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Abstract

Combining the preferences of many rankers into one single consensus ranking is critical

for consequential applications from hiring and admissions to lending. While group

fairness has been extensively studied for classification, group fairness in rankings

and in particular rank aggregation remains in its infancy. Recent work introduced

the concept of fair rank aggregation for combining rankings but restricted to the

case when candidates have a single binary protected attribute, i.e., they fall into two

groups only. Yet it remains an open problem how to create a consensus ranking that

represents the preferences of all rankers while ensuring fair treatment for candidates

with multiple protected attributes such as gender, race, and nationality. In this

work, I am the first to define and solve this open Multi-attribute Fair Consensus

Ranking (MFCR) problem. As a foundation, I design novel group fairness criteria for

rankings, called MANI-Rank, ensuring fair treatment of groups defined by individual

protected attributes and their intersection. Leveraging the MANI-Rank criteria,

I develop a series of algorithms that for the first time tackle the MFCR problem.

My experimental study with a rich variety of consensus scenarios demonstrates

my MFCR methodology is the only approach to achieve both intersectional and

protected attribute fairness while also representing the preferences expressed through

many base rankings. The real world case study on merit scholarships illustrates

the effectiveness of my MFCR methods to mitigate bias across multiple protected

attributes and their intersections.
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Chapter 1

Introduction

1.1 Introduction

Rankings are used to determine who gets hired for a job [28], let go from a company

[26], admitted to school [46], or rejected for a loan [53]. These consequential rankings

are often determined through the combination of multiple preferences (rankings)

provided by decision makers into a single representative consensus ranking that best

reflects their collective preferences.

However, human and algorithmic decision-makers may generate biased rankings

[27, 45, 44]. Such unfair rankings when combined may escalate into a particularly

unfair consensus ranking. A prevalent type of fairness, called group fairness, is

concerned with the fair treatment of candidates regardless of their values for a

protected attribute Protected attributes may be traits such as Gender, Race, or

Disability, that are legally protected from discrimination. More broadly, protected

attributes correspond to any categorical sensitive attributes for which bias mitigation

is desired. The problem of incorporating multiple fairness objectives into the process

of producing a consensus ranking, namely, multi-attribute fair consensus ranking

(MFCR), remains open.
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1.2 Admissions Example.

Consider an admissions committee ranking applicant candidates for scholarship merit

awards as seen in Figure 1. First, each of the four committee members, potentially

assisted with an AI-screening tool [54], ranks the prospective candidates − illustrated

with rankings r1 to r4. The committee seeks a consensus ranking for final decision

making by consolidating the individual rankings into one single ranking.

For the committee members to accept the outcome, the consensus ranking needs

to reflect all the individual rankings in as much as possible.

The rankings may conflict substantially − as we can see comparing r4 to r3 in Fig.

1. Ranking r4 exhibits significant gender and racial bias — with black candidates

and women candidates ranked at the bottom. In contrast, r3 has relatively even

gender and race distributions. In fact, r3 appears to be the only base ranking that

does not have a significant preference for men candidates. For their decision making,

the committee must ensure their resulting consensus ranking is unbiased with respect

to the applicants’ Race and Gender.

For this, the committee must define what constitutes fair treatment in this setting.

This is a challenge, as group fairness [19] in rankings with multiple protected attributes

is largely unexplored. If the committee were to only consider Race and Gender

independently, will this also mitigate intersectional bias? Intersectional bias [17],

introduced by legal scholar Kimberle Crenshaw, refers to how identities compound

to create structures of oppression, and is defined as the combination of multiple

protected attributes. Attempting to treat each protected attribute individually can

provide the appearance of fair treatment (e.g., Gender and Race independently),

but risks neglect of mitigating intersectional group bias. For example, black women

(frequently at the bottom of r1, r2 and r4) may not receive fair treatment in the
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consensus ranking. Complicating matters further, individual protected attributes are

often independently protected from discrimination via labor laws [21] and civil rights

legislation [52, 5, 26]. Thus, if the committee were to achieve intersectional fairness,

it is unclear if this would also provide the necessary fair treatment of Gender and

Race groups?

Most importantly, the committee is obligated to certify that their final ranking

is bias free, that may require a consensus ranking that is fairer than any of the

individual rankings. The above challenges demand a computational strategy capable

of supporting the committee in achieving the fair treatment across multiple protected

attributes while also reflecting committee preferences in the fair consensus.

1.3 State-of-the-Art and Its Limitations.

Recent work addressing group fairness with multiple protected attributes focused

exclusively on classification and prediction tasks [32, 24, 29]. Prior work on group

fairness for (single) rankings has addressed only one single facet of fairness, either

only one protected attribute [57, 38, 7, 25, 59] or only the intersection of attributes

[56]. Further, in most cases only the restricted case was studied, where this single

protected attribute is limited to be binary – i.e., only two groups [51, 57, 7, 37, 38].

Numerous algorithmic strategies exist for combining base rankings into a good

consensus ranking [33, 2, 15, 20, 42] – a task known to be NP-hard in general [2, 20].

However, all but one do not consider fairness. The exception is the recent work

by Kuhlman and Rundensteiner [37] on fair rank aggregation, which is limited to

providing fair consensus rankings only for the restricted case when there is one

binary protected attribute. With this restriction, Race would have to be encoded

as a binary value, such as {white, non-white} as opposed to any number of racial

categories; while all other protected attributes such as Gender would have to be
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disregarded.

1.4 Proposed Approach.

In this work, I formulate and then study the problem of multi-attribute fair consensus

ranking, namely MFCR, in which we aim to create a fair consensus ranking from a

set of base rankings over candidates defined by multiple and multi-valued protected

attributes. The MFCR problem seeks to satisfy dual criteria – (1.) that all protected

attributes and their intersection satisfy a desired level of group fairness and (2.)

that the consensus ranking represents the preferences of rankers as expressed by the

base rankings. I formulate the preference criteria of the MFCR problem through

a new measure called Pairwise Disagreement loss, which allows me to quantify the

preferences of rankers not represented in the consensus ranking. Ioperationalize the

group fairness criteria of the MFCR problem through interpretable novel fairness

criteria we propose called Multiple Attribute and Intersectional Rank group fairness

(or short, MANI-RANK ).

Our formulation of MANI-Rank fairness corresponds to an interpretable unified

notion of fairness for both the protected attributes and their intersection. Further,

this innovation empowers our family of proposed MFCR algorithms to tune the

degree of fairness in the consensus ranking via a single parameter. Thus, our MFCR

algorithms achieve the desired level of fairness even among base rankings that may

be deeply unfair. More precisely, our optimal MFCR algorithm called Fair-Kemeny

elegantly leverages our proposed formulation of MANI-Rank as constraints on the

exact Kemeny consensus ranking [33]. We further design a series of polynomial-time

MFCR solutions based on the efficient consensus generation methods Copeland [16],

Schulze [50], and Borda [9].

We conduct a comprehensive experimental study comparing our proposed MFCR
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solutions against a rich variety of alternate consensus ranking strategies from the

literature (both fairness-unaware and those that we make fairness-aware). We

demonstrate that our solutions are consistently superior for various agreement and

fairness conditions. Our experiments also demonstrate the scalability of our proposed

methods for large consensus generation problems. Lastly, we showcase our MFCR

solutions in removing bias in a real-world case study involving student rankings for

merit scholarships [35].

1.5 Contributions.

My contributions include the following:

• I formulate open multi-attribute fair consensus ranking (MFCR), unifying

the competing objectives of bias mitigation and preference representation by

adopting a unified pairwise candidate disagreement model for both.

