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ABSTRACT 

 

Protein-DNA crosslinking is an important method to study protein-

DNA interactions. Crosslinking by short pulsed UV lasers is a potentially 

powerful tool that results in efficient crosslinking, apparently by a two 

photon process. However, the major problem in using UV laser 

crosslinking is that the conditions which lead to high crosslinking 

efficiency also result in high DNA damage.  

 

Previously, it has been shown that a combination of femtosecond 

laser pulses at two different wavelengths, in the UV (266 nm) and the 

visible range (400 nm), increases the effective crosslinking yield (i.e. 

higher crosslinking yields with reduced DNA damage). This new strategy 

has the advantage that the intensity of the UV pulse for the first excitation 

step can be kept low, leading to lower UV-induced DNA damage and the 

second pulse at a visible wavelength can provide enough energy for the 

UV excited bases to cross their ionization threshold without damaging the 

DNA .  

 

The objective of this thesis project was to develop a novel UV 

laser cross-linking technique that would permit higher effective 

crosslinking yields with the commonly used pulses in the nanosecond (ns) 
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range. To serve this purpose we tried to extend the two-wavelength femto 

second laser irradiation approach to longer duration pulses.  

 

We chose MBP-PIF3 protein and its target G-box DNA motif as a 

model system. Before ultraviolet irradiation of the protein-DNA 

complexes in vitro, the specific binding interaction of purified MBP-PIF3 

protein with the G-box DNA motif was studied by Electrophoretic 

Mobility Shift Assay (EMSA).  

 

We irradiated the PIF3/DNA complexes with different laser 

systems (i.e. Nd:YAG and Dye lasers) and their combinations. We were 

expecting to see that the combination of UV laser pulses (260nm) with 

longer wavelength dye laser pulses (480nm) will produce higher effective 

crosslink yields relative to the yield from the UV pulses alone. 

 

However we could not detect any crosslinked MBP-PIF3/DNA 

bands by denaturing SDS-PAGE after irradiation of protein-DNA complex 

with UV laser pulses (266 nm, 5 ns, and ~5 mJ/pulse) alone or with UV 

(266 nm, 5 ns, and ~5 mJ/pulse) and blue laser pulses (480 nm, 800ns, and 

60 mJ/pulse) together. 
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It may be necessary in the future to experimentally determine the 

optimum range of photon flux for the PIF3/DNA complex to obtain 

maximum amount of crosslinking. Alternatively, this new approach could 

be tested on a different DNA-binding protein that has a greater propensity 

to undergo UV-promoted DNA crosslinking. 
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      INTRODUCTION 

        

         PHYTOCHROME SIGNALING and PIF3 

 
Plants have different photoreceptors which transduce informational 

light signals received from the environment to photoresponsive genes. The 

first group of photoreceptors is cryptochromes (Cashmore et al., 1999) and 

other blue/UV light absorbing receptors (Briggs et al., 2000). The second 

and best characterized group is phytochromes which are red (R) and far-

red (FR) light absorbing receptors (Neff et al., 2000). 

 

Phytochrome molecule is a soluble, dimeric chromoprotein 

consists of two ~125K subunits with a single covalently linked 

tetrapyrrole chromophore and it has an important regulatory property of 

photoreversible conversion between its R-absorbing biologically inactive 

Pr form and its FR-absorbing biologically active Pfr form (Quail, 1997 

and Smith, 2000).  

 

In Arabidopsis, the phytochrome family has five members, 

phytochromes (phy) A-E and each member has differential but sometimes 

overlapping functions. PhyA and phyB have different photosensory 

specificities: continuous monochromatic FR (FRc) is detected by phyA 

whereas continuous monochromatic R (Rc) is detected by phyB. It has 
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also been shown that phyC, phyD and phyE have different functions to 

transduce light signals than phyA and phyB (Yamaguchi et al., 1999 and 

Smith, 2000).  

 

There was little information about the initial step of the 

phytochrome signal transduction pathway until Quail and his coworkers 

identified a phytochrome-interacting factor, PIF3, by using a yeast two-

hybrid screen (Ni et al., 1998). PIF3 is likely a single-copy gene. It was 

mapped to chromosome 1 near PHYA using an arrayed YAC library. PIF3 

protein contains PAS, Per-Arnt-Sim-like domain; NLS, bipartite nuclear 

localization signal motif and bHLH, basic helix-loop-helix domain. It was 

localized to the nucleus in transient transfection assays, indicating an 

important role in regulation of gene expression (Ni et al., 1998). PIF3 was 

showed to function in both phyA and phyB signal transduction pathways 

as a result of its binding to C-terminal domains of both phyA and phyB. 

Therefore, PIF3 has been assigned as an important player of direct 

signaling pathway from the phytochromes to the photoresponsive genes 

(Zhu et al., 2000). 

 

Sakamoto and Nagatani, in 1996, proposed that phyB is 

translocated from cytoplasm to the nucleus after the exposion of 

Arabidopsis seedlings to red. In 1999 Yamaguchi and coworkers showed 

that treatment of the transgenic Arabidopsis seedlings with continuous red 
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light induces accumulation of phyB-GFP fusion in the nucleus (Sakamoto 

and Nagatani, 1996, Yamaguchi et al., 1999).  

 

As a conclusion of this information one of the strongest proposed 

mechanisms explains the PIF3 and phytochromes interaction such that 

phytochrome is cytoplasmic and PIF3 is nuclear in the dark, upon light 

absorption Pfr formation induces the translocation of phytochrome from 

cytoplasm to the nucleus where it can interact with its signaling partner 

PIF3. The PAS domain of PIF3 protein might be the part of protein-

protein interactions to form homo- or heterodimerization and PIF3 and 

phytochromes may also interact through their PAS domains (Yamaguchi 

et al., 1999, Ni et al., 1999, and Zhu et al., 2000). 

 

It was shown that full-length phyB binds PIF3 in vitro only in its 

active form and dissociates after conversion to its inactive form (Zhu et 

al., 2000). It has been demonstrated that the binding of full-length 

phytochrome B to PIF3 is photoregulated, occurring in its biologically 

active Pfr form. PhyB can bind to PIF3 in darkness after photoconversion 

to its active form, without the need for continuous photoactivation. Once 

bound reconversion to its inactive Pr form causes the rapid dissociation of 

phyB from PIF3. The rapid and reversible binding mechanism of phyB to 

PIF3 by means of photoinduced switching between the active and inactive 

forms of the phyB might be important in regulation of signal flow to PIF3, 
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which as a transcriptional regulator regulates photoresponsive target genes 

(Ni et al., 1999). 

 

In the literature it has been stated that the majority of the bHLH 

proteins bind as dimers to the E box motif of the DNA which has the core 

sequence CANNTG and the palindromic G box motif CACGTG as a 

specific member of the E box family is found in many plant gene 

promoters (Ni et al., 1998). G-box motif binds not only bHLH proteins, 

but also members of the bZIP family of the DNA-binding proteins such as 

HY5. PIF3, with an arginine residue at position 13 in the bHLH domain, is 

the member of Group B subclass of the bHLH family known to bind the 

G-box motif (Quail, 2000). 

 

According to the research done by Martinez-Garcia and coworkers 

in 2000, PIF3 as a transcription factor binds specifically to a G-box motif 

found in light-regulated gene promoters and photoactivated phyB binds to 

G-box-bound PIF3. PIF3 might bind its specific DNA sequence as a 

homodimer according to the previously studied structure of DNA-bHLH 

protein complexes. Moreover it was shown that the bHLH domain of PIF3 

by itself is sufficient for sequence-specific binding to the G-box motif and 

phyB binds specifically to DNA-bound PIF3 only after R light-driven 

conversion to its active Pfr form (PfrB). However phyB does not bind to 

the truncated fragment of PIF3 containing only the bHLH domain when it 
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is in contact with its target sequence which indicates that some different 

factors other than bHLH domain of PIF3 are also required in phyB-PIF3 

interaction. Upon exposure to FR pulses binding of phyB to DNA-bound 

PIF3 rapidly reversed by conversion of phyB to its inactive Pr form which 

proves that the biologically active form of phyB is required in its 

interaction with G-box bound PIF3 (Martinez-Garcia et al., 2000).  

 

PIF3 exhibited interaction with G-box containing sequences from 

the promoters of a variety of light-regulated genes and did not interact 

with any other photoresponsive genes without its specific sequence motif 

which means some phytochrome-responsive genes may have different 

pathways independent of PIF3. It can be concluded that PIF3 functions to 

direct phyB specifically to the promoters of several phytochrome 

responsive genes in early direct signaling pathways of phytochromes 

(Martinez-Garcia et al., 2000). 

 

According to the data from the studies of Zhu and coworkers, 

phyA also binds selectively and reversibly to PIF3 upon photoconversion 

to its active conformer Pfr, but the apparent affinity of phyA for PIF3 is 

10-fold lower than of phyB which suggests that PIF3 has a dominant role 

in phyB signaling, but may have only minor role in phyA signaling. PhyB 

stoichiometrically binds to PIF3 at an equimolar ratio which makes a 

complex with one dimeric partner molecule of each partner. In the 
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recognition process of phyB by PIF3 in addition to the PAS domain of 

PIF3, a second domain in the C-terminal domain of PIF3 is also required 

(Zhu et al., 2000). 

 

 

 

          Fig. 1: Proposed mechanism of phyB regulation of gene expression 

(Quail, 2000). 
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METHODS FOR STUDYING PROTEIN-DNA 

INTERACTIONS 

 

Protein-nucleic acid interactions play a major role in basic cellular 

processes such as DNA replication, recombination, repair, and regulation 

of gene expression as well as RNA processing transport, and translation 

(Ho et al., 1994).  

