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Abstract

Cyber attacks cost the world economy $6 trillion per year and are increasing by 15 percent
per year. By 2025,the world economy will have to pay a heavy price of $10 trillion for
such attacks. A major factor contributing to these attacks is inadequate attention paid to
computer network architectures. Accordingly, automation of technologies, like firewalls, that
keep check of network architectures is desired. An automated firewall will be able to point
out the rules missing or changes to rules when required. Along with automation it is also
important to keep a human in the loop to overrule incorrect suggestions from the technology.
In order to generate firewall rules that are effective, there are several thousands of network
flows that need to be analyzed, which is simply beyond a reasonable execution time for a
human. Overall, targeted approach is to use a machine learning algorithm in order to derive
more complex rules that can simultaneously consider many more inputs.
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Executive Summary

There is a hacker attack on average every 39 seconds in the United States, affecting nearly one
in every three Americans [1]. Whether this be through Smurf attacks, PoD attacks, or even
botnet attacks, the average cost globally for a data breach at a publicly-traded company is 116
million dollars [1]. This doesn’t even begin to touch the surface on the crippling side effects
of a business losing possession over sensitive client information. The protecting of highly
valuable information has come to be known as cybersecurity. A term that Cisco defines as,
“Cybersecurity is the practice of protecting systems, networks, and programs from digital
attacks. These cyberattacks are usually aimed at accessing, changing, or destroying sensitive
information; extorting money from users; or interrupting normal business processes.” [2].

Cybersecurity has become extraordinarily prevalent in the modern day due to several rising
business infrastructures that need to store various bits of information regarding their clientele.
With that being said, there has also been a dramatic spike in unethical hacking in order to
manipulate, leverage, or steal personal information.

One way to protect several machines within an organization is through a firewall, which
monitors incoming and outgoing data to ensure that the data that is transferred and the
machines that are communicating are safe. However, there are several ways that attackers
can go undetected. When designing firewall rules in order to ensure that the only traffic that
is acceptable are those that are safe, there are several things to keep in mind. For one, there
needs to be some fundamental information regarding the communication methods of existing
traffic. Whether this be through IP addresses, port numbers, or packet analysis, there needs
to be a tell-tale sign that the traffic is malicious.

Arco IT GmbH is a cybersecurity company located in Zurich Switzerland specializing in cy-
bersecurity analysis and advice that can be implemented into business strategies [3]. Through
a user interface that generates firewall rules, the Arco IT GmbH team hopes to increase data
privacy in the workplace for all users.
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Figure 1: Displays the user interface layout which has several layers of functionality. Namely,
the generation of semi-autonomous firewall rules that utilize the other tabs of data manipu-
lation.

When designing firewall rules, Arco IT GmbH needed a way to manipulate flow data, asset
inventory, IP ranges, and applications alongside autonomously generated firewall rules. This
was to be done through a user interface that gives the user the ability to modify several forms
of data in order to train a generative adversarial network that would then generate firewall
rules that can be implemented into the system.

Generative adversarial networks function on the premise of two conflicting networks, a gen-
erator, and a discriminator. Typically this method is most effective for generating images
where the generator consistently creates fake data that the discriminator needs to differen-
tiate between real and fake. However, our team was able to bend the functionality of this
generative adversarial network to function with flow data that concerns network traffic, in
order to train a model that would eventually generate firewall rules.
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1 Introduction

Computer networks are responsible for a massive amount of communications in today’s so-
cieties. Whether it may be used for machines in a factory to transfer data from one system
to another or if it used for keeping connected with family members, computer networks are
everywhere. Since computer networks play such a vital role in our lives, network attacks are
a huge risk and have costed companies not just money but data losses, while also compromis-
ing their security systems. In fact, from 2006 onward network attacks have consistently cost
companies around $8.64 million dollars on average. Therefore,in order to minimize these and
prevent attacks as much as possible firewalls are used. The purpose of a firewall is to detect
any anomaly behavior in the network and prevent risks by putting a halt to it before it has
an opportunity to impose a threat. However, optimizing such firewalls is difficult because
of various factors. Firstly because, there is always a constant change in networks. Hence,
protection in the form of the firewall also has to be updated with this and with this more
rules need to be added, while at the same time ensuring that another important rule needed
by another application or program is not deleted. Constant updating of rule sets also causes
rule sets to grow chaotic and therefore introduce unnecessary risks. Secondly an existing
firewall may stop offering protecting if threats change. For example if new malware is intro-
duced, it may not be detected by a firewall. Therefore, causing a new type of threat, risking
the security of the company possibly to a greater extent. Moreover another problem could
result from misconfigured firewalls. For example, if a company does not configure the firewall
accordingly for their network by leaving the settings on default, they will put themselves as
bad a risk as without a firewall. Accordingly, we want to focus on the automated creation of
firewall rules. Such a system will constantly learn from patterns and constantly create rules
for a network based on the net-flow data.

One of our key contributions is training an appropriate machine learning algorithm. What
makes this hard is that we only have normal network traffic, meaning we have a one-class
problem. One-class problems are difficult since it limits how you can train your model
without a second class of data [4]. Examples of one-class problems can be seen with anomaly
detection. Since the anomaly that could occur in the future is unknown, training a model to
look for these anomalies is very difficult. Different approaches in solving the one-class problem
exist such as strictly looking for outliers or creating an artificial class of data to supplement
the single class. The latter is what we will try to accomplish. By including a GUI that a
human can supplement information about the network that will aid the automated firewall
rule creation, we can improve on current existing technologies and help to protect important
networks from irrelevant traffic and malicious attacks.

Another key contribution was adding a human in the loop that would be able to maintain
the firewall rules through a GUI. Leaving a tool to be completely automated may seem great
but it can possess certain risks if they algorithm behind it creates a rule that can allow risks,
it can be harmful for a company. In order to prevent this we decided to make a GUI where
certain people from the company can keep a check on the rules. In addition to this they will
also have the option of accepting the rules that they seem fit for their network.
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2 Background

2.1 Software Engineering

2.1.1 Use Cases

Almost, if not all, software engineering approaches hold the client to the highest standard,
ensuring that their needs are met throughout the process of developing a user interface. En-
suring the client is satisfied can be done in several ways ranging from creating use-cases,
developing storyboards and generating mock-up scenarios that allow for further commu-
nication between the two parties. However, a successful developer must begin with well
thought-out use cases that describe what each function of the user interface will mean to
the client. In other words, use cases generally define the interactions between an actor and
a system in order to derive an end result. Some questions that need to be answered to ef-
fectively generate use cases are: What action yields the desired result? and Who are the
actors of each action? Through effectively generating these use-cases, the developer can find
several features that might not have strong importance in their final product, and by that
same token, find features that are of the utmost importance [5].

2.1.2 StoryBoards

Story-boards, on the other hand, are typically generated after the use-cases, and give the
developer a very rough idea as to what their deliverable will visually look like. For user in-
terfaces, this would mean sketching out what buttons, drop-downs, text-boxes, etc. would be
put in which location and deriving decisions for the logical flow of these interactive elements.
This allows the developer to progress with a purpose, using the story-board as a check-list
for their first draft. Eventually, through client interaction, comes improvements on that user
interface.

Now, a storyboard is typically hand-drawn and very roughly puts together the functioning
elements of the user interface that gives the programmer a road-map for getting started.
In our case, Arco IT GmbH generated figures on exactly what was desired, and that was
our starting point. As we progressed through the term, certain elements of the planned
user interface would be re-evaluated, determining whether or not the practicality of these
elements were what was envisioned. Despite constant changes in order to satisfy the vision
of the client, story-boarding is crucial in developing a user interface since it gives a sense of
direction and allows the programmer a vital starting point.
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Figure 2: Shows the initial storyboard generated by Arco IT GmbH on the official project
description. PriARily, it shows a tab system made up of “Devices”, “Classifications”, “Ap-
plications”, and “Rules”. Secondarily, it shows the body of the user interface with a table
that consists of “Source”, “Target”, “Protocol”, “Size”, “Time”, and “Decision”. Following
the logical blueprint of beginning at the top and progressing downward, there is an export
firewall rules button at the bottom that the user can click on to save the rules that have
been generated. This storyboard tells us that there ought to be some form of collector agent,
which collects information about data flows in a network, proceeds to upload it to the user
interface which will generate machine learning rules, export those rules, and have those rules
implemented within a firewall or router.

It is important to mention that finding a starting point can be extremely difficult when
there are many features to implement in a short period of time. However, generating use-
cases allowed us to determine what was needed, and what was just adding complexity to the
simplistic state of the project. Creating story-boards is what gave us a foundation to start
with, and a solid direction as to where to improve our user interface. Lastly, daily meetings is
what allowed us to continue progressing, making subtle improvements to the user interface,
machine learning, and business side of the project until it was exactly what was pictured by
our sponsors.

2.2 Software Requirements

The most important portion of the software engineering stage of any project is understanding
the requirements. Moreover, the developer should put their best foot forward in adhering to
these requirements closely to produce a successful project. In the case of this project, we were
given a project description that described in very fine detail what was desired and how it
could be obtained. There were several elements that we needed to grasp a firm understanding
of in order to make the final deliverable as successful as possible.
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2.2.1 Collector Agents

The first project component was the implementation of collector agents. These collector
agents are located within the network that is being analyzed and collect various forms of
information regarding data flows on that network. This can be in the form of PCAP files,
Netflow imports, or live captures. The collector agents will be used to upload the information
that they capture to the next stage of processing.

2.2.2 Transfer and Data Store

The second project component was a transfer and data store aspect which takes the infor-
mation collected by the collectors and converts it to a more general format. This general
format is one that can be understood by the user for further processing.

2.2.3 Inventory System

The third project component was an inventory system that would be used to store static
information regarding the devices on the network such as: name, device type, manufacturer,
host-name, etc. The static information that is stored in this system would then be used to
assign different groups for devices. In addition, the inventory system would store information
regarding IP ranges, sub-nets, and traffic type.

2.2.4 Front-End

The fourth project component is the user interface that incorporates all of the project com-
ponents listed above. The user interface should have the ability for users to manipulate
several aspects of non-static data such as inventory host-name configuration, the addition
and deletion of tags, ranges, applications and so on. More importantly, the user should have
ability to generate firewall rules through this user interface using the data that they have
uploaded and manipulated.

2.2.5 Analyzer and Firewall Connectors

The final project component was grouped into two: an analyzer and firewall connectors. The
analyzer, which took advantage of machine learning, evaluates the observed traffic flows and
recommends a set of firewall rules. The firewall connectors transform the internal creation
of these rules into vendor specific format that could then be implemented.

2.3 Software Delivery

There are several approaches one could take in generating a user interface of this scale. The
first decision that needs to be made is which programming language is going to be used,
which also needs full consideration for which tools are going to be needed as a byproduct.
Our team decided that the programming language of best choice would be Python since it is
the simplest language to use and there are several tools for data science, machine learning,
and graphical user interfaces. However, Python has several requirements in order to use these
tools, and while it might be convenient on a machine that already satisfies the requirements,
this would not be the situation that we face. The overarching goal of this project was to
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deliver a user interface that would require very little contribution from the Arco IT GmbH
team. For this reason alone, our team decided to use Docker for the software delivery.

2.3.1 Docker

Docker uses operating system level virtualization to deliver software in packages, otherwise
known as containers. Containers bundle their own software, libraries and configuration files
are being used by various companies currently. In fact, several companies such as Red Hat,
Canonical, Oracle, and Microsoft have embraced Docker [6]. There are several reasons why
massive companies such as the ones listed are beginning to incorporate docker more freely,
consisting of being more efficient than hypervisors, continuous integration, portability, and
ease of deployment.

