Continued Developing of docASSIST:
Google Doc Add-on

dolor sit amet, consectet

Rubric Manager

Get

* Get Rubrics From Email Rubric Preview
zaimsby@gmail. com Rubric: hello test Deleting Feedback
1. Thesis & Ciaim something
1. Responds effectively

2. Responds appropriately Custom Fee

3. Okay response

4. Limited response

5. Feedback 2

6. Feedback 1

7. Feedback 3 .
2. Evidence & Analysis

1. Strong evidence

2. Minimal evidence

3 Feeaback 1

. 3. Organization
Get Rubric With Code 1. Srong organization

[Lo | 2 Weak Organizaten

4. Writing Conventions Bl -

Cancel

104, egestas efficitur nisi. Sed

sollicitudin

By Zachary Armsby

docASSIST

by ASSiSTments.

A Free Public Service of Warce ster Pobynechnic Inestine

Continued Developing of docASSIST: A Google Doc Add-on
An Interactive Qualifying Project Report Submitted to the Faculty of the
WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the Degree of Bachelor of
Science

By

Zachary Armsby

Submitted on

Approved:

Professor Neil T. Heffernan, Advisor

Cristina Heffernan, Advisor

Table of Contents

Table of Contents

List of Figures
Abstract

Acknowledgments

Authorship

Introduction

Development Workflow

Git Integration
Refactor

Rubric Manager
Back End
Rubric Category Ul

Updating and Testing Systems
Installing docASSIST Apps Script Tools
Tester Application
Backend Management
Release Process

User Interaction School Visit

Conclusion and Future Development

Appendix
Docassist Website
Github Repositories
Docassist Frontend

Docassist Backend

List of Figures

Figure 1 Rubric manager panels

Figure 2 Experimental drag and drop interface for rubric manager
Figure 3 Google web store navigation

Figure 4 Developer dashboard navigation

Figure 5 Developer dashboard

Figure 6 Apps script editor, publish tab

Figure 7 Deploy as web add-on dialog

Figure 8 Developer dashboard, web store draft controls
Figure 9 Webstore draft edit page, visibility options displayed
Figure 10 Google cloud console dashboard

Figure 11 Navigation pane

Figure 12 Google app engine dashboard

Figure 13 Version and traffic routing control page

Figure 14 Google app engine data quota page

Figure 15 Datastore viewer page

Figure 16 Log viewer

Abstract

docASSIST is a tool created by WPI students as MQP (Major Qualifying Project) and
IQP (Interdisciplinary Qualifying Project) projects with advisement and mentorship from the WPI
assistments team. The purpose of docASSIST is to help teachers give feedback to students
faster and more efficiently. Currently many teachers are overworked and take a long time to
give feedback to students. docASSIST solves this problem by giving teachers tools to quickly
evaluate assignments using rubrics and user defined feedback options for rubric categories.
The purpose of this IQP was to continue developing docASSIST. Areas of development
included the development workflow of the docASSIST project, the rubric manager, and
streamlining many common processes to maintain and continue development.

Acknowledgments

| would like to acknowledge all of the previous developers of the docASSIST project,
Nick McMahon, Sam La, Jean Marc Touma, Christian Roberts, and Zi Wang, for all of their work
on docASSIST to get it to where it is today. Also to thank our advisors Christia and Neil
Heffernan for continuing the docASSIST project and for all of their advice and guidance while
developing docASSIST. Additionally | would like to thank the Assistments Lab and especially
Andrew Burnett for their feedback and help in moving docASSIST forward. Also | would like to
acknowledge Gianluca Tarquinio for working with me on docASSIST (worked during the same
time but reporting separately). As well as Cory Tapply and Trevor Valcourt for continuing to work
on docASSIST.

Authorship

This paper was written by Zachary Armsby using Jean Marc Touma and Christian
Roberts paper as an example.

Introduction

docASSIST is not a new project, it has been worked on by at least five different
developers and is over a year old. In that time the project was never set up to for real
development. Changes were piled on top of each other until most of the code was barely
understandable and a significant amount of redundant functions existed. This was the result of
the development setup and ecosystem used by apps script projects and having developers
focus only on select areas of the project and then leaving when their project was finished. This
was the first part of docASSIST that | decided to improve by adding source control, refactoring
the code, and defining new best practices for apps script development.