• I design the MANI-Rank group fairness criteria, that for the first time inter-

pretably captures both protected attribute and intersectional group fairness for

rankings over candidates with multiple protected attributes.

• I develop a series of algorithms from MFCR-optimal Fair-Kemeny to polynomial-

time Fair-Copeland, Fair-Schulze, and Fair-Borda for efficiently solving the

open problem of multi-attribute fair consensus ranking.

• My extensive experimental study demonstrates both the efficacy and efficiency

of our algorithms, along with the ability to produce real-world fair consensus

rankings. I illustrate that only the proposed methodology achieves both

group fairness and preference representation over a vast spectrum of consensus

problems.
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𝒓𝟏 𝒓𝟐 𝒓𝟑 𝒓𝟒

Admissions Committee Rankings

𝑪𝒐𝒏𝒔𝒆𝒏𝒔𝒖𝒔
Man Non-Binary Woman

Gender
Man Non-Binary Woman

Gender
Man Non-Binary Woman

Gender
Man Non-Binary Woman

Gender
AlaskaNat Asian Black NatHawaii White

Race
AlaskaNat Asian Black NatHawaii White

Race
AlaskaNat Asian Black NatHawaii White

Race
AlaskaNat Asian Black NatHawaii White

Race

Protected Attribute Legend

Race

Gender

AlaskaNat Asian Black NatHawaii White
Race

Man Non−Binary Woman
Gender

Figure 1.1: Admissions committee example: 4 base ranking by four alternate com-
mittee members over 45 candidates with protected attributes Gender and Race to
be aggregated into a ’fair’ consensus ranking.
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Chapter 2

Multi-attribute Fair Consensus Ranking Prob-

lem

2.1 Preliminaries

Protected Attributes. In the problem setting, I are given a database X of n

candidates, xi ∈ X. I assume that each candidate is described by attributes including

several categorical protected attributes, such as, gender, race, nationality, or age. The

set of protected attributes is denoted by P = {p1, ..., pq}, with q protected attributes.

Each protected attribute, say pk, draws values from a domain of values dom(pk)

= {vk1 , ..., vkq}, with the domain size denoted by |dom(pk)|, or, in short, |pk|. For

instance, the domain of the k-th protected attribute Gender is composed of the three

values Man,Woman,Non− binary.

The protected attributes P combined in a Cartesian product Inter = p1 × ...× pq

forms what I call an intersection [17]. The cardinality of the intersection, i.e., the

number of all its possible value combinations, is |Inter| = |p1| ∗ ... ∗ |pq|. I denote

the value of candidate xi’s k-th protected attribute by pk(xi) and their intersection

value as Inter(xi).
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For each value vkj of a protected attribute pk, there is a protected attribute group

composed of all candidates xi ∈ X who all have the same value vkj for the protected

attribute pk.

Definition 1 (Protected Attribute Group) Given a candidate database X and a

value vkj for a protected attribute pk, the protected attribute group for value vkj is:

G(pk:vkj )
= {xi ∈ X : pk(xi) = vkj .}

For brevity, I refer to the protected attribute group Gpk:vkj
by G(k:j), when possible

without ambiguity. For instance, G(Gender:Woman) denotes the group of all women in

X. As candidates in X are defined by their intersectional identity, an intersectional

group then corresponds to all candidates xi ∈ X who share the same values across

all protected attributes.

Definition 2 (Intersectional Group) Given a candidate database X and values

v1j , v
2
j , ..., v

q
j for protected attributes set P, the intersectional group for values

v1j , v
2
j , ..., v

q
j is:

InterG(p1:v1j ),...,(p
q :vqj )

=

{xi ∈ X : (p1(xi) = v1j )AND...AND(pq(xi) = vqj )}.

For brevity, a group of candidates in X sharing an intersection value, the j-th

intersection value, is denoted InterGj.

Notion of Group Fairness.

In this work, I aim to achieve the group fairness notion of statistical parity

[19]. First proposed in binary classification [19], and more recently the focus of fair

learning-to-rank methods for a binary protected attribute [38, 51, 57, 59], statistical

parity is a requirement stipulating candidates must receive an equal proportion of
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the positive outcome regardless of their group membership in a protected attribute.

Definition 3 (Statistical Parity) Given a dataset X of candidates sharing different

values of protected attribute p, and a binary classifier Ŷ with positive outcome Ŷ = 1.

The predictions of Ŷ are fair with respect to p if candidates with different values of p

have a Prob(Ŷ = 1) directly proportional to their share of X.

Base Rankings Model User Preferences. Our problem contains m rankers −

where rankers (human, algorithmic, or some combination thereof) express preferences

over the database X of candidates. Each ranker’s preferences over X are expressed via

a ranking. A ranking is a strictly ordered permutation π = [x1 ≺ x2 ≺ xi ≺ ... ≺ xn]

over all candidates in X. Here xi ≺π xj implies candidate xi appears higher in

the ranking π than xj, where 1 is the top or best ordinal rank position and n the

least desirable. The collection of all possible rankings over the database of X of

n candidates, denoted Sn, corresponds to the set of all possible permutations of n

candidates. The m rankings produced by the m rankers creates a set R ⊆ Sn, which

I refer to as base rankings.

Consensus Ranking. From the base rankings R, I wish to generate a ranking that

represents the preferences of the rankers, namely, a consensus ranking. A consensus

ranking πC is the ranking closest to the set of base rankings R, such that a distance

function dist is minimized. Finding a consensus ranking corresponds to traditional

rank aggregation task [11].

Definition 4 (Consensus Ranking) Thus, a consensus ranking πC from a set of

base rankings ri ∈ R is defined by:

πC = argmin
π∈Sn

1

|R|
∑
ri∈R

dist(π, ri). (2.1)

Multi-attribute Fair Consensus Ranking (MFCR). My problem of creating a
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fair consensus ranking from many rankers’ preferences over candidates defined by

multiple and multi-valued protected attributes has two components. The fairness

component aims to treat all candidates equally regardless of group membership in

protected groups (Definition 1) or intersectional groups (Definition 2). In order for

the fairness criteria of our problem to be meaningful in practice (i.e, in the form of

targets such as the "80%" rule championed by US Equal Employment Opportunity

Commission (EEOC) [14]), I define "fair" as an application-specified desired level of

fairness in the consensus ranking.

In Section 2.2, I propose novel group fairness criteria which I integrate into the

MFCR problem (Definition 11) as a concrete target (i.e, the application can select a

proximity to perfect statistical parity [20]). Thus, the MFCR problem encompasses

the creation of consensus rankings that may need to be fairer than the fairest base

ranking.

The preference representation component of our problem ensures that all rankers

see their preferences reflected in the fair consensus ranking in as much as is possible,

and thus they can be expected to accept the consensus ranking. I note that even

inside biased base rankings critical preference information is encoded, such as the

orderings of candidates within the same group. Thus in Section 2.3, I propose a new

measure to quantify the preferences of the base rankings R that are not represented

in the fair consensus ranking, called PD loss. I integrate this measure into the

MFCR problem (Definition 11) as criteria to be minimized in the generation of a fair

consensus ranking. Doing so ensures that a fair consensus ranking does not prioritize

certain rankers above others.
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2.2 Proposed Group Fairness Criteria for Multi-attribute Fair

Consensus Ranking (MFCR)

Propose Group Positive Outcome Metric. To operationalize the group fairness

component of our problem (Section 2.1), I design a measure for capturing how fairly

a group is being ranked. Our insight here is to define fair treatment of a group via a

constant value, thus making the interpretation across group sizes comparable.

This allows us to define statistical parity (Definition 3) based on all groups

having this same value, thus formulating group fairness for multiple and multi-valued

protected attributes into a single easy-to-understand measure.

