Improving QUIC Slow Start
Behavior in Satellite Networks with
SEARCH

An Undergraduate Major Qualifying Project (MQP) Report
Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the Degree of Bachelor of Science in

Computer Science,
Electrical and Computer Engineering

By:

Amber Cronin

Project Advisors:

Mark Claypool
Alexander Wyglinski

Sponsored By:

Viasat, Inc.

Date: April 2024

This report represents work of WPI undergraduate students submitted to the faculty as

evidence of a degree requirement. WPI routinely publishes these reports on its website

without editorial or peer review. For more information about the projects program at
WPI, see https://www.wpi.edu/project-based-learning.

Abstract

QUIC is increasingly being deployed on the Internet as an alternative to TCP. However, QUIC over
satellite links faces particular challenges as high and variable round-trip times (RTTs) make it difficult
to determine and then reach link capacity. Standard TCP slow start algorithms to detect link capacity
can perform poorly over satellite links, often exiting slow start too early and limiting throughput or
exiting too late and causing unnecessary packet loss. Slow start Exit At Right CHokepoint (SEARCH)
aims to exit slow start after reaching link capacity but before incurring packet loss by tracking delivery
rates and exiting when rates have not increased by the expected amount. SEARCH has shown benefits
over traditional slow start for TCP connections but has yet to be implemented and evaluated in QUIC.
This paper presents the design and implementation of SEARCH in an open-source QUIC library, with
the code publicly available as a contribution. Evaluation of SEARCH over a geostationary satellite
link show SEARCH successfully exits slow start before loss in the majority of cases, improving goodput

compared to the baseline and improving download times by up to 3 seconds in the median case.

Acknowledgements

I would like to thank Professor Claypool and Professor Wyglinski for their continued support and
advice during this project; they truly helped make this project a success. Our conversations were
invaluable and I am thankful for my time spent with them. I would also like to thank Maryam Ataei
Kachooei for her guidance when first implementing SEARCH, and her willingness to take the time to
assist with various components of this project. Dr. Jae Chung, Dr. Feng Li, and Benjamin Peters
provided important contributions and comments on the usage of the testbed, experimental design, and
algorithm implementation, and I thank them all for their help.

Finally, I would like to thank my friends and parents for their unwavering support. Without them,

I doubt I would have the confidence to have achieved this milestone.

ii

Table of Contents

1 Introduction

2 Background

2.1 Satellite Internet Links oL L
2.1.1 Characteristics of GEO Internet Satellites
2.1.2 Characteristics of LEO Internet Satellites
2.1.3 Satellite Link Properties oo
2.1.4 Performance Enhancing Proxies

2.2 The QUIC Protocol e

2.3 QUIC vs. TCP o e e e

2.4 Overview of Congestion Control

2.5 Congestion Control Startup (Slow Start)

2.6 HyStart

3 Related Works

3.1 Congestion Control Algorithms
3.2 Performance Enhancing Proxies o oo
3.3 Slow Start Mechanisms L
3.4 QUIC Performance Evaluation

4 Methodology

4.1 Base QUIC Implementation
4.2 Testbed Configuration e
4.3 Modular Slow Start
4.4 TImplementation of SEARCH
4.5 Emulated Network Tests
4.6 QUIC Max Data and Max Window
4.7 Server Test Settings and Procedures oL
4.8 Qperf Modifications
4.9 End Goal Test Justification oo o
4.10 Experimental Design L
5 Results
5.1 First-RTT and Wireless Loss o
5.2 Dataset Description L

iii

11
11
11
12
12

14
14
14
15
16
19
20
20
22
22
22

24

9.3

Dataset Analysis . .

6 Discussion

6.1
6.2
6.3
6.4

SEARCH Performance e e e e e e e e e

Modular Slow Start
First-RTT Losses . .

Quicly Performance

7 Future Work

7.1

7.2

7.3

Congestion Control .

7.1.1 Slow Start . .

7.1.2 Variable Congestion Window Growth

New Quicly Features

7.2.1 Pacing
7.2.2 Jump Start .
Testing Procedures .

8 Conclusion

References

A SEARCH Code Listing

iv

30
30
31
31
31

33
33
33
34
34
34
34

35

36

37

40

List of Figures

10
11
12

13

Slow start exits: a) early exit, b) overshoot, ¢) at chokepoint.
GEO Satellite Testbed
Delivered bytes vs. expected delivered bytes per RTT
General overview of the emulation testbed L 0oL
Onion model of Quicly’s implementation of sender limits.
Transmission rate and RTTs of a CUBIC connection in the emulated link, with default

Quicly settings. L
Transmission rate and RTTs of a CUBIC connection in the emulated link, with large

maximum window growth. Lo
Ratio of time between SEARCH declared exit and loss occurring, CDF of cleaned runs.

Green dashed vertical line indicates exit one RTT before loss.
Scatterplot displaying behaviour of all runs in Dataset 1..
Median time to download [N] MB, shading depicts 25% and 75% quartiles
Difference in median run timing, shading depicts absolute difference between quartiles .
CDFs of the time taken to deliver [N] bytes, with surviving runs labeled in subtitles. . .
Ratio of the reduction of the CWND at SEARCH exit point to the original CWND

value, SEARCH computation vs CUBIC g multiplicative decrease

9

List of Tables

1 Dataset 1 makeup, no CWND modification performed. 24

2 Dataset 2 makeup, CWND modification performed. 25

3 Baselines dataset makeup, composed of non-SEARCH exit runs from Dataset 1 and
Dataset 2. L e 25

4 Count of runs delivering [N] MB, Dataset 1. 25

vi

1 Introduction

QUIC is a transport-layer protocol, developed by Google since 2012 and standardized by IETF in
2021 [1]. QUIC implements transport control in userspace and uses UDP packets for communication
between hosts. Further, QUIC encrypts all communications on the link as a fundamental part of the
protocol, performing this setup in the first round trip. QUIC utilizes multiple streams over a single
connection to reduce head-of-line blocking after loss, improving performance for use in applications
like HTTP/3. QUIC has gained popularity since its public release, carrying nearly 30% of web traffic
as of 2023 [2].

Satellites in Geostationary Equatorial Orbit (GEO) have a baseline round-trip time (RTT) of about
600 milliseconds (ms) and high bandwidths in the hundreds of megabits per second (Mb/s). These
"long, fat” links have bandwidth delay products (BDP) in the megabytes, compared to kilobytes for a
typical low/medium latency terrestrial connection. TCP has traditionally faced challenges saturating
connections with these properties due to the nature of TCP probing mechanisms [3].

A typical solution for increasing the throughput of TCP over these links is to implement a per-
formance enhancing proxy (PEP) using middleboxes that break a TCP connection into two or more
parts over the terrestrial and orbital sections, known as Split TCP [4]. This allows hosts on Earth
to see low-latency responses, while the orbital transport can be implemented with a high-RTT opti-
mized congestion control algorithm such as TCP Hybla [5]. Due to the encrypted nature of QUIC with
which endpoints are cryptographically verified on connection, this solution is no longer feasible, forcing
the protocol’s own congestion controller to respond to the characteristics of the link. QUIC shares
many similarities in its implementation of congestion control with TCP, and standard implementations
include IETF-defined Reno, and many provide CUBIC among others.

One of the fundamental congestion control phases that can be improved over GEO satellite links is
the slow start phase. Slow start implements the general bandwidth-seeking phase of the connection,
during which the congestion controllers typically double the amount of data being pushed over the
link every RT'T until a packet loss occurs. On high-BDP links, the high RTT and the amount of data
in-flight (sent, but not acknowledged) impacts the recovery time when packet losses do occur. Large
queues on satellite groundstations, and bufferbloat [6] throughout the rest of the Internet exacerbate
the BDP issue by not dropping packets immediately when link capacity is reached, increasing the
penalty of slow start overshoot. To address this issue, we implement a new slow start algorithm
called Slow start Exit At Right CHokepoint (SEARCH) [7] to limit the overshoot and exit the slow
start phase and enter the congestion avoidance phase before loss occurs. While SEARCH has been

implemented and evaluated in TCP, it has not been incorporated into QUIC. This project does so for

the open-source QUIC library, Quicly!. We contribute this code and evaluate our implementation over
a GEO satellite link.

The organization of the rest of this paper is as follows: Section 2 discusses general topics of relevance
to this paper in more depth, as a more substantial reference for the material needed to understand this
work. Section 3 discusses prior work of interest to this paper. Section 4 discusses the implementation
of SEARCH in QUIC, the presentation of a new method of abstracting slow start behaviour, and our
experimental design. Section 5 discusses experimental results and takeaways. Section 6 discusses the
implications of the presented results and reasoning behind behaviour observed. Section 7 discusses
future work including changes to testbed, algorithm, and alternate methods to explore. Section 8

summarizes the presented work.

Ihttps://github.com/h20/quicly

2 Background

In this background, we discuss the technologies that form the basis for this project and provide an
overview of the problem space. We include an overview of satellite networking technologies, TCP,

QUIC, and congestion control theory.

2.1 Satellite Internet Links

Satellite links are one of many forms of wireless links that exist on the modern Internet and have
unique properties that impact the performance of the protocols operating over them. Satellite internet
links are important primary connection sources for rural Internet users, disaster response, military
communications, ships, and secondary Internet sources for terrestrial users in more settled areas.
Internet satellites exist in two primary locations above Earth: Geostationary Earth Orbit (GEO) and

Low Earth Orbit (LEO).

2.1.1 Characteristics of GEO Internet Satellites

Satellites located in Geostationary Orbit (GEQO) are located in an equatorial orbit approximately
35,786km above the Earth’s surface, such that their orbital period is the length of one day and they
appear fixed over a particular position on Earth [8]. Because of these properties, GEO satellites have
a fixed position when viewed from the ground, and antennas to communicate with these satellites may
be mono-directional in a fixed position. Due to the constant speed of light, signals transmitted from
Earth to the GEO satellite or from the GEO satellite to Earth arrive approximately 120ms later. This
constant requirement limits the minimum round-trip time (RTT) of an Internet link containing a GEO
satellite link to 480ms, though in practice, this compounds with the additional latency of the link to

form a minimum latency of around 600ms.