Following the introduction of a better development environment | focused on the
development of the rubric manager and support for sharing rubrics. Rubrics are a central
concept to docASSIST, allowing teachers to quickly grade based on predefined metrics and
feedbacks. This necessitated the need for a better interface for creation, editing, and sharing of
rubrics. In order to implement the rubric manager many changes had to be made to the existing
ui prototype and the backend had to modified significantly to support the sharing of rubrics
between users.

Development Workflow

Git Integration

When | began working on docASSIST | had experience with javascript in web
development and java for class work, but | had no experience with google’s apps script
ecosystem or with server backends. It was very difficult to understand code written by previous
developers in apps script until several concepts about apps script were understood. Apps script
is very different from most languages, in that it is a variation of javascript completely managed
by google that can only run on their infrastructure. Keeping with google’s idea of everything on
the cloud, all apps script projects exist only on the cloud and were not easily accessible in any
other way. The editing, storage, testing, and running of an apps script project was completely
dependent on google’s cloud ecosystem. The apps script ecosystem is at the complete mercy of
google and any new features that are desired need to be implemented by google. This also
meant that several key development tools have been omitted from the apps script ecosystem
because google has not implemented them yet/if they ever will.

One glaring problem was that there was no version control when | began working on
docASSIST. All of the code for the project was saved in the cloud, a google doc with a bounded
apps script project in a shared folder. Whenever anyone made any changes to the project it
would update everyone's version of the code base after new code was saved. This meant that if
two people were working on the code base at any one time and making changes everything
would work as expected until one person saved their new changes to the code. At that point the
other person would lose all of the work they had just done and be synced with the person who
just saved, losing minutes to hours of work. Having everyone try to edit the code simultaneously
was not effective and often led to loss of work, dropping productivity. Another flaw in this system
was that without version control it was impossible to have multiple versions of the code
simultaneously existing for the same project. This made developing new features in parallel
almost impossible, with conflicting development processes running in tandem interfering with
each other. There was only one version of the code and all development had to done in that one
version. The absence of version control led to chaotic development.

After encountering these challenges initially | decided it was necessary to integrate git
into the docASSIST project. Without it development could only move at a snail's pace and would
constantly be held back artificially. First it was necessary to chose a source control system to
integrate docASSIST with. Git with a GitHub remote hosted repository was chosen as the
source control method because of the widespread use of git and GitHub for computer science
projects and my familiarity with git. Additionally GitHub’s hosting of free private repositories for
students made it a more attractive choice for an academic project.

Once the git repository was set up it was necessary to associate it with a google apps
script project on google drive. docASSIST is written using google apps script, google's cloud
hosted version of javascript. There are no real differences in terms of the language, but there is
more added functionality accessible through google services. Apps script is intimately tied to

google’s own core infrastructure and cannot be run locally. This is a problem for using a local
repository and not having access to the google drive file system to use source control. To solve
this it was necessary to use the google drive api to upload an apps script file to a user's google
drive anytime a change was made. This was implemented using a third party tool called gapps
which took care of interfacing with the google drive api. However it was tedious and annoying to
have to upload the project to google drive every time a change was made. To solve this a task
runner, Gulp, was used to simplify the process of uploading code to just one command. Both
gapps and Gulp were written in and required nodejs to run. Due to the dependence on the
nodejs ecosystem npm, the nodejs package manager, was used to manage the dependencies
for this project and install all necessary software for new developers. To recap, at this point all
development took place locally on the developer's machine in a git repository, not the google
cloud, they have installed software with npm, and are uploading code when they make changes
with gapps being called from a gulp task runner to simplify the process for the developer. They
would then test their changes by running the uploaded code.

Refactor

After going through the code base and introducing version control | had seen most of the
code written by previous developers. After seeing the code it was apparent that a refactor was
necessary for development to continue in the future. Past development of the project was done
completely in google’s cloud apps script environment without many common development tools
like source control. This caused a weird development style to evolve for the docASSIST project
to counter many of the shortcomings of the gapps development ecosystem.

A result of not being able to edit code simultaneously or have parallel development was
that code was often repeated in many different locations. There were even exact copies of
sections of code in the same files only a few lines away from each other. The addition of source
control would prevent the code duplications in the future by allowing development to occur more
seamlessly across multiple developers, but it was necessary to go through all of the code and
remove any duplicated sections to prevent unpredictable errors when only one section would be
changed. There was no easy way to detect duplicate sections of code across the entire code
base so every file had to be checked manually for duplications and fixed. By going through
manually it became apparent that there was a lot of duplicated functionality or redundant code
that had been forgotten about after new methods were developed or development had moved to
other areas.

