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Abstract

We consider the question of the existence of d2 equiangular lines in d-dimensional complex space
Cd. In physics, such a set of equiangular lines is called a symmetric, informationally complete
positive operator valued measure (SIC-POVM or SIC). The question of existence of SIC-POVMs
has been studied for several decades now with very little progress. While numerical solutions have
been found in dimensions up to d = 121 and a few dozen exact solutions are known, the 1999
conjecture of Zauner that SIC-POVMs exist in dimension d for all integers d ≥ 2 is still open.

The purpose of this project is first to survey all known simple constructions of SIC-POVMs
and second to explore these solutions for additional symmetries. We focus on three main construc-
tions: the Weyl-Heisenberg construction; constructions using Hadamard matrices; and Hoggar’s
construction. In the Weyl-Heisenberg approach, a set of d2 unit vectors spanning our lines is found
as an orbit of the Weyl-Heisenberg matrix group. When a vector v ∈ Cd has the property that
it belongs to an orbit of size d2 with this equiangular property, we say that v is a fiducial vector.
We then explore fiducial vectors in dimensions 7 and 19 which have additional attractive number-
theoretic properties. Finally, we generate geometric configurations of the Majorana states of some
SIC-POVMs in dimensions 3 and 4. We then plot the Majorana vectors of those SIC-POVMs in
R3; these are then found to have special symmetry. In the process of generating the Majorana
states, two potentially new SIC-POVMs in dimension three have been found.
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Chapter 1

Introduction

Equiangular lines have been studied for over 65 years, and their construction remains “one of the
most challenging problems in algebraic combinatorics” [8] . Do there exist d2 equiangular lines,
the maximum possible, in all finite complex dimensions d? Zauner conjectured 15 years ago that
the answer is yes [14]. However, the problem still remains unsolved. This question has attracted
increased attention from the quantum physics community recently. In quantum theory, such a set
of d2 equiangular lines in d-dimensional complex space is equivalent to a symmetric informationally
complete positive-operator-valued measure (SIC-POVM), which is a special case of a generalized
measurement on a Hilbert space.

In quantum theory, a mixed quantum state is represented by a density matrix, which is a d by
d Hermitian matrix. For example, a 3 by 3 density matrix can be described as

ρ =

 a b1 + b2i c1 + c2i
b1 − b2i d e1 + e2i
c1 − c2i e1 − e2i f

 . (1.1)

We want to find out the minimum number of measurements required to determine the density
matrix. In fact, the real vector space of d by d Hermitian matrices has dimension d2. In the
example of dimension 3, the density matrix ρ has 9 real parameters. Therefore, to estimate a
density matrix we need d2 values, which implies that we need d2 projectors. SIC-POVMs provide a
good scheme of measurements for estimating the density matrix, and they have been shown to lead
to the minimum statistical errors in quantum tomography [11]. For physicists, it is very desirable
that SIC-POVMs exist in all finite complex dimensions.

The mathematical definition of a SIC-POVM is the following: let S = {v1, v2 · · · vd2} be a set
of d2 vectors in Cd which is said to be a SIC-POVM or a set of equiangular lines if it satisfies that

|〈vj , vk〉|2 =

{
1 , if j = k;
1
d+1 , if j 6= k.

for all vj , vk ∈ S, where 〈vj , vk〉 = v∗j vk denotes the Hermitian inner product and * denotes the
conjugate transpose.

Despite a number of exact solutions, as well as a longer list of numerical solutions, the problem
whether SIC-POVMs exist in every dimension remains open. The exact solutions, found by hand in
a few cases and by computer algebra software in the others, are known in the following dimensions:
d = 2-24, 28, 30, 31, 35, 37, 39, 43, 48. [9] The numerical solutions are known in all dimensions up to
and including d = 151, as well as a handful of other dimensions up to d = 323 [9, 10].
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Chapter 2

Weyl-Heisenberg Construction of
SIC-POVMs

Almost every known SIC-POVM has been constructed as an orbit of a simple family of matrix
groups called Weyl-Heisenberg groups. The Weyl-Heisenberg group is a discrete group first brought
into quantum mechanics by Weyl [12], and is defined as follows. For any dimension d, let ω = e2πi/d

be a primitive dth root of unity. Let {e0, e1, · · · ed−1} be an orthonormal basis for Cd. Then, we
construct the shift operator X and the phase operator Z as follows:

Xej = ej+1 Zej = ωjej

where the shift is modulo d: Xed−1 = e0. These two operators may also be represented as two
unitary matrices. For example, in dimension 3,

X =

0 0 1
1 0 0
0 1 0

 , Z =

1 0 0
0 ω 0
0 0 ω2

 .

We easily find that

XZX−1 =

0 0 1
1 0 0
0 1 0

1 0 0
0 ω 0
0 0 ω2

0 1 0
0 0 1
1 0 0

 = ω−1Z,

and therefore ZX = ωXZ for this example. In fact, these operators satisfy the Weyl commutation
relation, XrZt = ω−rtZtXr . The operators X and Z are very “close” to commuting except for an
additional phase term.

The Weyl-Heisenberg displacement operators in dimension d are defined by

Drt = −ωrt/2XrZt. (2.1)

The product of two displacement operators is another displacement operator with different phase:

DrtDsm = (−ωrt/2XrZt)(−ωsm/2XsZm)

= ω(rt/2+sm/2)XrZtXsZm

= ω(rt/2+sm/2)Xrω−stXsZtZm

= ω(rt/2+sm/2−st)Xr+sZt+m

= −ω−3st/2−rm/2Dr+s,t+m

7



where every sum is modulo d.

Therefore, by allowing the generators to be multiplied by phase factors, we can define a group,
known as the Weyl-Heisenberg group in dimension d. Notice in Cd, there are a total of d2 Weyl-
Heisenberg displacement operators. We call a vector φ a fiducial vector if the set {Drtφ}d−1r,t=0 is a
representation of vectors in a SIC-POVM. Zauner [14] conjectured that such fiducial vectors exist
in all finite complex dimensions. This conjecture is far from being proved but is well supported
by examples in small dimensions discussed in the introduction chapter. Some examples of fiducial
vectors will be further discussed later in Chapters 5 and 6.
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Chapter 3

Construction of Complex Equiangular
Lines from Hadamard Matrices

3.1 Complex Equiangular Lines From Hadamard Matrix

There are just a few known cases where researchers have generated SIC-POVMs without using
the Weyl-Heisenberg group. Jonathan Jedwab and Amy Wiebe found a simple construction of
complex equiangular lines using Hadamard matrices [7]. This construction method is simple and
easy to verify by hand, as compared to other constructions. However, this method only applies in
dimension 2, 3 and 8 and is not applicable in its current form for other dimensions. We shall now
present the construction.

An order d complex Hadamard matrix is a d by d matrix, all of whose entries are in C and are
of magnitude 1, for which

HH∗ = dId, (3.1)

where H∗ denotes the conjugate transpose of H. Observe that all row vectors of H are pairwise
orthogonal so Hadamard matrices are in one-to-one correspondence with ordered unitary bases. If,
additionally, the entries of H are all in {1,−1}, then H is called a real Hadamard matrix.

If H is a Hadamard matrix and we swap any two rows, then the resulting matrix is also
Hadamard. This works for columns as well. One may also check that multiplying any row or
column of a Hadamard matrix by a unit scalar preserves the Hadamard property. Two Hadamard
matrices are considered to be equivalent if we may obtain one from the other by permuting rows
and/or columns and possibly multiplying some rows or columns by phases of magnitude 1.

For convenience, we denote any row vector as [u1, u2, . . .] and denote any column vector as
(u1, u2, . . .) so that (u1, u2, . . .) = [u1, u2, . . .]

T .