 

Different methods have been employed to study protein-DNA 

interactions in vitro and in vivo. Among these methods; the 

electrophoretic mobility shit assay (EMSA) has been commonly applied to 

nucleoprotein complexes formed in vitro to analyze binding of specific 

proteins to specific DNA sequences but it is not applicable to vivo studies 

(Lejnine et al., 1999).   Although EMSA is a useful technique it has some 

limitations: (i) some protein-DNA interactions are not stable enough to 

survive the electrophoretic separation, (ii) it does not give information 

about the size of the protein in the complex, and (iii) it is not useful for the 

determination of binding kinetics parameters (Ho et al., 1994, and Grishko 

et al., 1999).  

 

Immunoprecipitation of native nucleoprotein complexes is another 

widely used technique that can be applied to in vivo systems to isolate the 

native proteins bound to specific nucleic acid sequences. However, as seen 
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in EMSA, immunoprecipitation assays might also give some artificial 

results, i.e. redistribution of the nucleoprotein complexes can not be 

prevented because there is no formation of covalent bonding between 

protein and DNA in these techniques (Lejnine et al., 1999). 

 

As another promising method, chemical crosslinking with 

formaldehyde has been shown to have the potential to ‘freeze’ DNA-

protein interactions by inducing chemical bonds between protein and 

DNA in vivo. Although chemical crosslinking with formaldehyde has 

been widely used to study the distribution of histones and other proteins 

along DNA, it affects the native equilibria by changing protein charges, 

creating protein-protein crosslinks, and introducing chemical bridges 

between DNA and protein. Moreover, it is not clear to what extent 

chemical cross-linking is a quantitative measure of DNA binding, because 

protein-protein crosslinks lead to detection of proteins which are not 

directly in contact with DNA but in contact with other DNA binding 

proteins, and its long incubation times perturb the complex under 

investigation (Walter and Biggin, 1997, Russmann et al., 1998, Murtin et 

al., 1998, Gravel et al., 1998 and Lejnine et al., 1999).  

 

  Ultraviolet crosslinking has been proved to overcome these 

limitations. UV light is a “zero-length” cross-linker since UV photolysis 

does not require any cross-linking reagents in contrast to the spacers used 
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between the protein and the nucleic acid in chemical cross-linking 

techniques. UV-light induced crosslinking is a powerful alternative to 

formaldehyde that produces covalent bond between contact points of 

nucleic acid and protein within a microsecond with minimum damage of 

their native equilibria. Therefore, photochemical crosslinking is proposed 

to be restricted to the amino acid residues that are directly interacting with 

the nucleic acids within the original complex eliminating the possibility of 

non-specific cross-linking (Merrill et al., 1984, Williams et al., 1991, and 

Walter and Biggin, 1997). 

 

In vivo ultraviolet cross-linking provides a method to examine 

protein-DNA interactions as they occur under physiological conditions. It 

has been used to study nucleic acid interactions of a variety of proteins, 

including RNA polymerase II (Gilmour and Lis, 1986), topoisomerase I, 

and sequence-specific transcription factors such as Eve, Zeste (Walter et 

al., 1994), and GAGA (O’Brien et al., 1995). In many cases, the pattern of 

DNA binding discovered differs greatly from that predicted by earlier 

indirect approaches. It has also been demonstrated that UV cross-linking 

yields a highly accurate measure of DNA binding. Therefore, UV cross-

linking can be used to study quantitatively the DNA binding of sequence-

specific transcription factors in vivo (Boyd and Farnham, 1997, and 

Walter and Biggin, 1997). 
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Some measurements of in vivo DNA binding by sequence-specific 

transcription factors in Drosophila embryos and tissue culture cells have 

been performed using UV crosslinking (Walter and Biggin, 1997). 

According to their results which were supported by their previous research 

(Walter et al., 1994), they have stated that in order to use UV cross-linking 

to study protein-DNA interaction the protein must cross-link to DNA with 

reasonable efficiency.  

 

Another requirement for the efficient cross-linking is that the 

binding site of the protein must contain thymidine residues since 

thymidine residues cross-link to protein much more efficiently than other 

nucleotides. However, a precise geometry between protein and nucleic 

acid residues is also required for efficient cross-linking to occur, as the 

presence of thymidine residues in the binding sequence does not guarantee 

efficient cross-linking. Because of these reasons they advised that the 

efficiency of UV cross-linking of a protein to a binding site should be 

examined in vitro before in vivo experiments (Walter and Biggin, 1997). 

 

           In the literature, two different techniques have been used to 

irradiate samples with UV light of wavelength near 260nm: Low intensity 

UV light and high intensity UV light (Budowsky et al., 1986). For low 

intensity UV, the ultraviolet radiation of standard light sources has been 

widely used to generate polynucleotide-protein crosslinks in 
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nucleoproteins for different purposes such as to identify amino acid 

residues that have been crosslinked to nucleic acids (i.e. identification of 

the site of the cross-linking) (Merrill et al., 1984), to determine the 

orientation of a DNA binding motif in a protein-DNA complex 

(Pendergrast et al., 1992), to study DNA binding specifity of two 

homeodomain proteins in vitro and in Drosophila embryos (Walter and 

Biggin, 1996), to quantitatively measure in vivo DNA binding by 

sequence-specific transcription factors (Walter and Biggin, 1997), to study 

the conformational flexibility of the DNA-binding domains on DNA target 

(Cleary et al., 1997), to locate a binding site of hRPA70 on the damaged 

DNA strand (Schweizer et al., 1999), to study crosslinking of the 

complementary strands of DNA by UV light (Nejedly et al., 2001), to 

identify the part of the gene which binds to the multi liver-specific factors 

to activate gene transcription in liver cells (Handa et al., 2002) , to study in 

vivo footprinting with UV irradiation ( Pfeifer and Tornaletti, 1997), to 

study the effects of  Myc, Max and USF proteins on the chromosomal cad 

promoter (Boyd and Farnham, 1997). 

 

 Although it is superior than most of the other methods, 

photochemical crosslinking with conventional UV light sources; (i) may 

require prolonged irradiation ranging from minutes to several hours to 

obtain reasonable amount of crosslinking that causes extensive 

photodamage to DNA especially by introducing thymidine dimers,  creates 
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conditions for artifactual crosslinking of UV damaged molecules, and is 

not appropriate for the study of rapid binding kinetics, (ii) it can produce 

protein-protein crosslinking due to its broad wavelength region, and (iii) 

generates heat which can also perturb the protein-DNA interactions (Ho et 

al., 1994, Moss et al., 1997 and Russmann et al., 1998 ).  

 

 As a powerful UV light source high powered UV lasers have been 

shown to eliminate some of these problems such as it induces high 

efficiency of crosslinking in a single or small number of pulses by 

delivering photons in time intervals on the order of nano- or even pico and 

femtoseconds (Moss et al., 1997, Budowsky et al., and Russmann et al., 

1997) and it damages DNA less than conventional UV irradiation (Lejnine 

et al., 1999). Furthermore, 266nm laser light does not produce protein-

protein crosslinks (Angelov et al., 1988). It increases the efficiency of 

crosslinking sometimes with a single pulse (Ho et al., 1994). 

 

From the results of different in vivo and in vitro experiments high 

powered UV lasers have been reported to increase crosslinking 

efficiencies compared to non-coherent UV lamps by two orders of 

magnitude i.e., histones were crosslinked at an efficiency of 15-20% to 

DNA in reconstituted histone-DNA complexes (Angelov et al., 1988) 

whereas this yield is ~0.1% with a conventional lamp (Hockensmith et al., 

1986)., high protein-DNA crosslinking yields up to 30% were obtained for 
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the progesterone receptor (Russmann et al., 1997) and up to 47% of the 

oligodeoxynucleotides were crosslinked to recombinant heat-shock 

transcription factor in vitro (Zhang et al., 2001).  

 

Budowsky and coworkers have compared RNA-protein cross-

linking yields using low- and high-intensity irradiations. They found out 

that the cross-linking yield with high intensity irradiation was 20 to 100 

times larger than those yields achieved with low intensity UV irradiation 

(Budowsky et al., 1986). 

 

Zhang and coworkers laser irradiated Arabidopsis cell-culture 

tissue at 266 nm for 1 min with total 1800 mJ of energy and demonstrated 

that UV laser light can be used as a crosslinker for transcription factors in 

vivo. However, in contrast to UV laser light, using 15 W UV bulbs did not 

induce any protein-DNA crosslinking (Zhang et al., 2001). 

 

 The reason for the high crosslinking efficiency of UV lasers 

compared to conventional UV lamps is described as the function of high 

power of UV laser pulses (Angelov et al., 1988). Using conventional UV 

light, DNA bases excited by absorption of single photon undergo low 

efficiency crosslinking reaction whereas the high power UV laser pulses 

increase the probability for the absorption of a second photon by an 

already excited DNA base. Absorption of the second photon leads to a 
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high yield of cationic radicals which results in a high efficiency of protein-

DNA crosslinking (Zhang et al., 2001).  

 

 UV laser crosslinking is the most advantageous contemporary 

method to study protein-DNA interactions both in vivo and in vitro and 

easily applicable to many different systems (Moss et al., 1997, and Zhang 

et al., 2001). 

 

MECHANISM OF PHOTOCROSS-LINKING OF 

NONSUBSTITUTED NUCLEIC ACIDS BY LOW INTENSITY 

IRRADIATION 

 
The polynucleotide-protein cross-links, induced by the ultraviolet 

(250-270 nm) irradiation of nucleoproteins, are formed mainly as a result 

of reactions of highly reactive nucleic acid bases with protein amino acid 

residues (Budowsky et al., 1986). The absorption spectra of nucleic acid 

bases in aqueous solution with λmax between 250 and 270nm is due to 

ππ* electronic transitions of pyrimidine and purine rings (Nikogosyan, 

1990). According to one of the defined mechanisms of photocross-linking; 

low intensity UV irradiation leads to single photon excitation mechanism 

where a nucleic acid base is excited to the first excited singlet state (S1 life 

time = 10ps) by absorption of a single photon between 250 and 270nm 

which can either react, relax back to the ground state, or intersystem cross 
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to the first excited triplet state (T1 lifetime = 1 microsecond) as shown in 

Fig. 2.  