Additionally the google apps script environment would not allow separate files for style
(css), function (js/gs), and form(html) forcing previous developers to put completely different
code functionalities inline in gs and js files. This caused files to become extremely long,
confusing, and hard to read and understand. To fix this it was necessary to combine files by
embedding script and style code inside the html code. This was achieved using script and style
tags in html and by using a task runner, gulp, to compile the file together before uploading to
google drive. After the development of the file embedding task it was then integrated with the
upload task, that uploaded the code to google drive so it could be tested easily in google apps

script environment. This made it so all of the separate files would be automatically embedded in
the main files on upload.

Another problem with the code base was that there was no consistent style from function
to function or line to line. This made it difficult to read and modify existing code, slowing down
development unnecessarily. To solve this problem manually would have been ineffective and
cost too much time to be worth implementing. But while investing how to use task runners |
came across code beautifiers, tasks that modify code structure to fit a desired code style. This
would make the code style consistent, allow for future reformations , and take minimal time to
implement since the beautifiers were already written and the project already had a task running
system in place.

Rubric Manager

A central component to docASSIST is the rubric manager. The docASSIST application is
based on the idea of rubrics and feedback based on rubrics to speed up the process of giving
feedback to students. In order to give fast, effective, and consistent feedback rubrics need to be
well thought out and well managed by the user in order to get the full effect of docASSIST. In
order to better facilitate the process of creating and managing rubrics the rubric manager was
created to provide a strong interface for users to understand and interact with rubrics. When |
began work on the rubric manager it only created and edited rubrics with a clunky user interface
that needed to be reworked. During my time working on the project a new user interface and
rubric sharing was added to the rubric manager.

Back End

In addition to the front end of docASSIST, the program handling interaction with the
user, a backend program is needed to store user information in a database to persist
information through multiple user interactions with the docASSIST app. When | began work on
docASSIST only basic rubric information was stored by the backend in the database, such as
the rubric id and user email. This only allowed for the retrieval of rubrics by specific users and
limited the ability to expand the functionality of the rubric manager to include more advanced
features such as sharing rubrics. Rubric sharing was a high priority item to add to docASSIST,
two methods of sharing the rubrics were requested; email sharing and code sharing. Email
sharing would work by having a person share the rubric by giving people their email address to
find the rubrics they had made. While code sharing would share a rubric using a generated code
that a user could give to other users to get the rubric. Another requirement was that it would be
necessary to have the user control which of their rubrics would be made public or could even be
accessible from any form of sharing. In addition it was necessary that users could change the
sharing settings of their rubrics at any time to give them control over who could see and use
their rubrics at any given point in time.

In order to implement shared rubrics it would be necessary to store more information
about the user. To keep track of the rubrics that a user gotten/added through sharing it would be
necessary to store a new user object in addition to rubric objects. This would allow for storage of
what rubrics that user owned, rubrics that had been email shared, and which rubrics had been
code shared. This user object was then associated with a user based on their email account,
information that the front end of docASSIST could provide from google services. Then it was
necessary to implement a way to determine if a rubric was shareable or even accessible at any
time by any of the sharing methods. In order to accomplish this the rubric object had to be
modified to store permissions about how the rubric could be used. The rubric object being
stored in the database was modified to keep track if email sharing and if code sharing was
enabled. In addition to changing the information stored and the objects used to store the

information, the rest api calls to the backend had to be changed to service new requests for
shared rubric information and to store the new data.

The process of migrating to the new data structure on the back end provided several
challenges. The first challenge was modifying the backend in a way service to the user would
not be interrupted in any significant way. This constraint proved to be very difficult. Prior to this
development there had been no other significant modifications of the backend and there was no
well defined way from previous developers to roll out an update smoothly. After substantial edits
to the backend it was not obvious that the modifications would work and could cause all
requests for rubrics to fail, resulting in a complete halt to user activity until we could patch the
problem. This behavior was not acceptable for a production application. To solve this problem a
development version of the backend was created in a separate backend. This was allowed us to
test our changes and work out time intensive bugs in the the development environment without
affecting real users.