For many applications, the entire ranking matters − bottom ranked candidates

may lose out on consequential outcomes such as funding, resource and labor divisions,

or decreased scholarships, if they were placed even somewhat lower. To capture how

a group is treated though a ranking I utilize pairwise comparisons of candidates.

Intuitively, the more pairs a candidate is favored in, the higher up in the ranking the

candidate appears. Any ranking π over n candidates can be decomposed into pairs

of candidates (xi, xj) where xi ≺π xj. The total number of pairs in a ranking over a

database X of n candidates is:

ω(X) = (n(n− 1))/2. (2.2)

As statistical parity requires groups receive an equal proportion of the positive outcome

[19], I cast positive outcome as being favored in a mixed pair − where mixed refers

to candidates in a pair associated with two distinct protected groups according to

protected or intersection attributes. For instance, a pair comparing two woman

candidates is not a mixed pair, while a pair with a man and woman is a mixed pair.
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I denote the number of mixed pairs for a group G (where G is a protected attribute

group Gk:j or intersectional group InterGj) in a ranking over |X| candidates with

|G| ≤ |X| as:

ωM(G, π) = |G|(|X| − |G|). (2.3)

The total number of mixed pairs for a protected attribute pk or intersection Inter in

a ranking over |X| candidates is:

ωM(X, π) = ω(X, π)−
∑

G∗:i∈X

ω(G∗:i, π), (2.4)

where ∗ = k or ∗ = inter for the respective attribute.

I design our measure of positive outcome allocation, called a group’s Favored Pair

Representation (FPR) score.

Definition 4 (Favored Pair Representation) The FPR for a ranking π over candidate

database X for a group of candidates G ⊂ X, where G is either Gk:j or InterGj, is:

FPRG(π) =
∑
xi∈G

∑
xl /∈G

countpairs(xi ≺ xl)

ωM(G, π)
.

One critical property of this FPR score is that it is easy to explain and interpret.

It ranges from 0 to 1. When FPR = 0, the group is entirely at the bottom of the

ranking. When FPR = 1, the group is entirely at the top of the ranking. By design,

when FPR = 1/2, the group receives fair treatment in the ranking, i.e., a directly

proportional share of favored rank positions.

Next, I assure that our FPR measure handles groups defined by multi-valued

attributes. For that, I put forth that when the attribute has multiple values, I must

divide by the number of mixed pairs containing that specified group (Equation (2.3))

as opposed to the total number of mixed pairs in the ranking (Equation (2.4)). Our
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design unlike prior work [38, 37],guarantees the critical property of the FPR measure

that 1/2 is a fair positive outcome allocation even for multi-valued attributes groups.

I observe that the FPR measure allows us to compare the fair treatments of

groups of different sizes purely based on their FPR scores. Better yet, when all

groups receive a proportional share of the positive outcome (i.e, FPR = .5) then all

groups receive an equal proportion of the positive outcome, thus satisfying statistical

parity. Thus, the FPR metric elegantly allows us to check for perfect statistical

parity simply by having an FPR score of 0.5 for all groups.

Proposed Unified Multi-Attribute Group Fairness Criteria. I now propose

our formal definition of the group fairness criteria of our MFCR problem. Our key

design choice is to specify group fairness at the granularity of the attribute − as

opposed to fairness at the group level. In this way, I provide the ability to tune the

degree of fairness in every protected attribute and in the intersection. Intentionally, I

do not design criteria per group. As in the multiple protected attribute setting, even

a handful of attributes and their intersection can create a huge number of groups

that otherwise would have to be individually parameterized and interpreted.

For the group fairness property of MFCR, I introduce a new measure to quantify

statistical parity for protected attributes pk as described below.

Definition 5 (Attribute Rank Parity) The Attribute Rank Parity (ARP) measure

for the k-th protected attribute pk in ranking π over candidate database X is:

ARPpk(π) = argmax
∀ (Gk:i,Gk:j)∈X

|FPRGk:i
(π)− FPRGk:j

(π)|

This ARP measure simplifies the task of tuning the degree of fairness for a protected

attribute. Namely, when the ARPpk = 1, then the protected attribute is maximally

far from statistical parity. Meaning, one group corresponding to a value in the
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dom(pk) is entirely at the top of the ranking, while a second group is entirely at the

bottom of the ranking. When ARPpk = 0, perfect statistical parity is achieved for

attribute pk.

Similarly, I now formulate intersectional fairness, which corresponds to criteria ii

of our problem.

Definition 6 (Intersectional Rank Parity) The Intersection Rank Parity (IRP)

measure for the intersection Inter determined from the set of protected attributes P

in ranking π over candidate database X is:

IRP (π) =

argmax
∀(InterGi,InterGj) ∈ X

|FPRInterGi
(π)− FPRInterGj

(π)|

I now have two easy-to-use and interpretable measures ARP and IRP that

directly map to the fair treatment of protected attribute groups (Definition 1) and

intersectional groups (Definition 2) in the MFCR problem. I unify these objectives

into one fairness notion, which I call Multiple Attribute and Intersectional Rank

(MANI-Rank) group fairness. MANI-Rank is applicable to consensus and to single

rankings alike over candidate databases with multiple protected attributes.

I introduce the threshold parameter ∆ for fine-tuning a desired degree of fairness.

∆ represents the desired (or required) proximity to statistical parity. Equation (2.5)

below models this for every protected attribute and Equation (2.6) for the intersection.

This is carefully designed to be easy to interpret, namely, when ∆ is close to 0, the

ranking approaches statistical parity for all protected attributes and intersection.

Definition 7 (Multiple Attribute and Intersection Rank − MANI-Rank) MANI-

Rank Group Fairness for rankings of candidates with multiple protected attributes

is defined as:

ARPpk(π) ≤ ∆ (∀ pk ∈ P) (2.5)
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IRP (π) ≤ ∆ (2.6)

Per design, the MANI-Rank fairness criteria result in perfect protected attribute

and intersectional statistical parity, when ∆ = 0. This follows from definitions of

ARPpk and IRP .

Customizing Group Fairness. In most real-world settings, equal degrees of

fairness for protected attributes and their intersection is desirable, which I model by

choosing the same degree of fairness threshold ∆ in Definition 7. However, our MANI-

Rank criteria allows for applications to set up different thresholds tailored to each

protected attribute (∆pk) or the intersection (∆Inter). Additionally, Definition 7 can

be modified to handle alternate notions of intersection by adjusting the intersectional

groups (Definition 2) to be a desired subset of protected attributes (as opposed to

the combination of all protected attributes). Likewise, Definition 7 can be extended

to support specific subsets of protected attribute combinations by adding to Definition

7 an additional equation for every desired subset of protected attributes, such as

IRPsubsetsofP(π) ≤ ∆. I note, as evidenced by our empirical study in Section 4.1,

in order for a protected attribute or intersection to be guaranteed protected at a

desired level of fairness it must be constrained explicitly.

2.3 Proposed Representation Criteria for Multi-Attribute Fair

Rank Aggregation

I also propose to model the degree to which the consensus ranking captures the pref-

erences of all the rankers corresponding to the preference representation component

of MFCR. For this, I measure the distance between the base rankings R and the fair

consensus ranking πC∗. I intentionally select pairwise disagreements as a distance
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measure because this allows us to interpretably measure how many preferences, i.e.,

candidates comparisons, are not met in the fair consensus ranking. I propose to do

this by summing the Kendall Tau [34] distances between πC∗ and every base ranking.

The Kendall Tau distance in Definition 8 is a distance measure between rankings. It

counts the number of pairs in one ranking that would need to be inverted (flipped)

to create the second ranking, thereby counting pairwise disagreements between two

rankings.