A hypervisor is commonly referred to as a virtual machine monitor (VMM), which not only
creates, but runs virtual machines. What makes a hypervisor special is that it allows the
sharing of resources between multiple guests and a host. Hypervisors give the user the
ability to use processing power, memory, and even storage that aren’t available on their own
machine. There are two types of hypervisors: type 1 (“bare metal”) or type 2 (“hosted”).
Type 1 hypervisors act as an operating system, running directly on a host’s machine, whereas
a type 2 hypervisor runs on a layer of the host’s installed operating system [7].

Docker, on the other hand, runs on the host’s Linux kernel, which means that it has full
access to the underlying hardware, and essentially does whatever it pleases. Docker aims
at isolation as opposed to virtualization meaning the startup time for a Docker container
is in the range of milliseconds [8]. Since virtualization typically requires loading the entire
operating system in order to function, Docker containers are significantly more performance
driven compared to its resource intensive counterpart. Despite this, both of these entities
only have a few instances where they can be compared and debated. In our case, there was
no question that Docker was the correct choice. It satisfies all of Pythons requirements, and
it has full access to the hardware which in turn allows for a smooth, rapid delivery.

Since Docker automatically contains all of the packages that the creator desires to use for
the software being delivered, Docker was able to provide the most seamless experience. Our
idea was to utilize Jupyter [9] Notebooks while also utilizing a GitHub folder that hosted all
of the Python completed scripts leading up to this point. GitHub is a hosting platform that
allows several users to collaborate on projects from any location as long as they have access
to the internet [10]. Utilizing this platform allowed all members of our team to collaborate
on the coding portion of this project seamlessly. Overall, utilizing Docker would create an
environment that had all of the resources Arco IT GmbH needed in order to run our user
interface.

Docker has a feature that gives the user the ability to mount a volume onto the container,
which shows and updates a local directory from the configured Docker container. Any GitHub
pulls that were done take part on the machine used to configure the Docker container, and
since it would be updated within the directory, it would also take effect on the Docker con-
tainer. This also meant that any files from the local directory that needed to be incorporated
into the user interface could simply be imported as a library and run whenever an action on
the UI took place.
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Overall, Docker gave us the environment to build our user interface in a way that utilized very
little hardware, while still providing a smooth workflow for our team. By utilizing containers,
any and all packages that were needed for the UI would be installed on the container, meaning
when it was shared to the sponsors, they wouldn’t have to deal with installing anything on
their own machine.

Figure 3: Displays the application version of Docker alongside the user interface container
configuration. The two sections on the left hand side allow the user to view all created
images, as well as all created containers. Viewing images and containers can also be done
through command line, however, the application provides a much more graphically-oriented
approach. There are also options to launch the command line that the container is utilizing,
which is what was used to install all of the python requirements that were needed for the
user interface.

2.4 Computer Networks

Data communication is a new way of communication which is produced by the combination
of communication technology and computer science. In order to transmit information be-
tween the two stations, there must be a transmission channel. According to the different
transmission media, there are wired data communication and wireless data communication.
However, they all connect the data terminal with the computer through the transmission
channel, so that the data terminals in different places can share the software, hardware and
information resources [11].

A computer network or data network is a telecommunication network that allows computers
to exchange data. In computer networks, networked computing devices exchange data with
each other through data links. The connection between nodes is established by using wired
media or wireless media [12].

Computer network is the mixed interconnection of hardware and software, which is the
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common feature of computer networks. In today’s globalized world, it has become a major
tool for data communication. The computer network is designed to handle a certain amount
of traffic to ensure an acceptable level of network performance. If the network traffic exceeds
the network capacity, the performance will be degraded [13].

Network traffic analysis is the process of monitoring network availability and activity pat-
terns to identify potential threats, including security and operational issues [14]. Actualizing
a solution that monitors network traffic will provide you with the knowledge you need to op-
timize network performance, minimize attack surface, enhance security, and improve resource
management. However, it is not enough to know how to monitor network traffic. You also
need to consider the data sources of the network monitoring tool. The two most common
are flow data and packet data [15].

Network traffic analysis is critical. The system can detect network attacks at early stage
and ensure the security of the whole network [16]. The performance of modern networks is
affected by many factors, a minor change in the network will give unpredictable results [17].

2.4.1 IP Addresses

Every device on a network will have an IP address, a unique ID that allows network traffic
to be sent and received from. Although a unique ID, an IP address is completely random.
The standard IPv4 address contains 4 octets, each octet represents a piece of information
from left being granular, moving right becoming more fine. Often times a network will have
the same first 2 octets (Class B) and the third octet giving the subnet and the fourth octet
determining the specific device on the subnet [18].

Figure 4: Diagram the structure of an IP address, in this case, a Class C IP Address. Each
octet, 8 bits, being a value from 0 to 255. [19]

2.4.2 Ports

When an application communicates on a network, the application chooses a port to transfer
data on. An applications port may be chosen randomly selected based off a range and
availability but which port it sends data to is not random but pre-determined, these are
called well-known ports. Ports are in the range from 0 to 65535 (unsigned 16-bit integer)
where the first 1024 contain the well-known ports. Table 1 shows the most common of these
well-known ports for TCP and UDP [20].
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TCP UDP
FTP 20, 21 DNS 53
SSH 22 BooTPS/DHCP 67

Telnet 23 TFTP 69
SMTP 25 NTP 123
DNS 53 SNMP 161

HTTP 80
POP3 110

IMAP4 143
HTTPS 443

Table 1: Some of the most common of the well-known ports used for TCP and UDP connec-
tions. TCP is used more often than UDP, so there are more commonly used ports from the
0 to 1024 range used in TCP.[20]

As noted above, an application can communicate through network ports on either a TCP or
a UDP connection. TCP is the more commonly used of the two types of connections with the
biggest difference of having error checking on the data being transferred. Since TCP has an
addition task of confirming the data being transmitted back and forth hasn’t been corrupted,
TCP has more overhead than UDP does. TCP accomplishes this error checking by using
acknowledgement segments, sending a small bit of data that relays back to the sender if the
data was received. While TCP uses acknowledgements to confirm data integrity, UDP leaves
these checks up to the application [21].

2.4.3 Firewalls

Firewalls are a great tool in adding security to the network. A firewall works like a filter,
allowing some traffic in and blocking other traffic that it deems as unsafe or just traffic that
does not belong on the network. A firewall can be compared to an email spam filter. A
spam filter will determine, based on a set of rules, if the email trying to be sent to the user
is spam or not spam. If the spam filter deems the email as spam, it will move the email into
a spam folder. In the case of firewalls, if it deems the network traffic as unsafe or unfit, it
will deny that traffic on the network. Examples of traffic that a firewall may block could be
an external device is trying to connect to an internal device on the network which may be
trying to send malicious data to gain further access to the network, or could be an employee
using his personal cellphone on their company’s network taking up bandwidth that is slowing
down other processes trying to take place on the network.

2.5 Feature Engineering

Feature engineering is the task of creating a set of features from the data that is better suited
to be inputted into a machine learning model. For example, a machine learning model such
as an artificial neural network (ANN) with one feature, color, cannot take “red”, “yellow”,
or “blue” as an input since it expects numerical values. Instead, we can feature engineer the
data before inputting it into the model. For categorical data, we can use the most common
technique of using a one-hot vector. A one-hot vector is taking a one dimensional categorical
set and blowing it up into N dimensions where N is the number of different categories. For
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example:

Categorical One-hot Vector
Red < 1, 0, 0 >

Yellow < 0, 1, 0 >
Blue < 0, 0, 1 >

Table 2: Example of feature engineering where a categorical data set containing color is
turned into a one-hot vector. The first element in the vector represents if the color is red,
the second element represents if the color is yellow and the final element for blue.

Since the data is represented as a vector and still not a numerical value, we then would split
the one categorical feature into N features, so that each feature will be a 0 or 1. This can be
shown for our example from Table 2:

Categorical Red Yellow Blue
Red 1 0 0

Yellow 0 1 0
Blue 0 0 1

Table 3: Showing how one hot vectors are represented as individual features with each
dimension of the vector is its own feature.

Feature engineering is not only about creating usable features but also creating good features.
What makes a good feature? A good feature would be a feature that can create the most
variance in the data. This is important because the machine learning model will be able to
more accurately split the data into classes, if classifying, or creating a better regression. For
example, if we were trying to determine fitness of adults based off height and weight, we
could have height in units of feet and weight in units of pounds. Since height could contain
values from 5-7 feet and weight could contain values from 100-250 pounds, weight appears
to have more variance. This could be misleading since weight is just in a smaller unit. If we
normalize these values onto a mean of 0, we would be able to better see which dataset has
more variance.

2.6 Machine Learning

Machine learning says when dealing with a problem, that there is some function f that
computes input data X ⊂ RM×N to approximate some value of interest y. The goal of
machine learning focuses on getting as close to the true f by using a family of functions
y = f(X, β).

Finding β is an optimization problem, as the goal is to find a set of parameters for a given
function that will produce the most accurate output. Parameters can be of two types, model
parameters and hyperparameters. Model parameters will be “learned” during training, su-
pervised or unsupervised. Hyperparameters, on the other hand, are set by the creator and
gives instructions on the structure of the model and how it should calculate its model param-
eters [22]. While the user does configure these values for the model, there are many different
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ways to find the best set of hyperparameters, this is called hyperparamter optimization. An
example of a simple approach is grid search, which trains models on all different values for
hyperparameters by a given accuracy [23]. Others include gradient-based optimization [24],
bayesian optimization [25], and random search [26].

Machine learning problems come in many forms, the most common distinction can be ex-
plained by if a problem is supervised or unsupervised learning. Supervised learning is when
a model is trained on a dataset when y is known and unsupervised learning is when y is
unknown. There is an obvious downside of unsupervised learning since y is unknown, the
model cannot determine if it is correct or not [21].

2.6.1 Defining the Machine Learning Problem

If given a dataset, X, containing a list of flow data (source IP, source port, destination
IP, destination port, and connection type), classify each data point as either normal traffic
or non-normal traffic, y. Normal traffic would be as the name implies, normal, so we would
expect for example: common IP addresses, similar connections, etc. Non-normal traffic could
be malicious or non-malicious but either would be different from, doesn’t follow the same
distribution as, normal traffic.

2.6.2 A One Class Problem

A class in machine learning is a subset of data that all share the same characteristic. An
example would be classifying cookies as either chocolate-chip or oatmeal raisin. In this case,
we have two classes: chocolate-chip and oatmeal raisin, but we could have up to however
many classes given/needed.

In our dataset, we were only given a single class: normal traffic, y is always 1. However, we
have two classes defined: normal traffic and non-normal traffic. Since we were only given
normal traffic and not non-normal traffic, this turns our machine learning problem into a one
class problem. There are many difficulties when working with only one class, the largest of
these difficulties is training a model. Typically, when training a model that classifies, also
known as a classifier, there are two or more classes defined because if there is only one class
defined the classification would be trivial, always the first class.

This is problem is similar to unsupervised learning, since we don’t have a second class, it
effectively means we cannot supervise the model as it trains. However, since we are assuming
there is no non-normal traffic in our sample data, we will try to create a second class to use
supervised learning rather than using any unsupervised learning strategies.

