
 

Continued Developing of docASSIST:  
A Google Doc Add-on 

 
 

By Zachary Armsby 
 
 

 

 

 

  



Continued Developing of docASSIST: A Google Doc Add-on 
An Interactive Qualifying Project Report Submitted to the Faculty of the 

WORCESTER POLYTECHNIC INSTITUTE 
in partial fulfillment of the requirements for the Degree of Bachelor of 

Science 
 

By  
 

__________________________ 
Zachary Armsby 

 
Submitted on 

 
 
 
 
 
 
 
 

 
 

 
 
 

 
Approved: 

 
_____________________________ 
Professor Neil T. Heffernan, Advisor 

 
_____________________________ 

Cristina Heffernan, Advisor 



Table of Contents 
Table of Contents 

List of Figures 

Abstract 

Acknowledgments 

Authorship 

Introduction 

Development Workflow 
Git Integration 
Refactor 

Rubric Manager 
Back End 
Rubric Category UI 

Updating and Testing Systems 
Installing docASSIST Apps Script Tools 
Tester Application 
Backend Management 
Release Process 

User Interaction School Visit 

Conclusion and Future Development 

Appendix 
Docassist Website 
Github Repositories 

Docassist Frontend 
Docassist Backend 

 

 



List of Figures 
Figure 1 Rubric manager panels 
Figure 2 Experimental drag and drop interface for rubric manager 
Figure 3 Google web store navigation 
Figure 4 Developer dashboard navigation 
Figure 5 Developer dashboard 
Figure 6 Apps script editor, publish tab 
Figure 7 Deploy as web add-on dialog 
Figure 8 Developer dashboard, web store draft controls 
Figure 9 Webstore draft edit page, visibility options displayed 
Figure 10 Google cloud console dashboard 
Figure 11 Navigation pane 
Figure 12 Google app engine dashboard  
Figure 13 Version and traffic routing control page 
Figure 14 Google app engine data quota page 
Figure 15 Datastore viewer page 
Figure 16 Log viewer 

 

  



Abstract 
docASSIST is a tool created by WPI students as MQP (Major Qualifying Project) and 

IQP (Interdisciplinary Qualifying Project) projects with advisement and mentorship from the WPI 
assistments team. The purpose of docASSIST is to help teachers give feedback to students 
faster and more efficiently. Currently many teachers are overworked and take a long time to 
give feedback to students. docASSIST solves this problem by giving teachers tools to quickly 
evaluate assignments using rubrics and user defined feedback options for rubric categories. 
The purpose of this IQP was to continue developing docASSIST. Areas of development 
included the development workflow of the docASSIST project, the rubric manager, and 
streamlining many common processes to maintain and continue development. 

 

  



Acknowledgments 
I would like to acknowledge all of the previous developers of the docASSIST project, 

Nick McMahon, Sam La, Jean Marc Touma, Christian Roberts, and Zi Wang, for all of their work 
on docASSIST to get it to where it is today. Also to thank our advisors Christia and Neil 
Heffernan for continuing the docASSIST project and for all of their advice and guidance while 
developing docASSIST. Additionally I would like to thank the Assistments Lab and especially 
Andrew Burnett for their feedback and help in moving docASSIST forward. Also I would like to 
acknowledge Gianluca Tarquinio for working with me on docASSIST (worked during the same 
time but reporting separately). As well as Cory Tapply and Trevor Valcourt for continuing to work 
on docASSIST. 

 

  



Authorship 
This paper was written by Zachary Armsby using Jean Marc Touma and Christian 

Roberts paper as an example. 

  



Introduction 
docASSIST is not a new project, it has been worked on by at least five different 

developers and is over a year old. In that time the project was never set up to for real 
development. Changes were piled on top of each other until most of the code was barely 
understandable and a significant amount of redundant functions existed. This was the result of 
the development setup and ecosystem used by apps script projects and having developers 
focus only on select areas of the project and then leaving when their project was finished. This 
was the first part of docASSIST that I decided to improve by adding source control, refactoring 
the code, and defining new best practices for apps script development. 