Let H be an order d complex Hadamard matrix. Define hj as the jth row of H and let {hj}dj=1

denote the set of all rows. For a complex number v and 1 ≤ k ≤ d, let Hk(v) denotes the set of d
vectors in Cd obtained by scaling the kth entry of each hj by v. Thus, given v, we obtained d sets

H1(v), H2(v), . . . ,Hd(v) and we consider H(v) =
⋃d
k=1Hk(v).
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Examples 3.1.1. Let H be the following order 2 complex Hadamard matrix:

H =

[
1 i
1 −i

]
.

Then H(v) consists of the following 4 vectors:

[v, i], [v,−i] ∈ H1(v)

[1, vi], [1,−vi] ∈ H2(v).

For example, H(2) = {[2, i], [2,−i], [1, 2i], [1,−2i]}.

Notice that in the Weyl-Heisenberg construction, the elements of a SIC-POVM are represented
by unit column vectors. In the construction using the Hadamard matrix, we represent the elements
of a SIC-POVM as unnormalized row vectors.

3.2 Allowable Construction Parameters

In the set H(v), the inner product of any vector with itself is d− 1 + |v|2. Aside from these, there
are only three types of inner products that can arise between distinct vectors of H(v):

(i) the inner product of two distinct vectors within a set Hj(v);

(ii) the inner product of two vectors of distinct sets Hj(v), Hk(v) which are derived from the same
row of H;

(iii) the inner product of two vectors of distinct sets Hj(v), Hk(v) which are derived from distinct
rows of H.

Then H(v) forms a set of d2 equiangular lines if and only if the equations obtained by equating
the magnitudes of every inner product of Type (i), (ii) and (iii) have a solution. And H(v) also
forms a SIC-POVM if each vector in H(v) is normalized. For example, in the set H(2) constructed
above, the vectors all have length

√
5 with Type (i),(ii), (iii) inner products equal to ±3, 4 and 0,

respectively. This example provided is neither a set of equiangular lines nor a SIC-POVM.

Lemma 3.2.1. Let v = a+ib for a, b ∈ R. For all d, every inner product of Type (i) has magnitude
|a2 + b2 − 1| and every inner product of Type (ii) has magnitude |2a+ d− 2|.

Proof. Consider any two row vectors from Hd:

hj = [hj1, hj2, ..., hjd],

hk = [hk1, hk2, ..., hkd],

where hmn denotes the entry of H in mth row and nth column. Since all row vectors of Hd are
pairwise orthogonal, then 〈hj , hk〉 = 0 for all j, k ∈ {1, ..., d} and j 6= k. According to Equation
(3.1), 〈hj , hk〉 = d for j = k.
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For inner product of Type (i), consider any two distinct vectors Vjl, Vkl ∈ Hl(v) such that v is
multiplied by the lth coordinate of hj , hk (in this case, j 6= k):

Vjl = [hj1, hj2, ..vhjl., hjd],

Vkl = [hk1, hk2, ..vhkl., hkd].

Then the magnitude of the inner product of Vjl and Vkl is given by

|〈Vjl, Vkl〉| =

∣∣∣∣∣∣
 d∑
i=1,i 6=l

hjihki

+ vhjlvhjl

∣∣∣∣∣∣
=

∣∣∣∣∣
(

d∑
i=1

hjihki

)
+ (|v|2 − 1)hjlhjl

∣∣∣∣∣
=
∣∣〈hj , hk〉+ (|v|2 − 1)

∣∣
=
∣∣|v|2 − 1

∣∣
= |a2 + b2 − 1|.

For inner product of Type (ii), consider the corresponding vectors in Hl(v) and Hm(v) (m 6= l)
obtained from the same row hj :

Vjl = [hj1, hj2, ..vhjl...hjm, ..., hjd],

Vjm = [hj1, hj2, ..hjl...vhjm, ..., hjd].

The magnitude of the inner product between Vjl and Vjm is

|〈Vjl, Vjm〉| =

∣∣∣∣∣∣
 d∑
i=1,i 6=l,m

hjihji

+ vhjlhjl + hjmvhjm

∣∣∣∣∣∣
=

∣∣∣∣∣
(

d∑
i=1

hjihji

)
+ (v − 1)hjlhjl + (v − 1)hjmhjm

∣∣∣∣∣
= |〈hj , hj〉+ (v − 1) + (v − 1)|
= |d+ (v − 1) + (v − 1)|
= |2a+ d− 2|.

Proposition 3.2.2. Let H be an order 2 complex Hadamard matrix. Then H(v) is a set of 4
equiangular lines in C2 if and only if

v ∈
{

1/2(1±
√

3)(1 + i), 1/2(1±
√

3)(1− i),−1/2(1±
√

3)(1− i),−1/2(1±
√

3)(1− i)
}
.

Proof. Up to equivalence, the only order 2 complex Hadamard matrix is

H =

[
1 1
1 −1

]
. (3.2)
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Then it is easy to check by hand that all inner products of Type (iii) that occur in H(v) (where
v = a + bi, a, b ∈ R) have magnitude |v − v| = |2b| . Therefore by Lemma 3.2.1, H(v) is a set of
equiangular lines if and only if v = a+ ib satisfies the equations

|a2 + b2 − 1| = |2a| = |2b|. (3.3)

This can be done exactly when a ∈ {1/2(1±
√

3),−1/2(1±
√

3)} and b = ±a.

Proposition 3.2.3. Let H be an order 3 complex Hadamard matrix. Then H(v) is a set of 9
equiangular lines in C3 if and only if v ∈ {0,−2, 1±

√
3i}.

Proof. Claim: Let ω = e2πi/3, up to equivalence, the only order 3 complex Hadamard matrix is

H =

1 1 1
1 ω ω2

1 ω2 ω

 . (3.4)

Recall that for any order 3 Hadamard matrix, we can use two methods to get an equivalent
Hadamard matrix:

(i) multiplying any row or/and column by a unit scalar,

(ii) permuting any row or/and column.

Let M be any order 3 Hadamard matrix, and let mjk denotes the entry of M in jth row and
kth column. First we use (i) to make the entries of the first row and column to be all 1’s. Then we
obtained an Hadamard matrix M ′ that is equivalent to M .

M ′ =

1 1 1
1 m′22 m′23
1 m′32 m′33

 .
Since M ′ is also Hadamard, row 1 is orthogonal to row 2. Then we have 1 +m′22 +m′23 = 0. The
only solution of this equation is {m′22,m′23} = {ω, ω2} or {ω2, ω}. Similarly, {m′32,m′33} = {ω, ω2}
or {ω2, ω}. Furthermore, row 2 and row 3 cannot be the same since they are orthogonal to each
other, then M ′ = H or M ′ is equivalent to H by permuting row 2 and row 3. Thus, H is the only
order 3 complex Hadamard matrix up to equivalence.

Here are some useful properties of any primitive cube root of unity ω:

|ωj | = 1 ∀j =∈ Z, (3.5)

1 + ω + ω2 = 0, (3.6)

ω3 = 1, (3.7)

{ω, ω2} = {−1/2 + i
√

3/2,−1/2− i
√

3/2}, (3.8)

ω = ω2, (3.9)

where Equation (3.8) is determined by applying the Euler’s formula on ω = e2πi/3.
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All inner products of Type (iii) that occur in H(v) are derived from two different row vectors
of H, which have inner product 1 + ω + ω2 = 0. For any two vectors in H(v), we can verify that
their inner product takes the form ωn(v + vω + ω2) or ωn(v + ω + vω2) for some n ∈ {0, 1, 2}. If
v = a + ib with a, b ∈ R, these inner products have magnitude |a − 1 + b

√
3| and |a − 1 − b

√
3|,

respectively (the results come from directly substituting Equation (3.8) and v = a+ ib ). Therefore
by Lemma 3.2.1, H(v) is a set of 9 equiangular lines if and only if v satisfies the equations

|a2 + b2 − 1| = |2a+ 1| = |a− 1 + b
√

3| = |a− 1− b
√

3| (3.10)

This can be done exactly when (a, b) ∈ {(0, 0), (−2, 0), (1,±
√

3/2)}.