2.6.3 Deep learning

In machine learning, there are many different models for many different purposes. A common
model is a neural network, with the most basic neural network being an artificial neural
network (ANN) [27]. An ANN consists of an input layer, hidden layers, and activation
functions. The input layer is the same dimension of the input data while the hidden layers
can grow larger and contain weights that can be updated during training. With these weights,
the neural network will calculate a value that goes through an activation function. A common
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activation function for hidden layers in an ANN is ReLU, linear for non-negative values and
0 for any negative values [28]. At the final layer, usually a different activation function is
used to get the data into its final form. A common activation function for the last layer is
softmax, a logistical function for higher dimensions (see equation below) [29].

ReLU: f(x) = max(0, x)

softmax: σ( #»z )i =
ezi∑K
j=1 e

zj

Figure 5: An example of a neural network with an input layer of six, two hidden layers with a
size of four and three respectively and finally an output layer of one. Each line in the network
will contain a weight that will be updated during training. At each node in the hidden layer
contains an activation function which normalizes the value calculated from the weights. [27]

Deep learning is pushing the boundaries of neural networks by using many layers, often times
using large layers. By increasing the size of the neural network, this adds a lot parameters
into the model. By having lots of parameters to work with, the model can train on large
amounts of data and fine tune all the weights to produce a very accurate result. While
naively thinking increasing the size of the neural network can produce more accurate results,
by having too large of a neural network can lead to problems [30]. If the size of the neural
network grows to a dimension greater than the true dimesion of f would certainly lead to
overfitting. Overfitting is when the model can fit itself to the input data as it would be able
to map each input to its correct output. An overfit model will be really accurate for the
training data but will most likely fail when tried on new data it has not seen before [31].
Increasing the size will also lead to more work for the creator since the increasing number of
hyperparameters that will have to be set and if the hyperparameters are not ideal or near
ideal, it can lead to poor results.
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2.6.4 Related Machine Learning Work

While we are taking a unique approach by pairing a machine learning model with user
inputted information to create firewall rules, our work overlaps previously done work in the
field. Since on of our goals in the project is to take a one-class problem and supplement
it with a second-class of data, we use generative adversarial networks to create partial flow
data. This has been attempted and done in different scopes such as simulating flow-based
network traffic [32]. Since the scope of this project is not trying to create realistic network
traffic but rather to create network traffic on a specific network, we had to take on our
own approach in creating a network that outputs the data required for our network. Since
networks will output a set of continuous values but instead we want a set of categorical values
that represent plant area, port, connection type, etc. we need a generator that will output
multi-categorical values. Previous work in this area has been done with using generative
adversarial networks to generate multi-categorical samples [33], we can use similar network
structures to produce similar results. While we will be using different strategies of creating
a second class of data, there has been previous success in anomaly detection with training a
model only on one-class [34]. A machine learning model was trained on an extremely large
dataset consisting of only one class and was able to correctly identify outliers from the rest
of the data as anomalies, correctly guessing the second class of data.

2.7 Industrial Engineering Application

In Industrial Engineering, we are concerned more about the operations of whole systems. In-
dustrial engineers often concern themselves with finding the effective ways to utilize resources
[35]. In the context of this project, we are focused on how various industrial components of
the current system communicate within the computer network. In particular, we analyzed
the network data using queuing theory, regression analysis, and correlation matrix. It can
provide important insight into the performance of real world systems. For example, the rela-
tionships between parameters such as bytes used, bit rate, number of devices, and duration
can be used as proxies to determine which manufacturing factors depend on each other. It
would be interesting to demonstrate if network parameters such as bytes used, bit rate, and
number of devices can be used to predict which components of the manufacturing system
depend on each other. Furthermore, there are clear patterns from the network data. For
example, there is a subset whose network type is miscellaneous, and repeats itself around
every 20s. To make our analysis precise, we chose to focus finding correlations between dif-
ferent manufacturing elements at different time shifts. For example, if machine Acid Plant
always activates 30 seconds before machine Blast Furnace then one might be able to conclude
that machine Blast Furnace depends on machine Acid Plant to finish before it can start its
processing.

2.7.1 Queuing Theory

Queuing is a phenomenon often encountered in daily life, examples of queuing include cus-
tomers buying goods in grocery stores, patients waiting in a hospital for service, and queuing
for toilets. Studying how queues fill and empty can lead to a deeper understanding of how
packets are transmitted among network nodes within the current system.

In our particular case, packets are queued into the memory buffers of network devices such
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as routers and switches. The packets in the queue are usually arranged in first-in, first-out
order, like a normal queue [36]. We do not have data that could directly show how these
packets queue. However, we can use the network data we do have to evaluate how well the
system performs based on an analysis parameters such as bytes used, bit rate, number of
devices, and duration.

Queuing theory is a branch of mathematical operations research which studies the randomness
of queuing phenomena in service systems. In computer networks, queuing theory are widely
used in manufacturing, transportation, inventory maintenance, and other resources sharing
service systems [37]. Using queuing theory, one can often determine the stability or traffic
intensity of the current queue by looking at arrival rate and service rate.

In our case, the data we received from our sponsor is extracted from network packets captured
by Wireshark [38]. The data describes the flow of information among different machines. Such
information includes IP Addresses, port numbers, bits rate, duration, packets, network type.
In our analysis, we mainly focused on packets, bytes used, number of IP addresses and time
related parameters. However, this analysis is limited because the physical conditions of the
network devices are unknown.

After analyzing the data we got from our sponsor, we distinguished that there is one center
hub that all information passes through. Therefore the network is best described by the
M/M/1 queue model in this context. M/M/1 queue model is a queue model where the
first M stands for arrivals following the Poisson process, the second M stands for service
rate following exponential distribution, and there is only one server [39]. Arrival rate is the
number of arrivals per unit of time, and service rate is the number of services provided per
unit of time. We denote the arrival rate as λ, and the service rate is µ. We can also define
the stability or traffic intensity as ρ and this can be used to describe the performance of the
current system

p =
λ

µ

We require that ρ < 1, ρ < 1 denote the system reaches a steady state. If ρ greater than
1,there would be an exploded queue length, which means the system is unstable [17]. We
would need to find out the bottlenecks of the current queue.

Figure 6: An Example of How M/M/1 Model Works with Arrival Rate λ and Service Rate
µ.
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In the queuing theory, when the service rate µ is less than the arrival rate λ, then ρ is high,
which leads to system instability. ρ greater than 1 indicates that the arrival rate exceeds the
service rate. Therefore, for a stable system, ρ is less than 1. When ρ is high, performance
degrades, which can lead to high latency and packet loss [17].

2.7.2 Regression Analysis

Network traffic is an important indicator of network operation, which reflects the running
state of the network. Network traffic characteristics is the premise of network design plan-
ning and network analysis. The research of network traffic prediction model has far-reaching
significance for better understanding the performance of network service, planning network
design, deciding network congestion control, applying to network security, detection of abnor-
mal network activities, and improving service quality [40]. Other than finding the potential
bottleneck of the system, we are also interested in research on if one parameter can be
predicted by another parameter. Multiple Linear Regression is a useful tool. It is a mathe-
matical technique which uses several independent variables to explain dependent variables.
Dependent variables are the parameters we want to predict, and independent variables are
the factors that might have an impact on the dependent variables [41].

The formula of Multiple Linear Regression is:

Y = a0 + a1X1 + a2X2 + ......+ anXn + e

where Y is the dependent variable, X1, X2, X3,......, Xn are independent variables, and a0,
a1, a2,......, an are constants which needed to be determined, and e is the residual error.

In our analysis, for example, we would let:

Y = Bytes Used

X1 = Number of Devices

X2 = Duration

In this example, we want to know if the number of devices and duration would have an
impact on the bytes being used, and the analysis was done based on captured flow data.

Additionally, multiple regression analysis involves correlation coefficient, coefficient of deter-
mination, and p-value.

Correlation coefficient, also called Pearson’s R (r), is used to measure how strong a relation-
ship is between two variables [42].

r =

∑
(xi − x)(yi − y)√∑

(xi − x)2
∑

(yi − y)2

21



, where xi is the values of x variables in the sample, x is the mean of the values of x variables
in the sample, yi is the values of y variables in the sample, and y is the mean of the values
of y variables in the sample.

The coefficient of determination, R2, is used to analyze how differences in one variable can
be explained by differences in a second variable.

The coefficient of determination can be thought of as a percentage. It gives an idea of how
many data points fall into the result of the line formed by the regression equation. The higher
the coefficient, the higher the percentage of points falls into the line, the better the fitting
of the given values [43]. P-value is the probability of obtaining a result that is at least as
extreme as the observation of hypothesis testing, assuming the null hypothesis is true [44].

In our analysis, we will use correlation coefficient and coefficient of determination, and p value
to determine how the estimated regression model fits. Pearson’s R can show us how strong
the relationship among number of users, duration, and bytes used. Also, R2 can indicate
what percentage of bytes used can be explained by number of users and duration. P value
can be used to determine if number of users and duration are significant parameters of the
bytes being used.

2.7.3 Correlation Matrices

A correlation matrix is a table showing the correlation coefficients between sets of parameters.
This table allows us to see which pairs have the highest relevance [45]. The matrix describes
the correlations among all possible pairs. It is a powerful tool for summarizing data sets and
visualizing potential patterns from the given data [36].

In our analysis, we focus on finding correlations between different manufacturing elements
at different time shifts. From the correlation matrices, we might find potential patterns
including, repeating the data itself and special ordering of the process.

3 Methodology

3.1 Fixing the One Class Problem

Although only given one class in the dataset, we still have two classes the data could be
classified as: normal traffic and non-normal traffic. Specifically, we were not given the non-
normal traffic in our sample data. This means the data still can be a second class, and we
can train a classifier to determine based on a traffic flow, if it is normal or non-normal traffic.
However, we will need to train the model on both classes and since we only have one class
in our sample data, we will need to create the second class, non-normal traffic.

Creating realistic non-normal traffic is highly complex so instead of trying to create realistic
non-normal traffic, we can create unrealistic non-normal traffic which will still be usable to
train the machine learning model. The goal for this second class isn’t to model real-world
malicious traffic but to supply a “good-enough” second class where the model can still learn
the distribution of the normal traffic.
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The most naive approach for a second class is to create completely random network traffic.
There are five values to randomly create: source IP, source port, destination IP, destination
port and connection type. For source IP and destination IP, we can take a random IP address
from the set of IP addresses in the sample data. For source port and destination port, we
can randomly select a port number using a Python library, Faker [46]. And for the final
value, connection type, we can randomly select from TCP or UDP, the two connection types
available. Another simple method for creating a second class is taking a sample from the real
traffic and modify one of the values to a different value. This way we have an almost real
sample that is only slightly different. This can simulate malicious tactics like IP spoofing,
where the user modifies their source IP address to an IP address that appears to be normal,
e.g. an internal computer on the network. While this method does create random network
flow data, it does not create believable network traffic, so we need to take a more advanced
approach to create more believable network traffic.