 

 

Fig. 2: Simplified scheme of singlet and triplet excited electronic states of 

nucleic acid bases in aqueous solution and routes of deactivation of 

electronic excitation energy (Nikogosyan, 1990). 

 

  Either S1 or T1 excited states can be involved in photocross-linking 

between the nucleic acid bases and amino acid residues which must be in 

direct contact at the time of excitation to be able to involve short lived S1 

or T1  states in the cross-linking mechanism. Therefore, this method should 

not detect cross-linking of proteins that do not contact DNA directly 

(Meisenheimer and Koch, 1997, Walter and Biggin, 1997). 
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The main role of amino acid residues in proposed photo chemical 

cross-linking mechanisms has been defined differently as hydrogen atom 

donors, electron donors, or nucleophiles (Meisenheimer and Koch, 1997). 

One of the most common mechanisms of the UV light induced 

crosslinking reaction is a free radical mechanism where the photoexcited 

nucleic acid base abstracts a hydrogen atom from a neighboring amino 

acid residue to produce a pyrimidinly radical along with a radical on the 

side chain of amino acid which functions as a hydrogen atom donor and 

the covalent bond formation occurs by combination of the radicals as 

shown in Fig. 4 (Meisenheimer and Koch, 1997, and Williams et al., 

1991). Theoretically crosslinking can occur between any amino acids and 

nucleic acid bases and because of this property UV crosslinking method 

can be considered as widely applicable to any systems (Williams et al., 

1991, and Zhang, 2001).  

 

 

Fig. 3: Proposed mechanism for the photoaddition of L-cysteine to uracil. 
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Some model experiments were performed in 1984 to measure the 

quantum yields of the photoaddition of 20 amino acids to calf thymus 

DNA (Shetlar et al., 1984). As a result of these studies: Cys, Lys, Phe, 

Trp, and Tyr were found to be the most reactive amino acids whereas His, 

Glu, and Asp showed moderate reactivity and Arg, Leu were defined as 

the least reactive amino acids in photocross-linking to DNA. However, it 

was also concluded that any amino acid residue can participate in 

photocross-linking mechanism (Meisenheimer and Koch, 1997).  

 

According to some other previous studies related to the 

photoactivity of amino acid residues in cross-linking mechanism; serine, 

isoleucine, threonine, tyrosine and cysteine have been shown to be 

effective in the formation of covalent bonds in different protein and 

nucleic acid systems. It has also been stated that amino acids responsible 

for the cross-linking reactions were found to be in close contact to the 

nucleic acid bases in those cases where three dimensional structures of the 

proteins are available (Merrill et al., 1984).  

 

Although any nucleic acid bases can be effective in generation of 

polynucleotide-protein crosslinks in nucleoproteins, the pyrimidines are 

photochemically more reactive than the purines. Among the pyrimidines 

thymine is the most photoreactive deoxynucleotide and uridine is the 

ribonucleotide base yielding the most efficient photochemical cross-

linking to proteins. In one of their studies the Hockensmith group ranked 
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the nucleotide residues in order of decreasing photoreactivity as: 

dT>>dC>rU>rC, dA, dG (Hockensmith et al., 1986, Williams et al., 1991, 

and Russmann et al., 1998).  

 

Some of the main advantages of nonsubstituted nucleic acid-

protein photocross-linking by single photon excitation mechanism with 

low-intensity UV irradiation are after excitation of the nucleic bases, a 

reaction can take place with numerous amino acid residues and reported 

yields of cross-linking have been anywhere from ~5 to 20% with some 

yields reported as high as 85%. On the other hand irradiation at 

wavelengths below 300nm induces absorption by other chromophores in 

the complex which can lower the crosslinking yield and/or can make the 

characterization of the cross-linking reaction complicated. Long 

irradiation times needed to obtain a reasonable crosslinking yield might be 

other drawbacks of low-intensity UV irradiation (Meisenheimer and Koch, 

1997). 
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PHOTOCROSSLINKING OF SUBSTITUTED NUCLEIC ACIDS 

BY SINGLE PHOTON EXCITATION 

 

Photocross-linking can be accomplished either by irradiating the 

wild-type complex or by irradiating a photoactivatable group incorporated 

into the nucleic acid or amino acid residue (Meisenheimer and Koch, 

1997).  

 

Substituted nucleic acids with some advantages over non-

substituted nucleic acids have been used in some photocross-linking 

experiments. For example in order to study site-specific photocross-

linking of human replication protein (hRPA) to ssDNA, thymidine-analog 

5-iodo-2’-deoxyuridin (5-IdU) was used as a zero-length crosslinking 

chromophore. Homolysis of carbon-iodine bond of 5-IdU upon UV-

irradiation forms uridyl radical with an extremely short lifetime and short 

lived radical allows crosslinking only  to amino acids which are in close 

distance. This advantageous property of 5-IdU has been used to find out 

close contact points in protein-nucleic acid complexes.  

 

The higher excitation wavelength of 5-IdU-chromophore above 

300nm is also another advantage of 5-IdU-chromophore which minimizes 

photodamaging of protein and nucleic acid and reduces nonspecific 

photocross-linking. 

 28



Several studies have shown that for ssDNA-binding proteins; π-

stacking interactions between the unpaired photoreactive nucleobases and 

hydrophobic, mainly aromatic, amino acid side chains facilitate excitation 

and result in efficient cross-linking. In this specific study it has also been 

stated that high cross-linking yield of protein, up to 60%, might be the 

result of interactions of aromatic amino acid residues within its ssDNA 

binding domain with 5-IdU substituted DNA (Schweizer et al., 1999). 

 

PHOTOLESIONS IN NUCLEIC ACID BIOPOLYMERS UNDER 

LOW-INTENSITY UV IRRADITION 

 

Some specific photolesions have formed in nucleic acid 

biopolymers if they exposed to low-intensity UV irradiation. Purines are 

known to be much more photostable, i.e. less photoreactive, than 

pyrimidines and because of this purine photoproducts do not play a 

dominant role in UV photolysis of nucleic acids (Nikogosyan, 1990 and 

Russmann et al., 1998).  

 

There are two main types of photoproducts forming with low-

intensity UV irradiation of pyrimidines in aqueous solution: cyclobutyl 

dimers, best known photoproduct in DNA upon UV irradiation, and 

photohydrates. 
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Cyclobutane-type pyrimidine dimers such as thymine-thymine, 

thymine-cytosine and uracil-uracil dimers are the most important UV 

induced photolesions observed in DNA and/or RNA with the highest 

quantum yields ranges from 1 to 3 percent and cyclobutane dimers are 

mostly seen at 5’-TpT sites (Nikogosyan, 1990, and Pfeifer and Tornaletti, 

1997). 

 

Pyrimidine photodimerization involves the breaking of the C5-C6 

double bond in two adjacent pyrimidine bases and the formation of a 

cyclobutane ring between these bases as shown in Fig. 4a (Nikogosyan, 

1990). Cyclobutane pyrimidine dimers have cis-syn, cis-anti, trans-syn 

and trans-anti isomers and the cis-syn dimer is dominant in UV irradiation 

of DNA.  

It was stated that in a dilute aqueous solution (< 10-3 M) the 

excitation of the triplet state (T1) of the nucleic acid base leads to the 

dimerization reaction under low intensity UV irradiation. As a result of 

this data it can be stated that increasing the quantum yield of intersystem 

crossing makes the dimerization quantum yield higher (Nikogosyan, 1990, 

and Lejnine et al., 1999).   
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Fig. 4: Photochemical reactions of pyrimidine bases: dimerization of 

thymine (a) and hydration of uracil (b) (Nikogosyan, 1990). 

 

It has been shown that the UV absorption spectra of dimers are 

shifted to shorter wavelengths than the monomers. Irradiation with UV 

light in the spectral region of λ ~ 280nm where dimers do not absorb 

results in accumulation of dimers whereas shorter-wave UV irradiation λ 

~ 240nm causes the photosplitting of the cyclobutadipyrimidines 

(Nikogosyan, 1990). 

 

It has been proposed that formation of the intrastrand thymine 

dimer also depends on the conformational change of DNA from the 

canonical geometry for the neighboring thymines to adopt a mutual 

geometry required for crosslinking (Nejedly et al., 2001).  
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Pyrimidine hydration, as the second most common photolesion 

under low intensity UV irradiation, occurs as a result of the hydration of 

C5-C6 double bond and is particularly dominant in uracil and cytosine as 

shown in Fig. 3b (Nikogosyan, 1990). Pyrimidine hydrates such as uracil 

and cytosine hydrates, quantum yield about 1 per cent, are common 

mainly in single-stranded nucleic acids i.e. RNA and denatured DNA upon 

low-intensity UV irradiation (Nikogosyan, 1990). Pyrimidine hydrates are 

believed to be formed from the excited S1 level or from the vibrationally 

excited ground So* state. The photohydration quantum yield is 

independent of irradiation wavelength (Nikogosyan, 1990). 

 

None-cyclobutane-type dimers, also known as pyrimidine (6-4) 

pyrimidine photoproducts, involve a single covalent bond between 

positions 6 and 4 of two adjacent pyrimidines (Pfeifer and Tornaletti, 

1997). (6-4) photoproducts are formed as a result of excitation of cytosine-

thymine and thymine-thymine nucleotide pairs under low-intensity UV 

irradiation with a relatively low quantum yield. (6-4) photoproducts are 

most frequently detected at 5’-TpC and 5’-CpC sequences (Pfeifer and 

Tornaletti, 1997). 