Theorem 3.2.4. Let d > 3 and let H be an order d complex Hadamard matrix. Then H(v) is a
set of d2 equiangular lines if and only if d = 8, where H is equivalent to a real Hadamard matrix
and v ∈ {−1± 2i}.

Proof. Let H = (hjk) be an order d complex Hadamard matrix. We consider two cases.
Case 1 : Suppose for every pair of distinct row vectors of H, all summands of the inner product of
the rows take values in a set {ξ,−ξ} for some ξ ∈ C (depending on the row pair) of magnitude 1.

H =



h11 h12, · · · h1k · · · h1d
h21 h22 · · · h2k · · · h2d

...
...

. . .
...

. . .
...

hj1 hj2 · · · hjk · · · hjd
...

...
. . .

...
. . .

...
hd1 hd2 · · · hdk · · · hdd


, (3.11)

We may divide each column of H by the first entry to get a new Hadamard matrix H ′ that is
equivalent to H:

H ′ =



1 1 · · · 1 · · · 1
h21
h11

h22
h12

· · · h2k
h1k

· · · h2d
h1d

...
...

. . .
...

. . .
...

hj1
h11

hj2
h12

· · ·
hjk
h1k

· · ·
hjd
h1d

...
...

. . .
...

. . .
...

hd1
h11

hd2
h12

· · · hdk
h1k

· · · hdd
h1d


. (3.12)

Suppose all summands of the inner product between row 1 and row j take values in a set {ξj ,−ξj}
for some ξj ∈ C of magnitude 1; i.e. hjk · h1k ∈ {ξj ,−ξj} for all k. Now we multiply row j by the
corresponding term ξ−1j so that every entry of H ′ (except for j = 1) is ±1

hjk
h1k
· 1

ξj
=
hjk · h1k
h1k · h1k

· 1

ξj
=
hjk · h1k

ξj
= ±1. (3.13)

Thus we obtain a real Hadamard matrix H ′′ that is also equivalent to H.
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Notice that for each row j 6= 1 in H ′′ , the number of 1’s and -1’s should be equal to d/2 so
that row j is orthogonal to the first row. Then for inner product of Type (iii), the inner product
would be either

(−1)j(v − v̄ + (d/2− 1)(1) + (d/2− 1)(−1) = (−1)j(v + v̄ − 2)

or
(−1)j(v + v̄ + (d/2− 2)(1) + (d/2)(−1) = (−1)j(v − v̄)

for some j ∈ {0, 1}.

For v = a+ ib with a, b ∈ R, these inner products have magnitude |2a− 2| or |2b| respectively,
and both magnitudes occur. Using Lemma 3.2.1, H(a + ib) is therefore a set of equiangular lines
if and only if we can solve the equations

|a2 + b2 − 1| = |2a+ d− 2| = |2a− 2| = |2b|. (3.14)

This can be done exactly when d = 8 and (a, b) = (−1,±2).

3.3 Solving The Equations

The solutions of all the systems of equations discussed earlier are obtained using the following
method.
For example, in Theorem 3.2.4, we need to solve

|a2 + b2 − 1| = |2a+ d− 2| = |2a− 2| = |2b|. (3.15)

Square both sides of each equation and turn it into a system of equations:

(a2 + b2 − 1)2 = (2a− 2)2,

(2a− 2)2 = 4b2,

(2a+ d− 2)2 = 4b2.

The solution of first two equations is a = −1, b = ±2 and a = 1, b = 0. Substituting the solutions
into the third equation, we get a = −1, b = ±2, d = 8, and a = 1, b = 0, d = 0. Since we require d to
be greater or equal to 3, the only solution of the system of equation is d = 8 and (a, b) = (−1,±2).
The solution of the other systems of equations are obtained in a similar way.
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Chapter 4

Hoggar’s Construction

Hoggar gave a construction of a SIC-POVM in dimension 8 in 1981 [5, 6] from the diameters of a
polytope in quaternionic space. The quaternions are the number system that extends the complex
numbers. Quaternions are generally represented in the form a + bi + cj + dk, where a, b, c, d ∈ R
and i, j, k are the fundamental quaternion units satisfying

i2 = j2 = k2 = −1 and ijk = −1.

It is shown that the set, when complexified to 64 lines in C8, becomes equiangular, with cos2 θ = 1/9
for any pair of distinct lines. The angle θ between two lines is defined via representative vectors u, v,

by cos2 θ =
|〈u, v〉|2

(|u||v|)2
, where 〈u, v〉 =

∑
uivi denotes the Hermitian inner product, and |u|2 = |〈u, u〉|.

4.1 Hoggar’s Construction

Let r =
√

2, i =
√
−1, s =

1 + i

r
, t =

1− i
r

= s. Let O,D, S and R be the columns of the matrix

of vectors in C2 shown below, with rows numbered 1 to 4.

Row O D S R

1 (0,0) (s, t) (s,−s) (0, r)

2 (0,0) (t,−s) (s, s) (r, 0)

3 (0,0) (t, s) (s,−s) (0, ri)

4 (0,0) (s,−t) (s,−s) (ri, 0)

Table 4.1: Matrix of vectors in C2 giving the 64 lines

We use notation Cm to denote the entries of the matrix, where C denotes the column and m denotes
the row. For example,

D3 = (t, s), S1 = (s,−s), R4 = (ri, 0).

Now define the vectors in C8. Each row in the table above defines one vector. For example, for
row 1 :

v1 = (O1, D1, S1, R1) = (0, 0, s, t, s,−s, 0, r).
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Inserting “−” signs in front of any pair in {D,S,R}, then there are 4 different sign patterns denoted
by p:

p = 1 : + + ++,

p = 2 : +−−+,

p = 3 : +−+−,
p = 4 : + +−−,

where the signs are in front of O, D, S, R respectively. For example, 3 other vectors can be obtained
from row 1.

v2 = (O1,−D1,−S1, R1),

v3 = (O1,−D1, S1,−R1),

v4 = (O1, D1,−S1,−R1).

Doing the same operation for each row in the table, we obtain a total of 16 vectors spanning distinct
lines through the origin in C8. We call these Type 1 lines.

Now, for each n = 2, 3, 4, we obtain 16 vectors said to be of Type n by interchanging columns
1 and n in the matrix, and similarly the remaining two columns.

Type 1 : ODSR,

Type 2 : DORS,

Type 3 : SROD,

Type 4 : RSDO.

This gives an action of the Klein 4-group on our set of vectors, with the types as blocks of imprim-
itivity.

For each type we obtain 16 vectors using the previous method. In this way, we construct a set
of 64 vectors spanning distinct lines through the origin in C8. Now let’s define our notation for the
vectors. For any vector vl, where l = 16(n−1)+4(m−1)+s (1 ≤ s, n,m ≤ 4), it is generated from
row m, with sign pattern p and of Type n. For example, a vector from row 3 , with sign pattern 4
and of Type 2 would be denoted by

v28 = (D3, O3,−R3,−S3).

Notice that for each vector vl (l = 1, 2, ..., 64), we have

|vl|2 = 〈Dj , Dk〉+ 〈Sj , Sk〉+ 〈Rj , Rk〉.

For example,

|v1|2 = 〈O1, O1〉+ 〈D1, D1〉+ 〈S1, S1〉+ 〈R1, R1〉
= |(0, 0)|2 + |(s, t)|2 + |(s,−s)|2 + |(0, r)|2

= 0 + 2 + 2 + 2

= 6
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1 2 3 4

1 2,2,2 2i,0,0 0,0,2i 0,2i,0

2 −2i,0,0 2,2,2 0,2i,0 0,0,2i

3 0,0,2i 0,−2i,0 2,2,2 −2i,0,0

4 0,2i,0 0,0,2i 2i,0,0 2,2,2

Table 4.2: Table of the triple (〈Dj , Dk〉, 〈Sj , Sk〉, 〈Rj , Rk〉)

We then construct a table with entry of jth row and kth column being the triple (〈Dj , Dk〉, 〈Sj , Sk〉,
〈Rj , Rk〉). We use this table to help us check the inner product between any two vectors.