Following the introduction of a better development environment I focused on the 
development of the rubric manager and support for sharing rubrics. Rubrics are a central 
concept to docASSIST, allowing teachers to quickly grade based on predefined metrics and 
feedbacks. This necessitated the need for a better interface for creation, editing, and sharing of 
rubrics. In order to implement the rubric manager many changes had to be made to the existing 
ui prototype and the backend had to modified significantly to support the sharing of rubrics 
between users. 

  



Development Workflow 

Git Integration 
When I began working on docASSIST I had experience with javascript in web 

development and java for class work, but I had no experience with google’s apps script 
ecosystem or with server backends. It was very difficult to understand code written by previous 
developers in apps script until several concepts about apps script were understood. Apps script 
is very different from most languages, in that it is a variation of javascript completely managed 
by google that can only run on their infrastructure. Keeping with google’s idea of everything on 
the cloud, all apps script projects exist only on the cloud and were not easily accessible in any 
other way. The editing, storage, testing, and running of an apps script project was completely 
dependent on google’s cloud ecosystem. The apps script ecosystem is at the complete mercy of 
google and any new features that are desired need to be implemented by google. This also 
meant that several key development tools have been omitted from the apps script ecosystem 
because google has not implemented them yet/if they ever will. 

One glaring problem was that there was no version control when I began working on 
docASSIST. All of the code for the project was saved in the cloud, a google doc with a bounded 
apps script project in a shared folder. Whenever anyone made any changes to the project it 
would update everyone's version of the code base after new code was saved. This meant that if 
two people were working on the code base at any one time and making changes everything 
would work as expected until one person saved their new changes to the code. At that point the 
other person would lose all of the work they had just done and be synced with the person who 
just saved, losing minutes to hours of work. Having everyone try to edit the code simultaneously 
was not effective and often led to loss of work, dropping productivity. Another flaw in this system 
was that without version control it was impossible to have multiple versions of the code 
simultaneously existing for the same project. This made developing new features in parallel 
almost impossible, with conflicting development processes running in tandem interfering with 
each other. There was only one version of the code and all development had to done in that one 
version. The absence of version control led to chaotic development. 

After encountering these challenges initially I decided it was necessary to integrate git 
into the docASSIST project. Without it development could only move at a snail's pace and would 
constantly be held back artificially. First it was necessary to chose a source control system to 
integrate docASSIST with. Git with a GitHub remote hosted repository was chosen as the 
source control method because of the widespread use of git and GitHub for computer science 
projects and my familiarity with git. Additionally GitHub’s hosting of free private repositories for 
students made it a more attractive choice for an academic project.  

Once the git repository was set up it was necessary to associate it with a google apps 
script project on google drive. docASSIST is written using google apps script, google's cloud 
hosted version of javascript. There are no real differences in terms of the language, but there is 
more added functionality accessible through google services. Apps script is intimately tied to 



google’s own core infrastructure and cannot be run locally. This is a problem for using a local 
repository and not having access to the google drive file system to use source control. To solve 
this it was necessary to use the google drive api to upload an apps script file to a user's google 
drive anytime a change was made. This was implemented using a third party tool called gapps 
which took care of interfacing with the google drive api. However it was tedious and annoying to 
have to upload the project to google drive every time a change was made. To solve this a task 
runner, Gulp, was used to simplify the process of uploading code to just one command. Both 
gapps and Gulp were written in and required nodejs to run. Due to the dependence on the 
nodejs ecosystem npm, the nodejs package manager, was used to manage the dependencies 
for this project and install all necessary software for new developers. To recap, at this point all 
development took place locally on the developer's machine in a git repository, not the google 
cloud, they have installed software with npm, and are uploading code when they make changes 
with gapps being called from a gulp task runner to simplify the process for the developer. They 
would then test their changes by running the uploaded code. 
 