While a separate development environment allowed us to test the new backend
separately it did not address how to migrate all of the user data to the new storage scheme. In
order migrate the data we created a function that would only be run once to convert all of the
user data to the new scheme. After it was used it was then removed from the system to prevent
accidental usage (repeated use could easily exceed the data quota). This converted all of the
previous user data to the new format on our test environment. While this worked in the
development environment it would not work for in the production environment since the backend
would have to be updated in order for the conversion function to be present and to not have new
data be accessible without another update after the conversion. Additionally in order to reach
the new backend the front had to change how it was requesting data, requiring a concurrent
front end update. With all of the problems of updating the production environment live it was
decided to have both the production and development environment running and then transfer all
of the current data from the production environment to the development environment, then
update the front end to use the development environment’s backend. At that point as users
received the front end update they would begin using the development environment backend
and stop using the production environment. After all of the users received the update the
production environment became the new development environment and the old development
environment became the new production environment, effectively swapping the environments.
The only side effect of this operation was that from the time of the transfer of user data to the
development environment to when they got the update, any new data or modifications to rubric
data would be lost once the recieved the update. To minimize the impact the update it occurred
during non-peak hours and only took a few minutes.

Rubric Category Ul

When | began work on docASSIST the user interface or ui for the rubric manager was
not well defined and needed to be updated. While | was working on the backend Gianluca had
began work on updating the ui. After finishing development on the backend | began to assist
Gianluca with the rubric manager ui. While Gianluca worked on adding functionality to the rubric

manager's interface | rewrote the underlying structure of the page by rewriting the html and
associated styles. Originally most of the elements had been added without any well defined
structure or organization to assist with the layout of the elements on the page. Excessive
amounts of code dealing with style had been used to make structure. This made the original
layout difficult to modify, did not handle page sizing changes well, and resulted in different user
experiences on different tabs in the rubric manager. This was fixed by creating a uniform
structure and style that was applied to all of the tabs in rubric manager, simplifying and
improving the user experience.

consectetur adipiscing elit. Cras vulputate vestibulum orci, sit orem ipsum dolor sit amet, consectetur adipiscing elit. Cras vulputate vestibulum orci, sit

Rubric Manager o0 Rubric Manager

Choose a Rubric

hasg Selecta rubric : Untitied Rubric - 5/25/2016 + OR Create New

My Rubrics: - e
® Default Rubric agny o
et | Untitled Rubric - 512512016 sergy - (Remove] [T] Thesis & Clam
s uis |
elleg cller| ® Responds effectively
hello test -
iis § ® caure Exmzion Responds appropriately
ulpu test Iput
i nc @ O rea Okay response
i Shared Rubrics: i _
d. g x) R on Limited response
[©)
ler| =
ellen (-1 (Remove | (@l ~| Evidence & Analysis
sllici| o
met, (X) [ReaueEpimaion Strong evidence

_orem ipsum dolor sit amet, consectetur adipiscing elit. Cras vulputate vestbulum orci, sit

Rubric Manager Rubric Manager

= Get Rubrics From Email Rubric Preview Unitled Rubric:=5/25/2016
ric:

zzzzz by@gmail.com Enable email sharing

Enable code sharing ~ Code: RBL12HG

iis uis § Enable code sharing
Ipuf Iput
ne unc
i scil hello test
i = 1. Feedback 1
g En ng
En sharing Code: RB112J9

Get Rubric With Code
Enable emall shaing

Enable code sharing

Figure 1 Rubric manager panels

In addition to improvements in the regular user interface a request was made to have
drag and drop of rubric categories and feedback for creating and editing rubrics. This was the
final area of development during my IQP and is not implemented in docASSIST yet. It still needs
more development and testing on more platforms before it is ready for deployment. However
significant progress was made in the development of the feature and a mostly working model
was built. Currently it has dragging and dropping functionality and the ability to to add and
delete new items in. Also it has the transitions necessary to move between different states with

smooth animation started by app and handled by the browser to increase performance. All that
remains to be implemented are basic controls and more rigorous testing on more browsers.