Notice that for each vector vl (l = 1, 2, ..., 64), we have

|vl|2 = 〈Dj , Dk〉+ 〈Sj , Sk〉+ 〈Rj , Rk〉.

Using Table 2, we find that independent of m,

|vl|2 = 2 + 2 + 2 = 6.

To verify that the angle θ between any two lines satisfies cos2 θ = 1/9, we must show that
|〈vl1 , vl2〉|2 = 4 for any distinct l1, l2; i.e. all the inner products have modulus 2.

For inner product of the same type, observe that the inner products all take the form

|〈Dm1 , Dm2〉 ± 〈Sm1 , Sm2〉 ± 〈Rm1 , Rm2〉|.

Excluding the case when m1 = m2 and all signs are positive.

The + sign occurs when two vectors have the same sign pattern; the − sign occurs when two
vectors have different sign patterns. Using Table 2 again, it is obvious that all inner products of
the same type have modulus 2.

For inner product of vectors of different types, observe that the inner products all take the form

|〈Lm1 ,Mm2〉 ± 〈Mm1 , Lm2〉 ± 〈Nm1 , Om2〉 ± 〈Om1 , Nm2〉|.

where L,M,N are chosen from {S,R,D}. Since O have all 0 entries, then the inner product is just
|〈Lm1 ,Mm2〉 ± 〈Mm1 , Lm2〉|, for each pair (L,M) chosen from {S,R,D}.

To check this inner product, we need to calculate 〈Sj , Rk〉, 〈Dj , Rk〉, and 〈Sj , Dk〉 for all j, k from
1 to 4. Using Table 1, we calculated that the inner products 〈Sj , Rk〉 and 〈Dj , Rk〉 take values in the
set {±rs,±rt,±irs,±irt} and 〈Sj , Dk〉 takes values in the set {r(s± t), ri(s± t), rs(1± i), rt(1± i)}
They all have modulus 2. Therefore we have verified that these 64 vectors represent a SIC-POVM
in C8. It turns out that the SIC-POVM H(v) we obtained in C8 in the previous chapter using the
Hadamard matrix is equivalent to Hoggar’s line up to a unitary transformation [13].
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4.2 Group Construction Of Hoggar’s Line

In 2011, Chris Godsil and Aidan Roy [3] found that Hoggar’s line may also be constructed using
a group of 64 unitary matrices acting on a single vector. Moreover, d2 equiangular lines can be
constructed using this particular class of matrices only in dimension 2 and 8.

Let X,Y, Z be the Pauli matrices,

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
,

Then 〈X,Y, Z〉 is the Pauli group. We consider the group modulo −I, that is, choose any three
matrices from {X,Y, Z, I}, multiplicity allowed, and apply tensor product to these three matrices.
Then we have a group of 64 elements, each of these elements is represented as an 8 by 8 matrix
over C.

Let v = (0, 0, s, t, s,−s, 0, r) be the same as the first row of Table (4.1) in the Hoggar’s construc-
tion. Then {Av | A ∈ G} is a set of 64 equiangular lines, equivalent to Hoggar’s lines constructed
previously.

Lemma 4.2.1. For any d = 2k, consider v = (v1, v2, ...vd) ∈ Cd. Let Gk = {X,Y, Z, I}⊗k. The d2

lines {Av|A ∈ Gk} can only be equiangular for k = 1 or 3.

Proof. Suppose S = {Av | A ∈ Gk} is a SIC-POVM in Cd, where d = 2k. Let v = (v1, v2...vd) ∈ S
and let a = (a1, a2, ...ad), where ai = v̄ivi (1 ≤ i ≤ d). Then each ai is real and since 〈v, v〉 = 1,

a1 + a2 + ...+ ad = 1.

Let Zk = (I ⊗ I...⊗ I ⊗ Z), which is a k-fold tensor product

Zk =


1 0 · · · 0 0
0 −1 · · · 0 0
...

...
. . .

...
...

0 0 ... 1 0
0 0 ... 0 −1

 .

Since Zk ∈ Gk, Zkv ∈ S. Furthermore, because S is a SIC-POVM,

〈v, Zkv〉 = a1 − a2 + a3 − a4 + ...+ ad−1 − ad = ± 1√
d+ 1

.

Let H be a d by d Hadamard matrix:

H =

(
1 1
1 −1

)⊗k
.

For a string s defined as s = {s1, s2, · · · , sk} ∈ {0, 1}k, define Z(s) = Zs1 ⊗ Zs2 · · · ⊗ Zsk . E.g. for
s = {001}, Zs = I ⊗ I ⊗Z. The Hadamard matrix has its rows naturally indexed by binary strings
from {0, 1}k. More precisely, the rows of Hadamard matrix could be written in this notation,

hs =

[
1

(−1)s1

]T
⊗
[

1
(−1)s2

]T
⊗ · · · ⊗

[
1

(−1)sk

]T
,

18



where each component is a row vector.

For example, in a Hadamard matrix of order 8, the fourth row could be written as

h4 = (1,−1,−1, 1, 1,−1,−1, 1)

=

[
1

(−1)0

]
⊗
[

1
(−1)1

]
⊗
[

1
(−1)1

]
= h{011}.

Claim: Z(s)v = hTs ◦ v, where ◦ denotes the entry-wise product.
E.g.

hT{011} ◦ v = hT4 ◦ v = [v1,−v2,−v3, v4, v5,−v6,−v7, v8]

=



1
−1

−1
1

1
−1

−1
1


v

= (Z0 ⊗ Z1 ⊗ Z1)v

= Z({001})v.

Then

〈v, Z(s)v〉 = 〈v, hTs ◦ v〉 =
∑
j

vjh
T
sjvj = 〈hTs , v ◦ v〉 = 〈hs

T
, a〉 = hsa.

The result will be a single number since hs is a row vector and a is a column vector.

For any row hs of H except for row 1, indexed {000 · · · 0}, we have Z(s) ∈ {I,Z}⊗k satisfying

〈v, Z(s)v〉 = hsa = ± 1√
d+ 1

. The first row of H is trivial since Z({00 · · · 0}) = Id and 〈v, Idv〉 = 1.

We now obtain a system of equations:

Ha =
1√
d+ 1


√
d+ 1
±1
.
.
±1

 .

Since HHT = dI, then H−1 =
1

d
HT =

1

d
H. We use this to solve our system for the column vector

a :

a =
1

d
√
d+ 1

H


√
d+ 1
±1
.
.
±1

 . (4.1)
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The jth entry of this column vector a can be described in the form :

aj =

√
d+ 1 + Cj

d
√
d+ 1

, (4.2)

for some odd integer Cj , since d is even.

Next, consider the terms of the form bj = vjvj+1. Let Xk = (I ⊗ ... ⊗ X), which is another
k-fold tensor product

Xk =


0 1 · · · 0 0
1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
0 0 · · · 1 0

 .

Let b = (b1, b1, b3, b3, · · · , bd−1, bd−1). We have XkZ(s) ∈ Gk, therefore XkZ(s)v ∈ S. Then

1√
d+ 1

= |〈v,XkZ(s)v〉|

= |v∗XkZ(s)v|
= |(Xkv)∗Z(s)v|
= |〈Xkv, h

T
s ◦ v〉|

= |
∑
j

(Xkv)j(h
T
s )jvj |

= |
∑
j

(hTs )j(Xkv)jvj |

= |〈hTs , b〉|
= |hsb|.

If sk = 0, then

hsb =

([
1

(−1)s1

]T
⊗
[

1
(−1)s2

]T
⊗ · · · ⊗

[
1

(−1)0

]T)
b

=
∑
j

±(bj + bj)

= ± 1√
d+ 1

(Since bj + bj is always real, then hsb is also real).
If sk = 1, then

hsb =

([
1

(−1)s1

]T
⊗
[

1
(−1)s2

]T
⊗ · · · ⊗

[
1

(−1)1

]T)
b

=
∑
j

±(bj − bj)

= ± i√
d+ 1
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(Since bj − bj is always pure imaginary, then hsb is also pure imaginary).