2.1.2 Characteristics of LEO Internet Satellites

The LEO zone does not have a fixed altitude, but refers to a zone between the edge of the Earth’s
atmosphere (100km) and Medium Earth Orbit (MEO, 2000km) [9]. Satellites located in LEO orbit
the Earth faster than it rotates, and appear moving when viewed from the ground. LEO satellites do
not have line-of-sight (required for high-frequency radio communication) to wide areas of the Earth’s
surface. Users intending to communicate with these satellites require antennas that can track individual
satellite’s movement as they pass over for high bandwidth applications, or do not require directional
connection for low bandwidth applications like satellite phone. An Internet link containing a LEO

satellite link has a minimum RTT of approximately 60ms, depending on the exact altitude of the

satellite constellation.

2.1.3 Satellite Link Properties

Satellite links are subject to a number of unique properties not experienced by wired or fiber links.
When an endpoint initiates a connection with the satellite, a reservation must be made for some
amount of bandwidth for use by the endpoint. This negotiation takes an amount of time not typically
experienced by wired or other wireless links. As the data rate of the connection increases to the reserved
bandwidth, the endpoint must request additional bandwidth (to the contracted service bandwidth) to
support the additional data. To handle this behaviour, satellite links often implement larger-than-
normal buffers on their ground stations to account for the allocation time. Over the course of a
connection ramp-up, this creates oscillation of the measured RTTs as the higher data rate builds a
queue during the allocation period, drains the queue as the connection continues ramping, and repeats
until the link is fully allocated and a packet loss occurs.

As with all links, there is the possibility of connection errors causing packet loss prior to satura-
tion. Communication speed is dependent on the signal-to-noise ratio (SNR), the supported physical
layer (PHY) protocols, and physical obstructions including weather events and proper endpoint an-
tenna orientation. These connection errors may be mitigated/addressed by link layer protocols for
re-transmission on wireless errors (if supported), as performed by WiFi access points (802.11), but this

is not guaranteed nor required.

2.1.4 Performance Enhancing Proxies

One of the most commmonly implemented solutions to mitigate the non-ideal behaviour of GEO
satellite links are performance enhancing proxies (PEPs) [4]. PEPs perform a man-in-the-middle
(MITM) attack on a TCP connection by programming the middleboxes on either end of the satellite
connection to reply with faked TCP SYN4+ACK and ACK packets. This behaviour is possible because
TCP clients do not verify the endpoint they are connecting to cryptographically as QUIC does, so these
middlebox responses appear to the client as if the server is located in terrestrial/LAN range while the
true request is being forwarded on behalf of the middlebox to the final destination. The middlebox is
unable to provide the true response from the server (unless it also implements caching), and as such
the true latency of the connection is still limited to the physical behaviour of the underlying link.
However, the benefit provided by implementing this behaviour comes from the speedup to the initial
startup of the connection, as the fast SYN+ACK and ACK responses help grow the client’s congestion
window while the actual responses from the server are still in flight. QUIC’s cryptographic behaviour

sets up TLS encryption keys in the first salvo of packets, which verify that the responding endpoint

has control over the domain that it is responding as. This breaks the assumption that the PEP relies

on, but does not remove other PEP-like constructions.

2.2 The QUIC Protocol

QUIC is a relatively new transport-layer protocol that provides some benefits over TCP. QUIC was
initially developed for use on the web by Google in 2012, and was rolled out over time for use by
Google services, with IETF standardization of the protocol completing in 2021 [10] [1]. QUIC is the
underlying protocol supporting HTTP/3, a new version of HTTP designed specifically for operation
with QUIC in order to take advantage of the features listed above for improving website load times
and Internet performance. HTTP/3 (and QUIC) have seen a large growth on the web since the initial
release of the protocol by Google. This growth has increased since the protocol was formalized by
IETF, with Cloudflare estimating that the protocol handles nearly 30% of all web traffic [2].

QUIC operates at the application layer and transmits data using UDP packets rather than being
implemented in the kernel. Due to the application-layer design, updates to the protocol are not limited
to the release rate of operating system updates, and the protocol itself can carry out version negotiation
between client and server to select a version of QUIC with shared support. QUIC connections are
entirely encrypted after the initial handshake completes, including all plaintext-necessary header fields.
Each QUIC packet contains one or more frames, and packet numbers are guaranteed to be unique over
the course of the connection. QUIC provides the ability to create multiple non-blocking streams
to mitigate head-of-line blocking in the connection caused by packet loss and data retransmission.
Frames contained within a packet are each attributed to a stream, and frames from multiple streams
may be included within a single packet. If a packet is lost in transit, only the streams which had
data contained within the lost packet become blocked during the recovery periods triggered by the
loss, and the QUIC controller will continue transmitting the data of other streams while managing the
recovery of the streams that lost data. QUIC performs per-stream acking of received frames using a
method analogous to TCP’s SACK extension, with each ack frame containing a maximum sequence
number received, and optional sub-fields listing the start and end of unacknowledged gaps in the
sequence space. QUIC supports 1-RTT and 0-RTT data transmission, in which application data may
be included in the initial or first round of packets to the server, before the connection has been fully
established provided the client has cached cryptographic information from the server. Each QUIC
connection has an associated Connection ID, which removes the assumption of the TCP four-tuple
(source IP, destination IP, source port, destination port) and allows for more seamless routing from

client to server after IP address or port changes due to middlebox behaviour or mobility.

2.3 QUIC vs. TCP

QUIC aims to address issues with TCP, namely protocol ossification due to unspecified /incorrect mid-
dlebox behaviour, head of line blocking, and lack of encryption by default. By encrypting many of
the QUIC packet headers within its UDP carrier, middleboxes cannot inspect QUIC connection data
as they can with TCP, and therefore cannot lock in a particular supported version. QUIC’s imple-
mentation in userspace allows for fast iteration of the protocol, seen especially in early development
during the testing phase by Google. While this is a net positive for end-to-end user privacy by de-
fault, with even the handshake packet encrypted, it makes it difficult for network administrators to
implement traffic shaping and gather data about network usage as they could with TCP. One such
case where traffic shaping helps improve TCP performance is by performing ack thinning techniques
to drop redundant acks for a connection that provide little value and claw back bandwidth for use by
other users. This is infeasible with QUIC, as the network administrator would have to either a) have
the decryption key for the connection to determine which packets contain droppable acks, or b) drop
“ack-likely” packets at random, degrading the connection and introducing the possibility of destroying
non-ack frames contained within the packet.

QUIC finds some difficulty in the modern web due to issues with blocking/throttling of the UDP
packets on which QUIC relies by network operators [10]. This behaviour presents as limiting the
maximum size of UDP packets to smaller than path MTU, droping UDP packets more often than
TCP packets, or failing to queue UDP packets alongside TCP packets due to assumptions about the
traffic being carried. Often, applications that support QUIC will attempt to open a QUIC and TCP
flows in parallel, with the intention of using QUIC but maintaining the TCP flow as a backup in

networks where UDP packets are blocked or otherwise handled poorly.

2.4 Overview of Congestion Control

In the development of congestion control algorithms, two main behaviours exist. The most common,
as proposed when the Internet was created, is loss-based congestion control. Algorithms following this
model typically watch for loss as a primary signal of congestion, and lower sending rates when loss
is observed on the connection. Modern proposals have been tested and deployed that are considered
throughput/rate-based congestion control, which may take packet loss as a signal of congestion but do
not necessarily lower their delivery rate in response to a loss.

The QUIC specification states that by default, the Reno congestion control algorithm should be
used [1]. This algorithm is robust and simple, but performs worse than modern Internet congestion
control algorithms due to demonstrably low throughput on high-bandwidth bottleneck links. Reno

introduces the concept of additive increase/multiplicative decrease (AIMD) for link sharing, and im-

plements this concept after the slow start phase. Reno increases the congestion window by a set
number of packets every RTT, to form linear growth, and lowers the congestion window by half when
a loss is observed. However, due to its failure to saturate higher bandwidth links effectively, alternative
congestion control algorithms are more common on the modern web.

The default congestion control used by most Linux distributions is CUBIC, proposed to address
the issues with Reno failing to saturate high-bandwidth networks [11]. CUBIC probes for bandwidth
through non-linear congestion window growth, defined by a cubic function between a minimum and
maximum congestion window as defined by slow start loss and previous growth/loss cycles. CUBIC
lowers the congestion window by a factor of 0.7 (compared to Reno’s 0.5) on loss, allowing faster recov-
ery. CUBIC implements a growth phase CUBIC’s more aggressive behaviour allows better utilization
of more lossy links, fairness with other CUBIC flows, and better competition with other congestion
control algorithms.

To compensate for the difficult behaviours of many satellite links (and other lossy/variable RTT
networks including 4G /5G and WiF1i), other congestion control algorithms have been developed, though
they are not widely deployed. Many of these algorithms require stronger constraints or additions to
the underlying protocols to transmit further information, typically infeasible in most networks. For
satellites, the most notable alternative congestion control algorithm is Hybla [5]. Hybla modifies both
the slow start and congestion avoidance phases of the congestion controller to scale congestion window
growth based on the ratio of the base link RTT to a minimum RTT of 25ms. By scaling the congestion
window growth in both slow start and congestion avoidance based on this ratio, Hybla is capable of
matching the growth of the congestion window seen on terrestrial networks in high BDP links.

Finally, there are alternative methods of implementing congestion control that have begun research
in recent years. The main proponent of these alternative methods is Google, who has released several
versions of BBR, [12]. BBR shares a similar startup phase to seek link capacity by performing similar
exponential doubling, but does not take loss as an explicit notification of congestion. Rather, BBR
attempts to maintain low RTTs and high throughputs without regard for loss by attempting to min-
imize queue usage on the path. BBR has been shown to be effective in maximizing link usage, but
initial versions failed to share bandwidth with existing CUBIC flows effectively due to using alternative
methods of monitoring link capacity. Research on this congestion control algorithm is ongoing, and it
is provided in some implementations of QUIC.

The open-source project used in this paper, Quicly, defaults to Reno but provides CUBIC and Pico

(a combination of Reno and CUBIC behaviours) as options for the congestion control algorithm.