Refactor 
After going through the code base and introducing version control I had seen most of the 

code written by previous developers. After seeing the code it was apparent that a refactor was 
necessary for development to continue in the future. Past development of the project was done 
completely in google’s cloud apps script environment without many common development tools 
like source control. This caused a weird development style to evolve for the docASSIST project 
to counter many of the shortcomings of the gapps development ecosystem.  

A result of not being able to edit code simultaneously or have parallel development was 
that code was often repeated in many different locations. There were even exact copies of 
sections of code in the same files only a few lines away from each other. The addition of source 
control would prevent the code duplications in the future by allowing development to occur more 
seamlessly across multiple developers, but it was necessary to go through all of the code and 
remove any duplicated sections to prevent unpredictable errors when only one section would be 
changed. There was no easy way to detect duplicate sections of code across the entire code 
base so every file had to be checked manually for duplications and fixed. By going through 
manually it became apparent that there was a lot of duplicated functionality or redundant code 
that had been forgotten about after new methods were developed or development had moved to 
other areas. 

Additionally the google apps script environment would not allow separate files for style 
(css), function (js/gs), and form(html) forcing previous developers to put completely different 
code functionalities inline in gs and js files. This caused files to become extremely long, 
confusing, and hard to read and understand. To fix this it was necessary to combine files by 
embedding script and style code inside the html code. This was achieved using script and style 
tags in html and by using a task runner, gulp, to compile the file together before uploading to 
google drive. After the development of the file embedding task it was then integrated with the 
upload task, that uploaded the code to google drive so it could be tested easily in google apps 



script environment. This made it so all of the separate files would be automatically embedded in 
the main files on upload. 

Another problem with the code base was that there was no consistent style from function 
to function or line to line. This made it difficult to read and modify existing code, slowing down 
development unnecessarily. To solve this problem manually would have been ineffective and 
cost too much time to be worth implementing. But while investing how to use task runners I 
came across code beautifiers, tasks that modify code structure to fit a desired  code style. This 
would make the code style consistent, allow for future reformations , and take minimal time to 
implement since the beautifiers were already written and the project already had a task running 
system in place.  

 

  



Rubric Manager 
 

A central component to docASSIST is the rubric manager. The docASSIST application is 
based on the idea of rubrics and feedback based on rubrics to speed up the process of giving 
feedback to students. In order to give fast, effective, and consistent feedback rubrics need to be 
well thought out and well managed by the user in order to get the full effect of docASSIST. In 
order to better facilitate the process of creating and managing rubrics the rubric manager was 
created to provide a strong interface for users to understand and interact with rubrics. When I 
began work on the rubric manager it only created and edited rubrics with a clunky user interface 
that needed to be reworked. During my time working on the project a new user interface and 
rubric sharing was added to the rubric manager. 

 

Back End 
In addition to the front end of docASSIST, the program handling interaction with the 

user, a backend program is needed to store user information in a database to persist 
information through multiple user interactions with the docASSIST app. When I began work on 
docASSIST only basic rubric information was stored by the backend in the database, such as 
the rubric id and user email. This only allowed for the retrieval of rubrics by specific users and 
limited the ability to expand the functionality of the rubric manager to include more advanced 
features such as sharing rubrics. Rubric sharing was a high priority item to add to docASSIST, 
two methods of sharing the rubrics were requested; email sharing and code sharing. Email 
sharing would work by having a person share the rubric by giving people their email address to 
find the rubrics they had made. While code sharing would share a rubric using a generated code 
that a user could give to other users to get the rubric. Another requirement was that it would be 
necessary to have the user control which of their rubrics would be made public or could even be 
accessible from any form of sharing. In addition it was necessary that users could change the 
sharing settings of their rubrics at any time to give them control over who could see and use 
their rubrics at any given point in time.  