Since s is the binary string for the row number of hs, then if sk is 0, s is even, and if sk is 1, s
is odd. Now we could obtain another system of equation:

Hb =
1√
d+ 1


±1
±i
...
±1
±i

 .

Solve the system of equation for the column vector b,

b =
1

d
√
d+ 1

H


±1
±i
...
±1
±i

 . (4.3)

All entries of b take the form bj ∈
±l(1 + i)

d
√
d+ 1

for some integer l. Thus, bjbj =
m

d2(d+ 1)
for some

integer m; i.e. bjbj is rational.
Now, in a similar way, define gj = vjvj+2 and hj = vj+1vj+2. Let M1,M2 ∈ {I,X}⊗k be

permutation matrices , where M1 takes coordinate j to j+2 on v (mod d), and M2 takes coordinate
j + 1 to j + 2 on v (mod d). Then by considering 〈v,M1Z(s)v〉 and 〈v,M2Z(s)v〉, we similarly get
that gg and hh are rational.
Furthermore, notice that

gg = vjvj+2vjvj+2 = ajaj+2. (4.4)

and

hh = vj+1vj+2vj+1vj+2 = aj+1aj+2. (4.5)

From Equation (4.2), for any integer m and n,

aman =
d+ 1 + CmCn + (Cm + Cn)

√
d+ 1

d2(d+ 1)
,

which is rational if and only if one of the following cases is satisfied:

case 1:
√
d+ 1 is rational ;

case 2: (Cm + Cn) = 0 for all integers m,n.

If case 2 is satisfied, from Equations (4.4) and (4.5), we will have Cj = −Cj+1; Cj = −Cj+2;
Cj+1 = −Cj+2. This system of equations has no solution since Cj is odd for all j. Then case 2 can
only be satisfied when d = 2 and C1 = −C2.
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If case 1 is satisfied, we claim that
√

2k + 1 is rational only for k = 3 (k > 0).

Recall d = 2k and suppose that
√

2k + 1 is rational, then 2k + 1 = (x/y)2 where x, y are positive
integers which, without loss of generality, have no common factor. We have y2(2k + 1) = x2.
Suppose y has a prime factor p, then x2 = m2p2(2k + 1). Since p|x2 , we have p|x. This contradicts
the assumption that x and y have no common factor. Therefore y cannot have any prime factors;
i.e. y = 1. Therefore

2k = x2 − 1 = (x− 1)(x+ 1),

so x− 1 and x+ 1 are both powers of 2. The only powers of 2 differing by 2 are 21 and 22, so x = 3
and k = 3.

Now we have shown that {Av|A ∈ Gk} is a SIC-POVM if and only if k is 1 or 3.
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Chapter 5

SIC-POVMs In Dimension 7 And 19

In the analytical solution of fiducial vectors found by Grassl and Scott [9], most solutions are messy.
However, there are a few neat solutions in some specific dimensions that are very short compared to
other solutions. In addition, we found some interesting number theoretic properties from solutions
in dimension 7 and 19.

5.1 Argument Legendre Fiducial Vectors

Let p be a prime number, recall the Legendre symbol

(
j

p

)
=


0 if j ≡ 0 mod p

1 if j is a quadratic residue

−1 if j is a quadratic non-residue

.

Definition 5.2. We say a fiducial vector z ∈ Cp is Argument Legendre (AL) if there exist a, b, θ ∈ R
such that

zj =


b if j = 0

ae
i

(
j

p

)
θ

if j 6= 0

.

This definition is introduced in Khatirinejad’s Ph.D. thesis in 2008 [8]. Notice that here z is
indexed from 0 to d − 1, therefore from the definition, z could be represented by three terms :
0th term, which is real; terms in the position of a quadratic residue (QR terms); and terms in the
position of a quadratic non-residue (NQR terms). In addition, the entries of QR terms and NQR
terms are complex conjugates of one another. For example, the solution 7b, found by Grassl and
Scott [9], may be written as

φ7 = (α, β, β, γ, β, γ, γ), (5.1)

where α = −2−
√

2+
√

2σi, β = 2 , γ =
√

2−1+σi and σ =
√√

8 + 1. Working mod 7, the quadratic
residues (perfect squares in mod 7) are 1, 2 and 4; the quadratic non-residues are 3, 5 and 6. If
we multiply the fiducial vector φ7 by a complex phase such that the 0th term is real, we further
discover that the QR terms and the NQR terms are complex conjugate with each other. Therefore
φ7 is an AL fiducial vector.
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There is another solution in dimension 19 which satisfies such a property. The solution 19e,
also found by Grassl and Scott [9], may be written as

φ19 = (α, β, γ, γ, β, β, β, β, γ, β, γ, β, γ, γ, γ, γ, β, β, γ), (5.2)

where α = σ + 1, β = 1− σi ,γ = 1 + σi and σ =
√√

20 + 1. The quadratic residues mod 19 are 1,
4, 5, 6, 7, 9, 11, 16 and 17; the quadratic non-residues are 2, 3, 8, 10, 12, 13, 14, 15 and 18. It is
obvious that φ19 is also Argument Legendre.

Currently, we have found only two known analytical solutions that are AL: one in dimension
7 and one in dimension 19. It is proved in Khatirinejad’s Ph.D thesis [8] that AL fiducial vectors
only exist in dimension 7 and 19 and can not be generalized in higher dimensions. However, with
such a special property, we can further classify all AL fiducial vectors in dimension 7.

5.3 Classification Of AL Fiducial Vectors In Dimension 7

First we write the AL fiducial vector in C7 as

v = (z0, zr, zr, zn, zr, zn, zn), (5.3)

where z0 is the 0th term, zr is the QR term and zn is the NQR term. The phase and displacement
operators in dimension 7 are

X =



0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0


, Z =



1 0 0 0 0 0 0
0 ω 0 0 0 0 0
0 0 ω2 0 0 0 0
0 0 0 ω3 0 0 0
0 0 0 0 ω4 0 0
0 0 0 0 0 ω5 0
0 0 0 0 0 0 ω6


,

where ω = e2πi/7 and ω7 = 1. Also, X and Z are unitary matrices and satisfy that X7 = Z7 = I
and XrZt = ω−rtZtXr for any r and t. According to the Weyl-Heisenberg construction discussed
previously in Chapter 2, by defining vjk = Djkv = −ωjk/2XjZkv, we have S = {vjk | j, k ∈ Z, 0 ≤
j, k ≤ 6} is a SIC-POVM. e.g. v00 = v. Therefore, for any two vectors vlm, vst ∈ S, they must
satisfy

|〈vlm, vst〉| =
1√
8
. (5.4)

Claim: For any two vectors vlm, vst ∈ S, they also satisfy

|〈vlm, vst〉| = |〈v00, vnk〉| =
1√
8
, (5.5)

where vnk ∈ S.

For example, using the property of a unitary matrix U , we have

〈v26, v35〉 = 〈Uv26, Uv35〉.
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If we let U be Z1X5(U is unitary since Z and X are unitary), then

Uv26 = −ω6ZX5X2Z6v = −ω−1v.

Therefore we have

〈v26, v35〉 = 〈Uv26, Uv35〉
= 〈−ω−1v,−ω1/2ZX5X3Z5v〉
= 〈−ω−1v,−ω1/2ZXZ5v〉
= 〈−ω−1v,−ω1/2ωXZZ5v〉
= 〈−ω−1v,−ω3/2XZ6v〉
= 〈−ω−1v,−ω−3/2ω3XZ6v〉
= 〈−ω−1v, ω−3/2v16〉.

Since ω has modulus 1, we further get that

|〈v26, v35〉| = |〈v00, v16〉|.

Using similar means, we can show that Equation (5.5) holds for any two vectors vlm, vst ∈ S.
Now, to verify that S is a SIC-POVM, we only need to check that |〈v00, vnk〉| = 1√

8
for every vnk ∈ S.

