

swARm: Augmented Reality Swarm
Control with Multiple Head Mounted

Display Operators

A Major Qualifying Project

submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment for the requirement for

degree of Bachelor of Science

By:

Harrison James (RBE/CS)

Paul Mara (RBE/CS)

Vlad Stelea (CS)

Date Submitted: May 6, 2021

Report submitted to:

Professor Carlo Pinciroli

Worcester Polytechnic Institute

Abstract
Methods of human swarm interaction are becoming increasingly prevalent in academic

literature. Recent approaches have studied how augmented reality applications can facilitate

control of robotic swarms. However, studies suggest that robotic swarm systems can overload

the operator due to the large number of robots involved. We developed a novel multi-user,

head-mounted, augmented reality application, deployed on the Magic Leap One. Our

application allows operators to distribute responsibilities among each other when controlling

robotic swarms in an immersive and intuitive way. Furthermore, using our modular architecture,

new methods of multi-user swarm control can be introduced and evaluated quickly.

Table of Contents
Abstract ... 2	
List of Tables/Figures .. 5	
Chapter 1: Introduction .. 6	

1.1 Swarm Robotics .. 6	

1.2 Human Swarm Interaction .. 6	

1.3 Problem Statement ... 8	

1.4 Contributions ... 8	

Chapter 2: Background .. 9	
2.1 Augmented and Mixed Reality .. 9	

2.1.1 Affordances of Augmented and Mixed Reality ... 9	

2.1.2 Current Challenges in Augmented and Mixed Reality .. 9	

2.2 Related Work .. 10	

2.2.1 Studying Granularity of Control .. 10	

2.2.2 Multi-Human Multi-Robot Interaction .. 11	

2.2.3 Human Swarm Interaction in Augmented Reality ... 12	

2.3 Non-verbal Communication .. 13	

2.4 Our Project .. 14	

Chapter 3: Methodology .. 15	
3.1 Problem Formalization .. 15	

3.1.1 Measurements of Goal Success .. 16	

3.2 Use Cases .. 16	

3.3 System Hardware ... 17	

3.3.1 Magic Leap Augmented Reality Headset ... 17	

3.3.2 Magic Leap Controller .. 17	

3.4 Networking Layer .. 18	

3.4.1 ARGoS for Robot Positions and Commands ... 18	

3.4.2 Web Services ... 19	

3.4.3 gRPC: Ideal SwarmServ Solution .. 21	

3.4.4 Replacing gRPC: HTTP/TCP Hybrid .. 22	

3.5 Transitioning from the Virtual World to the Real World ... 24	

3.6 Legacy Architecture .. 26	

3.6.1 Data .. 27	

3.6.2 Displays .. 27	

3.6.3 Focus .. 28	

3.7 New Architecture: Event Based Programming .. 28	

3.7.1 Attaching Networking Code to the Event Driven Process .. 29	

3.8 Non-Verbal Communication Features ... 30	

3.8.1 Non-Verbal Communication Feature Implementation .. 31	

Highlights ... 31	

Markers ... 32	

Locks ... 33	

3.9 Voice Commands Implementation .. 34	

3.10 Experimental Design for Future Use ... 35	

Chapter 4: Experimental .. 36	
4.1 Feature Testing ... 36	

4.1.1 Highlights .. 36	

4.1.2 Markers .. 37	

4.1.3 Locks .. 39	

4.1.4 Voice Commands ... 40	

Chapter 5: Conclusion ... 42	
5.1 Summary ... 42	

5.2 Future Work .. 42	

5.3 Lessons Learned .. 42	

5.4 Covid Considerations .. 43	

Citations/Bibliography ... 44	
Appendix A: Survey Questions ... 46	

Appendix B: Use Cases .. 49	

List of Tables/Figures
FIGURE	1.	MAGIC	LEAP	CONTROLLER	LAYOUT	[30]	..	18	
FIGURE	2.	DRSWARM-GESTURES	MAGIC	LEAP,	ARGOS,	SWARM	COMMUNICATION	SYSTEM	[26]	..	19	
FIGURE	3:	REQUEST	RESPONSE	PATTERN	FOR	SWARMSPEECHSERV	..	20	
FIGURE	4:	GRPC	CLIENT	CALLING	GRPC	SERVER	STUB	[34]	..	21	
FIGURE	5:	SWAGGER	LIST	OF	METHODS	AND	MARKER	HTTP	POST	EXAMPLE	...	23	
FIGURE	6:	TCP	JSON	STRUCTURE	...	24	
FIGURE	7:	AXIS	ALIGNMENT	BETWEEN	APPLICATION	FRAME	AND	VICON	FRAME	..	25	
FIGURE	8:	AXIS	ALIGNMENT	OFFSET	ORIGIN	FRAME	BEING	SET	BASED	OFF	PREVIOUS	IMAGE	VECTOR	..	26	
FIGURE	9:	LEGACY	ARCHITECTURE	SYSTEM	[28]	...	27	
FIGURE	10:	EVENT	DRIVEN	ARCHITECTURE	..	29	
FIGURE	11:	ENTITY	HIGHLIGHT	DISPLAY	SEQUENCE	DIAGRAM	...	32	
FIGURE	12:	WAYPOINT	(MARKER)	SEQUENCE	DIAGRAM	...	33	
FIGURE	13:	ENTITY	LOCKING	SEQUENCE	DIAGRAM	...	33	
FIGURE	14:	VOICE	SERVICE	ACTIVITY	DIAGRAM	...	34	
FIGURE	15:	HIGHLIGHT	DISPLAY	BETWEEN	TWO	USERS	...	36	
FIGURE	16:	MARKER	DISPLAY	BETWEEN	TWO	USERS	..	37	
FIGURE	17:	LOCKING	DISPLAY	SHOWING	A	LOCALLY	PLACED	LOCK	(GREEN)	AND	REMOTE	LOCK	(RED)	...	39	

TABLE	1:	GRPC	SERVICE	METHOD	TYPES	...	22	
TABLE	2:	ENTITY	HIGHLIGHT	FEATURE	TEST	RESULTS	..	37	
TABLE	3:	MARKER	FEATURE	TEST	RESULTS	...	38	
TABLE	4:	LOCKING	UNIT	TESTING	RESULTS	..	40	
TABLE	5:	VOICE	COMMAND	TEST	DATA	SHOWING	VOICE	COMMAND	SUCCESS	RATES	AND	RESPONSE	TIMES	41	

Chapter 1: Introduction

1.1 Swarm Robotics
Swarm robotics is the study of how a large number of relatively simple physically embodied

agents can be designed such that a desired collective behavior emerges from the agents and

local interactions among agents [1]. The design of these systems is generally based on

collective behaviors commonly found in nature such as flocking of birds, schooling of fish, and

nest construction of social insects which share the same main advantages of scalability and

robustness to the failure of individual agents. Currently, many different platforms for studying

swarm robotics exist with some of the most common being Khepera, e-pucks, and Kilobots.

Even with the field in its infancy, research in swarm robotics has shown strong relevance in

applications that can take advantage of numerous coordinated agents such as reconnaissance,

exploration, environmental monitoring, protection, and even space exploration [2].

1.2 Human Swarm Interaction
With the rise in relevance and usage of swarm robotics, new applications and research areas

are being created. Due to the current exploratory nature of the field, autonomy frequently does

not cover every case that can arise in a robotic swarm’s set of possible states. When autonomy

fails, it is important for robotic swarm systems to give humans the ability to correctly react to the

situation [3]. This need has led to a new field of study known as Human-Swarm Interaction (HSI)

which is the study of human operators controlling or giving commands to a robot swarm [4]. The

main advantage of introducing a human supervisor to the swarm system is that an operator

could use information unavailable to the swarm to prevent automation errors and improve

performance in the system by modifying the swarm’s behavior and goals. This effectively allows

complicated missions to be completed by combining the autonomous functionality of robot

swarms with relatively simple forms of interaction from human operator control.

However, due to the nature of robotic swarms, these systems can easily become

complicated due to a large number of interacting parts. As such, these systems can exceed the

span of apprehension (cognitive load) of an individual human, which is typically limited to 7(+/-

2) entities [5,6], which can limit human performance, negatively impacting the performance of

the entire system.

One way to approach the cognitive load problem is to allow operators to choose

between a broad and specific level of control. For example, if an operator wants the swarm to

work together to achieve a goal, they should be able to indicate a task at a high level. If the

operator noticed one of the robots is performing unexpected behavior, they could manually

correct that individual robot. This mixed granularity approach has the benefit of not overloading

the operator with information while allowing them to use fine-grained control in certain

situations.

Visualization is an important aspect of human-swarm interaction because it enables

humans to understand the swarm’s intentions. This signals when operators should modify

swarm behavior. Analogous to low level control methods, showing every detail of a swarm can

overload operators [6]. Because of this, it is important for swarm control interfaces to provide a

way to present only relevant data based on the context or user commands.

Even though granularity of control and visualization provide ways to reduce the cognitive

overload that operators encounter in swarm systems, it is often not enough [7]. Adding more

operators allows humans to split work amongst each other and complete their tasks in parallel.

However, operators in a multi-user system will often suffer from the out-of-the-loop performance

problem (OOTL) characterized by operators not engaging in the task, not trusting the system or

not being aware of the current state [7]. While a previous work has already examined OOTL

within swarm control on a tablet, we will be looking at how a head mounted display (HMD)

affects this issue.

