$MAROM \$ OAK-4- Methyl guaiacol	MAROM OAK-4- Vinyl guaiacol	AROM AK-5- droxym ethyl rfural	AROM \$M. NK-5- C ethyl Ace rfural II	AROM \$M. AK- O tovani Ben jone y	AROM \$MA AK- O zaldeh Be yde alo	AROM ŚMARC AK- OAK-c nzyl Oak ohol lactor	OM is- OAK-Ethy vanillate	1 \$MARON I OAK- Eugeno	M \$MAROM OAK- ol Furfural	\$MARON OAK- Furfural alcohol	A \$MARON OAK- Guaiaco	SMARON OAK- Hexyl acetate	¹ \$MAROM OAK-iso- Eugenol	I \$MARON OAK- Maltol	SMARON OAK- Methyl vanillate	SMAROI OAK- Syringalo hyde	4 SMAROM OAK- Syringol	ŚMAROM OAK-trans Oak lactone	\$MARON OAK- Vanillin
OD49209	Projects	Depleted	DCN22-	02-01-		S1 .	_TITLE_	PENDING	ENDING O	D49209	22 <	15	16962 <15	0 <15	0 <30		42 <15	<150	<15	21043	401	7 23	1 <30	<15	667	0 <150	<150	168	4 <15	43
qry_LAB W_xTab.S IDN	DSCR	LABDESC	LOT	TANK	wo	OPCODE			MVAZ V	qry_LAB Wmulti_x Tab.SIDN	SMAROM S OAK-4- Methyl guaiacol	MAROM OAK-4- Vinyl guaiacol	AROM AK-5- droxym ethyl rfural	AROM SM NK-5- C ethyl Ace rfural II	AROM SM AK- O tovani Ben one y	AROM \$MA AK- O zaldeh Be yde alo	ROM \$MARC AK- OAK-c nzyl Oak ohol lactor	OM is- OAK-Ethy vanillate	1 \$MARON 1 OAK- Eugeno	M \$MAROM OAK- DI Furfural	\$MARON OAK- Furfura alcohol	A \$MARON OAK- Guaiaco	SMARON OAK- Hexyl acetate	¹ \$MARON OAK-iso- Eugenol	I \$MARON OAK- Maltol	A SMARON OAK- Methyl vanillate	SMAROI OAK- Syringalo hyde	I SMAROM OAK- Syringol	SMAROM OAK-trans Oak lactone	\$MARON OAK- Vanillin
OD50388	Projects	Second	2nd pass	02-02-		S2			0.084 C	0050388	<300 <	300	20503	3221 <30	00 <60	0 <600) <300	<3000	<300	33467	470	7 5259.	4 <600	<300	-	<3000	367	6 9961	<300	1960.
OD50389	Projects	Second	2nd pass	02-02-		53			0.085 C	0050389	747 <	300	22296	3144 <30	00 <60	0 <600	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	<3000	<300	32816	443	2 10183	8 <600	<300	-	<3000	776	5 22710	300	3055.
OD50390 OD50391	Projects	Second	2nd pass 2nd pass	02-02-		55			0.085 0	0050390	2638.8 <	150	17849	3088	1893 <30	0 <300) <150	<1500	<150	32262	436	9709. 8 8816	3 <300	<150	- 645	< 1500	106:	23478	1<150	2731
OD50392	Projects	Second	2nd pass	02-02-		S6			0.088 C	0050392	3218.8 <	150	17664	3186	1888 <30	0 <300	<150	<1500	<150	32362	407	8 8744	2 <300	<150	659	7 <1500	926	4 23478	<150	2756
OD50393	Projects	Second	2nd pass	02-02-		\$7			0.088 C	0050393	3284.1 <	150	18970	3071	1774 <30	0 <300	<150	<1500	<150	31486	461	5 7762	3 <300	<150	714	0 <1500	884	.4 21267	<150	2589.
OD50394	Projects	Second	2nd pass	02-02-		58			0.086 C	0050394	3579 <	150	18408	3045	1743 <30	0 <300	<150	<1500	<150	31924	426	5 8313.	6 <300	<150	651	9 <1500	848	5 21883	<150	2622
SECOND			i			1						-																		
PASS ELUTION																														
PASS ELUTION qry_LAB W_xTab.S IDN	LABDESC	LOT	TANK	wo	OPCODE	MALC	MVAZ	qry_LAB Wmulti_x Tab.SIDN	OAK-4- Methyl	OAK-4 Vinyl	- OAK-5- Hydroxy	OAK-5- m Methyl	OAK- Acetovani	OAK- Benzaldeh	OAK- Benzyl	OAK-cis- Oak	SMAROM S OAK-Ethyl vanillate	MAROM \$N OAK- (Eugenol Fu	MAROM ⁵¹ OAK- urfural ¹	OAK- Furfural Gi	DAK- Jaiacol	OAK- (Hexyl	MAROM \$ DAK-iso- Eugenol	MAROM OAK- Maltol	OAK- Methyl	OAK- Syringalde	ŚMAROM OAK- Syringol	OAK-trans- Oak	SMAROM OAK- Vanillin	OAK- Volatile
PASS ELUTION qry_LAB W_xTab.S IDN OD57641	LABDESC Elution II BV 1 20%	LOT DCN22- p.82	TANK 2082017	wo	OPCODE	MALC 14.32	MVAZ 2 0.04	qry_LAB Wmulti_x Tab.SIDN 4 CO57641	OAK-4- Methyl 7691.2	OAK-4 Vinyl 2 <500	- OAK-5- Hydroxy 2516	OAK-5- m Methyl	OAK- Acetovani <5000	OAK- Benzaldeh	OAK- Benzyl	OAK-cis- Oak	SMAROM S OAK-Ethyl vanillate	MAROM SM OAK- (Eugenol Fu 500	AAROM OAK- arfural 48627	OAK- Furfural Gi	DAK- Jaiacol 15841.4 -	OAK- Hexyl	MAROM \$ DAK-iso- Eugenol 500	MAROM OAK- Maltol 10578 <	OAK- Methyl 9 5000	OAK- Syringalde 25168	SMAROM OAK- Syringol 46718	OAK-trans- Oak	ŠMAROM OAK- Vanillin 6521.9	OAK- Volatile
PASS ELUTION qry_LAB W_xTab.S IDN OD57641 OD57642	LABDESC Elution II BV 1 20% Elution II BV 2 20%	LOT DCN22- p.82 DCN22- p.82	TANK 2082017 2082017	wo	OPCODE	MALC 14.32 20.07	MVAZ 2 0.04- 7 0.002	qry_LAB Wmulti_x Tab.SIDN 4 OD57641 9 OD57642	OAK-4- Methyl 7691.2	0AK-4 Vinyl 2 <500 7 <500	M SIMARON - OAK-5- Hydroxy 2516 2231	0 SIVIAROM OAK-5- Methyl 58 5214 5 7133	OAK- Acetovani <5000 7017	OAK- Benzaldeh <1000 <1000	OAK- Benzyl <1000	OAK-cis- Oak <500	SMAROM S OAK-Ethyl vanillate <5000	MAROM SN OAK- (Eugenol Fu 500	48627 58700	OAK- Furfural Gi 5524 1 5271	AROM DAK- Jaiacol 15841.4 - 22551 -	OAK- Hexyl	MAROM \$ DAK-iso- Eugenol 500	MAROM 3 OAK- Maltol 10578 < 12014 <	OAK- Methyl 5 5000	OAK- Syringalde 25168 36424	SMAROM OAK- Syringol 46718 69502	SNUAROM OAK-trans- Oak <500 <500	SMAROM OAK- Vanillin 6521.9 8930.1	OAK- Volatile _TITLE_ _TITLE_
PASS <u>ELUTION</u> <u>qry_LAB</u> W_xTab.S <u>IDN</u> 0057641 0057642 0057643	LABDESC Elution II BV 1 20% Elution II BV 2 20% Elution II BV 3 40%	LOT DCN22- p.82 DCN22- p.82 DCN22- p.82	TANK 2082017 2082017 2082017	wo	OPCODE	MALC 14.32 20.07 32.0	MVAZ 2 0.04 7 0.00 8 <0.005	qry_LAB Wmulti_x Tab.SIDN 4 0057641 9 0057642 0057643	0AK-4- Methyl 7691.2 11505.3 35343.0	OAK-4 Vinyl 2 <500 7 <500 6 <500	M SIMARON - OAK-5- Hydroxy 2516 2231 1143	OAK-5- Methyl 58 5214 5 7133 19 14963	OAK- Acetovani <5000 7017 21273	SMAROM OAK- Benzaldeh <1000 <1000	OAK- Benzyl <1000 <1000	OAK-cis- Oak <500 <500	SMAROM S OAK-Ethyl vanillate <5000	MAROM SW OAK- Eugenol Fu 500 500	1AROM 0AK- arfural 1 48627 58700 82305 <	NUMBOR SN OAK- SN Furfural Gi 5524 S 5271 S000	AROM 5 DAK- Jaiacol 15841.4 - 22551 - 33574.6 -	OAK- Hexyl <	MAROM S DAK-iso- Eugenol 500 500	MAROM ² OAK- Maltol 10578 < 12014 < 15036 <	OAK- Methyl 5 5000 5000	OAK- Syringalde 25168 36424 108517	5MAROM OAK- Syringol 46718 69502 177741	SNUAROM OAK-trans- Oak <500	SMAROM OAK- Vanillin 6521.9 8930.1 23928.2	OAK- Volatile _TITLE_ _TITLE_ _TITLE_
PASS ELUTION qry_LAB W_xTab.5 IDN OD57641 OD57642 OD57643 OD57644	LABDESC Elution II BV 1 20% Elution II BV 2 20% Elution II BV 3 40% Elution II BV 4 40%	LOT DCN22- p.82 DCN22- p.82 DCN22- p.82 DCN22- p.82 DCN22- p.82	TANK 2082017 2082017 2082017 2082017 2082017 2082017	wo 7 7	OPCODE	MALC 14.3: 20.07 32.1 36.80	MVAZ 2 0.04 7 0.00 8 <0.005 8 <0.005	qry_LAB Wmulti_x Tab.SIDN 4 OD57641 9 OD57642 OD57643 OD57644	0AK-4- Methyl 7691.2 11506.3 35343.0 45504.0	SNUARCO OAK-4 Vinyl 2 500 6 6 6 6	SWURD OAK-5- Hydroxy 2516 2231 1143 <10000	5 3NIAROM OAK-5- Methyl 5 7133 19 14963 15461	300-000 OAK- Acetovani <5000 7017 21273 20923	OAK- Benzaldeh <1000 <1000 <1000 <2000	0AK- Benzyl <1000 <1000 <1000 6767	SMOROM OAK-cis- Oak <500 <500 <500	SMAROM OAK-Ethyl S <5000	MAROM SM OAK- (Eugenol Fi 500 500 500 500 500 500 500 500 500 500	MAROM SI DAK- urfural I 48627 I 58700 I 82305 I 60280 I	NAROM SN OAK- Gi 5524 S 5271 S 5000 S 10000 G	IAROM 5 DAK- Jaiacol 2 22551 - 33574.6 - 51003.2 <	COAK- Hexyl (2000 <	MAROM \$ DAK-iso- Eugenol 500 500 500	MAROM ³ OAK- Maltol 10578 < 12014 < 15036 < 37056 <	OAK- Methyl 2 5000 5000 5000	SWARDAN OAK- Syringalde 25168 36424 108517 97491	5MAROM OAK- Syringol 46718 69502 177741 191013	SNUARCIM OAK-trans- Oak <500	SMAROM OAK- Vanillin 6521.9 8930.1 23928.2 23968.9	OAK- Volatile _TITLE_ _TITLE_ _TITLE_ _TITLE_ _TITLE_
PASS ELUTION qry_LAB W_xTab S IDN 0057641 0057642 0057643 0057644	LABDESC Elution II BV 1 20% Elution II BV 2 20% Elution II BV 3 40% Elution II BV 4 40% Elution II BV 5 60%	LOT DCN22- p.82 DCN22- p.82 DCN22- p.82 DCN22- p.82 DCN22- p.82	TANK 2082017 2082017 2082017 2082017 2082017 2082017	wo 7 7	OPCODE	MALC 14.3; 20.07 32.1 36.8; 53.24	MVAZ 2 0.04 7 0.00 8 <0.005 8 <0.005 5 <0.005	qry_LAB Wmulti_x Tab.SIDN 4 0057641 9 0057642 0057643 0057643 0057644 0057644	SMIAROM OAK-4- Methyl 11506.1 35343.0 45504.0 115020	SNUMEC OAK-4 Vinyl 2 500 6 6 6 6 1000 0	N SWARD - OAK-5- Hydroxy 2516 2231 1143 <10000	v SIVARDIN OAK-S- m Methyl IS 5214 IS 7133 IS 14963 IS461 19571	SIVEROM OAK- Acetovani <5000 7017 21273 20923 26504	SMARDM OAK- Benzaldeh <1000 <1000 <1000 <2000 <2000	SIVUACOM OAK- Benzyl <1000 <1000 <1000 6767 2772	<pre>SN04COM OAK-cis- Oak <500 <500 <500 <500 <1000 1107.9</pre>	\$MAROM \$ QAK-Ethyl \$ <5000	MAROM SN OAK- (Eugenol Fi S00 500 500 500 1000 1000 1000 1000 1000	MAROM SH OAX-urfural H 48627 H 58700 H 82305 H 60280 H 42043 H	Number Ship OAK- Furfural Ship Furfural S Ship 5524 Ship Ship 5000 Ship Ship 10000 Ship Ship	IAROM 5 DAK- vaiacol 2 22551 - 33574.6 - 31003.2 < 103147 <	NUARCINI S OAK- Hexyl <	MAROM \$ 2014:-iso- Eugenol 500 500 1000 1000	MAROM ³ OAK- Maltol 10578 < 12014 < 15036 < 37056 < 18766 <	OAK- Methyl : 5000 5000 10000	SWAROM OAK- Syringalde 25168 36424 108517 97491 106654	SMAROM OAK- Syringol 46718 69502 177741 191013 260486	<pre>SNUMMOMT OAK-trans- Oak </pre> Contemporation Contemporation	SMAROM OAK- Vanillin 6521.9 8930.1 23928.2 23968.9 28313.3	OAK- Volatile _TITLE_ _TITLE_ _TITLE_ _TITLE_ _TITLE_