There are only 49 calculations we need to do, which is much easier than checking all
(
49
2

)
inner

products. We use Maple to calculate the inner products between every vector in S and the fiducial
vector v. Since v is AL, then we can further restrict that z0 = a, zr = beiθ and zn = be−iθ = z̄r for
a, b. The inner product between the fiducial vector and itself is 1, this gives the equation:

a2 + 6b2 = 1. (5.6)

Furthermore, we calculate the rest of the equations from (5.5) using Maple. The remaining equa-
tions can further be reduced to 3 more equations:

5b4 + 2a2b2 = 1/8 (5.7)

4b4 cos2 θ(4 cos2 θ − 3) + a2b2 + 2b3a cos θ = 1/8 (5.8)

4b4 cos2 θ − b4 + 4b3a cos θ(2 cos2 θ − 1) = 1/8 (5.9)

Solving Equations (5.6)-(5.9) we get that

a =

√
2 + 3

√
2

14
, b =

√
4−
√

2

28
, cos θ = −

√
1 + 1

√
2

4
.

We further calculated that this solution is equivalent to the solution 7b, found by Grassl and
Scott [9] .
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Chapter 6

SIC-POVMs In 3D

We know that most known SIC-POVMs are group covariant, and they have some degrees of geo-
metrical symmetry. For example, in C2, a SIC-POVM can be represented by 4 unit vectors on a
Bloch sphere as shown in the figure below.

Figure 6.1: 4 unit vectors on a Bloch sphere represent a SIC-POVM in C2

We can visually observe that they are equiangular and form the shape of a regular tetrahedron.
What would SIC-POVMs look like in higher dimensions? What geometrical symmetry do they
have? Since plots in R3 are the most easily understood, we want to interpret SIC-POVMs in high
dimensions using vectors in R3 and see what geometrical symmetries they might have in this setting.

To accomplish this, we need to introduce the Majorana representations that allow us to repre-
sent a vector in Cd by d− 1 vectors in R3.
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6.1 Majorana States In C3

In C3, up to normalization, a vector can be described in the form

v = (1,
C1

C0
,
C2

C0
), (6.1)

where C0, C1, C2 ∈ C. In Majorana’s approach, we represent this vector as:

v = (1,
α1 + α2√

2
, α1α2) (6.2)

where α1, α2 ∈ C are called Majorana parameters (M-parameters). Then we can calculate the
values of these two M-parameters by solving the quadratic equation:

z2 −
√

2
C1

C0
z +

C2

C0
= 0. (6.3)

For each M-parameter αi, we define the corresponding Majorana vector (M-vector) ai as a point
on the Riemann Sphere [4] with the Cartesian coordinates:

ai =

(
2Re(αi)

1 + |αi|2
,

2Im(αi)

1 + |αi|2
,
1− |αi|2

1 + |αi|2

)
. (6.4)

The Riemann sphere and the extended complex plane (with the added point at infinity) are in
one-to-one correspondence with each other under stereographic projection. If one takes the com-
plex plane to be in the equatorial plane of the Riemann sphere, then the image of any point on the
sphere is obtained by drawing the line from the south pole to it and seeing where it intersects the
equatorial plane.

For each vector v in C3, we obtain two M-vectors in R3 using the method just introduced.
Therefore, we have a total of 18 M-vectors for a SIC-POVM in dimension 3. We can look at
the 3D plots of the M-vectors and pick out any special symmetries they may possess. In the
following section, a few examples of SIC-POVMs are provided and their M-vectors are calculated
and plotted. Furthermore, we can sometimes use M-vectors with special symmetry to construct
new SIC-POVMs.
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6.2 Examples

Examples 6.2.1. Hesse SIC

Taking the fiducial vector as (0, 1,−1), we generate the entire SIC-POVM using the Weyl-
Heisenberg construction. Then we obtain 9 unnormalized vectors in C3:

v1 = (−ω, 0, 1), v2 = (−ω2, 0, 1), v3 = (−1, 0, 1)

v4 = (ω2,−1, 0), v5 = (ω,−1, 0), v6 = (1,−1, 0)

v7 = (0, 1,−ω), v8 = (0, 1,−ω2), v9 = (0, 1,−1),

where ω = e2πi/3 is a primitive cube root of unity.
The M-vectors of these 9 vectors, calculated using the method previously discussed, can be

divided into 3 groups:

Group 1


v1 : a1 = (−1/2,

√
3/2, 0), a2 = (1/2,−

√
3/2, 0),

v2 : a1 = (−1/2,−
√

3/2, 0), a2 = (1/2,
√

3/2, 0),

v3 : a1 = (1, 0, 0), a2 = (−1, 0, 0),

Group 2


v4 : a1 = (0, 0, 1), a2 = (

√
2/3,−

√
2/3,−1/3)

v5 : a1 = (0, 0, 1), a2 = (
√

2/3,
√

2/3,−1/3)

v6 : a1 = (0, 0, 1), a2 = (
−2
√

2

3
, 0,−1/3)

Group 3


v7 : a1 = (0, 0,−1), a2 = (

√
2/3,−

√
2/3, 1/3)

v8 : a1 = (0, 0,−1), a2 = (
√

2/3,
√

2/3, 1/3)

v9 : a1 = (0, 0,−1), a2 = (
−2
√

2

3
, 0, 1/3)

The 3-D plot of these three groups of M-vectors, shown from Figure 6.2 to Figure 6.4, point towards
the vertices of a regular hexagon in the x-y plane, and two regular tetrahedra. Observe that the vec-
tors in Group 3 are simply the reflection of those in Group 2 in the x-y plane as shown in Figure(6.4).
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Figure 6.2: M-vectors in Group 1 of Hesse SIC

]

Figure 6.3: M-vectors in Group 2 of Hesse SIC
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Figure 6.5: M-vectors in Group 2 (blue) and Group 3 (red) of Hesse SIC

Figure 6.4: M-vectors in Group 3 of Hesse SIC
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Examples 6.2.2. Appleby’s SIC

Taking the fiducial vector as (0, eit, e−it), where t is from 0 to π/6, we generate the entire SIC-
POVM using the Weyl-Heisenberg group. The 9 unnormalized vectors in C3 are expressed with a
parameter t from 0 to π/6 :

v1 = (ωe−it, 0, eit), v2 = (ω2e−it, 0, eit), v3 = (e−it, 0, eit)

v4 = (ωeit, e−it, 0), v5 = (ω2eit, e−it, 0), v6 = (eit, e−it, 0)

v7 = (0, eit, ωe−it), v8 = (0, eit, ω2e−it), v9 = (0, eit, e−it).

The squared modulus of the Hermitian product of every pair is 1/4 upon normalization, therefore
the set is a SIC-POVM for any value of t between 0 and π/6. This SIC is first discovered by
Appleby [1].

The 9 M-vectors, expressed in terms of the parameter t, can also be divided into 3 groups:

Group 1


v1 : a1 = (− sin(t+ π/3), cos(t+ π/3), 0), a2 = (sin(t+ π/3),− cos(t+ π/3), 0),

v2 : a1 = (− sin(t− π/3), cos(t− π/3), 0), a2 = (sin(t− π/3),− cos(t− π/3), 0),

v3 : a1 = (− sin(t), cos(t), 0), a2 = (sin(t),− cos(t), 0)

Group 2


v4 : a1 = (sin(θ0) cos(2t+ 2π/3),− sin(θ0) cos(2t+ 2π/3),− cos(θ0)), a2 = (0, 0, 1),

v5 : a1 = (sin(θ0) cos(2t+ 4π/3),− sin(θ0) cos(2t+ 4π/3),− cos(θ0)), a2 = (0, 0, 1),

v6 : a1 = (sin(θ0) cos(2t+ 2π/3),− sin(θ0) cos(2t+ 2π/3),− cos(θ0)), a2 = (0, 0, 1),

Group 3


v7 : a1 = (sin(θ0) cos(2t+ 2π/3),− sin(θ0) cos(2t+ 2π/3), cos(θ0)), a2 = (0, 0,−1),

v8 : a1 = (sin(θ0) cos(2t+ 4π/3),− sin(θ0) cos(2t+ 4π/3), cos(θ0)), a2 = (0, 0,−1),

v9 : a1 = (sin(θ0) cos(2t+ 2π/3),− sin(θ0) cos(2t+ 2π/3), cos(θ0)), a2 = (0, 0,−1),

where sin(θ0) = 2
√
2

3 and cos(θ0) = 1/3. The 3-D plots of these 3 groups of M-vectors are similar to
those of the Hesse’s SIC . But they differ by a rotation angle of t. In fact, when t = π/6, Appleby’s
SIC has exactly the same geometric configuration as Hesse’s SIC .