 

Single-strand breaks (ssb) of sugar-phosphate chains in double-

stranded DNA and breaks of the sugar-phosphate chain in single-stranded 

DNA and RNA are also important changes in the secondary structure of 
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nucleic acids induced by low-intensity UV radiation. Such lesions form as 

a result of the interaction between the hydroxyl radical OH⋅ , product of 

photodissociation of water molecule, and nucleic acids (Nikogosyan, 

1990).  

 

Formation of covalent crosslinks between two complementary 

DNA chains is another type of UV-induced photolesions which also 

affects nucleic acid secondary structure. Studies with short DNA 

fragments have shown that thymine is not required for the DNA strands to 

be crosslinked upon low intensity UV irradiation. It has been 

demonstrated that complementary DNA strands of human chromosomes 

are crosslinked at very low doses of UV irradiation and crosslinking of the 

complementary strands increases with the increasing (A+T) content of 

DNA. Interstrand crosslinks formation may also require that two bases 

should adopt a favorable mutual orientation as seen in intrastrand thymine 

dimer formation (Nikogosyan, 1990, and Nejedly et al., 2001).   

 

Formation of DNA-protein and RNA-protein crosslinks with low-

intensity UV irradiation (λ=254nm) are specific type of photolesions 

which is widely used for studying the relative spatial arrangement of 

nucleic acids and proteins in UV-induced complexes and for 

understanding the mechanism of complex formation (Nikogosyan, 1990 

and Williams and Konigsberg, 1991). Buck and Cannon published a 
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simple procedure for visualizing protein-nucleic acid complexes by 

photochemical crosslinking in 1994. In their research it has been stated 

that protein crosslinking to DNA is effective at suppressing the UV light 

reactivity of certain residues in the promoter target DNA due to inhibition 

of pyrimidine dimer formation (Buck and Cannon, 1994).  

 

FACTORS AFFECTING THE EXTENT OF PHOTOCHEMICAL 

CROSS-LINKING UNDER LOW INTENSITY UV LIGHT 

 

To be able to study any protein-DNA interactions by UV cross-

linking, the yield of formation of covalent complex upon low intensity UV 

irradiation should be sufficient enough to make detailed chemical 

characterization. There are some important factors affecting the rate and 

extent of photochemical cross-linking under low-intensity UV light such 

that to obtain a reasonable amount of cross-linking in a specific protein-

nucleic acid system one should consider both the experimental conditions 

as well as the photochemical nature of the nucleic acid, protein and the 

three-dimensional structure of the complex (Williams and Konigsberg, 

1991).  

 

The very first factor for efficient photocross-linking is the extent of 

the protein in the reaction mixture that is actually complexed with its 

specific nucleic acid sequence. To serve this purpose preliminary band-
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shift experiments are performed in order to make sure that experimental 

conditions used for crosslinking experiments support higher yield of 

protein-DNA complex formation. Before UV irradiation; the optimum 

amount of protein and nucleic acid, and the salt concentration of the 

binding buffer for higher yield of complex formation should be 

determined (Williams and Konigsberg, 1991, Russmann et al., 1997 and 

Ho et al., 1994). Merrill and his coworkers have been demonstrated that 

the decline in the amount of complex formation due to disruptive 

electrostatic forces provided by high NaCl concentration is directly 

proportional to the decrease in the amount of photo cross-linked 

complexes. Moreover when they carried out the binding reaction in 2M 

NaCl no cross-linking was observed (Merrill et al., 1984). 

 

Another important variable to obtain maximum amount of cross-

linking is the experimental determination of the optimum dose of photon 

flux for the system under study. It has been stated in the literature that the 

amount of photon fluxes in the range from 0.2 to 2 J/cm2 can provide 

maximum extent of photo cross-linking.  

 

Exposure to UV light denatures proteins and there is a variation in 

the photosensitivity of proteins. Some proteins have not shown any 

detectable photodenaturation at all. To unambiguously identify cross-

linking sites only the native protein should be cross-linked to the nucleic 
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acid. Once an optimum dose of UV light has been found the extent of 

photoinactivation of the protein at this dose as well as effect of denatured 

protein on cross-linking should be determined. Only the native (non-

denatured) protein should take place in cross-linking to nucleic acid 

(Lejnine et al., 1999, Williams and Konigsberg, 1991 and Meisenheimer 

and Koch, 1997).  

 

In the literature Merrill group has shown that the extent of 

crosslinking with previously irradiated protein sample resulted in 3.8% 

decrease in cross-linking compared to the identical sample of unirradiated 

protein, which suggests that as protein is exposed to UV light it loses its 

ability to bind DNA and only the native form of protein plays a role in 

cross-linking to nucleic acids (Merrill et al., 1984).  

 

One of the likely requirements for efficient cross-linking is that the 

binding site of the protein must contain thymidine residues as they are 

more efficient in cross-linking than the other nucleotides (Hockensmith et 

al., 1991). However, a matching geometry between protein and nucleic 

acid residues is also another important requirement for efficient cross-

linking, since the presence of thymidine residues in the recognition 

sequence does not always guarantee higher yield of cross-linking (Walter 

and Biggin, 1997). 
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Topology is an important factor for amino acids to cross-link to 

nucleic acids and it has been shown that for some systems a specific 

topological arrangement between an amino acid residue and a nucleotide 

base must be obtained to have successful photochemical crosslinking 

(Williams and Konigsberg, 1991). Many transcription factors bend or kink 

the DNA at or near their recognition site, and these structural alterations in 

the DNA double helix may favor or disfavor the formation of UV 

photoproducts at specific sequences (Pfeifer and Tornaletti, 1997). 

 

MECHANISM OF PHOTOCROSS-LINKING OF 

NONSUBSTITUTED NUCLEIC ACIDS BY HIGH INTENSITY 

IRRADIATION 

 

The mechanism of UV laser crosslinking has been understood as a 

two photon process (Russmann et al., 1997). The parallel increase in 

power and quantum yield confirms a two-photon mechanism 

(Nikogosyan, 1990).  

 

As it was described in photocross-linking of nucleic acids by single 

photon excitation mechanism; single-photon excitation promotes a nucleic 

acid base from So to S1 and intersystem crossing from S1 to T1 can follow. 

With high intensity pulsed lasers emitting 109 W/m2 with nanosecond 

pulses or 1012 W/m2 with picosecond pulses; an excited nucleic base can 
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absorb a second quantum of light (Meisenheimer and Koch, 1997, Douki 

et al., 2001) if the rate of its further excitation from S1 or T1 levels to the 

high-lying SN or TN levels is higher than the rate of deactivation of the 

intermediate S1 and T1 levels (Nikogosyan et al., 1990).  

 

Two-step excitation causes an increase in the population of high-

lying electronic states with energies ~6-10 eV, whereas the gas phase 

ionization potentials of the nucleic bases are > 8 eV. It has been shown 

that under high-intensity picosecond UV irradiation nucleotides, 

oligonucleotides, polynucleotides, DNA and RNA exceed their ionization 

thresholds by 3.5-4.5 eV due to successive absorption of two photons. As 

a result, two-photon absorption can cause ionization of the nucleic base to 

form cation radicals (Nikogosyan et al., 1990 and Russmann et al., 1998).  

 

As biphotonic excitation of a nucleic acid base can be via the 

intermediate state S1 (the singlet channel of two-step excitation) or the 

intermediate state T1 (the triplet channel of two-step excitation), there are 

two possible pathways which could cause crosslinking as shown in Fig. 4 

(Russmann et al., 1997, and Russmann et al., 1998). 
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Fig. 5: Singlet and triplet pathways of two-step excitation of 

nucleic acid bases in water solution (Russmann et al., 1997). 

 

Laser pulse duration determines which pathway will be dominant 

in two-step photochemical reaction. Singlet-mediated crosslinking 

dominates if the laser pulse is shorter than the intersystem crossing rate 

constant (average for the S1-T1 transition is 109s-1), if the laser pulse is 

longer crosslinking follows the triplet route (Russmann et al., 1997). 

 

It has been shown that by picosecond UV irradiation of nucleic 

acid components in aqueous solution (λ=266nm, τp =23-29ps) the singlet 

channel is followed but in the case of nanosecond UV irradiation 

(λ=266nm, τp =10ns or λ=249, τp =20ns) the triplet channel is predominant 
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(Nikogosyan et al., 1990). Russmann and coworkers also have shown by 

calculations that in the case of 100 ps pulses, there will be a negligible 

population in the T1 state during the pulse whereas in the case of longer 

pulse length (i.e. 5 ns) a substantial amount of the excited molecules will 

reach triplet state T1 during the pulse length (Russmann et al., 1997). 

 

It was stated that the efficiency of two-step photochemical reaction 

via the S1→ SN transition may be much higher than T1→TN transition 

(Nikogosyan et al., 1990). When Russmann et al. (1997) were studying the 

influence of pulse length and pulse intensity on crosslinking efficiency 

they compared crosslinking efficiency for the same pulse intensities and 

the same total amount of energy but of different pulse lengths. From this 

study they found out that the singlet path is more efficient compared to 

triplet-mediated crosslinking (Russmann at al., 1997).  

 

It was proposed that the photolysis reactions following picosecond 

and nanosecond UV irradiation are qualitatively identical with the same 

photoproducts in both cases: The primary products of two-step photolysis 

of nucleic acid bases are cation-radical R+ and hydrated electron eaq
- 

(Nikogosyan et al., 1990). 
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The quantum yield of both single photon and two photon excitation 

is defined as the ratio of the amount of photoproducts to the number of 

absorbed photons. The quantum yield is a nonlinear quantity because it 

depends on irradiation intensity (Nikogosyan et al., 1990). 