Head mounted AR displays have three benefits over tablet displays. First, head-mounted

displays are more immersive because they allow the operator to look around the environment

naturally as opposed to having to point a tablet at interactable elements. Additionally, not

holding a tablet allows operators to use their hands for other tasks within the physical world

such as looking through physical documentation. Finally, humans are able to communicate with

each other much better when they use gestures [8]. By having their hands free, operators will be

able to point at elements of the system.

 The Magic Leap headset [9] is the AR HMD selected for this work. The Magic Leap pairs

a relatively lightweight set of glasses with a wearable compute unit to keep stress on the head

and neck low. Magic Leap also comes with a 6-DOF controller which can allow precise selection

of a robot or a team of robots and mappable buttons for predefined actions or UI navigation. To

our knowledge, no research has studied a team of humans using Magic Leap or other AR HMD

headsets with a swarm of robots. While our study has a focus to measure cognitive load, other

findings about the system will be recorded as they are novelties.

1.3 Problem Statement
Robotic swarms are useful systems for solving tasks that are either too complex for one robot or

inherently distributed. In robotic swarms, multiple robots can solve problems faster through

parallelism while being more robust to failure than a single robot. Current robotic swarms

typically operate well for situations they are designed for, but they can break and require human

intervention in situations they have not been prepared for. In current human-swarm systems,

humans need to update goals for an individual agent or for overall swarm behavior. However,

swarms can have many parts in the system, exceeding the span of apprehension of a human

operator which is limited to 7(+/-2) entities. This can lead to operators being overwhelmed and

cause performance issues across the swarm. Therefore, we propose a first of its kind Magic

Leap One augmented reality system for distributing relevant information across multiple humans

to allow operators to share the cognitive load associated with controlling and understanding

swarms.

1.4 Contributions

Our contributions are as follows:

● Created the first multi-user head-mounted augmented reality control system for robotic

swarms to balance cognitive load between operators.

● Improved on previous year’s major qualifying project control and visualization system by

introducing entity locking, marker placement and voice commands.

● Extended previous year’s major qualifying project features to move from simulation to

real world space.

● Decoupled existing control system architecture allowing us to easily reuse components.

Chapter 2: Background

2.1 Augmented and Mixed Reality
Augmented reality (AR) is a technology encompassing three key aspects: combining real and

virtual objects in a real environment, being interactive in real time, and registering real and

virtual objects with each other [10]. The definition of mixed reality (MR) is not as unified or

unanimous as the definition for AR [10], but it includes components from both the physical world

and a virtual world. We will use a working definition of MR as a stronger version of AR [10]

which includes a stronger link between the virtual and real world, allowing for registration and

control of physical objects from the AR environment. AR/MR’s physical context contrasts virtual

reality (VR), where the entirety of a user's world is virtual.

2.1.1 Affordances of Augmented and Mixed Reality

Functional affordances [11] enable goal-oriented actions for a specified user group. Augmented

and mixed reality provide unique functional affordances in a system that may be impossible to

experience in physical or virtual reality alone. First, AR and MR allow the user to be free of

many constraints of the physical world such as gravity or time, through the use of virtual objects

[12]. Virtual reality also allows for the breaking of normal physical laws, but AR/MR do this while

maintaining the physical, real word context of the environment [12]. MR provides specific

affordances to mobile robots, where robot information and control can be overlaid onto a moving

model of the robot [13,14,15], therefore we selected it for this project.

2.1.2 Current Challenges in Augmented and Mixed Reality

AR and MR papers have been published for over thirty years, and significant work has gone into

making the technology better in every way, but there are still major challenges that prevent it

from being widespread today. AR and MR require precise tracking of the user in all

environments [16]. This is to link the view for the user with objects in the real world. Display

technologies have also left AR systems with limited field of view (FOV). Controlling AR/MR

systems without the use of a keyboard and mouse has proved challenging, and new input

methods have yet to be standardized. These current shortcomings are important to design

around while implementing an AR/MR system.

2.2 Related Work

2.2.1 Studying Granularity of Control

According to Endsley [17], granularity of control (a system design choice) is a component in

determining: (1) the situational awareness of operators, (2) how users build their mental model

of the system, and (3) human perceived complexity of the system. Two main granularities of

control are considered here: low-level control, and high-level control.

 Low-level (or robot-oriented) control focuses on an individual robot. This may mean

controlling a single robot manually, or giving a single robot any other robot-specific command.

Any actions chosen with this granularity directly impact the selected robot and may indirectly

impact the rest of the swarm behavior.

 High-level control focuses on high-level goals. It can include controlling an entire swarm

directly or stating goals to be accomplished and letting the system determine how to complete

the goal on its own. These differences of high- and low-level control have been examined by

Patel et al. through two approaches to collective transport [7]. Controlling the swarm directly

would be commanding the robots to surround a box, and then telling the group to move, moving

the box along with the robots. The goal-based approach would instead allow the users to

indicate they want the box to be moved from one place to another, and the robotic swarm solves

this problem autonomously. Adding robots to a group of robots is also considered high-level

control. High-level granularity control commands can directly impact the swarm(s) they are

being applied to, and indirectly impact other swarms.

 Choosing the right level of control for a task can be a difficult choice. Both high- and low-

level granularity are studied in [7], specifically in the context of the out-of-the-loop (OOTL)

phenomenon. The OOTL problem occurs when a user becomes disengaged from the work of

the system, for a variety of reasons.

If the granularity is too high, such as solely goal-based control, the limited workload can

lead to operators becoming bored and disengaged, resulting in the OOTL problem. However, if

granularity is too low, as in the case of robot-oriented control, operators might have to keep

track of too many different entities and reduce their efficiency because of excessive cognitive

load. Because of this, research has shown that allowing operators to dynamically choose their

modality of control is important [7].

Mixed-granularity AR swarm control has been previously achieved through the use of a

tablet application [7,18]. Patel et al.'s tablet application study found that for the purpose of

moving a box to a specific location, giving users the option to use both high level and low level

of granularities led to a reduction in mental load, effort and frustration over just low-level control.

This can be caused by high cognitive load. This study also found that mixed-granularity control

led to fewer interactions and commands [18].

2.2.2 Multi-Human Multi-Robot Interaction

Many research groups have studied multi-human multi-robot interaction which can be generally

split up into cases where humans play the role of bystanders, coordination of humans and

robots into teams, and supervisory control [18]. However, there exists little research on

supervisory control.

In the case where humans play the role of bystanders, most research has been

conducted on the navigation of robots in a shared environment and human tracking. One of

these studies developed a path-planning algorithm where humans with different mission

objectives assigned waypoints for the robot that would imply fair allocation of resources to the

users [19]. They found the elitist strategy, where paths cover waypoints selected by an assigned

individual or sub-group of users was the most preferred and successful. This is useful as it gives

some insight on how swarm resources should be allocated in a multi-human multi-robot system,

indicating the preference of users for individual robots to be assigned to a specific user or sub-

group of users. Another study developed a behavior system for analyzing human features and

classifying behavior. The system allowed robots to identify which user was most likely to interact

with them, simplifying the user priority in a multi-human system [20].

Many researchers have also studied the coordination of humans and robots in teams.

One study focuses on how to improve the safety, efficiency, reliability, and cost of achieving

mission goals by creating an infrastructure to facilitate cooperative and collaborative

performance of humans and robots as equal team partners. In this paper the researchers

explore the issues that arise from dependency on other teammates, namely when teammates

are busy and unable to respond. To solve this dependency issue, the researchers introduce

adjustable autonomy as a solution [21]. This paper suggests a relevant method for allocating

systems and entities into hierarchical control for successful human robot team operation.

Other research has focused on dynamically formed human robot teams. One such study

by Jones et al. defines the challenges of pickup teams involving efficient formation,

coordination, and interaction of multi-robot teams [22]. In Jones et al.’s work, the researchers

design and develop the TraderBot allocation system to tackle a search and discover problem in

an unknown environment. Another study defines and analyzes various types and levels of

interactions between humans and robots in the manufacturing domain by developing an

infrastructure for collaboration based on safety, engagement, and team composition. Their main

findings support the claim that higher levels of collaboration in human robot systems lead to

improved productivity [23].

Some groups have studied supervisory control within multi-user, multi-robot scenarios

[24,25], but these have been limited to resource sharing relating to task performance. These

studies presented two control scenarios, one with a pool of 24 robots users shared and

monitored, and another where the users split the pool in half and monitored 12 robots each (a

third, ‘no discernable strategy’ was also selected by some groups of participants). These papers

presented work with multiple robots and users, but all of their work was simulated and focused

on human teams and information streams. Most notably, the first study observed different team

strategies where operators had access to all robots manually or autonomously and where users

had access to only 12 robots each which were specifically assigned to individual users. The

best performing teams, in terms of victims found, were those who had autonomous robots that

were assigned to individuals. The researchers also found that when both operators had access

to all information feeds from each robot, it would begin to interfere with their ability to identify

victims. This suggests that limiting the amount of control and information to which an operator

has access can improve the overall performance of the team.

In [7], supervisory control was used to study the OOTL problem. This study used a tablet

interface, unlike our proposed head mounted display interface. Task engagement, trust in other

users, and trust in the system shared between users (all parts of the OOTL problem) may

change within the new hardware and interface.