Plotting the first group of M-vectors of the Hesse SIC and Appleby’s SIC at t = 0 together (as
shown in Figure 6.6), we observe that they differ by a rotation of π/6. Next, plotting the second
group of M-vectors of the Hesse SIC and Appleby’s SIC at t = 0 together (as shown in Figure
6.7), we observe that they differ by a rotation of π/3. Also, the the third group of M-vectors of
Appleby’s SIC are the reflection of the second group in the x-y plane.

We conclude that as the parameter t varies, the M-vectors of the states in the groups (v4, v5, v6)
and (v7, v8, v9) get rotated relative to the vectors for t = 0 by the counter-clockwise angle 2t about
the z-axis, while for the group (v1, v2, v3) the rotation is counter-clockwise by the angle t . Since
only the relative orientation of the vectors in the different groups is significant, we can take the
vectors of v1, v2 and v3 to be fixed and let those of the other states rotate relative to them by the
counter-clockwise angle t. Then, as t varies between 0 to π/6 , all the distinct configurations of
this system are realized.
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Figure 6.6: Group 1, Hesse SIC (blue) and Appleby’s SIC at t = 0 (red).

Figure 6.7: Group 2, Hesse SIC (blue) and Appleby’s SIC at t=0 (red)
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6.3 New Construction Of SIC-POVMs

From the examples studied so far, we see that the M-vectors of SIC-POVMs in dimension 3 have
threefold symmetry about the z-axis. We can generate new SIC-POVMs based on this symmetry.

Examples 6.3.1. Aravind-1 SIC

In Appleby’s SIC, the rotation angle of the three groups of M-vectors are related. What if they
are rotated at arbitrary angles with respect to each other? Will one still have a SIC-POVM?
Consider a SIC-POVM whose 18 M-vectors (denoted in spherical coordinate (θ, φ)) are

Group 1


v1 : a1 = (π/2, 0), a2 = (π/2, π),

v2 : a1 = (π/2, π/3), a2 = (π/2, 4π/3),

v3 : a1 = (π/2, 2π/3), a2 = (π/2, 5π/3),

Group 2


v4 : a1 = (0, 0), a2 = (π − θ0, φ1),
v5 : a1 = (0, 0), a2 = (π − θ0, 2π/3 + φ1),

v6 : a1 = (0, 0), a2 = (π − θ0, 4π/3 + φ1),

Group 3


v7 : a1 = (π, 0), a2 = (θ0, φ2),

v8 : a1 = (π, 0), a2 = (θ0, 2π/3 + φ2),

v9 : a1 = (π, 0), a2 = (θ0, 4π/3 + φ2),

where θ0 = cos−1(1/3) and φ1 and φ2 are arbitrary values between 0 and π/6. The geometric
configuration of these 3 groups of vectors is similar to Figure 6.2, except for the difference in their
relative rotation angles. In this case, the first group remains fixed, while the rotation angle of
second group and third group relative to the first one is φ1 and φ2, respectively. These Majorana
states are the same as those of Appleby’s SIC when φ1 = φ2. However, these 18 M-vectors are more
general than M-vectors of Appleby’s SIC, because the M-vectors in the three groups can be rotated
by arbitrary angles relative to each other. In Appleby’s case, the two tetrahedrons are always the
reflections of each other in the x-y plane and only the hexagon can rotate relative to them.

We can generate the vectors in C3 that correspond to these M-vectors. The 9 unnormalized
vectors are:

v1 = (1, 0,−1), v2 = (1, 0,−ω), v3 = (1, 0,−ω2),

v4 = (1, eiφ1 , 0), v5 = (1, ωeiφ1 , 0), v6 = (1, ω2eiφ1 , 0),

v7 = (0, 1, eiφ2), v8 = (0, 1, ωeiφ2), v9 = (0, 1, ω2eiφ2).

It can be verified that upon normalization, the squared modulus of the inner product of any
two vectors is 1/4. Therefore, these 9 vectors form a SIC-POVM. This SIC was discovered by
P.K.Aravind using geometrical arguments. We have shown here that it includes both the Appleby’s
and Hesse SICs as special cases.
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Examples 6.3.2. Aravind-2 SIC

Consider a SIC whose M-vectors (in spherical coordinate (θ, φ)) are

Group 1


v1 : a1 = (θ1, 0), a2 = (π − θ1, π)

v2 : a1 = (θ1, 2π/3), a2 = (π − θ1, 5π/3)

v3 : a1 = (θ1, 4π/3), a2 = (π − θ1, π/3)

Group 2


v4 : a1 = (θ2, 0), a2 = (θ2, 2π/3)

v5 : a1 = (θ2, 2π/3), a2 = (θ2, 4π/3)

v6 : a1 = (θ2, 4π/3), a2 = (θ2, 0)

Group 3


v7 : a1 = (π − θ2, π), a2 = (π − θ2, 5π/3)

v8 : a1 = (π − θ2, 5π/3), a2 = (π − θ2, π/3)

v9 : a1 = (π − θ2, π/3), a2 = (π − θ2, π).

These 18 M-vectors were obtained using purely geometric argument by P.K. Aravind (private
communication). The geometric configuration of these states (shown in Figure 6.9 - 6.11) is quite
different from examples we previously discussed.

Figure 6.8: M-vectors in Group 1 of Aravind-2 SIC
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Figure 6.9: M-vectors in Group 2 of Aravind-2 SIC

Figure 6.10: M-vectors in Group 3 of Aravind-2 SIC
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The unnormalized vectors corresponding to these M-vectors are

v1 = (1,−2,−1), v2 = (1, 2ω−1/2, ω1/2), v3 = (1, 2ω1/2, ω−1/2)

v4 = (1,
1

2
ω1/2,−1

2
ω−1/2), v5 = (1,

1

2
,−1

2
), v6 = (1,

1

2
ω−1/2,−1

2
ω1/2)

v7 = (1,−ω1/2,−2ω−1/2), v8 = (1, 1, 2), v9 = (1,−ω−1/2,−2ω1/2)

It is verified that upon normalization that the squared modulus of the inner product of any two
vectors is also 1/4. Therefore these 9 vectors form a SIC-POVM. However, these 9 vectors are not
in the same Weyl-Heisenberg orbit and none of these vectors can be used as a fiducial vector to
generate a SIC-POVM.

To confirm that this is indeed a new SIC-POVM ( i.e. that this SIC is inequivalent to other
SICs ), we need to find some invariants that can distinguish between them. According to Zhu’s
paper [13], if ρi = viv

∗
i , where * denotes the conjugate transpose, the trace of the triple product

tr(ρjρkρl) is invariant under unitary transformations of the vectors v1, vj and vk. We shall be
concerned with these triple products when j, k and l independently take on all values from 1 to 9.
Since the magnitude of the trace is the same, we shall only be concerned with the phase of the trace.
If the phase φ = |Arg(tr(ρjρkρl))|, we can obtain a total of

(
9
3

)
= 84 phases from a SIC-POVM.

Then two SIC-POVMs are considered to be inequivalent if their phases have the distinct patterns.
The phase φ is also known as the Bargmann invariant [2].

The phases distribution for Aravind-2 is shown in Table (6.1), and the phase distribution for
Aravind-1 with arbitrary φ1 and φ2 is shown in Table (6.2).