FeedBack Example
FeedBack Example
FeedBack Example
FeedBack Example
FeedBack Example
FeedBack Example
FeedBack Example
FeedBack Example

FeedBack Example
FeedBack Example
FeedBack Example
FeedBack Example

FeedBack Example
FeedBack Example
FeedBack Example
FeedBack Example
FeedBack Example
FeedBack Example
FeedBack Example
FeedBack Example
FeedBack Example

FeedBack Example
FeedBack Example

Figure 2 Experimental drag and drop interface for rubric manager

Updating and Testing Systems

Installing docASSIST Apps Script Tools

The docASSIST front end application repository is on Github and has extensive
instructions on installing the tools necessary for development, a link is provided in the appendix
to the repository.

Tester Application

When creating new features it is important to test them rigorously before releasing them
to all of the users. When developers personally test features they are not able to find all of the
bugs in the system because they have very fixed mindset on how they think everything will be
used. So it is important to have other, non-developers use the application first before releasing
to all users. In order to do that with the google ecosystem it it necessary to create an additional
private application that runs the new code with the new features. This new private application is
then shared with trusted testers. In our case it has been shared with our advisors and other
users that want to give feedback on new features.

Steps to deploy a tester application:
1. Go to the google webstore by clicking on apps, then web store

cla

i Apps [E Lab 1Report-cC ‘ i

Figure 3 Google web store navigation

2. Click on the gear in the right corner and select developer dashboard

Figure 4 Developer dashboard navigation

3. Setup your developer profile (set name and pay one time fee to allow publishing) and
add testers by typing in email accounts

zarmsby@gmail.com +

& chrome web store

Starting in November 2016, any new packaged apps or hosted apps that you publish will be restricted to Chrome OS, and will not be available to
users on Windows, Mac or Linux. Existing apps will continue to be available on all major platforms. - More Info

Developer Dashboard

Your Listings (1-30f 3) Created Last published Weekly users Status

A docASSIST Tester

Version 6 5123116 5116 3 Published to Testers St LUODONEn | ap

More info
©)
‘Target users in other languages. More info v
. test
¥ Version 1 519116 o Draft Publish | Edit
More info
©)
‘Target users in other languages. More info v
. TestProject
¥ Version 1 519116 o Draft Publish | Edit
© More info

Target users in other languages. More info v

Add new item

Your Developer Account

+ You have published 0 item(s) (excluding themes) out of your maximum aliotted 20.

Edit your developer display name: zarmsby

Edit your contact email address: (not set)
Please provide an email address where you may be contacted. This address will be publicly displayed in connection with your items. Learn more

Edit your physical address: (not set)
Please provide a current, valid postal address where you may be contacted. If you offer paid items or in-app purchase items for sale, you may be required to provide a
postal address under our developer terms and consumer protection laws: failure to do so may result in the suspension of your account and/or sales of your items,
Please ensure that you keep these details up to date if they change. By providing your email or postal address information, you consent to Google publicly displaying
or disclosing that information in connection with your items. Learn more

+ Add alink to your privacy policy: (not set)

Please provide a link to your privacy policy in the format hitp:/fwww.example.com. Leam more

Edit your tester accounts: (4) il.com, il.com, cristina il.com, neil iL.com
These test accounts allow you to make your application visinle only to specific users for testing. Learn more

Edit your User Feedback preferences: User Feedback is not enabled

Edit your commurnication preferences: Communication not allowed

Google Group publishing: Create new group (you must be the owner or administrator).
Allows muitiple developers to act on the publisher's behalf. Learn more

| savecr

s |

Figure 5 Developer dashboard

4. From the test apps script project that you have been uploading to every time you make a
change (or another apps script if you would like, you just need the desired code in an
apps script) go to publish > deploy as web add-on

» docASSIST Tester

File Edit View Run Publish Resources Help

0 N Deploy as web app...
Deploy as AP| executable...

B ignmentN... - c
— Register in Chrome Web Stare...
B Audio.gs - 1 and [Update Summary and Grade]
2 Deploy as web add-on... .
2 i J Manage Android add-ons...
B r 5 Test as add-on... H
6 we more layers (Student -> (Peer Review, Author
B - 7 .createAddonMenu()
L 5 //.addItem(translate('Review', e), 'showSidebar')//hide feedback insteac
B Grading.gs I .addItem('Grade', 'showGrading')

Figure 6 Apps script editor, publish tab

5. Create a webstore draft and do not select publish in google apps marketplace

Deploy as add-on

L= Chrome Web Store listing

Title
docASSIST Tester
Short description

developer test

]

Close

Add-on Type
Docs -
Version Currently published: 6
New -

Help URL

Report Issue URL

Post-install tip 252 characters remaining

dev

Publish in Google Apps Marketplace. Learn more

@ Created. Edit in Chrome Web Store for other options.