2.2.3 Human Swarm Interaction in Augmented Reality

To our knowledge, there are no established methods for controlling swarms in cooperative

mixed reality with a head-mounted display. There has been a previous attempt which involved

using an AR interface on a tablet to instruct swarms how to construct structures from cardboard

boxes [7].

One proposed method of controlling swarms in augmented reality was through the use

of hand gestures such as pointing [26]. This research found that gestures alone did not provide

a robust enough control method as an operator's hand would have to constantly be visible

within the field of view. Additionally, they noted that the Magic Leap had a small field of view

which exacerbated the problem. Because of this, they found that the optimal way to control

swarms was by using the provided Magic Leap controller. They also suggested the use of voice

commands, but they also noted the Magic Leap’s lack of native support for them.

Additionally, being able to understand the state of multiple devices is a common problem

which has been researched within both robotic swarms and interaction with IoT devices. For

example, one paper found that communicating information through graphics synthesized data in

a simpler form than textual or numerical displays [27]. Limiting view complexity is of particular

importance with augmented reality headsets because of their small field of view [26].

One way of limiting the size of views within Augmented Reality is through the use of

Proximity based control. Proximity based control involves dynamically changing how much

information is displayed to the user based on how close the user is to a certain interactable item

[28]. It relies on the assumption that users are more interested in nearby interactables than far

items.

Another problem with Augmented Reality headset’s limited FOV is that it is easy for

important objects to exit a user’s field of view. One way this problem has been solved has been

through the use of “Picture in Picture mode” [28]. This solution overlaid small icons that

represented entities of interest on the edges of the screen to let users know where out of view

entities were.

2.3 Non-verbal Communication

Non-verbal communication is a method for humans to convey information without using speech.

It can take many different forms including the use of space, body movements, gaze and the

placement of artifacts. In fact, gestures can sometimes fully replace the use of verbal

communication altogether [29].

 One place where non-verbal communication has been implemented is in the online

game League of Legends where developers have introduced “pings.” Pings are a form of spatial

communication where players place markers representing different information such as danger,

stop, or the need for help. In fact, one 2016 study found a positive relationship between the

number of pings a player activated and their performance throughout the game [29]. One

hypothesis on why this is the case is that League of Legends is a fast-paced game in which

having to process text information distracts the player. However, pings are not a perfect system.

In the same Ping to Win study, researchers found that when users spammed pings their team

actually performed worse than if they did not spam them. The researchers claim that this was

caused by the continuous interrupting of work that each ping did, without actually adding new

information [29].

 Our project involves multiple operators participating in an experiment in an augmented

and mixed reality environment. There are many cases in which pointing to a robot, or a 3D

location through the system may aid or replace the need for a verbal cue between operators.

We included non-verbal communication elements to improve human to human communication

in our project.

2.4 Our Project

Our project leverages the technology of two Magic Leap augmented reality headsets to enable

an immersive augmented reality, mixed granularity control of a robotic swarm. The Magic Leap

enables 3D virtual objects that can give users intuition about the system to build a coherent

cognitive model of the system. The infrastructure that currently supports one Magic Leap to

control the swarm will be modified to allow for two users to view and control what is occurring in

the system. Our project gives users the ability to collaboratively interact and control a robotic

swarm while simultaneously providing intuitive non-verbal communication features. By allowing

two users to interact with the swarm through augmented reality with HMDs, we create a novel

method of cooperative swarm control.

Chapter 3: Methodology

3.1 Problem Formalization
Controlling and understanding complex robotic swarms is a difficult task for one human

operator. Because individual robot’s states can become complex, it may require the complete

attention of one operator. This narrowed view of the swarm can lead to an operator’s inability to

interact quickly and effectively with other robots within the swarm. With slower responses,

severe problems arise: increased safety risk, decreased swarm efficiency, and lowered operator

trust in the system.

 To address the single user attention span problem, we propose a system in which

multiple users (two studied within this project) may share the cognitive load of interacting with

the swarm. Through this multi-user application, we want to accomplish the following goals: (1)

intuitive human swarm interaction and (2) improved inter-human communication. To measure

these goals in the future, we have created an experiment template with performance metrics

derived from the survey in Appendix A (following from Patel et al. [18]).

Human swarm interaction: Each user in the system should be able to control and understand

the robots they are working with. We desire both high- and low-level control for the robots. Our

sub-goals for human swarm interaction include the following.

1. Perform low level control of robots. This includes moving a robot from one location to

another.

2. Perform goal-oriented control of robots. For our experiment, this means issuing a

command to move the box, and allowing the system to work out which robots will

perform the move.

3. Understand robot behavior. Why are the robots moving the way that they are? The

displays in the system should allow our operators to understand: (1) what a robot is

doing, (2) if this differs from what it is trying to do, and (3) if either of (1,2) differ from the

expected behavior.

Inter-human communication: Each user in the system should know what other users in the

system are doing and be able to communicate this in the MR environment, with the following

information.

1. Intended Actions - users should be able to understand the actions that other users are

taking.

2. Locked Resources - users should be aware of what resources (robots, movable items)

they can and cannot use so that they are able to negotiate with other users.

3. Important elements - users should be able to indicate on what other users should focus.

3.1.1 Measurements of Goal Success

Human Swarm Interaction
Success for control commands will be measured by the robustness and reliability of control

commands for both high- and low-level control. To evaluate the operators’ understanding of

robot behavior, survey questions regarding the swarm’s actions and its intended actions can be

administered.

Inter-Human Communication
The measures of success for inter-human communication rely heavily on survey questions.

Possible survey questions that could evaluate the success for inter-human communication

include teammate trust and system trust questions. We expect that increased uses of inter-

human communication (some verbal, some non-verbal) would result in increased trust in

teammates.

3.2 Use Cases

The full use cases, including entry/exit conditions as well as the flow of events are attached in

the Appendix B: Use Cases. The following lays out a brief generalization of the use cases this

project aims to cover. These include command use cases, such as:

● Issue Collective Transport Command
● Issue Create Marker Command
● Issue Move Single Robot Command

Users should also be able to see information about a currently selected robot so that

they can make inferences about the state of the swarm and inform future commands. These

include:

● Highlight Selected Robot
● View Selected Robot Direction of Travel

We believe that users need to be informed of their teammates actions and intended actions,

including:

● Highlight Teammate Selected Robot
● View Created and Teammate Created Markers

3.3 System Hardware

3.3.1 Magic Leap Augmented Reality Headset
The Magic Leap One Creator Edition [9] is a wearable, light weight, spatial computer that

provides the user with the ability to work and interact in both augmented and mixed reality.

These features are made possible by overlaying virtual elements and interactions over the

physical world in real-time. The real-time overlays are made possible through the use of infrared

transmitters and receivers which are integrated with the Magic Leap’s cameras to track both the

room and objects within the space. This allows the system to then project overlays onto the lens

of the Magic Leap providing the augmented and mixed reality experiences. With a horizontal

FOV of 40 degrees and a vertical FOV at 30 degrees the Magic Leap One provides one of the

largest FOV currently available for augmented reality headsets [9]. Previous contributions and

infrastructure from the aforementioned DRSwarm-Gestures [26] study also provides

considerable reuse of work and documentation for application development for the Magic Leap

headset [26].

3.3.2 Magic Leap Controller
The Magic Leap controller (Figure 1) provides a user the ability to point at and interact with

virtual objects. The controller provides two digital buttons with on/off states, the bumper and

home button. The controller also has a trigger with analog states, ranging from 0-1 giving

information of how much the trigger is pressed down. Also, the touchpad on the controller can

be used for different modes of control. Magic Leap default libraries recognize 10 default

gestures on the touchpad, with the ability to expand this to custom gestures.

Fig 1. Magic Leap Controller Layout [30]

 The physical controller was chosen for our implementation due to its high level of

accuracy and speed of updates compared to pointing gestures with the Magic Leap. In

addition, the controller can be held outside of the Magic Leaps already limited FOV while

pointing at objects within the FOV. The design of the controller fits well in users’ hands and

can handle simple button presses well, with the possibility of extending into more complex

combinations of interactions.

Utilizing the advantages of the controller, the Magic Leap is able to reliably interact with

the environment through ray casting. Using the Unity Engine [31], ray casting allows for a ray to

be projected from a specific point and orientation and returns any Unity Game object that

intersects with that ray. Ray casting from the controller allows for accurate identification of

where a user is pointing and what object the user is pointing at.

3.4 Networking Layer

3.4.1 ARGoS for Robot Positions and Commands
To keep track of both robots and sensor data, we use the ARGoS [32] system. ARGoS is a

multi-physics robot simulator with the ability to simulate large-scale swarms of robots and the

ability to be customized with ease through the addition of plug-ins. ARGoS is able to achieve

this by incorporating the design features of modularity, multiple physics engines, composability,

and parallelism. For our purposes, ARGoS was used as a server which receives commands,

sent from the Magic Leap, processes them, and generates high-level motion goals for the robots

of the swarm. ARGoS then sends these motion goals to the robots which execute these goals

[26]. This can be seen in Figure 2.

Fig 2. DRSwarm-Gestures Magic Leap, ARGoS, Swarm Communication System [26]

3.4.2 Web Services
We used web services to support the functionality that could not be done solely on the magic

leap. We have two main services in our project: SwarmServ and SwarmSpeechServ.

SwarmServ is responsible for handling all of the multi-user communication functionality

(markers, highlights, locking). SwarmSpeechServ is able to transcribe spoken commands and is

the backbone of our speech processing functionality.