In order to implement shared rubrics it would be necessary to store more information 
about the user. To keep track of the rubrics that a user gotten/added through sharing it would be 
necessary to store a new user object in addition to rubric objects. This would allow for storage of 
what rubrics that user owned, rubrics that had been email shared, and which rubrics had been 
code shared. This user object was  then associated with a user based on their email account, 
information that the front end of docASSIST could provide from google services. Then it was 
necessary to implement a way to determine if a rubric was shareable or even accessible at any 
time by any of the sharing methods. In order to accomplish this the rubric object had to be 
modified to store permissions about how the rubric could be used. The rubric object being 
stored in the database was modified to keep track if email sharing and if code sharing was 
enabled. In addition to changing the information stored and the objects used to store the 



information, the rest api calls to the backend had to be changed to service new requests for 
shared rubric information and to store the new data. 

The process of migrating to the new data structure on the back end provided several 
challenges. The first challenge was modifying the backend in a way service to the user would 
not be interrupted in any significant way. This constraint proved to be very difficult. Prior to this 
development there had been no other significant modifications of the backend and there was no 
well defined way from previous developers to roll out an update smoothly. After substantial edits 
to the backend it was not obvious that the modifications would work and could cause all 
requests for rubrics to fail, resulting in a complete halt to user activity until we could patch the 
problem. This behavior was not acceptable for a production application. To solve this problem a 
development version of the backend was created in a separate backend. This was allowed us to 
test our changes and work out time intensive bugs in the the development environment without 
affecting real users. 

While a separate development environment allowed us to test the new backend 
separately it did not address how to migrate all of the user data to the new storage scheme. In 
order migrate the data we created a function that would only be run once  to convert all of the 
user data to the new scheme. After it was used it was then removed from the system to prevent 
accidental usage (repeated use could easily exceed the data quota). This converted all of the 
previous user data to the new format on our test environment. While this worked in the 
development environment it would not work for in the production environment since the backend 
would have to be updated in order for the conversion function to be present and to not have new 
data be accessible without another update after the conversion. Additionally in order to reach 
the new backend the front had to change how it was requesting data, requiring a concurrent 
front end update. With all of the problems of updating the production environment live it was 
decided to have both the production and development environment running and then transfer all 
of the current data from the production environment to the development environment, then 
update the front end to use the development environment’s backend. At that point as users 
received the front end update they would begin using the development environment backend 
and stop using the production environment. After all of the users received the update the 
production environment became the new development environment and the old development 
environment became the new production environment, effectively swapping the environments. 
The only side effect of this operation was that from the time of the transfer of user data to the 
development environment to when they got the update, any new data or modifications to rubric 
data would be lost once the recieved the update. To minimize the impact the update it occurred 
during non-peak hours and only took a few minutes. 

 

Rubric Category UI 
When I began work on docASSIST the user interface or ui for the rubric manager was 

not well defined and needed to be updated. While I was working on the backend Gianluca had 
began work on updating the ui. After finishing development on the backend I began to assist 
Gianluca with the rubric manager ui. While Gianluca worked on adding functionality to the rubric 



manager's interface I rewrote the underlying structure of the page by rewriting the html and 
associated styles. Originally most of the elements had been added without any well defined 
structure or organization to assist with the layout of the elements on the page. Excessive 
amounts of code dealing with style had been used to make structure. This made the original 
layout difficult to modify, did not handle page sizing changes well, and resulted in different user 
experiences on different tabs in the rubric manager. This was fixed by creating a uniform 
structure and style that was applied to all of the tabs in rubric manager, simplifying and 
improving the user experience. 
 