 

PHOTOLESIONS IN NUCLEIC ACID BIOPOLYMERS UNDER 

HIGH-INTENSITY UV IRRADITION 

 

The ionization of nucleic acid bases in DNA or RNA during high 

intensity laser irradiation causes some photolesions which are different 

than photolesions formed under low intensity UV irradiation. 

 

Irradiation with conventional UV lamps produces mainly 

pyrimidine dimers which are related to the excitation of the triplet state of 

the nucleic acid base .With high intensity picosecond or femtosecond 

pulses pyrimidine dimers formation decreases more than 10-fold 

depending on irradiation intensity because of the decrease in population of 

triplet states of the bases with shorter pulses (Nikogosyan, 1990, and 

Lejnine et al., 1999). 

 

The studies about the photochemistry of uridine with high-intensity 

picosecond UV irradiation have been shown that with increasing intensity 

the quantum yields of single-quantum products (i.e. hydrates formed from 

the S0
* state and dimers formed from the T1 state), decreased. Another 
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researchers have stated the similar result that with increasing intensity of 

picosecond UV irradiation, the quantum yield of dimerization in dTpdT 

and poly(dT) is reduced by half, and in DNA reduced by two orders of 

magnitude (reviewed in Nikogosyan, 1990). 

 

 

The Douki group (2001) has also shown that the quantum yield of 

TT and TC cyclobutane dimers and (6-4) photoproducts was found to 

decrease with increasing laser pulse intensity (i.e., from 100 mJ/cm2 to 

300 mJ/cm2) and in contrast to pyrimidine dimeric photolesions, the 

quantum yield of oxidized bases increased with increasing intensity of the 

laser pulse (Douki et al., 2001).  

 

 

One of the main photolesions of high intensity laser irradiation is 

single-strand breaks of the nucleic acid (Panyutin et al., 1989). It has been 

shown that the increase in the number of single-strand breaks (ssb) with 

increasing intensity of picosecond UV irradiation at constant dose pointed 

to the two-quantum mechanism of formation of ssb in double-stranded 

DNA and the quantum yield of ssb formation in plasmid DNA with 

picosecond UV irradiation of I > 1012 Wm-2 was 40-50 times higher than 

with low-intensity continuous UV irradiation (Nikogosyan, 1990).  
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Because the purines have the lowest ionization potentials (i.e. 

guanine is at 8.24 eV), most single-strand breaks occur at the 3’ 

phosphodiester bond of the nucleotide possessing the purine 

(Meisenheimer and Koch, 1997).  

 

Other types of photolesions which are increased by high intensity 

irradiation (I >1011Wm-2) are: sugar-phosphate chain breaks, double strand 

breaks and interstrand crosslinks in DNA (Nikogosyan, 1990). 

 

The yield of different damages may change with wavelength, 

intensity, and pulse length of the light as well as with physical conditions 

of the experiment. As an example, using Tris-containing buffer lowers the 

amount of double-strand breaks 4 times more than water (Lejnine et al., 

1999). Kovalsky and co-workers (1990) have also suggested that single-

strand breaks can be affected by buffer conditions and ligands (Kovalsky 

et al., 1990). 

 

Analysis of nucleoproteins often involves restriction enzyme 

digestion and size separation by electrophoresis. Lejnine and coworkers 

have demonstrated that irradiation of intact human nuclei using 60 

femtosecond, 266nm laser pulses for 30 min did not produce any 

noticeable double-strand breaks but caused significant amount of 

thymidine dimers formation at the AT rich sequence of DNA which 

prevented restriction enzyme digestion (Lejnine et al., 1999). 
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Although UV laser irradiation has the potential to damage DNA, 

Zhang and coworkers, as a result of their in vitro studies, stated that UV 

laser irradiated DNA is functional in hybridization and by PCR techniques 

(Zhang et al., 2001). 

 

The Russmann group has demonstrated an important example for 

the effect of pulse duration on DNA damage, such that using shorter 

pulses increased the ratio of crosslinked to the damaged DNA. The ratio is 

improved by a factor of more than 5 when using femtosecond laser instead 

of nanosecond laser (Russmann et al., 1997). 

 

In order to reduce the UV-induced DNA damage the combination 

of UV and blue pulses have been applied. This novel two-wavelength 

approach has been shown to increase effective crosslink yield by 10% 

compared to UV laser pulses alone (Russmann et al., 1998). 
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IN VIVO AND IN VITRO APPLICATIONS OF UV 

LASER CROSSLINKING 

 

Laser irradiation is monochromatic, coherent, and intense. 

Consequently, UV laser crosslinking allows the study of many important 

transient DNA-protein interactions either in vitro or in vivo (Grishko et 

al., 1999).  

 

In vivo laser footprinting is a rapid and non-perturbing method of 

monitoring protein-DNA complexes. A footprint is derived by a 

comparison between laser-irradiated whole cells with or without the DNA 

binding protein, and identifies the positions in the immediate environment 

of the DNA that have changed due to the cross-links between the DNA 

and the protein, exclusion of solvent molecules from the vicinity of the 

DNA or conformational changes of DNA structure (i.e. bending of DNA) 

(Murtin et al., 1998).  

 

In UV laser footprinting the nucleoprotein complexes are irradiated 

with a UV laser pulse and photomodified bases in the DNA are identified 

by primer extension using DNA polymerase, which stops synthesis when 

it subjects to a modified base. Using this method, which provides 

information about contact points between the protein and DNA, it was 

shown that the interactions between E. coli integration host factor (IHF) 
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and its specific binding sites are identical in vitro and in vivo (Engelhorn 

et al., 1995). 

 

Irradiation of cells or intact nuclei with UV laser pulses crosslinks 

nucleoproteins in their native state and it has been shown that 6-12% of 

proteins crosslinked in nuclei with a 266nm nanosecond laser (Mutskov et 

al., 1997) and in another experiment 266nm picosecond laser gave 

sufficient crosslinking of specific histones to genomic sequences in nuclei 

(Angelov et al., 1988).  

 

Single-pulse UV crosslinking is a simple method that can be used 

for the estimation of mass of crosslinked DNA binding proteins, 

purification of DNA-binding proteins, and the study of protein-DNA 

interactions both in vitro and in vivo (Grishko et al., 1999). 

 

The fourth harmonic of a pulsed Nd:YAG laser was used for 

crosslinking the transcriptional regulator RAP1 to DNA in vitro. It was 

shown that a single 50 mJ pulse can crosslink DNA-binding proteins in 

crude or purified preparations. The stable protein-DNA complexes 

generated was detected by SDS-PAGE and the molecular mass of the 

protein was estimated (Ho et al., 1994).  
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One of the most promising approaches to attain higher crosslinking 

yields with low DNA damage (i.e. higher effective crosslinking) is two-

wavelength femtosecond (TWF) laser irradiation. This strategy has the 

advantage that the intensity of the femtosecond UV pulse in the first step 

can be kept low, thus reducing DNA damage caused by the UV photons. 

However, higher crosslinking yields can still be attained by applying the 

second femtosecond pulse with a very short time delay and at a visible 

wavelength too long to excite DNA bases from the ground state. The 

second pulse can not damage DNA, but it can provide additional energy 

for the UV excited bases to pass their ionization level, leading to 

crosslinking (Russmann et al., 1998). 

 

FACTORS AFFECTING THE RATE AND THE EXTENT OF UV 

LASER CROSSLINKING 

 

While performing a UV laser crosslinking experiment different 

factors that may affect the rate and the extent of crosslinking should be 

considered very carefully. 

 

Efficiency of UV crosslinking of proteins to DNA changes with 

protein type and DNA sequence. The yields of cross-linked product 

obtained vary greatly between various nucleotide residues, and also with 

the wavelengths of light used. It has been showed that 266nm laser pulses 
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might be the best for cross-linking through cytosine or adenosine, whereas 

204.1nm radiation might be effective for guanosine residues 

(Hockensmith et al., 1986).  

  

In the presence of a specifically bound protein, some amino acid 

residues in close contact with DNA may interfere with the electron-

migrating process along the DNA helix by trapping the positive charge in 

place of a guanine residue (i.e. oxidized guanosine can be reduced by 

tyrosine and tryptophan in solution) (Stemp and Barton, 2000, Angelov et 

al., 2003). The energy transfer between nucleotides (i.e. the energy in 

nucleic acids is transferred within a distance of 2.6 nucleotides in single-

stranded or denatured DNA and 2.7 nucleotides in RNA) (Nikogosyan, 

1990) may also affect the efficiency of UV crosslinking.  

 

Single-stranded DNA has shown higher crosslinking efficiency 

than double-stranded DNA (Angelov et al., 1988) and its crosslinking 

efficiency increases with shorter pulses such that the crosslinking 

efficiency of progesterone receptor to single-stranded DNA has been 

found to be five times higher using a 200 femtosecond laser than 100 

picosecond laser with the same total energy (Russmann et al., 1997).  
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In terms of effect of salt concentration on crosslinking yield,  Hung 

et al., have determined that increasing NaCl concentration from 50 mM to 

100 mM reduced the formation of crosslinked complexes significantly. As 

increasing salt concentration affects the binding equilibrium of 

nucleoprotein complex (Hung et al., 1996). 

 

DTT can act as a radical scavenger and quench the crosslinking 

reaction (Ho et al., 1994). It was stated that 5mM DTT in solutions to be 

irradiated reduce the efficiency of crosslinking by about 50-60% (Moss et 

al., 1997).  Hockensmith and coworkers had found elevated levels of 

cross-linked complex formation in the absence of reducing agent and had 

carried out their cross-linking experiments in the presence of 5 mM β-

mercaptoethanol; substitution of dithiothreitol for mercaptoethanol had no 

effect (Hockensmith et al., 1986).  