In order to support shared visualizations of non-verbal communication features,

SwarmServ is responsible for validating that the sent commands are valid (especially important

for locking features) and for distributing that information to all connected clients. SwarmServ has

three easily swappable layers: networking, data, and handlers. The handler layer is responsible

for doing all the business logic (validating that a user can take an action). The networking layer

is responsible for communicating between clients and the server (our current implementation

uses a mix of HTTP and TCP). The data layer is responsible for storing all the state information

that the handler will use to do its processing. Because these layers are all easily swappable, if in

the future a developer identifies a bottleneck in one of the layers, they will be able to quickly

swap them out without worrying about affecting the rest of the system.

Because our system needs to run on a local network without internet access, we are not

able to contact external services. This meant that we have not been able to use any of the major

speech processing services such as GCP on which the Magic Leap's built-in speech to text

relies. Because of this, to handle voice commands, we had to build a locally deployed service

which can process WAV files of given commands and return 1 of 4 supported commands (place

marker, delete marker, lock and unlock). To avoid training a speech model from scratch, we

used the CMUSphinx [33] speech recognition library. Because out of the box this library

supports full sentence transcription which would potentially pick up non-supported commands,

we configured CMUSphinx to only support pre-determined key phrases.

Fig 3. Request Response pattern for SwarmSpeechServ

SwarmSpeechServ

MagicLeap

Transcribe Command
Request

Transcribed Command
Response

3.4.3 gRPC: Ideal SwarmServ Solution
In order to communicate with SwarmServ, we looked into the use of the gRPC protocol. gRPC

is a networking protocol where clients are able to call methods directly on a server as if the

server was a local object [34]. The request response model used by gRPC can be seen in

Figure 4.

gRPC uses Protocol Buffers as the default form of message serialization [34]. A protocol

buffer specification can be written within a .proto file in a declarative language. Because when

we declare fields within a protocol buffer message we also have to specify the data type, a

protocol buffer message can be optimally encoded. This is different from a JSON message

which is encoded as a large string and then parsed by the receiver. After a developer writes a

.proto file, they pass it into a language specific compiler which will generate the bindings

required to use gRPC method stubs.

Fig 4. gRPC client calling gRPC server stub [34]

gRPC also provides four combinations of service method types: Unary, Server

Streaming, Client Streaming and Bidirectional Streaming. In a Unary call, the client sends one

request and receives a response. A Server Streaming call involves the client sending an initial

request to the server and reading a stream of data from the server. In a Client Streaming call,

the client publishes a sequence of messages to the server. When the client is finished with this

sequence, the server will respond with a single message to the client. Within a Bidirectional

Streaming call, both the client and server can send messages to each other until the stream is

closed. A visual representation of the four service method types can be seen in Table 1.

Additionally, unlike in UDP, all the streaming method types preserve message order [36]. It is

important to maintain message order because messages may contain information such as a

certain feature being on/off, and if these arrive out of order, it may cause incorrect state

representation of the receiving end of the gRPC messages.

Table 1: gRPC service method types

 Server Single Response Server Streaming

Client Single Request Unary Server Streaming

Client Streaming Client Streaming Bidirectional Streaming

Knowing this information, we initially chose to use the gRPC protocol for the following reasons:

1. Protocol buffers are able to provide a smaller payload than if we had used a JSON

string;

2. The four possible service method types account for the entire range of connection

models we would need; and

3. The standardized API between the server and client means that we are forced to update

both when the specification changes.

However, gRPC had one major issue which prevented us from using it: the inability to

compile for the Magic Leap. Because gRPC required the use of native binaries not available

pre-built for the Magic Leap, the IL2CPP tool that is generally used to package native code

during builds would fail. As such, we had to remove the use of gRPC within our application after

already writing most of SwarmServ. If moving to another AR headset platform in the future,

utilizing gRPC could provide great benefits, unfortunately, we had to find an alternative.

3.4.4 Replacing gRPC: HTTP/TCP Hybrid
In order to replace the gRPC backed networking layer, we needed to find a networking solution

which would be able to work out of the box with the Magic Leap as well as easily support both

unary calls and server streaming. To solve this, we use a HTTP-TCP hybrid server where the

HTTP portion supports unary calls and the TCP is able to efficiently support server streaming.

We chose HTTP because it had the built-in request/response structure as part of the protocol,

useful for issuing requests and receiving responses about the results of our request. We chose

TCP for the streaming side because we needed something fairly lightweight, but also something

that guaranteed the order in the packets it sent and guaranteed their arrival. Both of these

properties were important for the teaming features. For example, if User A’s un-highlight

message is lost or sent out of order from SwarmServ to User B, then the robot would appear

highlighted to User B until User A re-highlights and un-highlights the entity again. Using TCP to

guarantee delivery resolves these issues.

In contrast to gRPC’s protofiles, HTTP and TCP do not have inherent client/server

contracts. We used Swagger [37] to document the HTTP client/server contracts. Swagger uses

YAML syntax to define HTTP contracts and displays service names and details in a UI. This

visual element (see Figure 5) was helpful during development and will be easy to read for future

teams.

Fig 5. Swagger List of Methods and Marker HTTP Post Example

Clicking on each method from the left image expands it to show image on the right, as well as HTTP message codes

For the TCP connection, we used a wrapped JSON technique to deserialize multiple

objects on a single connection. Once per frame the TCP connection checks for updates from

the socket connection to SwarmServ and then performs deserialization in a two-step process.

Figure 6 shows the structure of our JSON objects.

Fig 6. TCP JSON Structure

 We stripped off the messageType header (e.g., “placeWaypoint” for placing a

marker) from the original JSON by processing the messageType then serialized further

according to the message type for this specific message.

We found the transition process between the original gRPC implementation and the

HTTP/TCP hybrid relatively effortless because the networking functionality was already

designed to be decoupled. This meant that we were able to reimplement the same interfaces we

had used to abstract the networking functionality and the code within our displays did not need

to change at all. This allowed us to replace our networking layer in only two weeks.

3.5 Transitioning from the Virtual World to the Real World
For the visualizations of the augmented reality application to properly overlay with the real

swarm and objects we utilize the Magic Leap One’s built-in image tracking combined with two

transformations about the headset’s current position. When these transformations are applied to

the robot and object positions, provided by ARGoS and the fiducial tracking system Vicon, we

are able to correctly offset the headset and controller within the unity application matching the

world origin and scale of the Vicon system [38].

 Using the mixed reality XR library, built for unity [39], the camera position is directly

updated as a result of the magic leap’s provided head pose. The axis alignment was conducted

by placing the application’s main camera as a child of an origin object which is used for

offsetting the camera and controller’s position. Utilizing the Magic Leap’s built-in image tracking,

an image can be placed in the same location and orientation matching the Vicon system’s world

frame. We are then able to update the parent origin’s position and rotation through the following

set of equations:

Equation 1,2

Fig 7. Axis Alignment between Application frame and Vicon frame

Fig 8. Axis Alignment offset origin frame being set based off previous image vector

For the offset origin’s position, we are updating its position to be the subtracted vector

from the origin image’s position with respect to the origin image’s rotation around the y axis in

the application frame. Fortunately for the rotation, it is only necessary to set the offset origin’s y

rotation as we are only working on a two-dimensional field and the Magic Leap initializes to

proper x and y rotation at the start of the application.

3.6 Legacy Architecture
A vital section of this project is managing the virtual objects within the Magic Leap client

application. The framework was built on Libby et. al.’s work [26], where a comprehensive review

can be found. A brief outline of this legacy architecture is included in Figure 9.

Fig 9. Legacy Architecture System [28]

3.6.1 Data

Robot position and state are stored in and accessed with the DataManager. The

DataManager is coupled with the networking layer of the system. Real life changes pass to the

client through this channel. The DataManager takes in this data and applies it to the proper

entities as necessary. Packets from the connection to ARGoS are parsed and operations are

applied to whatever entities the packet relates to.

3.6.2 Displays

Displays can be one of two types: GlobalDisplays or EntityDisplays. GlobalDisplays

contain information like the Magic Leap IP address, objectives, and a global event log.

EntityDisplays work on a per-object basis. EntityDisplays are one of the following:

● LogDisplays, which contain a log of an individual robot actions and messages;

● PathDisplays, which show the vectors along which the robot is attempting to

navigate;

● SonarDisplays, which show the sonar proximity sensor information of individual

robots; and

● WheelVelocityDisplays, which show the velocities of the wheels of robots.

 Each Display is created on startup and stored in the client, but all of the entity displays

are set to hidden. The functionality to hide and view different displays is kept track of in the

DisplayStateManger class. It handles the logic of when to draw Displays or not depending

on what the user has enabled.

 The DisplayManager holds references to all of the Global and Entity Displays and

calls each Display’s update function each frame that the magic leap renders content. Each

Display will check its state and sometimes the state of the controller and update the rest of the

system accordingly.

3.6.3 Focus

The FocusManager keeps track of what the user has selected. It is important for updating

display states and for making sure commands are sent to the proper robots. Importantly, it

defines an interface for the other displays to implement: OnFocusStart, OnFocusContinue,

and OnFocusEnd. Each display contains an implementation of these, with different control

functionality depending on the display. Our team has deprecated the FocusManager from

future development, although some objects in the system still rely on it.