2.5 Congestion Control Startup (Slow Start)

The initial phase of the congestion control algorithm is the slow start phase, as proposed in RFC2001 [13].
This phase was proposed as a simple method of expanding the congestion window quickly at the be-
ginning of a connection to approximate the link bandwidth, before the congestion avoidance phase
begins. Slow start is also used when the congestion window drops below the slow start threshold
due to inactivity on the connection or large amounts of loss. The default behaviour of the slow start
algorithm proposed in RFC2001 is to, for every incoming acknowledgement (ack), increase the size
of the congestion window by the number of bytes acknowledged (or in the case of tracking packets,
by one packet). Because this ack was just received, it may be shown by definition that the number
of bytes in flight is reduced by the number of bytes acknowledged. Thus, by increasing the size of
the congestion window by that number of bytes, the number of bytes that can then be transmitted
over the link in place of the acknowledged count is doubled. By performing this operation for every
acknowledgement that is received, the size of the congestion window grows by two times every RTT,
causing it to experience exponential (2™) growth. Once a loss occurs, the congestion control algorithm
saves the current size of the congestion window as the slow start threshold, lowers the congestion
window by the amount specified by the congestion control algorithm, and enters the recovery phase to
retransmit the data lost before continuing sending new data.

This default implementation of slow start has several major downsides. It must grow quickly to
discover the size of the link (additive or even multiplicative increase of the congestion window will not
converge on the link capacity effectively), but in doing so, sends up to twice the number of packets
the link can process in the last round. It is unable to cope with transient losses (due to an inability
to differentiate between loss due to congestion and loss due to wireless errors). Finally, the inclusion
of larger and larger buffers on the Internet delay the point at which an endpoint actually experiences
loss, allowing the congestion window to grow several times past the true link capacity, even though the
delivery rate has stagnated. Especially on high BDP networks, like a GEO satellite connection, there
may be tens to hundreds of megabytes of queueing in addition to the link inflight capacity. When a
loss occurs, all inflight packets must be discarded by the client until retransmission begins, and no
further application data may be transmitted over the link until the retransmissions conclude. For a
satellite link, the period between loss and new data delivery is up to several seconds. In recognition of
these flaws, the default slow start algorithm has been modified and extended in several ways to address
the issue of overshoot.

This analysis yields the delineation of three main outcomes to an exit from slow start [7], depicted
in Figure 1.

First, early exit defines an exit from slow start before the connection reaches link capacity. In

Exit
Exit
Exit _Capacity Capacity [[\ ! Capacity

Time Time Time

cwnd
cwnd
cwnd

Figure 1: Slow start exits: a) early exit, b) overshoot, c¢) at chokepoint.

this case, the connection must grow in a more inefficient manner to reach capacity. This type of exit
occurs when a loss occurs on the physical or link layer, transient congestion events cause a packet
to be dropped, or a modification to the slow start algorithm causes a transition from slow start to
congestion avoidance prematurely.

Second, late exit defines an exit occurring when the connection has exceeded link capacity. This is
the typical behaviour of the slow start phase, as described above. This outcome does not require loss,
as a heuristic that can detect the over-capacity and move to congestion avoidance will not incur the
retransmission penalty until later in the growth phase of the connection.

Finally, the ideal case is on time/at capacity exit. Because no endpoint has forward knowledge of the
link capacity, this outcome is the ideal but cannot realistically be attained. It has the theoretical highest
performance of the three. Slow start algorithm design focuses on determining when the connection has
passed the capacity point within the fewest round trips, to reduce the amount of excess data buffered
on the link and over-capacity transmission. Several heuristics exist to this end, and are described

below.

2.6 HyStart

HyStart is a popular modification to the slow start phase of congestion control, implemented by Linux
and Windows (with some modifications) for TCP CUBIC [14]. HyStart adds additional checks during
the slow start phase, attempting to determine the link capacity point before a packet loss occurs to
signal the move to congestion avoidance. The two methods HyStart provides for early-exit are RTT
increase, signaling queuing on the route; or ack train spacing, signaling complete utilization of the link.
HyStart performs well over common links, and measurably improves connection goodput.

As discussed, the RTT of the connection progresses over Viasat links increase drastically compared
to the initial RTT due to queuing during uplink reservations as the transmission rate increases up
to the rate specified by the consumer plan. This variation in the RTT presents itself to HyStart as
triggering one or both of the congestion signals, causing the connection to move from slow start to

congestion avoidance after the first several round trips - far before the congestion window has grown

to the link capacity.
In the remainder of this paper, we discuss alternative modifications to slow start (and as an al-
ternative to HyStart). In the next section, we discuss works related to the development of congestion

control and slow start.

10

3 Related Works

3.1 Congestion Control Algorithms

Caini and Firrincieli [5] propose TCP Hybla, a replacement for both slow start and congestion avoidance
sections of the congestion control algorithm. Hybla modifies the CWND growth in each phase by a
scale factor derived from the link RTT, such that a Hybla connection finds the link capacity in the same
time as in a comparable low-RTT network. Hybla is still a loss-based congestion control algorithm but
is able to grow back to link capacity faster in congestion avoidance after a loss occurs [3].

Alrshah, Al-Maqri, and Othman [15] propose Elastic-TCP, which attempts to address issues faced
by alternative congestion control algorithms on high-BDP networks. Elastic-TCP estimates the BDP
of the link and attempts to grow the CWND aggressively. However, this algorithm still maintains the
standard exponential slow start CWND growth, and does not address the initial large period of packet
loss and retransmission after overshooting link capacity.

Jin, Wei, and Low [16] present Fast-TCP, an early delay-based congestion control algorithm. They
show that this algorithm performs better than state-of-the-art, and scales window growth based on
RTT.

Cardwell et al. [12] propose TCP BBR, a new congestion-based congestion control that performs
probing of network links as an alternative to typical loss-based congestion control. BBR implements
a binary search to increase data on the link until queue buildup is detected, before moving into the
rest of the congestion control cycle. BBR has been shown to dominate links shared with CUBIC flows,

though each algorithm’s slow start performance remains similar [17].

3.2 Performance Enhancing Proxies

Kim et al. [18] propose TCP-GEN, a middlebox implementation to wrap High Assurance Internet
Protocol Encryptions (HAIPE) flows with a PEP-compatible replacement. This proposes a method of
encapsulating encrypted reliable transport protocol data within a standard TCP/IP flow, such that
it is compatible with PEP devices. They also introduce the concept of TCP-over-TCP meltdown,
which occurs when a reliable flow is encapsulated within another reliable flow, causing the congestion
controller of the internal flow to consider the link as infinite bandwidth and overload the end host.
The authors propose passing packet drops from the outer to inner flows to address this problem. This
is of special importance due to QUIC flows being unable to be handled by standard PEP devices.
Pavur et al. [19] present QPEP, a PEP implementation utilizing QUIC as the PEP transport
protocol typically implemented with a satellite-optimized TCP (such as Hybla). They show that a

QUIC-based solution improves performance by utilizing streams within a single QPEP connection for

11

connection encapsulation, improving both speed and security.

3.3 Slow Start Mechanisms

Liu et al. [20] propose Jump Start, a replacement slow start mechanism that bypasses the exponential
growth phase by pacing an initial burst of data after the completion of the handshake. Jump Start
calculates the speed and size of the initial transmission based on the initial handshake RTT, data
to be sent, and advertised window size from the receiver. Jump Start has been added to QUIC
implementations, though it is off by default.

Ha and Rhee [14] present HyStart, a new slow start mechanism to detect congestion on a link and
exit before loss occurs. They recognize that standard slow start has negative impacts on connections
due to large amounts of packet loss that cause end hosts to become overloaded and waste valuable
network resources. HyStart proposes two heuristics to detect congestion. ACK trains determine when
the spacing between ACKs becomes consistent between rounds, indicating that there is no further
capacity that can be taken up, and RTT delay samples indicate that queues are filling on the link,
indicating that the endpoint has surpassed link capacity. This algorithm performs well on many
terrestrial networks, but reads the variation in RTT seen on satellite networks as congestion early into
the connection [21].

Balasubramanian, Huang, and Olson [22] present HyStart-++, a modification to HyStart that
works to address issues with variable RTTs by adding an intermediary state between slow start and
congestion avoidance. This state is triggered when HyStart would declare an exit, and monitors the
HyStart signals for several more rounds before officially declaring an exit to congestion avoidance if
they continue to show congestion. HyStart++ additionally removes the ACK train condition included
in HyStart.

Katchooei et al. [7] propose SEARCH, a modification to the slow start mechanism that tracks
delivery rates with a sliding window to detect deviation between sending and delivery rates before
packet loss occurs. SEARCH’s performance benefits have been shown analytically with packet traces
over GEO, Low Earth Orbit (LEO), and 4G LTE links for TCP. We choose this algorithm to focus on
in QUIC.

3.4 QUIC Performance Evaluation

Custura et al. [23] present measurements of ACK frequency on QUIC, with a focus on lowering the
impact on the return path, of considerable concern for highly-asymetric links. They show that reducing
ACK ratio up to 10 has little effect on connection throughput, though recommend retaining the

standard ratio of 2 for slow start period, and ensuring that ACKs are transmitted at least once every

12

quarter-RTT.

Volodina and Rathgeb [24] demonstrate a method of auto-tuning QUIC’s ACK frequency to the
characteristics of a link. They show that this method improves performance compared to static ACK
frequency configurations.

Border et al. [25] present an analysis of web requests utilizing QUIC as compared to PEP-enhanced
TCP flows. They find that gQUIC consistently performs worse than TCP-PEP, and better than native
TCP in cases when packet loss on the link increases.

Endres et al. [26] provide measurements of QUIC implementation interoperability and performance
over a high-RTT emulated satellite link. They show that some implementations are not interoperable
over the network conditions introduced, and implementations overall provide low goodput over the
link.

Kuhn et al. [27] present an overview of QUIC performance compared to native- and PEP-TCP over
satellite networks. They find issues with long QUIC flows, and propose new base settings for QUIC to
improve satellite performance.

Mishra and Leong [28] discuss the variety of congestion control algorithms in use across double-digit
counts of QUIC implementations. They show that many QUIC implementations are not fair, despite

usage of similar CCAs, and analyze possible improvements that may be made to improve them.