 

Degradation of protein by high intensity UV irradiation may also 

alter the crosslinking yield. Although irradiation of reconstituted 

chromatin with picosecond laser in vitro and femtosecond irradiation of 

intact human nuclei did not produce any histone-histone crosslinking or 

protein damage (Angelov et al., 1988, Lejnine et al., 1999), irradiation of 

Rap1-DNA complex in vitro with a nanosecond laser showed 25% 

damage of the Rap1 protein (Ho et al., 1994). 
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Studies about the cross-linking of gene 32 protein to (dT)10 at 

various temperatures (0ο, 12ο, 23ο, and 37 οC) were performed. There was 

no detectable change in the final yield of crosslinked products. In addition 

to this result incubation at either 0ο or 37 οC for 30 min after irradiation 

did not increase or decrease the amount of crosslinked product when 

compared to an irradiated sample that had been denatured immediately in 

SDS sample buffer by boiling after cross-linking (Hockensmith et al., 

1986).  
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METHODS AND MATERIALS 

 

PLASMID CONSTRUCTION FOR T7-MEDIATED EXPRESSION 

OF MBP-PIF3 

 

To subclone PIF3 coding sequence into a T7-promoter/MalE 

vector; T7-GADPIF3 and T7-MBP plasmids were digested by Bam HI 

(NEB) and Hind III (Promega) restriction enzymes, respectively. Both 

digested plasmids were blunted with T4 DNA Polymerase (NEB) and 

cleaned-up by QIAquick columns (QIAGEN). Purified DNAs were 

digested by EcoRI restriction enzyme (NEB); ~ 1.6 kb PIF3 fragment and 

~3.9 kb MBP cloning vector were purified from a 1% agarose gel by 

QIAquick gel extraction kit (QIAGEN), ethanol precipitated and 

suspended in 1X TE. Ligation of PIF3 fragment into dephosphorylated 

T7-MBP vector was done in a reaction containing 0.3 µl of T4 DNA 

ligase (NEB), 1 µl T7-MBP vector and 3 µl PIF3 insert. Reaction was 

incubated at 16οC for 16 hours. Ligated DNA was transformed into 

electrocompetent DH5α cells prepared by Josh Black in 2002. Cells (100 

µl) were plated on Luria Broth (5 g yeast extract, 10 g NaCl, 10 g tryptone 

and 15 g agar, per liter water) supplemented with 100 µg/ml of ampicillin. 

Plates were incubated at 37οC overnight. 
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PLASMID ANALYSIS 

  

 Several colonies were chosen and inoculated into 5 ml of LB with 

100 µg/ml of ampicillin. Minicultures were grown overnight in a 37οC 

shaker at 250 rpm and pelleted bacterial cells from these cultures were 

used to purify the T7-MBP-PIF3 plasmid by a QIAprep Spin Miniprep kit 

(QIAGEN). Concentration of plasmid DNA was detected as 200 ng/µl by 

UV Spectrophotometer at 260nm. Plasmid DNA was cut with EcoRI and 

double cut with Kpn I & Pst I enzymes to determine if the correct MBP-

PIF3 junction, orientation and length for insert was produced. 

 

 In order to obtain larger amount of purified T7-MBP-PIF3 high-

copy plasmid HiSpeed Plasmid Midi Kit (QIAGEN) was used. Plasmid 

DNA concentration was determined as 310.75 ng/µl by UV 

Spectrophotometer at 260nm and EcoRI restriction digest was done to 

check the correct length of the plasmid. 

 

EXPRESSION, PURIFICATION and DETECTION OF MBP-PIF3 

 

In order to express protein in E. coli; chemically competent BL21 

(DE3) Star strain (Invitrogen) was used. BL21 (DE3) cells were 

transformed with MBP-PIF3 plasmid purified from HiSpeed Plasmid Midi 

Kit and then grown overnight in 2xYT (16 g Bacto-Tryptone, 10 g yeast 
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extract and 5 g salt) rich medium with 100µg/ml ampicillin. An aliquot of 

an overnight culture were diluted 20-fold into fresh 2xYT medium 

containing 100µg/ml ampicillin and 4%glucose and grown at 37°C in a 

shaker at 250rpm until O.D.600 of 0.6 at which MBP-PIF3 expression was 

induced by adding IPTG to 0.5mM for 10 h at 15°C. The cells from 400 

ml cultures were harvested by centrifugation at 6000g for 15min at 4°C 

and the pellet was suspended in column buffer (20mM MOPS, pH 7.4, 1M 

NaCl, 1mM EDTA, 2mM AEBSF, pH 7.4). The lysate was sonicated six 

times at full power for 30sec to reduce its viscosity and centrifuged at 

10,000g for 20 min at 4°C in Oakridge tubes. The supernatant was 

removed and placed into a new tube.  

 

MBP-PIF3 protein was purified by Affinity Chromatography using 

amylose-agarose resin (NEB). 1.7 ml of amylose resin pre-swollen in 40% 

ethanol was poured in a column with 1.7 cm of diameter. The column was 

washed with 8 column volumes of Column Buffer. The resin has 

maximum binding capacity of 3 mg/ml. 15 ml of crude extract was loaded 

at a flow rate of 0.5 ml/min. The optimal lysate:resin ratio was determined 

experimentally. Then, the column was washed with 12 column volumes of 

column buffer. MBP-PIF3 fusion protein was eluted by column buffer 

with 20mM maltose. 10-15 fractions of 1 ml each were collected at 4°C. 

After purification eluates were frozen by liquid N2 and stored at -80°C. 
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The cell lysate, crude extract, pellet, flow through, final wash 

samples, and all the elution samples were mixed with 5X Sample Buffer ( 

10% SDS, 625 mM Tris, 25 ml glycerol, 25 ml β-mercaptoethanol and 50 

mg Bromophenol blue, pH 6.8) and boiled at 100°C for 5 min) before 

loading onto 10% SDS polyacrylamide gels with 5% stacking gels.  After 

1-2 hours of electrophoresis at 40mA/gel at room temperature, the amount 

of protein was monitored by staining with Coomassie blue. Protein 

concentration determinations were performed using a Bradford protein 

assay kit (Bio-Rad). 

 

Immunoblotting was performed as described in Molecular Cloning, 

using Protran nitrocellulose membrane (Schleicher & Schuell) and the 

submerged transfer apparatus (Idea Scientific). 5% nonfat milk was used 

in the blocking buffer. Anti-MBP Antiserum (NEB) as primary antibody 

(1:5000 dilution) and Anti-rabbit horseradish peroxidase conjugate as 

secondary antibody (1:3000 dilution) were used to detect MBP-PIF3 

protein on the membrane. TBS (20 mM Tris-HCl pH 7.5, 150 mM NaCl) 

with 0.1% Tween-20 was used to wash the membrane after incubation 

with each antibody. Detection of secondary antibody was done either with 

TMB-Blotting reagent (Pierce) or by SuperSignal West Pico 

Chemiluminescent Substrate (Pierce).  
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BAND SHIFT ASSAY 

 

PROBE DNA PREPARATION 

 

 12N1 plasmid kindly provided by Dr. Peter H. Quail (University of  

California, Berkeley, USA) which encompasses the PIF3 binding site, i.e. 

G-box motif, was double digested by XhoI and SpeI restriction enzymes 

(Promega) yielding a ~66 base-pair fragment. Digested DNA was run on a 

12% non-denaturing polyacrylamide gel containing 0.5xTBE at 100V for 

1-2 hours. 66 base-pair fragment containing part was excised from the PA 

gel with a clean, sharp scalpel, chopped into small pieces and mixed with 

1x TE buffer. To disrupt the PA gel structure the mixture was subjected to 

couple of freeze-thaw cycles and to increase the amount of DNA passed 

into the 1x TE buffer the mixture was rotated at 37°C overnight. The 

purified DNA was ethanol precipitated and the concentration of the double 

stranded 66 base-pair fragment was determined by PicoGreen® dsDNA 

Quantitation Reagent (Molecular Probes, Inc.) which is 2 ng/µl. 

 

In order to radioactively label the DNA, 5’ overhangs were filled 

with labeled dATP: 20 ng of DNA was mixed with 1 µl of 100 mM 

un1abeled dNTPs (minus dATP), 2 µl of 10 mg/ml bovine serum albumin, 

3.8 µl of 10X NEB2 buffer, 1 µl [α -32P]dATP (3000 Ci/mmol) and 0.4 µl 

T4 DNA Polymerase (Promega). The reaction was incubated for 5 min at 
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37°C and then 1 µl of 0.5 M EDTA was added to stop the reaction. The 

probe was purified through a spin column (Princeton Separations, Inc.) in 

order to remove unincorporated nucleotides and through a Micropure-EZ 

Enzyme remover (Millipore) in order to remove T4 DNA Polymerase. 