3.7 New Architecture: Event Based Programming

Our main idea in architectural changes was to change to an event-driven approach to system

input. In our event-based system, the Controllers drive the changes rather than Displays

checking on controller state every frame. The main reason behind this change was to decouple

control code from the Displays themselves to enable different control inputs in the future. A

wrapper (Controller) on the Magic Leap controller libraries capture when a controller event

occurs notifying the ControlScheme of this event. The ControlScheme will then notify all the

event handlers registered to it through the EventRegistrar allowing displays to be decoupled

from control schemes. Figure 10 outlines the event registration and invocation process.

Fig 10. Event Driven Architecture

 In this process, first the Controller and ControlManager are created. Next, the

ControlSchemes are created and register their method implementations for certain controller

events directly with the Controller class. Then, the event registrar is created with

ControlSchemes passed in. Finally, new displays are created and register their method

implementations with different control schemes through the EventRegistrar. The new

displays never deal directly with controller input, and they only have implementations that can

be invoked by ControlSchemes. In this way, different control schemes can be hot swapped

during build or even runtime. For example, when we wanted to add a combined controller-voice

control method, we would simply make sure that that ControlScheme emits all required

events and set that as the ControlScheme in the ControlManager.

3.7.1 Attaching Networking Code to the Event Driven Process

In a single user scenario, events simply cascade from the controller down to the selected

display at the time of the event. Similarly, when a user sends a message to SwarmServ, we can

react to these messages within the receiver's displays through an event-based system. This

allows our displays to avoid polling for new external changes on every frame update.

 To achieve this, we define a repo interface for each networking functionality that

Displays can keep references to and call send commands when necessary. These interfaces

also allow the Displays to register event handlers for when new information comes from an

external source. We then defined a concrete implementation called SwarmServClient that

calls the event handlers when necessary. We decided on using the same class for the concrete

implementation of all our networking repo interfaces as we wanted to reduce the number of

concurrently open channels to SwarmServ.

 Ideally, all of the legacy code base should be transferred to this new system to allow for

more uniform development processes. Another benefit from updating the system is extended

controller functionality becoming available across the entire application. In this new architecture,

the DataManager may be entirely the same, but each Display implementation and

FocusManager would require expansive changes.

3.8 Non-Verbal Communication Features
At the time of writing, there is no known research that has studied multi-user collaboration for

robotic control using an augmented reality head mounted display. Therefore, we chose to

experiment with new features to gather information for this area of research. We designed three

main features to aid in collaboration: Highlights, Markers, and Locking. For use in this section,

we selected two terms: Activator and Observer. While in reality, both users are Activators and

Observers, it makes sense to look at an individual interaction to separate the two users and

what occurs when one of these features is activated.

 Highlights were a tool we implemented to aid in non-verbal communication between two

users. We imagined a set of possible use cases that we planned to look for if an in-person

experiment would have been possible. One case we expected was the Activator points at a

robot while conversing with the Observer, saying “Something is wrong with this robot” or “Look

at this robot”. Pointing with the controller or a hand can be ambiguous when robots are close to

each other. Another advantage of the highlights is that there will be a visual change on the

Observer’s headset, immediately drawing their attention to it. Highlights contrasts using a

robot’s number or unique identifier to call attention to it, because the Observer would then have

to initiate a search rather than just observing a change to the current view. This would also

scale well because using an identifier could lead to long searches if there are many ids in the

system to check. One potential drawback to evaluate is that the user must be looking at the

robot to see the highlight show up, and the field of view of many AR headsets can be small.

Markers are similar in many ways to the Highlights feature. Markers are meant to

augment parts of the system, but they focus on marking spaces where there is no

corresponding physical object in the system. The originally imagined use case for markers is the

Activator indicating a goal for the Observer. This is useful to analyze how far along a robot's

operation is from reaching their goal, or for planning purposes so that the Observer does not

also plan a path in between a set of robots and their goal. The implementation of markers we

use is more flexible than just a ‘moving here marker’ and is not tied to the movement

functionality. We chose to do this because we wanted to see for what other uses people ended

up using the marker functionality.

 The Locking feature is meant to prevent two users’ workflow from interfering with one

another. In the current system, users can interrupt a robot’s move command by assigning

another move command while the first command has not yet completed. When an Activator

initiates a lock, the Locking feature will not allow the Observer to use that resource until the

Activator unlocks it. The Observer can still view the locked object and the different displays it

has associated with it but cannot perform a move command. The server deals with concurrency

issues so that only one user can lock a resource at one time. This is a useful feature because

one user may have access to knowledge that indicates the robot is better suited for its current

course of action rather than changing tasks. Again, this feature and others would have been

tested in a laboratory environment if possible.

3.8.1 Non-Verbal Communication Feature Implementation

Highlights
The system will highlight robots whenever one is considered selected. This can be done by

emitting an OnHoverStart event with the Entity ID of the Entity to be highlighted. All entities in

the system are notified but only take actions if the Entity ID matched its own. Figure 11 shows

the sequence diagram for this method call.

Fig 11. Entity Highlight Display Sequence Diagram

 One potential improvement is the ability to selectively turn on and off this feature, as

sometimes the two users did not need to use this feature and the highlights could be distracting.

One natural intricacy of highlights is when both users are highlighting a robot. For example,

what happens when one user is highlighting a robot, then another user tries to highlight it? We

chose a simple approach: local highlights are prioritized over remote highlights. The second

user to highlight the robot will have it shown red before the robot is selected, then blue after they

select the robot. The first user to deselect the robot will see it shown red for the other user's

current highlight.

Markers
Shown in Figure 16 is a picture of an operator placing a marker on the ground. Markers can be

used to attract the attention of another user to a specific location not inhabited by an entity such

as a robot. By emitting a ping sound when they are placed, they also attract the operator's

attention that a marker was placed. Furthermore, when a marker is no longer needed, the initial

placer is able to delete it from all operators' views. The sequence diagram for Markers is shown

below in Figure 12. (Note: ‘Marker’ is called ‘Waypoint’ throughout the code base)

Fig 12. Waypoint (Marker) Sequence Diagram

Locks
Resource locking is used to prevent users from interrupting each other's workflow by only

allowing the user who locked a specific resource to interact with it. Figure 13 shows the

sequence diagram for this method call.

Fig 13. Entity Locking Sequence Diagram

This is done by having the user hover over a resource followed by the user emitting an

OnLockToggle event. If the selected resource is not currently locked locally, a locking request

is initiated to the SwarmServ service which if successful will broadcast to all users of the lock on

the designated resource. For the user who placed the lock, a green lock icon will appear above

the resource and the user will be able to continually interact with the resource. For all other

users in the system, a red lock will appear above the resource and they will be prevented from

interacting with that resource, specifically preventing move commands. This feature aims to

prevent other users from taking resources away that are currently important to the users placing

the locks.

3.9 Voice Commands Implementation
Another major feature we implemented quickly using the new modular event driven architecture

was that of voice control. This feature allows the operators to use voice commands to perform

the features listed above. Figure 14 outlines the flow of events for the SwarmSpeechServ voice

command service.

Fig 14. Voice Service Activity Diagram

The flow of this system begins with the user moving the cursor over an entity, followed

by pressing the bumper to initiate a recording. The user then speaks the voice command and

presses the bumper again to halt the recording and send the audio file to be interpreted by

SwarmSpeechServ service which decodes the audio and returns the text to the client. The

returned text is then used to emit locking, unlocking, marker placement and deletion events.

Voice commands aim to allow for a more intuitive and accessible style of control while

simultaneously showing the modularity of the modularity of the system by allowing control

schemes to be quickly hot-swapped as a result to the event-driven architecture.

3.10 Experimental Design for Future Use

The system is to be tested in 3 groups:
● Single User
● Multi-User with collaboration tools turned off
● Multi-User with collaboration tools turned on

In between Single User and both Multi-User tests, we planned to examine mental load,

effort, and how users perceive information about the system. We planned to compare the Multi-

User tests with collaboration tools off and on to see how it affects users' trust in the system and

the other humans using the system. Furthermore, we planned to obtain qualitative data about

how our interface worked to allow future work on developing a better AR system for controlling

swarms. For additional information on our User study design, see Appendix A.

Chapter 4: Experimental

4.1 Feature Testing

4.1.1 Highlights

Fig 15. Highlight Display Between two users

One user (left) points the controller at a robot, highlighting it blue. Second user (right) sees this as a red highlight.

During our testing of the system, we did find Highlights (shown in Figure 15) to be a useful

indicator for referring to different entities. Often, the names of the entities show up quite small

on the AR display and the large color change did succeed in drawing attention to a robot. One

potential improvement is the ability to selectively turn on and off this feature, as sometimes the

two users did not need to use this feature and the highlights could be distracting.

 We ran a series of 20 highlights tests (10 each between two users) and marked the

results in Table 2 below. The “% highlights shown” column is how many times the highlight

shows up (locally and remotely) when a user places their marker on the entity. The “% un-

highlights” column shows the percentage of times the highlights actually disappeared after the

highlighting user stopped highlighting the entity. The response time column measures the time

from when the highlighting user moves their controller to the entity until the red highlight shows

on the remote user's display. The response time was taken by recording a video on the Magic

Leap, and measuring after by analyzing the video timestamps when the actions occurred in the

video.