13

4 Methodology

In this section, we discuss in detail the testbed, modifications made to the Quicly library and Qperf,
algorithmic implementation, takeaways from the Quicly codebase, testing justification and procedures,

and experimental design.

4.1 Base QUIC Implementation

For this project, we select the Quicly project? as our QUIC implementation, developed by Fastly for
the H20 webserver. Quicly is actively deployed and has been utilized for previous QUIC research. We
select the Qperf project® as a wrapper for performing iperf3-like behavior with Quicly, and extend the
project to implement necessary features to support our testing.

To confirm the behaviour of the satellite link, and ensure that the library and Qperf wrapper
behaved appropriately over the satellite link, we downloaded the latest commit of Qperf and built it.
This commit of Qperf was out of date with the latest work performed on Quicly, and one of the primary
tasks was upgrading the Quicly library to the latest version. This merge was completed in mid-October
2023, and this version of the Quicly library (with any and all additional modifications performed) was
used for the remainder of the project. Prior to the submission of this MQP, the modifications made
to both Quicly and Qperf were submitted as pull requests to their respective upstream repositories, to

share the modifications and findings of this report with the wider QUIC community.

4.2 Testbed Configuration

To test the default behaviour of Quicly /QUIC over the satellite link, we uploaded copies of the updated
software to a client (glomma) and server (MLCnetX) machine, our basic testbed for this project. The
testbed setup is displayed in Figure 2.

The client runs Ubuntu 18.04.6 LTS with kernel version 4.15.0-202-generic. It is equipped with a
single Intel Core i7-5820k CPU at 3.3 GHz, 32 GB of RAM, and a single 4 TB HDD. The MLCnet
servers are a set of four virtualized servers, denoted A, B, C, and D. They are virtualized using
Kubernetes, running on shared resources. MLCnetC was the primary server used throughout the
course of this project. MLCnetC runs Ubuntu 18.04.6 LTS with kernel version 4.15.0-194-generic. It
is equipped with two cores of an Intel E312xx CPU (shared with other servers) at 2.5 GHz, 4 GB
of RAM, and 42 GB of available HDD space. This hard drive space was expanded with 50GB of

additional storage during later tests to accommodate the amount of data being generated.

2https://github.com/h20/quicly
Shttps://github.com/rbruenig/qperf

14

-

/ Satellite \\

Client

/
G —\/ Modem
+ Router

WPI ® Internet

Gateway

Figure 2: GEO Satellite Testbed

The server connects to our University LAN via Gb/s Ethernet. The campus network is connected
to the Internet via several 10 Gb/s links, all throttled to 1 Gb/s.

The client connects to a Viasat GEO satellite terminal (with a dish and modem) via a Gb/s
Ethernet connection. The client’s downstream Viasat service plan provides a peak data rate of 144
Mb/s. The terminal communicates through a Ka-band outdoor antenna (RF amplifier, up/down
converter, reflector, and feed) through the Viasat 2 satellite* to the larger Ka-band gateway antenna.
The terminal supports adaptive coding and modulation using 16-APK, 8 PSK, and QPSK (forward)
at 10 to 52 MSym/s and 8PSK, QPSK and BPSK (return) at 0.625 to 20 MSym/s.

The Viasat gateway performs per-client queue management, where the queue for each client can
grow up to 36 MBytes. Queue lengths are controlled at the gateway by Active Queue Management
(AQM) that randomly drops 25% of incoming packets when the queue is over half of the limit (i.e.,
18 MBytes). While the gateway provides a GEO performance-enhancing proxy (PEP), this does not
apply to this project due to the use of QUIC, as the encrypted UDP flow is unable to be proxied as
discussed in Section 2.

Both the client and the server are controlled directly by logging into the machines via SSH and
beginning tests manually. Remote operation was considered, but difficulties were encountered while

attempting to start multiple background processes over remote, automated SSH connections.

4.3 Modular Slow Start

Rather than duplicating a single congestion control algorithm and adding our slow start modification

into it, we propose a new method of modular slow start implementation. We extend the congestion

4https://en.wikipedia.org/wiki/ViaSat-2

15

controller structure definition with a new field, which points to a slow start function. A configuration
setting in the startup context allows dynamic selection of the slow start algorithm, and each congestion
control implementation may choose to utilize the slow start function pointer, allowing non loss-based
controllers to be implemented as normal. This method reduces the time required to implement alter-
native slow start algorithms to existing congestion controllers, and decouples the slow start phase from
the congestion avoidance phase in software to better match the behavior of most congestion controllers.

Quicly implements congestion controllers as a constant struct with a number of function pointers
to each event that the congestion control algorithm responds to. A pointer to this struct is saved in
the connection context, allowing different connections to implement different congestion controllers.
The slow start method is saved in a struct in the congestion control struct as a variable field, to allow
for modification of the slow start algorithm at runtime.

The signature of the slow start method is equivalent to the signature of cc_on_acked, as it is
intended to be called during acknowledgement handling. The default slow start function is also provided
in the Quicly default contexts, so a user of the Quicly library does not have to explicitly specify their
slow start setting. The default slow start is RFC2001. By setting the slow start function in the context
passed to the Quicly library startup, the library will set it in the congestion controller’s context, if the
selected congestion control algorithm supports custom slow start behaviour.

The congestion controller is stateful by use of a congestion control data structure. This structure
contains all fields necessary for maintaining information necessary information about the connection.
We extend this structure with a union of structs for slow start algorithm use. Each new slow start
algorithm may declare its own struct within this union, with fields specific to that algorithm, and use
those fields when it is called. This is a sister struct to the congestion controller state union, which
implements structs for each flavour of congestion control.

This method of implementing slow start in a modular fashion is used to implement the default slow
start exponential growth (RFC2001), HyStart, Hybla, and SEARCH. While HyStart and Hybla were
implemented and lightly tested, RFC2001 as baseline and SEARCH were implemented as the main

candidates for study.

4.4 Implementation of SEARCH

This project focused on the implementation of SEARCH, a new slow start mechanism [7]. During slow
start, the congestion controller operates by doubling the number of bytes in flight every RTT, until
the delivery rate reaches the link capacity, shown in Figure 3. The SEARCH algorithm operates by
tracking the delivered bytes over time, and comparing the active delivery rate to the expected delivery

rate from the previous RTT. Delivery rates for each period are computed over a window, set to 3.5x the

16

selkq paJanlep

Figure 3: Delivered bytes vs. expected delivered bytes per RTT

initial RT'T. When these rates deviate, SEARCH exits the slow start phase and moves to congestion
avoidance. The algorithm utilized for these tests is given in Algorithm 1.
Our implementation requires several fields not presently available in the default congestion control

data struct. Therefore, we extend the slow start union with a SEARCH-specific struct:

union {
struct {
YELS
* Bins for the byte count sent and the byte count delivered (instantiated on init)
*/
uint64_t delv_bins[SEARCH20_SENT_BIN_COUNT];
/*%*
* Maintains the end time of the current bin
*/
int64_t bin_end;
/**
* Holds the size of each bin (based on the handshake RTT)
*/
uint32_t bin_time;
VLS
* Counts the number of times that the bin has been incremented, so we know when to
* start trying to watch for congestion
*/
uint8_t bin_rounds;
} search20delv;
} ss_state;

Several modifications were deemed necessary through initial rounds of testing to implement the
algorithm correctly. We implement a check to ensure that the bin duration is always non-zero. When
calculating the number of bins to shift to the past, we perform rounding to ensure we are inspecting
the bins closest to the timeframe of interest, though discussions of utilizing interpolation to include
the values of partial bins cut by an imperfect shift are ongoing. We perform a reset if the time between
receiving sequential acknowledgements was larger than the number of bins available for storage, to

ensure SEARCH is performed properly when an application continues sending after a pause. We set

17

Algorithm 1
SEARCH 2.0: Slow start Exit At Right CHokepoint.

Parameters:

WINDOW_SIZE = Initial RTT x 3.5

W =10

EXTRA_BINS = 15

NUM_BINS = W + EXTRA_BINS
BIN_DURATION = WINDOW SIZE / W
THRESH = 0.35

8: LOWER_.CWND = TRUE

9: Initialization:

10: bin[NUM_BINS]

11: curr = 0

12: bin_end = now + BIN_.DURATION

13: Each acknowledgement:

14: if (now > bin_end) then

15: bin_end += BIN_.DURATION
16: curr +=1

17: bin[curr mod NUM_BINS] = 0

18: prev = curr - (RTT / BIN.DURATION)
19: if (prev > W) and (curr - prev) < EXTRA_BINS then

20: // Check if SEARCH should exit
21: curr_delv = Yo" - bin[i mod NUM_BINS]
22: prev_delv = gig_w bin[i mod NUM_BINS]
03 norm_diff — 2 - prev_delv — curr_delv
2 - prev_delv

24: if (norm_diff > THRESH) then
25: // Exit slow start
26: if (LOWER_CWND) then
o7, back — Initial RTT - 2

‘ “* = BIN.DURATION
28: overshoot = Y o bin[i mod NUM_BINS]
29: set ssthresh to (cwnd - overshoot)
30: else
31: set ssthresh to cwnd
32: end if
33: end if
34: end if
35: end if

36: bin[curr mod NUM_BINS] += bytes_delivered

18

PC/Laptop
/ Docker Container 1 Docker Container 2 \

Host
(Client)

H ROLiter L

Subnet 1 . Subnet 2

\ 192.168.2.0/24 . 192.168.4.0/124 /

Figure 4: General overview of the emulation testbed

all bins that were skipped over to the appropriate value of zero when a gap in acknowledgements occurs
that does not trigger the previous reset condition.

One significant modification to the original proposed algorithm is implemented as follows. When
exiting slow start at the chokepoint, SEARCH is delayed in its prediction by at least one RTT, and
the algorithm has knowledge of the exact amount of deviation between the predicted delivery rate and
the actual delivery rate. Thus, the number of bytes excess added to the CWND since it bypassed
the BDP of the link can be shown to be approximated by the number of bytes marked as delivered
in the period of 2x initial RTT to exit. We perform tests with and without this modification added,
and compare the values of the CWND as is, the SEARCH-predicted CWND (removing the two-RTT
window byte count), and the CUBIC-predicted CWND (treating SEARCH exit as loss of zero bytes,
and scaling CWND by the CUBIC g value).

