
Metric-Based Classification
of Graph Vertices

Daniel Kim, John Pugmire

A report submitted in partial fulfillment of the requirements for the
degree of Bachelor of Science

Advisors: Padraig Ó Catháin, Robert J Walls

Worcester Polytechnic Institute
United States of America

April 25, 2019

Acknowledgements

We would like to thank Professor Padraig Ó Catháin and Professor Robert
J. Walls for their guidance and support throughout the duration of this
project.

Abstract

In their 2013 paper, Cao et. al introduce the diffusion state distance (DSD)
metric on graphs for use in the vertex labeling problem on protein-protein
interaction networks. We generalize their classification approach, which uses
weighted k-nearest neighbors voting, to work with any graph metric. We
analyze the performance of this approach on graphs resembling real-world
networks using shortest-path distance, DSD, and resistance distance. To
this end, we propose novel simulation models to generate labeled scale-free
and small-world networks, and perform label prediction experiments on the
simulated graphs as well as real-world networks. We conclude that the DSD-
based prediction algorithm exhibits more robust community awareness than
the ones using the other metrics.

1

Contents

1 Introduction 4

2 Graph Theory 6
2.1 Elementary Graph Theory . 6
2.2 Small-World and Scale-free Networks 11
2.3 Random Graphs . 11

3 Random Labeled Graphs 14
3.1 Noisy Complete Components (NCC) Graphs 14
3.2 Class-Weighted Barabási-Albert (CWBA) Graphs 16

4 Metrics on Graphs 19
4.1 Definition and Shortest-Path Distance 19
4.2 Resistance Distance . 20
4.3 Diffusion State Distance . 21
4.4 DSD on the Complete Graph 23

5 Label Prediction Methods on Graphs 25
5.1 Problem Definition . 25

5.1.1 Voting Algorithms . 26
5.2 Real World Data . 26

5.2.1 Protein-Protein Interaction (PPI) networks 27
5.2.2 Graph model for recommender systems 28
5.2.3 Laplacian Eigenmaps 30

6 Simulations 31
6.1 Noisy Complete Components (NCC) Graphs 31

6.1.1 Data Collection . 31
6.1.2 Analysis . 34

6.2 Noisy Complete Components with Hubs (NCCH) Graphs . . 37

2

6.2.1 Data Collection . 38
6.2.2 Analysis . 41

6.3 Class-weighted Barabási-Albert (CWBA) Graphs 42
6.3.1 Data Collection . 42
6.3.2 Analysis . 44

6.4 Overall Findings . 44

7 Analysis of Real-World Data 46
7.1 Selected datasets . 47

7.1.1 Coauthor . 47
7.1.2 email-Eu-core . 48

7.2 Results and Analysis . 48

8 Conclusions 51

3

Chapter 1

Introduction

An abundance of network data has led to many studies on predicting infor-
mation about vertices in networks. Such studies are important because they
can lead to recommendation systems [10], classification of vertices in the
network, the prediction of protein function, and many other useful appli-
cations. Many graph-based approaches have been considered for prediction
on networks, as networks have a natural relation to graphs. In this project,
we focus on a specific method of prediction, previously used in a biological
network, and try to prove why it is more useful for prediction in certain
networks than other methods of prediction.

Suppose we have a graph in which every vertex belongs to a unique class
and a map from a proper subset of vertices to labels corresponding to their
classes. Given such a graph, we define the vertex label prediction problem as
predicting the missing labels in this graph. This problem has great practical
importance. Data with a network structure is ubiquitous in real problems
involving social media, the world wide web, and the biology of genes and
proteins, and label prediction presents interesting possibilities [9].

One such possibility is presented by protein protein-interaction (PPI)
networks. A PPI network is a graph where each vertex represents a protein
and edges are drawn between any two proteins which are known to interact.
In this case, some proteins are labeled based upon their function in the
organism, and the task is to predict functions for the unlabeled proteins
based upon the PPI network. To tackle this problem, Cao, Zhang, Park,
Daniels, Crovella, Cowen, and Hescott developed a new metric on graph
vertices, the diffusion state distance (DSD). They used the DSD to build
a predictor that provided better performance of protein function predictors
than competing methods based upon shortest path distance [5].

4

The goal of our project was to further explore graph-metric-based clas-
sification approaches in order to better understand the aspects of graph
structure to which DSD reacts in comparison to other graph metrics. To
accomplish this, we generalize the weighted nearest neighbors prediction
method used by Cao et al. to use arbitrary graph metrics, and then per-
formed a number of classification experiments using both simulated and
real-world data sets.

We succeeded in developing novel generative models for labeled graphs
which have a recoverable community structure. In addition, we show that
DSD-based classification is more robust to noise and performs better all
around than the other metrics do in a variety of different classification exper-
iments. We conclude that the DSD is a robust and meaningful measurement
of distance on graphs with certain sorts of underlying community structure.

Chapter 2 provides the background in graph theory needed to understand
our methods, while Chapter 3 presents the novel data simulation models de-
veloped to test vertex label prediction algorithms. In Chapter 4, we develop
background in metrics on graphs, particularly the DSD. These metrics are
the keystone of our weighted nearest neighbors label prediction approach,
which is described in Chapter 5 alongside a discussion of related machine
learning methods of graphs.

Chapter 6 details the methods, results, and analyses of a suite of classifi-
cation experiments performed on data simulated using the models described
in Chapter 3. Chapter 7 builds upon these results with further experiments
run on two real data sets.

5

Chapter 2

Graph Theory

In this chapter, we lay out the necessary background in graph theory for
our later results. Section 2.1 includes fundamental definitions from graph
theory and some important results from spectral graph theory, while Sec-
tion 2.2 introduces small world and scale-free networks, which are graphs
that have particular structural properties often found in real-world data. Fi-
nally, Section 2.3 provides definitions relating to random graphs and relevant
examples of generative models.

2.1 Elementary Graph Theory

We begin by recalling some conventional definitions and notations from
graph theory.

Definition 2.1. A graphG is a pair of sets (V,E) such that E ⊆ {{x, y}|x, y ∈
V }. We call V the set of vertices of G and E the set of edges of G.

Example 2.2 (The Pentagon). The pentagon, also known as the 5-cycle,
is the graph (V,E) defined by V = {0, 1, 2, 3, 4} and E = {{0, 1}, {1, 2}, {2, 3},
{3, 4}, {4, 0}}.

6

Figure 2.1: The Pentagon

Remark (Notation). Let G = (V,E) be a graph.

• For convenience, we will use subscript notation to refer to the edge
and vertex sets of G, i.e. VG = V and EG = E.

• v ∈ G is an equivalent statement to v ∈ VG

• |G|, called the order of G, is equal to |VG|.

When we speak about graphs, we are concerned with the structure of
the graph rather than the specific symbols in its vertex set. Thus we use the
following definition of equivalence.

Definition 2.3 (Equivalence of graphs). Two graphs G and H are equiva-
lent if there exists a bijection φ : VG → VH such that {u, v} ∈ G if and only
if {φ(u), φ(v)} ∈ H.

Equivalence of graphs induces an equivalence relation on the set of all
graphs. For convenience, we will often only discuss graphs up to this equiv-
alence relation (which only affects vertex labels).

Example 2.4. The empty graph of order n is the graph such that |V | = n
and E = ∅.

The complete graph of order n, denoted Kn, is the graph containing
every possible edge, so that |EKn | =

n(n−1)
2 .

We say a graph is bipartite when there exists a bipartition of its vertex
set such that there are no edges between vertices in the same part. The
complete bipartite graph, denoted Kn,m, is such a graph where the two
partitions have cardinality n and m respectively, and every pair of vertices
in distinct partitions is joined by an edge.

7

Figure 2.2: The complete bipartite graph K3,4

Definition 2.5. The neighborhood of a vertex u ∈ G, denoted N(u), is
the set of all vertices v such that {u, v} ∈ EG, and these v are called the
neighbors of u. The degree of u is defined by deg(u) = |N(u)|. A graph in
which every vertex has the same degree is regular. If that degree is equal
to k, then the graph is said to be k-regular.

Example 2.6. Kn is an (n− 1)-regular graph, Kn,n is an n-regular graph,
and the pentagon is a 2-regular graph.

Definition 2.7. A walk of a graph G is an alternating sequence of edges
and vertices such that each vertex is incident to the edges before and after
it.

A path is the sequence of edges in a walk where every vertex is unique.
The shortest-path distance between two vertices u, v ∈ G, denoted

d(u, v), is the minimum number of edges in a path from u to v.

Definition 2.8. The adjacency matrix A of a graph G is given by

Aij =

{
1 : {vi, vj} is an edge in G

0 : otherwise

where the set {vi}|G|i=1 is an ordering of the vertices in G.