Figure 7 Deploy as web add-on dialog

6. Then back in the developer dashboard you will see a draft of the application as pending,
to deploy to only testers you need to edit the draft

Unpublish | Edit
More info

Figure 8 Developer dashboard, web store draft controls

7. Once editing the draft at the end of the dialog set the visibility option to private so only
your list of testers can use it and then publish changes

Visibil i
siblliy apdons ® Public

Unlisted
Only people with the link can see it.
Private

eveloper d
embers of a Google

Discard draft | Save draft and return to dashboard

Preview changes | Publish changes

Figure 9 Webstore draft edit page, visibility options displayed

8. Then send links to the install page for your users and explain what features you are

testing.

Backend Management

docASSIST uses the google cloud platform to host the backend and database. To edit
the backend it is necessary to use the cloud platform command line utility or use the web based
google cloud console. To edit the source code and deploy the backend it is recommended to
setup IDE integration with the google cloud platform for deploying to specific projects. The IDE
integration process is covered in depth in google’s documentation.

The important areas most relevant for docASSIST are the following:
1. The main project dashboard to view key statistics

© |8 hupscomledou

LR

= Google Cloud Platform

A Home Dashboard

© Project: docASSISTBackEndDev

- App Engine

wwwwwwwwwwwwwwww

Figure 10 Google cloud console dashboard

2. The navigation panel to reach other important areas

=

) Google Cloud Platform

@ 2

g © @

®

oo

4 @ & o ¢

cla

Home

API Manager

Billing

Cloud Launcher

Support

1AM & Admin

Monitoring

Debug

Trace

Logging

(dashboard?pr s ddev

board

I Project: docASSISTBackEndDev

10 docassistbackenddev (= 523762851521)

Manage project settings

Resources

Trace

Latency percentiles of most requested URIs,
som
docas

o tolatency overview

Explore other services

T Enable APls and getcredential ke keys

. Deploy prebuit soution

Debug withocal source and the new Logs panel
Monitorertors wit Eror Reporting
Teke 3 VM quickstart

Greate a Cloud Storage bucket

B4ms

Figure 11 Navigation pane

3. The app engine dashboard to monitor the application

€>cla TIH

Google Cloud Platform docsss

-®- AppEngine Dashboard

5t Dashboard

uuuuu T
s o T T
o]}
Summary

a Count/sec
A
= AA
° / \ =

/ \ =)
] / \ — 7

/ P \
1] / .

a1 Tooo G G 0P et 18 eI GerTE ToeM O T8 TezePH oerva T W oetis oM 0et1s TodsM Ot fasomn 01s 10877
o - | requests: 03333
a
&

a0e0sof1 60
- .
0 s

a [r———

Figure 12 Google app engine dashboard

4. The app engine version and traffic routing manager to manage what version of the
backend is currently being served

& L 0 ®E S Gii

Figure 13 Version and traffic routing control page

5. The app engine quota page to monitor how much data the project is using (this is more
important as more users join or complete database updates are necessary)

« cla - IR
Google Cloud Platform docassisTaackendoey -
@ AppEngine Quotas
5t board
vmiss
i
2 5 ol ds 503 of e »
]
" Quot
= [
= 0%
®
o
Q
L — 7%
Storage
o
. o

o

o

"

"
8

Figure 14 Google app engine data quota page

6. The datastore viewer to view database entries

< cla ties/query?project=de &ns=akind=_GAE_MR_TaskPayload Mo A
= Google Cloud Platform docassisTasckendbes ~
B85 Datastore Entities EICREATEENTITY (G REFRESH
a Querybykind Query by GaL
hit ind
o _GAE_MR TaskPayload| <] | wierentites Number of columas to display | 50 ~
BTSN Ciwmes
namesinput_readers_form 1 Key(_GAE MR X] VY TXC A ZHSOX2IOZX JlogbnVSbOWHC JZXemuZ2V X RICSjbHA
Rl

Figure 15 Datastore viewer page

7. The log viewer to help debug failing requests to the backend and see what errors are
occurring

ol cloudgoogle.comogs iewer7project -docass sEbackenddevaminLoglevel-Obexpand esource appengine googleapiscomsloghames rojects32F docassistbackenddevik2Flogs 2Fappengine googleapis com252Frequest f | 18 we

Google Cloud Platform doctssisTaackeniver -

‘‘‘‘‘‘‘‘‘‘‘‘

Figure 16 Log viewer

Release Process

As changes are made to docASSIST the application needs to be updated for all users.
The steps for updating the application are described below.