3.2 Generative Adversarial Networks

Currently, we have mentioned one type of machine learning model, classifiers. Classifiers are
an example of a discriminator, a machine learning model that is used for classification or
regression. Another type of model in machine learning is a generator, which tries to generate
new samples from the same distribution. A generative adversarial network (GAN) is a type
of generator that utilizes two neural networks, one that is a generator and the other is a
discriminator. The generative network will take in random noise and generate new samples.
The new samples are then evenly mixed with samples from the training set and are inputted
into the discriminator. The discriminator will try to classify the data as either real data points
or generated data points. The generator and discriminator will play a zero-sum game, as the
generator tries to produce better samples to “trick” the discriminator, and the discriminator
will try to “out-sARt” the generator by getting better at determining real versus generated
data. Below is the loss function for the GAN [47]:

Ex[log(D(x))] + Ez[log(1−D(G(z)))]

In the equation above, Ex represents the expected value over the real data and Ez represented
the expected value over the generated data, where D(x) is the discriminator’s probability the
data is real and G(x) is the generated data based off random noise from the generator. That
means D(G(x)) is the discriminator’s probability the generated data is real. Since we want
the probability that the generated data is not real, we take the inverse of this probability.
We then can use these values into the log-loss function to create our final loss function [47].

GANs as mentioned above, utilizes neural networks for the discriminator and the generator.
Typically, GANs are used with images, so a specific type of neural network is used, a con-
volutional neural networks (CNN). A CNN is similar to an ANN but includes convolutional
layers, hidden layers that filter and abstract the input, and pooling layers, layers that follow
convolutional layers that reduce the input to a small dimension. However, since the discrim-
inator is trying to compute the probability the data is real, the network uses convolutions
but since the generator is trying to create fake data, the network uses de-convolutions, the
inverse of convolutions. In the case of our data, we do not need to use CNNs and can use
ANNs instead since we are processing network traffic which only lies along a single dimension
unlike images which have a strong connection between their two dimensions.
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Our more advanced approach to create more believable network traffic will use a GAN that
will be trained on the sample data and use the generative model from the GAN to produce
new data points. These new data points will be similar to the sample data but still not be
in the same distribution. This is important since if the data was so similar that it would be
more similar to normal traffic, that we could not use it for non-normal traffic. We can say,
if the discriminator has a small loss, that the new data points are not similar to the sample
data, and if there is a large loss, that the new data points are similar to the sample data.

3.3 Featuring Engineering Network Flow Traffic

Network flow traffic contains five categorical values: two IP address, two port numbers, and
a connection type. While IP address and port numbers are numbers or a list of numbers,
these are still categorical values. For example, five star ratings are also categorical numbers
since the distance between a two star and three star rating is not necessarily the same from a
four star and five star rating. We will need to take our categorical data and feature engineer
them into numerical values with meaningful distances.

Luckily, we are given an IP inventory of the given sample dataset. This means we can map
IP addresses to more information such as plant area, device number, etc. If we map the IP
addresses to their plant area and then one-hot encode the values, we now have IP addresses
that are numerical values with meaningful distances. However, we may have usable features
for IP addresses, we have lost some information in the process. By converting the IP address
to a plant area, we lost the information stored in each octet. Using our resources from the
company, we know for the most part that IP addresses in the same plant area will have
similar IP addresses. So for our purposes, only a small amount of information is lost and if
needed we can create an addition feature that could be a one-hot vector of the IP addresses
subnet.

Port numbers while already numerical values, do not have a meaningful distance. For ex-
ample, port 443 is used for Hypertext Transfer Protocol Secure (HTTPS) and port 444 is
used for Simple Network Paging Protocol (SNPP) [48]. While port 443 and 444 are only a
distance of 1 away, these protocols are not similar. Port 80 is used for HTTP which is very
similar to HTTPS but is a distance of 363 away. As we are not given a list of commonly used
ports specific to the sample data, we can determine which are commonly used in the dataset
and look the ports up with a reference. For example, we could map both port 80 and port
443 to “HTTP” and then one-hot encode all of the mappings.

3.4 Firewall Rule Syntax

It is important to define what syntax we will be using for firewall rules. While there are many
different syntaxes for firewall rules, they all follow similar patterns. The syntax we chose to
follow was Triton. We can define a new rule as being:

“FROM <source> TO <destination> <ALLOW/DENY> <tcp/udp> PORT <port>”

We can define to source and destination as a list of tags using conditional operators: or and
and. A tag can be either plant area, subnet, or a user defined value. We can also give a list
of ports, for example, if we wanted to allow on HTTP/HTTPS, we could say “FROM any
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TO any ALLOW tcp PORT 80 and PORT 443”.

3.5 Selecting a Machine Learning Model

There are many machine learning models that classify data but our machine learning problems
has specific restrictions. We need a model that will be able to be converted into a list of
firewall rules. One model that jumps out with similarities are decision trees. Decision trees
are a tree where each node is a decision made on a feature that splits the data into two
groups. Looking back at our example determining fitness based off height and weight, one
node in the tree can have the decision if height is greater than 170cm move left else move
right. The decision tree could then look at the people less than 170cm and make another
decision if weight is greater than 70 kilos this person is unfit else this person is fit. This is
an example of a leaf node, a node where the decision tree classifies the group after the final
split. We can apply this to our dataset, a possible decision the tree can make is if the traffic
tried to connect to port 80 or not. We can then use this decision in our rule, interpreting it
as allowing network traffic if port 80 is being used. By starting at the root node and going
down every path to a leaf node, we can create discrete firewall rules directly from the machine
learning model.

While a decision tree can be converted into firewall rules, is this the best model to use? Well,
we can take a look at one of the short comings of using a decision tree to create firewalls. If
we go down each path in the decision tree and create a firewall rule, the root node will be
present in every rule. Is this a bad thing? Well, we know that the decision tree will try to
create the best tree it can based on the training and testing set, the root node should be a
feature with one of the highest variances but we may not want all of our rules to be based off
that feature. To avoid our rules being over-fit on one decision, we can create multiple decision
trees and examine the different set of rules produced. Creating multiple decision trees is a
form of ensemble learning and is called a random forest. However, since our ensemble step is
after converting the trees into firewall rules, we cannot use the same ensemble methods for a
typical random forest. We will have to do our own method of taking multiple sets of firewall
rules and selecting which rules we want to use and which rules we will throw out.

3.6 Evaluating the Machine Learning Model

After we have our machine learning model selected, we have to evaluate how well the model
does. While there are many ways to determine how successful a machine learning model is,
we will focus on cross-validation. Cross-validation is when a portion of the training dataset
is left out to be used to evaluate the accuracy of the model after it has been trained on the
remaining training dataset. This process can either be done once or “K” number of times,
where “K” is the number of groups the training data can be split into. For example, if the
training dataset has 1000 samples, we can split that data into 10 groups of 100 samples.
Each group is used as the test set once while the 9 other groups are used for training. This
is called K-fold cross-validation, in our example we used 10-fold, each group of data being
one fold [49].

Another important aspect to evaluating the model is not only what percentage the model
is right but when it’s wrong, whether or not it’s a false-negative or a false-negative. In our
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case, a false-positive represents when the firewall blocks normal traffic and a false-negative is
when the firewall allows non-normal traffic. While blocking traffic that should be let through
is not ideal, it is not as dangerous as allowing traffic that should not be allowed. We should
also use an additional metric to evaluate our model then, rate of false-negatives. A better
model will then have a lower rate of false-negatives, allowing less potentially malicious traffic
on the network.

3.7 Developing the User Interface

After getting a very rough version of the machine learning algorithm functioning, it was time
to shift the attention over to the user interface. The user interface would provide Arco IT
GmbH with a place to import and modify flow data, the asset inventory, IP ranges, appli-
cations, and rules. The asset inventory, IP ranges, and applications would be necessary in
order to activate the machine learning generation, whereas the flow data and asset inventory
would be more-so of a visual cue for the user.

Developing this roadmap of features was extremely useful, but it was vital that the appro-
priate environment was configured with an end goal in mind. While some Python tools can
develop an eye-catching user interface, it might not be particularly easy for Arco IT GmbH
to install on their end. A more functional user interface is far more viable than one based
off of aesthetics since it ensures usage.

Figure 7: Shows the first stage of the User Interface. This stage only had a functioning
import button that would require running a Jupyter cell in order to show the table pictured.
The table produced was just the contents of the import file without data transformation.
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Figure 8: Shows the second stage of the User Interface. At this point, there was a functioning
tab system consisting of “Device Options”, “Classification Options”, “Application Options”,
and “Rule Options”. The device tab would allow the user the ability to import a CSV file in
the form of flow data and would prompt the user to select how many rows they would like to
see. There was another tab system that was generated after running a few cells which would
have the user click a “Generate” button that would then output the contents of the flow
data. This stage still didn’t have any data transformation. The classification, application,
and rule tab only had functionality for text boxes, which would have the user create their
own table of the corresponding information. For these tabs, much like the device tab, the
user would have to manually run cells in order to generate another tab system that would
contain a button labeled “add” that would allow them to add their entries into a new table
of a CSV file created in the mounted file volume.

Figure 9: Shows the third stage of the User Interface. This stage fixed several issues that
were present in stage two. For one, the user now had the ability to view all functionality
within two tab system as opposed to several. In addition, the tab structure was revamped
to target the functionality that was desired from Arco IT GmbH. The tabs were renamed
to “Flow Data”, “Asset Inventory”, “Range Options”, :Application Options”, and “Rule
Options”. The flow data tab now allowed the user to “Find Unknown IP Addresses”, and
view the generated data from button presses in corresponding output areas.
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Figure 10: Shows the fourth stage of the User Interface. This was the final stage of the
user interface presented to Arco IT GmbH. The user interface now made full use of observe
statements and callbacks in order to present all functionality to the user after running a
singular cell. In addition, there was another tab restructuring which added a modification
tab. This tab would be used for anything that is related to either adding, removing, or
editing data, whether that be for the flow data, the asset inventory, ranges, or applications.
Finally, the final stage contained the machine learning portion of the project that generated
firewall rules semi-autonomously using the data that was uploaded, entered, and modified
from the previous tabs. Moreover, there was a flow simulator added to the rule tab which
had the user enter in a source IP address and port and a destination IP address and port
in order to use the machine learning generated rules to determine whether or not that flow
would be allowed or denied.

While the very first stage of the user interface had practically no user interaction, it provided
the foundation for the interaction that was to be had. It gave our team the starting point
that we needed in order to arrive at the later stages. The second stage shows a significantly
improved interface that now give the user space to enter data, click buttons, and change
tabs. The third stage has a design change that was recommended by Arco IT GmbH after
seeing the second stage of the user interface. As mentioned above, all storyboards are apt
to change, and despite the fact that Arco IT GmbH designed the storyboard that we used
for a structure, design implementations are constantly changing. In this stage, instead of the
user having a device, classification, application, and rule tab... there is a flow data, asset
inventory, range, application, and rule tab.

This change was made after a consensus that the user needed to have the ability to modify the
asset inventory in addition to the flow data. Moreover, the manipulation of this data must
be labeled accurately and visible for the user to navigate with confidence. The classification
tab that is seen in stage two was converted into the range tab that is seen in stage three,
with the application and rule tab remaining the same. The fourth stage kept the same tab
system with accordions throughout that allowed the user to expand based on the type of
functionality they were searching for, with the same tab categories as that in stage three. In
addition to those changes, there was also the addition of the modifications tab which grouped
together all of the accordion-style drop-downs within the tab system that allowed the user
to modify sections of data. This change was reversed as it logistically made more sense to
keep the corresponding modification functions within the respective tabs. For example, if
the user needed to remove rows from the flow data, they wouldn’t have to navigate to the
modifications tab, and instead they would have the option to do so within the flow data tab.
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3.8 Jupyter Notebooks, IPywidgets, and JupyterLab

The user interface that was created for Arco IT GmbH was in the form of a Jupyter Notebook
that was primarily run through JupyterLab. Jupyter Notebooks is an open-source application
that can be used to share live sections of code, equations, visuals, or even text on a cell-by
cell basis. Figure 11 displays the layout of a Jupyter Notebook. In our case, the notebook
was configured with Python code that incorporated the use of IPywidgets, a python library
dedicated to giving Python code a user interface feel.