Note that the adjacency matrix of a graph is not unique in general.
Depending on the way that the vertices of G are numbered, we may end up
with a different matrix. However, for every adjacency matrix the following
holds:

Definition 2.9. A matrix is reducible if and only if it can be put in block
upper triangular form by simultaneous row and column permutations. In
other words, a matrix M is reducible if and only if there exists a permutation
matrix P such that P−1MP is block upper triangular. Otherwise, it is said
to be irreducible.

8

Proposition 2.10. Let A be the adjacency matrix of a graph G. Then the
following are true:

(1) A is symmetric (so the eigenvalues of A are real)

(2) A corresponds to a graph that is unique up to equivalence

(3) A is irreducible if and only if G is connected

Proof. We omit proofs for (1) and (2) as they are self-evident.
For (3), we first observe that P−1AP is an adjacency matrix of a graph

equivalent to G for any permutation matrix P . So without loss of generality,
suppose that G is connected and A is already in block upper triangular form.
Then because A is symmetric, we have

A =

[
B 0
0 C

]
where B, C, are square block matrices. Say that B has size m×m. It is

clear that there are no edges connecting the vertices in {1, ...,m} to those
in {m+ 1, ..., n}. Thus G is not connected, which is a contradiction.

The irreducibility result allows us to apply the Perron-Frobenius Theo-
rem, resulting immediately in these additional properties of A.

Theorem 2.11 (Pg 673 (section 8.3) of [14]). Let A be an irreducible
nonnegative square matrix of order n. The following is true.

(1) Let r be the maximum magnitude of the eigenvalues of A. Then r is a
(real, positive) simple eigenvalue of A.

(2) The eigenvalue r has left and right eigenvectors whose components are
all positive

(3) The only eigenvectors of A whose components are all positive have
eigenvalue r.

(4)

min
i

∑
j

aij ≤ r ≤ max
i

∑
j

aij

Because A is nonnegative and irreducible for all connected graphs, these
properties hold for all such adjacency matrices. Indeed, the irreducibility
and nonnegativity of A yield many other interesting properties which we
omit here.

9

Definition 2.12. The spectral gap of a matrix A is maxi,j |λi−λj |, where
λi and λj are the two largest eigenvalues of G.

The spectral gap of a graph is the spectral gap of its adjacency matrix.

We will next explore graph Laplacians, whose spectra are closely related
to those of adjacency matrices.

Definition 2.13. The degree matrix of G is the diagonal matrix defined
by

Dij =

{
deg(i) : i = j

0 : i 6= j

Definition 2.14. The graph laplacian of G is given by L = D−A, where
D is the degree matrix of G and A is the adjacency matrix. In other words,

Lij =

deg(i) : i = j

−1 : (i, j) is an edge in G

0 : otherwise

Proposition 2.15. Let G be a k-regular graph, {λi} and {xi} be the sets
of eigenvalues and eigenvectors for its adjacency matrix A, and L be the
graph Laplacian of G. Then

(1) {λi − k} is the eigenvalue set of L, and

(2) {xi} is the eigenvector set of L

(3) L and A have the same spectral gap

Proof. Because G is regular, the degree matrix D is equal to kI. Let ant xi
be given. Then

Lxi = (A−D)xi

= λixi − kxi
= (λi − k)xi

Which simultaneously shows (1) and (2). (3) follows trivially from (1).

10

2.2 Small-World and Scale-free Networks

Small-world networks are a class of graphs characterized by having a very
small average shortest-path distance between any two vertices compared to
the overall size of the graph.

Definition 2.16. The characteristic path length of a graph G = (V,E)
is the average distance between vertices in the graph, which is given by

LG =
1

|E|
∑
u,v∈V
u6=v

d(u, v)

where d(u, v) is shortest-path distance.

Definition 2.17 (Page 1 of [8]). Consider a graph G = (V,E). G is a
small-world network if LG ∼ log |V |.

Small-world networks are ubiquitous in a variety of applications areas.
However, many real-world examples of such graphs also have other distinc-
tive structural properties which are not necessarily captured by their small-
worldedness alone [2]. Thus, we introduce the following definition:

Definition 2.18 (Pg. 1 of [7]). A scale-free network is a graph whose
vertex degrees follow a power law. That is, given a randomly selected u ∈ G,
P (deg(u) = k) ∼ k−γ for some γ > 0.

One of the defining characteristics of power law distributions is that they
have very long tails. In a scale-free graph with many vertices, this implies
the existence of hubs, which we informally define as vertices whose degrees
are far larger than average in the graph.

Real world examples of scale-free networks are abundant and include the
world wide web, cellular communication networks, and protein-protein in-
teraction (PPI) networks. It is not surprising, then, that scale-free networks
are necessarily small-world networks, however we defer to Cohen and Havlin
for proof of this fact.

Theorem 2.19 (Final result of [8]). Scale-free networks are small-world
networks.

2.3 Random Graphs

Definition 2.20. A random graph is a random variable for which all
outcomes are undirected graphs.

11

A random graph process, denoted (Gt), is a family of random graphs
indexed by a discrete time t ∈ N.

We are interested in random graph processes which build small-world
networks. The Watts-Strogatz graphs are an example of such a process. They
are defined by starting with a regular ring lattice and randomly rewiring
edges until the graph is obtained.

Definition 2.21. An n-k regular ring lattice is a graph (V,E) with n
vertices such that u, v is an edge if and only if |u− v| ≤ k

2 .

Definition 2.22. Let v be a vertex in a graph. We can rewire v by deleting
one edge of v and drawing a new one by sampling uniformly from all vertices
that do not share an edge with v.

Definition 2.23. Given a probability p and regular ring lattice parameters
n and k, we define the (n, k, p) Watts-Strogatz Process as follows.

Let r(G, v) be a random process that rewires vertex v in a graph G. We
define a family of graphs, (Gt), by

Gt+1 =

{
r(Gt, t) : X ≤ p
Gt : X > p

for t = 1, . . . , |G|, where G0 is the n-k regular ring lattice, and X is
a uniform random variable in the range [0, 1]. That is, we iterate over the
vertices of the ring lattice and rewire each one with probability p.

We call graphs sampled from G|n| Watts-Strogatz graphs.

Watts and Strogatz showed empirically that the Watts-Strogatz graphs
are small-world networks for all but extremely small values of p [16]. How-
ever, in general, they are not scale free networks [2], and thus do not show
the structural characteristics of many practical data sets.

Definition 2.24 (Pg. 511 of [2]). Let any graph G0 be given as well as
some parameter m, m ≤ |G0|. We build the random graph Gt+1 by adding
a new vertex to Gt and connecting it to m vertices of Gt with probabilities
proportional to the degree of each vertex. That is, the probability of adding
an edge to a vertex u is

pu =
deg(v)∑
v∈Gt

deg(v)

on the first step, and this is done a total of m times without replacement.
We call (Gt) the (G0,m)-Barabási-Albert (BA) process and graphs

sampled from Gn (G0,m, n)-Barabási-Albert (BA) graphs.

12

This type of model, where edges to a new vertex are drawn with non-
uniform probability, is known as preferential attachment.

Theorem 2.25 (Pg. 511 of [2]). Barabási-Albert graphs are scale-free

The scale-free-ness of BA graphs makes them an attractive model, as
they are likely to have degree distributions similar to those of many real
data sets. In addition, BA graphs are guaranteed to be connected.

13

Chapter 3

Random Labeled Graphs

We wish to use random graphs to test vertex classifiers. An issue that arises
is that the generative models presented so far do not suggest any natural
labeling for the vertices of the resultant graphs. Thus, we propose some
models for generating labeled small-world and scale-free networks with a
natural community structure.

Definition 3.1. A labeled graph is a graph G and a function c : VG → S,
where S is an arbitrary finite set. For u ∈ VG, we call c(u) the class of u.

In considering labeled graphs, it is useful to look at not only at each
vertex’s degree, but also the number of neighbors with the same label vs the
number of neighbors with a different label. For convenience, we define these
quantities as follows:

Definition 3.2. Let G be a labeled graph, u ∈ VG. The same-class degree
of u, degsame(u), is the number of neighbors of u in the same class as u.
Similarly, degdiff(u) = deg(u) − degsame(u) is the number of neighbors in a
different class.

3.1 Noisy Complete Components (NCC) Graphs

Definition 3.3. Let m be a natural number. We construct the complete
components graph of order n = 2m as follows. Let V = {1, 2, ..., 2m},
and then define E by

E = {(u, v) : u, v ∈ {1, ...,m} or u, v ∈ {m+ 1, ..., 2m}}
i.e. the disjoint union of two complete graphs of order m. In addition,

we label the graph by the function

14

c(u) =

{
0 : u ∈ {1, ...,m}
1 : u ∈ {m+ 1, ..., 2m}

Definition 3.4. Let parameters (m, p, q) be given, m ∈ N and p, q ∈ [0, 1],
and let G0 be the complete components graph of order 2m. We construct a
Noisy Complete Components (NCC) graphs as follows.