Definition 8 (Kendall Tau) Given two rankings π1, π2 ∈ Sn, the Kendall Tau

distance between them is:

distKT (π1, π2) =

|{{xi, xj} ∈ X : xi ≺π1 xj and xj ≺π2 xi}|.

Then I normalize the pairwise disagreement count by the total number of candidate

pairs represented in the base rankings R. This leads us to Definition 9 of our proposed

preference representation metric Pairwise Disagreement loss (PD loss). Definition

9 (Pairwise Disagreement Loss) Given a set of base rankings R and a consensus

ranking πC, the pairwise disagreement loss (PD loss) between πc and R is:

PD Loss(R, πC) =

∑
ri∈R distKT (π

C , ri)

ω(X, πC) ∗ |R|

I now have a measure that expresses how many preferences of rankers are not captured

in a fair consensus ranking. By design, PD loss is between the values of 0 and 1, with

0 offering the interpretation that every pairwise preference in the base rankings is

represented in the fair consensus ranking (i.e., all the base rankings are the same and

match exactly the fair consensus ranking) and PD lossis 1 when no single pairwise

preference in the base rankings is represented in the fair consensus ranking.
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2.4 MFCR Problem: Multi-Attribute Fair Consensus Ranking

Pulling together our proposed group fairness and preference representation models, I

now are ready to formally characterize our fair consensus ranking problem.

Definition 10 (Multi-Attribute Fair Consensus Ranking - MFCR ) Given a database

of candidates X defined by multiple and multi-valued protected attributes P, a set

of base rankings R, and proximity to statistical parity parameter ∆, the multi-

attribute fair consensus ranking (MFCR) problem is to create a consensus

ranking πC∗, that meets two criteria:

MFCR group-fair criteria:

• satisfies MANI-Rank group fairness (Definition 7) subject to parameter ∆,

and,

MFCR pref criteria:

• minimizes PD loss (Definition 9) between R and πC∗.

Our problem formulation emphasizes the dual ability to specify a desired level of group

fairness in the consensus ranking while minimizing unrepresented ranker preferences

in the consensus ranking. I note that, by design, this allows for applications to create

a consensus ranking fairer than all the base rankings by setting a low ∆ parameter.

MFCR Applied to Motivation Admissions Example. Returning to the

task faced by the Admissions Committee from Section 1.1, I demonstrate how the

committee can apply the MFCR problem to create a fair consensus ranking of

applicant candidates. Figure 2.1 illustrates the consensus ranking generated for

admissions decisions with and without MANI-Rank group fairness. The ranking 2.1a

is determined from premininent consensus ranking method, Kemeny [33]. I see that

it exhibits significant bias with respect to Gender as men are clustered at the top.
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Figure 2.1: Admissions committee example: (a) Kemeny consensus ranking and (b)
MANI-Rank consensus ranking

Likewise, the intersectional bias is substantial due to white men being significantly

advantaged in the ranking. In contrast, ranking 2.1b, generated with MANI-Rank

∆ = .1, has ARP and IRP scores nearly at perfect statistical parity - indicating

the promise of my proposed formulation to remove Gender, Race and intersectional

bias. Apply the MFCR framework helps the admissions committee to create a fair

consensus ranking; as otherwise biases present in base rankings would be reflected in

the final applicant ranking.
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Chapter 3

Algorithms For Solving Multi-attribute Fair

Consensus Ranking

I propose a family of algorithms for solving the MFCR problem. For specific

algorithms, I utilize an a precedence matrix representation W of the base rankings R

that captures all pairwise relationships in R. Put differently, W ’s entries represent

pairwise disagreements.

Definition 11 (Precedence Matrix) Given a database X = {x1, x2, ..., xn} of candi-

dates, and set of base rankings R, the precedence matrix W = [Wxa,xb
]a,b=1,...,n is

defined by :

Wxa,xb
=

∑
ri∈R

1(xb ≺ri xa)

where 1 is the indicator function, namely, equal to 1 when xb ≺ri xa, 0 otherwise.

3.1 Fair-Kemeny Strategy for Solving My MFCR Problem

I design a method called Fair-Kemeny which optimally satisfies all criteria of my

MFCR problem.

Kemeny corresponds to a specific instantiation of finding a consensus ranking,
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where the pairwise disagreement metric, the Kendall-Tau distance, is minimized

between the consensus πC and base rankings R. Kemeny is a Condorcet [22]

method. Consensus ranking methods, such as Kemeny [33], that satisfy the Condorcet

criteria, order candidates by how preferred (using head-to-head pairwise candidate

comparisons) there are amongst rankers. Thus Condorcet methods naturally align

with my MFCR pref criteria. By incorporating MANI-Rank as a set of constraints, I

can leverage the exact Kemeny formulation − proven to return the Kemeny optimal

consensus ranking [2, 15, 49]. Fair-Kemeny models MANI-Rank group fairness as

constraints in the exact Kemeny Integer Program to satisfying MFCR group-fair

criteria optimally.

Algorithm 1 Fair-Kemeny

Minimize
∑

∀(xa,xb)∈X

Y(xa,xb)W(xa,xb) (3.1)

subject to: Y(xa,xb) ∈ {0, 1} (3.2)

Yxa,xb
+ Yxb,xa = 1,∀xa, xb (3.3)

Yxa,xb
+ Yxb,xc + Yxc,xa ≤ 2, ∀xa, xb, xc (3.4)

|
∑

xa∈Gk:i

∑
xb /∈Gk:i

(
1

ωm(Gk:i)
Y(xa,xb))−∑

xc∈Gk:j

∑
xd /∈Gk:j

(
1

ωm(Gk:i)
Y(xc,xd))| ≤ ∆,

∀(Gk:i, Gk:j) ∈ X, ∀ pk ∈ P

(3.5)

|
∑

xa∈InterGi

∑
xb /∈InterGi

(
1

ωm(InterGi)
Y(xa,xb))−∑

xc∈InterGj

∑
xd /∈InterGj

(
1

ωm(InterGi)
Y(xc,xd))| ≤ ∆,

∀(InterGi, InterGj) ∈ X

(3.6)
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In the formulation of Fair-Kemeny above, matrix Y specifies the pairwise order

of candidates in the consensus ranking πC∗ and matrix W represents the precedence

matrix from Definition 11. The objective function in Equation (3.1) formulates the

Kemeny criteria, minimizing the number of pairwise disagreements between base

rankings R and πC∗.

As shown in Conitzer et al. [15], the first three constraints, Equations (3.2),

(3.3), (3.4) enforce a valid ranking (no cycles, not multiple candidates in the same

position, or no invalid pairwise orderings). Next, my formulation of MANI-Rank

group fairness is modeled by the constraints in Equation (3.5) and Equation (3.6)

which enforces group fairness for every protected attribute as well as intersectional

group fairness, respectively. These constraints leverage my formulation of ARP

(Definition 5) and IRP (Definition 6) constraining the maximum absolute difference

in FPR scores for all groups representing values in the dom(pk) for each protected

attribute and in dom(Inter).

Complexity of Fair-Kemeny Solution. General (fairness unaware) Kemeny is

an NP-hard problem [33, 20], though tractable in smaller candidate databases. My

Fair-Kemeny method inherits this complexity. My MANI-Rank criteria formulated

via Equation (11) adds
(|dom(pk)|

2

)
and Equation (12) adds

(|dom(Inter)|
2

)
constraints.

Yet, my empirical study in Section 4.4 confirms that in practice the runtime of

Fair-Kemeny is not substantially greater than that of the traditional Kemeny, and

both can handle thousands of base rankings.