PASS ELUTION qry_LAB W_xTab.S IDN 0057641 0057642 0057643 0057644 0057645	LABDESC Elution II BV 1 20% Elution II BV 2 20% Elution II BV 3 40% Elution II BV 4 40% Elution II BV 5 60%	LOT DCN22- p.82 DCN22- p.82 DCN22- p.82 DCN22- p.82 DCN22- p.82 DCN22- p.82 DCN22- p.82 DCN22- p.82	TANK 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017	wo 7 7 7 7	OPCODE	MALC 14.32 20.03 32.1 36.84 53.20 61.03	MVAZ 2 0.044 7 0.005 8 <0.005 8 <0.005 5 <0.005 7 <0.005	qry_LAB Wmulti_x Tab.SIDN 4 0057641 9 0057642 0057643 0057643 0057644 0057644 0057645 0057645	SMIRCOM OAK-4- Methyl 11506.1 35343.0 45504.0 115020 99941.3	Structure OAK-4 Vinyl 2 500 6 500 6 500 6 1000 8	SWURDING OAK-5- Hydroxy 22516 2231 1143 <10000	 SIMUROM OAK-S- Methyl S 5214 5 7133 9 14963 15461 19571 12206 	SMAROM OAX- Acetovani 2000 7017 21273 20923 26504 16791	SIGNACO OAK- Benzaldeh <1000 <1000 <1000 <2000 <2000 <2000	Situation OAK- Benzyl <1000 <1000 <1000 6767 2772 <2000	<pre>SMAROM OAK-cis- Oak <500 <500 <500 <1000 1107.9 1061.7</pre>	SMAROM 5 OAK-Ethyl 1 vanillate <5000	MAROM SN OAK- Eugenol F4 500 500 500 500 500 500 500 500 500 500	MAROM PI OAK- I arfural I 48627 I 58700 I 82305 I 60280 I 42043 I 18052 I	NUMBER SN OAK- Furfural G 5524 3 5271 3 5000 3 10000 6 10000 7	IAROM DAK- aiacol	OAK- Hexyl 2000 2000 2000	MAROM S DAK-iso- Eugenol 500 500 500 1000 1000	MAROM ³ OAK- Maltol 10578 < 12014 < 15036 < 37056 < 18766 < 10318 <	0AX- 0AX- Methyl 3 5000 5000 5000 10000 10000	OAK- Syringalde 25168 36424 108517 97491 106664 66819	5MAROM OAK- Syringol 46718 69502 177741 191013 260486 179569	SNOUNDAT OAK-trans- Oak <500 <500 <1000 <1000	SMAROM OAk- Vanillin 6521.9 8930.1 23928.2 23968.9 28313.3 17924.8	OAK- Volatile _TITLE_ _TITLE_ _TITLE_ _TITLE_ _TITLE_ _TITLE_ _TITLE_
PASS ELUTION qrv_LAB W_xTab S IDN 0057641 0057642 0057643 0057644 0057645 0057646 0057646	LABDESC Elution II BV 1 20% Elution II BV 2 20% Elution II BV 3 40% Elution II BV 4 40% Elution II BV 6 60% Elution II BV 6 60%	LOT DCN22- p.82 DCN22- p.82 DCN22- p.82 DCN22- p.82 DCN22- p.82 DCN22- p.82 DCN22- p.82 DCN22- p.82	TANK 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017	wo 7 7 7 7 7 7	OPCODE	MALC 14.3: 20.0: 32.1 36.84 53.24 61.0: 74.3:	MVAZ 2 0.04/ 7 0.005 8 <0.005	qry_LAB Wmulti_x Tab.SIDN 4 CO57641 9 CO57642 CO57643 CO57643 CO57644 CO57645 CO57645 CO57646 CO57646 CO57646	OAK-4- Methyl 7691.2 35343.0 45504.0 115020 99941.8 107322	SMARO OAK-4 Vinyl 2 500 6 6 6 6 1000 8 2 2	N Storator OAK-5- Hydroxy OAK-5- Hydroxy 22516 2231 1143 <10000	 SIVURCOM OAK-5- Methyl 5 7133 14963 15461 19571 12205 77774 	SIVAROM OAK- Acetovani ************************************	CAX- Benzaldeh <1000 <1000 <2000 <2000 <2000 1222	<pre>SIMPARCOM OAK- Benzyl <1000 <1000 <1000 6767 2772 <2000 <1000</pre>	<pre>SMARCM OAK-cis- Oak <500 <500 <500 <500 2<1000 1107.9 1061.7 2381.5</pre>	SMAROM OAK-Ethyl vanillate S <5000	MAROM SN OAK- Eugenol F 500 5 500 5 1000 1 1000 1 1226 5 3398.2	MAROM SI OAK 1 arfural 1 48627 1 58700 1 82305 1 60280 1 42043 1 18052 1 8566 1	NUCCOM SN OAK- Furfural SN 5524 1 55271 1 5000 2 10000 6 10000 7 5000 6	IAROM P DAK- 20AK- 15841.4 - 22551 - i3574.6 - i003.2 i03147 i5093.3 i1111.7 -	COAK- Hexyl (2000 < 2000 < 2000 <	MAROM \$ DAK-iso- Eugenol 500 5 500 5 1000 1 1000 5 500 <	MAROM ³ OAK- Maitol 10578 < 12014 < 15036 < 37056 < 18766 < 10318 < 5000 <	OAX- Methyl 2 5000 5000 10000 10000 10000	OAK- Syringalde 25168 36424 108517 97491 105654 66819 45422	SMAROM OAK- Syringol 46718 69502 177741 191013 260486 179569 136581	SNUARCON OAK-trans- Oak <500 <500 <500 <1000 <1000 <1000 573.6	SMAROM OAK- Vanillin 6521.9 8930.1 23928.2 23968.9 28313.3 17924.8 11761.6	SNURCON OAK- Volatile _TITLE_ _TITLE_ _TITLE_ _TITLE_ _TITLE_ _TITLE_ _TITLE_
PASS ELUTION qry_LAB W_xTab S IDN 0057641 0057642 0057643 0057644 0057645 0057646 0057646 0057646	LABDESC Elution II BV 1 20% Elution II BV 2 20% Elution II BV 4 40% Elution II BV 4 60% Elution II BV 6 60% Elution II BV 7 80% Elution II BV 8 80%	LUT DCN22- p.82 DCN22- p.82 DCN22- p.82 DCN22- p.82 DCN22- p.82 DCN22- p.82 DCN22- p.82 DCN22- p.82 DCN22- p.82 DCN22- p.82	TANK 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017	wo , , , , , , , , , , , , ,	OPCODE	MALC 14.32 20.02 32.1 36.83 53.24 61.02 74.32 78.55	MVAZ 2 0.04 7 0.002 8 <0.005	qry_LAB wmulti_x Tab.SIDN 4 0057641 9 0057642 0057643 0057643 0057644 0057644 0057645 0057645 0057646 0057646 0057647 0057648	OAK-4- Methyl 7691.2 11506.3 35343.4 45504.4 115020 99941.8 107322 58922.3	SMARO OAK-4 Vinyl 2 2 500 6 6 6 1000 8 2 5 2	N Stouted OAK-5- Hydroxy 22516 22231 1143 210000 <10000	 SIVURDAY OAK-S- m Methyl 5 7133 14963 15461 19571 12206 7774 <5000 	31034ROM OAK- Acetovani <5000 7017 21273 20923 26504 16791 11617 5573	OAK- Benzaldeh <1000 <1000 <2000 <2000 <2000 1222 <1000	<pre>SIMPAREDIM OAK- Benzyl <1000 <1000 <1000 6767 2772 <2000 <1000 <1000</pre>	<pre>SNOARCOM OAK-cis- Oak <500 <500 <500 <500 2 <1000 1107.9 1051.7 2381.5 1554.2</pre>	SMAROM OAX-Ethyl vanillate S <5000	MAROM SN OAK- Eugenol F S00 500 500 500 500 500 500 500 500 500	MAROM 31 OAK- 1 arfural 1 48627 1 58700 1 60280 1 42043 1 18052 1 8566 1 000 1	NURCOM SN OAK- I Solo S S271 S S000 S 10000 C 10000 S S000 S S000 S S000 S S000 S	IAROM S DAK- raiacol 5 15841.4 - 22551 - i3574.6 - i1003.2 i00147 i2593.3 i1111.7 - i2598.5 -	NULROW S OAK- Hexyl 2000 2000 2000 2000	MAROM \$ 3AK-iso- Eugenol 500 5 500 5 1000 1 1000 5 500 4 500 4	MAROM ³ OAK- Maltol 10578 < 12014 < 15036 < 37056 < 18766 < 10318 < 5000 <	OAK- Methyl 3 5000 5000 5000 5000 10000 10000 5000	OAK- Syringalde 25168 36424 108517 97491 106664 66819 45422 22338	SMAROM OAK- Syringol 46718 69502 177741 191013 260486 179569 136581 63931	SNUCKOW OAK-trans- Oak <500 <500 <1000 <1000 <1000 573.6 <500	SMAROM OAK- Vanillin 6521.9 8930.1 23928.2 23968.9 28313.3 17924.8 11761.6 5939.7	SINUAROM OAK- Volatile _TITLE_ _TITLE_ _TITLE_ _TITLE_ _TITLE_ _TITLE_ _TITLE_ _TITLE_
PASS ELUTION qry_LAB W_xTab S IDN 0057641 0057642 0057643 0057644 0057644 0057645 0057646 0057646 0057646	LABDESC Elution II BV 1 20% Elution II BV 2 20% Elution II BV 3 40% Elution II BV 4 40% Elution II BV 6 60% Elution II BV 7 80% Elution II BV 7 80% Elution II BV 9 80% Elution II BV 9 80%	LOT DCN22- p.82 DCN22- p.82 DCN22- p.82 DCN22- p.82 DCN22- p.82 DCN22- p.82 DCN22- p.82 DCN22- p.82 DCN22- p.82 DCN22- p.82 DCN22- p.82	TANK 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017 2082017	wo , , , , , , , , , , , , ,		MALC 14.3: 20.0: 32.1 36.8: 53.2: 61.0: 74.3: 78.59 90.1:	MVAZ 2 0.04 7 0.005 8 <0.005	qry_LAB Wmulti_x Tab.SIDN 0057641 0057642 0057643 0057644 0057645 0057646 0057646 0057647 0057648 0057648	0AK-4- Methyl 7691.2 35343.0 45504.0 115020 99941.8 107322 58922.3 29511.8	Structure OAK-4 Vinyl 2 7 6 6 6 7 8 2 5 5 8 300	StorateDr OAK-5- Hydroxy 2516 2231 1143 <10000	 SIVURCOM OAK-5- Methyl 5 7133 9 14963 15461 19571 12206 7774 <5000 <3000 	300406047 Acetovani <5000 7017 21273 20923 26504 16791 11617 5573 <3000	OAK- Benzaldeh <1000 <1000 <1000 <2000 <2000 <2000 1222 <1000 627	OAK- Benzyl <1000 <1000 <1000 <1000 <7772 <2000 <1000 <1000 <1000	CAK-cis- OAK-cis- Oak <500 <500 <500 <1100 1061.7 2381.5 1554.2 1102.6	SMAROM OAK-Ethyl vanillate S <5000	MAROM SN OAK- Eugenol Fi 500 500 500 500 500 500 500 500 500 500	MAROM 31 OAX- arfural 1 48627 1 58700 1 82305 1 60280 1 18052 1 8566 1 000 1	NUCLENT SN OAK- Furfural SN 5524 SN 5271 SN 5000 SN 10000 SN 5000 SN 5000 SN 5000 SN 5000 SN 5000 SNN 5000 SNN	TAROM 3 ADAK- 3 S5841.4 - 22551 - 33574.6 - 51003.2 <	OAK- Hexyl 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000	MAROM S SAK-iso-Eugenol S S00 S S00 S S00 S 1000 S 1000 S S00 <	MAROM ³ OAK- Maitol 10578 < 12014 < 15036 < 37056 < 18766 < 10318 < 5000 < 5000 <	Abortowi Methyl 3 5000 5000 5000 10000 10000 5000 5000 5	SWURCHT OAK- Syringalde 25168 36424 108517 97491 106664 66819 45422 22338 7827	SMAROM OAK- Syringol 46718 69502 177741 191013 260486 179569 136581 63931 23398	SNOAROW OAK-trans- Oak <500 <500 <1000 <1000 <1000 <1000 <1000 <573.6 <500 328.5	SMAROM OAK- Vanillin 6521.9 8930.1 23928.2 23968.9 28313.3 17924.8 11761.6 5939.7 1827.8	OAK- Volatile _TITLE_ _TITLE_ _TITLE_ _TITLE_ _TITLE_ _TITLE_ _TITLE_ _TITLE_ _TITLE_ _TITLE_