Iterate over ever pair of vertices in the graph (i.e. the edge set of K2m).
For every pair {u, v} ∈ EG0 , that is, for the edges that already exist in G0,
we delete the edge with probability q. Likewise, for each pair {u, v} /∈ EG0 ,
we add the edge {u, v} with probability p.

The resultant graph is an NCC graph. This definition generalizes easily
to graphs with multiple components and components with different sizes,
but the defined case will be sufficient for our purposes.

We will now inspect the properties of such graphs in order to demon-
strate that they are, in fact, small worlds graphs in the subset of the param-
eter space in which we’re interested. Before doing so, we recall some basic
distributions from statistics.

Definition 3.5. A Bernoulli distribution with probability p is a discrete
probability distribution with probability mass function

f(x) =

p : x = 1

1− p : x = 0

0 : otherwise

A binomial distribution of n trials with probability p, denoted B(n, p)
is equal to the sum of n independent bernoulli random variables with prob-
ability p. Its probability mass function is

f(x) =

(
n

x

)
px(1− p)n−x

for x = 0, 1, ..., n and 0 outside that range.
For a more complete discussion of these distributions and the probabili-

tity theory employed in this chapter, see [6].

Theorem 3.6. Let G be an (m, p, q) NCC graph and u a vertex in G. Then
deg(u) follows the distribution X + Y , where X and Y are (independent)
binomial random variables, X ∼ B(m−1, 1−q) and Y ∼ B(m, p). Moreover,
degsame(u) = X and degdiff(u) = Y .

15

Proof. First, observe that adding and deleting edges while building an NCC
graph is done independently for each edge. In other words, the existence or
nonexistence of any edge ofG is independent of every other edge. In addition,
the number of edges added between u and all other different-class vertices
is equal to a sum of m Bernoulli random variables of probability p, because
there are m possible edges from u to the opposite class. Thus degdiff(u)
follows a binomial distribution on m trials, degdiff(u) = Y ∼ B(m, p).

In the case of same-class edges, we will consider the probability that an
edge is preserved rather than deleted. Edges are preserved with probability
(1 − q), so as in the different-class case, we can see that the same-class
degree of u follows a binomial distribution on (m− 1) trials, degsame = X ∼
B(m− 1, 1− q).

As we’ve counted both the same- and different-class degrees, it is clear
that deg(u) = X + Y .

We must take care to note that this is not the same thing as the degree
distribution over the whole graph G. While each edge with respect to a single
vertex is picked independently, this is not true over the whole graph, since
each edge is connected to two vertices.

Remark. The previous theorem shows that the following is true

(1) E(degsame(u)) = (m − 1)(1 − q) and E(degdiff(u)) = mp, where E is
expectation.

(2) Var(degsame(u)) = (m − 1)(1 − q)q and Var(degdiff(u)) = mp(1 − p),
where Var is variance.

(3) E(deg(u)) = (m− 1)(1− q) +mp by linearity of expectation.

(4) Var(deg(u)) = (m− 1)(1− q)q+mp(1− p) by linearity of variance on
independent random variables.

These graphs are extremely regular, so they do not exhibit scale-free
properties. Thus, we also propose a variant on the Barabási-Albert model
which adds labels while preserving the power law degree distribution.

3.2 Class-Weighted Barabási-Albert (CWBA) Graphs

Definition 3.7. Let parameters G0 and m ≤ |G0| be given as in the BA
process as well as a finite set of labels S and a factor ρ ≥ 1. In addition,

16

suppose each vertex in G0 has been labeled by an element of S. Given a
graph Gt, we build Gt+1 as follows.

As in the BA process (see Definition 2.24, page 12), we will add one new
vertex and draw edges using preferential attachment, however, we label our
new vertex l, which is chosen from S with uniform probability. Then, we
reweight the probability of drawing each edge in order to favor vertices with
label l by a factor of ρ.

Define Sl to be the set of vertices with label l. Then, we define the
probability of drawing an edge to a vertex u as

pu =

{
ρ deg(u)

w : u ∈ Sl
deg(u)
w : u ∈ (VG − Sl)

where w is the weighted degree sum,

w = ρ
∑
v∈Sl

deg(v) +
∑

v∈(VG−Sl)

deg(v)

We call this random process the class-weighted Barabási-Albert
(CWBA) process and we call graphs sampled from this model CWBA
graphs.

We do not prove that CWBA graphs are scale-free, but degree plots over
arbitrary choices of parameters suggest that they are. See Figure 3.1.

500 1000 1500 2000 2500
0

20

40

60

80

de
gr
ee

Degree Distribution for CWBA (n=10000,m=250,ρ=5)

Figure 3.1: Degree distribution of CWBA graphs demonstrate scale-free be-
havior.

17

Between the apparent power law degree distribution and the straightfor-
ward reweighting of the preferential attachment algorithm, we expect label
prediction experiments on CWBA graphs to be a reasonably good indicator
of how an algorithm would perform on real-world data.

18

Chapter 4

Metrics on Graphs

In this chapter, we provide background about metrics on graph vertices,
with a particular focus on the diffusion state distance (DSD). The three
prediction algorithms compared in Chapters 6 and 7 are identical except
for the choice of metric, as a key part of our project is understanding how
that choice affects label prediction performance. For details about how our
classification algorithm uses metrics to pick labels, see Chapter 5.

4.1 Definition and Shortest-Path Distance

A metric is a nonnegative real-valued function that generalizes Euclidean
distance between points in Rn to general sets. In our case, the set is the
vertices of the graph, and in the context of the label prediction problem, we
use metrics to determine similiarity of two vertices in the graph.

Definition 4.1. A metric on a set S is a function f : S×S → R satisfying

(1) f(u, v) ≥ 0 ∀u, v ∈ G,

(2) f(u, v) = 0 ⇐⇒ u = v (identity of indiscernables),

(3) f(u, v) = f(v, u) ∀u, v ∈ G, and

(4) f(u, v) ≤ f(u,w) + f(v, w) ∀u, v, w ∈ G (triangle inequality).

The standard metric on graphs is the shortest-path distance (Definition
2.7), whose definition we reiterate here for convenience. The shortest-path
distance between two vertices u, v ∈ G, denoted d(u, v), is the minimum
number of edges in a path from u to v.

19

Proposition 4.2. Shortest-path distance is a metric (on the vertices of
connected graphs).

Proof. From the definition of shortest-path distance, it is clear that metric
conditions (1), (2), and (3) are satisfied, since we’re dealing with unweighted,
undirected graphs.

To prove (4), let any three vertices in a connected graph u, v, w be given.
Define a = d(u,w) and b = d(v, w). Then there exists a path from u to
w of length a and from w to v of length b, and concatenating these paths
gives a path from u to v of length a+ b. Thus, by definition of shortest-path
distance, d(u, v) ≤ a + b = d(u,w) + d(v, w) for any three vertices u, v, w,
which is more than sufficient to show (4).

4.2 Resistance Distance

Definition 4.3 (from [17]). Let G be a connected graph. Imagine that G
is an electrical network where every edge is a 1-ohm resistor. The resistance
distance between u, v ∈ G, denoted Ω(u, v), is the reciprocal of the resistance
between u and v as calculated by Kirchoff’s laws, with the unit (ohms)
dropped.

Formally, we can define it as follows. Let L be the graph laplacian of G
and define Γ as

Γ = L+
1

n

where 1 is the matrix consisting of all 1s. Then,

Ω(u, v) = (Γ)−1ii + (Γ)−1jj − 2(Γ)−1ij

Theorem 4.4 (Page 89, Theorem B of [12]). Ω is a metric (on the vertices
of an arbitrary connected graph)

Resistance distance is another example of a metric on graphs, and it is
dramatically different from shortest-path distance. One of its key charac-
teristics is that as we add more paths connecting two vertices, the distance
between them decreases [12]. Because resistance distance gives considera-
tion to the entire graph (as opposed to just the shortest path), we expect it
to be more stable to noise in the form of randomly added or deleted edges
than shortest path.

20

4.3 Diffusion State Distance

The diffusion state distance (DSD) is a metric on graphs which determines
distance between two vertices based upon the convergence behavior of ran-
dom walks starting from each vertex. Intuitively, it provides a way to mea-
sure vertex distance that is sensitive to the local structure of the graph, and
appears to be well suited to detecting community structures in graphs.

In the original paper, Cao, Zhang, Park, Daniels, Crovella, Cowen, and
Hescott define DSD in terms of a vector-valued function Hek(u), which com-
putes the expected number of times a length-k random walk originating at
a vertex u will visit each other vertex in the graph. They compute DSD by
taking the l1-norm of the difference between two such vectors in the limit
as k → ∞. We present an alternative definition which is easier to manipu-
late with the usual machinery of linear algebra. We begin by recalling some
definitions.