Table 2: Entity Highlight Feature Test Results

User # % of highlights
shown (local)

% of highlights
shown
(remote)

% of un-
highlights
(remote)

Response time (cursor
move to highlight on
remote user)

User 1 100 100 100* 𝝻=0.370 𝞼=0.119

User 2 100 100 100* 𝝻=0.464 𝞼=0.12

 Our results showed a consistent standard deviation, while having a varying mean from

0.37-0.464 seconds. Given these times are almost all under 0.5 seconds, we consider these

results satisfactory. The standard deviations are also smaller than average human reaction

time. The * in the un-highlights column is a discrepancy discovered outside of testing. We found

that sometimes highlights would become stuck on for a remote user if the cursor passed very

quickly over a robot. We believe this issue has something to do with threading, but we did not

have time to investigate. Since we were doing significant times on our highlights, the issue was

not uncovered here.

4.1.2 Markers

Fig 16. Marker Display between two users

One user (right) places a marker on the ground. Second user (left) sees this as a red marker.

Shown in Figure 16 is a picture of an operator placing a marker on the ground. Markers can be

used to attract the attention of another user to a specific location not inhabited by an entity such

as a robot. By emitting a ping sound when markers are placed, they also attract the operator's

attention that a marker was placed. Furthermore, when a marker is no longer needed, the initial

placer is able to delete it from all operators' views.

To validate the markers behavior, we ran 20 tests (10 for each user) and recorded our

results in Table 3 below. The "% of markers placed (local)" column corresponds to the

percentage of placed markers shown on the initiator's display. The "% of markers placed

(remote)" column corresponds to the percentage of placed markers that became visible to the

other operator. The "Place Response Time (ms)" column corresponds to the number of

milliseconds it took for the other operator to see a placed marker. The “Delete Response Time

(ms)” column corresponds to how many milliseconds it took before the other operator saw a

marker be deleted from their field of view after the other operator initiated the command.
Table 3: Marker feature test results

User # % markers
placed (local)

% markers
placed (remote)

Place Response
Time (ms)

Delete Response
Time (ms)

User 1 100 100 𝝻=0.821 𝞼=0.206 𝝻=0.451 𝞼=0.166

User 2 100 100 𝝻=0.655 𝞼=.173 𝝻=0.595 𝞼=.223

Our data shows that all the markers placed and deleted were successful. Furthermore,

we can see that both deleting and placing markers takes less than one second. An important

note is that placing a waypoint takes more time to show up than it does to delete one. One

reason this might be happening is that the time it takes to render a new waypoint is larger than it

is to remove it.

4.1.3 Locks

Fig 17. Locking display showing a locally placed lock (green) and remote lock (red)

Shown in Figure 17 is a picture capture of the locking feature. Resource locking is used as a

means to prevent users from interrupting each other's workflow by only allowing the user who

locked a specific resource to interact with it. This is done by having the user highlight a resource

followed by the user emitting an onLockToggle event. If the selected resource is not currently

locked locally, a locking request is initiated to the SwarmServ service which, if successful, will

broadcast to all users of the lock on the designated resource. For the user who placed the lock,

a green lock icon will appear above the resource and the user will be able to continually interact

with the resource. For all other users in the system, a red lock will appear above the resource

and they will be prevented from interacting with that resource, specifically preventing move

commands. This feature aims to prevent other users from taking resources away that are

currently important to the users placing the locks.

We conducted 10 locking focused tests and marked the results in Table 4 below. The “%

locks appear/disappear (local)” and “% locks appear/disappear (remote)” columns report how

many times the lock shows up locally and remotely, respectively, when a user places a lock on

an entity. The Resp. Time lock columns measure the time from when the locking user presses

the trigger on the controller, while hovering over the entity, until the lock shows on the local

user’s display and remote user’s display correspondingly. This process is repeated for the

unlocking columns as well. The response times were taken by recording a stopwatch alongside

both local and remote users while placing and removing locks on an entity.

Additionally, following each lock we attempted to issue move commands from the user

not holding the lock to ensure the command is successfully blocked, then moved the locked

entity from the user holding the lock to ensure the resource could continue to be used. We

found this feature to be successful.

Table 4: Locking unit testing results

User # % locks appear
/disappear (local)

% locks appear
/disappear
(remote)

Resp. Time lock/unlock

User 1 100* 100* 𝝻=0.408 𝞼=0.085

The results showed 100% locking placement and removal, locally and remotely, with a

cumulative response time average of 0.408 seconds from initiating the locking event to the

actual event being activated with a standard deviation of 0.085. It is important to note there

were discrepancies when using the locking feature while recording through the Magic Leap.

When using the recording feature for data collection, a phenomenon occurred where, when

attempting to lock an entity, it would take an additional trigger press to activate the command.

This was only present while recording, but it is worth noting along with potential further

investigation.

4.1.4 Voice Commands
We conducted 10 voice command tests and marked the results in Table 5 below. The “% lock”

column reports how many times the lock feature was triggered after issuing a lock voice

command. The “% unlock” column shows the number of successful unlocking events triggered

after an unlock voice command with “% place marker” and “% delete marker” displaying the

number of successful actions upon receiving their respective voice commands. The “Response

Time Cumulative Average” column measures the time it took after the command was finished,

i.e., after the second bumper press was finished indicating an end of the command recording, to

the time it took for the actual event to be emitted.

Table 5: Voice command test data showing voice command success rates and response times

User # % lock % unlock % placeMarker % deleteMarker Response Time
Cumulative Average

User 1 80 100 90 100 𝝻=2.306 𝞼=0.165

 Our data shows that our voice control system currently struggles with the lock voice

command along with the place marker voice command with their successful activation rates at

80% and 90% respectively with 100% effectiveness when issuing unlocking and delete marker

commands. We also found after the second button press, the average response time for a

command to be processed and executed came to 2.306 seconds with a standard deviation of

0.165. This variance in response time could potentially be a result of network traffic along with

the variance in average activation times for performing each command separately.

Chapter 5: Conclusion

5.1 Summary
Our work developed the first multi-user, head-mounted, augmented reality swarm control

system. Our system allows two users to collaboratively interact with the swarm, sharing control

responsibilities over multiple human operators. We transitioned the previous swarm control

application from simulation to the physical world. We carefully built a modular architecture that

allows for future work to branch off or expand upon our work. We demonstrated this through the

introduction of voice commands. In the future, the modular architecture will allow different

human-swarm and human-human experiments to be developed quickly using our system.

5.2 Future Work
While our MQP group believes our teaming features will be a success, we recognize these

features and ideas need to be validated in one or more user studies. Our proposed user study

evaluates the features and ease of use on a headset, it would also be interesting to compare

these results to a tablet study. Do the headsets provide the immersion or better results? How do

users become more or less efficient due to what platform they are on? The number of possible

experiments is very high.

 One other feature we did not fully explore was extending voice commands to allow for

users to communicate with the system more naturally. We believe that allowing variation in the

voice commands will allow for a more affordant control system which reduces the learning curve

to use this system. Furthermore, being able to selectively filter shown displays through a voice

command would allow users to traverse through less menus.

5.3 Lessons Learned

The Magic Leap platform is not mature enough to be used as a commercial product. Magic

Leap’s libraries are severely undocumented and forces users to go through their forums [40] in

order to solve issues. This was especially important for when we were trying to include the

gRPC binaries within the build system.

 Having to migrate from gRPC to the HTTP, TCP hybrid solution taught us the

importance of designing a decoupled architecture from the beginning of the project. It also

taught us about the importance of testing on the actual device before putting in a lot of

development time. Being able to modularly swap the classes which did the logic for this allowed

us to pivot quickly and minimize the amount of code we rewrote. Furthermore, we noticed this

architecture's benefits through how quickly we were able to add new features.

 We also learned about some of the quirks of Unity that are well documented but do not

present themselves in a visible way. One issue that continually popped up (in part due to the

event-based architecture) was that of creating and destroying GameObjects. Unity only allows

GameObjects to be created and destroyed in the main thread, and it will fail this operation

silently unless wrapped in a try/catch block. This behavior occurs when splitting a thread to wait

for a server's response to a request (as in Locking, when we wait to see if the resource is

available to lock before moving forward). Our solution to this problem (used in Waypoints and

Locks features) is adding objects to thread safe queues that update once per frame. One other

smaller unity quirk to note is the use of .meta files. To summarize what is important about these,

they mark resource IDs for different items in the project structure.

5.4 Covid Considerations
One major issue we faced while working through this project was a lack of lab access, as well

as a lack of access to the physical Magic Leap One device due to the COVID-19 pandemic. For

the entirety of the first semester, the NESTLab, our projects research space, was completely

closed. This forced us to work solely in the simulation space through the use of Magic Leap’s

The Lab application. We were extremely grateful for this simulation tool, however, as it still

allowed us to continue development and perform rudimentary tests during the first semester.

Another major drawback to the COVID-19 pandemic was the prevention of conducting a

user study. As subjects would have had to come into an enclosed area for long periods at a time

and place headsets on themselves, we were unable to successfully obtain IRB approval for our

user studies. In the near future, as the crisis of the pandemic recedes, we hope for a proper

user study to be conducted by a future Major Qualifying Project team to study the effectiveness

of head mounted, augmented reality, multi-user swarm control.