 

ELECTROPHORETIC MOBILITY SHIFT ASSAY (EMSA) 

 

 The purified MBP-PIF3 fusion protein (0.2mg/ml) and the probe 

(~ 25fmol) were incubated for 15 min at room temperature in 40 µl 

binding buffer containing 20mM HEPES-KOH, pH 7.6, 50mM KCl, 10% 

glycerol, 0.1mg/ml BSA, 0.05% TritonX-100, 3mM MgCl2, 2mM DTT, 

and 2,5ng/µl poly(dI.dC) as nonspecific competitor DNA molecules. The 

efficiency of binding was checked by EMSA that was performed at 4°C in 

freshly poured 4% (acrylamide:bisacrylamide ratio 37.5:1) of 

polyacrylamide (37.5:1 acrylamide-bis acrylamide) 0.5X Tris-Borate-

Ethylene diamine tetraacetic acid (TBE) gels. The gel was pre-

electrophoresed for 30 min before loading the samples and 10 µl of 

incubated samples were run at 95 V for 1-2 hours. The gel was dried on 

Whatman paper for 1-2 hours on a vacuum gel dryer and dried gel was 

analyzed with a PhosphorImager (Fujix BAS 1000) or exposed to BioMax 

MS film (Kodak) at -80°C. 
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As positive controls MBP-PIF3, HIS-PIF3 and MBP were 

expressed in TNT Quick Coupled Transcription/Translation System 

(Promega). 40 µl of TNT T7 Quick Master Mix was mixed with 1 µl of 

1mM methionine, proper amount of plasmid DNA and nuclease free water 

to give final reaction volume of 50 µl. The reaction was incubated at 30°C 

for 60-90 minutes. TNT expressed protein was mixed with labeled probe 

in binding buffer and its binding activities were studied by EMSA as 

described above. 

 

ULTRAVIOLET IRRADIATION 

 

LOW INTENSITY UV CROSS-LINKING ASSAY 

A low-pressure mercury lamp was used as a low-intensity light 

source. Samples from binding reactions were irradiated as 20µl drops on 

parafilm covered previously chilled metal block at a distance of 3 cm from 

set of four 8W germicidal bulbs (emission maximum at 254nm)  in a UV 

Crosslinker (FB-UVXL-1000, Fischer Biotech). The metal block was 

cooled from below by an ice-water bath during the irradiation. Irradiations 

with intensity of 0.5 J/cm2 and 0.9 J/cm2 took 30 min and 60 min, 

respectively. After UV irradiation, samples were mixed with 1/3 volume 

SDS sample buffer (200mM Tris-HCl, pH 6.8, 8% SDS, 0.4% 

bromophenol blue, 40% glycerol, 1% 2-mercaptoethanol, 1M urea) for 5 

min and were heated to 100°C before separating on 10%  
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(acrylamide:bisacrylamide ratio 37.5:1) SDS-polyacrylamide gels 

containing 1 M urea in the absence of a stacking gel. After electrophoresis, 

the gel was dried and analyzed with PhosphorImager (Fujix BAS 1000).  

 

HIGH INTENSITY UV CROSS-LINKING ASSAY 

 

DNA-protein complexes were irradiated with the fourth harmonics 

(266 nm) of a 5ns pulsed radiation delivered by a Surelite IV Nd:YAG 

(neodymium-yttrium-aluminum-garnet) laser (Continuum, Santa Clara, 

CA) with energy per pulse of ~5 mJ at a repetition frequency of 10 Hz. 

Twenty microliter of incubated samples from the binding reactions were 

irradiated in 1.5 ml microcentrifuge tubes (Eppendorf) with an unfocused 

UV beam (approx 4 mm x 2 mm) with Gaussian spatial distribution. 

Samples were irradiated with different number of pulses to make 

comparison. 

 

Immediately after irradiation, samples were mixed with 1/3 vol of 4 × 

SDS loading buffer (200mM Tris-HCl (pH 6.8), 8% SDS, 0.4% 

bromophenol blue, 40% glycerol, 1 % β-mercaptoethanol, 1 M urea) and 

boiled for 5 min. The 10 µl of samples were analyzed by SDS-PAGE in 

10% (acrylamide:bisacrylamide ratio 37.5:1) gels containing 1 M urea. 

After 1-2 hours electrophoresis at 100 V, the gels were dried onto blotting 
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paper and exposed to Kodak BioMax MS film or analyzed with 

PhosphorImager (Fujix BAS 1000). 

 

TWO WAVELENGTH LASER INDUCED PHOTO CROSSLINKING 

  

 20 µl of samples from the binding reactions were irradiated in 1.5 

ml microcentrifuge tubes (Eppendorf) with the fourth harmonics (266 nm) 

of a 5ns pulsed radiation delivered by a Surelite II Nd: YAG laser 

(Continuum, Santa Clara, CA) with energy per pulse of ~5 mJ at a 

repetition frequency of 0.25 Hz along with 480 nm of a ~ 800 ns pulsed 

radiation delivered by Candela 500-M Flashlap-pumped dye laser 

(Candela Corporation, Wayland, MA) with energy per pulse of ~ 60 mJ. 

480 nm pulses started 300ns before and ended 700 ns after the UV pulses. 

The irradiated samples were analyzed as described above in the UV cross-

linking assays. 

 

ANALYSIS OF THE INTEGRITY OF DNA 

 

  12N1 plasmid (200µg/ml, in binding buffer) containing the PIF 

binding motif was irradiated by UV Crosslinker, Nd-YAG laser or Nd-

YAG laser with Candela 500-M Flashlap-pumped dye laser as described 

above. After UV irradiation 12 NI plasmid was cleaved with restriction 

enzyme XhoI (Promega) and analyzed by PCR using the [γ-32P] 5’-end-
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labeled primer 5’-AGT GAG CGC AAC GCA ATT A-3’ and HotMaster 

Taq DNA polymerase (Promega). The primer labeling reaction mixture 

contained the following: 11.36 µl of [γ-32P]dATP (45000 Ci/mmol), 0.5 µl 

of primer (50 pmol/µl), 1 µl of T4 Polynucleotide Kinase (Promega) and 

12.135 µl of 1X kinase buffer. The PCR machine was programmed 

according to the user manuals of the polymerase and the melting 

temperature (Tm) of the primer which is 54.5°C. The thermocycler 

program was: 94°C for 2 min; 94°C for 20 sec; 50°C for 20 sec; 65°C for 

1 min and 65°C for 5 min. 

 

 Reaction products were analyzed by denaturing polyacrylamide 

gel electrophoresis on a 6% sequencing gel supplemented with urea. After 

electrophoresis, the gel was dried and analyzed with PhosphorImager 

(Fujix BAS 1000). 
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RESULTS 

Expression, Purification and Detection of MBP-PIF3 

 
In order to express MBP-PIF3 in E. coli; chemically competent 

BL21 (DE3) Star strain (Invitrogen) was used. E. coli cell culture was 

grown at 37°C until O.D.600 of 0.6 reached. Then MBP-PIF3 expression 

was induced by adding IPTG to 0.5mM for 10 h at 15°C. We changed the 

induction temperature from 37°C to 15°C because PIF3 originates from a 

plant that grows at temperatures below 37°C. Using lower induction 

temperature allowed us to purify properly folded protein by Affinity 

Chromatography using amylose-agarose resin as shown in Fig. 6. 

 

                                     

              CL     CE    FT     W      E1   E2     E3    E4   E5 

Fig. 6: Total protein was purified by affinity chromatography method 
using amylose-agarose resin, analyzed by 10% SDS-PAGE and the gel 
was stained by Coomassie blue. CL: Cell lysate, CE: crude extract, FT: 
flow through, W: Wash, E1: Eluate 1, E2: Eluate 2, E3: Eluate 3, E4: 
Eluate 4, and E5: Eluate 5.  
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Purified MBP-PIF3 protein was monitored by immunoblotting 

using Anti-MBP Antiserum (NEB) against MBP domain. 2° antibody, 

Anti-rabbit HRP attached to 1° antibody was detected by 1-Step TMB-

Blotting reagent as shown in Fig. 7. MBP-PIF3 has a molecular weight of 

~ 121.3 kDa. 

 

 

      E1        E2            E3           E4         E5       E6     E7 

 Fig. 7: The western blot of MBP-PIF3.  

 

Electrophoretic mobility shift assay 

 
  Our goal was to explore two-wavelength laser cro

protein to DNA. We chose the bHLH protein PIF3 and i

binding site for our crosslinking experiments. In previ

His6:PIF3 has been shown to specifically bind G-box motifs

bHLH domain (Martinez-Garcia et al., 2000). Here we 
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purified MBP-PIF3, which is more soluble than His6:PIF3 can also bind 

specifically to a 66-mer oligonucleotide containing its specific G-box 

motif (Fig. 8, lane 2). Binding of MBP-PIF3 to the probe was carried out 

in binding buffer containing nonspecific competitor, poly[d (I.C)], to 

prevent nonspecific binding. No complexes were observed when the probe 

was incubated without MBP-PIF3 (Fig. 8, lane 1). 

 

MBP-
PIF3/DNA 
complex 

 
 
 
 
 
 
 
 
 
 
 
              Free probe 
 
Fig. 8: Electrophoretic Mobility Shift Assay; 25fmol of 32P-labeled probe 
was incubated without MBP-PIF3 or with 2µg MBP-PIF3 for 15 min at 
room temperature.  
 

 
Analysis of DNA crosslinking to purified MBP-PIF3 with 

low intensity UV irradiation 

 
After incubation of purified protein with its specific probe in 

binding buffer as for the band-shift assays, samples were irradiated with 

low intensity UV light at two different intensities (0.5 J/cm2 and 0.9 
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J/cm2). Parallel irradiated and unirradiated samples were analyzed by 

denaturing SDS-PAGE (Fig. 9). Under denaturing conditions complexes 

that are not crosslinked dissociate. Our results showed that DNA was 

damaged extensively with conventional UV light and damage increased 

with increasing intensity. Although MBP-PIF3 and radioactively labeled 

probe were showing non-covalent interactions in EMSA (Fig. 8) we could 

not detect any covalent bonding induced by photocrosslinking in SDS-

PAGE. 