Figure 11: Demonstrates the cell-by-cell coding interface using IPywidgets to create a File
Upload Button.

By running the cell on the top portion of the figure, we get a physical file upload button
that will prompt the user to select a file. The attributes of the file upload will be stored
inside of a python dictionary which we could then invoke specific lines of code to retrieve the
contents. Instead of this code living in a traditional .py file, it lives inside of a .ipynb file
that represents the Jupyter Notebook.

IPywidgets is an extensive library that enables the programmer to functionally generate
interactive elements, custom styling, and a lengthy amount of layouts. With a series of built
in function calls used specifically for specific actions, our team was able to tailor a user
interface to the needs of our sponsor. The first function of importance is that of “observe”,
which we discovered late in the project. Early on, our configuration utilized IPywidgets in a
way that was useful for a demonstration version of a user interface on Jupyter Notebook form.
For example, we would generate a file upload button, run some cells in between, then have
them select how many rows they would like to see from that file, run more cells after that, and
finally get an output demonstrating the results. While that might have been useful for giving
a sequential walkthrough of code, the sponsor didn’t need that element. The “observe” call
was extremely useful in observing each interactive element and performing what we needed
it to do when that element was used.
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To further put this into perspective, when a user would use an IPywidget slider to select
how many rows they would like to view, on a file that they previously uploaded, they would
automatically have the result placed in a certain location that would be predefined by us.
This is when output areas proved mightily helpful. Another function of IPywidgets is the
ability to configure output areas. This is pictured in Figure 12 in addition to the tab system
and accordion layout.

Figure 12: Demonstrates a tab system layout, with an accordion system that contains an
output area to highlight the results of the asset inventory.

The tab system gives the user the ability to click between separate sections, each of which
will have differing accordions. The “tabs” shown in Figure 12 represent the key sections
of functionality that the user might need. The first tab contains functionality related to
Flow Data, the second has Asset Inventory, third being IP Ranges, and so on. Within the
second tab, we have an accordion system that can be dropped down depending on the desired
action. In this case, we are interested in the output area. When the user first clicks on the
tab, the first portion of the accordion system will be dropped down, however, for the sake
of demonstration, the output area is open. When the user moves the slider to select how
many rows they would like to see, the observe statement automatically waits for the final
value, then uses the output area to output the results. This combination of tabs, accordions,
observe statements, and output areas is what truly created the user interface originally in
mind.

On the other hand, JupyterLab grants the programmer a user interface for managing all
of the files that might be needed in order to create their user interface. In the previous
section, we described how we used Docker in order to mount a volume to the container in
order to, very fluidly, work on the project. JupyterLab gives a very neat space to manage
these files, open a command line, and manipulate cells. This just scrapes the surface on the
functionality of JupyterLab as there are numerous sections of functionality that are helpful
in developing a smooth, and functional user interface using Jupyter Notebooks. One vital
piece of JupyterLab is the ability to directly manipulate a terminal in order to install all of
the Python packages necessary onto our Docker container. The terminal functionality also
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allows the ability to view the file structure that is currently being used, and grants practically
all other functionality that a normal terminal would allow for.

3.9 Dashboard and Callbacks

Despite JupyterLab being relatively easy to work with in order to create the UI from a de-
veloper’s point of view, an interface in the form of a Jupyter Notebook, executed in Jupyter
Lab looked very intimidating.The UI had many cells, which needed to be executed firstly in
order to get the Interface up and running.In order to avoid this and make life a little easy
on the user, we decided to employ Dashboards in order to display the UI as an interactive
application.Dashboards are open source frameworks that are very useful for building analyt-
ical web applications. The biggest pro is that, a dashboard executes all cells in a notebook
upon launch and displays them together in a format that is more interactive and application
like. There are various dashboard tools such as Dash, Voila,Jupyter Dashboards etc. We
experimented and researched each of these different dashboards, in order to determine which
of them was best suited for our needs. Despite initially finding failure with Dash and Voila
Dashboards, success came in the form of Jupyter Dashboards.In order to make this work we
had to install the Jupyter dashboard dependencies and select the Dashboard option inside of
the view tab of Jupyter notebooks. However using dashboards meant that some information
would not be updated when the user made desired changes. To ensure that these updated
changes were registered, the use of callbacks was implemented. A callback is a feature that
helps a certain display or piece of information update correctly whenever there is an update
to the information provided by the user. The way this works is by assigning a keyID to the
area where the information is input by the user. This keyID is then fed into the functions
that utilize the input. However, with IPython widgets, callbacks apart from observe could
not directly be integrated into the input. Therefore we resorted to the use button that would
complete the callback and update the information when clicked. The idea is that whenever
the user has an updated file or information they input they click the callback ’Submit’ but-
ton, updating information just like a regular application.We also worked on condensing the
code by adding more callback events such as ′onclick

′ and observe to the sliders, buttons
and entry boxes.These ensured a smoother interface and also helped further cut down the
entirety of the code to two cells.
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Figure 13: The dashboard layout.

4 Results

4.1 Model Performance

The model’s performance is partly determined by what data is fed into the model during
training and testing. This is because our underlying machine learning problem is a one-class
problem. Since we are creating the second class of data, if the second class is so distinct from
the first class, the model’s accuracy would be near if not 100%. This can be counter-intuitive
then, we want a model with a high accuracy but we also want a second class that is really
close to the first class so that we have a robust model. We can look at our pipeline in two
parts, the second class generation and the model training. For determining the best second
class generation, we can select some values for the model’s hyperparameters that will be close
to optimal but just a starting point so we can test the accuracies of each different generation
strategy for the second class. We want to find the strategy that will produce accuracies that
aren’t too close to perfect but also not so low as say, 50%. After we test and select the best
second class generation strategy, we can then perform some hyperparameter optimization to
find the model with the best hyperparameters.

4.1.1 Second Class Generation

Our most naive approach was to create purely random flow data partially based off the
sample flow data. We expect this not to give a decision tree a difficult time determining
normal traffic from the random traffic but it was a good starting point.
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Trial Accuracy
1 98.3%
2 98.9%
3 98.8%
4 98.8%
5 98.5%

Avg. 98.7%

Table 4: Five trials from training and testing a decision tree with a max of 50 leaf nodes
on a 80% training 20% testing dataset. The first class is 1874 samples of normal traffic and
the second class is 1874 samples of randomly generated flow data partially based off normal
traffic.

All of the accuracies for our first approach are with 98% and 99%. Since we are not looking
at which approach generates the highest or lowest accuracies, we need to carefully examine
the accuracies. This approach yields a high and consistent accuracy, we can interpret this
as the model easily determining the first class from the second class with a few errors. With
our goal in mind, we want to choose a second class that will create an accurate and robust
model. From these results, we only have accuracy but lack robustness. While this approach
did not create a very good second class, we can take some inspiration from it and create a
better second class using a similar strategy. Instead of each piece of data in the flow being
purely random, we can take a random sample from the existing flow data and modify one
of the columns to a different value. This combines the randomness from the naive approach
to create new and different data but fixes the problem of the naive approach by now trying
to more closely model the existing sample data. We could see this second class being more
accurate to the real world non-normal traffic a firewall may encounter. A hacker may spoof
their IP address but try to talk to a different device on the network that usually would
never communicate data to each other, this new way will help create a more robust model
by reinforcing these similar samples that are only slightly different.

Trial Accuracy
1 65.5%
2 56.1%
3 55.6%
4 51.7%
5 48.4%

Avg. 55.5%

Table 5: Five trials from training and testing a decision tree with a max of 50 leaf nodes on
a 80% training 20% testing dataset. The first class is 1874 samples of normal traffic and the
second class is 1874 samples of randomly altered normal traffic.

The accuracy of the decision trees trained with our new approach does produce bad accu-
racies, these accuracies show the robustness the new second class forces the model to have.
The model now has to look at a lot more features since we have randomly altered them.
While adding a lot of robustness, it creates a model that is looking at every different value
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for each feature which can lead to overfitting. While this approach is better than the first
approach, we believe we can create an even better system to produce the second class of
data. This is where GAN’s come to the advantage, if we can train a GAN on a large amount
of existing network traffic, it can learn this data and create new samples that model the
existing samples. Since we do not have a very large dataset, this approach will be difficult
but believe it will greatly aid training robust decision trees.

Trial Accuracy
1 100.0%
2 100.0%
3 100.0%
4 100.0%
5 100.0%

Avg. 100.0%

Table 6: Five trials from training and testing a decision tree with a max of 50 leaf nodes on
a 80% training 20% testing dataset. The first class is 1874 samples of normal traffic and the
second class is 1874 samples of generated flow data from a GAN trained on 1874 samples of
normal traffic.

As we can see, using a GAN to create the second class can lead to a non-robust model in
our case. However, looking into our sample dataset, it is much too small to properly train a
GAN. We can keep our GAN as part of our second class but supplement them with a portion
of the randomly altered data to reap the benefits of a robust and accurate model but also
in the future use more sample data to better train a GAN to improve our robustness to an
even greater extent. By having a combination of datasets in our second class, we can more
accurately model real life circumstances since there is a large variety of non-normal traffic
that can take place on a network.

Trial Accuracy
1 93.3%
2 92.5%
3 94.3%
4 92.4%
5 93.9%

Avg. 93.3%

Table 7: Five trials from training and testing a decision tree with a max of 50 leaf nodes on
a 80% training 20% testing dataset. The first class is 1874 samples of normal traffic and the
second class is 187 samples of randomly altered normal traffic and 1687 samples of generated
flow data from a GAN trained on 1874 samples of normal traffic.

Now having a solid second class, we can take these over and fine tune our machine learning
model’s hyperparameters by looking more closely into our accuracies.
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4.1.2 Model Accuracy

Now that we have our strategy for creating our second class, we can start to optimize the
hyperparameters of the model. The two hyperparameters to optimize are the maximum
number of leaf nodes, and the biases of each class. By limiting the number of leaf nodes, we
can reduce the number of firewall rules created. We want to find the right balance between
lowering the number of firewall rules while maintaining a high accuracy. Since we aren’t
only looking at the accuracy of the model but also the false-negative rate, we can adjust the
bias of the second class so that there is a larger penalty when getting a false-negative during
training.

Figure 14: Accuracies of decision trees with a maximum number of leaf nodes from 2 to 50
averaged over 50 trials. Accuracies are further broken down by the bias for class 2 to lower
the false-negative rate, allowing non-normal traffic through. False-negative rate decreases as
the bias increases and accuracy increases as leaf nodes.

In figure 14, the accuracy increases as the number of leaf nodes increases with all three
different bias values for the second class. While the accuracy slightly lowers with a higher
bias value, in all cases the accuracies flatten out around 25 leaf nodes. This would be a
good value to max the number of leaf nodes at to limit the number of rules the model
will be converted to. The false-negative rate decreases as the bias for the second class
increases. While we could test even greater biases for the second class, the accuracy decreases
so we should limit how high the bias is for class 2, for our case, 25 produces the best
results. One side-effect of increasing the number of leaf nodes is that it also increases the
number of false-negatives. This is most likely due to the increase number of leaf nodes that
resolve to the first class, an increase in first class leaf nodes can open up to more false-
negatives. However, the false-negative rate seems to flatten out as the number of leaf nodes
increase and does not increases any further which we can conclude that there is some stability
within bhttps://www.overleaf.com/project/605e29745348eb6f1ccc6178alancing between our
two metrics, accuracy and false-negative rate.
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5 Industrial Engineering Application

5.1 Methods

The goal of this portion is analyzing the performance of the current computer network that
the various industrial components use to communicate. The performance of the current
network can be impacted by many other factors which can result in numerous changes that
make the network traffic unpredictable [17]. Analyzing network traffic is necessary to identify
faults, errors, and may help to resolve future problems. In the context of this project, we
are focused on how various industrial components of the current system communicate within
the computer network. The objectives we identified to reach our goal were determining
the performance of the current system, determining the predictability of one parameter by
another parameter, and determining the correlation between shifted data sets.