Value of the phase Number of multiplicity

0 45
π/3 27
2π/3 9
π 3

Table 6.1: Table of φ distribution for Aravind-2 SIC

Value of the phase Number of multiplicity

0 10
π /3 36
2π/3 10
π 2

−2φ1 + φ2 10
2π/3− 2φ1 + φ2 8
−2π/3− 2φ1 + φ2 8

Table 6.2: Table of φ distribution for Aravind-1 SIC

From the distribution of the phases, we can tell that these two SICs are inequivalent for any
value of φ1 and φ2. Similarly, we can show that Aravind-2 SIC is also inequivalent to Hesse’s SIC
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and Appleby’s SIC. We anticipated this result because the Aravind-2 SIC is not a Weyl-Heisenberg
orbit. However, we don’t know whether it is equivalent to other SICs under unitary transformation.
We mark this SIC-POVM as a potential new SIC and perhaps it should be studied further.

The most striking conclusion of the Majorana approach to studying SIC-POVMs in dimension
3 is that the states of the SIC come in three groups of three each, with the M-vectors of the states
in each group being related to each other by a threefold rotation about the z-axis. It is possible to
use this symmetry alone to deduce a large class of SIC-POVMs in dimension 3, as has been shown
by P.K.Aravind (private communication).
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Chapter 7

SIC-POVMs In Dimension 4

We have found that the M-vectors of SIC-POVMs in dimension 3 have a characteristic symmetry,
namely, a threefold symmetry about the z-axis. We will now follow a similar approach to seek
symmetries of the SIC-POVMs in dimension 4. We concentrate on a particular SIC-POVM in
dimension 4 obtained by Appleby [1], whose vectors are

v1 = (x0, 1, 1, 1), v2 = (x0, 1,−1,−1), v3 = (x0,−1, 1,−1), v4 = (x0,−1,−1, 1),

v5 = (1, 1, x0i,−i), v6 = (1, 1,−x0i, i), v7 = (1,−1, x0i,−i), v8 = (1,−1,−x0i,−i),
v9 = (1, i, 1,−x0i), v10 = (1, i,−1, x0i), v11 = (1,−i, 1, x0i), v12 = (1,−i,−1,−x0i),
v13 = (1, x0i, i,−1), v14 = (1, x0i,−i, 1), v15 = (1,−x0i, i, 1), v16 = (1,−x0i,−i,−1),

where x0 =
√

2 +
√

5. It can be verified that the squared modulus of the inner product of any two
vectors is 1/5 upon normalization. Therefore these 16 vectors form a SIC-POVM. Next, we want
to work out their M-parameters.

Any vector in C4 can be parametrized by three M-parameters, which can be chosen as the
complex numbers α1, α2, α3 or, alternatively, three unit vectors a1, a2, a3 on the Riemann sphere.

(1, c1, c2, c3) = (1,
α1 + α2 + α3√

3
,
α1α2 + α2α3 + α3α1√

3
, α1α2α3). (7.1)

The complex parameters α1, α2, α3 are the roots of the Majorana Polynomial:

z3 −
√

3c1z
2 +
√

3c2z − c3 = 0 (7.2)

By solving this cubic equation, we can obtain three M-parameters for each of the vectors in
the SIC-POVM. An investigation shows that the M-parameters of the 16 vectors can be expressed
in terms of the following 15 quantities: 9 complex numbers η1, η2, η3, η4, η5, η6, η7, η8, η9, 4 real
numbers β1, β2, β3, β4, β5 and 2 imaginary numbers γ1, γ2. Table (7.1) shows how the states can be
expressed in terms of these parameters.

v1 = (η1, η1, β1) v5 = (η2, η3, η4) v9 = (η5,−η5, γ1) v13 = (η7, η8, η9)

v2 = (β2, β3, β4) v6 = (η2, η3, η4) v10 = (η6,−η6, γ2) v14 = (−η7,−η8,−η9)
v3 = (−η1,−η1,−β1) v7 = (−η2,−η3,−η4) v11 = (−η5, η5,−γ1) v15 = (−η7,−η8,−η9)
v4 = (−β2,−β3,−β4) v8 = (−η2,−η3,−η4) v12 = (−η6, η6,−γ2) v16 = (η7, η8, η9)

Table 7.1: Table of the M-parameters of the 16 vectors of Appleby’s SIC
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From the M-parameters, we can calculate their corresponding M-vectors. Recall that a complex
parameter α determines the M-vector a = (ax, ay, az) via the relations

ax =
2Re(α)

1 + |α|2
, ay =

2Im(α)

1 + |α|2
, ax =

1− |α|2

1 + |α|2
. (7.3)

We denote the M-vectors as hi corresponding to M-parameter ηi, bi corresponding to βi and ci
corresponding to γi. Also note that replacing a complex parameter by its conjugate, or its negative,
or its negative conjugate, causes the corresponding M-vector to change as follows:

α→ α =⇒ a = (ax, ay, az)→ (ax,−ay, az) ≡ a
α→ −α =⇒ a = (ax, ay, az)→ (−ax,−ay, az) ≡ ã
α→ −ᾱ =⇒ a = (ax, ay, az)→ (−ax, ay, az) ≡ ǎ

We have introduced a compact symbol for each transformed M-vector at the end of each of the
above lines. With this notation, the M-vectors of the 16 SIC states are shown in Table (7.2).

Group 1 Group 2 Group 3 Group 4

v1 = (h1, h̄1, b1) v5 = (h2, h3, h4) v9 = (h5, ȟ5, c1) v13 = (h7, h8, h9)

v2 = (b2, b3, b4) v6 = (h̄2, h̄3, h̄4) v10 = (h6, ȟ6, c2) v14 = (ȟ7, ȟ8, ȟ9)

v3 = (h̃1, ȟ1, b̃1 v7 = (h̃2, h̃3, h̃4) v11 = (h̃5, h̃5, c̄1) v15 = (h̃7, h̃8, h̃9)

v4 = (b̃2, b̃3, b̃4) v8 = (ȟ2, ȟ3, ȟ4) v12 = (h̃6, h̄6, c2) v16 = (h̄7, h̄8, h̄9)

Table 7.2: M-vectors of SIC in Table (7.1)

The actual values of the 15 independent vectors occurring in the SIC were calculated using
MAPLE and found to be:

h1 = (0.010, 0.982, 0.159) h2 = (0.575,−0.293,−0.764) h3 = (−0.399,−0.073, 0.863)

h4 = (−0.307, 0.906,−0.293) h5 = (0.838,−0.529, 0.129) h6 = (0.639, 0.559,−0.528)

h7 = (0.782,−0.520, 0.344) h8 = (−0.313, 0.607, 0.730) h9 = (−0.057, 0.510,−0.858)

b1 = (0.924, 0, 0.382) b2 = (0.983, 0,−0.185) b3 = (0.779, 0, 0.627)

b4 = (−0.985, 0, 0.170) c1 = (0, 0.657,−0.754) c2 = (0,−0.906, 0.424).

To visualize the result shown in Table 7.2, we plot the projection on the x-y plane of the M-
vectors of the four states in each of the columns of Table 7.2. The results are shown from Figure
7.1 to Figure 7.4 . Red, yellow, blue and green dots denote the x, y coordinates of four different
states. Dots are connected with thin lines if their z coordinates are positive and with thick lines
if their z coordinates are negative. Since all vectors are unit vectors, all information about the
vectors can be obtained from the plots. We find that the plots have C2v symmetry in every case.
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Figure 7.1: Projection of M-vectors onto x-y plane (Group 1)

Figure 7.2: Projection of M-vectors onto x-y plane (Group 2)
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Figure 7.3: Projection of M-vectors onto x-y plane (Group 3)

Figure 7.4: Projection of M-vectors onto x-y plane (Group 4)
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There appear to be no further symmetries aside from C2v .
This suggests that we can construct a SIC by looking for 4 equiangular states having C2v

symmetry and put four such groups together that form a SIC. It still remains to be seen if this
approach will work.
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