Citations/Bibliography
[1]: Hamann, Heiko. Swarm Robotics: A Formal Approach. Springer International Publishing,
2018.
[2]: W. Truszkowski, M. Hinchey, J. Rash and C. Rouff, "NASA's swarm missions: The
challenge of building autonomous software", IT Professional, vol. 6, no. 5, pp. 47-52, 2004.
[3]: A. Kolling, P. Walker, N. Chakraborty, K. Sycara, and M. Lewis, “Human interaction with
robot swarms: A survey,” IEEE Transactions on Human-Machine Systems, vol. 46, no. 1, pp. 9–
26, 2015.
[4]: 4 Kolling, Andreas, et al. "Human-swarm interaction: An experimental study of two types of
interaction with foraging swarms." Journal of Human-Robot Interaction 2.2 (2013): 103-129.
[5]: G. A. Miller, “The magical number seven, plus or minus two: Some limits on our capacity for
processing information.” Psychological review, vol. 63, no. 2, p. 81, 1956.
[6]: M. Lewis, H. Wang, S. Y. Chien, P. Velagapudi, P. Scerri, and K. Sycara, “Choosing
autonomy modes for multirobot search,” Human Factors, vol. 52, no. 2, pp. 225–233, 2010.
[7]: Patel, J., & Pinciroli, C. (2019). Improving Human Performance Using Mixed Granularity of
Control in Multi-Human Multi-Robot Interaction. arXiv preprint arXiv:1909.07487.
[8] Billinghurst, M., Weghorst, S. & Furness, T. Shared space: An augmented reality approach
for computer supported collaborative work. Virtual Reality 3, 25–36 (1998).
https://doi.org/10.1007/BF01409795
[9]: “Magic Leap: A Thousand Breakthroughs In One.” Magic Leap,
https://www.magicleap.com/en-us/magic-leap-1
[10]: Maximilian Speicher, Brian D. Hall, and Michael Nebeling. 2019. What is Mixed Reality?. In
CHI Conference on Human Factors in Computing Systems Proceedings (CHI 2019), May 4–9,
2019, Glasgow, Scotland, UK. ACM, New York, NY, USA, 15 pages. https://doi.org/
10.1145/3290605.3300767
[11]: Gibson, J.J. The Ecological Approach to Visual Perception. New York, NY: Psychology
Press, 1986.
[12]: Steffen, J. H., Gaskin, J. E., Meservy, T. O., Jenkins, J. L., & Wolman, I. (2019).
Framework of affordances for virtual reality and augmented reality. Journal of Management
Information Systems, 36(3), 683-729
[13]: F. Ghiringhelli, J. Guzzi, G. A. Di Caro, V. Caglioti, L. M. Gambardella and A. Giusti,
"Interactive Augmented Reality for understanding and analyzing multi-robot systems," 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, 2014, pp.
1195-1201, doi: 10.1109/IROS.2014.6942709.
[14]: J. A. Frank, S. P. Krishnamoorthy and V. Kapila, "Toward Mobile Mixed-Reality Interaction
With Multi-Robot Systems," in IEEE Robotics and Automation Letters, vol. 2, no. 4, pp. 1901-
1908, Oct. 2017, doi: 10.1109/LRA.2017.2714128.
[15]: Reardon C., Lee K., Rogers J.G., Fink J. (2019) Augmented Reality for Human-Robot
Teaming in Field Environments. In: Chen J., Fragomeni G. (eds) Virtual, Augmented and Mixed
Reality. Applications and Case Studies. HCII 2019. Lecture Notes in Computer Science, vol
11575. Springer, Cham. https://doi.org/10.1007/978-3-030-21565-1_6
[16]: RT Azuma - Presence: Teleoperators and Virtual Environments, 2016 - MIT Press

[17]: M. R. Endsley, “From here to autonomy: lessons learned from human– automation
research,” Human factors, vol. 59, no. 1, pp. 5–27, 2017.
[18]: Patel, J., Xu, Y., & Pinciroli, C. (2019, May). Mixed-granularity human-swarm interaction. In
2019 International Conference on Robotics and Automation (ICRA) (pp. 1059-1065). IEEE.
[19]: J. C. G. Higuera, A. Xu, F. Shkurti, and G. Dudek, “Socially-Driven Collective Path
Planning for Robot Missions,” in 2012 Ninth Conference on Computer and Robot Vision.
Toronto, Ontario, Canada: IEEE, May 2012, pp. 417–424. [Online]. Available:
http://ieeexplore.ieee.org/document/6233171/
[20]: K. S. Ong, Y. H. Hsu, and L. C. Fu, “Sensor fusion based human detection and tracking
system for human-robot interaction,” in 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems. Vilamoura-Algarve, Portugal: IEEE, Oct. 2012, pp. 4835–4840. [Online].
Available: http://ieeexplore.ieee.org/document/6386222/
[21]: A. Freedy, O. Sert, E. Freedy, J. McDonough, G. Weltman, M. Tambe, T. Gupta, W.
Grayson, and P. Cabrera, “Multiagent Adjustable Autonomy Framework (MAAF) for multi-robot,
multi-human teams,” in 2008 International Symposium on Collaborative Technologies and
Systems. Irvine, CA, USA: IEEE, May 2008, pp. 498–505. [Online]. Available:
http://ieeexplore.ieee.org/document/4543970/
[22]: E. Jones, B. Browning, M. Dias, B. Argall, M. Veloso, and A. Stentz, “Dynamically formed
heterogeneous robot teams performing tightly-coordinated tasks,” in Proceedings 2006 IEEE
International Conference on Robotics and Automation, 2006. ICRA 2006. Orlando, FL, USA:
IEEE, 2006, pp. 570–575. [Online]. Available: http://ieeexplore.ieee.org/document/1641771/
[23]: A. A. Malik and A. Bilberg, “Developing a reference model for human-robot interaction,”
International Journal on Interactive Design and Manufacturing (IJIDeM), Jun. 2019. [Online].
Available: http://link.springer.com/10.1007/s12008-019-00591-6
[24]: M. Lewis and K. Sycara, “Effects of automation on situation awareness in controlling robot
teams,” p. 7.
[25]: M. Lewis, H. Wang, Shih-Yi Chien, P. Scerri, P. Velagapudi, K. Sycara, and B. Kane,
“Teams organization and performance in multi-human/multi-robot teams,” in 2010 IEEE
International Conference on Systems, Man and Cybernetics. IEEE, pp. 1617–1623. [Online].
Available: http://ieeexplore.ieee.org/document/5642379/
[26]: Arthur E., Gardias P., Sullivan D. (2020) Augmented Reality as a Means of Improving
Efficiency and Immersion of Human-Swarm Interaction
[27]: Libby, K. J., Zhong, L., & Van Stralen, N. M. (2020, May 14). Diagnosing Robotic Swarms
2 (Dr. Swarm2). Retrieved December 13, 2020.
[28]: Ke Huo, Yuanzhi Cao, Sang Ho Yoon, Zhuangying Xu, Guiming Chen, and Karthik
Ramani. 2018. Scenariot: Spatially Mapping Smart Things Within Augmented Reality Scenes. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI '18).
Association for Computing Machinery, New York, NY, USA, Paper 219, 1–13.
DOI:https://doi.org/10.1145/3173574.3173793
[29]: Leavitt, A., Keegan, B. C., & Clark, J. (2016). Ping to Win? Proceedings of the 2016
CHI Conference on Human Factors in Computing Systems.
[30] Magic Leap Human Interface Guide. (2018, September). Retrieved December 13, 2019,
from https://medium.com/@davecancode/magic-leap-human-interface-guide-part-two-
d3cbe6d0a853

[31] https://unity.com/
[32] Pinciroli, C., Trianni, V., O’Grady, R. et al. ARGoS: a modular, parallel, multi-engine
simulator for multi-robot systems. Swarm Intell 6, 271–295 (2012).
https://doi.org/10.1007/s11721-012-0072-5
[33] "CMUSphinx Open Source Speech Recognition." CMUSphinx Open Source Speech
Recognition. Web. 04 May 2021.
[34]: “Introduction to GRPC.” GRPC, grpc.io/docs/what-is-grpc/introduction/.
[35] “GRPC Server Client Relationship.” GRPC.io, grpc.io/img/landing-2.svg.
[forums] https://forum.magicleap.com
[36]: “Core Concepts, Architecture and Lifecycle.” GRPC, grpc.io/docs/what-is-grpc/core-
concepts/.
[37] https://swagger.io/
[38] https://www.vicon.com/
[39] https://docs.unity3d.com/Manual/XR.html
[40] https://developer.magicleap.com/en-us/home

Appendix A: Survey Questions
User ID

Task ID

Complexity of Situation: How complicated was the experiment? Was it complex with many
interrelated components (7) or is it simple and straightforward (1)?

Alertness: How alert were you throughout the experiment? Were you alert and ready for activity
(7) or did you have a low degree of alertness (1)?

Division of Attention: How much was your attention divided throughout the experiment? Were
you concentrating on many aspects of the situation (7) or focussed on only one (1)?

Overwhelming Factor: How overwhelmed did you feel throughout the experiment? Were your
tasks completely manageable (7) or did you feel overwhelmed (1)?

Information Quantity: How much information have you gained about the situation? Have you
received and understood a great deal of knowledge (7) or very little (1)?

Information Quality: How useful information have you gained about the situation? have you
received and understood useful (high quality) knowledge (7) or useless (low quality)
knowledge(1)?

Familiarity with AR: How familiar were you with Augmented Reality before the experiment? Did
you have a great deal of relevant experience (7) or was it a new situation (1)?