5.1.1 Determining the performance of the current network

To determine the performance of the current network, we use queuing theory to analyze
the flow data we are given. A flow is defined as a sequence of packets carrying information
between two hosts [50]. We introduce three parameters that play important roles in the
model: Arrival Rate (AR), Service Rate (SR) and Traffic Intensity (ρ).

Arrival Rate Arrival rate is the rate that the packets arrive at the center hub from a
node within the current network. The arrival duration is the period of time over which we
observe packets arriving across distinct flows. The unit of arrival rate of packets captured
is the number of packets per second. In the following equation, n represents the number of
flows, and ai indicates the number of packets captured over the corresponding flow i.

AR =
Total number of packets captured

Arrival duration
=

∑n
i=1 ai

Arrival duration

Service Rate Service rate can be obtained after the service time is determined. Service
time is the time that the center hub takes to let packets pass through. Packet size is the
number of bytes of the packet, and bit rate is the number of bytes that are transmitted per
second. Service time is calculated by the division of packet size and bit rate for each flow. The
service rate can be determined by the inverse of mean service time. In the following equation,
n represents the number of flows, and bi indicates the service time for its corresponding flow
i.

Service T ime = bi =
Packet Size (bytes)

Bytes Rate (bytes/s)

SR =
1

Average service time
=

1∑n
i=1 bi
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Traffic Intensity The stability or traffic intensity is denoted as ρ, which can be used to
describe the performance of the current system. The number of arrivals per time period is
λ, which is the AR in our case. The number of customers being served per time period is µ,
which is the SR we defined.

ρ =
λ

µ
=
AR

SR

By comparing the results of the parameters mentioned above, we would have a general sense
of the performance of the current network. If AR < SR, then ρ < 1, denote the system
reaches a steady state. If AR ≥ SR, then ρ ≥ 1, denoting the system is unstable [17].

5.1.2 Determining the predictability of one parameter by another parameter

Network traffic is an important indicator of network operation, which reflects the running
state of the network. To determine whether one parameter is dependent on another parame-
ters, the concept of regression analysis can help us better understand the process. Regression
analysis is a way to determine the importance of one or more independent variables on an-
other dependent variable. There are two kind of variables. Dependent variables are the
parameters we want to predict, and independent variables are the parameters that might
have impact on the dependent variables [41].

The formula of Multiple Linear Regression is:

Y = a0 + a1X1 + a2X2 + ......+ anXn + e,

where Y is the dependent variable, X1, X2, X3, ..., Xn are independent variables, and a0,a1,a2,
...,an are some coefficients that need to be determined, and e is the residual error.

Initially, we need to determine what parameters are our dependent and independent variables
from the given data. To conduct a regression analysis, we used the built-in Excel tool called
Regression [51]. Thus, we can generate regression statistics including correlation coefficient,
coefficient of determination, and p-value to find out how well the estimated model fits the
data.

With the rapid development of network communication technology, the network begins to
carry more and more application services, which puts forward high requirements for network
quality of service, flow control and network management. Traffic analysis and prediction
is the basis of network management and performance analysis [40]. We want to know if
the number of devices connected and duration would have an impact on the bytes being
used, because this prediction can monitor networks to ensure good quality of service. In our
analysis, we calculated out sum of bytes used, sum of duration time and number of devices
connected every 100 seconds. The number of devices connected can be found counting the
unique IP addresses per time interval. Therefore, the regression statistics can be generated
for estimation.
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5.1.3 Determining the Correlation Between Shifted Data Set

Traffic analysis not only can predict the trend of traffic behavior, but also can be applied to
congestion control, quality of service and other fields [40]. To quantify the relevance degree
between random variables, correlation is often used. For example, if we are interested in the
relevance of the number of bytes used among the blast furnace, acid plant, and miscellaneous,
we can denote them as X1, X2, and X3 respectively, and look for correlations among them.

For computer networks, the correlation analysis is complicated by the fact that different
devices are activated at different times. Thus, we can denote the number of bytes used by
device i at time t as k(i,t). Our analysis is complicated by the fact that device i and device
j are not activated at the same time. Considering time intervals is a useful perspective.
Accordingly, we can denote the sum of bytes used by device i between time tb and tc as
totalbytes(i, tb, te).

totalbytes(i, tb, te) =
∑

tb<t<te

k(i,t)

For example, device X1 will use k(X1, t) bytes at time instant t and device X2 will use
k(X2, t2) bytes at time instant t2. Thus, we can think about the problem in terms of time
intervals. We can denote the sum of bytes used by device i within a time interval c as Yi,c.
Also, b is the beginning of the time interval c, and e is the end of the time interval c.

Yi,c =
∑
b<t<e

k(i,t)

In particular, if device X1 is active at times t1, t2, t3, ... then we should collect all activity
times that lay in the given time interval c1. Also, b1 is the beginning of the time interval c1,
and e1 is the end of the time interval c1.

YX1,c1 =
∑

b1<t<e1

k(X1,t)

YX1,(0,5) =
∑

0<t<5 k(X1,t) represents the sum of bytes used by device X1 from 0 to 5 seconds.
X1 uses ki,t bytes at time instant t. More specifically, focusing on the Blast Furnace, at time
instants t1, t2, t3, ... the Blast Furnace will use kX1,t1 , kX1,t2 , kX1,t3 to represent the bytes used
at corresponding time.

We are also interested in finding if any trends or patterns exists. Thus, we can shift the data
by time interval with duration d. We can denote the sum of bytes used by device i within a
time interval c, and shifted by time interval with duration d as Pi,c,d. Also, b is the beginning
of the time interval c, and e is the end of the time interval c.

Pi,c,d =
∑

b+d<t<e+d

k(i,t)
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In our case, PX1,(5,10),5 represents the sum of bytes used by device X1 from 5 to 10 seconds,
then shift the data set by a time interval which is 5 seconds.

PX1,(5,10),5 =
∑

10<t<15

k(X1,t)

The equation above expresses the sum of bytes used from 10 to 15 seconds by device X1.

Suppose for a given time interval of 5 seconds, we can generate a data set and denote it as
BF :

BF = {YX1,(0,5), YX1,(5,10), YX1,(10,15), ..., YX1,(895,900)}

Furthermore, with a given time interval of 5 seconds, and shifted time interval of 5 seconds,
we can also generate a shifted data set and denote it as BF5:

BF5 = {PX1,(0,5),5, PX1,(5,10),5, PX1,(10,15),5, ..., PX1,(895,900),5}

Therefore, we can generate series of data using different combinations of given time interval
c and shifted time interval with duration d. For each device, we will generate 4 series of
data sets. Thus we have 12 data sets in total. For example, we can generate a series of data
including, BF , BF5, BF10, BF15, AP , AP5, AP10, AP15, MS, MS5, MS10, and MS15.
The built-in Excel tool called Correlation [51] can be used to generate a correlation matrix. A
correlation matrix which would help us discover if there exists any patterns between different
data sets. Furthermore, the matrix can show us if one particular data set can be predicted
by another data set. Also, adding color to the correlation matrix would help us visualize the
data. The absolute value between 0.1 and 0.2 is weak relationship, and the absolute value
between 0.2 and 0.4 is moderate relationship. Furthermore, the absolute value is 0.4 or higher
would be considered as strong relationship. Yellow cells means the correlation between this
pair of the data set is weak, green cells means the correlation is moderate, and blue cells
means the correlation is strong.

5.2 Results

The goal of this portion is analyzing the performance of the current computer network that
the various industrial components use to communicate. The performance of the current
network can be impacted by many other factors that make the network traffic unpredictable
[17]. Analyzing network traffic is necessary to identify faults, errors, and may help to resolve
future problems. In the context of this project, we are focused on how various industrial
components of the current system communicate within the computer network. The objectives
we identified to reach our goal were determining the performance of the current system,
determining the predictability of one parameter by another parameter, and determining the
correlation between shifted data sets.

In the following sections we describe the resulting data that we collected to achieve these
objectives and our goal.
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5.2.1 Determining the performance of the current system

To determine the performance of the current system, use queuing theory to analyze the data
traffic we are given. We can determine the performance of current network by calculating
Arrival Rate (AR), Service Rate (SR), and Traffic Intensity (ρ).

Arrival Rate Arrival rate is the rate that the packets arrive at the center hub from a node
within the current network. The arrival duration is the period of time over which we observe
packets arriving across distinct flows. The unit of arrival rate of packets captured was set
to number of packets per second. To make our calculations concrete, we include a specific
example to show how these values are calculated. In this case, we will use the particular
example which all packets pass through the center hub. Thus, for this case, these values are:

Total number of packets captured =
n∑

i=1

ai =
2169∑
i=1

ai = 170, 030,

where n represents the number of flows, and ai indicates the packets captured in the corre-
sponding flow i. Also, the number of flows can be found from the given data.

The total arrival time used can be found directly from the given data:

Total arrival time used = 902s

AR =
Total number of packets captured

Total arrival time used
=

170, 030

902
= 158.61

Service Rate Service rate can be obtained after the service time is determined. In this
case, service time is the time that the hub takes to let the packets pass through and can be
computed using the packet size, which is the number of bytes in the packet, and bit rate,
which is the number of bytes that are transmitted per second. Service time is calculated by
the division of packet size and bit rate for each flow. The service rate can be determined by
the inverse of mean service time.

Service T ime = bi =
Packet Size (bytes)

Bytes Rate (bytes/s)

SR =
1

Average service time
=

1∑n
i=1 bi

= 198.62,

where n represents the number of flows, and bi indicates the corresponding service time for
flow i.
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Traffic Intensity We define the stability or traffic intensity as ρ and this can be used to
describe the performance of the current system. λ is the number of arrivals per time period,
which is AR in our case, and µ is the number of customer being served per time period,
which is the SR we defined above. So, we can write

ρ =
λ

µ
=
AR

SR
=

158.61

198.62
= 0.80.

From the calculation above, we know that ρ is 0.80, and SR is greater than AR. Therefore
the system is stable, and reached a steady state [17] in this particular case.

5.2.2 Determining the predictability of one parameter by another parameter

The network traffic prediction is based on the past traffic data, and the future traffic state is
predicted by establishing the appropriate mathematical model. Therefore, it is very impor-
tant to understand the characteristics of network traffic to improve the accuracy of prediction
and to analyze the essence of prediction.

The performance of the current network can be impacted by many other factors which can
result in numerous changes that make the network traffic unpredictable [17]. The network
prediction model proposed by Oluwadare et al. [17] can monitor the trend of network traffic
so as to reduce network congestion and paralysis. We want to know if the number of devices
and duration would have an impact on the bytes being used, whether this prediction can
assist on monitoring and planning network usage to ensure good quality of service.

For example, we may want to know how the number of devices connected and the duration
impact the number of bytes used.