Definition 4.5. A random walk of a graph is a walk (see Definition 2.7)
originating at some vertex in which each edge is picked uniformly randomly
from all the edges adjoined to the vertex preceding it.

Definition 4.6 (Page 302 of [4]). A (discrete-time) markov chain on a
finite set of states V is a sequence of random variables X0, X1, taking
values xo, x1, ... ∈ V such that for a given t, the probability of each outcome
of Xt+1 depends only on xt (the outcome before it).

Let u, v ∈ V . Then the conditional probability P (Xt+1 = v|Xt = u) is
called the transition probability from u to v.

The transition matrix of a markov chain is the matrix T given by

Tij = The probability of transitioning from state j to state i

Random walks may be modeled as markov chains where the states are
the vertices in the graph. The random walk transition matrix of a graph G
can be written T = AD−1, where A is the adjacency and D is the degree
matrix, (Definitions 2.8 and 2.13). For our purposes, we assume that vertices
are labeled by the positive integers 1, 2, ..., n and that the rows and columns
of G correspond to this ordering.

Proposition 4.7 (Properties of T). Let G be a graph and T the transition
matrix for the corresponding random walk markov chain. The following is
true:

21

(1) T is irreducible

(2) every eigenvalue of T has magnitude ≤ 1

Proof. To show (1), we first recall from Proposition 2.10 that the adjacency
matrix is irreducible. From the definition T = AD−1, we can see that T
has zeros in the same set of indices as A, and so must be irreducible by
analogous argument.

(2) follows from (1) and application of the Perron-Frobenius Theorem
(Theorem 2.11).

Based on how we’ve defined the transition matrix, it can be thought of
as an operator which takes a marginal distribution of states in the markov
chain, and outputs the marginal distribution after one step. So, the marginal
distribution of vertices in the kth step of a random walk originating from
vertex u is given by T keu, where eu is the uth standard basis vector in Rn,
eu,u := 1 and eu,j := 0, u 6= j for u = 1, ..., n.

Finally, we can define DSD.

Definition 4.8. Let G be a graph, u, v ∈ G. The diffusion state distance
(DSD), denoted δ(u, v), is defined by

δ(u, v) = ||
∞∑
k=0

T keu − T kev||1

where T is the transition matrix of G’s random walk markov chain and ei
is th ith standard basis vector in Rn.

Theorem 4.9 (Page 7 of [5]). DSD is a metric.

We defer to Cao et. al for proof of this.
As compared to shortest-path distance, we would expect DSD to be more

resilient to random noise in the form of randomly added and deleted edges.
This is because DSD considers the structure of the entire graph instead of
just the shortest path. Resistance distance is also computed using the whole
graph, so we would expect that to be similarly resilient. However, DSD
appears to be measuring the similarity of two vertices’ neighborhoods by
comparing random walk convergence behavior, whereas resistance distance
is measuring electrical current capacity between two vertices. In the context
of most label prediction problems, where labels correspond to communities,
this suggests intuitively that DSD superior.

22

4.4 DSD on the Complete Graph

In this section, we work through the problem of computing DSD on the
complete graph. This is not a particularly illuminating result, but we hope
it will help to familiarize the reader with the DSD.

Consider the complete graph Kn. In this case, D = (n − 1)I and A =
(J − I), so our transition matrix T is given by 1

n−1(J − I). In order to

compute T keu in the limit, we will represent eu as a linear combination of
eigenvectors of A.

Proposition 4.10. The all-ones vector 1n is an eigenvector of T with eigen-
value λ = 1, and every vector x ∈ Rn such that

∑
i xi = 0 is an eigenvector

of T with λ = − 1
n−1 .

Proof. Multiplying a vector by the all-ones matrix takes the sum of that
vector’s values for every index in the result, so J · 1n = n · 1n. Similarly
Jx = 0n, for any x s.t.

∑
i xi = 0. Thus,

T · 1n =
1

n− 1
(J − I) · 1n

=
1

n− 1
(n · 1n − 1n)

= 1n

and

Tx =
1

n− 1
(J − I)x

=
1

n− 1
(0n − x)

= − 1

n− 1
x

Next, we will show how to write any eu as a linear combination of eigen-
vectors of T . We define αu by αu,u := n − 1 and αu,j = −1, u 6= j. The
entries of αu sum to 0, so Tαu = − 1

n−1αu. We can write eu = 1
n(1n + αu).

Corollary 4.11. The eigenvectors of J − I span Rn.

23

Proof. Since all standard basis elements ej of Rn can be expressed as linear
combinations of eigenvectors for J−I, the eigenvectors of J−I span Rn.

Theorem 4.12. Let Kn be the complete graph with nodes labelled 1, ..., n.
Then for any two distinct nodes u and v, δ(u, v) = 2(n−1)

n .

Proof. We will use αu as defined above. DSD is given by

δ(u, v) =
∞∑
k=0

||T keu − T kev||1

=
1

n

∞∑
k=0

||T k(1n + αu − 1n − αv)||1

=
1

n

∞∑
k=0

||T k(αu − αv)||1

=
1

n

∞∑
k=0

||(− 1

n− 1
)k(αu − αv)||1

=
||αu − αv||1

n

∞∑
k=0

(− 1

n− 1
)k

Since |− 1
n−1 | < 1, the geometric series converges,

∑∞
k=0(−

1
n−1)k = n−1

n .
When u 6= v, the difference αu − αv will have exactly two non-zero entries
(since they are identical at all indices but u and v). These non-zero entries
will be n at index u and −n at index v. Thus, ||α(u)− α(v)||1 = 2n, and so

δ(u, v) =
2n

n
(
n− 1

n
)

=
2(n− 1)

n

24

Chapter 5

Label Prediction Methods on
Graphs

In this chapter, we define label prediction methods and show how they can
be applied on graphs. We present different problems we can solve using label
prediction methods and how we can incorporate graph metrics, such as the
diffusion state distance (DSD), into these methods. We use the terms label
prediction methods and vertex classifiers interchangeably.

5.1 Problem Definition

We begin by presenting definitions relating to labels of graphs.

Definition 5.1. A partially labeled graph is a graph G and a function
c : VGp → S, where S is an arbitrary set of labels, and VGp ⊆ VG with
|VGp | = bp · |VG|c, 0 ≤ p ≤ 1.

The set VG \ VGp is called the set of unlabeled vertices of G.
The function c is called a partial labeling of G.

Definition 5.2. A censoring of a labeled graph G and its labeling function
c : VG → S is a set VGc and a function cp : VG \ VGc → S such that cp is a
partial labeling of G.

The function c of the labeled graph G is called the ground truth la-
beling of the censoring of G. Note that the set VGc is the set of unlabeled
vertices of the partial labeling of G.

Given a partially labeled graph G, a censoring (VGc , ccensor) of G, and a
ground truth labeling cgt of G, a label prediction method is an algorithm

25

that attempts to correctly guess the labels of the unlabeled vertices VGc with
respect to the ground truth labels cgt(v), v ∈ VGc .

In order for a label prediction method on a graph to have any success, the
ground truth labeling must reflect some underlying graph structure. If the
labels in a graph were assigned at random to each vertex, a label prediction
algorithm could not be expected to perform better than randomly guessing
the labels on vertices.

5.1.1 Voting Algorithms

Cao, Zhang, Park, Daniels, Crovella, Cowen, and Hescott [5] describe a sim-
ple prediction method called the neighborhood majority voting algorithm.
This algorithm considers each vertex with unknown label and has its neigh-
bors vote on the label for the vertex. We considered two implementations
of this algorithm, which differ in how they determine which neighbors vote.
One implementation considers each vertex v ∈ V and all neighbors of v
within an ε distance from v (a ball of radius ε). The ε distance depends on
the metric under consideration, and may be changed as a parameter. In an
unweighted scheme, each neighbor within the ball of radius ε votes equally
for their own label. In a weighted scheme, we must consider a metric on a
graph to use (chapter 4). Using this metric, each neighbor gets a vote pro-
portional to the reciprocal of its distance to the vertex v in consideration.
The other implementation of this algorithm considers each vertex v ∈ V
and the k-nearest neighbors of v with respect to the graph metric. Voting is
done similarly in both an unweighted and weighted scheme.

There are other prediction methods that exist, such as the χ2 neigh-
borhood algorithm, the multi-way cut algorithm, and the functional flow
algorithm [5]. These prediction methods can also be modified to incorpo-
rate graph metrics discussed in chapter 4. However, we only consider the
weighted majority voting algorithm for our simulations in order to keep the
intuition behind results of this algorithm simple.