 

 

 

                      FP 

 

 

 

 

                                           1    2     3      4      5    6 

 

Fig. 9: Radioactive 66-mer oligonucleotide was incubated without MBP-
PIF3 (lanes1, 3, 5) or with 2µg MBP-PIF3 (lanes 2, 4, 6) as for the band-
shift assays. 20µl of binding sample was used for each irradiation. Lanes 1 
and 2: no irradiation. Lanes 3 and 4: irradiation with intensity of 0.5J/cm2 

for 30 minutes. Lanes 5 and 6: irradiation with intensity of 0.9J/cm2 for 60 
minutes. Samples were analyzed by SDS-PAGE. FP: free probe 
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Analysis of DNA crosslinking to purified MBP-PIF3 with 

high intensity UV irradiation 

 

The UV laser cross-linking was carried out using  purified 

recombinant MBP-PIF3 (Fig.6) and a 66 bp DNA duplex that contained 

the specific binding site; G-box motif (CACGTG). MBP-PIF3 formed a 

specific complex with DNA, which was observed as a single band with a 

lower electrophoretic mobility (Fig. 10, lanes 5 and 6). The positive effect 

of 2 mM DTT on the complex formation has been determined in Fig 10 as 

a comparison between lane 5 and 6. On the other if freshly purified protein 

was used in EMSA, the effect of DTT on complex formation was 

negligible (data not shown). 

 

 The complex thus formed was then exposed to 5 ns, 266 nm laser 

pulses. No change on the mobility of the complex was observed on the 

band-shift gel, indicating that the UV irradiation caused little or no 

complex disruption (Fig. 10, lanes 7, 8, 9, 10, 11, 12). No complexes were 

observed when the probe was incubated without MBP-PIF3 and was 

irradiated (Fig. 10, lanes 3 and 4) or not irradiated (Fig. 10, lanes 1 and 2).  
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               FP 

PIF3/
DNA  

 

                               1    2     3      4     5    6    7      8     9    10   11 12 

       -    +    -       +     -     +     -     +      -    +     -    + 

Fig. 10: Crosslinking of recombinant MBP-PIF3 to DNA; 25fmol of 32P-
labeled probe was incubated without MBP-PIF3 (lanes1, 2, 3, 4) or with 
2µg MBP-PIF3 (lanes 5-12) in the presence of 100ng poly[d (I.C)] for 15 
min at room temperature. Binding buffer has DTT (+) in lanes 2, 4, 6, 8, 
10, 12 and does not have DTT (-) in lanes 1,3,5,7,9,11. Lanes 1, 2, 5, 6: no 
irradiation. Irradiations were performed with a quadrupled Nd: YAG laser 
(5ns, 5.5 mJ/pulse, 266 nm) with different number of pulses. Lanes 3, 4, 
11, 12: with 30 pulses. Lanes 7 and 8: with 6 pulses and lanes 9 and 10: 
with 30 pulses. Samples were analyzed by EMSA. 
 

 

Parallel irradiated and unirradiated samples were also analyzed by 

denaturing SDS-PAGE (Fig. 11). Under denaturing conditions complexes 

that are not crosslinked dissociate and the DNA probe migrates off the gel. 

No covalent complexes induced on the laser irradiation were observed by 

SDS electrophoresis (Fig. 11). 
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                                     0      20    30     0     6     20      30   

 

 
 

 

 

                      FP 

                        1      2     3      4      5    6      7 

Fig. 11: Radioactive probe was incubated without protein (lane 1) or with 
2 µg protein (lanes 2, 3, 4, 5, 6, 7) as for the band-shift assays. Lanes 1 
and 4: no irradiation. Samples were irradiated either with UV laser pulses 
(5ns, ~5mJ/pulse, and 266 nm); lanes 5, 6, 7 or with a combination of UV 
laser pulses ((5ns, ~5mJ/pulse, and 266 nm) and blue laser pulses (~800ns, 
56 mJ/pulse, 480 nm); lanes 2 and 3, at different number of pulses (i.e. 6, 
20 and 30). Samples were analyzed by SDS-PAGE. FP: free probe 

 

Analysis of the integrity of DNA upon Low-Intensity UV 

Irradiation 

 
 Samples containing a plasmid with G-box motif were irradiated 

with a set of four 8 W germicidal bulbs with an incident fluence of 0.5 

J/cm2 or 0.9 J/cm2, cleaved with the restriction enzyme and analyzed 

primer extension. The amount of full-length primer extension product is 

inversely related to the amount of DNA damage. We have demonstrated 

that after conventional UV light irradiation the full-length product, 300 bp, 

was not detectable at all, unlike to the unirradiated sample (Fig. 12).  
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300 bp 

1          2      3  

Fig. 12: Samples with 12N1 plasmid were irradiated with conventional 
UV light (254 nm), cleaved with restriction enzyme XhoI and analyzed by 
primer extension. The reaction products were separated on a 6% 
sequencing gel and dried gel was analyzed with a PhosphorImager. Lane 
1, unirradiated control; lane 2 and 3, samples were irradiated with 0.5 
J/cm2 and 0.9 J/cm2, respectively. 

  

 

The Effects of irradiation with UV laser pulses alone and 

with a combination of UV laser pulses and blue pulses on 

DNA integrity  

 
Samples containing a 12N1 plasmid were irradiated with either a 

quadrupled Nd: YAG laser (5ns, ~5mJ/pulse, and 266nm) or with a 

combination of UV laser pulses (5ns, ~5mJ/pulse, 266nm) and blue laser 

pulses (~800ns, 56mJ/pulse, 480nm) at different number of pulses. 

Irradiated samples were cleaved with the restriction enzyme to linearize 
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the plasmid DNA. Digested plasmids were analyzed by primer extension 

to check the DNA integrity.  

 

We have demonstrated that by UV laser irradiation (5ns, 

~5mJ/pulse, and 266nm), the amount of full-length extension products, 

~300 bp, was decreasing with increasing number of pulses (Fig. 13 and 

Fig 14). The amount of extendable DNA was shown to be higher (Fig. 14) 

when the irradiation buffer has 2 mM DTT as compared to without DTT 

(Fig. 13). The amount of extendable DNA after the two wavelength pulses 

did not show any enhancement compared to UV pulses alone (Fig.15). 

 

300
400 

 

200

100

M 1 2 3 4

Fig. 13: Analysis of the integrity of DNA upon UV laser irradiation (5ns, 
~5mJ/pulse, and 266nm). Samples containing a 12N1 plasmid were 
irradiated with different number of pulses (Lane 1: unirradiated control; 
lane 2, 3 and 4, samples irradiated with 6, 20, 30 number of pulses 
respectively. The sample buffer has no DTT. 
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~300 bp

                                       1        2        3     4 

Fig. 14: Analysis of the integrity of DNA upon UV laser irradiation (5ns, 
~5mJ/pulse, and 266nm). Samples containing a 12N1 plasmid were 
irradiated with different number of pulses. Lane 1: unirradiated control; 
lane 2, 3 and 4, samples irradiated with 6, 20, 30 number of pulses 
respectively. The sample buffer has 2 mM DTT. 

 
  

            

~ 300 bp

Fig. 15: Analysis of the integrity of DNA after irradiation with a 
combination of UV laser pulses (5ns, ~5mJ/pulse, 266nm) and blue laser 
pulses (~800ns, 56mJ/pulse, 480nm). Lane 1, sample irradiated with 20 
pulses; lane 2, sample irradiated with 30 pulses. The sample buffer does 
not have any DTT. 
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DISCUSSION 

 
           Ultraviolet light has been shown to induce crosslinks between DNA 

and a variety of DNA binding proteins. Conventional crosslinking 

methods use low-power broad-band germicidal lamps, and to produce 

sufficient crosslinked product, irradiation times of minutes to hours are 

required, resulting in severe nucleic acid and protein degradation (Ho et 

al., 1994). Previous studies have been demonstrated in general, UV laser 

light increases crosslinking efficiencies compared to conventional UV 

lamps by two orders of magnitude (Budowsky et al., 1986). However, we 

could not increase crosslinking efficiency with UV laser light high enough 

to detect crosslinked MBP-PIF3/DNA bands by denaturing SDS-PAGE.  

 

 

In this study we have compared DNA damage caused by 

ultraviolet irradiation of low and high intensity (10 W/m2, 254nm, 

continuous irradiation, and up to 1012 W/m2, 266nm, pulse duration 5ns). 

We irradiated same amount of protein-DNA complexes with total of 

maximum ~10 mJ energy in low-intensity UV experiments and total of 

maximum ~100 mJ in high-intensity UV experiments. We found that after 

UV laser irradiation the amount of full-length product was almost 2/3 of 

that from the unirradiated DNA whereas upon low intensity irradiation we 

could not detect any amplified DNA.  
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 Pyrimidine dimers have been reported to be the main photolesions 

caused by conventional UV lamps and the amount of pyrimidine dimers 

have been shown to be decreasing with high intensity laser irradiation 

(Nikogosyan, 1990 and Douki et al., 2001). Although UV laser pulses 

cause DNA lesions such as single-strand nicks (Russmann et al., 1997), 

our data show that high powered UV laser pulses damage DNA less than 

conventional UV irradiation as reported previously (Lejnine at al., 1999, 

Moss et al., 1997, and Budowsky at al., 1986). 

 

As a future work we should experimentally determine the optimum 

range of photon flux for the system of interest to obtain maximum amount 

of cross-linking. Alternatively, we might switch to a different DNA-

binding protein that has a greater propensity to undergo UV-promoted 

DNA crosslinking. 
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 Abbreviations: EMSA, Electrophoretic mobility shift assay; SDA-

PAGE, sodium       dodecyl sulfate-polyacrylamide gel electrophoresis; 

DTT, dithiothreitol; AEBSF, (4-(2-Aminoethyl) benzenesulfonyl fluoride 

hydrochloride); IPTG, isopropylthio-β-D-galactoside; TBE, Tris-Borate-

Ethylene diamine tetraacetic acid; TMB, 3,3’,5,5’- tetramethyl benzidine; 

HEPES, N-2-Hydroxyethyl-piperazine-N9-2-Ethanesulfonic acid  
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