3.2 Fair-Copeland, Fair-Schulze, and Fair-Borda

Aiming to handle larger candidates databases than Fair-Kemeny or Kemeny, I now

design a series of algorithms utilizing polynomial time consensus generation methods,

They all utilize a novel pairwise bias mitigation algorithm I propose, called Make-
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MR-Fair, specifically designed to efficiently achieve MFCR group-fair criteria while

minimizing increases PD loss caused by introducing fairness.

Make-MR-Fair takes as input a consensus ranking πc to be corrected. Initially, it

determines the FPR and IRP scores of the protected attributes and intersection,

checking if MFCR group-fair criteria is satisfied with respect to the ∆ semantics.

When this condition is not true, the algorithm determines the attribute (either a

protected attribute or the intersection) that has the highest ARP or IRP score. This

attribute is now “the attribute to correct". By honing in on the least fair attribute I

aim to minimize pairwise swaps - thus minimizing PD loss. Within the attribute to

correct, the group with the highest and lowest FPR score is said to be Ghighest and

Glowest, respectively.

Within the group Ghighest, the candidate lowest in the ranking is selected as xGh
.

Then the ordered mixed pairs of xGh
are searched to determine the first unfavored

candidate, xGl
, in the list of mixed pairs which belong to Glowest. If there is no

xGl
candidate then the xGh

candidate is altered to be the first candidate in Ghighest

higher than the original xGh
candidate. Iintentionally choose to redefine the xGh

candidate as opposed to xGl
. The reason is to enforce re-positioning candidates into

positions at the top of the ranking, making fewer, but more impactful swaps. This

helps to minimize the increase in PD loss caused by this fairness mitigation process.

When the pair xGh
≺π∗ xGl

is found, the two candidates are swapped – resulting in

xGl
≺πC xGh

. Each pair swap is guaranteed to lower the FPR score of Ghighest and

increase the FPR score of Glowest, thus increasing proximity to statistical parity for

the attribute to correct. The algorithm terminates once all protected attributes and

the intersection are below ∆, and returns the corrected ranking πC as fair consensus

ranking πC∗.

Complexity of Make-MR-Fair Algorithm. Make-MR-Fair determines the ARP
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Algorithm 2 Make-MR-Fair
Input: consensus ranking πC , candidate database X, thresholds ∆
Output: fair consensus ranking πC∗

for each pk ∈ P and inter, determine ARP scores and IRP scores
while all ARP scores and IRP scores >∆ do

atr = pk ∈ P or Inter with max IRP/ARP // entity to correct
Ghighest = group of atr with max FPR score
Glowest = group of atr with min FPR score
xGh

= lowest xi ∈ Ghighest

if (xGh
≺ x′) ∈ ωm(xGh

) s.t x′is the highest x′ ∈ Glowest then
xGl

= is the highest x′ ∈ Glowest

/* find next highest xGh
*/

else
xGh

= next lowest xi ∈ Ghighest s.t. (xi ≺ x′) ∈ωm(xi) s.t x′ is the highest
x′ ∈ Glowest

xGl
= is the highest x′ ∈ Glowest

swap xGl
and xGh

πC∗ = πC

return πC∗

scores for all protected attributes and the IRP score. Each ARP and IRP score is

calculated with one traversal of πC to determine the FPR scores that ARP and IRP

are calculated from. Thus each score computation costs O(n) work. This work is done

before each swap. In the worst case, the algorithm would flip ω(X) = n ∗ (n− 1)/2

pairs. Thus, assuming |P| protected attributes and one intersection, the resulting

worst case runtime is O(n2 ∗ (|P|+ 1) ∗ n). Additionally, the runtime can be reduced

by adjusting the ∆ parameter as will be empirically illustrated in Section 4.4.

Fair-Copeland Solution for MFRA. I create Fair-Copeland based on Copeland

[16], because the later is the fastest (polynomial) pairwise consensus rank generation

method [49]. Copeland [16] creates a consensus ranking that ranks candidates in

descending order by the number of pairwise contests a candidate has won (a tie is

considered a "win" for each candidate). Intuitively, this can be understood through
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my precedence matrix W , where the number of pairwise contests candidate xb wins is∑
xa∈X 1(Wxa,xb

≥ Wxb,xa). My Fair-Copeland method satisfies MFCR pref criteria

by producing the Copeland consensus, ordering candidates by descending number of

wins in pairwise contests, then correcting to satisfy MFCR group-fair criteria with

∆ using Make-MR-Fair. The algorithm’s pseudocode is provided in the supplement

[13].

Complexity Of Fair-Copeland. Fair-Copeland takes O(n2 ∗ |R|) to create the

precedence matrix W , O(n2) to check W to determine the winners of pairwise

contests, O(nlogn) time to sort the candidates by the number of contests won, and in

the worst case Make-MR-Fair takes O(n2 ∗ (|P|+ 1) ∗ n) to fairly reorder candidates.

Fair-Schulze Solution for MFCR . I introduce Fair-Schulze as it is polynomial-

time, Condorecet, and pairwise like Fair-Copeland, and in addition its fairness-

unaware method is extremely popular in practice. Schulze is used to determine

multi-winner elections in over 100 organizations worldwide (such as Wikimedia

Foundation to elect a board of Trustees, Political Parties, Gentoo, Ubuntu, and the

Debian Foundation, see [50] for a full list). The Schulze [50] method generates a

consensus ranking via pairwise comparisons which naturally helps address MFCR

pref criteria.

The Shulze rank aggregation method first determines the precedence matrix

W . Then W is treated as a directed graph with weights representing the pairwise

agreement counts between every pair of candidates. Next, the algorithm computes

the strongest paths between pairs of candidates by means of a variant of the Floyd

Warshall algorithm [50, 18]. Here the strength of a path between candidates is the

strength of its lowest weight edge. Schulze then orders candidates by decreasing

strength of their strongest paths. My Fair-Schulzemethod satisfies MFCR pref criteria

by producing the Schulze consensus ranking, ordering candidates by the strength of
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path - thereby optimizing for pairwise agreement, then correcting it to satisfy MFCR

group-fair criteria with ∆ desired fairness using Make-MR-Fair. The algorithm’s

pseudocode is provided in the supplement [13].

Fair-Schulze Complexity. Fair-Schulze takes O(n2 ∗ |R|) to create the precedence

matrix W, O(n3) to compute strongest paths to create a Schulze ranking [50, 18],

O(nlogn) time to sort the candidates into correct order, and in the worst case

O(n2 ∗ (|P|+ 1) ∗ n) to fairly reorder candidates.

Fair-Borda Solution for MFCR. I create Fair-Borda specifically as an MFCR

solution for large consensus ranking problems In a comparative study of Kemeny

consensus ranking generation, Borda [9] was shown to be the fastest Kemeny approxi-

mation method [2]. Thus it is an ideal strategy for tackling my MFCR problem. More

precisely, Borda [9] is a positional rank aggregation function that ranks candidates in

descending order based on a total number of points allotted to each candidate. The

total points allotted to candidate xi correspond to the total number of candidates

ranked lower than xi in all the base rankings. My Fair-Borda method utilizes Borda

to efficiently aggregate the base rankings with minimal error by minimizing pairwise

disagreement with the base rankings. Thus, it satisfies the MFCR pref criteria crite-

ria. Next, the Make-MR-Fair subroutine is applied to the resulting Borda ranking

so that it satisfies MFCR group-fair criteria with parameter ∆. The algorithm’s

pseudocode is found in the supplement [13].

Complexity of Fair-Borda. Fair-Borda takes O(n ∗ R) time to determine the

points per candidates, O(nlogn) time to order the candidates by total points, and

O(n2 ∗ (|P|+ 1) ∗ n) to fairly reorder candidates.
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3.3 Price of Fairness Measure for Fair Rank Aggregation

Satisfying MFCR group-fair criteria incurs a toll in terms of MFCR pref criteria.