1. Finalize code and check for bugs

2. Use a tester application (described above/previously) to have a few other users check
for bugs

3. Log into the assistments teacher profile and copy the code (textual copy for the script
editor for every file) from your tester project to the official docASSIST application (the
“Add-On Bounded Doc’ file). This step is unavoidable due to the way google has
structured the docASSIST ecosystem if we do not want to have all of the users reinstall
the application.

4. Create a new version under file > manage versions to serve as a fallback point

5. Under publish > publish as a web add-on update the web store draft as a new version
and do not check publish in google apps market place (shown in Figure 6-7)

6. Go to the developers dashboard (shown in Figures 3-5)

7. Edit the draft of the application (shown in Figure 8)

8. Publish changes (make sure the visibility is set to public, shown in Figure 9

User Interaction School Visit

After releasing the rubric manager we wanted to get feedback from teachers on what
they thought about docASSIST, to learn what features the would like to see in future
development and to see what parts of the application the like or dislike. Thanks to Andrew
Burnett we visited Shrewsbury high school to demo docASSIST to their english department.
While we were there Andrew demoed docASSIST while Gianluca and | observed the teachers
interacting with the app and answered any questions the teachers had. After going through the
demo with the teachers we saw the problems they ran into while trying to use the application
and were surprised by what they seem to prioritize for new features. One of the top requests
was for an indicator for when certain tasks had completed in the app, so that the teacher could
know that an event had occurred and finished (this has since been implemented and updated
for all users). Another request was for more support for in depth statistical tools for grades and
for tools to help teachers perform their own analysis. The most surprising request for us was for
mobile support so students could use the school provided tablets with docASSIST (this is
unfortunately not in our control, google would need to allow this). Other requests that we
anticipated going into the meeting included more permissions and a stronger idea of roles for
different people of the same document and for an easy to use versioning system to track
changes and monitor feedback fulfillment.

Conclusion and Future Development

After working on docASSIST | am happy with the progress that was made. During my
time on docASSIST the development work flow was substantially improved and streamlined by
integrating source control into the project and refactoring the code base. The rubric manager
was implemented with a clean user interface and fully supported shared rubrics. Finally new
methods for testing and updating the front and back end of the application were developed to
prevent bugs from occurring and to increase quality control.

Then we received feedback from teachers on how to improve docASSIST and what new
features they would like to see in the future. From their suggestions | urge future developers to
implement new grading and statistical analysis tools, more concrete and visible roles for users
on documents, and to integrate versioning and feedback tracking into the application. But | am
worried that future extensions of docASSIST may prove to be very difficult. Many of the desired
additions to the app require a fundamental change to the way that docASSIST would operate
internally and externally. At this point so many new concepts need to be introduced that | would
recommend a rewriting of the docASSIST project if it is to progress past it's current state. With a
version two of docASSIST many of the pitfalls of the first version could be avoided and core
ideas about how docASSIST functions could be changed to better match its new requirements.
Additionally all of the work in the first version of docASSIST could be ported to a new version of
the project. There is still a lot of work to do on docASSIST and | am confident that it will continue
to grow.

Appendix

Docassist Website

https://sites.google.com/site/assistmentsfeedbacktool/

Github Repositories
https://github.com/docASSIST will be the future location of the docASSIST repositories

Docassist Frontend

https://github.com/zarmsby/docASSISTAppsScriptProject (must be member to view to request
access email zarmsby@gmail.com)

Docassist Backend

https://github.com/nmcmahon1215/docASSIST (must be a member to view, my work is in the
zdev branch)

https://sites.google.com/site/assistmentsfeedbacktool/
https://github.com/docASSIST
https://github.com/zarmsby/docASSISTAppsScriptProject
mailto:zarmsby@gmail.com
https://github.com/nmcmahon1215/docASSIST