5.2 Real World Data

In this section, we discuss three different examples of graph-based studies
performed on real world data. We discuss how these examples constructed
graphs from their data, and what kind of studies were performed on the
resulting graphs. These studies give constructions of different graph repre-
sentations of data that we can use to test the effects of different metrics with
prediction algorithms.

26

5.2.1 Protein-Protein Interaction (PPI) networks

Cao et al. [5] studied the prediction of protein functional labels on the
S. cerevisiae protein-protein interaction (PPI) network. The authors con-
structed a graph using annotated physical interactions in this PPI network.
Proteins corresponded to vertices, and an annotated physical interaction
between two proteins corresponded to an edge. Cao et al. removed redun-
dant edges and the largest connected component was selected, resulting in a
graph of 4990 vertices and 74,310 edges. They also noted that PPI networks
are known to resemble small-world networks, as they have a small maximum
shortest path, and a small characteristic path length. This implies that most
vertices in the graph are close to every other vertex in the graph. One reason
for the closeness of vertices in PPI networks was due to hub vertices, which
are vertices with very high degree, representing proteins that interact with
many other proteins. Figure 5.1 shows an example of functional annotation
using the DSD from Cao et al.

Figure 5.1: An example of functional annotation with the DSD metric from
Cao et al. [5]. It is clear that the vertex colored purple is not a direct
neighbor of the red vertex with respect to the shortest path distance metric.
However, the purple vertex has a DSD distance closest to the red vertex,
and they have the same label. Meanwhile, the direct neighbors of the purple
vertex have different labels.

Cao et al. used four different prediction algorithms to compare the effec-
tiveness of the DSD metric to that of the shortest path metric. Both weighted
and unweighted majority voting algorithms, as well as the χ2 neighborhood
algorithm, multi-way cut algorithm, and functional flow algorithm were used

27

to compare the predictive performance of these metrics. The DSD metric was
expected to perform better that the shortest path metric, since the small
characteristic path length of the PPI network causes the notion of a short-
est paths neighborhood to lose significance. All vertices in this network are
close to every other vertex in the graph, so any neighborhood would contain
a large portion of the vertices in the graph.

We used a similar approach in our project, studying the DSD metric and
incorporating it into a label prediction algorithm.

5.2.2 Graph model for recommender systems

Huang, Chung, and Chen [10] introduce a generic graph model for e-commerce
transaction data that can support various recommendation methods. The
two-layer graph model proposed represents relationships between products
and customers. In this model, each layer consists of vertices representing
products or customers. Three types of edges in this two layer system cap-
ture the inputs to this model from real world data. Edges between two
customers capture similarity based on available demographic data, answers
to questionnaires, and web usage patterns. Edges between two products
capture similarity using descriptions of the product. Finally, edges between
customers and products capture transaction information such as purchase
history, customer rating, and related browsing behavior. Figure 5.2 illus-
trates an example of the two-layer graph model.

Figure 5.2: The two-layer graph model proposed by Huang, Chung, and
Chen [10].

28

Huang, Chung, and Chen considered three different recommendation
methods to use on the model mentioned previously. The direct retrieval
method looks at a customer’s previous purchases and products purchased
by similar customers to retrieve products to recommend to the customer.
The association mining method uses the purchase history of a customer
to generate association rules about purchasing patterns in order to pre-
dict the customer’s next purchases. The high-degree association retrieval
method uses weights on edges to represent association strength and ex-
amines paths between the target customer vertex and a product vertex to
calculate an association estimate and determine if the product should be
recommended. Transactions from one of the largest online bookstores in Tai-
wan were used for data including 9695 books, 2000 customers, and 18,771
transaction records.

The two-layer graph model introduced by Huang, Chung, and Chen can
be interpreted as a graph labeling problem. As a simple example, we can
take the vertices and edges from just the customer layer of the two-layer
model. Since the customer layer included information about demographic
data and web usage patterns, we could label customers with age or certain
websites visited and try to predict the labels of prospective customers. We
can perform a similar analysis with the product layer as well as with the
whole model including the interlayer edges.

Such a model can be very useful for advertisers who wish to come up
with a strategic advertising plan. Assuming that an advertisement would
have more success if it were shown to people more likely to buy the product
being advertised, we can use the graph model to predict which customers
would buy the product. The product layer can be used to find all products
similar to the product being advertised. Then, we can construct a graph in
which vertices are customers who had bought similar products, and edges
existed between customers who had bought the same product. A prediction
algorithm incorporating the DSD could be used to predict the customers who
would buy the product if we knew a few customers that had already bought
the product, or were very likely to buy the product. The DSD proved useful
in filtering out hub vertices in the PPI networks, and it may be useful for
e-commerce networks as well. Customers with a large amount of purchases
may be less informative about product preferences than customers with
fewer purchases.

Overall, this study shows that subject-knowledge can be used to create
real world graphs (customer layer, product layer, purchase history). We can
extend this to see how subject-knowledge can be used to determine weights
during the voting process for label prediction methods. Labels can also be

29

determined from subject-knowledge. However, these labels must have an
underlying structure or intuition behind them in order for label prediction
algorithms to work.

5.2.3 Laplacian Eigenmaps

Belkin and Niyogi [3] propose an algorithm for constructing a locality-
preserving representation of data sampled from a low dimensional manifold
embedded in a higher dimensional space. An example can be found in n×n
gray scale images of a fixed object taken by a moving camera. These images
give data points in Rn2

, but the inherent dimensionality of this data should
be the number of degrees of freedom of the camera. The presented algorithm
constructs a representation of the data that reduces the dimensionality of
the data.

Belkin and Niyogi construct a weighted graph from a given set of points
in Rn. Each point is represented by a vertex, and edges are drawn between
neighboring points. Neighborhoods can be determined using k nearest neigh-
bors or ε-neighborhoods. Weights are determined using heat kernels, or sim-
ply adjacency. Finally, eigenmaps are used to reduce dimensionality of the
data.

1000 binary 40 × 40 images of vertical and horizontal bars at arbitrary
points were randomly chosen as data. The Laplacian Eigenmap algorithm
and Principal Component Analysis (PCA) was applied to this data and com-
pared. The Laplacian Eigenmap algorithm produced a data representation
that clearly showed separate clusters for the vertical and horizontal bars,
which PCA failed to do.

This study is quite different from the previous two studies. However,
it still raises some interesting questions and challenges in relation to our
project. The Laplacian Eigenmaps algorithm focused on being able to detect
graph structure, assuming that the given data lies in a lower dimensional
manifold. In our project, we try to detect properties of graph structure that
allow prediction methods using the DSD to perform well. We could examine
whether label prediction methods using the DSD would be able to detect
information about these lower dimensional manifolds.

30

Chapter 6

Simulations

In this chapter, we discuss data collected from several simulations run on
our Noisy Complete Components (NCC), Noisy Complete Components with
Hubs (NCCH), and Class-Weighted Barabási-Albert (CWBA) models intro-
duced in Chapter 3. We use these models because they are small-world and
have an intuitive ground truth labeling of vertices. The simple structures
of our models also allow us to test different parameters relating to graph
structure and examine their effects on prediction accuracies.

For each model, we set a variety of parameters that we want to test. Af-
ter constructing the graph, we censor a proportion (censorP) of the graph,
then use a weighted k-nearest neighbors voting (Chapter 5) to solve a vertex
label prediction problem. This process is repeated with the same parameters
avgRuns number of times, and the prediction accuracies obtained are aver-
aged. We incorporate three different metrics on graphs (Chapter 4) to our
weighted k-nearest neighbors voting algorithm: the diffusion state distance
(DSD), shortest path distance (SPD), and resistance distance (RD).

6.1 Noisy Complete Components (NCC) Graphs

In this section, we construct NCC graphs (Chapter 3) and run label predic-
tion methods on them.

6.1.1 Data Collection

Our NCC graphs have three input parameters, where m is the number of
vertices in one complete component (n = 2m total vertices), p is the prob-
ability of adding an edge between components, and q is the probability of

31

removing an edge within components.

n (= 2m) 500

p Range from 0 to 1

q 0.5

censorP 0.7

avgRuns 10

(a) Fixed q

n (= 2m) 500

p 0.5

q Range from 0 to 1

censorP 0.7

avgRuns 10

(b) Fixed p

Table 6.1: Tables of parameter values used in our NCC simulations. The
table on the left shows simulation parameters for a fixed q, and the table on
the right shows simulation parameters for a fixed p.

Table 6.1 shows the parameter values we used in our simulations. The
value of parameter m was set to 250 because this was a sufficiently large
value to allow us to observe differences in prediction accuracy. Figure 6.1
shows that the parameter m only increases the precision of the prediction
accuracies. The parameters p and q were considered probabilities of adding
noise to our models, so we ran simulations to test the effects of these param-
eters on prediction accuracies. Figure 6.1(c) shows a plot of the prediction
accuracies over the range of values for p, with a fixed q = 0.5. Figure 6.2
shows a plot of the prediction accuracies over the range of values for q, with
a fixed p = 0.5.