Towards this end, we will run a linear regression with the number of bytes used Y as depen-
dent variable and the duration X1, and the number of devices connected X2, as independent
variables.

Before running our linear regression, every 100 seconds we calculated out the sum of bytes
used (Y ), the sum of duration (X1) and the number of devices connected (X2). The number
of devices connected (X2) can be found by counting the unique IP addresses.
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Time Interval Sum of Bytes Used Sum of Duration Number of Devices
0-100 35918478 18203.80314 64

101-200 845115 5129.15 55
201-300 62252 4667.15 45
301-400 26984 3755.24 35
401-500 642296 5079.89 40
501-600 71691 3867.54 59
601-700 20715608 4037.04 40
701-800 11528699 3761.36 42
801-900 50522 1934.01 45

Table 8: Summary of sum of bytes used, sum of duration time and number of users every
100s.

Now we can conduct a regression analysis using the data from Table 8. The built-in Excel
tool called Regression [51] can be used to generate regression statistics including correlation
coefficient, coefficient of determination, and p-value. The summary of the multiple regression
model statistics are presented in Table 9 and Table 10. X1 is the sum of duration and X2 is
the number of devices connected.

Model Coefficients Standard Error t Stat P-value
Intercept 7195431.24 16401958.97 0.44 0.68

X1 2517.14 807.34 3.12 0.02
X2 -286705.08 396274.83 -0.72 0.50

Table 9: Coefficients Table.

The estimated Y can be written as

Y = 7195431.235 + 2517.14114X1 − 286705.0812X2

The p-values can tell us whether X1 and X2 are statistical determinants of Y. At critical
value of 0.05, only X1 is an significant determinant of Y.

Model Summary Statistics
Pearson’s R 0.82

R Square 0.68
Adjusted R Square 0.57

Table 10: Model summary of regression analysis

Table 10 presents the summary of regression analysis. Pearson’s R is used to measure how
strong a relationship is. The value of R we obtained is 0.82, which indicates a positive weak
relationship. R2 is used to analyze how differences in dependent variables can be explained
by differences in independent variables. The results shows that the duration and the number
of devices connected can explain 67.72% of the difference in the sum of bytes used.

42



5.2.3 Determining the Correlation Between Shifted Data Set

Network traffic is an important indicator of network operation, which reflects the running
state of the network. The research of network traffic prediction model has far-reaching signifi-
cance for better understanding the performance of network service, planning network design,
deciding network congestion control, applying to network security, detection of abnormal
network activities, and improving service quality [40]. In our case, we are trying to under-
stand if there are any patterns, or predictions exists so as to reduce network congestion and
paralysis.

For computer networks, the correlation analysis is complicated by the fact that different
devices are activated at different times. Therefore, we need to think about this problem in
terms of time intervals. Furthermore, a correlation matrix which would help us discover if
there exists any patterns between different data sets. Furthermore, the matrix can show us
if one particular data set can be predicted by another data set.

Due to the inconsistency of data size of all groups, we only consider three groups, which are
Acid Plant, Blast Furnace, and Miscellaneous (see Figure 15). The following groups were
not included in our analysis because lack of data points, including Copper plant, EAF Dust
washing, Fume control, Other Pronc Device, Powerplant, Refinery, Sinter Plant, Slag Fumer.
The only determinant we consider is the sum of bytes used.

Figure 15: A bar graph showing the spread of data size in terms of their destination site.
There are 556 data points in Miscellaneous, 182 data points in Blast Furnace, and 81 data
points in Acid Plant.
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We are interested in the capacity of the current network because we want to ensure a good
level of service. The sum of bytes used is a indicator showing the network capacity. We can
denote the number of bytes used by device i at time t as k(i,t), and the sum of bytes used by
device i within a given time interval c as Yi,c. Also, b is the beginning of the time interval c,
and e is the end of the time interval c.

Yi,c =
∑
b<t<e

k(i,t)

We can denote the sum of bytes used by device i within a given time interval c, and shifted
by time interval with duration d as Pi,c,d. Also, b is the beginning of the time interval c, and
e is the end of the time interval c.

Pi,c,d =
∑

b+d<t<e+d

k(i,t)

We can generate series of data using different combinations of given time interval c and
shifted time interval with duration d using the equations above. For example, with a given
time interval of 2 seconds and a shifted time interval of 2s, we can generate data series for
device BF as:

BF = {YX1,(0,2), YX1,(2,4), YX1,(4,6), ..., YX1,(898,900)}

BF2 = {PX1,(0,2),2, PX1,(2,4),2, PX1,(4,6),2, ..., PX1,(898,900),2}

After generating 4 series of data for each device with a given time interval of 2 seconds and
a shifted time interval of 2 seconds, now we can generate the correlation matrix (Figure 16).

Figure 16: 2s shift correlation matrix for acid plant, blast furnace, and miscellaneous data.

In this figure, the absolute value between 0.1 and 0.2 is weak relationship, and the absolute
value between 0.2 and 0.4 is moderate relationship. Furthermore, the absolute value is 0.4 or
higher would be considered as strong relationship. Yellow cells means the correlation between
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this pair of the data set is weak, green cells means the correlation is moderate, and blue cells
means the correlation is strong.

The previous correlation matrix, which was shifted by 2 seconds has very week correlations.
Thus, we need to look at the correlation matrix which was shifted by 15 seconds. Using
the same equations mentioned above, we can generate 4 series of data for each device with
a given time interval of 15 seconds and a shifted time interval of 15 seconds, now we can
generate another correlation matrix.

Figure 17: 15s shift correlation matrix for acid plant, blast furnace, and miscellaneous data.

Comparing Figure 16 and Figure 17, we notice visually by the coloring that there are more
significant correlation pairs in the 15s correlation matrix. Furthermore, the reason why there
is a strong negative correlation between MS pairs is there is a break between each iteration
of data, which happened to be around 15s.

We are interested in the combination of a short given time interval and a long shifted time
interval. When the given time interval is short, less data points would be included when we
calculate the sum of bytes used. Using the same equations mentioned above, we can generate
4 series of data for each device with a given time interval of 2 seconds and a shifted time
interval of 30 seconds, which gives us another correlation matrix.

Figure 18: 30s Shift - 2s given time interval correlation matrix.

By comparing Figure 16, Figure 17 and Figure 18, we can notice visually by coloring that there
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are more significant correlation pairs if we make the shifted time longer, and the correlations
between MS pairs decreases as shorter the given time interval, and longer the shifted time.

From the given statistics, we can notice that the strong correlations between MS pairs are
strong. We can conclude that Miscellaneous data can be predicted by its own shifted data.
To ensure the accuracy of the statement, we can calculate out the p-value to check if the
correlations are significant.

Pairs P Value
MS-MS30 0.0035

MS30-MS60 0.0035
MS60-MS90 0.0035

Table 11: p-Value for the MS correlations pairs.

From Table 11, p-value for all the Miscellaneous data pair, including MS-MS30, MS30-MS60,
and MS60-MS90 are 0.0035, which is significant at 0.05 level. They have the same p-value,
because their correlations are the same. Thus, we can conclude that Miscellaneous data can
be predicted by its own shifted data.

We are interested in the correlations because we are interested in the dependency among the
data sets. For example, if the device blast furnace is highly correlated with the device acid
plant, the chance that when the device blast furnace breaks, the device acid plant breaks
together is high.

5.3 Conclusion

Computer networks are usually designed to handle a certain amount of traffic. Once the
fixed capacity is exceeded, it may result in a lower service quality. In our analysis, queuing
model, regression analysis, and correlation matrix are used to analyze the network traffic.
The queuing model is used to analyze the performance of the network. In addition, a multiple
regression model was developed to determine the important determinants of the number of
bytes used. The results show that the duration is the significant determinant of current
network traffic. The model can be used for monitoring and forecasting purposes. Also,
we identified Miscellaneous data can be predicted by its own shifted data using correlation
Matrix. The results can assist in planning the use and monitoring of computer networks to
ensure a good quality of service.

6 Conclusion

6.1 Key Points

Since the given data was non-diverse and the second class is generated, the machine learning
model will almost always try to learn the second class of data rather than learning the first
class of data. This is an important distinction because we want our model to learn the first
class of data since network traffic will primarily be the first class, normal traffic. The model
instead learns the artificial second class of data which will not be beneficial since our second
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class, non-normal traffic, does not represent the whole, all different types of non-normal
traffic. If the model learns this second class, it could confuse other non-normal traffic for the
first class, normal traffic, giving a false-positive. This is especially bad in terms of firewalls,
a firewall would rather give a false-negative, rejecting a network flow that is normal, rather
than a false-positive, allowing a network flow that is non-normal, and potentially malicious.

The rules generated from the decision tree appear to create rules that may typically not be
created by a human user but currently have a few vulnerabilities, by allowing a source or
destination from “any” or allowing all ports is too open for a firewall and could let in traffic
that could be malicious or just traffic that shouldn’t be on the network. While this is difficult
to determine whether this is a direct flaw in the machine learning model or just a lack of a
large and diverse dataset, the user should supplement the rules generated by the firewall or
use these rules as a suggestion to create new rules, i.e. the user could see a rule but it may
allow on all ports, the user can use the rest of the rule and modify to only allow on a specific
set of ports.

6.2 Future Work

If repeated, larger and more diverse network traffic flows would allow more analysis of hyper-
parameters in the machine learning model and could produce a more robust model that
represents the first class of data, normal traffic. Recommended datasets would include: a
large number of samples that contain a short capture of network traffic from different times
of the day, week, and month or a few samples that contain a large capture of network traffic
last a day to a few days. These larger datasets will capture a lot more samples and contain
a lot more diversity in the network traffic. One could imagine that a device on a network
only communicates to another device when an error occurs, which could only occur once a
week. If the capture does not contain any of these network flows when these two devices
communicate when an error occurs, the machine learning model could determine that this is
non-normal traffic and reject the network flows from these devices preventing the device to
communicate that there has been an error.

A further step that can be taken after the firewall rules are generated from the machine
learning model could be to check their strength. These checks could be as simple as: do
not allow any rules through that contain a “blank” section (“FROM any”, “TO any”, or
“PORT all”) or adding an extra accuracy check by checking it against a set of non-normal
traffic samples with a maximum error threshold. This would add an extra protection since
the firewall rules are purely computer generated and can create weird rules especially if
over-fitting occurs or if the user entered a tag incorrectly.
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A Software Delivery

Docker holds all of its containers inside of images, which can be saved into tar files. However,
our team needed to extract the container since that is what holds all of the packages necessary
in order to run the user interface. Docker doesn’t directly provide functionality for creating
a runnable container without converting it into an image first, which at that point can be
turned into a .tar file and shared. When the .tar file is loaded, it will create a Docker image
on Arco IT GmbH’s machine, based off of the container that was originally created. Since
saving a Docker image doesn’t include the volume that has all of the necessary files, that
volume needed to be shared as well. Our team needed to convert the desired volume into a
zipped folder that can be shared with relatively little size.

Arco IT GmbH uses teams primarily for their file sharing, so all components were uploaded
to their tenant for execution. The contents of the upload are as follows: the .tar file in the
form of a Docker image that holds all dependencies, a .zip file that will act as the volume
holding python scripts and Jupyter Notebooks, a Microsoft Word document with instructions
for configuring, and a Microsoft Word document for using the user interface. The official
documentation for downloading Docker, loading the Docker image, and running it with the
correct volume is shown below in Figure 19.

Figure 19: Demonstrates the directions to successfully run the user interface using Docker.