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

IV.F Dosing

qry_LABW_xTab _SIDN	LABDESC	LOT	TANK	MVAZ	qry_LABW multi_xTab.8 IDN	SMAROMO AK-4-Methyl guaincol	SMAROMO AK-4-Vinyl guaincol	SMAROMO AK-5- Hydroxymet hyl furfural	SMAROMO AK-5-Methyl furfural	SMAROMO AK- Acetovanillo ne	SMAROMO AK- Benzaldehyd e	SMAROMO AK-Benzyl alcohol	SMAROMO AK-cis-Oak lactone	SMAROMO AK-Ethyl vanillate	SMAROMO AK-Eugenol	SMAROMO AK-Furfural	SMAROMO AK-Furfural alcohol	SMAROMOAK- Gunincol	SMAROMO AK-Hexyl acetate	\$MAROMO AK-iso- Eugenol	SMAROMO AK-Maltol	SMAROMO AK-Methyl vanillate	SMAROMO AK- Syringaldehy de	SMAROMO AK-Syringol	SMAROMO AK-trans- Oak lactone	SMAROMO AK-Vanillin
01267999	Bottoms -	DVA	2142012	<0.005	0047000	<\$00	<\$00	<\$000	<\$000	10187	<1000	<1000	<\$00	<\$000	<\$00	<\$000	<\$000	<\$00	<1000	<\$00	5015	<\$000	12420	04149	<\$ND	116.59.4
0.001900	Rotovap 40% Election	13 414	2142017	~0.005	0.001900	~500	~500	~5000	~5000	10182	~1000	~1000	~500	~5000	~500	~5000	~5000	~500	~1000	~500	3013	~5000	43038	24140	~500	11038.4
OD67901	Condensate - Rotovap 40% Elution	BV4	2142017	<0.005	OD67901	22628.3	<500	<5000	<\$000	<5000	<1000	<1000	932.5	<5000	2356	15227	<5000	21226.1	<1000	<500	<\$000	<5000	<5000	8524	<500	<500
OD67902	Bottoms - Rotovap 60% Elution	BV5	2142017	<0.005	OD67902	549.4	501.7	8829	<5000	14705	<1000	<1000	<500	<5000	<500	<5000	<5000	<500	<1000	<500	<5000	<5000	63622	144965	<500	16114.4
OD67903	Condensate - Rotovap 60% Elution	BV5	2142017	0.005	OD67903	45296.2	<1000	<10000	<10000	<10000	<2000	<2000	3392.3	<10000	10047.7	10486	<10000	28812.1	<2000	<1000	<10000	<10000	<10000	<10000	1060.8	<1000

E. &. J. Gallo Winery E. & Callo Winery

Appendix V: Lab Notebook

	(Silvado)				
LLE	HEA total		Project No.		٢
TITLE Page No.			Book No.		
Purpose:	Determine if si Alex Kopchiki (extraction A s will be resep "stages"	moky flavors ian be sept eporatory for arated with	from MF2 (diluted valed out through met will be used new solvent to	1:1 - created 1 liquid - liqu and the ex mimic difference	l by lid iliact ant
Procedule:	Varials ratios of well as adjustin	the solvent rents on the	to solute volumes number of stoge	will be pres	palal
	solute, and they w 50 ml of MFZ a of n-butanol. A was gently mixe aqueous & agan drifterent beakers layer. This layer so ml of Re aqueous layer Was sent fo	ere tested at was placed in stupper was tel. Once settle c layer. The and a sin was then put sh butanal from eau r testing. T	a 1:1 ratio with a separatay funna placed on the funne 9, two distinct layes two vayers were se now test was cond ack into the separat onch the process c in stage & the his proless was re	5 stages. el along with and the m were formed- parata into with for the ony finnel o sou repeated final oganic pealed for (50 m Initue - an 2 organ Norg C Each - entrai ieproduci
Table I "Stage" 1 2 3 4 5	Trial 1 (Amb Aroma loga Jack Daniels BBO BBD Save/NOB 0 Hickory BBD Sav Hickory BBD Sav Hickory BBD S	Save Butanon Save Butanon Strong butanon t bacos te /semi-surect ce /semi-surect save ks butanon	lor both soluted Color (organic) Dark Brawn	Solvent) Colx Dari Hui Ha Ha Ligj	(Aqueous Brass ney ney ney ney ney ney ney ney ney ney
	Fina	. Volume of	Extract : 26 mL		
				To Pag	ge No.

ENTIAL TRADE SECRET MATERIAL E. & J. Gallo Winery

72 Project No. Book No. TITLE From Page No. Table II: Trial 2 (Reproducibility) Color (Aqueous) Colur loganici Anoma (Dejanic) Nolume (Dejanic) "Stage" Dark/Medium Brawn Very strong butand/light Dork Brown notes of BBR Saure 1 50 mL 1 Medium Brown 2 Honey BBQ Sauce, not 40 mL of bacon Honey 35 mL BBQ Squce Light Huney 22 ML 4 Stronger bacon notes/ hickory 5 Very much ethanol -Light Honey undertanes of bacich 15 mL 1st Results from the two trials were not quite the same (first trial gave more Pleasant & & smoky aromas) Difference in anomas may be due to inconsistent mixing. Noke Trials 1 4 2 samples were combined. ·Extract from trial 1 + 2 notaxapped and sent to lab for testing EMAROMOAK & MALC (3.6 mL) 0031076 · Raffernake from both trial 1+2 Geor combined for stages 1-5 and fotowapped before sent to lab - rotavap taking too long - sample sent to lab with note of high butanol concentration 1D: 0032823 (60 m) To Page No. DATE WITNESSED & UNDERSTOOD BY DATE SIGNATURE

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

Project No. 12693 72
- One Sluring Capking Experiments
TITLE CON J PERITHOTIS Book No.
From Page 101
Furplet. Lettimite optimal cooking conditions for FLT-03 wave stream. Since
powder and tamping will be used as a stand in Varias
parameters such as pt & mak time & pressure will be varied.
Procedure: Various porameters will be total. The car sluring will be made and
placed in a high plessure Southild extractor which will be wrapped in
an insulated heating jacket.
1. Secrety cluse extractor with allen wench
2. Set set heat plate to high setting
3. TUIN voltage to 90-100 V
5. Dase pressure is stabilized get muse to 70-75 volts (leave heat off)
6. Stat bining at desired pressure & turn off voltage when done
7. Cool extractor in ice bath until pressure is zero
8. Open + aroma test
9. Check pH, adjust to 3-3.5 Using citric acid
10- stare in 750 mL bottles
Cl . Dr. series
Sturry Frequicition of our provider will be mixed with a
A Approximately I gran of all product b-15% above will be
water - etnice or adjust the ott.
uasto to acjos me fin
To Page No.

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

74 Project No. TITLE Book No. From Page No. Trial 1: PH=12, cook time = 60 mins, 30 psig Some EtOH, 450 mL H20 adjustee pH to 11.99 => light amber color formed with pH increase. 2:10 start 0 psig, 25.1°C 2:30 -> 20 psig, 25:10 3:15 -> 33 psig = stable -> twined of heat # Sent to 4:10 -> 56 psig, 12:5°C Eined pH= 11.416 Done -> twined heat off SMPAROMOAK MALC 5 M AROMOAK MALC Final PH= 11.46 Hexpected pH to be lower 0031013 Livery faint oak aroma Is dark maple syrup in eolor * COUL LONGER & Trial II: pH=12, cook time = 120 mins, 30 psig slurry: total = 500 ml total = 500 ml want: 10% EtOH 450 ml H20 101 a of paint 10 want: 10%. EtOH 1.01 g of oak pH before adjustment: 3.63 Is added 10-15 drops of KOH pH = 11.98 at 10:25 HM Starting temperature in ressel: 24.10 time: 10:44 AM -> Plessure at 22 psig Time to reach 20 psig : 11:08 AM Temp: 83 C 11:15 $AM \rightarrow P$ shut to 28 psigT at 98.5 c To Page No. SIGNATURE DATE WITNESSED & UNDERSTOOD BY DATE CONFIDENTIAL

76		Proje	ect No.	
TITLE		Des		
From Page No.	TON 2 Call In	140 - Inc	OK NO.	
stury:	S-Da oak prived	, 70 939, 120 min	cook, different st	uny
Shurna	g on pour	450 mL Han	1957 Just Sh	y of pr. Onchu
starting pt	1 (before adjustment)): 3.25		content
stor ting p	H (after adjustment)	1: 11-98		
Stat form 12	40 mm D-0	GCOLOR: 100+ bee	er/coxe + very dark	troum
Time to (a	the TO Prio Psig,	T= 21.3.C	0-020	
the second	ge pig. 110	pm - Tem	P= 47-8 C	
Restort time.	to 1: 20 pm at	34 psig and	07.11.10 70	VOLAS
Time (m)	n) Temp ('C)	Pressure	07.4 C TO	VOID
0	114.1°C	40 min	· 1:4mm A	
20	119-8°C	46 000	* 110 pm *	the pressure
40	123.4°C	53		checkedsed a
60	125.1	56		little bit
80	125.9	58		before increasi
100	126.1	60	Konnatoria	when the
120	126.5	60	* S. UD and	haver twined
1000			* 0.90 pin	une on
Final Color	Very dark bra	un/almost black		
thoma	- pumptin - spice	bread, sagicese	fall spices slich	t works at chican
patree	90966 DH =	8.06	and species suger	SWN
The second second				
pri agrossment	with citric a	cid > new pH	: 70070 3.40	
46	over lightened up	a little bit	1	
4	a still a very	dark brown		
46	it of tociming	on the top		
Aroma '. St	siled baked	goods, hint ,	of campbie in	and
	lotes of coffe	e & madra	ampine we	us,
1 N		a mound.		
HALLY				
Score (CD -)				
Sample (SD MD)	sent to lac) -	> Esteads	10: 0D 3167	5
Sample (50 ml)	sent to lac) -: G &MAROMOAK	+ la bacs	10: 003107	5
Sample (SD MD)	Sent to lai) - G &MAROMOAK G MAG	+ Ektherat	10: 00 3167	5