We include a listing of our SEARCH algorithm in Appendix A.

4.5 Emulated Network Tests

To qualify the behavior of SEARCH in QUIC, we create a emulated test network consisting of two
Docker containers, a router and a server, on two local subnets. The router is configured with the
Linux traffic control to implement a 150Mbit link with a 300ms one-way delay and a 36MB queue on
each outgoing virtual interface to the host machine and the server container. Corresponding virtual
interfaces are added to the host machine and the server container to communicate through the router
container. Finally, the router is configured to route all traffic between the subnets through the virtual
interfaces, to emulate the satellite link. Tests using this configuration were performed on a Thinkpad
T14 AMD Ryzen 7 PRO 4750U with 32GB of DDR4 RAM. Repeatable runs were performed over
this emulated link to verify the Quicly configuration on the link and show that the QUIC flow was
behaving properly.

We implemented this emulation testbed due to issues with the physical testbed Vorma, which had

been used in previous MQPs. We provide this emulation testbed for future research groups.

19

This environment had several uses in the iterative implementation of the SEARCH algorithm. As
a quiet environment, it removed alternate sources of congestion or less-friendly network operators from
impacting the behaviour during initial tests of both the Quicly codebase and the SEARCH algorithm.
This allowed us to determine when Quicly was behaving differently than expected by default and
modify settings to ensure tests were stressing the slow start algorithm. It also allowed us to gather
clean, repeatable traces of SEARCH’s operation, which helped in debugging the implementation of the
algorithm before runs over the satellite link were performed. While this environment did not emulate
perfectly all of the behaviours seen while operating over the satellite link, it provided a good first pass

to verify algorithm behaviour.

4.6 QUIC Max Data and Max Window

One shortcoming with Quicly that the emulated environment revealed was the impact that the QUIC
window setting has. QUIC limits the cumulative number of bytes available to be sent by either endpoint
on a connection as shared state, which exists external (and limits) the congestion control algorithm,
as shown in Figure 5.

By default, Quicly implements the QUIC maximum window parameter with a size of 16MB. To
grow the maximum window of the connection, a Max Data frame must be transmitted from receiver
to sender to grow the window and enable more data to be sent on the link. Quicly’s implementation to
determine when these frames should be sent is not BDP aware, and grows the maximum window based
on percent usage of the previously transmitted window. By default, the throughput and the RTTs on
the connection appeared as in Figure 6. In this scenario, each spike of the RTT was the server sending
the maximum allowed data as the congestion window grew to infinity, due to loss not occurring as the
router queue buffered the entire window each time. This queue would drain as the server was blocked
from sending until the next max data packet arrived, at which point the cycle would repeat. To fix this
and ensure that the congestion controller was controlling the data rate and receiving loss signals, we
increased the window parameter substantially. For further experiments, we set the maximum window
parameter to 256MB, yielding flows that showed throughput and RTT values as expected, shown in

Figure 7.

4.7 Server Test Settings and Procedures

We configured the server with several settings to ensure that packet loss was occuring from queueing
loss rather than intermediary network operators dropping high-rate UDP flows unnecessarily. We
found that by limiting the rate of the server to 200Mbps, the connection was able to progress to a

point at which the sending rate and delivery rate deviated. Without a rate cap on the server, packet

20

Quicly Library

/Connection Egress/Ingress (E/l) Data Limits \
/ Stream E/I Data Limits \

/ Congestion Control CWND Limits \

CCA Slow Start & Congestion Control
SEARCH (RFC2001, CUBIC)

|
\ Y

Figure 5: Onion model of Quicly’s implementation of sender limits.

quic-test 23, 20ms pings, 500ms windowing

Throughput (Mbit per 500ms)

800

600

E

o

E)
Time (s)

Figure 6: Transmission rate and RTTs of a CUBIC connection in the emulated link, with default
Quicly settings.

o
S

—— sent
— delv
----- Packet Loss

————— First Exit \

o
=]

2 oe NN W
o o
S o

o
S

%
S

o

Tput (Mbps, 0.5s window)

Time (s)

Figure 7: Transmission rate and RTTs of a CUBIC connection in the emulated link, with large
maximum window growth.

21

loss would occur at or before the point of theoretical deviation. This rate limit was applied using the
Linux traffic control (tc) utility’s queue discipline settings. The server was configured with a token
bucket filter (TBF) queue with a maximum rate of 200Mbps, a burst rate of 200Kb, and a latency of

1.5s.

4.8 Qperf Modifications

Several modifications were necessary to allow Qperf to function as needed for the purposes of this
project. Qperf was necessary as the Quicly library itself, while it did provide a command line interface
(CLI) testing interface, did not support more generalized test procedures similar to iperf3. Qperf
provided a foundation for many simple procedures, but was lacking in specificity and did not provide
flags to configure all available QUIC/Quicly settings. We expanded Qperf to expose several necessary
settings, including the maximum window, and added the ability to select our slow start algorithm. We
also added the ability to select a download size, as an alternative to the time limit option, for better
measuring goodput over the link. Finally, we added an option if SEARCH was enabled to toggle

whether it would exit slow start or continue standard slow start while logging SEARCH information.

4.9 End Goal Test Justification

In developing our experiments, we created several heuristics to help measure the validity of our tests.
The first heuristic was measuring the time delta between when SEARCH first declared that the flow
should exit slow start, and when the first congestion loss occurred. By computing the ratio of this
time difference to the RTT at first exit, we generate a metric of how early SEARCH is predicting the
exit, and likewise how much data a SEARCH-triggered exit is keeping from being lost on the link by
detecting the congestion point before loss. Second, we measure the goodput of the link. The goodput is
defined as the time taken to successfully deliver a number of bytes to the client application, and yields
different results than throughput when considering real-world scenarios. For our tests, we measure
the performance of SEARCH by measuring the time taken to successfully deliver [N] bytes, the time
delta ratio as described, and in some tests the number of bytes removed from the congestion window

by SEARCH on exit due to overgrowth.

4.10 Experimental Design

To test the behavior of the SEARCH algorithm, we record time to download to measure the goodput of
the link with and without SEARCH enabled. This is accomplished by performing a 200MB download,
and logging the time taken to deliver 1MB chunks. Runs were capped at 60 seconds and alternated

between SEARCH and standard slow start enabled, with a 60 second sleep period before starting the

22

next run. Three sets of runs are presented: 20 hours, from a Sunday night to a Monday afternoon; 24
hours, from a Monday night to a Tuesday night; and 24 hours, from a Wednesday night to a Thursday
night. The first set was capped to 20 hours due to disk usage issues. The second is considered a clean
run. The third implemented congestion window lowering, and is thus analyzed separately from the

previous two.

23

5 Results

We present the results of several runs performed on the Viasat testbed. We discuss the methods of data
collection and analysis as relates to We show that SEARCH improves the performance measurably on
larger downloads and compare how SEARCH performance develops compared to baseline as the size

of the download increases.

5.1 First-RTT and Wireless Loss

When using gperf and Quicly to download data on our Viasat testbed, we found a non-insignificant
number of runs reported loss in the first RTT after the connection establishment. This behavior is
specific to the satellite and does not occur in the emulation setup. The root cause of these reported
losses is not established. These runs occur whether or not SEARCH is enabled, and do not accurately
represent the impact that SEARCH has on the connection. Thus, these runs are excluded from further
analysis.

To ensure that we are measuring the impact of SEARCH itself, we discard runs that contain early
loss - defined as runs that contain a packet loss before the congestion point. We find that runs that
exit before 9 seconds have not entered congestion due to the underlying characteristics of the link
(per the baseline RTT), and are considered to have been subject to wireless loss before congestion
occurred. These runs are excluded (marked in the Wireless Loss column), unless SEARCH declared

an exit before that point.

5.2 Dataset Description

Table 1 displays Dataset 1, made up of the first and second (20hr, 24hr) long runs. These runs
were performed during a weekend in late March 2024, and during a weekday in early April 2024,
respectively. During these runs, SEARCH was configured to exit slow start without modifying the

congestion window.

First-RTT Loss Wireless Loss Clean Total
Baseline 103 12 544 659
SEARCH 116 8 535 659
Total 219 20 1079 1318

Table 1: Dataset 1 makeup, no CWND modification performed.

Table 2 displays Dataset 2, with runs performing congestion window modification, made up of the
third (24hr) long run performed during a weekday in early April, 2024. Runs with SEARCH enabled
are unable to be directly compared with dataset 1, but runs that only logged can be combined for

analysis.

24

First-RTT Loss Wireless Loss Clean Total
Baseline 106 22 232 360
SEARCH 83 23 254 360
Total 189 45 486 720

Table 2: Dataset 2 makeup, CWND modification performed.

Table 3 displays the statistics of the Baselines dataset, the combined dataset of runs with SEARCH

disabled. This increases the population size for analysis of baseline behaviour.

First-RTT Loss Wireless Loss Clean Total
Dataset 1 103 12 544 659
Dataset 2 106 22 232 360
Combined 209 34 776 1019

Table 3: Baselines dataset makeup, composed of non-SEARCH exit runs from Dataset 1 and Dataset
2.

For the remainder of this section, only the runs listed in the Clean columns of Tables 1, 2, and 3 are
considered for analysis. We do not consider runs that fall into the other categories because they are
considered transient loss that does not accurately reflect the impact of the changes to the slow start
algorithm. For runs with first-RTT loss, neither SEARCH nor the baseline slow start algorithm would
have impacted the performance of the run. For the runs meeting the wireless loss heuristic, the same
reasoning is applied, though by explicitly including runs where SEARCH was the root cause of that

early exit, we do not hide cases where SEARCH likely caused the run to perform worse than average.

5.3 Dataset Analysis

In Figure 8, we present a cumulative distribution function (CDF) of the cleaned baseline runs, all of
which log SEARCH information without performing the early exit from slow start. We observe that
for cleaned runs in this combined dataset, 45% of runs experience loss before SEARCH declares an
exit. In the remaining 55%, SEARCH declares an exit before loss occurs, and for 35% of those runs,
that exit point is found greater than one RTT before loss.