Intuitively, this toll is greatest when the base rankings R have a low degree of

fairness and the ∆ parameter requires a high degree of fairness. Thus, I now design

the concept of Price of Fairness (PoF ) as a metric to quantify the cost of MFCR

group-fair criteria as an increase in PD loss from the consensus ranking satisfying

only MFCR pref criteria. I compute PoF as the difference in the PD loss of the fair

consensus ranking πC∗ and PD loss of the fairness unaware consensus ranking πC :

PoF = PD Loss(R, πC∗)− PD Loss(R, πC) (3.7)

I note that PoF is always ≥ 0 as the fair consensus ranking at best represents the

preferences of the base rankings equally as I ll as the fairness-unaware consensus

ranking. As is true of the fairness and utility tradeoff in general [51, 57], I note here

and observe in my experiments that PoF for the MFCR problem can be significant.

Table 3.1: Mallows datasets: |R| = 150 base rankings over 90 candidates, with 6 candi-
dates in each of 15 intersectional groups from dom(Race) = 5 and dom(Gender) = 3

Mallows Dataset Fairness metrics on modal ranking
ARPGender ARPRace IRP

Low-Fair 0.70 0.70 1.00
Medium-Fair 0.50 0.50 0.75

High-Fair 0.30 0.30 0.54
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Figure 3.1: Comparing group fairness approaches for Mallows datasets
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Chapter 4

Experimental Evaluation

Experimental Methodology.

I conduct a systematic study of alternate group fairness approaches evaluating

my MFCR methods against baselines under a rich variety of conditions in the base

rankings modeled using the Mallows model [40, 2]. In particular, I analyze how the

degree of consensus and fairness present within the base rankings along with the ∆

parameter affect the PoF of the consensus ranking. I also study the scalability of

myMFCR solutions. I conclude with a case study on student rankings and merit

scholarship [35].

4.1 Studying Alternate Group Fairness Constraints

Datasets. I leverage the Mallows Model [40, 2], a probability distribution over

rankings, as a data generation procedure. Widely used to evaluate consensus ranking

tasks [38, 2, 10], the Mallows Model is an exponential location-spread model, in

which the location is a modal ranking among a set of base rankings, denoted by π′,

and the spread parameter, denoted by θ, is a non-negative number. For a ranking
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Figure 4.1: Evaluating proposed MFCR methods: Low-Fair Dataset from Table 1,
with ∆ = .1

π′ ∈ Sn, the Mallows model is the following probability distribution:

P (π′)θ =
exp(−θ ∗ d(π′, π))

ψ(θ)
(4.1)

where ψ(θ) is the normalization factor that depends on the spread parameter θ, and

has a closed form. Utilizing the Kendall-Tau distance as the distance metric d(π′, π),

the Kemeny consensus ranking corresponds to the maximum likelihood estimator

of the Mallows model [58]. I control the fairness of base rankings by setting the

fairness in the modal ranking, consensus is adjusted via the θ parameter. When

θ = 0 , there is no consensus among the base rankings around the modal ranking π′.

As θ increases, the base rankings gain consensus around the modal ranking π′.

Experimentally Comparing MANI-Rank Criteria with Alternate Group

Fairness Criteria. To evaluate group fairness notions, I compare three alternate

group fairness approaches in rank aggregation with traditional Kenny rank aggrega-

tion (Figure 3.1). As depicted in Figure 3.1, I vary the spread parameter θ to create

four sets of base rankings with different degrees of consensus for each modal ranking.

Group fairness strategies I compare include: only constraining the protected

attributes − my Fair-Kemeny with Equation (3.6) removed, only constraining the

intersection − my Fair-Kemeny with Equation (3.5) removed, and my proposed

Fair-Kemeny. In all cases, I set my desired fairness threshold ∆ = .1 to specify close
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proximity to statistical parity as per Definition 7.

In Figure 3.1, I observe that, under all fairness conditions and consensus scenarios

(θ), the Kemeny fairness unaware aggregation method creates a consensus ranking

with ARP/IRP scores significantly above the desired threshold. The protected

attribute-only approach consistently results in consensus rankings with Gender and

Race at or below the threshold. But it still leaves IRP significantly higher than

desired. The intersection only approach successfully constrains the intersection to the

desired fairness level. But it leaves the ARP of Gender higher than ∆. my proposed

MANI-Rank criteria is the only group fairness approach formulation which ensures

that both the individual and intersection of protected attributes are at or below the

desired level of fairness. Thus, I conclude for a protected attribute or intersection to

be guaranteed protected at a desired level of fairness it must be constrained explicitly.

4.2 Comparison of MFCR Solutions: Fairness and Preference

Representation of Generated Consensus Ranking

To analyze the efficacy of my proposed MFCR solutions in achieving MFCR group-fair

criteria and MFCR pref criteria, I compare my four methods against four baselines

in Figure 4.1. Baselines are (1) traditional Kemeny, (2) Kemeny-Weighted, which

orders the base rankings from least to most fair and weights the fairest ranking by

|R| and the least fair by 1, (3) Pick-Fairest-Perm a variation of Pick-A-Perm [49]

which returns the fairest base ranking, and (4) Correct-Pick-A-Perm which utilizes

Make-MR-Fair to correct the fairest base ranking to satisfy ∆.

Examining Figure 4.1, we see that Kemeny and Kemeny-Weighted perform best

at representing the base rankings. Pick-Fairest-Perm in the case the base rankings

have a high degree of consensus (θ) represents the base rankings as well. However,
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these methods do not achieve my fairness criteria, i.e., they perform the worst at

satisfying MFCR group-fair criteria. While Kemeny does not attempt to incorporate

group fairness, Pick-Fairest-Perm and Kemeny-Weighted aim to incorporate fairness.

They do not succeed as solutions to the MFCR problem - because they do not achieve

a desired level of fairness (∆ parameter). This results in a consensus ranking that

at best represents the fairest ranking in the base set, i.e., Pick-Fairest-Perm indeed

returns the fairest among the base rankings. Also, not surprisingly, Kemeny-Weighted

is not fairer than Pick-Fairest-Perm ("fairer" defined as lower IRP/ARP scores).

The last baseline Correct-Fairest-Perm satisfies MFCR group-fair criteria(due to

the utilization of Make Mani-Rank), but with a significantly higher PD loss. This

indicates it does not represent the base rankings well, making it a poor MFCR

solution.

Next, I examine my proposed methods. It is clear from the ARP and IRP

graphs that all my methods achieve the desired level of fairness (∆ = 0.1), thus

satisfying MFCR group-fair criteria. When examining PD loss, we see Fair-Kemeny

performs best, which intuitively makes sense as it optimally minimizes pairwise

disagreements subject to fairness constraints. Next, in order of decreasing PD lossis

Fair-Copeland, then Fair-Schulze, followed by Fair-Borda. This is also as expected,

as the first two methods are Condorcet methods, and Fair-Borda is not. However,

these polynomial-time algorithms compared to Fair-Kemeny perform comparably

well in representing the base rankings – this is particularly true when there is less

consensus in the base rankings.

4.3 Studying the Price of Fairness

In Figure 4.2, I evaluate the Price of Fairness (PoF ) using the metric from Equation

(3.7). I analyze how the amount of consensus in the base rankings and the ∆
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Figure 4.2: PoF Analysis: Datasets from TABLE 3.1

parameter affect PoF . Utilizing the Fair-Kemeny method, I observe that the fairness

of the modal ranking has the biggest impact on the price of fairness. When the modal

ranking has a higher level of fairness, the level of consensus around that ranking

does not significantly impact the price of fairness. But when the modal ranking

has a very low level of fairness, the degree of consensus (θ) has a larger impact. A

low degree of consensus has the effect of “cancelling out" the fairness in the modal

ranking. Intuitively, a high degree of consensus around a low fairness modal ranking

results in a higher price of fairness.