Further breaking down the first Docker statement under step three: The “load” command
creates the image so that it can be run in the next step. The second Docker statement under
step three consists of: The “run” command which runs the image, “rm” says to remove the
container every time we exit, “p” indicates the port that we would like to utilize, “-e” is used
to run Jupyter Lab, “-v” specifies the volume that we would like to mount to the container,
which in our case was our GitHub configured repository, the “:” that follows is the path
inside of the container that we would like to mount that volume to, and the final portion of
the statement specifies the name of the created image.
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B Sample Network Flow Data

Address A Port A Address B Port B Packets Bytes Rel Start Duration
10.11.1.31 60892 10.12.0.74 445 416 264930 479.924519 25.213583
10.11.1.31 60893 10.12.0.72 445 447 149971 479.929053 13.189887
10.11.1.31 60894 10.12.0.73 445 462 189861 479.937726 13.209826
10.11.1.31 60895 10.12.0.74 445 1 66 481.014597 0.0
10.11.1.31 60896 10.12.0.74 139 1 66 481.015527 0.0
10.11.1.79 2804 10.12.1.24 502 10 614 54.211439 0.042355
10.11.1.79 2805 10.12.1.24 502 10 613 54.235811 0.068309
10.11.1.79 2806 10.12.1.24 502 10 614 54.327464 0.039092
10.11.1.79 2807 10.12.1.24 502 10 613 54.35474 0.058421
10.11.1.79 2808 10.12.1.24 502 10 614 54.41895 0.047702
10.11.1.79 2809 10.12.1.24 502 10 614 59.227064 0.045256
10.11.1.79 2810 10.12.1.24 502 10 613 59.254572 0.087284

... ... ... ... ... ... ... ...
192.168.100.2 60375 91.190.218.52 80 3 194 879.360044 8.99951
192.168.100.2 60377 65.55.223.17 443 3 194 886.119864 9.00066
192.168.100.2 60378 65.55.223.17 80 3 194 887.730104 9.000373
192.168.100.2 60381 157.56.52.41 443 2 132 898.261471 2.970304
192.168.100.2 60383 157.55.130.155 443 2 132 899.291877 2.970637
192.168.100.2 60387 157.56.52.41 80 2 132 899.851871 3.000662
192.168.100.2 60388 111.221.77.162 443 1 66 900.302073 0.0
192.168.100.2 60389 157.55.130.155 80 1 66 900.881977 0.0
192.168.100.2 60390 157.55.235.153 443 1 66 901.342021 0.0
192.168.100.2 60391 157.55.56.161 443 1 66 901.342023 0.0
192.168.100.2 60392 157.55.130.146 443 1 66 901.342025 0.0
192.168.100.2 60393 111.221.77.162 80 1 66 901.913229 0.0
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C IP Inventory

LAN IP Address Plant Area Network Type Device
10.11.9.2 Zinc Plant iFIX Nodes $ Ethernet Switches PPPCZP6
10.11.9.14 Refinery iFIX Nodes $ Ethernet Switches PPPCRF4
10.11.9.15 Refinery PLCs $ Control Equipment RFMBPE1
10.11.9.16 Refinery iFIX Nodes $ Ethernet Switches PPPCRF6
10.11.9.28 Miscellaneous iFIX Nodes $ Ethernet Switches EGX100
10.11.9.35 Slag Fumer iFIX Nodes $ Ethernet Switches PPPCSF4
10.11.9.36 Slag Fumer iFIX Nodes $ Ethernet Switches PPPCSF12
10.11.9.37 Slag Fumer iFIX Nodes $ Ethernet Switches PPPCSF13
10.11.9.41 Refinery iFIX Nodes $ Ethernet Switches PP KBA3
10.11.9.43 Zinc Plant PLCs $ Control Equipment ZPMBPE1
10.11.9.45 Miscellaneous iFIX Nodes $ Ethernet Switches nan
10.11.9.47 Miscellaneous iFIX Nodes $ Ethernet Switches PP SMS

... ... ... ..
10.12.128.180 Sinter Plant iFIX Nodes $ Ethernet Switches SPSW1A/B
10.12.128.254 Other ProcN Devices iFIX Nodes $ Ethernet Switches PPPCRT1
10.12.129.21 Blast Furnace PLCs $ Control Equipment BFPLC1
10.12.129.22 Blast Furnace PLCs $ Control Equipment BFPLC2
10.12.129.41 Acid Plant PLCs $ Control Equipment APPLC1
10.12.129.42 Acid Plant PLCs $ Control Equipment APPLC2
10.12.129.161 Sinter Plant PLCs $ Control Equipment SPPLC1
10.12.129.162 Sinter Plant PLCs $ Control Equipment SPPLC2
10.13.1.182 Refinery RIO Network PMRCRP1
10.13.1.183 Refinery RIO Network PMRCRA1
10.13.1.221 EAF Dust Washing RIO Network EAFCRP1
10.13.1.222 EAF Dust Washing RIO Network EAFCRA1
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D Model Output

Figure 20: This is a visualization of one of the trees generated with a max leaf node count
of 10, this was done since a tree with a higher count while will most likely have a higher
accuracy and better rules it is too difficult to visualize. This tree was trained on a 50/50 split
of real traffic and artificially created traffic (90% GAN generated, 10% slightly modified real
traffic. Each node is labelled with the decision made, the Gini impurity value, the number of
samples, the value or the number of samples of each class, and the class the model classified
the node as (only important for leaf nodes). Since all the features being used are one-hot
encoded, and the decision tree is selecting a threshold, all of our thresholds will be 0.5 since
the value could either be a 0 or a 1. For example, the root node is labelled “IP Range Name
A NaN <= 0.5” which can translate to if the IP range name is NaN (or is undefined) go
right, else go left. Since there is a lot of user specified information like tags for sets of IP
addresses and tags for different port numbers, this data is using a small set of simulated
values so the model can have a difficult time splitting the “good” and “bad” traffic apart.
The accuracy at determining whether traffic is normal or non-normal is 93.73%.
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The decision tree from Figure 20 will be converted into these firewall rules:

FROM ((tag Plant Area = Zinc Plant OR tag Plant Area = Refinery OR tag Plant

Area = Miscellaneous OR tag Plant Area = Slag Fumer OR tag Plant Area =

Kilns/KDR OR tag Plant Area = Power Plant OR tag Plant Area = Other ProcN De-

vices OR tag Plant Area = Acid Plant OR tag Plant Area = Fume Control OR tag

Plant Area = Blast Furnace OR tag Plant Area = PETs Plant OR tag Plant Area =

Sinter Plant OR tag Plant Area = Spare Plant Area) AND tag IP Range Name = NaN)

TO ((tag Plant Area = Zinc Plant OR tag Plant Area = Refinery OR tag Plant Area

= Miscellaneous OR tag Plant Area = Slag Fumer OR tag Plant Area = Kilns/KDR

OR tag Plant Area = Copper Plant OR tag Plant Area = Power Plant OR tag Plant

Area = Acid Plant OR tag Plant Area = Fume Control OR tag Plant Area = Blast

Furnace OR tag Plant Area = PETs Plant OR tag Plant Area = Sinter Plant OR tag

Plant Area = EAF Dust Washing OR tag Plant Area = Spare Plant Area) AND tag IP

Range Name = Ethernet Bridge) ALLOW tcp (PORT 80 AND PORT 443)

Notice that only one rule is generated, this is because only one leaf node in the tree resolved to
the first class, normal traffic. Since the above example is a smaller decision tree, see below for a
different example from a decision tree with a max leaf node count of 50 instead of 10 that resulted
in an accuracy of 97.2%:
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FROM (tag Plant Area = Fume Control AND tag IP Range Name = Operator Work-
station) TO tag Plant Area = NaN ALLOW tcp PORT all
FROM ((tag Plant Area = Slag Fumer OR tag Plant Area = Kilns/KDR OR tag Plant
Area = Other ProcN Devices OR tag Plant Area = Fume Control OR tag Plant Area
= PETs Plant) AND tag IP Range Name = NaN) TO (tag Plant Area = Miscellaneous
OR tag Plant Area = PETs Plant) ALLOW tcp PORT all
FROM (tag Plant Area = NaN AND tag IP Range Name = NaN) TO tag Plant Area =
Blast Furnace ALLOW tcp PORT all
FROM (tag Plant Area = Refinery AND tag IP Range Name = NaN) TO tag Plant
Area = NaN ALLOW tcp PORT all
FROM (tag Plant Area = Blast Furnace AND tag IP Range Name = NaN) TO (tag
Plant Area = Miscellaneous OR tag Plant Area = Blast Furnace OR tag Plant Area =
PETs Plant) ALLOW tcp PORT all
FROM (tag Plant Area = Other ProcN Devices AND tag IP Range Name = NaN) TO
tag Plant Area = Refinery ALLOW tcp PORT all
FROM (tag Plant Area = Other ProcN Devices AND tag IP Range Name = NaN) TO
tag Plant Area = Fume Control ALLOW tcp PORT all
FROM (tag Plant Area = NaN AND tag IP Range Name = NaN) TO tag Plant Area =
Copper Plant ALLOW tcp PORT all
FROM (tag Plant Area = Other ProcN Devices AND tag IP Range Name = NaN) TO
tag Plant Area = Slag Fumer ALLOW tcp PORT all
FROM (tag Plant Area = Other ProcN Devices AND tag IP Range Name = NaN) TO
tag Plant Area = Acid Plant ALLOW tcp PORT all
FROM ((tag Plant Area = Refinery OR tag Plant Area = Slag Fumer OR tag Plant
Area = Kilns/KDR OR tag Plant Area = Power Plant OR tag Plant Area = Other
ProcN Devices OR tag Plant Area = Blast Furnace) AND tag IP Range Name = NaN)
TO tag Plant Area = EAF Dust Washing ALLOW tcp PORT all
FROM (tag Plant Area = Sinter Plant AND tag IP Range Name = NaN) TO tag Plant
Area = NaN ALLOW tcp PORT all
FROM (tag Plant Area = Power Plant AND tag IP Range Name = NaN) TO tag Plant
Area = Power Plant ALLOW tcp PORT all
FROM (tag Plant Area = Acid Plant AND tag IP Range Name = NaN) TO ((tag Plant
Area = Zinc Plant OR tag Plant Area = Refinery OR tag Plant Area = Miscellaneous
OR tag Plant Area = Slag Fumer OR tag Plant Area = Kilns/KDR OR tag Plant Area
= Copper Plant OR tag Plant Area = Power Plant OR tag Plant Area = Acid Plant
OR tag Plant Area = Fume Control OR tag Plant Area = Blast Furnace OR tag Plant
Area = PETs Plant OR tag Plant Area = EAF Dust Washing) AND tag IP Range
Name = Ethernet Bridge) ALLOW tcp PORT all
FROM (tag Plant Area = Other ProcN Devices AND tag IP Range Name = NaN) TO
(tag Plant Area = Sinter Plant AND tag IP Range Name = Ethernet Bridge) ALLOW
tcp PORT all

FROM (tag Plant Area = Copper Plant AND tag IP Range Name = NaN) TO (tag

Plant Area = NaN AND tag IP Range Name = Ethernet Bridge) ALLOW tcp (PORT

80 AND PORT 443)

One short coming from using decision trees, is it can create very long rules. The reason behind this,
is the binary nature. Since at each node, it will split the samples into feature X or not feature X,
because the firewall syntax we are using does not have a not-equals operator, we have to compare
it to all the other tags. If the tag being used has many options, the length of a rule can grow
extremely long.
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