 
 

 
Figure 1 Rubric manager panels 

 
In addition to improvements in the regular user interface a request was made to have 

drag and drop of rubric categories and feedback for creating and editing rubrics. This was the 
final area of development during my IQP and is not implemented in docASSIST yet. It still needs 
more development and testing on more platforms before it is ready for deployment. However 
significant progress was made in the development of the feature and a mostly working model 
was built. Currently it has dragging and dropping functionality and the ability to to add and 
delete new items in. Also it has the transitions necessary to move between different states with 



smooth animation started by app and handled by the browser to increase performance. All that 
remains to be implemented are basic controls and more rigorous testing on more browsers. 
 
 

 
 
 

Figure 2 Experimental drag and drop interface for rubric manager 
 
 
 

 



Updating and Testing Systems  

Installing docASSIST Apps Script Tools 
The docASSIST front end application repository is on Github and has extensive 

instructions on installing the tools necessary for development, a link is provided in the appendix 
to the repository. 

Tester Application 
When creating new features it is important to test them rigorously before releasing them 

to all of the users. When developers personally test features they are not able to find all of the 
bugs in the system because they have very fixed mindset on how they think everything will be 
used. So it is important to have other, non-developers use the application first before releasing 
to all users. In order to do that with the google ecosystem it it necessary to create an additional 
private application that runs the new code with the new features. This new private application is 
then shared with trusted testers. In our case it has been shared with our advisors and other 
users that want to give feedback on new features.  
 
Steps to deploy a tester application: 

1. Go to the google webstore by clicking on apps, then web store 

 
Figure 3 Google web store navigation 

 
2. Click on the gear in the right corner and select developer dashboard 

 
Figure 4 Developer dashboard navigation 



3. Setup your developer profile (set name and pay one time fee to allow publishing) and 
add testers by typing in email accounts 

 
Figure 5 Developer dashboard 

 
4. From the test apps script project that you have been uploading to every time you make a 

change (or another apps script if you would like, you just need the desired code in an 
apps script) go to publish > deploy as web add-on 

 
Figure 6 Apps script editor, publish tab 

 
 
 



5. Create a webstore draft and do not select publish in google apps marketplace 

 
Figure 7 Deploy as web add-on dialog 

 
6. Then back in the developer dashboard you will see a draft of the application as pending, 

to deploy to only testers you need to edit the draft 

 
Figure 8 Developer dashboard, web store draft controls 

 
7. Once editing the draft at the end of the dialog set the visibility option to private so only 

your list of testers can use it and then publish changes 

 
Figure 9 Webstore draft edit page, visibility options displayed 

 
8. Then send links to the install page for your users and explain what features you are 

testing. 



Backend Management 
docASSIST uses the google cloud platform to host the backend and database. To edit 

the backend it is necessary to use the cloud platform command line utility or use the web based 
google cloud console. To edit the source code and deploy the backend it is recommended to 
setup IDE integration with the google cloud platform for deploying to specific projects. The IDE 
integration process is covered in depth in google’s documentation. 
 
The important areas most relevant for docASSIST are the following: 

1. The main project dashboard to view key statistics 

 
Figure 10 Google cloud console dashboard 

 
2. The navigation panel to reach other important areas 

 
Figure 11 Navigation pane 



3. The app engine dashboard to monitor the application 

 
Figure 12 Google app engine dashboard  

 
4. The app engine version and traffic routing manager to manage what version of the 

backend is currently being served 

 
Figure 13 Version and traffic routing control page 

 
 

 



5. The app engine quota page to monitor how much data the project is using (this is more 
important as more users join or complete database updates are necessary) 

 
Figure 14 Google app engine data quota page 

 
6. The datastore viewer to view database entries 

 
Figure 15 Datastore viewer page 

 
 

 
 



7. The log viewer to help debug failing requests to the backend and see what errors are 
occurring 

 
Figure 16 Log viewer 

Release Process 
As changes are made to docASSIST the application needs to be updated for all users. 

The steps for updating the application are described below. 
 