Next, I examine the effect of the ∆ parameter on PoF . I uncover a steep inverse

linear trend between ∆ and the PoF for my four methods and Correct-Fairest-

Perm on the Low-Fair dataset with θ = 0.6. Across all methods that utilize the ∆

parameter, when ∆ is high, PoF is lower. This is intuitive as when ∆ is small, the

consensus ranking is likely required to be fairer than the base rankings. This in turn

increases the amount of disagreement between the consensus ranking and the base

rankings.
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4.4 MFCR Solutions: Study of Scalability

I evaluate the scalability of all methods presented above. I have implemented my

methods in python and used IBM CPLEX optimization software for Kemeny, Fair-

Kemeny, and Kemeny-Weighted. All experiments were performed on a Windows 10

machine with 32GB of RAM

Scalability in Number of Rankers. In Figure 4.3, I analyze the efficiency of

my proposed methods in handling increasingly large numbers of base rankings. I

create a Mallows model dataset with a modal ranking with ARP (Race) = 0.15,

ARP (Gender) = 0.7, IRP = .55, dom(Race) = 2 and dom(Gender) = 2, I set

(θ = .6), n = 100, and specify a tight fairness requirement with ∆ = .1.

In Figure 4.3, I see that three tiers of methods emerge. The fastest tier includes

Fair-Borda, Pick-Fairest-Perm, and Correct-Pick-A-Perm, while the second is Fair-

Schulze, Fair-Copeland, Fair-Kemeny, and Kemeny. I note that my proposed methods

perform no slower than regular (not-fair) Kemeny. Lastly, Kemeny-Weighted performs

the slowest due to having to order and weight large numbers of base rankings.

Next, I study the scalability of the most efficient method proposed - Fair-Borda

on the same Mallows model dataset as above. In Table 4.1, I see that for tens of

millions of rankings on a Low-Fair modal ranking Fair-Borda creates a fair consensus

ranking in under a minute.

Scalability in Number of Candidates. In contrast to base rankings, large

numbers of candidates is a greater challenge for consensus generation. In Figure 4.4,

I analyze the efficiency of my methods for increasingly large numbers of candidates

and the effect of the ∆ parameter on the execution time. I create a Mallows

model dataset with a modal ranking with ARP (Race) = 0.31, ARP (Gender) =

0.44, IRP = .45,dom(Race) = 2 and dom(Gender) = 2, I set (θ = .6), |R| = 100

33



0

2000

4000

6000

8000

0 5000 10000 15000 20000
|R|: Number Rankings

R
un

ti
m

e 
(s

)

method

(A1) Fair-Kemeny

(A2) Fair-Schulze

(A3) Fair-Borda

(A4) Fair-Copeland

(B1) Kemeny 

(B2) Kemeny-Weighted

(B3) Pick-Fairest-Perm

(B4) Correct-Fairest-Perm

Scalability: Rankings

Figure 4.3: Scalability with an increasing number of base rankings

and experiment with a tight fairness requirement with ∆ = .1 and a looser but

overall fairer than the base rankings ∆ = .33. In Figure 4.4, we see the same tiers of

methods as in Figure 4.3. The optimization methods are the slowest and constrained

by CPLEX’s utilization of the machine’s memory. Though I again note that my Fair-

Kemeny is comparable to Kemeny and both are faster than Kemeny-Weighted. The

optimization methods upper bound the polynomial time ones in order of decreasing

execution time from Fair-Schulze, Fair-Copeland, to Fair-Borda. Fair-Borda performs

the fastest comparable to the inferior Correct-Pick-A-Perm and MFCR group-fair

criteria Pick-Fairest-Perm. We see that a higher ∆ parameter intuitively decreases

the execution time.

Lastly, in Table 4.2, I study the scalability of the most efficient method proposed

- Fair-Borda on the same dataset as the candidate study above. For ∆ = .33, we see

that for tens of thousands of candidates, Fair-Borda creates a fair consensus ranking

in a handful of minutes.
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Table 4.1: Fair-Borda Ranker Scale

|R| Number of Rankings Execution time (s)
1, 000 4.8
10, 000 4.81
100, 000 5.21
1, 000, 000 9.36
10, 000, 000 50.75
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Figure 4.4: Scalability in increasing number of candidates

4.5 Empirical Takeaways

When utilizing my MFCR methods, I recommend Fair-Kemeny for smaller candidate

databases and note that the number of rankings can be reasonably large (thousands).

Next, Fair-Copeland and Fair-Schulze provide nearly comparable performance on

larger candidate databases and number of rankings when fairness requirement is

strict. However, if fairness requirement is looser, I recommend Fair-Copeland for

more efficiency with decreased PoF . If the consensus ranking problem is very large,

Fair-Borda is the best choice with significant speed-up and minimal increase in PoF .
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Table 4.2: Fair-Borda Candidate Scale

|X| Number of Candidates Execution time (s)
1, 000 0.37
10, 000 30.83
20, 000 121.49
30, 000 273.24
40, 000 482.29
50, 000 749.00
100, 000 3007.19

Figure 4.5: Exam Case Study: Attribute values columns (e.g, Men, SubLunch)
indicate FPR scores, and Gender, Race, and Lunch indicate ARP scores.

4.6 Case Study of Student Merit Scholarships

I demonstrate that my MFCR solutions create real-world fair consensus rankings

over students with multiple protected attributes. Entrance exam and test scores

are commonly used as part of admissions decisions or merit scholarship allocations

for educational institutions ranging from magnet schools[1] to graduate admission

[8]. As sociodemographic factors such as student socioeconomic status, race, and

gender can have a large effect on exam outcomes [47, 23, 48], schools and testing

organizations are exploring ways to level the playing field when using exam scores

for admission decisions[31].

I utilized a publicly available dataset [35] modeling student exam scores for math,

reading and writing exams. The data contained three protected attributes of Gender

(man or woman), Race (5 racial groups) and Lunch (if student received reduced cost

lunches). I utilized the exam scores provided in each subject to create |R| = 3 base
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rankings (ordered by score) over 200 students.

In the table in Figure 4.5, all protected attributes have an ARP ≥ .2 (with higher

IRP scores) across all base rankings – indicating statistical parity is far from being

achieved. This contrast is particularly stark as we can see students with subsidized

lunches are ranked low, along with NatHawaiian students. Also, there appears to

be a substantial gender imbalance. I create a (fairness-unaware) Kemeny consensus

ranking, and observe that the biases in the base rankings are unfortunately also

reflected in the consensus ranking. Thus, if the consensus ranking was used to

determine merit scholarships then the students who receive subsidized lunch would

receive almost three times less aid as the group of students who do not require

subsidized lunches. The group of men would also receive more merit aid then women.

NatHawaiian students would received almost half the amount of aid as Asian and

Black students.