Table 4 lists the number of runs from Dataset 1 that succeed in delivering the specified byte counts.

We do not remove runs which fail to deliver the total desired byte count of 200MB in further evaluation.

Total 50MB 100MB 150MB 200MB
Baseline 544 449 421 386 358
SEARCH 535 445 419 380 323
Total 1079 894 840 766 681

Table 4: Count of runs delivering [N] MB, Dataset 1.

Figure 9 depicts the time to deliver [N] bytes for each run, with each run color-coded by its slow

start setting. This displays the runs that report loss in the first RTT trailing into the upper left, and

25

1.0+

0.84

0.6

CDF

0.4+

0.2 4

0.0

0 2 4 6
Ratio (s/s)

Figure 8: Ratio of time between SEARCH declared exit and loss occurring, CDF of cleaned runs.
Green dashed vertical line indicates exit one RTT before loss.

shows the exponential growth of the slow start phase for the remainder of the runs.

SEARCH ON (blue) vs SEARCH OFF (red)

501

40

104

0 25 50 75 100 125 150 175 200
Bytes delivered (MB)

Figure 9: Scatterplot displaying behaviour of all runs in Dataset 1.

Figure 10 compares the median, 25%, and 75% quartiles of the time required to deliver the specified
byte count for each set of runs. Prior to reaching 130MB, SEARCH and baseline perform nearly
identically, as SEARCH does not modify the behavior of standard slow start. At approximately
135MB, the median run without SEARCH begins deviating from the median run with SEARCH
enabled. The lower quartile of the baseline runs deviate from the lower quartile of the SEARCH runs

at 175MB, showing the impact that continuing to double the sending rate has on the overall goodput.

26

35

301

Time (s)
G

—— SEARCH OFF
—— SEARCH ON

0 25 50 75 100 125 150 175 200
Bytes delivered (MB)

Figure 10: Median time to download [N] MB, shading depicts 25% and 75% quartiles

Figure 11 depicts the median time savings by enabling SEARCH. We display the spread between

the difference of the quartiles as the shaded area. We find that SEARCH provides benefit by reducing

the download time of files over 125MB by up to three seconds by extending the region before packet

loss occurs compared to baseline.

Time (delta s)

25 50 75 100 125 150 175 200
Bytes delivered (MB)

Figure 11: Difference in median run timing, shading depicts absolute difference between quartiles

In Figure 12, we show CDFs of the time to download specific byte counts for all included runs.

The number of runs included in this analysis are presented in Table 4. We observe breakaway between

SEARCH and baseline beginning to appear in the 125MB CDF', and becoming more apparent as the

download progresses. We observe that 45% of runs have no visible difference in speed to download

150MB, an additional 40% of runs perform better with SEARCH by several seconds, and the remaining

15% form the tail of the CDF, where baseline performs slightly better than SEARCH. This difference

continues as more data is downloaded, with SEARCH expanding the gap by multiple seconds for

downloads in 40% of cases, while an additional 20-40% of runs lag behind baseline by similar amounts,

depending on the CDF considered. We observe a knee in early CDFs that begins to drop away

27

as the runs continue, which may be due to a subset of runs with early loss not removed by the

wireless/transient loss heuristic.

o 25 MB (off_n=472, on_n=460) 10 50 MB (off_ h=449, on_n=444) 10 75 MB (off_n=431, on_h=431) 10 100 MB (off n=421, on_n=419)

0.8 1 0.8 1 0.8 1 0.8 1
0.6 1 0.6 1 0.6 1 0.6 1
w w w w
[a} [a} =} [a}
9} o o o
0.4+ 0.4+ 0.4+ 0.4 4
0.2+ 0.2+ 0.2 1 0.2+
0.0 T T 0.0 T T 0.0 T T 0.0 T T
Time (s) Time (s) Time (s) Time (s)
10 125 MB (off_n=402, on_n=400) 10 150 MB (off_ n=386, on_n=380) 10 175 MB (off_ n=370, on_n=348) 10 200 MB (off_n=358, on_n=323)
0.8 1 0.8 1 0.8 0.8 1
0.6 4 0.6 1 0.6 0.6 1
' w 'S 'S
[a} =} =} =}
8} s} s} s}
0.4 1 0.4 1 0.4 1 0.4 1
0.2 0.2+ 0.2 1 0.2+
0.0 1 v v T T 0.0 T v v y - 0.0 T r r T y 0.0 T r T r y
10 20 30 40 50 10 20 30 40 58 10 20 30 40 50 10 20 30 40 50
Time (s) Time (s) SEARCH OFF Time (s) Time (s)
—— SEARCH ON

Figure 12: CDF's of the time taken to deliver [N] bytes, with surviving runs labeled in subtitles.

Finally, we present analysis comparing SEARCH CWND reduction to the equivalent CWND re-
duction if SEARCH declaring exit was treated as a packet loss, similar to exiting slow start due to
explicit congestion notification (ECN) marks. This analysis is presented in Figure 13 as a CDF. This
analysis stems from Dataset 2, with run statistics presented in Table 2. By reducing the CWND by
only the amount of bytes transmitted since congestion began, SEARCH is able to maintain a higher
sending rate that is more accurate to link capacity than it would if the exit was declared as a packet
loss. The congestion window reduction of CUBIC, when represented as a fraction of the congestion
window at exit, is a constant 0.3x. This is because CUBIC performs a constant reduction by (3, set
to 0.7 in most distributions. Only in a small fraction of runs does SEARCH remove more bytes from
the congestion window than CUBIC would. This tail may be modified by a comparison to remove the
minimum number of bytes between the two options, though more specific research would be required

to determine if this action is appropriate.

28

1.0

—— SEARCH Reduction
—— CUBIC Beta Reduction
0.8
0.6
w
a
o
0.4
0.2
0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6
CWND fraction removed

Figure 13: Ratio of the reduction of the CWND at SEARCH exit point to the original CWND value,
SEARCH computation vs CUBIC g multiplicative decrease

29

6 Discussion

In this section, we discuss experimental results and analyze the impact of SEARCH on connections

over the Viasat link.

6.1 SEARCH Performance

When analyzing the performance of SEARCH’s chokepoint detection heuristic, we find that the long
runs produced different results than prior experimentation had. A series of earlier pilot tests, collected
in February and March 2024, yielded a much higher ratio of times when SEARCH detected exit more
than one RTT before loss occurred. These tests were performed to help show the validity of the
algorithm, ensure the testing framework was stable, and develop the data processing pipeline before
longer tests were conducted. The results of these tests are not included in this paper due to concerns
of statistical significance, though they shape some of our understanding of experimental results. The
cause of this change is unknown, and may be due to weather-related events, as the sets of long runs
used were collected during days with intermittent rain, a known factor in reducing the performance of
the physical link. However, this is not definitively know.

By monitoring the quartiles, we avoid the impact that outliers have on the measurement of perfor-
mance. This is useful for showing how well SEARCH performs against baseline to some degree, but
do not present a complete view of the performance. Because runs were cut off at the 60s mark rather
than allowing the entire download to finish every time, the population observed as the number of
downloads increases self-selects for those runs that performed well the entire time, and avoids showing
the worst-case performance.

Given this caveat, while we show that SEARCH does improve performance by a significant, measur-
able margin, we acknowledge the indicators that show SEARCH not performing better than standard
slow start in all cases. The growth of the inversion of SEARCH performance and the base slow
start implementation as the download size grows may indicate that, in the default exit configuration,
SEARCH simply delays the realization of queuing loss. This theory is supported by the understanding
that, because SEARCH ideally must trigger after the chokepoint, there has already been some amount
of overshoot that is present on the link. This overshoot (excess bytes) only grows with the standard
exit strategy, and lowering the CWND on exit is a promising future strategy. We show that SEARCH
can compute a theoretical link capacity summing the previous RTTs of data, and that this sum is typ-
ically less aggressive than a standard CUBIC reduction. However, this does not show that SEARCH’s
prediction is entirely correct, which would require further measurements of the link capacity. Further,

we posit that a reduction directly to the link capacity may not be as beneficial to connection per-

30

formance due to the overshoot, and that lowering the CWND further than the congestion point may
enable those excess bytes to be cleared before congestion avoidance growth begins queuing additional

packets.

6.2 Modular Slow Start

The usage and implementation of various slow starts in this project as modular components to the
greater congestion control algorithm was useful in several ways. We found that the ability to separate
the behaviour of slow start from the behaviour of congestion avoidance did speed up some develop-
ment time when implementing different versions of SEARCH, and help clarify the difference between
implementing a fully different congestion controller from implementing a small part of the same. It
did present some technical problems during implementation, both in terms of design (where to place
the slow start function pointers in the codebase), and implementation debugging (ensuring that the

function pointers were not overwritten).

6.3 First-RTT Losses

One of the major problems faced during several stages of this project was the prevalence of losses
reported by Quicly in the first seconds of the connection, which we deemed “first-RTT loss”. We
found that this type of loss affected between 10-25% of all runs, and was not directly linked to time of
day, weather conditions that may affect link capacity, or server/client settings. The root cause of these
losses were traced to the generation of “gap acks”, QUIC’s equivalent of the TCP SACK extension.
We found that under some conditions, the client would generate a gap ack which the server would
interpret as a loss, although no packets were seen missing when packet captures were inspected. We

believe that this occurs due to particular variation in the link RTT causing a timeout on the client.

6.4 Quicly Performance

Another difficulty encountered with Quicly’s QUIC implementation is the implementation of maximum
window growth. Quicly implements maximum window growth independent of link BDP, only triggering
a max data frame (the control frame that increases the maximum window of the connection) to be
generated when the window is more than 50% utilized. When operating over a high-BDP link, following
this method causes the client to not recognize that it needs to alert the server that it is willing to accept
more data on the connection before the server becomes blocked. The server then sends a data blocked
control frame to the client, indicating a request for the maximum window to be expanded, creating

oscillatory behaviour.