ENTIAL TRADE SECRET MATERIAL E. & J. Gallo Winery

TILE MF2 chromatography Project No. 12963 experiment Begun 1/17/2017 77 Book No. - mode a mock Smoketannin Feed material by faking 21-5 L of Mocha Fume 2 commercial oak tanna, adding it to & 5-34. cornican, and topping it als with Staniel's Grou Smarking SV britter for analysis, Sample ID: OD27811 Oak around and MALC proposed Use DEigler's chrom. experiments as a guide to evaluate best- possible chromatography parameters for smoke Methodology: obtain 50 ml Fpx-66 Ream, and -20 L of Smoak material, diluted to vio pem busiard and loaded at a sate of 200 mg consisted for 50 ml of rom - Copiet an adjorption y: (14 on 15th pros between 40% and 70%) load fism at a mite of ~10 BV/hr or 8 ml/mm collect in 21-litter increments of the depleted and submit for analysis in a clion cornican. Submit collected deplets for analysis Legenerate column by elating with 2 BV each of the following etatl solves: Do not searcaste individual BV's of S-me Stringth elations, 40% (Submit each for a halysis 60% (incl. onk around and MALC - 80% - 95% thin, t-ke deputed and load onto los again, this time as ripeat elution precedure To Page No. WITNESSED & UNDERSTOOD BY DATE SIGNATURE DATE 1/17/17

78 From Page No. Book No. 1/18 Chromatography begin Feat pH: 8-04 5-67. alcohol country fire shoke by at 11-02 AM Starting at 11-02 AM storting Austak: 2.5 ml = 10 ml/min 15 secon 12:05 PM Powrap 2:5 mt /15 second = 10 mL/min depleted tannin color: Pale yellow aroma: Vanilla, duice de leche, caramei Very pleasant & dessert-like noks 2:30 PM Flowselt: 2.3 ml/15 second = 9.2 ml/min depicted tannis around: brown Sugar, nint of smoke 4:15 DM Stopped running the column quite a few air bubbles in the bed Com I 1/19 8:05 AM: Still air bubbles in bed 8:30 Art: Stacked running again tleft air bubbles at the bottom of the bed (may impact quality of elution) Row rate: 2.2 mL = 8.8 mL/min Note had some difficulty with start-up due to value misalighment in column -> bit of leakage 11:45AM ->46 FUI Flow rate: 2 mL = 8 mL/min -smells a bit male like Issec 600 augur barbeque sauce 4038 4 00800 ml Hansferrere to Convegican (4.038 6 iters) SU ML saved for sampling. 10: 0031077 -> SMAROMUAK & MALC 4:00 pm → shut the column → seems like the liquid level has dropped → this may be due to the air buttles of a Topped No. WITNESSED & UNDERSTOOD BY DATE SIGNATURE CONFIDENTIAL

80	
Proje	ect No.
Bo	ok No.
From Page No.	
1/26 - Rorad air through the bottom of the c	solumn to get out all the air
1)27	
EAN column stert-up	
8.4 mymin	
by is much darker in color and a	campfile smoke smell dominating
the sweeter brown sugar small (this sr	nell is still, underlying note)
10:30 Art all crownth of consistent dura	aning!
b transfer contents of depleted to	annias to new
CURNICAN (3,510 mL → 3.51 L)	
. SO ML Sent to lab for sample	e testing
10:0040989	0
5 MAROMOAL, SMAROMSM,	#MALC
Pri= 2 01	
To Man a half to the second	
I day volume of depleted transing 19 298 ml rest	0.31
I total volume of depicted tampins. 19,288 mL #	9.3 L
1/30/2017: Elutions (2 BV at 50 mL each) of 20	9.3 L 51., 401., 601., 80%, 95%
1061 VOLUME of depicted tampins: 19,288 mL # 1 1/30/2017: Elutions (2 BV at 50 mL each) of 20	9.3 L 51.,401.,601,807.,957.
1061 VOLUME of depicted tampins. 19,288 mL #1 1/30/2017: Elutions (2 BV at 50 mL each) of 20 10 elutions (50 mL each), 15 mL of each submitted	9.3 L 51., 401., 601, 80%, 95% for analysis > #MALC & SMMEDMOR
1061 Volume of depicted tamins: 19,288 mL #1 1/30/2017: Elutions (2 BU at 50 mL each) of 20 // elutions (50 mL each), 15 mL of each submitted 8.4 mL/min elution rate	9.3 L 51., 401., 601, 80%, 95%. for analysis > #MALC & SMARDOMSA Sample ID
1061 VOLUME of depicted tampins: 19,288 mL #1 1/30/2017: Elutions (2 BV at 50 mL each) of 21 /O elutions (50 mL each), 15 mL of each submitted 8.4 mL/min elution rate BV1_201.	9.3 L 51., 401., 601, 80%, 95% for analysis > #MALC & SMITROMON Sample ID OD 44 B12
1061 VOLUME of depicted tampins: 19,288 mL #1 1/30/2017: Elutions (2 BV at 50 mL each) of 20 /O elutions (50 mL each), 15 mL of each submitted 8.41 mL/min elution rate BV1_201. BV2_201 xour change around 35 mL - xell da	9.3 L 51., 401., 601, 80%, 95% for analysis > #MALC & SMMSomon Sample 10 0744812 12 12 12 12 12 12 12 12 12
1061 VOLUME of depicted tampins: 19,288 mL # 1 1/30/2017: Elutions (2 BV at 50 mL each) of 20 // elutions (50 mL each), 15 mL of each submitted 8.41 mL/min elution rate BV1_201. BV2_201 xour change around 35 mL xour dage BV3_401.	19.3 L 51., 401., 601, 80%, 95% for analysis > #MALC & SMARROWSA Sample 10 0744812 12 0744813 0744814
1061 VOLUME of depicted tampins: 19,288 mL #1 1/30/2017: Elutions (2 BN at 50 mL each) of 20 // elutions (50 mL each), 15 mL of each submitted 8.4 mL/min elution rade BV1_201. BV2_201. Join change around 35 mL J very day BV3_401. BV4_401. BV4_401.	9.3 L 51., 401., 601, 80%, 95% Sc analysis > #MALC & SMMERUMUM Sample ID 0744812 12. 0744813 0744814 0744815
1061 VOLUME of depicted tampins: 19,288 mL = 1 1/30/2017: Elutions (2 BV at 50 mL each) of 20 1/0 elutions (50 mL each), 15 mL of each submitted 8.4 mL/min elution rate BV1_201. BV2_201 xour change around 35 mL -> yely down BV3_401. BV4_401. BV4_401. BV5_601.	9.3 L 51., 401., 601, 80%, 95% & anaysis > #MALC & SMITRUMOR Sample ID 07344812 12 0744813 0744814 0744815 0744815 0744815
1061 VOLUME of depicted tampins: 19,288 mL # 1 1/30/2017: Elutions (2 BV at 50 mL each) of 20 // elutions (50 mL each), 15 mL of each submitted 8.41 mL/min elution rade BV1_201. BV2_201 xour change around 35 mL -> year down BV3_401. BV4_401. BV4_401. BV5_601. BV5_601. BV7_001 ach ard around a solution.	9.3 L 51., 401., 601, 80%, 95% & onaysis > #MALC & SMARRAMSA Sanple 10 0744812 12 0744813 0744815 0744815 0744815 0744815 0744815
1061 VOLUME of depicted tampins: 19,288 mL € 1 <u>1/30/2017</u> : Elutions (2 BV at 50 mL each) of 21 <u>/0 elutions</u> (50 mL each), 15 mL of each submitted 8.4 mL/min elution rade BV1_201. BV2_201. → color change around 35 mL → vely dat BV3_401. BV3_401. BV4_401. BV5_601. BV5_601. BV7_801. → color got lights	9.3 L 51., 401., 601, 80%, 95% Sc analysis - #MALC & SMMENTER Sample ID OD 44812 12. OD 44813 OD 44814 OD 44815 OD 44
1061 Volume of depicted tampins: 19,288 mL € 1 <u>1/30/2017</u> : Elutions (2 BV at 50 mL each) of 20 <u>/0 elutions</u> (50 mL each), 15 mL of each submitted 8.4 mL/min elution rate BV1_201. BV2_201>colur change around 35 mL -> vely dat BV3_401. BV4_401. BV4_401. BV5_601. BV6_601. BV7_B01>colur got lights. BV8_901.	9.3 L 51., 401., 601, 80%, 95% & anaysis 5 #MALC & SMITROMON Sample ID 0744812 12 0744813 0744814 0744815 0744815 0744815 0744815 0744815 0744815 0744815 0744815 0744815 0744815
Total Volume of depicted tampins: 19,288 mL \approx 1/30/2017: Elutions (2 BV at 50 mL each) of 2 /O elutions (50 mL each), 15 mL of each submitted 8.4 mL/min elution rate 8.4 mL/min elution rate 8.12 mL/min elution rate 8.13 mL/m	19.3 L 51., 401., 601, 80%, 95% Sample 1D OD 44812 12 OD 44813 OD 44814 OD 44815 OD 448515 OD 448555 OD 4485555 OD 4485555 OD 44855555555555555555555555555555555555
1061 VOLUME of depleted tampins: 19,288 mL € 1 <u>1/30/2017</u> : Elutions (2 BV at 50 mL each) of 2 <u>/0 elutions</u> (50 mL each), 15 mL of each submitted 8.4 mL/min elution rade BV1_201. BV2_201. Join change around 35 mL J very day BV3_401. BV4_401. BV4_401. BV4_601. BV4_601. BV4_601. BV7_801 Joins got lights BV8_601. BV9_051. BV9_051. BV9_951.	9.3 L 51., 401., 601, 80%, 95% Sc analysis → #MALC & SMMENTUMOR Sample ID OD 44812 0D 44813 0D 44814 0D 44814 0D 44815 0D 44815 0D 44815 0D 44815 0D 44812 0D 44820 0D 44820 0D 44820 0D 44820
1061 VOLUME of depleted tampins: 19,288 mL € N <u>1/30/2017</u> : Elutions (2 BV at 50 mL each) of 20 <u>/0 elutions</u> (50 mL each), 15 mL of each submitted 8.41 mL/min elution rate BV1_201. BV2_201 xour change around 35 mL → yell dat BV3_401. BV4_401. BV4_401. BV5_601 BV7_B01 → color got lights BV8_901. BV9_051. BV9	19.3 L 51., 401., 601, 80%, 95% for analysis 5#MARIC & SMATROMON Sample ID OD44812 AL OD44813 OD44813 OD44814 OD44815 OD44815 OD44815 OD44815 OD44815 OD44815 OD44820 DD44820 DD44820 DD44820 DD44820 DD44820
1061 VOLUME of depleted tampins: 19,288 mL € N <u>1/30/2017</u> : Elutions (2 BV at 50 mL each) of 20 <u>/0 elutions</u> (50 mL each), 15 mL of each submitted 8.4 mL/min elution rate BV1_201. BV2_201. >our change around 35 mL > year do BV3_401. BV4_401. BV4_401. BV4_401. BV5_601. BV5_601. BV7_B01 > color got lights BV8_801. BV9_951. Bodded a few more mL of 951. Etch to k	19.3 L 51., 401., 601, 80%, 95% Sanpe 1D Sanpe 1D OD44812 12 OD44813 OD44814 OD44815 OD44815 OD44815 OD44815 OD44815 OD44815 OD44815 OD44815 OD44820 DD448200 DD448200 DD448200 DD448000000000000000000000000000
1061 Volume of depleted tampins: 19,288 mL € N <u>1/30/2017</u> : Elutions (2 BN at 50 mL each) of 20 <u>/0 elutions</u> (50 mL each), 15 mL of each submitted 8.4 mL/min elution rade BV1_201. BV2_201. Join drong € around 35 mL J very day BV3_401. BV4_401. BV4_401. BV4_401. BV4_601. BV	19.3 L 51., 401., 601, 80%, 95%. Gr analysis 5#MARCE & SMAROMON Sample ID OD44812 OD44813 OD44813 OD44814 OD44814 OD44814 OD44815 OD44815 OD44815 OD44815 OD44815 OD44815 OD44812 OD44820 DD448200 DD44820 DD448200 DD448200 DD448200 DD448200 DD4482000 DD44820000000000000000000000000000000000