 

1. Finalize code and check for bugs 
2. Use a tester application (described above/previously) to have a few other users check 

for bugs 
3. Log into the assistments teacher profile and copy the code (textual copy for the script 

editor for every file) from your tester project to the official docASSIST application (the 
“Add-On Bounded Doc” file). This step is unavoidable due to the way google has 
structured the docASSIST ecosystem if we do not want to have all of the users reinstall 
the application. 

4. Create a new version under file > manage versions to serve as a fallback point 
5. Under publish > publish as a web add-on update the web store draft as a new version 

and do not check publish in google apps market place (shown in Figure 6-7) 
6. Go to the developers dashboard (shown in Figures 3-5) 
7. Edit the draft of the application (shown in Figure 8) 
8. Publish changes (make sure the visibility is set to public, shown in Figure 9 

  



User Interaction School Visit 
After releasing the rubric manager we wanted to get feedback from teachers on what 

they thought about docASSIST, to learn what features the would like to see in future 
development and to see what parts of the application the like or dislike. Thanks to Andrew 
Burnett we visited Shrewsbury high school to demo docASSIST to their english department. 
While we were there Andrew demoed docASSIST while Gianluca and I observed the teachers 
interacting with the app and answered any questions the teachers had. After going through the 
demo with the teachers we saw the problems they ran into while trying to use the application 
and were surprised by what they seem to prioritize for new features. One of the top requests 
was for an indicator for when certain tasks had completed in the app, so that the teacher could 
know that an event had occurred and finished (this has since been implemented and updated 
for all users). Another request was for more support for in depth statistical tools for grades and 
for tools to help teachers perform their own analysis. The most surprising request for us was for 
mobile support so students could use the school provided tablets with docASSIST (this is 
unfortunately not in our control, google would need to allow this). Other requests that we 
anticipated going into the meeting included more permissions and a stronger idea of roles for 
different people of the same document and for an easy to use versioning system to track 
changes and monitor feedback fulfillment. 

  



Conclusion and Future Development 
After working on docASSIST I am happy with the progress that was made. During my 

time on docASSIST the development work flow was substantially improved and streamlined by 
integrating source control into the project and refactoring the code base. The rubric manager 
was implemented with a clean user interface and fully supported shared rubrics. Finally new 
methods for testing and updating the front and back end of the application were developed to 
prevent bugs from occurring and to increase quality control.  

Then we received feedback from teachers on how to improve docASSIST and what new 
features they would like to see in the future. From their suggestions I urge future developers to 
implement new grading and statistical analysis tools, more concrete and visible roles for users 
on documents, and to integrate versioning and feedback tracking into the application. But I am 
worried that future extensions of docASSIST may prove to be very difficult. Many of the desired 
additions to the app require a fundamental change to the way that docASSIST would operate 
internally and externally. At this point so many new concepts need to be introduced that I would 
recommend a rewriting of the docASSIST project if it is to progress past it’s current state. With a 
version two of docASSIST many of the pitfalls of the first version could be avoided and core 
ideas about how docASSIST functions could be changed to better match its new requirements. 
Additionally all of the work in the first version of docASSIST could be ported to a new version of 
the project. There is still a lot of work to do on docASSIST and I am confident that it will continue 
to grow. 

 

  



Appendix 

Docassist Website 
https://sites.google.com/site/assistmentsfeedbacktool/ 

Github Repositories 
https://github.com/docASSIST will be the future location of the docASSIST repositories 

Docassist Frontend 
 https://github.com/zarmsby/docASSISTAppsScriptProject (must be member to view to request 
access email zarmsby@gmail.com) 

Docassist Backend 
https://github.com/nmcmahon1215/docASSIST (must be a member to view, my work is in the 
zdev branch) 
 
 

https://sites.google.com/site/assistmentsfeedbacktool/
https://github.com/docASSIST
https://github.com/zarmsby/docASSISTAppsScriptProject
mailto:zarmsby@gmail.com
https://github.com/nmcmahon1215/docASSIST