32

(a) m = 50 (b) m = 150

(c) m = 250 (d) m = 550

Figure 6.1: These plots show that varying the parameter m in NCC graphs
does not change results and a value of m = 250 will be sufficiently large to
observe differences in prediction accuracies. Figure (a) shows that a small
value of m may give slightly noisy prediction accuracies due to the smaller
number of examples that the prediction accuracies are calculated from.

33

Figure 6.2: Plot showing prediction accuracies of the prediction method
using the DSD, SPD, and RD metrics. In this simulation, the parameter p
was fixed to 0.5, and m was set to 250. This plot suggests simulations are
symmetric in p and q.

6.1.2 Analysis

It is important to note the structure of NCC graphs in extreme cases. For
parameter p = 0 in NCC graphs (Chapter 3), there is zero probability of
adding edges between components. Since we only consider the largest con-
nected component in our analysis, we simply take one of the original com-
ponents. If p = 0 and q = 0, then we get one complete component. This
is not interesting, as all prediction methods should attain 100% prediction
accuracy on these graph. For p = 0 and q = 1, we have a set of vertices and
no edges. The largest connected component would be a single vertex. For
p = 1, there exist edges from every vertex in one component to every vertex
in the other component. For p = 1 and q = 1, we have a complete bipar-
tite graph. We can expect that a prediction method using the shortest path
distance with a small k value for the k-nearest neighbors prediction would
result in very poor accuracy for this method. However, since we have just
a binary labeling, these results can be flipped, making prediction using the
inverse of the shortest path distance very effective. With p = 1 and q = 0, we
have a complete graph where every vertex has equal same-class degree and

34

different-class degree. This case is not interesting as all prediction methods
would give random results. This leads us to our next proposition.

Proposition 6.1. For q = 1− mp
(m−1) , NCC graphs are Erdős-Rényi graphs

with edge probability p.

Proof. We know that for NCC graphs (Chapter 3),

E(degsame(u)) = (m− 1)(1− q)

E(degdiff(u)) = (m)p

If q = 1− mp
(m−1) , then we get

E(degsame(u)) = (m− 1)(1− (1− mp

(m− 1)
)) = mp

E(degdiff(u)) = (m)p

Thus, we get
E(degsame(u)) = E(degdiff(u))

The NCC graph with parameters p, and q = 1− mp
(m−1) is expected to be

close to an (2mp)-regular graph, where each vertex is expected to have the
same number of same-class neighbors as different-class neighbors.

The expected number of same-class and different-class neighbors of a ver-
tex u in an NCC graph corresponds to the expected same-class and different-
class degrees from Chapter 3. So, from Theorem 3.6, we derive the following
result.

Proposition 6.2. For two vertices u, v in an NCC graph,

(1) If u, v belong to the same class, they are expected to have

(m− 2)(1− q)2

common same-class neighbors, and

(m)p2

common different-class neighbors.

35

(2) If u, v belong to different classes, they are expected to have

(2m− 2)(1− q)p

common neighbors.

Proof. (1) We can see that if u, v belong to the same class, there are (m−2)
possible same-class vertices that could be common neighbors between them.
Each of these vertices has a (1−q) probability of being a same-class neighbor
of u and a (1 − q) probability of being a same-class neighbor of v (chapter
3). Therefore, we get that the expected number of common same- class
neighbors is (m− 2)(1− q)2.

Also, there are m possible different-class vertices that could be common
neighbors between u and v. Each of these vertices has a p probability of
being a different-class neighbor of u and a p probability of being a different-
class neighbor of v. Therefore, we get that the expected number of common
different-class neighbors is (m)p2.

(2) If u, v belong to different classes, there are (2m − 2) possible vertices
that could be common neighbors of u and v. Without loss of generality, each
vertex has a (1− q) probability of being a neighbor of u and a p probability
of being a neighbor of v. Therefore, we get that the expected number of
common neighbors is (2m− 2)(1− q)p.

Figure 6.1(c) shows that with a fixed probability of deleting edges within
components of NCC graphs, and a range of probabilities of adding edges
between components of NCC graphs, the label prediction method using the
DSD outperforms the method using SPD and the method using RD. We can
use expected values of same-class degrees (Chapter 3) to reason why such
behavior occurs.

For a fixed q = 0.5, we can say for any vertex u,

E(degsame(u)) = (249)(0.5)

E(degdiff(u)) = (250)p

We can clearly see that for p = 0.5, the resulting graph will be random,
having roughly the same number of same-class neighbors as different-class
neighbors. This explains the near random prediction accuracies when p is
close to 0.5. However, for p < 0.5, we can expect that E(degsame(u)) >
E(degdiff(u)). In this case, the prediction method using SPD should predict
with high accuracy, with a sharp decline as the value of p approaches 0.5. For

36

p > 0.5, the prediction method using SPD should predict with low accuracy,
since E(degsame(u)) < E(degdiff(u)). Figure 6.1(c) shows this behavior of the
prediction method using SPD.

The prediction method using DSD seems only to be affected by the p
parameter when it approaches 0.5, and the graph becomes random. This
behavior can be explained by the fact that the DSD cares about com-
mon neighborhoods when determining similarity, or distance. First we must
note that all vertices in the NCC graph should be very similar to each
other, since they all share the same E(degsame(u)) and E(degdiff(u)). This
means that there is no point in differentiating between low-degree and
high-degree neighborhoods for the NCC graphs. For p < 0.5, we know
that E(degsame(u)) > E(degdiff(u)). This means that when looking at the
neighborhoods of an arbitrary vertex u, a large number of common neigh-
bors will be shared between vertices within the same component. Two ver-
tices within the same component will share more common neighbors than
two vertices in different components. This is also true for p > 0.5, where
E(degsame(u)) < E(degdiff(u)). This means that the DSD between any two
vertices within the same component is expected to be closer than two ver-
tices in different components for most values of p given q is fixed.

The prediction method using RD performs the worst of the three metrics.
Since the resistance distance considers the number of short paths between
vertices when calculating distance, we can look at the short paths in NCC
graphs. NCC graphs are very dense in edges, and because of the random
probabilities of adding and deleting edges, it is difficult to obtain a structured
notion of paths in this graph.

A similar analysis can be done for the simulation for a fixed p = 0.5 over
the range of values for q, as shown in Figure 6.2.

6.2 Noisy Complete Components with Hubs (NCCH)
Graphs

In this section, we construct NCCH graphs (Chapter 3) and run label pre-
diction methods on them. We study these graphs in order to determine
the effects of hub vertices on the prediction accuracies of NCC graphs. It
is important to note that the hub vertices in NCCH graphs were labeled
randomly.

37

n (= 2m+ hubs) 500

p Range from 0 to 1

q 0.5

hubs 100

hubsP 0.8

censorP 0.7

avgRuns 10

(a) Fixed q

n (= 2m+ hubs) 500

p 0.5

q Range from 0 to 1

hubs 100

hubsP 0.8

censorP 0.7

avgRuns 10

(b) Fixed p

Table 6.2: Tables of parameter values used in our NCCH simulations. The
table on the left shows simulation parameters for a fixed q, and the table on
the right shows simulation parameters for a fixed p.

6.2.1 Data Collection

We used the same values for similar parameters to the NCC graphs as de-
scribed in the previous sections. The same process of fixing the parameter p
or q in the NCC graphs was used.

The NCCH graphs have two more input parameters, hubs and hubsP, as
shown in Table 6.2. The hubs parameter specifies the number of hub vertices
to add, and the hubsP parameter specifies what proportion of the vertices in
the complete components to add edges from each newly added hub vertex.
A value of 0.8 was decided for the hubsP parameter in order to capture the
idea of hub vertices and their large degrees. Figures 6.3 and 6.4 show our
simulation results.

38

Figure 6.3: Plot showing prediction accuracies of the prediction method
using the DSD, SPD, and RD metrics. In this simulation, the parameter q
was fixed to 0.5.

Figure 6.4: Plot showing prediction accuracies of the prediction method
using the DSD, SPD, and RD metrics. In this simulation, the parameter p
was fixed to 0.5.

39

Figure 6.5: Plot showing compressed prediction accuracies for a larger value
of the hubs parameter. In this simulation, the parameter q was fixed to 0.5,
and hubs was set to 300.

In order to test the effects of the number of hub nodes added, prediction
accuracies were plotted over the hubs parameter. Both parameters p and q
were set to fixed values such that the prediction accuracies using DSD, SPD,
and RD could be clearly separated. Thus a value of p = 0.2 and q = 0.5 was
chosen. These parameters are shown in Table 6.3.

n (= 2m+ hubs) 250

p 0.2

q 0.5

hubs Range from 0 to 400

hubsP 0.8

censorP 0.7

avgRuns 10

Table 6.3: Tables of parameter values used for our NCCH simulations over
the hubs parameter.