TITLE -Project No. From Page No. air 81 Book No. Re-bading astumn with depleted tarning (1)31/17) collecting every 2.5 the sample 1: Noo mil sent to labe (smakey) SMAROMOAK > Sample 10: 0049209 anoma: Vanilla + bolion sigar > mich lighter color + almost yellow v loo mic sont to lab (sweet) > Jample 10: 01049209 SMFURNEOL -> 2,490 mL (2.491) transferred to counican PH: 3.17 sample 2: v 60 mL sent to lab SMARDMOAK, 10:00 50380 aroma: light brown sugar DH=2.98 > 2,520 mL (2.52 L) Hansfelled to collican sample 3. NOO ML to 196 SWHEDHORF, MUHZ, ID: ODEU389 PH = 2.86 -> 2,540 (2.54 L) transfer to cornican Sample 4: 10:0050390 SMHROMOAK (260 mc) = aconcilititle less pH = 2.12 pH= 3-12 2630 ML 12-63 L) Kansfelled to collican Sample 5: 10: 0050391 \$MAROMOAK (~50 mc) pH=3.00, 2200 mL (2.2 L) Hansferred to carrican Sample 6: 10: 0DS0392 (SMHROMOAR) ~50 ML pH= 3a avornai - Campfire smoke transferred 2750 ML (2.75 L) to collican Sample 7: TD: GDS0393 (V50 mc) SMAROMOAK, MVAZ, MALC PH: 3-06 anoma . very faint, compfile sindle + slight bracen sugar Hansfelled 2450 ml(2.45 c) to cornizon) Sample 3: OD 50394 pH=3.12 transferred 840 ML (0.84 L) to contran PH=3.17 Full Contran Sample: ODS7654 -> SMAROMORE, MVHZ, MALL TO Page NO. SIGNATURE DATE WITNESSED & UNDERSTOOD BY DATE

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

	a behall	ind the
TITLE LLE > NF4 (undiluted)	Project No. 12963	00
From Page No.	Book No.	00
Purpose & Procedure - some		
Solvent: n butano 1 Solute: MF4 (undiluta) ~> Co aroma: camp file wood &	· very dark brown, little more chimney smoke	Viscange
1.2 solute to solvent ratio	(SUML added) schute los mak	School
"Stage" Phoma (arganic) (cotor,	(Corpanie) (Colur (organic)	Colur (aqueas)
I wood-sy anna	dar own	dark brown
2 Stronger ethicitist smell woodsy anna has	1 dark broken Alighter than stage	amber
dissappeared	1)	
3 Oak aromas dissapperte smells purely like bita	e, very dar brown, nul viscous - 1000 like studge	dark bown Godorker tha the ambor
		form before
NO ML OF EXTRACT	alter to an ed	
of butand scen	uthalt to get that	
Rotorap Extract	but sweet caramel so	ent missing
'very viscous, almost like · So mL sample (\$44 mL u 10 : 0032821	e slude baller) sent to lab	
Rathrake (mostly whanon cont to	106	
10:00328	22	

THE Day Slug Cosking Experiments Project No. 12963 85 Book No. From Page No. Purpose . Procedure -> p. 73 change in skep 5: adjust voltage so that pressure stays Constant - this is to ensure that the experiment does not go over 40 psig in longe scale : unsale to exceed 40 psig Goal Mantain P of 4015 this Trian 4: 3 grows oak, proper 10% E7011, 600 mil token, 40 psig, 1442 · Shurry PEP original ph: 3.46 ph after adjustes with hott: 12.01 941A4 234°C, 0 psg 10-13AM 100.1°C, 28 psig > tuined off 10:23 PM pressure stabilized at 88 psig ->tuned back on to foundts (0) (V) (psig) Time (min) Pressive Voltage Temperature Note: Want to see 40 70 results for conc. 118.6 103040 $\begin{array}{cccc}
 & 40 \\
60 & 43 \\
55 & 41 \\
55 & 36 \\
65 & 35 \\
70 & 41 \\
70 & 44 \\
67 & 44 \\
67 & 44 \\
\end{array}$ 120.6 10:40 E \$0 4 more alcohol. 120-0 10:50 20 11:05 35 11:30 60 1166 Content 114.8 118.9 11:50 80 120.3 12:00 000 color dax block block block 67 44 120.7 12:10 100 like wakted down, 42 119.6 60 12:10 110 40 Plate cole 60 118.3 12:30 120 PH: 10.67 -> very fains car arome, tea leave (black), temana blead adjusted ph with anthe acros: 3.33 4 sample sent to lab To Page No. WITNESSED & UNDERSTOOD BY DATE SIGNATURE DATE Kasi Mallar 1/23/17

ENTIAL TRADE SECRET MATERIAL D ACCESS AND DISTRIBUTION

Project No. 12943 86 Book No. From Page No. Trial 5: 5g car, 15% FtoH, 600 mL Same : pH=12, 40 psig /120 mins Slury SOS ML H20, 95 ML EOH pH lbetare): 376 pH after adjustment: 12.00 Start: 8:55 AM, 23.5°C, 0 psig -> stort at 90 V Off at 9:30 AM, 77.1 °C, 30 psig 9:45 AM : pressure stabilized around 34 psig (95.5°C) G turned on to FOV T(C) P (psig) Vats Time (minutes) 10:00 AM & O 100.0°C 80 V 40 106.10 70 V 46 10:20 AM 20 So 105.2°C 50 V 42 10:30 AM 4×39 41 40 40 60 101.9°C 60 80 103.5 65 103.7 60 100 60 12:00 pm E-120 103-2 pt (before adjusting) : 8.98 > dar brain, almost lite cola ph laft adding citic acia): 3.41 - color hightened to a murky fra Smells like Flewood VOBDE BOULLE ESCORA PRO printed with other sent to lab for testing SMPROMDAL, #MALC, SMARGASM Sample ID: OD409a1

				Destruction	1001.0				017
ITLE				Project No	12963				81
From Page I	No.			Book No.					
Trial	6: 10 q .	Dat 10% EN	OH The						
	"PH="	12, 40 1519,	120 min cor	The Slow	(65 mL)	etch,	335 m	1L H20)	
BOORDE				* 11.11					
Start	: 1:40 pm	, 33.1°C,	0 psig	-> start at	9001				
off	at 205 p	m, $al.q.c$, 33 psg						
	dobp	m, 117.8 (, 3 to psig	-> started	at 601	4			
time (minutes	T (°C)	MANE	01					
Dine C	P A	102	VOITS	1º (psg)					
2:40	20	177.1	TO	38 40					
	40	121.3	55	49					
	60	118.9	60	89					
3:00	100	120.1	65	40					
2:20	(20	122.3	65	42					
PH=6 PH	, 89 lafter add	ling citric L	acia): 3.	48 Wack circii d	ee and si	light (oaty a	iona.	
PH=6 PH \$50 m	,.89 (after add	ling citric Land Land Land Land Land Land Land Land	acid): 3 shots of lab for yr. #MALC	48 black circle & terhng EMARON	nea and st	light a	saly a	iona.	
PH=6 PH •50 m	, 89 (after add nl sample	ling citric L Sent to SALARDMOR	acial): 3 snots of lab for hr, #MALC 93	48 black chai d teshng c, SMARON	zo and st ISM	ignt ,	saly a	oma.	
PH = 6 PH • 50 m	, 89 lafter add nl sample Sample 15	ling citric Sent to \$ PLARDMOP 5: 05409	acid): 3 onots of lab for 14, #MALO 93	48 black circle & teshng , SMARON	ee and st	ignt ,	saly a	ona.	
PH = 6 PH • 50 m	, 89 (after add nl sample Sample 15	ling citric L Sent to SPAREMOR S: OD409	acial): 3 snots of lab for Nr, #MALC 93	48 black chai d teshng , SMARON	teo and st ASM	ight .	saty a	oma.	
PH = 6 PH ∞50 m	, 89 (after add nl sample Sample 19	ling citric Sent to \$ FLARDMOR D: OD 409	acid): 3 snots of lab for Nr, #MALO 93	48 black chai d teshng , SMARON	e and st	ight .	saty a	ona	
PH = 6 PH • 50 m	, 89 (aft: add nl sample Sample 15	ling citric Sent to \$ PLARDMOP 5: 05409	acid): 3 Shots of Iab for 14, #MALO 93	48 black circle & teshing , STMARON	ne and st	ignt .	saly a	iona.	
PH = 6 PH	, 89 (after add nl sample Sample 15	ling citric L Sent to SALAROMOP S: OD 409	acid): 3 snots of lab for Nr, #MALC 93	48 black chai d teshng , SMARON	ero and st	ignt .	oaly a	ona	
PH = 6 PH	, 89 (aft: add nl sample Sample (5	ling citric Sent to \$FRARemon D: OD 409	acid): 3 snots of lab for nr, #MALC 93	48 black chai d teshng , SMARON	e and st	ignt .	saly a	oma.	
PH-6 PH	, 89 (aft: add nl sample Sample 15	ling citric Sent to \$ PLARDMOP D: OD 409	acid): 3 Shots of Iab for 14, #MALC 93	48 black circle & teshing , STMARON	to and st	ignt .	baty a	ona	
PH-6 PH •50 m	, 89 (after add nl sample Sample 17	ling citric L Sent to S FUAROMOR S: OD 409	acid): 3 snots of lab for Nr, #MALC 93	48 black chai d teshng , SMARON	and sh ASM	ignt .	sary a	ona	
PH = 6 PH	, 89 (aft: add nl sample Sample 15	ling citric Sent to \$ FUARDMOP D: OD 409	acid): 3 Shots of Iab for Nr, #MALO 93	48 black chai d teshng , SMARON	and st	ign .	saty a	oma.	
PH-6 PH	, 89 (aft: add nl sample Sample 15	ling citric Sent to \$ MARSMOP 5: 05409	acid): 3 Shots of Iab for IK, #MALC 93	48 black circi d teshing , STMARON	to and st	ignt .	baty a	ona	
PH-6 PH	, 89 (after add nl sample Sample 19	ling citric Sent to \$ FLARDMOR D: OD 409	acid): 3 snots of lab for 14, #MALO 93	48 black chai d teshng , SMARON	e and si	ignt .	saty a	ona	
PH-6 PH ·SO m	, 89 (aft: add nl sample Sample 15	ling citric Sent to \$FAAROMOP D: OD 409	acid): 3 snots of lab for Nr, #MALO 93	48 black chai d teshng , SMARON	e and st	ignt .	saty a	oma.	
PH-6 PH	, 89 laft: add nl sample Sample 15	ling citric Sent to \$ MARDMOR D: OD 409	acid): 3 Shots of Iab for IK, #MALO 93	48 black chai d teshng , SMARON	and st	ignt .	paty a	eage No.	
PH-6 PH	, 89 (aft: add nl sample Sample 15	ling citric Sent to \$ FUARDONDA D: OD 409	acid): 3 phots of lab for hk, #MALO 93	48 black chai d terhng , SMARON	so and si	ight .	Daty a	age No.	

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

88			Project No.	29163		
TITLE			Book No.			
From Page No.						
That 7: 5g car, 20 Same: pH- pH: 3.20 (before) pH: (atter adjustion	7. E101, 600 r =12, 40 psig, 12 (4. with Koll)	nz sluxiy (12 0 mins 2 12.07	6 ml EtOH, 4	74 ml (f20)		
C. C. C.	J	SIXIY : Y	nuky, pand (mum		
Stort 11 06 AM, 22.1	C, O prig		a block also	(3) 41		
11:40 AM, 119	C, 40 psig	-> master	entally cha	to 46 psix	a : wai ha	for
	it t	o lower to	~40 psig t	xtore stanning	the coord	These
	pou	ver & cook	timing	0		
12:10 AM: p-dro	ip to 34 p	sig -> two	d passer a	an to 70 v		
Time (minute)	Temp (c)	Ploud	VILLES			
12:40 E 0	126.1	139	75			
20	119.3	38	70			
45	118.5	36	70			
65	120.5	41	80			
90	121.1	40	+0			
120	120.5	51	+2			
of the first adjust	D: 8.17	-) dork for	own			
ph latter adjust	ed):3.42	→ pond/m lease	urky brown			
1	Ssmells lit	e firewood r	ight after a	189 it hav		
	been p	alt alter out	small			
	BARIA MOS	icisy loak	24 DCL			
Sample sent to	196 (50 mc	_)				
	10:00	40992				
2241	trambak, t	FMALC, 5	Aromsm			
-++++++++++++++++++++++++++++++++++++++						