31

Before updating the client during tests to operate with a max data setting of 256 MB, we exper-
imented with the addition of a Hybla-like maximum window growth. This change would grow the
maximum window by the max data parameter multiplied by the ratio of the initial RTT over a base
RTT (25ms). However, we rolled back this modification due to its violation of the max data param-
eter directly controlling the allowable growth of the maximum window. Therefore, we believe that
the client should implement BDP-aware behaviour to determine when the server may be reaching the
connection window limit based on the product of initial RTT and current throughput.

The impact on CPU usage with SEARCH enabled/disabled is believed to be minimal, though
this could become more of a concern as the RTTs are lowered on terrestrial links. The majority of
SEARCH computation is made up of accumulating delivered bytes, dependent on the delivery rate of

the connection, and the threshold computation on binrolls is performed in constant time.

32

7 Future Work

In this section, we discuss future improvements to this project and some limitations of this work.

7.1 Congestion Control

On the whole, modern congestion control algorithms are inefficient when handling the traffic of con-
nections including satellite links. The physical properties of the link are hostile towards non-adaptive
algorithms like HyStart, and most congestion control algorithms are developed with the intention of
usage over links with latencies of 100ms maximum. When the loss rate of satellite links are taken
into account as well, loss-based congestion control is unable to maintain high throughput. We propose

several methods for improving the performance of congestion control in

7.1.1 Slow Start

Because the behaviour of the default slow start algorithm is clocked by the RTT of the link, the link
RTT controls the rate at which the congestion window can grow. Hybla was the primary alternative
to this standard behaviour, but usage of this algorithm only exacerbates the post-slow start recovery
period due to larger increases in throughput placing more data on the link during the period between
reaching link capacity and loss occurring.

We propose several changes to SEARCH to be tested. First, modification to reduce CWND by the
number of bytes sent in the previous two RTTs was not shown to significantly effect the behaviour of
the algorithm compared to default SEARCH behaviour. We recommend both further testing of this
modification in order to determine if it is effective at increasing goodput beyond the default SEARCH
behaviour. Second, it is known that when SEARCH exits, the point at which the CWND surpassed
link capacity was at least one RTT in the past. This data is still present in queues on the link, and to
continue sending at the link rate will only grow these queues until loss occurs (though they do induce
less loss when drops occur due to congestion avoidance). By reducing the CWND below the estimated
link capacity by some amount, the losses may be delayed further. We recommend further investigation
of this concept, both for QUIC and TCP implementations of SEARCH.

Finally, we believe that an analysis of fairness between multiple QUIC flows is necessary to show
the impact of SEARCH on connections with the algorithm enabled, and how SEARCH causes flows
to behave in the presence of competing flows that do not utilize the algorithm. This analysis may
be completed for each iteration of SEARCH, as described above, which will additionally show the

behaviour of SEARCH competing with variants of itself.

33

7.1.2 Variable Congestion Window Growth

This work implemented SEARCH in QUIC and showed that the usage of the algorithm measurably
improved performance over baseline. We propose combining SEARCH and Hybla to produce a hybrid
algorithm, to implement RTT-aware startup behaviour and mitigate the impact of higher-than-baseline
losses introduced by Hybla with SEARCH’s capabilities. We believe that this modification may allow
Hybla to achieve greater performance for large downloads.

The RTT variation of the satellite link is a consequence of the satellite modem’s bandwidth nego-
tiation process during connection startup. CWND growth during slow start is typically performed by
increasing the CWND by the number of bytes acked in each incoming packet. We propose investigating
varying the rate of CWND growth during slow start by multiplying the number of bytes acked by some
variable based on the RTT change in previous rounds. This modification would attempt to smooth
CWND growth and queue usage during slow start, potentially increasing the effectiveness of SEARCH

by reducing the noise in the signal.

7.2 New Quicly Features

Between the initial forking of Quicly (October, 2023) and the completion of this project (April, 2024),
several features were added to the implementation that may affect future experimentation with this

library.

7.2.1 Pacing

Pacing modifies the sending rate of the endpoint to reduce spikes in network usage and reduce the
probability of transient packet drops and to improve compatibility and link sharing with other flows.
Pacing should be analyzed for its impact on the slow start phase - by increasing the spacing between
packets based on the initial RTT, the CWND may grow slower than it would if these packets were
clumped in transmissions. It may also improve the stability of the link as stated by reducing the

chance of spurious losses causing early exit for high-bandwidth flows.

7.2.2 Jump Start

Jump Start implements a fast-transmit option for a new non-initial application flows. This replaces
the slow start mechanism and attempts to fill the link with all available application data, within
limits defined by the congestion controller. This behaviour may cause issues with satellite terminals
in particular, due to the necessity of bandwidth reservation for new flows. Jump Start, by replacing
the slow start mechanism, may not implicitly benefit from the usage of SEARCH or other slow start

oriented heuristic measures. We recommend a modification to Jump Start to allow SEARCH byte

34

tracking during the time that Jump Start is active, if Jump Start completes the fast-transmit without

loss and enters the slow start phase, such that SEARCH can be active for the remainder of slow start.

7.3 Testing Procedures

In this work, we rate limit the outgoing link due to early testing with unlimited (1Gbps) throughput
generating loss events early in the connection, at approximately the 10s mark. We recommend further
work be done to understand the true cause of this loss, and determine if alternative rate-reducing
methods like packet pacing improve performance.

QUIC provides specification for a logging format, glog®, to improve visibility into flow behaviour.
This project did not utilize qlog, and we believe that future projects should include this in the workflow
from the beginning. By utilizing this logging format, packet and frame headers and significant events
are logged in a machine-readable format for later inspection. We believe that the usage of qlog will
improve the ability to inspect unexpected flow behaviour and increase the efficiency of future QUIC-
based projects. Quicly provides support for the format, though qlog is currently still in drafting by
the IETF.

Shttps://github.com/quicwg/qlog

35

8 Conclusion

This work provides a solution to the difficult environment of networking over GEO satellite links. Due
to the physical position of the satellite and infrastructure provided by it, these satellite links are high
bandwidth with high, variable latencies. Traditional congestion controllers fail to efficiently utilize
this link capacity due to their design and validation typically occurring over terrestrial Internet links.
Particularly, the QUIC transport protocol faces additional challenges due to technical limitations with
accelerating its flows using traditional proxy methods.

Of special concern is the slow start phase, which probes for link capacity during connection startup.
Slow start exit is typically due to packet loss, which causes multi-second delays while retransmission
occurs. Prior work has attempted to address this issue by a heuristic to determine the congestion
point before loss occurs, but RTT variation over the satellite triggers this check within the first several
round trips.

We introduce a new slow start algorithm, SEARCH, and a new method for implementing slow start
algorithms into a larger congestion control algorithm to improve the performance of QUIC over satellite
networks. We implement SEARCH in an open-source QUIC implementation, Quicly. We validate the
performance of QUIC with SEARCH in an emulated network constructed with Docker containers on
a host machine. We then validate the performance of QUIC with SEARCH on Viasat-2, a real GEO
satellite link, and develop harnesses to enable large-scale tests of the system with our modifications.
We show that after the first 125MB of a download, SEARCH lowers the median download time by up
to 3 seconds. Finally, we discuss future modifications to SEARCH and future research directions for

this project.

36

References

1]

[10]

J. Iyengar and M. Thomson, “QUIC: A UDP-based multiplexed and secure transport,” num
Pages: 151. [Online]. Available: https://datatracker.ietf.org/doc/rfc9000

David Belson and Lucas Pardue. Examining HTTP/3 usage one year on. [Online]. Available:

https://blog.cloudflare.com/http3-usage-one-year-on

S. Claypool, J. Chung, and M. Claypool, “Comparison of TCP congestion control performance
over a satellite network,” in Passive and Active Measurement, O. Hohlfeld, A. Lutu, and D. Levin,

Eds. Springer International Publishing, pp. 499-512.

J. Griner, J. Border, M. Kojo, Z. D. Shelby, and G. Montenegro, “Performance enhancing
proxies intended to mitigate link-related degradations,” num Pages: 45. [Ounline]. Available:

https://datatracker.ietf.org/doc/rfc3135

C. Caini and R. Firrincieli, “TCP hybla: a TCP enhancement for heterogeneous networks,” vol. 22,

no. 5, pp. 547-566. [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/sat.799

J. Gettys and K. Nichols, “Bufferbloat: Dark buffers in the internet: Networks without effective
AQM may again be vulnerable to congestion collapse.” vol. 9, no. 11, pp. 40-54. [Online].

Available: https://dl.acm.org/doi/10.1145/2063166.2071893

M. A. Kachooei, J. Chung, F. Li, B. Peters, and M. Claypool, “SEARCH: Robust TCP slow start
performance over satellite networks,” in 2028 IEEFE 48th Conference on Local Computer Networks

(LCN), pp. 1-4, ISSN: 2832-1421.