I then compare this to utilizing my four proposed MFCR solutions, employing

the MANI-Rank criteria and setting ∆ = .05 to ensure almost perfect statistical

parity across all protected attributes and their intersection. All methods generate a

de-biased consensus ranking, with ARP ≤ .05 and IRP ≤ .05. This translates to all

groups receiving an extremely close to equal proportion of merit scholarships. The

disparities between merit aid received by the men and women are nearly nonexistent,

and the difference between racial groups is leveled. The severe advantage of students

who do not require subsidized lunch is also removed. As conclusion, utilizing the fair

consensus rankings created by my MFCR solutions ensures certain student groups

are not disadvantaged in the merit aid process.
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Chapter 5

Related Work

Fair Ranking Measures. While the majority of algorithmic fairness work has

concentrated on the task of binary classification, several notions of group fairness

have been defined for (single) rankings. The most widely adopted notion of group

fairness in rankings is statistical parity [57, 38, 25, 7, 43, 59, 37, 30]. Most works

focus on measuring and enforcing statistical parity between two groups defined by a

single binary protected attribute [38, 51, 57, 59, 7]. The pairwise fairness metrics for

a single protected attribute of binary groups of [38] inspire my metrics, I propose

metrics extending the pairwise approach to multi-valued attributes and for multiple

attributes.

The recent works of Narasimhan et al. [43] and Geyik et al. [25] propose group

fairness metrics for a single multi-valued protected attribute of multiple values.

Narasimhan et al. [43] introduce a pairwise accuracy statistical parity notion for

ranking and regression models. My pairwise statistical parity notion differs by

counting pairs directly as consensus ranking is not performed from a model whose

accuracy I can constrain. Geyik et al. [25] formulate group fairness by casting the

group positive outcome as inclusion in the top-k. As consensus generation combines

multiple whole rankings, simply setting k = n would not capture group fairness for a
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consensus ranking.

Multiple Protected Attributes. Recent work addressing group fairness in multiple

protected attribute settings is entirely focused on the binary classification task.

Kearns et al. [32] introduced procedures for auditing and constructing classifiers

subject to group fairness notions where groups could be defined as combinations of

protected attributes. Hebert-Johnson at al. [29] proposed an approach which ensures

accurate predictions on all combinations of groups formed from protected attributes.

Foulds et al. [24] proposed differential fairness; an intersectional fairness notion, for

ensuring group fairness with respect to classification outcome probabilities for all

possible combinations of sub-groups while ensuring differential privacy.

Within the domain of rankings, Yang et al. [55] design algorithms to mitigate

within-group unfairness in the presence of diversity requirements for groups encoded

by multiple protected attributes − Iconsider fairness between groups. Yang et al.

[56] present a counterfactual causal modelling approach to create intersectionally fair

rankings in score-based and learning-to-rank models. While I assume access to the

base rankings, I do not know why they reflect a specific order or how the rankings

would differ based on changes in the protected attributes of candidates. Without

these counterfactual outcomes, causal fairness notions are difficult to deploy.

Rank Aggregation. Rank aggregation originates from the study of ranked ballot

voting methods in Social Choice Theory [3, 33, 11]. Rank aggregation aims to find

the consensus ranking which is the closest to the set of base rankings. This has

been studied in information retrieval [20], machine learning [36], databases [10]

and voting theory [41]. Kemeny rank aggregation, a preeminent rank aggregation

method satisfying several social choice axioms [11], has been applied to a wide set

of applications: MRNA gene rankings [39], teacher evaluations [12], and conference

paper selections [4]. Recent work [37], which introduced the fair rank aggregation
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problem, also leverages Kemeny rank aggregation. However, they assume a single

binary protected attribute. My work instead now handles multi-valued as well as

multiple protected attributes.
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Chapter 6

Conclusion

This work introduces the first solution to the multi-attribute fair consensus ranking

(MFCR) problem. First, I design novel MANI-Rank fairness criteria to support

interpretable tuning of fair outcomes for groups defined by multiple protected

attributes in consensus rankings. I then design four alternate MFCR algorithms

using our proposed MANI-Rank model. I demonstrate the efficacy, scalability, and

quantify the price of fairness achieved by our MFCR solutions in selecting a fair

consensus ranking over a vast array of rank aggregation scenarios.
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Appendix A

Appendix

A.1 Case Study of Computer Science Department Rankings

While group fairness concerns typically emerge when people are being being ranked,

they also apply for other ranked entities. I illustrate the effectiveness our framework

on removing bias in Computer Science Department rankings using the publicly

available CSRankings from csrankings.org [6]. I collected rankings of 65 departments

in the US over the period of 2000− 2020 (utilizing the relative order presented on

csrankings.org as the ranking for each year) to generate a 20-year consensus ranking.

To examine geographic and private vs. public institutional bias, I used the location

(Northeast, South, West, MidWest) and type (Public or Private) of each institution

as protected attributes.

In Figure A.1, I observe that the rankings over the years indeed exhibit bias,

namely, a strong bias in the location attribute (high ARP )−which stems from

institutions in the Northeast region commonly appearing at the top of the rankings,

along with those in South region exhibiting the opposite trend. Additionally, there is

a significant amount of intersectional bias − resulting from the base rankings having

Private and Northeast colleges highly ranked.
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Figure A.1: CSRankings Study: Attribute values columns (e.g, Northeast, Priva-
tee) indicate FPR scores, and Location, and Type indicate ARP scores.

When using fairness-unaware Kemeny to create the 20-year consensus ranking,

we observe that this bias is amplified, with the Location ARP score resembling that

of base rankings with higher such scores, and the IRP score close to 0.6. By utilizing

our MANI-Rank criteria and setting the group fairness threshold ∆ = .05, it can be

seen that we were able to remove the bias in the consensus ranking. All our proposed

methods remove the bias toward Northeast and Private universities.

A.2 Pseudocode for Fair-Copeland, Fair-Schulze, and Fair-

Borda

Pseudocode for Fair-Copeland.

Pseudocode for Fair-Schulze.
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Algorithm 3 Fair-Copeland
Input :Base rankings R, candidate database X, thresholds ∆
Output : fair consensus ranking πC∗

Wmat ← precedence_matrix(R) copeland_scores ← empty Dictionary /* with
candidates as keys */

foreach xi ∈ X do
foreach xj ∈ X do

if xi! = xj then
xi_wins = Wmat[xj, xi]xj_wins = Wmat[xi, xj]if xi_wins ≥ xj_wins
then

copeland_scores[xi]+ = 1
end

end

end
end
copeland_π = sort(copeland_scores) /* sort candidates by decreasing

copeland score */
return Make-MR-Fair(copeland_π, X, ∆)

Algorithm 4 Fair-Schulze
Input :Base rankings R, candidate database X, thresholds ∆
Output : fair consensus ranking πC∗

Wmat ← precedence_matrix(R) Pmat ← empty array /* n by n array for path
strengths */

foreach xi ∈ X do
foreach xj ∈ X do

if Wmat[xj, xi] > Wmat[xi, xj] then
Pmat[xj, xi] = Wmat[xj, xi]

end
else

Pmat[xj, xi] = 0
end

end
foreach xi ∈ X do

foreach xj ∈ X do
if xj! = Xi then

foreach xk ∈ X do
if xi! = xkxj! = xk then

Pmat[xk, xj] =
max(Pmat[xk, xj],min(Pmat[xi, xj], Pmat[xk, xi]))

end
end

end
end

end
schulze_scores = columnsum(Pmat)/* index is candidate id */
schulze_π = sort(schulze_scores) /* sort candidates by decreasing schulze

score */
return Make-MR-Fair(schulze_π, X, ∆)
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Pseudocode for Fair-Borda.

Algorithm 5 Fair-Borda
Input :Base rankings R, candidate database X, thresholds ∆
Output : fair consensus ranking πC∗

borda_scores ← empty Dictionary /* with candidates as keys */
points_pos ← array range(n, -1, 0) /* array representing the points

alloted to each position */
foreach r ∈ R do

foreach i ∈ range(0, n) do
item = R[r, i]borda_scores[item]+ = points_pos[i]

end
end
borda_π = sort(borda_scores) /* sort candidates by decreasing borda

score */
return Make-MR-Fair(borda_π, X, ∆)
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