TITLE			Project No.	12963
From Page No.			Book No.	
Trial 8: 59	oak, 100% - Wat	r loop out		
Why? Best	Smell So for	was the		
Coa	nt to see a	water wo	59, 2101 Et	OH (p.76)
Uni? Cont	the desiled p	anol?	, court ~ has w	luch does the alkohol help
HOC - COO	in under same ci	arditions		
of GUCCY, her	PH=12, 40	psig, 120 mir	iute	
pH lafter KoH	addition : 1	7.02		
	automony , ,	2.03		
Sturt : 8:30 AM,	22.6°C, 0 psig			
9:15,13	3°C, 31 psig	-> shut acc		
9:25,	pressure stabilized	e around	35 000 810	- 1'
			lature	itil L
(min)	(7)		9101	rea on to to v
Time	Temp	P(PSKy)	VIDITS	Matte
4:35 E 0	135.3	32	80	be leaker > Voltone
- 30 -	135.1	31	80	to 854 and Dest
60	136-6	32	85	is down to 32 p
100	136.6	32	85	and staying sympu
10:35 6 20	136-6	32	85	constant - Will about
+ This	, trial stayed 1	iery consisten	t at	between a range o
32	psig			30-40 psig
	1 · in 21	2 11 2	in the second	
ph lbetae adjus	ment) . 10 - 31	-> COTHE	e colorel	
OH LOCLES I'M	mant with ad	Jan ac	cher and 3	3.37
pricence adju	Den with a	iamon or	a allor Mai	ship + and alt
	× stells II	ne a muto	n after you	shine it and put
	1 in in all	by sauce s	slight edg-yolk	Smell Gulfur)
50 ml amale	sent to lab.		5514	
so me sample	SUN 10 100	NOAK AM	ALC, SAROMSM	N
	10: 00 445	377		
	10.004.0	JLL		
				To Page No.
Charles and	DATH		WITNESSED & UN	DERSTOOD BY DATE
SIGNATURE .	Contract of the second s			

9.0				
		Pr	aject No. 12963	
TITLE			look No.	
From Page No.				
The Spoke	a to D.E. on pressure bomb but vent out o n adjusting the obse K2003 d from pH of c	1/30/17 > reconn of cal in the rygen during 2 ph accelera citric acid 1 to ph 3	nerched 3 things is entractor (he a cosking encel shock for aroma smen the differ	about half parked the clifferences ence
Oax slury: ~250	gnl oar (63 64	g) 7 535 ml	Hzo, 65 ml Etori	
Starting ptt:	2-73	pH after ar	iustmont: 11.96	
Il'ISAM		· dark bro	wh shirty	
150 pm - 2181,	0 psig		J	
1:30 PM > (entrated	SU"C D OSIA	M		
2:05pm > accident 42:15 pm > or	ally overshet to ershoot to 50 p	44 psig → œdur ssig	na shut off pawe	c + heat
Time	Temp Pier	sie volt		
0 2:25 pm	116-60 41	Opsig O		
60	110.6C 4	2 psig 70		
00	111.80 3	6 35		
120 4:25pm	11n.Q.C 3	9 70		
->1et sample ca	ou overnight	TU		
Next Morning volu	me (2)1/17): 3	He me total		
* ANATA CE SO	East the Satt	pet tadust	pht of 1 with	Kortan A
1 Jack	S. M. C.	Semple C	with firme o	Hericit Car I
ph lbefore atustme	#): 672			
	Oroma: Or	ally, stronger dork brown	than post on	omas
GNATURE,	DATE	Murr		To Page No.
allatin fam	1/31/17	WITNESS	D & UNDERSTOOD BY	DATE
NEIDENTIAL	1.1.			

CONFIDENTIAL TRADE SECRET MATERIAL LIMITED ACCESS AND DISTRIBUTION

ENTIAL TRADE SECRET MATERIAL D ACCESS AND DISTRIBUTION

92 Project No TITLE Cooking Thick with K-Carle Book No. From Page No. Trial 10 Repart that 9 except adjust pH is the beginning with X-carb (K2(03) GD.E. suggestion Oak story: ~ 250 mL ack (61.4 g), 535 mL H20, 65 mL EtOH starting pH: 2-71 PH offer adjustment: 1175 11:25 AM 23.8 'C 10 Pag 11 to AM > pressure and dentally reached 45 poig > shut off 11 55AM Spiessure (lached 55 psig > waiting to cost 12 PM > P drop to S8 psig > 10.6 °C > SKA corr @ GOV time Volts Temp Pressing 0 ->12.00pm 110.6 C 38 psig 12:05 -> pressure dropped to 20 -> waiting for inculture again -> set to 90 v 12:10 > pressure dropped to 10 even at a higher voltage. there does NOT seem to be a leak 12.12 > 2 dropped to 1 psi > twined heating mantle back on to "re-start" the trial, 950 12:27 -> Pat 34Psig, 14.8: -> shut off heat + power 12:37 > P at 42 psig, 121.3°C Time Stel+5 Temp Picinie 0 12:40 pm O 126.8°C 41 Dig 40 1: 240 pm 60 118.6 C 38 70
 70
 120.3°C

 65
 124.0°C

 55
 119.0°C

 75
 121.9°C
 1:50 pm 2:00 pm 80 46 2:30 pm 110 36 2:40 pm 75 39 Al (before adjustment): 10.84 Retsell ->Smalls Udark brenn arona SIGNATURE DATE To Page No. WITNESSED & UNDERSTOOD BY DATE CONFIDENTIAL

TITLE (ad	ma Ta		
From Page No	ing smal with K-core	Project No.	
DI		Book No.	the start of a Sugar
PHY PHY	adjustment with an		
- PH	anna	acid	
10-51	Pretzel	CUTUR	# addition of
0.07		garpoon =>	s citric acid
7.01	Slight surduch	· · · · · · · · · · · · · · · · · · ·	called a lut
	notes		of fociming
7.2	VIED OF		
	rig starchy	· Note forming s	bred forming over
		the beaked	volume + some
pH sto	acted to joccease again	volume c	that was
5.84	and the again so way	ted for bubbler to .	Sloside
ort arki	a still to tal p m	not beer float	2
6	do not what to use as	to to decide the	ne ph
	not food a forde	mager and the ne	1) because it is
4.90	Still Smells like aptze	15 ->h	12200 & broante mildely
	but there is a slight	hitly three	all of it is allerched
	sweet note	- J La	in add rithic acid faster
4.16	initial story smell of s	solt bet	
	the undertone is licence	/rost beer	
DH 4.0	of bhate mule to 10	secipitate and ther	, reached a consister
1	of gelato - when	stilled lusts like a F	B & Banana smoothie (chu
	centrifuger 4, 45 mL	tubes at 4300 rpm	
	(180 mL total)	-> 91 ML yield of	liquid
	60 ml sent for sampling	1. 10: 054921	
	SMAR	OMOAK, MUAZ	
. 400 mb of	precipitete uipided	260 ml liquid	
40	thes centrifiqued. licaic	eleost beer Smell	was much more
	predaminant		
	(541. Vield		
		Martin Joseph 19	

TITLE COOKING	with 1-arb	+ KoH	Proje	ICT 140.	
From Page No.			Bo	ok No.	
Tag 11					
· trial 10 +	-11 except	at the L	echopica ar	Hot and paris	it is the
K2 CO3	then Koti	ar the b	againing ac	you the th	, Corte
	it was noted	ni farra a	trial 10 that	it took a lo	of k
1	o vaise the	PH OF	icially orbin	A PH 10.5	+
· Oak story	NCSO ML Dal	- (41-13 g			
a) la alais	DOD ML HLO	,65 6104			
PH Ibetore	adjustitierits -	(2) 104			
mmalt	a p cao	O NOT			
Base	Amuet	DH			
K-Carb	3.220	9.30			
K-carle	2.509	10-09			
K-Corb	2.299	16.34			
K-Colo	2.05 9	10.36	a current to x	64	
KOM	10 m2	10.52	y switche to p	~~~	
ton	1.1 m	10.97			
KOH	2.0 mL	11-90			
KOH	• 2 mL	12-62			
9:13 AM : str	t at D said	22.8: ->	m at 951		
9.30 AM . 34	0519, 45,7°C	->thread of	f		
9:37 AM . 30	osia drop + c	19°C 25	tat at 700		
	1			16 10 10 10	
Time		Pressure	Temp	VIDIT	
$0 \rightarrow 9$	HOAM	42 0519	49.7.0	700	
10		50 psig	52.2%	50	
	users das	and to a	a volte	Ca 26 85	
10.10 \$	ressore any	pea 10 0	at vonu	ye or os	
10 - 10 pa km	Graines	are hight	8. ourreak	not apparent	
		Unext t	und but u	1	

From Pa	ge No.	10510	0	- Aug	Book No.
Time	(miro)	Pira	7 (2)	V. (vor	13
10:30 A	MO	40	114'C	93	stund has
10:35	5	54	122.6	60	off
-	10	60	118.9	50	
	25	41	112.6	0	
11.DAM	35	41	D.801	80	
1:25	55	40	113.6	90	
	15	30	104.5	80	
	90	45	114.5	50	
12:10		38	111.2	53	
12:21		32	107.	54	
12:20	1	-34	103.5	40	
	1.52	3	6	.32	-> starting to foo
1.5 1.5 1. 4	1.52 1-350 1-300 1-30 1-3	9) 9 9 9 15 9	6 5 1 2 3 3 3 3	-32 03 1.42 1.04 5.68 7.68 1.48 1.68 7.48 1.48 28 28 28 28 28 28 28 28 28 2	Source for smells, cinnun on /like winter-sp Smake Smell storning to anse Smake Smell gone, pretzel + nutmeg

96				1201.3	
TITLE COS	times us ka	1 Kall	Project No.	1700-	
From Page 1	to your your your your your your your you	CO + FOLL	Book No.		
Taca 12.	Det-mbride	,			
·best	(0911) 32 Fac 5	- Int aller 1			
ucont	to explore it.	g, TOT E Manol	*P76		
· '10 '	eality: ELT-03	has a less a	mentione any	Street Son Sch	
	Cax (260	ton 2 (p'	a good Died	lictor	nc of
P			3 1		
mocedure .	same on p.7.	3 but less	K2CO3 - adjust	patt in beginning	1 with
	rearb cintel 1	8.5 then use	KOH	1 0 0	
Parose: 4	value kanda	256735 - L			
in part c	aprile r-larlo	eticcts out lan	er concentration		
Slurry: 5	9 oak, 535	m) H20, 65	m1 95% Eth	and	
3	weight: 5900	Ster 599.102 0			
	PH: 3.99		, , , , , , , , , , , , , , , , , , , ,		
Base	Amaunt	PH		Note: First +	Ime 1 a
4403	0.2509	90300 3	dialities to be concersion	10+ 0.25 g X2C03	PH was
F2C03	0.25g	7.70	E	9.30 8 5 1	rins later.
\$2003	.079	857		Was 7-70	
KOFI	~ 0.80 m	L 12-13		· Noticed this 7	rend for e
				increment of	K2003 ad
Start at 10	30 AN 390 V	05 F 25		(>) waited abo	ut 10 min
11 10 AM -	50 prig (1)	05.5 C		between adda	bar increm
11-00 AM- 3	par pary - run.	ed 10 80 V		for "stability"	escolar
Turne	Dar	Tai		Ly attects	results of
11-20 001	mosure	Kap	Voltage	Trial lo	612 :
12-15 044	39 psig	119.1 0	TUV		
12-1112 000	to pog	120.70	VCO		
10,000 pm	yo psig	1030	CCI		
1 wpm	ad parg	119.5 -	VCC		
1.15 pm	Jun poig	119.1 C	GUV		
1.50 pin	90 psig	ILC.L	65		
S and a		- 7-12 0			
RIVERT VOIN	Ne. 285 ML, S	552 42 912	and		
1-11 - 9.9	4				
SIGNATURE	- The last	DATE	WITNESSED &	UNDERSTOOD RY	Page No.
Catholic	a Mai	Att	WITNESSED &	CADERSTOOD BY	DATE
RANGA	1 horn	AVIT	and the second		
ONFIDENTIAL		San			- 245