40

Figure 6.6: Plot showing prediction accuracies over the hubs parameter. In
this simulation, the parameter p was fixed to 0.2, and q was fixed to 0.5.

6.2.2 Analysis

We can perform a similar analysis to that of the NCC graphs. We can see
in Figures 6.3 and 6.4 that the shapes of the prediction accuracy curves do
not change significantly. The main difference between these plots and the
plots for the NCC graphs are that the plots for NCCH graphs are slightly
compressed vertically. This behavior can be explained by the presence of
the hub vertices. Since these hub vertices are labeled at random, there will
always be a proportion of the vertices in the NCCH graphs that can only be
predicted at random. Specifically in the case of Figure 6.3, we see that the
prediction accuracies start at 0.9 rather than 1.0. If we consider the number
of hub vertices added, hubs = 100, in relation the the number of vertices
in the NCCH graph, n = 2m+ hubs = 600, then we can see that since hub
vertices will be predicted at random, we should expect a prediction accuracy
of around 550

600 ≈ 0.92. A simulation run with the parameter hubs = 300 was
run, and shows this idea of compression in Figure 6.5. The change in the
rate of compression can be seen in Figure 6.6.

41

6.3 Class-weighted Barabási-Albert (CWBA) Graphs

In this section, we construct CWBA graphs (Chapter 3) and run label pre-
diction methods on them. We study the CWBA graphs because they are
scale-free.

6.3.1 Data Collection

n 1000

m Range from 1 to 300

ρ 2

censorP 0.7

avgRuns 10

(a) Fixed ρ

n 1000

m 300
1
ρ Range from 0.05 to 1

censorP 0.7

avgRuns 10

(b) Fixed ρ

Table 6.4: Tables of parameter values used in our CWBA simulations. The
table on the left shows simulation parameters for a fixed ρ, and the table on
the right shows simulation parameters for a fixed m over the inverse of ρ.

Our CWBA graphs have two input parameters, where m is the minimum
vertex degree, and ρ is the factor of same-class attachment. Table 6.4 shows
the parameters used in our simulation. We also studied the prediction accu-
racies over 1

ρ in order to study the entire range of values for ρ.

42

Figure 6.7: Plot showing prediction accuracies over the m parameter. In this
simulation, the parameter ρ was fixed to 2.

Figure 6.8: Plot showing prediction accuracies over the inverse of the ρ
parameter. In this simulation, the parameter m was fixed to 300.

43

6.3.2 Analysis

In our simulations for the CWBA graph, our initial graph is a star Sm. It is
important to discuss the extreme cases for CWBA graphs.

Proposition 6.3. When ρ = 1 for CWBA graphs, we get a randomly
labeled scale-free graph.

Proof. We note that when ρ = 1, the probability of drawing an edge to a
vertex u in the CWBA process (Chapter 3) becomes

pu =

{
deg(u)
w : u ∈ Sl

deg(u)
w : u ∈ (VG − Sl)

where
w =

∑
v∈Sl

deg(v) +
∑

v∈(VG−Sl)

deg(v)

We can clearly see that with ρ = 1, there is no preference in attachment
based on the label, so all vertices are preferentially connected based on the
degree of vertices.

For ρ = 0, we can see that vertices with opposite label would only be
considered for attachment, and the opposite would be true for extremely
high values of ρ.

Figures 6.7 and 6.8 show DSD aids in predicting more accurately than
the other two metrics. Figure 6.8 fixes a value for the parameter m = 300
and shows prediction accuracies over the entire range of values for the ρ
parameter. The figure illustrates that when the same-class preferential at-
tachment factor ρ is 1, the resulting CWBA graph is random, since there is
no notion of preferential attachment for ρ = 1. However, for ρ > 1, drawing
same-class edges is preferred which results in a sharp increase in accuracy
for the prediction method using DSD, while the method using SPD increases
at a linear rate. We must note that the parameter for minimum vertex de-
gree, m, was fixed at m = 300, so the resulting CWBA graph is fairly dense.
Figure 6.7 shows that increasing the parameter m will not change prediction
accuracies for ρ > 1, as all of the curves in the plot level out very quickly.

6.4 Overall Findings

After analyzing the results of our simulations, we have found that the short-
est path distance (SPD) works well with few paths between clusters. The

44

diffusion state distance (DSD) works well in general as long as neighbor-
hoods can be distinguished. This can be seen from the NCC and NCCH
graph simulations. The resistance distance (RD), however, does not seem to
work very well with our simulations, and seems to work best on very sparse
graphs.

45

Chapter 7

Analysis of Real-World Data

In order to test the conclusions of our experimental results, we also per-
formed analyses on two real-world data sets. The Coauthor network contains
data about statistician coauthorship in prominent journals, while the email-
Eu-Core data set shows email communications within a large research insti-
tution. The data sets were picked based upon their relatively small sizes and
easy interpretability. In both cases, vertices represent humans, which was
done in order to test DSD’s performance outside of the biological domain.

Elsewhere, we have used the imprecise term hub to refer to the vertices
of unusually high degree in certain graphs (see page 11). For the purposes
of this chapter only, we will use the following rigorous definition so that we
can numerically analyze our data sets.

Definition 7.1. Let G be a graph. A hub in G is any vertex v whose degree
is more than two standard deviations above the graph average,

deg(v) ≥ µ+ 2 ∗
∑
u∈G

(deg(u)− µ2)2

where

µ =
1

|G|
∑
u∈G

deg(u)

Under this definition, the number of hubs should be positively correlated
with the width of the degree distribution.

46

0 20 40 60
Number of Vertices

0

100

200

300

400

500

600

De
gr
ee

Degree Distribution for the Coauthor network

0 100 200 300
Number of Vertices

0

20

40

60

80

De
gr
ee

Degree Distribution for email-Eu-core

Figure 7.1: The degree distribution plots for both networks. Both plots ap-
pear to show scale-free distributions.

7.1 Selected datasets

7.1.1 Coauthor

The Coauthor data set consist of data collected from four leading statistical
journals: The Annals of Statistics, Biometrika, the Journal of the American
Statistical Association, and the Journal of the Royal Statistical Society. Ji
and Jin collected data about all papers published from 2003 through the
first half of 2013 and resolved data hygiene issues such as having multiple
different published names for the same author. A graph was then constructed
where every vertex corresponded to a statistician, and edges were inserted to
connect any pair of statisticians who had appeared as coauthors. This graph
was then used to cluster the authors into three statistical subdisciplines
using a spectral clustering algorithm, SCORE, which stands for Spectral
Clustering On Ratios of Eigenvalues [11]. The labels generated by SCORE
showed a high degree of agreement with other clustering approaches and
were found to be reasonable by human researchers, so we believe they are
suitable for use as ground truth labels in a classification experiment. The
three labels identified were “Objective Bayes,” “Biostatistics,” and “High-
Dimensional Data Analsysis.”

After restricting to the largest connected component, the network has
4388 edges on 2263 vertices, and so is a relatively sparse graph. The average
degree is 3.88, while the max is 65. The number of hubs is 98, which is 4.43%
of all vertices. This graph appears to have a scale-free degree distribution, as
can be seen from Figure 7.1, and so would be expected to have a relatively
large number of high-degree hubs.

47

7.1.2 email-Eu-core

The email-Eu-core data set is built from email data collected over the course
of 18 months from 2003 to 2005 at a European research institution. Each ver-
tex corresponds to an employee at the institution, and is labeled an integer
indicating that person’s department. There are a total of 48 departments in
the data set. An edge was drawn between any two parties which exchanged
an email over the time period in question [13]. The original version of this
data set was directed, but we discard edge direction information for our
analysis.

This graph has 986 vertices and 25571 edges after reducing to the largest
connected component. The average degree of the graph is 33.9, with the
maximum being 347. The number of hubs is 49, which is 4.97% of the entire
graph– strikingly similar to the Coauthor network. Also, compared to the
Coauthor network, this graph is somewhat smaller and substantially denser,
which makes it an attractive candidate for demonstrating the efficacy of
DSD, as such a graph would be expected to have more and higher degree
hubs than a less dense one.

In addition and in spite of its small size, this graph has 48 possible labels,
indicating an average class size of just 20.54 elements. This means that we
also have to be more conservative in censoring data on this graph, as it
would be easy to censor too high a proportion of one of the smaller classes
to be able to accurately recover the labels.