Geostationary orbit | satellite, communications & telemetry | britannica. [Online]. Available:

https://www.britannica.com/technology /low-Earth-orbit

Low earth orbit (LEO) | definition, distance, & facts | britannica. [Online]. Available:

https://www.britannica.com/technology/low-Earth-orbit

A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang, F. Kouranov,
I. Swett, J. Iyengar, J. Bailey, J. Dorfman, J. Roskind, J. Kulik, P. Westin, R. Tenneti,
R. Shade, R. Hamilton, V. Vasiliev, W.-T. Chang, and Z. Shi, “The QUIC transport
protocol: Design and internet-scale deployment,” in Proceedings of the Conference of the
ACM Special Interest Group on Data Communication. ACM, pp. 183-196. [Online]. Available:
https://dl.acm.org/doi/10.1145/3098822.3098842

37

[11]

[12]

[13]

[14]

[16]

[17]

[19]

S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed TCP variant,” vol. 42,
no. 5, pp. 64-74. [Online]. Available: https://dl.acm.org/doi/10.1145/1400097.1400105

N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson, “BBR: Congestion-based
congestion control: Measuring bottleneck bandwidth and round-trip propagation time,” vol. 14,

no. 5, pp. 20-53. [Online]. Available: https://dl.acm.org/doi/10.1145/3012426.3022184

W. R. Stevens, “TCP slow start, congestion avoidance, fast retransmit, and fast recovery

algorithms,” num Pages: 6. [Online]. Available: https://datatracker.ietf.org/doc/rfc2001

S. Ha and I. Rhee, “Taming the elephants: New TCP slow start,” vol. 55, no. 9, pp. 2092—-2110.
[Online]. Available: https://linkinghub.elsevier.com /retrieve/pii/S1389128611000363

M. A. Alrshah, M. A. Al-Maqri, and M. Othman, “Elastic-TCP: Flexible congestion control
algorithm to adapt for high-BDP networks,” vol. 13, no. 2, pp. 1336-1346. [Online]. Available:

https://ieeexplore.ieee.org/document /8642512/

C. Jin, D. Wei, and S. Low, “FAST TCP: motivation, architecture, algorithms, performance,”
in IEEE INFOCOM 2004, vol. 4, pp. 2490-2501 vol.4, ISSN: 0743-166X. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document /1354670

P. Zhao, B. Peters, J. Chung, and M. Claypool, “Competing TCP congestion control
algorithms over a satellite network,” in 2022 IEEE 19th Annual Consumer Communications
& Networking Conference (CCNC). IEEE Press, pp. 132-138. [Online]. Available:

https://doi.org/10.1109/CCNC49033.2022.9700541

Y. Kim, J.-Y. Jo, R. Harkanson, and K. Pham, “TCP-GEN framework to achieve high perfor-
mance for HATPE-encrypted TCP traffic in a satellite communication environment,” in 2018 IEEE

International Conference on Communications (ICC), pp. 1-7, ISSN: 1938-1883.

J. Pavur, M. Strohmeier, V. Lenders, and I. Martinovic, “QPEP: A QUIC-based approach
to encrypted performance enhancing proxies for high-latency satellite broadband.” [Online].

Available: http://arxiv.org/abs/2002.05091

D. Liu, M. Allman, S. Jin, and L. Wang, “Congestion con-
trol without a startup phase.” [Online]. Available: https://www.
semanticscholar.org/paper/Congestion-Control- Without-a-Startup-Phase-Liu- Allman/
2¢2e25a8d869f2¢954807f1dc6{964cca77836¢ce

B. Peters, P. Zhao, J. Chung, and M. Claypool, “TCP HyStart per-

formance over a satellite network.” [Online]. Available: https://www.

38

[24]

[26]

[27]

28]

semanticscholar.org/paper/TCP-HyStart- Performance-over-a-Satellite-Network- Peters-Zhao/
6e0d58fe936e8d48661ae8ef214577898fdb497e

P. Balasubramanian, Y. Huang, and M. Olson, “HyStart4++: Modified slow start for TCP,” p.
RFC9406. [Online]. Available: https://www.rfc-editor.org/info/rfc9406

A. Custura, T. Jones, R. Secchi, and G. Fairhurst, “Reducing the ac-
knowledgement frequency in IETF QUIC,” wvol. 41, no. 4, pp. 315-330,
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/sat.1466. [Online]. Available: https:

//onlinelibrary.wiley.com/doi/abs/10.1002/sat.1466

E. Volodina and E. P. Rathgeb, “The ACK policy optimization algorithm for QUIC,” in 2023
IEEFE J8th Conference on Local Computer Networks (LCN), pp. 1-8, ISSN: 2832-1421. [Online].

Available: https://ieeexplore.ieece.org/abstract/document/10223366

J. Border, B. Shah, C.-J. Su, and R. Torres, “Evaluating QUIC’s performance against
performance enhancing proxy over satellite link,” in 2020 IFIP Networking Conference

(Networking), pp. 755-760. [Online]. Available: https://ieeexplore.ieee.org/document/9142718

S. Endres, J. Deutschmann, K.-S. Hielscher, and R. German, “Performance of QUIC
implementations over geostationary satellite links.” [Online]. Available: http://arxiv.org/abs/

2202.08228

N. Kuhn, F. Michel, L. Thomas, E. Dubois, E. Lochin, F. Simo, and D. Pradas,
“QUIC: Opportunities and threats in SATCOM,” wvol. 40, mno. 6, pp. 379-
391, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/sat.1432. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/sat.1432

A. Mishra and B. Leong, “Containing the cambrian explosion in QUIC congestion
control,” in Proceedings of the 2023 ACM on Internet Measurement Conference, ser.
IMC ’23. Association for Computing Machinery, pp. 526-539. [Online]. Available:
https://dl.acm.org/doi/10.1145/3618257.3624811

39

A SEARCH Code Listing

#include "quicly/ss.h"
#include <stdint.h>

/*

This slow start algorithm implements the SEARCH algorithm, as derived in
https://web.cs.wpi.edu/ claypool/papers/search-wowmom-24/

*/

void ss_search20_delv_reset(quicly_cc_t *cc, const quicly_loss_t *loss, uint32_t bytes,
int64_t now);

void ss_search20_delv_reset(quicly_cc_t *cc, const quicly_loss_t *loss, uint32_t bytes,
int64_t now)

{
// Handy pointers to the cc struct
uint64_t* delv = cc->ss_state.search20delv.delv_bins;
int64_t* bin_end = &cc->ss_state.search20delv.bin_end;
uint32_t* bin_time = &cc->ss_state.search20delv.bin_time;
uint8_t* bin_rounds = &cc->ss_state.search20delv.bin_rounds;
// bin time is the size of each of the sent/delv bins
*bin_time = MAX((loss->rtt.latest * SEARCH20_WINDOW_MULTIPLIER) / (

SEARCH20_DELV_BIN_COUNT), 1);

*bin_end = now + *bin_time;
delv[0] = 0;
*bin_rounds = 0;

}

// bytes is the number of bytes acked in the last ACK frame
// inflight is sentmap->bytes_in_flight + bytes
void ss_searchQO_delv(quicly_cc_t *cc, const quicly_loss_t *loss, uint32_t bytes, uint64_t
largest_acked, uint32_t inflight,
uint64_t next_pn, int64_t now, uint32_t max_udp_payload_size)

// Handy pointers to the cc struct

uint64_t* delv = cc->ss_state.search20delv.delv_bins;
int64_t* bin_end = &cc->ss_state.search20delv.bin_end;
uint32_t* bin_time = &cc->ss_state.search20delv.bin_time;
uint8_t* bin_rounds = &cc->ss_state.search20delv.bin_rounds;

// struct initializations, everything else important has already been reset to O
if (*bin_time == 0) {
ss_search20_delv_reset(cc, loss, bytes, now);

// bin_shift is the number of bins to shift backwards, based on the latest RTT
uint8_t bin_shift = loss->rtt.latest / *bin_time;
if (bin_shift == 0) {
bin_shift = 1;
}
else if(loss->rtt.latest % *bin_time > (*bin_time / 2)) {
// round to the nearest bin (not doing interpolation yet)
bin_shift++;

// Possibly add some code here for dirty reset - run when no data has been sent on the
connection
// for a very long time, but application never received a loss (and so is still in

40

slow-start)
// This is likely handled by the prior binroll while loop, but that might add
unnecessary latency
// dependant on how long ago the last packet was acknowledged.
if (((now - *bin_end) / *bin_time) > SEARCH20_SENT_BIN_COUNT) {
ss_search20_delv_reset(cc, loss, bytes, now);

// perform prior binrolls before updating the latest bin to run SEARCH on if necessary
while((now - *bin_time) > (xbin_end)) {
*bin_end += *bin_time;
*bin_rounds += 1;
delv[(*bin_rounds % (SEARCH20_SENT_BIN_COUNT))] = O;
}
// perform current binroll
if ((now > (*bin_end))) {
// only perform SEARCH if there is enough data in the sent bins with the
current RTT
// bin_rounds tracks how many times we've rolled over, and a single window is
the entire
// delivered bin count (because of the definition of how bin_time is calculated

)
// thus, the number of rounds must be >= than the delv bin count + the bin
shift

if ((*bin_rounds) >= ((SEARCH20_DELV_BIN_COUNT) + bin_shift)
&& bin_shift < (SEARCH20_SENT_BIN_COUNT - SEARCH20_DELV_BIN_COUNT)) {
// do SEARCH
double shift_delv_sum = 0, delv_sum = O;
for (int i = *bin_rounds; i > (*¥bin_rounds - (SEARCH20_DELV_BIN_COUNT));
i--) {
// the value of bin_shift will always be at least 1, so the
current sent bin is never used
shift_delv_sum += delv[((i - bin_shift) % (
SEARCH20_SENT_BIN_COUNT))];
delv_sum += delv[(i % (SEARCH20_SENT_BIN_COUNT))];
}
if (shift_delv_sum >= 1) {
shift_delv_sum *= 2;
double normalized_diff = (shift_delv_sum - delv_sum) /
shift_delv_sum;
if (normalized_diff > SEARCH20_THRESH) {
// exit slow start
// TODO: Proposal to lower cwnd by tracked previously
sent bytes
if (cc->cwnd_maximum < cc->cwnd)
cc—->cwnd_maximum = cc->cwnd;
cc->ssthresh = cc->cwnd;
cc->cwnd_exiting_slow_start = cc->cwnd;
cc—>exit_slow_start_at = now;
return;

}
else if(bin_shift >= (SEARCH20_SENT_BIN_COUNT - SEARCH20_DELV_BIN_COUNT)) {
/* TODO: Double bin_time and consolidate for high RTT operation */

*bin_end += *bin_time;
*bin_rounds += 1;
delv[(*bin_rounds % (SEARCH20_SENT_BIN_COUNT))]

]
o

41

// £ill (updated) bin with latest acknowledged bytes

// TCP implementation has a method of tracking total delivered bytes to avoid this per
-packet

// computation, but we aren't doing that (yet). loss->total_bytes_sent looks
interesting, but

// does not seem to guarantee a match with conn->egress.max_data.sent (see loss.c)

delv[(*bin_rounds 7 (SEARCH20_SENT_BIN_COUNT))] += bytes;

// perform standard SS doubling
cc->cwnd += bytes;
if (cc->cwnd_maximum < cc->cwnd)

cc->cwnd_maximum = cc->cwnd;

return;

quicly_ss_type_t quicly_ss_type_search20_delv = { "search", ss_search20_delv };

42