Prom Page No. PH difficulty to \$ v3 conthe civile creded Citile Acid actives phil 0 659 548 Strong 0 659 460 preserve of chosines spece (nutrice) 1.30 9 3.52 preserve of chosines spece (nutrice) 1.30 9 3.52 preserve of notes 0.609 8.24 very shareny, some preserve notes 1.50 9 3.07 stight size undertake No sindley annes have been preserve notes and size indertake So mil sent to lab for sampling: 10 = 60 57651 50 mil sent to lab for sampling: 10 = 60 57651 50 mil sent to lab for sampling: 10 = 60 57651 50 mil sent to lab for sampling: 10 = 60 57651 50 mil sent to lab for sampling: 10 = 60 57651 50 mil sent to lab for sampling: 10 = 60 57651 50 mil sent to lab for sampling: 10 = 60 57651 50 mil sent to lab for sampling: 10 = 60 57651 50 mil sent to lab for sampling: 10 = 60 57651 50 mil sent to lab for sampling: 10 = 60 57651 50 mil sent to lab for sampling: 10 = 60 57651 50 mil sent to lab for sampling: 10 = 60 57651 50 mil sent to lab for sampling: 10 = 60 57651 50 mil sent of sample Condensate: 135 mil → pH=3.71 wt: 12723 9 bottoms: 213 mil → pH=3.84 wt: 207773 g Condensate: 0061403 Residadi oo lei 404	TITLE COOKING WI K	-arb + roll	Project No. 129(63	
PHt ditchate to \$ v3 with citric cred Citric Acid actilition pH Arsonne 0 653 0 653 0 653 0 653 0 653 0 653 0 653 0 653 0 653 0 763 1 30 9 1 30 9 1 30 9 1 50 6 3 .07 1 50 6 3 .07 1 50 7 1 50 6 3 .07 1 50 7 1 50 7	From Page No.			
Citic Acid actility pi pi pi pi pi pi pi pi	pH decreak to 4	6 NB with	cimic arcial	
 0.659 0.659 0.659 1.30 g) 3.52 0.659 1.30 g) 3.52 0.600 1.30 g) 3.52 0.600 1.50 g 0.600 g 0.64 1.50 mL Sent to bab for sampling: 10 = 6057651 45 SMAROMOAK, MUHZ, MHLL 1.50 mL of sample 0.50 mL of sample 0.50 mL of sample 0.50 mL of sample 0.550 mL of sampl	Citric Acid addition	TH	Prosnu	
0.65 g 0.65 g 1.30 g 1.30 g 1.30 g 1.50 mL Sent to ball for sampling: 10 = 60 S 7651 4.5 MN4 RomoAK, MUHZ, MHLC 1.550 mL of sample 1.550 mL of sa	0659	5.48	Striny	
1.30 g) 3.52 D. BOG 3.24 1.50 g 3.24 No sinday anomas have been pretter notes So me sent to lab for sampling: 10 = 60 57651 So me sent to lab for sampling: 10 = 60 57651 So me sent to lab for sampling: 10 = 60 57651 So me otrowapped So me notrowapped So me notrowapped So me notrowapped So me notrowapped So me notrowapped Condensate: 135 me → pH=3.71 wt: 127.23 9 bottoms: 213 me → pH=2.84 wt: 207.72 g Condensate: 0061403 Residual of lab 404	0659	4.60	pretzer wi chrownes spres (nutrines)	
 b. Bog 3.24 very shareny, some preter notes 1.50 g 3.07 stylet sur undertance No smokey anomas have been preterior noticeable with k-carle Grotokep? 50 ml sent to lab for sampling: 10 = 60 \$7651 \$50 ml of sample 350 ml of sample 313 ml ⇒ pH=3.71 wt: 127:23.9 313 ml ⇒ pH=3.84 wt: 207:73 g 	130 0	2.52	and all self all	
1.50 g 3.07 stept sar undertand No sindley anomas have been pression noticeable with k-carle Grout Sent to lab for sampling: 10 = 6057651 4550 mL sent to lab for sampling: 10 = 6057651 4550 mL of sample 350 mL of sample 350 mL of sample conclements: 135 mL → pH=3.71 wt: 127.23.9 bottoms: 213 mL → pH=3.84 wt: 207.72 g Condens ate: 0061403 Residual oble1 404	\$- to a	3-24	pletzel with some pletzel notes	
No smokey anomas have been pressive noticeable with k-carle Grownersep? So me sent to lab for sampling: 10 = 6057651 45 SMHROMOAK, MUHZ, MHLC ~550 me of sample .350 me notowapped condensate: 135 me -> pH= 3.71 wt: 127.23 9 bottoms: 213 me -> pH= 2.84 wt: 207.72 g Condens ale: 0061403 Residual oble1 404	1.50 6	3,07	stant sac undertance	
SNOTALOP? 50 mL Sent to lab for sampling: 10 = 6057651 550 mL of sample 350 mL of sample 350 mL rotowapped condensate: 135 mL → pH= 3.71 wt: 12723 9 bottoms: 213 mL → pH= 3.84 wt: 20773 9 bottoms: 213 mL → pH= 2.84 wt: 20773 9 Condens ate: 0061403 Residual oble1 404	No smakey aromas	have been	prentites noticeable with k-carle	
50 mL Sent to lab for sampling: 10 = 6057651 550 mL of sample 350 mL of sample Condensate: 135 mL → pH=3.71 wt: 127.23.9 bottoms: 213 mL → pH=2.84 wt: 207.72 g Condens ate: 0061403 Residual oble1 404	Grotacop	?		
$4 \text{ SMH40MOHL, MUTL, THE}$ $4 \text{ SMH40MOHL, MUTL, THE}$ 350 mL of sample 350 mL obsumpped $Condensate: 135 \text{ mL} \rightarrow \text{pH}=3.71 \text{wt}: 127.23.9$ $bottoms: 213 \text{ mL} \rightarrow \text{pH}=3.84 \text{wt}: 207.73.9$ $Condensate: 0061403$ $Residual oble1404$	50 ml sen	it to lab f	$\frac{1}{10} = \frac{1}{10} $	
Condersate: 0061403 Residual 0061404	350 ML NOTO Condensate: 13: bottoms: 213	vapped $s mL \rightarrow pH$ $s mL \rightarrow pH$	1= 3.71 wt: 127.23 9 1=2.84 wt: 207.72 g	
Residual oblet 404	Caplon	1. 00hl	403	
Keskuur	Corolly a	0061	404	
	Kesiala			
	front the second second			
	and the second sec			
	and the second se			

ENTIAL TRADE SECRET MATERIAL E. & J. Gallo Winery

TITLE Cooking with K2(0, + KC+1 Project No. 12963 From Page No. 103 Trial 13 continued from page Kas 97 Cooking Thials w/ K-Carle Book No._ Purpose: Using K2003 (K-carb) does not seen to bring aut "smokey" anna in samples > instead, the anna is mole starchy/ . Data isn't back from lab on the amount of gubiacol present in sample initially pH adjusted with k-arb will noto-apping the sample befole decreasing the pH (after cosking) help enhance the arma? Lapast studies show that notokapping at higher pH increases Pracedure . 5 g, 10% ethanioil In GRefer to page 73 () adjust slumy pH to 12 in begigning · K-carb antil B.S. then Kott from 8.5 to 12 (2) cook (5) inc. pt to 12 using LOH & k-care (same as step 1) (1) Notavajo (601 condensate, 401. bottoms) BANN Rest KASAI 3 adjust pt to 3 of conclansate + bottoms using citic acid (compare results to trial 12 (page 97) Slucy: 5 g oak, 535 mL H20, 65 mL 951. ethenol weight: 5000000 582.63 pH= 0000 2.92 Base Amount DH 00400000 K2 CO3 0.29 105705 Waited 5 mins to let (an accur? 1263 ,08g 8.52 waited 5 min >pt change from 9.2-38.57 Lot 155 mL 12.01 To Page No. IGNATURE DATE WITNESSED & UNDERSTOOD BY DATE 2/16/11

	4		and the second	VE ANY
TITLE	- Colima			2963
From	Page No. W/ K2(OB + KOH	Project No. Ald C	10468
Sten	hat as in		Book No.	
	10.52 AN	1, 90 V, Tem	0.262	
	11:15 AM	> System man	p-20.3C	
	11:30 3 30	1 psice of up	again at 200	smoke up to)
	11.45 > Sta	bilized at 21	9 c =) tured off	na 42.2°C
		4 turned	19 ª 105.7 c	power + heat
ime	En on Volts		at at tov	
03	12.00 pm 75 75	lemp	Pressure	
30	2-15 70	117.50	41 059	
60	55	122.1 C	45	
90	60	1900	41	
120	60	120.1°C	40	
1 total	22	117.1°C	38	
timal	volume: 5000 and	074		
1+++	65 Ru	STO ML		
No.1	pH= 9.76	356 +6 g		
Nan	increase pH	to 12		
0	. 60 ML to incl	eax of hu	115.1	
Next: Bot	THE ET	pri tuo	c 457. KOH)	
(what	WEY STO ML			
· · · · · ·	401. residual, 1	eoil condensate		
	um coucof 340 ML	- of condensat		
Collected	349 001 0			
14 L.I.I.	Alleight 221	unlensate		
PH= 7-11	weight = 556.	239		
Anoma: wet	locad			
	adilistication			
DH	by with	citic acid		
Amunt	2.70 -	oroma		
Amunt 0.34 G		y faind,	-> dropped or	W low by
Amant 0.34 g	Ver Ver			1 1000 UY
Amunt b.34 g		pe water	alcident	
Amunt 0.34 g		allmost	alcidlas	
Amount 0.34 g		almon	allicle	
Amant 0.34 g		almost	CICiclent	To Page No.
Amant 0.34 g		almost with	CUCICLAS ESSED & UNDERSTOOD BY	To Page No. DATE

*0) ai	TITLE COOKING W From Page No. Collecters 190 M . 191-38 PH - 11.60 Not Murch	K2(03 tKOH	Project No. 12963
	<u>Ами</u> 0.33 9 0.31 9 0.42 9 0.42 9 0.42 9 0.42 9 0.50 9 0.65 9 0.65 9 0.55 9	210 mu > adjust 9197 6.55 5.34 4.79 4.79 4.37 3.88 3.55	campfire y Smell sterling to comit slightly sour note but there is shill a hunt of campfire
	Sent for sampling Condensate: Residual:	SHAROMOAK, MV D D 6 1405 OTO 6 1406	AZ, MALC

108	
From Page No. 12963	
Trick 1: 5 9 cak sluiny, 10%	
· starting volume: 410 mL · collecting approx every 40000 mm 410 111 mi	
MAR × 90 V. Chiller and 2:	
1st collection : 77.7 C is under total reflut within collection	
· law like light init 1 978.20 = Overhead temp	
Volume of collection: 41 mil	
Mass of collection: 32-549 PH=619	
and collected tomp accidentally reached 99°C	
· Overhaud temperature spiked to glaic with the	
to 78°C but opened value and temp seemed to stabilize	
→ no condensate being collected =voltage up to 70 V → Tjump to 96°C	
hat day run: 65 V.	
Stabilized was reached and temp	
values of collection: 40 mL pross of collection: 38-57 g	
pH=3,97 chome: wet wood	
· Cauld be a problem with column participant	
vigreux column?	
clishilled off in 1st callection	
SIGNATURE DATE TO Page No.	
CATAMA GOYOVICIÓN 247/17 WITNESSED & UNDERSTOOD BY DATE	
UNFIDENTIAL	

TTO D CIN'	A A A A A A A A A A A A A A A A A A A	Project No. 12963	
From Page No.	d Thau	Book No.	
That 2: 5 g cat	sturn, 20% FLAH		
· Baseri no presi	AR		1 - take
decided to us	re le-stage bulblere	cap as a substi	totion for
	Condenser		
3 Valve Tray Column			
	Value True		
6 Bubble Cap Column			
	T		
	(Still Pot)		
	Stall Pot		
Starting volume: 50	2 mL		
Starting volume: 50 .collecting	2 mL every ~40 mL (little	less than 10%)	
Starting volume: 50 ·collecting Cellection 1 : Overhead : =	2 ml exercy ~40 ml (little 77.6 topen value to	less than 10%)	1 slightly
Starting volume: 50 ·collecting Cellection 1 : Overhead: = bottoms:	2 ml every ~40 ml (little 77-6 topen value to 94.1°C	less than 10%)) oroma: slightly sweet, caram
Starting volume: 50 collecting <u>Collection 1</u> : Overhead: bottoms: Galection 1 bottoms: Galection Galection Defined Galection Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined	2 ml every ~40 ml (little 77-6 topen value to 94.1°C 40 ml collected, 3	less than 10%) constant at 78.1 32-5 g) <u>oroma:</u> slightly sweet, caram
Starting volume: 50 .collecting <u>Cellection 1</u> : Overhead: = bottoms: AD (ABRECEE PH = 6.4	2 mL every ~40 mL (little 77-6 topen value to 94.1°C 40 mL collected, 3 12-8°C	less than 10%) constant at 78.1 32-5 g) <u>aroma:</u> slightly sweet, caram
Starting volume: 50 collections: Collections: photoms: photoms: photoms: photoms: photoms: collections: photoms: photoms: useries: photoms: useries: photoms: useries: photoms: useries: photoms: useries: photoms: useries: photoms: useries: useries: photoms: useries: useries: photoms: useries: useries: useries: photoms: useries: use	2 ml every ~40 ml (little 77.6 Jopen value Jo 94.1°C 40 ml collected, 3 .77.8°C collected, 31.8 g	less than 10%) constant at 78.1 32-5 g] <u>aroma:</u> slightly sweet, coram
Starting volume: 50 collection 1 = Overhead : - bottoms: ptl = 6.4 Collection 2 = overhead : 40 ml pH = 4	2 ml every ~40 ml (little 77-6 topen value to 94.1°c 40 ml collected, 3 .77-8°c collected, 31-8 g .98	less than 10%) constant at 78.1 32-5 g) <u>oroma:</u> slightly sweet, coram
Starting volume: 50 collections Collection 1 = Overhead: = bottoms pollections pt = 6-4 Collection 2 = Overhead 40 mL pt = 4 pt = 4	2 ml every ~40 ml (little 77.6 Jopen value 30 94.1°C 40 ml collected, 3 .77.8°C collected, 31.8 g myer ethand anoma	less than 10%) constant at 78.1 32-5 g] <u>oroma:</u> slightly sweet, coram
Starting volume: 50 collecting Cellection 1 = Overhead: = bottoms: \$\$\$\$ (\$\$\$eceec pt = 6.4 40 mL pt = 4 - Much stress	2 ml every ~40 ml (little 77.6 Jopen value 30 94.1°C 40 ml collected, .3 .77.8°C collected, 31.8 g .998 onger ethand choma	less than 10%) constant at 78.1 32-59] <u>oroma:</u> slightly Sweet, coram
Starting volume: 50 collections Collection 1: Overhead: photoms: photoms: photoms: photoms: photoms: up ml ph = 4: ph =	2 ml every ~40 ml (little 77-6 Jopen value 30 94.1°C 40 ml collected, 3 .77-8°C collected, 31-8 g .98 myer ethand choma	less than 10%) constant at 78.1 32-5 g) <u>oroma:</u> slightly sweet, coram
Starting volume: 50 collection 1 = Overhead : = bottoms: \$\$\$\$ (\$\$\$\$cole ptl = 6.4 Collection 2 = overhead 40 mL ptl = 4 ptl = 4 40 mL ptl = 4	2 ml every ~40 ml (little 77-6 Jopen value 30 94.1°C 40 ml collected, 3 .77-8°C collected, 31-8 g mger ethand anoma	less than 10%) constant at 78.1 32-5 g) <u>oroma:</u> slightly sweet, coram