Familiarity with Robotic Swarms: How familiar were you with controlling robotic swarms? Did
you have a great deal of relevant experience (7) or was it a new situation (1)?

Mental Load: How mentally challenging/demanding was the task? How much did you have to
think?
less challenging/demanding - 1
very challenging/demanding - 7

Physical Load: How physically challenging/demanding was the task? How physically tired
because of the task are you?
less challenging/demanding - 1
very challenging/demanding - 7

Temporal Load: How fast did you have to think to complete the task? How fast did you have to
respond to control the system and perform the task?
very slow - 1
very fast - 7

Performance: How successful were you in accomplishing what you were asked to do?
not successful - 1
very successful - 7

Effort: How hard did you have to work to accomplish your level of performance?
not at all - 1
very much - 7

Frustration: How frustrated, discouraged, irritated, stressed, and annoyed were you?
not at all - 1
very much - 7

Competence: To what extent does the system perform a given task effectively?
not at all - 1
very effectively - 7

Predictability: To what extent can you anticipate the system's behavior with some degree of
confidence?
can't anticipate at all - 1
can anticipate perfectly - 7

Reliability: To what extent is the system free of errors?

full of errors - 1
completely free of errors - 7

Overall Trust: To what extent do you trust the system overall?
don't trust at all - 1
completely trust - 7

Accuracy: How accurate/correct the responses of the system were?
not at all accurate - 1
very accurate - 7

Human Trust Questionnaire - Only run on Experiments with Teams

My teammate is trustworthy:
7 - strongly agree
1 - strongly disagree

If I have a problem my teammate is always able to help me:
7 - strongly agree
1 - strongly disagree

My teammate is always willing to help:
7 - strongly agree
1 - strongly disagree

I felt accepted as a member of the team:
7 - strongly agree
1 - strongly disagree

Teammate's Intention: Did you understand your teammate’s intentions? Were you able to
understand why your teammate was taking certain action?

For the above question, why did you select that answer? Write a short explanation

Teammate's Actions: Could you understand your teammate’s actions? Could you understand
what your teammate was doing at any particular time?

For the above question, why did you select that answer? Write a short explanation

Task Progress: Could you follow the progress of the task? While performing the tasks, were you
able to gauge how much of it was pending?

For the above question, why did you select that answer? Write a short explanation

Robot Status: Did you understand what the robots were doing? At all times were you sure how
and why the robots were behaving the way they did?

For the above question, why did you select that answer? Write a short explanation

Information Clarity: Was the information provided by the interface clear for accomplishing the
task?

For the above question, why did you select that answer? Write a short explanation

Information Necessity: Was the information provided by the interface necessary in
accomplishing the task?

For the above question, why did you select that answer? Write a short explanation

Appendix B: Use Cases
Issue Collective Transport Command
Participating Actor - Magic Leap User

Entry Condition:
- Object is not currently being moved/rotated
Exit Condition:
- Nearby robots will collectively work to transport the selected object
Flow of Events:
1. User selects object to be transported
2. System displays this object is selected
3. User Indicates final position for object to be translated/rotated
4. System displays final position

Issue Move Group Command
Participating Actor - Magic Leap User
Entry Condition:
- Group is not currently executing move group
Exit Condition:
- Group will begin moving to specified destination
Flow of Events:
1. User selects robots to be grouped
2. System displays selected robots
3. User indicates final position for robots to move to
4. System displays final position

Issue Move Single Robot Command
Participating Actor - Magic Leap User
Entry Condition:
- Robot is not currently being moved
Exit Condition:
- Robot will be moving to designated destination
Flow of Events:
1. User Selects Robot to move
2. System displays selected Robot
3. User Indicates final position for Robot to move to
4. System displays Robot's final position

Issue Assign to Sub-group command
Participating Actor - Magic Leap User
Entry Condition:
- Robot is not currently in the subgroup
- Robot is not currently in any other subgroup
Exit Condition:
- Robot will be part of the selected subgroup
Flow of Events:
1. Magic Leap User selects robot they want to assign to a subgroup
2. System displays selected robot

3. Magic Leap User indicates subgroup robot should be assigned to
4. System displays updated group

[Robot Oriented]Switching
Participating Actor - Magic Leap User
Entry Condition:
- Magic Leap User is not currently using Robot-Oriented Control
Exit Condition:
- Magic Leap User will be using Robot-Oriented Control
Flow of Events:
1. Magic Leap User Indicates that they want to use Robot-Oriented Control
2. System indicates that it is now in Robot-Oriented Control

[Swarm Oriented]Switching
Participating Actor - Magic Leap User
Entry Condition:
- Magic Leap User is not currently using Swarm-Oriented Control
Exit Condition:
- Magic Leap User will be using Swarm-Oriented Control
Flow of Events:
1. Magic Leap User Indicates that they want to use Swarm-Oriented Control
2. System indicates that it is now in Swarm-Oriented Control

[Robot Oriented] Battery Level
Participating Actor: Magic Leap user
Entry Condition:
- In robot oriented control mode
Exit Condition:
- Magic Leap User leaves robot oriented control mode or hide battery / status selected OR
Magic leap user deselects robot
Flow of Events:
1. Magic leap user selects a robot
2. Battery level is shown

[Robot Oriented] Robot final position
Participating Actor: Magic Leap user
Entry Condition:
- Interface in robot oriented control mode
Exit Condition:
- Robot moves to designated position
Flow of Events:
1. Magic leap user selects a robot
2. Interface displays selected Robot
3. Magic Leap User indicates final position for robot

4. Interface displays final position

[Robot Oriented] Assigned Subgroup
Participating Actor: Magic Leap user
Entry Condition:
- Interface robot oriented control mode
Exit Condition:
- Leave robot oriented control mode
- Hide Assigned Subgroup / status selected
- Magic leap user deselects robot
Flow of Events:
1. Magic leap user selects a robot
2. Interface displays assigned subgroup
[Robot Oriented] Selected robot should be highlighted
Participating Actor: Magic Leap user
Entry Condition:
- Interface in robot oriented control mode
Exit Condition:
- Magic Leap user deselects robot
Flow of Events:
1. Magic Leap user selects robot
2. Robot model indicated to be selected

[Robot Oriented] Selected robot direction of travel
Participating Actor: Magic Leap user
Entry Condition:
- Interface in robot oriented control mode
Exit Condition:
- Leave robot oriented control mode
- Hide direction / status selected
- Magic leap user deselects robot
Flow of Events:
1. Magic leap user selects a robot
2. Robots heading is shown

[Swarm Oriented] View number of robots in selected group
Participating Actor: Magic Leap user
Entry Condition:
- Interface in swarm oriented control mode
Exit Condition:
- Leave swarm oriented control mode
- Hide Number of Robots / status selected
Flow of Events:
1. Magic leap user selects a sub group

2. The number of robots in the selected sub group is shown

[Swarm Oriented] Indicate robots part of Subgroup
Participating Actor: Magic Leap user
Entry Condition:
- Interface in swarm oriented control mode
Exit Condition:
- Leave swarm oriented control mode
- Magic Leap user deselects subgroup
- Hide highlight subgroup / status selected
Flow of Events:
1. Magic Leap user selects subgroup
2. All robots in the assigned subgroup are indicated to be selected

[Swarm Oriented] Visualize Object Final Position
Participating Actor: Magic Leap User
Entry Condition:
- Interface in swarm oriented control
- Selected subgroup has a collective transport command running
Exit Condition:
- Object has arrived in final position
Flow of Events:
1. Magic Leap user selects a subgroup
2. Interface displays final position of object being transported

[Swarm Oriented] Visualize Sub-group Final Position
Participating Actor: Magic Leap User
Entry Condition:
- Interface in swarm oriented control
- Selected subgroup has a move command running
Exit Condition:
- Subgroup has arrived in final position
Flow of Events:
1. Magic Leap user selects a subgroup
2. Interface displays final position of subgroup

[Swarm Oriented] Visualize dead/unhealthy robots
Participating Actor: Magic Leap user
Entry Condition:
- Interface in swarm oriented control mode
Exit Condition:
- Leave swarm oriented control mode
- Robot resumes communication
Flow of Events:

1. Robot loses communication with ARGoS system
2. Five seconds passes
3. Robot becomes indicated that it is dead/unhealthy

[Swarm Oriented] Place virtual markers
Participating Actor: Magic Leap user(s)
Entry Condition:
- In swarm oriented control mode
Exit Condition:
N/A
Flow of Events:
1. Magic Leap user indicates they want to place a virtual marker
2. Virtual marker shows up where the controller is pointed
3. User may choose where marker is placed
4. User indicates they want to release and place, marker places and indicates it has been
placed

[Robot Oriented] Dynamic information scaling
Participating Actor: Magic Leap user
Entry Condition: In robot oriented control mode
User has a robot/s selected
Exit Condition:
User deselects robot
Flow of Events:
1a. Indicators on robot grow in size as users move closer to that robot
1b. Indicators on robot shrink in size as users move away from that

[Swarm Oriented] Assign Robots to Subgroup
Participating Actor - Magic Leap User
Entry Condition:
- Robot is not currently in the subgroup
- Robot is not currently in any other subgroup
Exit Condition:
- Robot will be part of the selected subgroup
Flow of Events:
1. Magic Leap User selects robot they want to assign to a subgroup
2. System displays selected robot
3. Magic Leap User indicates subgroup robot should be assigned to
4. System displays updated group