7.2 Results and Analysis

In order to evaluate the efficacy of each classifier, the label prediction ex-
periment was done using 5-fold cross-validation on each predictor. Cross-
validation is a common machine learning technique where the point set (in
our case, the vertex set of the graph) is divided into k equal-size folds.
Each fold is censored one at a time, and a trial is run using a predictor built
from the uncensored data. These trial accuracies are then averaged in order
to compute an overall measurement of accuracy. The primary advantage of
cross validation is that it forces prediction to be run on every single ver-
tex of the graph. A disadvantage is that it requires use of small censorship
proportions. In this case, 20% of vertices would be censored in each run.

k = 20 was used as the parameter for the nearest neighbors algorithm.
The results are summarized in the bar plot in Figure 7.2.

48

Coauthor email-Eu-core
Data

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io
n
Ac

cu
ra
cy

Real-World Data Experimental Results
SPD
DSD
RD

Figure 7.2: Real-world data prediction accuracy results.

The Coauthor results are especially striking, as all three metrics, includ-
ing resistance distance, performed extremely well. This could probably be
explained, at least partially, by the fact that the Coauthor network is fairly
sparse and that the number of labels is small. The lower censorship pro-
portion, 20% as compared to the 70% used in the simulated experiments,
probably contributes to the high accuracies as well, but informal experiments
using random censoring at high proportions yield very similar results.

It seems likely that the high label prediction performance is mostly due
to the fact that SCORE was used to generate ground truth. For some reason,
the SCORE communities are clustered extremely tightly irrespective of the
metric. This is an interesting finding in its own right because it suggests that
the way that we think about clusters, at least in the context spectral cluster-
ing, probably doesn’t capture some important properties of the communities
found in real-world data. The fact that resistance distance works well on the
spectral clusters but not the real ground truth is especially noteworthy in
this regard.

By contrast, the email-Eu-core results are much less surprising. DSD

49

clearly provides the dominant classification algorithm, followed by a sur-
prisingly strong showing from SPD. RD performs like random guesses, as
it did with most of the simulated data (recall that as there are 48 classes,
uniform random guessing would yield an expected success rate of 1/48, or
about 2.1%).

These results suggest that DSD has some sort of built-in model of com-
munity structure which agrees with the real-world data. We expect that
these results would generalize to work well with a wide variety of network
structures, but particularly those whose topology represents some sort of
information exchange.

50

Chapter 8

Conclusions

Our project hopes to provide information about what makes prediction
methods using the diffusion state distance (DSD) metric work better than
methods using other metrics on graphs. Our simulation models were con-
structed to attempt to identify structures within graphs that caused the
DSD to work better. In Chapter 3, we proposed the novel Noisy Complete
Components (NCC) and Noisy Complete Components with Hubs (NCCH)
models in order to see whether tightly clustered graphs and dense neigh-
borhoods would affect prediction using the DSD. We also developed the
Class-Weighted Barabási-Albert (CWBA) model in order to see the effects
of scale-free properties on prediction using the DSD.

Using our simulation models, we experimented with various parameters
of our models in order to get data about changes in prediction accuracy with
respect to changes in the graph structure (Chapter 6). We tested parameters
that affected neighborhoods of vertices in our models as well as the number
of hub vertices. More models could be constructed in future work to draw out
characteristics of graph structure that the DSD metric is most affected by.
Also, subject-knowledge for specific types of networks, mentioned in Chap-
ter 5, could be added to the models to add to our metric-based clustering
algorithm.

Our simulation results show that the DSD is more effective at detect-
ing some properties of graph structure than the shortest path distance and
the resistance distance for dense graphs. Prediction methods using the DSD
were shown to be more robust to hub vertices and our NCC simulations
were able to intuitively show how the DSD determines communities based
on neighborhoods rather than direct neighbors. Our project could have in-
cluded simulations to study the resistance distance metric as well, and graph

51

models that would cause the DSD metric to cause prediction accuracies to
be significantly worse than the shortest path distance.

Our analysis of real-world networks (coauthor, email-Eu-core) did not
provide as much information as we expected on how the DSD metric is
useful on examples of real networks. However, both still showed that the
DSD metric performed best of the three metrics that we studied.

There are many interesting questions remaining. For what parameters
for CWBA graphs would the SPD perform better than the DSD? We believe
that such an investigation would provide further insight into properties of
scale-free networks which would indicate the most appropriate metric for
classification problems on scale-free networks. This analysis could also ex-
amine other statistics on graphs such as betweenness centrality [15] and
eigencentrality based on dissimilarity measures [1] to see whether they are
correlated with DSD performance. The effectiveness of the DSD in detecting
manifold-like structures of graphs is also a challenge that could be explored.
Several simulation models could be constructed to study this question. Also,
the effect of the DSD metric in detecting the dispersion of rumors or the
spread of information could also be studied. This would relate to the virality
of news, products, clothing, and other trends. The way the DSD metric is
defined by random walks seems to give a hint for what kinds of real-world
data that it should be experimented with. The DSD metric could be com-
pared to heat dispersion and different kinds of dispersions in nature, such
as the dispersion of particles or biological dispersion of pollen and seeds.
Such studies could provide a more accurate understanding of how natural
biological networks interact with each other.

52

Bibliography

[1] AJ Alvarez-Socorro, GC Herrera-Almarza, and LA González-Dı́az.
Eigencentrality based on dissimilarity measures reveals central nodes
in complex networks. Scientific reports, 5:17095, 2015.

[2] Albert-László Barabási and Réka Albert. Emergence of scaling in ran-
dom networks. Science, 286(5439):509–512, 1999.

[3] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral
techniques for embedding and clustering. In Advances in neural infor-
mation processing systems, pages 585–591, 2002.

[4] Béla Bollobás. Modern Graph Theory. Graduate texts in mathematics.
Springer, Heidelberg, corrected edition, 1998.

[5] Mengfei Cao, Hao Zhang, Jisoo Park, Noah M. Daniels, Mark E. Crov-
ella, Lenore J. Cowen, and Benjamin Hescott. Going the distance for
protein function prediction: A new distance metric for protein interac-
tion networks. PLOS ONE, 8(10):1–12, 10 2013.

[6] George Casella and Roger Berger. Statistical Inference. Duxbury Re-
source Center, June 2001.

[7] Michele Catanzaro, Marián Boguñá, and Romualdo Pastor-Satorras.
Generation of uncorrelated random scale-free networks. Phys. Rev. E,
71:027103, Feb 2005.

[8] Reuven Cohen and Shlomo Havlin. Scale-free networks are ultrasmall.
Phys. Rev. Lett., 90:058701, Feb 2003.

[9] Marco Frasca, Alberto Bertoni, Matteo Re, and Giorgio Valentini. A
neural network algorithm for semi-supervised node label learning from
unbalanced data. Neural Networks, 43:84 – 98, 2013.

53

[10] Zan Huang, Wingyan Chung, and Hsinchun Chen. A graph model for
e-commerce recommender systems. Journal of the American Society
for information science and technology, 55(3):259–274, 2004.

[11] Pengsheng Ji and Jiashun Jin. Coauthorship and citation networks for
statisticians. Ann. Appl. Stat., 10(4):1779–1812, 12 2016.

[12] Douglas Klein and Milan Randic. Resistance distance. Journal of Math-
ematical Chemistry, 12:81–95, 12 1993.

[13] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large net-
work dataset collection. http://snap.stanford.edu/data, June 2014.

[14] C. D. (Carl Dean) Meyer. Matrix analysis and applied linear algebra.
Society for Industrial and Applied Mathematics, Philadelphia, c2000.

[15] Mark EJ Newman. A measure of betweenness centrality based on ran-
dom walks. Social networks, 27(1):39–54, 2005.

[16] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ’small-
world’ networks. Nature, 393(6684):440–442, June 1998.

[17] Eric W. Weisstein. Resistance distance. From MathWorld—A Wolfram
Web Resource. Last visited on 04/24/2019.

54

http://snap.stanford.edu/data

	Introduction
	Graph Theory
	Elementary Graph Theory
	Small-World and Scale-free Networks
	Random Graphs

	Random Labeled Graphs
	Noisy Complete Components (NCC) Graphs
	Class-Weighted Barabási-Albert (CWBA) Graphs

	Metrics on Graphs
	Definition and Shortest-Path Distance
	Resistance Distance
	Diffusion State Distance
	DSD on the Complete Graph

	Label Prediction Methods on Graphs
	Problem Definition
	Voting Algorithms

	Real World Data
	Protein-Protein Interaction (PPI) networks
	Graph model for recommender systems
	Laplacian Eigenmaps

	Simulations
	Noisy Complete Components (NCC) Graphs
	Data Collection
	Analysis

	Noisy Complete Components with Hubs (NCCH) Graphs
	Data Collection
	Analysis

	Class-weighted Barabási-Albert (CWBA) Graphs
	Data Collection
	Analysis

	Overall Findings

	Analysis of Real-World Data
	Selected datasets
	Coauthor
	email-Eu-core

	Results and Analysis

	Conclusions