TITLE Dishilling Could Trials Project No. 12963 Googe 111 Book No. Collection 3 : 0 - overhard shot to 82°C and then incleased to also stady us to voltage until the and then incleased to go addis acound 80-83. c temperature was somewhat stable . collected 29 mL volume 3 23.46 g is sailty /unpleasant odur - slightly like an chipi 1 ->more valpor and less condensing liquid was wohiced Lapossible that all alconol was distilled off? or was room temperature Ruduations affecting the column. Insulard adaptir for sourcepte collection 4 Collection #4 · Overhead temp stayed constant at 99.1°C (70 v) · Bottoms = 102-3'C . 41 ml collected → 38.95 g ·no odur > possibly just water? woody oroma · volume = 363 m2 mass · 353 44 g Bottoms PH=3.18 obsect Samples sent to lab Distillate Collection #1: 0D57658 Distillate Collection #2: 0D57659 Distillate Collection #2: 0D58349 0058350 Residual Dishike Collection #4: To Page No. WITNESSED & UNDERSTOOD BY DATE DATE 2/8/17 SIGNATURE à Cevi

	A State of the second	Project No	Contraction of the second		A Long
TITLE Distillation lasked	Thali	Book No			erset.
From Page No.					
Trial 3: 5 g par dir	M. 151 EtOH			# OOH	EN
Rupose try a smaller	shorter column	and collect	every	olype	07. in
volume regarded	zetter to map au	t separati	on		
	Condenser				
		-> Distillate			
3 Valve T Column					
	Botto	oms			
1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2					
	Still Pot				
Feed volume. 510 m	-> 500.07 G				
icollect event w25	mL				
and any a	TOT SING				
1st callectur : 85 volts					
"Overhead T range". 78	8.1-81-4°C				
·charge/residual T = 91.0	1'C-92-3				
· 25 ML sample collect	ted:				
PH =	7.86				
weight:	21.349				
Smell:	Sweet potatoes	l vanilla			
2 collection: 85 v					
. Werhad T-range: 78-6-1	84.4				
Charge T: 93.5-96.2					
25 ML sample: ->					
PH=6.0	b				
weight = 21	329				
Smell-Ca	r + vanilla nakes				
-,					
SIGNATURE	DATE	WITNESSED & T	NIDER		To Page N
Stort H Club		UTITESSED & U	NDERSTO	OD BY	DATE

7×	Coults		
TITLE EILHTIDIS (CC	Project No.		117
From Page No.	Book No.		
continued fr	om p. 80		
Elution 1. 12	(ettuco		
TELED			
Bed Volume	N		
1	Rep Stroma Notes	TH	-11
	DOW Sauce (Baby Rave) + hint	10	
2	Mola Drown sugar	2.18	20
	, ore contentiated BISO sauce,	2.77	22
3	Smake No Cin	0	au
-	Shoke - campble smoke with	3.08	40
4	PROSONAL DE QUE		40
5	DOG SINDRY AVEN Slight	3.13	40
	Ligarette smoke king adams to	3.28	60
6	n country hrewood smoke	0 11-	60
7	Gode Wood Run and	3.43	0.0
Q	Read wood-sy aving	2 4 3	90
â	Type Tudallo > mina of outen	2.91	00
10	leather + cigar	4.52	as
10	very tain woulds	. 05	10
¥0-	- Bot. ethanol = best aromas		
* iab (esu)	the show higher concentrations	of	
quaiacol	and syringol at Bed volu	mes 9-1	D.
This is	at 40-601. ethand elution		

118	Project No.			
TITLE	Book	No		
From Page No.				
Elistion #2				
- Joiner			1 -4	
Bed Volume	Noma	PH	1 Ethana	
		2.00	ogil:	
1	smokey, little creme	3.01	av	
2	smaker washed coffee high	2.13	201	
	task of bacon	0.15		
3	Smoky, vocisted coffee,	2.96	90.1.	
	slight birt of Vanilla	and the	A CONTRACTOR	
4	spices + cocon ut undertones	3.06	407	
-	from the smoke			
2	Statileaus etes	3.13	601.	
6	Childreg Smole	205	hat	
	condition skought soundle	3.00	60,	
7	Sincentry sharping sintere	3.51	801.	
	Enni en la enni	0		
8		3.53	801.	
	*	the la	Dail	
9	Fainter oroma	4.11	951.	
10	4	3.97	951.	
			To Page No.	
	DATE WITNESSE	D & UNDERSTOO	DD BY DATE	

119 Project No. TITLE Gradiatal + Syringol Separation Book No. From Page No. Separate guardados and sylingol from elution 1 Ripase. (column chromatography) to duse in wines by rotoropping) Procedure: - dilute elution to 161. ABV - aim for . 687. condensate. (Rotolog) That 1 Elution 1 (p. 80 2 p. 117) , choosing bed volume 5 at 60% ethanol 434 mL ·MALC: 0.5837 To get 167. ABV 0.5837(34 mL) + 0(x) = 9(0.16)34+X=4 19.8458=41016) y = 124-03 mL total $\chi = 90.03 \text{ mL}$ H20 to add TELERO 30B PH = 5.01 100 mL condensate pH = 5.0112 mL residual pH = 2.84- Collected over 68%. Condensate by accident - 12 mL of residual refortified with 12 mL of 951. ethanol · pushed vacuum pressure down to 200 mPa. BUS Bottoms/Residual BUS Cindenside 0067902 0067903

TITLE From Page No. That 2: $8N4$ (p. 80 of p. 11% for (334 m2 volume MALE = 0. 44142 is decrease to 161. ABA 84 m2 (0.442) + 0 = = 9(0.16) 847x = 9 y = 94.3 a total x = 60.39 m2 H20 Condensate: 67 m2 pH = 4.0 bottoms = 22 m2 N = 161 condensate a close enorgh: N = 161 BN4 bottom 701 BN5 condensate	oject No. <u>1201035</u> look No. anoma <i>e</i> resu	Its)
From Page No. Trial 2: BVY (p.80 of p.117 for BY made = 0.4442 b decrease to 161 ABN BY = 9 b decrease to 161 ABN BY	anoma es resu	Its)
$\frac{Trial 2}{Trial 2}: BNY (p.80 or p.117 for 434 m2 volume MALC = 0.44142 Lis decrease to 161 AB1 34 m2 (0.442) + 0 * = 9(0.16)B47x = 9y = 94.3 \ total x = 60.39 \ m2 H20Condensate: 67 m2 pH = 4.0bottoms = 22 m2N = 757 condensate a close enorgh:N = 757$ condensate a close enorgh: OD6700 BNY bottom 701 BNS condensate	anoma 💰 resu	1+5)
$\frac{Trial 2}{9} : BNY (p.80 or p.117 for B34 m2 volume B4 m2 (0.442) \downarrow decrease to 161 AB1B4 m2 (0.442) \uparrow 0 \star = 9(0.16)B4 tx = 9Y = 94.3 a total\chi = 60.39 \text{ m2} H20Condensate: 67 m2 pH = 4.0bottoms = 22 m2\nu 7$1 condensate actore enorgh.OD6700 B4 BV4 bottom\mp 01 BV5 condensate$	anoma es resu	1+5)
MALC = 0.44142 L3 decrease to 161 ABA 84 mL (0.442) + 0 * = $9(0.16)$ 84 TX = 9 y = 94.3 a total $\chi = 60.39 \text{ m} 2 \text{ H}_20$ Condensale: 67 mL pH = 4.0 bottoms = 22 mL N 751 condensale 3 close enorgh: OD6700 BA BN4 bottoms F01 BN5 condensale		
$\begin{array}{rcl} 84 & mL \left(0.442 \right) + 0 & = 4 \left(10.16 \right) \\ & 84 \pm 29 \\ & 9 & = 94.3 \ \ e \ total \\ & \chi & = 60.3 \ \ mL \\ & \chi & = 60.3 \ \ mL \\ & 120 \\ \hline \end{array}$		
y = 94.3 q total 2 = 60.39 m2 H20 Condensake: 67 m2 pH = 4.0 bottoms = 22 m2 N 7\$1. condensate a close enorgh. OD6700 B4 BN4 bottoms 701 BN5 condensate		
2 = 60.39 m2 H20 Condensale: 67 m2 pH=4.0 bottoms = 22 m2 N 7\$1. condensale = close enorgh: OD6700 B4 BV4 bottoms 701 BV5 condensale		
Condensale: 67 ml pH=4.0 bottoms = 22 ml N 7\$1. condensate a close enorgh. OD6700 B4 BV4 bottoms F01 BV5 condensate		
N 7\$1. condensate > close enorgh. OD6700 B4 BV4 bottoms 701 BN5 condensate		
OD6700 B4 BV4 bottom 701 BV5 condensate		
701 BNS Condensate		

		6 (C) - 10 - 10
	U 0 0 0 + 0 0 0 0 F	
	E	
- INTRO Des	Perlan 12062	191
From Page No.	Project No. 12903	121
Rumsol o il	BOOK NO.	and a
and syringor and d	the find descentle guarded	
Paredure : Di	in wine	
marcume. Dam for 75	PPD guaracol using Byle	
Scimples 20	d synnyol + guarcol in THAN (from notovapped	1
based on an	there are 2 199 P. 199 and 120)	
3 Cut votation the	le dosina in 12 of point noir	
(a) Table testing	which AT South Thomas love.	
Philo (DT INDIT)	ine, Seese, mains again	
Die (UD 4017) -> L	41034.4 PPG graiacol	
() () () () () () () () () () () () () (late Testing Feedback	
	intense on mouth, too mich smoke	
- 04 ML ST	bretter	
Die #		
BV5 7 (0D 67903)	> 288 12.1 PP6 guaracos	
volume <u>PPb</u>	Taske Testing Feedback	1 6
D.S.ML BG	· too much guaracos, dominant tood figure,	note charat
OB ML IS	· adur, Jammy, Just right # *	Ribia
100679(22) -> 144 94	5 PD6 Syringol	
volume ppb	Taske Testing Feedback	, to
1.3 mL 1885 .	pencil shavings, little ashy (swpences ashy after	tauk)
065mL 942 .	front attack clove/spices, slight charled	Plavor
	4 dried thuit and here characteristics	
BVG (00 67401) -> 212	Tosiera Feathart	
Volume <u>PPD</u>	- chier like task social ashy finish	
D.25 53	- mas a menthal mostified (good), vanilla &	
0.05	woody notes but not intense	
00 \$\$7900 -> 94148 ppb	Syringu	
VOLME PP6 T	rashiry feedback	
14ml -th	incises mosthfeel than the 0.7 mL	
0.7 mL .bet	WITNESSED & UNDERSTOOD BY DATE	Contraction of the
SIGNATURE DATE		